National Library of Energy BETA

Sample records for month-to-month comparisons generation

  1. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power systems...

  2. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Fuel Cycle Comparison of Distributed Power Generation Technologies Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is

  3. Comparisons of neutrino event generators from an oscillation...

    Office of Scientific and Technical Information (OSTI)

    of high energy physics data, ideally giving a baseline comparison between the state-of-art theoretical models and experimental data. Presented here is a comparison between three...

  4. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  5. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  6. Intrinsic Radiation Source Generation with the ISC Package: Data Comparisons and Benchmarking

    SciTech Connect (OSTI)

    Solomon, Clell J. Jr.

    2012-04-26

    The characterization of radioactive emissions from unstable isotopes (intrinsic radiation) is necessary for shielding and radiological-dose calculations from radioactive materials. While most radiation transport codes, e.g., MCNP [X-5 Monte Carlo Team, 2003], provide the capability to input user prescribed source definitions, such as radioactive emissions, they do not provide the capability to calculate the correct radioactive-source definition given the material compositions. Special modifications to MCNP have been developed in the past to allow the user to specify an intrinsic source, but these modification have not been implemented into the primary source base [Estes et al., 1988]. To facilitate the description of the intrinsic radiation source from a material with a specific composition, the Intrinsic Source Constructor library (LIBISC) and MCNP Intrinsic Source Constructor (MISC) utility have been written. The combination of LIBISC and MISC will be herein referred to as the ISC package. LIBISC is a statically linkable C++ library that provides the necessary functionality to construct the intrinsic-radiation source generated by a material. Furthermore, LIBISC provides the ability use different particle-emission databases, radioactive-decay databases, and natural-abundance databases allowing the user flexibility in the specification of the source, if one database is preferred over others. LIBISC also provides functionality for aging materials and producing a thick-target bremsstrahlung photon source approximation from the electron emissions. The MISC utility links to LIBISC and facilitates the description of intrinsic-radiation sources into a format directly usable with the MCNP transport code. Through a series of input keywords and arguments the MISC user can specify the material, age the material if desired, and produce a source description of the radioactive emissions from the material in an MCNP readable format. Further details of using the MISC utility can be obtained from the user guide [Solomon, 2012]. The remainder of this report presents a discussion of the databases available to LIBISC and MISC, a discussion of the models employed by LIBISC, a comparison of the thick-target bremsstrahlung model employed, a benchmark comparison to plutonium and depleted-uranium spheres, and a comparison of the available particle-emission databases.

  7. Comparison of large central and small decentralized power generation in India

    SciTech Connect (OSTI)

    1997-05-01

    This reports evaluates two options for providing reliable power to rural areas in India. The benefits and costs are compared for biomass based distributed generation (DG) systems versus a 1200-MW central grid coal-fired power plant. The biomass based DG systems are examined both as alternatives to grid extension and as supplements to central grid power. The benefits are divided into three categories: those associated with providing reliable power from any source, those associated specifically with biomass based DG technology, and benefits of a central grid coal plant. The report compares the estimated delivered costs of electricity from the DG systems to those of the central plant. The analysis includes estimates for a central grid coal plant and four potential DG system technologies: Stirling engines, direct-fired combustion turbines, fuel cells, and biomass integrated gasification combined cycles. The report also discusses issues affecting India`s rural electricity demand, including economic development, power reliability, and environmental concerns. The results of the costs of electricity comparison between the biomass DG systems and the coal-fired central grid station demonstrated that the DG technologies may be able to produce very competitively priced electricity by the start of the next century. The use of DG technology may provide a practical means of addressing many rural electricity issues that India will face in the future. Biomass DG technologies in particular offer unique advantages for the environment and for economic development that will make them especially attractive. 58 refs., 31 figs.

  8. Comparison of two generation-recombination terms in the Poisson-Nernst-Planck model

    SciTech Connect (OSTI)

    Lelidis, I.; Barbero, G.; Sfarna, A.

    2012-10-21

    Two phenomenological forms proposed to take into account the generation-recombination phenomenon of ions are investigated. The first form models the phenomenon as a chemical reaction, containing two coefficients describing the dissociation of neutral particles in ions, and the recombination of ions to give neutral particles. The second form is based on the assumption that in thermodynamical equilibrium, a well-defined density of ions is stable. Any deviation from the equilibrium density gives rise to a source term proportional to the deviation, whose phenomenological coefficient plays the role of a life time. The analysis is performed by evaluating the electrical response of an electrolytic cell to an external stimulus for both forms. For simplicity we assume that the electrodes are blocking, that there is only a group of negative and positive ions, and that the negative ions are immobile. For the second form, two cases are considered: (i) the generation-recombination phenomenon is due to an intrinsic mechanism, and (ii) the production of ions is triggered by an external source of energy, as in a solar cell. We show that the predictions of the two models are different at the impedance as well as at the admittance level. In particular, the first model predicts the existence of two plateaux for the real part of the impedance, whereas the second one predicts just one. It follows that impedance spectroscopy measurements could give information on the model valid for the generation-recombination of ions.

  9. Radcalc for windows benchmark study: A comparison of software results with Rocky Flats hydrogen gas generation data

    SciTech Connect (OSTI)

    MCFADDEN, J.G.

    1999-07-19

    Radcalc for Windows Version 2.01 is a user-friendly software program developed by Waste Management Federal Services, Inc., Northwest Operations for the U.S. Department of Energy (McFadden et al. 1998). It is used for transportation and packaging applications in the shipment of radioactive waste materials. Among its applications are the classification of waste per the US. Department of Transportation regulations, the calculation of decay heat and daughter products, and the calculation of the radiolytic production of hydrogen gas. The Radcalc program has been extensively tested and validated (Green et al. 1995, McFadden et al. 1998) by comparison of each Radcalc algorithm to hand calculations. An opportunity to benchmark Radcalc hydrogen gas generation calculations to experimental data arose when the Rocky Flats Environmental Technology Site (RFETS) Residue Stabilization Program collected hydrogen gas generation data to determine compliance with requirements for shipment of waste in the TRUPACT-II (Schierloh 1998). The residue/waste drums tested at RFETS contain contaminated, solid, inorganic materials in polyethylene bags. The contamination is predominantly due to plutonium and americium isotopes. The information provided by Schierloh (1 998) of RFETS includes decay heat, hydrogen gas generation rates, calculated G{sub eff} values, and waste material type, making the experimental data ideal for benchmarking Radcalc. The following sections discuss the RFETS data and the Radcalc cases modeled with the data. Results are tabulated and also provided graphically.

  10. MOX and MOX with 237Np/241Am Inert Fission Gas Generation Comparison in ATR

    SciTech Connect (OSTI)

    G. S. Chang; M. Robel; W. J. Carmack; D. J. Utterbeck

    2006-06-01

    The treatment of spent fuel produced in nuclear power generation is one of the most important issues to both the nuclear community and the general public. One of the viable options to long-term geological disposal of spent fuel is to extract plutonium, minor actinides (MA), and potentially long-lived fission products from the spent fuel and transmute them into short-lived or stable radionuclides in currently operating light-water reactors (LWR), thus reducing the radiological toxicity of the nuclear waste stream. One of the challenges is to demonstrate that the burnup-dependent characteristic differences between Reactor-Grade Mixed Oxide (RG-MOX) fuel and RG-MOX fuel with MA Np-237 and Am 241 are minimal, particularly, the inert gas generation rate, such that the commercial MOX fuel experience base is applicable. Under the Advanced Fuel Cycle Initiative (AFCI), developmental fuel specimens in experimental assembly LWR-2 are being tested in the northwest (NW) I-24 irradiation position of the Advanced Test Reactor (ATR). The experiment uses MOX fuel test hardware, and contains capsules with MOX fuel consisting of mixed oxide manufactured fuel using reactor grade plutonium (RG-Pu) and mixed oxide manufactured fuel using RG-Pu with added Np/Am. This study will compare the fuel neutronics depletion characteristics of Case-1 RG-MOX and Case-2 RG-MOX with Np/Am.

  11. Apples with apples: accounting for fuel price risk in comparisons of gas-fired and renewable generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2003-12-18

    For better or worse, natural gas has become the fuel of choice for new power plants being built across the United States. According to the US Energy Information Administration (EIA), natural gas combined-cycle and combustion turbine power plants accounted for 96% of the total generating capacity added in the US between 1999 and 2002--138 GW out of a total of 144 GW. Looking ahead, the EIA expects that gas-fired technology will account for 61% of the 355 GW new generating capacity projected to come on-line in the US up to 2025, increasing the nationwide market share of gas-fired generation from 18% in 2002 to 22% in 2025. While the data are specific to the US, natural gas-fired generation is making similar advances in other countries as well. Regardless of the explanation for (or interpretation of) the empirical findings, however, the basic implications remain the same: one should not blindly rely on gas price forecasts when comparing fixed-price renewable with variable-price gas-fired generation contracts. If there is a cost to hedging, gas price forecasts do not capture and account for it. Alternatively, if the forecasts are at risk of being biased or out of tune with the market, then one certainly would not want to use them as the basis for resource comparisons or investment decisions if a more certain source of data (forwards) existed. Accordingly, assuming that long-term price stability is valued, the most appropriate way to compare the levelized cost of these resources in both cases would be to use forward natural gas price data--i.e. prices that can be locked in to create price certainty--as opposed to uncertain natural gas price forecasts. This article suggests that had utilities and analysts in the US done so over the sample period from November 2000 to November 2003, they would have found gas-fired generation to be at least 0.3-0.6 cents/kWh more expensive (on a levelized cost basis) than otherwise thought. With some renewable resources, in particular wind power, now largely competitive with gas-fired generation in the US (including the impact of the federal production tax credit and current high gas prices), a margin of 0.3-0.6 cents/kWh may in some cases be enough to sway resource decisions in favor of renewables.

  12. RADIOLYTIC HYDROGEN GENERATION INSAVANNAH RIVER SITE (SRS) HIGH LEVEL WASTETANKS COMPARISON OF SRS AND HANFORDMODELING PREDICTIONS

    SciTech Connect (OSTI)

    Crawford, C; Ned Bibler, N

    2009-04-15

    In the high level waste tanks at the Savannah River Site (SRS), hydrogen is produced continuously by interaction of the radiation in the tank with water in the waste. Consequently, the vapor spaces of the tanks are purged to prevent the accumulation of H{sub 2} and possible formation of a flammable mixture in a tank. Personnel at SRS have developed an empirical model to predict the rate of H{sub 2} formation in a tank. The basis of this model is the prediction of the G value for H{sub 2} production. This G value is the number of H{sub 2} molecules produced per 100 eV of radiolytic energy absorbed by the waste. Based on experimental studies it was found that the G value for H{sub 2} production from beta radiation and from gamma radiation were essentially equal. The G value for H{sub 2} production from alpha radiation was somewhat higher. Thus, the model has two equations, one for beta/gamma radiation and one for alpha radiation. Experimental studies have also indicated that both G values are decreased by the presence of nitrate and nitrite ions in the waste. These are the main scavengers for the precursors of H{sub 2} in the waste; thus the equations that were developed predict G values for hydrogen production as a function of the concentrations of these two ions in waste. Knowing the beta/gamma and alpha heat loads in the waste allows one to predict the total generation rate for hydrogen in a tank. With this prediction a ventilation rate can be established for each tank to ensure that a flammable mixture is not formed in the vapor space in a tank. Recently personnel at Hanford have developed a slightly different model for predicting hydrogen G values. Their model includes the same precursor for H{sub 2} as the SRS model but also includes an additional precursor not in the SRS model. Including the second precursor for H{sub 2} leads to different empirical equations for predicting the G values for H{sub 2} as a function of the nitrate and nitrite concentrations in the waste. The difference in the two models has led to the questions of how different are the results predicted by the two models and which model predicts the more conservative (larger) G values. More conservative G values would predict higher H{sub 2} generation rates that would require higher ventilation rates in the SRS tanks. This report compares predictions based on the two models at various nitrate and nitrite concentrations in the SRS HLW tanks for both beta/gamma and for alpha radiation. It also compares predicted G values with those determined by actually measuring the H{sub 2} production from four SRS HLW tanks (Tanks 32H, 35H, 39H, and 42H). Lastly, the H{sub 2} generation rates predicted by the two models are compared for the 47 active SRS high level waste tanks using the most recent tank nitrate and nitrite concentrations and the beta/gamma and alpha heat loads for each tank. The predictions of the models for total H{sub 2} generation rates from the 47 active SRS waste were, for the most part, similar. For example, the predictions for both models applied to 25 tanks agreed within {+-}10% of each other. For the remaining 22 tanks, the SRS prediction was more conservative for 9 tanks (maximum 29% higher) and the Hanford prediction was more conservative for 13 tanks (maximum 19% higher). When comparing G values predicted by the equations presuming only alpha radiation or only beta/gamma was present the results were somewhat different. The results of predictions for alpha radiation, at the 47 current nitrate and nitrite concentrations in the SRS tanks indicated that all the SRS predictions were higher (up to 30%) than the Hanford predictions and thus more conservative. For beta/gamma radiation the predictions for both models agreed to {+-}10% for 18 of the combinations, the Hanford model predicted higher values (11 up to 17%) for 25 of the concentrations considered, and the SRS model predicted higher G values for the remaining two combinations (12 and 17%). For the four SRS tanks, where we compared measured G values to those predicted by the two different models, the results for two tanks (Tanks 35 and 39) were in good agreement with predictions from both models. For the other two tanks (Tanks 32 and 42) the predictions of both models were conservative. The predictions were 3 to 4X higher than the measured G values for H{sub 2} production.

  13. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    SciTech Connect (OSTI)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  14. An expanded review and comparison of greenhouse gas emissions from fossil fuel and geothermal electrical generating facilities

    SciTech Connect (OSTI)

    Booth, R.B.; Neil, P.E.

    1998-12-31

    This paper provides a review of the greenhouse gas emissions due to fossil fuel and geothermal electrical generation and to the emissions of their respective support activities. These support activities consist of, exploration, development, and transportation aspects of the fuel source, including waste management. These support activities could amount to an additional 6% for coal, 22% for oil, 13% for natural gas and 1% for geothermal. The presented methodologies and underlying principles can be used to better define the resultant emissions, rankings and global impacts of these electrical generating industries.

  15. A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium

    SciTech Connect (OSTI)

    Zhang, Cheng; Shao, Tao Wang, Ruixue; Yan, Ping; Zhou, Zhongsheng; Zhou, Yixiao

    2014-10-15

    Power source is an important parameter that can affect the characteristics of atmospheric-pressure plasma jets (APPJs), because it can play a key role on the discharge characteristics and ionization process of APPJs. In this paper, the characteristics of helium APPJs sustained by both nanosecond-pulse and microsecond-pulse generators are compared from the aspects of plume length, discharge current, consumption power, energy, and optical emission spectrum. Experimental results showed that the pulsed APPJ was initiated near the high-voltage electrode with a small curvature radius, and then the stable helium APPJ could be observed when the applied voltage increased. Moreover, the discharge current of the nanosecond-pulse APPJ was larger than that of the microsecond-pulse APPJ. Furthermore, although the nanosecond-pulse generator consumed less energy than the microsecond-pulse generator, longer plume length, larger instantaneous power per pulse and stronger spectral line intensity could be obtained in the nanosecond-pulse excitation case. In addition, some discussion indicated that the rise time of the applied voltage could play a prominent role on the generation of APPJs.

  16. Compiler Comparisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparisons Compiler Comparisons Compiler Comparisons on Hopper There are five compilers available to users on Hopper, the NERSC XE6. All of the compilers on this system are...

  17. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings OIRA Comparison Document Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document...

  18. AREVA NP next generation fresh UO{sub 2} fuel assembly shipping cask: SCALE - CRISTAL comparisons lead to safety criticality confidence

    SciTech Connect (OSTI)

    Doucet, M.; Landrieu, M.; Montgomery, R.; O' Donnell, B.

    2007-07-01

    AREVA NP as a worldwide PWR fuel provider has to have a fleet of fresh UO{sub 2} shipping casks being agreed within a lot of countries including USA, France, Germany, Belgium, Sweden, China, and South Africa - and to accommodate foreseen EPR Nuclear Power Plants fuel buildings. To reach this target the AREVA NP Fuel Sector decided to develop an up-to-date shipping cask (so called MAP project) gathering experience feedback of the today fleet and an improved safety allowing the design to comply with international regulations (NRC and IAEA) and local Safety Authorities. Based on pre design features a safety case was set up to highlight safety margins. Criticality hypothetical accidental assumptions were defined: - Preferential flooding; - Fuel rod lattice pitch expansion for full length of fuel assemblies; - Neutron absorber penalty; -... Well known computer codes, American SCALE package and French CRISTAL package, were used to check configurations reactivity and to ensure that both codes lead to coherent results. Basic spectral calculations are based on similar algorithms with specific microscopic cross sections ENDF/BV for SCALE and JEF2.2 for CRISTAL. The main differences between the two packages is on one hand SCALE's three dimensional fuel assembly geometry is described by a pin by pin model while an homogenized fuel assembly description is used by CRISTAL and on the other hand SCALE is working with either 44 or 238 neutron energy groups while CRISTAL is with a 172 neutron energy groups. Those two computer packages rely on a wide validation process helping defining uncertainties as required by regulations in force. The shipping cask with two fuel assemblies is designed to maximize fuel isolation inside a cask and with neighboring ones even for large array configuration cases. Proven industrial products are used: - Boral{sup TM} as neutron absorber; - High density polyethylene (HDPE) or Nylon as neutron moderator; - Foam as thermal and mechanical protection. The cask is designed to handle the complete AREVA NP fuel assembly types from the 14x14 to the 18x18 design with a {sup 235}U enrichment up to 5.0% enriched natural uranium (ENU) and enriched reprocessed uranium (ERU). After a brief presentation of the computer codes and the description of the shipping cask, calculation results and comparisons between SCALE and CRISTAL will be discussed. (authors)

  19. CFD study of natural convection mixing in a steam generator mock-up: Comparison between full geometry and porous media approaches

    SciTech Connect (OSTI)

    Dehbi, A.; Badreddine, H.

    2012-07-01

    In CFD simulations of flow mixing in a steam generator (SG) during natural circulation, one is faced with the problem of representing the thousands of SG U-tubes. Typically simplifications are made to render the problem computationally tractable. In particular, one or a number of tubes are lumped in one volume which is treated as a single porous medium. This approach dramatically reduces the computational size of the problem and hence simulation time. In this work, we endeavor to investigate the adequacy of this approach by performing two separate simulations of flow in a mock-up with 262 U-tubes, i.e. one in which the porous media model is used for the tube bundle, and another in which the full geometry is represented. In both simulations, the Reynolds Stress (RMS) model of turbulence is used. We show that in steady state conditions, the porous media treatment yields results which are comparable to those of the full geometry representation (temperature distribution, recirculation ratio, hot plume spread, etc). Hence, the porous media approach can be extended with a good degree of confidence to the full scale SG. (authors)

  20. Compiler Comparisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiler Comparisons Compiler Comparisons Compiler Comparisons on Hopper There are five compilers available to users on Hopper, the NERSC XE6. All of the compilers on this system are provided by Cray, and they are invoked with wrapper modules that ensure that each compiler links with the proper system and MPI libraries. Each of the compilers have a wide variety of options that control the level of optimization of the exectuable code they produce. We have collected several optimization

  1. Generation Planning (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998-2014) Draft Dry...

  2. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized

  3. Compiler Comparisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparisons Compiler Comparisons Using a set of benchmarks described below, different optimization options for the different compilers on Edison are compared. The compilers are also compared against one another on the benchmarks. Benchmarks used Using a set of benchmarks described below, different optimization options for the different compilers on Edison. The compilers are also compared against one another on the benchmarks. NERSC6 Benchmarks We used these benchmarks from the NERSC6

  4. Fossil Fuel-Generated Energy Consumption Reduction for New Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings and Major Renovations of Federal Buildings OIRA Comparison Document | Department of Energy Buildings OIRA Comparison Document Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Document details the Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in an OIRA Comparison Document. File fossilfuel_compare2014.docx More

  5. Compiler Comparisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solving systems of linear equation E EP Embarassingly Parallel Generate independent Gaussian random variates using the Marsaglia polar method E FT Fast Fourier Transform Solve a...

  6. Microwave generator

    DOE Patents [OSTI]

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  7. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.

  8. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fissionmore » as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.« less

  9. Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, and nitrogen in the gas phase; comparison of gas generation rates in supernate and solid fractions of Tank 241-SY-101 simulated waste

    SciTech Connect (OSTI)

    Bryan, S.A.; Pederson, L.R.

    1995-03-01

    This report summarizes progress made in evaluating me by which flammable gases are generated in Hanford double-shell tank wastes, based on the results of laboratory tests using simulated waste mixtures. Work described in this report. was conducted at Pacific Northwest Laboratory (PNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. This work is related to gas generation studies being performed at Georgia Institute of Technology (GIT), under subcontract to PNL, using simulated wastes, and to studies being performed at VMC using actual wastes.

  10. Magnetocumulative generator

    DOE Patents [OSTI]

    Pettibone, J.S.; Wheeler, P.C.

    1981-06-08

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  11. Photon generator

    DOE Patents [OSTI]

    Srinivasan-Rao, Triveni (Shoreham, NY)

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  12. Cluster generator

    DOE Patents [OSTI]

    Donchev, Todor I. (Urbana, IL); Petrov, Ivan G. (Champaign, IL)

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  13. Thermoelectric generator

    DOE Patents [OSTI]

    Pryslak, N.E.

    1974-02-26

    A thermoelectric generator having a rigid coupling or stack'' between the heat source and the hot strap joining the thermoelements is described. The stack includes a member of an insulating material, such as ceramic, for electrically isolating the thermoelements from the heat source, and a pair of members of a ductile material, such as gold, one each on each side of the insulating member, to absorb thermal differential expansion stresses in the stack. (Official Gazette)

  14. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S. (Pleasanton, CA); Wilson, James R. (Livermore, CA); McDonald, Jr., Charles A. (Danville, CA)

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  15. Biogass Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Another internet tool by: Build Your Own Page 1 of 5 Teach...build...learn...renewable energy! Biogas Generator A Renewable Energy Project Kit The Pembina Institute What Is Biogas? Biogas is actually a mixture of gases, usually carbon dioxide and methane. It is produced by a few kinds of microorganisms, usually when air or oxygen is absent. (The absence of oxygen is called "anaerobic conditions.") Animals that eat a lot of plant material, particularly grazing animals such as cattle,

  16. Monthly Generation System Peak (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Monthly Generation System Peak (GSP) This site is no longer maintained. Page last...

  17. Magnetocumulative generator

    DOE Patents [OSTI]

    Pettibone, Joseph S. (Livermore, CA); Wheeler, Paul C. (Livermore, CA)

    1983-01-01

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  18. Triboelectric generator

    DOE Patents [OSTI]

    Wang, Zhong L; Fan, Fengru; Lin, Long; Zhu, Guang; Pan, Caofeng; Zhou, Yusheng

    2015-11-03

    A generator includes a thin first contact charging layer and a thin second contact charging layer. The thin first contact charging layer includes a first material that has a first rating on a triboelectric series. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer includes a second material that has a second rating on a triboelectric series that is more negative than the first rating. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer is disposed adjacent to the first contact charging layer so that the second side of the second contact charging layer is in contact with the second side of the first contact charging layer.

  19. A New Generation of Labels for a New Generation of Cars | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy A New Generation of Labels for a New Generation of Cars A New Generation of Labels for a New Generation of Cars May 25, 2011 - 5:42pm Addthis A New Generation of Labels for a New Generation of Cars John Schueler John Schueler Former New Media Specialist, Office of Public Affairs What does this mean for me? An improved car buying experience Clear cut cost comparisons of vehicles If you've ever gone through the process of shopping for a new car, you know just how difficult it can be to

  20. A comparison between characteristics of atmospheric-pressure plasma jets

    Office of Scientific and Technical Information (OSTI)

    sustained by nanosecond- and microsecond-pulse generators in helium (Journal Article) | SciTech Connect A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium Citation Details In-Document Search Title: A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium Power source is an important parameter that can affect the

  1. Navajo Generating Station and Air Visibility Regulations: Alternatives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Table 5-8. Visibility CostBenefit Comparisons 91 Table 6-1. Poverty Rates on Navajo and ... Figure 6-1. Navajo generating station tribe map NRELTP-6A20-53024 95 Table 6-1. Poverty ...

  2. Fuel Cell Comparison of Distributed Power Generation Technologies

    Broader source: Energy.gov [DOE]

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  3. Renewable energy generation sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy generation sources have begun to generate significant amounts of power for the national electricity grid. With the Molten Salt Test Loop (MSTL), Sandia and its industry ...

  4. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  5. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  6. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  7. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  8. Systematic Comparison of Operating Reserve Methodologies: Preprint

    SciTech Connect (OSTI)

    Ibanez, E.; Krad, I.; Ela, E.

    2014-04-01

    Operating reserve requirements are a key component of modern power systems, and they contribute to maintaining reliable operations with minimum economic impact. No universal method exists for determining reserve requirements, thus there is a need for a thorough study and performance comparison of the different existing methodologies. Increasing penetrations of variable generation (VG) on electric power systems are posed to increase system uncertainty and variability, thus the need for additional reserve also increases. This paper presents background information on operating reserve and its relationship to VG. A consistent comparison of three methodologies to calculate regulating and flexibility reserve in systems with VG is performed.

  9. Enabling the Next Generation of High Efficiency Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy the Next Generation of High Efficiency Engines Enabling the Next Generation of High Efficiency Engines Discusses challenges and opportunities for next generation internal combustion engines, and developments for further pushing the limits of engine efficiency and vehicle fuel economy PDF icon deer12_wagner.pdf More Documents & Publications Addressing the Challenges of RCCI Operation on a Light-Duty Multi-Cylinder Engine Ignition Control for HCCI Comparison of Conventional Diesel

  10. Underwater power generator

    SciTech Connect (OSTI)

    Bowley, W.W.

    1983-05-10

    Apparatus and method for generating electrical power by disposing a plurality of power producing modules in a substantially constant velocity ocean current and mechanically coupling the output of the modules to drive a single electrical generator is disclosed.

  11. Biomass: Biogas Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Middle School (6-8) Small groups (3 to 4) Time: 90 minutes to assemble, days to generate sufficient gas to burn Summary: Students build a simple digester to generate a quantity of gas to burn. This demonstrates the small amount of technology needed to generate a renewable energy source. Biogas has been used in the past and is still used today as an energy

  12. Motor/generator

    DOE Patents [OSTI]

    Hickam, Christopher Dale (Glasford, IL)

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  13. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, James E. (Simi Valley, CA)

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  14. Steam generator support system

    DOE Patents [OSTI]

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  15. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  16. Distributed generation hits market

    SciTech Connect (OSTI)

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  17. Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Generation Southeastern’s Power Operations employees perform the tasks of declaring, scheduling, dispatching, and accounting for capacity and energy generated at the 22 hydroelectric projects in the agency’s 11-state marketing area. Southeastern has Certified System Operators, meeting the criteria set forth by the North American Electric Reliability Corporation. Southeastern's Power Operations employees perform the tasks of declaring, scheduling, dispatching, and accounting

  18. Isolated trigger pulse generator

    DOE Patents [OSTI]

    Aaland, Kristian (Livermore, CA) [Livermore, CA

    1980-02-19

    A trigger pulse generation system capable of delivering a multiplicity of isolated 100 kV trigger pulses with picosecond simultaneity.

  19. Isolated trigger pulse generator

    DOE Patents [OSTI]

    Aaland, K.

    1980-02-19

    A trigger pulse generation system capable of delivering a multiplicity of isolated 100 kV trigger pulses with picosecond simultaneity. 2 figs.

  20. Thermophotovoltaic energy generation

    DOE Patents [OSTI]

    Celanovic, Ivan; Chan, Walker; Bermel, Peter; Yeng, Adrian Y. X.; Marton, Christopher; Ghebrebrhan, Michael; Araghchini, Mohammad; Jensen, Klavs F.; Soljacic, Marin; Joannopoulos, John D.; Johnson, Steven G.; Pilawa-Podgurski, Robert; Fisher, Peter

    2015-08-25

    Inventive systems and methods for the generation of energy using thermophotovoltaic cells are described. Also described are systems and methods for selectively emitting electromagnetic radiation from an emitter for use in thermophotovoltaic energy generation systems. In at least some of the inventive energy generation systems and methods, a voltage applied to the thermophotovoltaic cell (e.g., to enhance the power produced by the cell) can be adjusted to enhance system performance. Certain embodiments of the systems and methods described herein can be used to generate energy relatively efficiently.

  1. SNE TRAFIC GENERATOR

    Energy Science and Technology Software Center (OSTI)

    003027MLTPL00 Network Traffic Generator for Low-rate Small Network Equipment Software http://eln.lbl.gov/sne_traffic_gen.html

  2. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  3. Talkin Bout Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  4. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

  5. Electricity Generation, Transmission ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation, Transmission and Energy Storage Systems Utilities and other electricity and transmission providers and regulators often require that equipment be proven safe and ...

  6. Internal split field generator

    DOE Patents [OSTI]

    Thundat; Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-01-03

    A generator includes a coil of conductive material. A stationary magnetic field source applies a stationary magnetic field to the coil. An internal magnetic field source is disposed within a cavity of the coil to apply a moving magnetic field to the coil. The stationary magnetic field interacts with the moving magnetic field to generate an electrical energy in the coil.

  7. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1993-12-28

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

  8. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, B.E.; Duncan, D.B.

    1994-02-15

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

  9. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1994-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  10. Laser beam generating apparatus

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

    1993-01-01

    Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

  11. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  12. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, Donald S. (Shelley, ID); Schober, Robert K. (Midwest City, OK); Beller, John (Idaho Falls, ID)

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  13. Improved solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  14. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. The analysis compares three

  15. Geothermal Generation | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions...

  16. Compact neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Lou, Tak Pui

    2005-03-22

    A compact neutron generator has at its outer circumference a toroidal shaped plasma chamber in which a tritium (or other) plasma is generated. A RF antenna is wrapped around the plasma chamber. A plurality of tritium ion beamlets are extracted through spaced extraction apertures of a plasma electrode on the inner surface of the toroidal plasma chamber and directed inwardly toward the center of neutron generator. The beamlets pass through spaced acceleration and focusing electrodes to a neutron generating target at the center of neutron generator. The target is typically made of titanium tubing. Water is flowed through the tubing for cooling. The beam can be pulsed rapidly to achieve ultrashort neutron bursts. The target may be moved rapidly up and down so that the average power deposited on the surface of the target may be kept at a reasonable level. The neutron generator can produce fast neutrons from a T-T reaction which can be used for luggage and cargo interrogation applications. A luggage or cargo inspection system has a pulsed T-T neutron generator or source at the center, surrounded by associated gamma detectors and other components for identifying explosives or other contraband.

  17. Graph Generator Survey

    SciTech Connect (OSTI)

    Lothian, Josh; Powers, Sarah S; Sullivan, Blair D; Baker, Matthew B; Schrock, Jonathan; Poole, Stephen W

    2013-12-01

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of dierent application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  18. Magnetic field generator

    DOE Patents [OSTI]

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  19. PULSE SYNTHESIZING GENERATOR

    DOE Patents [OSTI]

    Kerns, Q.A.

    1963-08-01

    >An electronlc circuit for synthesizing electrical current pulses having very fast rise times includes several sinewave generators tuned to progressively higher harmonic frequencies with signal amplitudes and phases selectable according to the Fourier series of the waveform that is to be synthesized. Phase control is provided by periodically triggering the generators at precisely controlled times. The outputs of the generators are combined in a coaxial transmission line. Any frequency-dependent delays that occur in the transmission line can be readily compensated for so that the desired signal wave shape is obtained at the output of the line. (AEC)

  20. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA) [Castro Valley, CA; Page, Ralph H. (Castro Valley, CA) [Castro Valley, CA; Ebbers, Christopher A. (Livermore, CA) [Livermore, CA; Beach, Raymond J. (Livermore, CA) [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  1. Synthetic guide star generation

    DOE Patents [OSTI]

    Payne, Stephen A.; Page, Ralph H.; Ebbers, Christopher A.; Beach, Raymond J.

    2004-03-09

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  2. Mann 3600 Pattern Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mann 3600 Pattern Generator Description: The GCA Mann 3600 pattern generator is designed for patterning standard 5" x 5" mask plates for use in optical lithography. Pattern designs are created in AutoCAD. The AutoCAD file is then converted into binary format, which can be fractured into data read by the pattern generator. The illumination source for exposures is a high pressure Hg arc lamp. The light is filtered and projected onto a shutter, which controls the exposure dose. A set of

  3. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, James M. (Livermore, CA); Leighton, James F. (Livermore, CA)

    1990-01-01

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.

  4. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  5. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  6. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  7. Denison Dam Historical Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000 (MWh) Denison Dam Historical Generation

  8. Vector generator scan converter

    DOE Patents [OSTI]

    Moore, J.M.; Leighton, J.F.

    1988-02-05

    High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.

  9. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  10. Scram signal generator

    DOE Patents [OSTI]

    Johanson, Edward W. (New Lenox, IL); Simms, Richard (Westmont, IL)

    1981-01-01

    A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

  11. Next Generation Materials:

    Office of Environmental Management (EM)

    Next Generation Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 1 4 1.1 Overview ....................................................................................................................................... 1 5 1.2 Public and private roles and activities .......................................................................................... 3 6 2.

  12. Steam generator tube failures

    SciTech Connect (OSTI)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  13. Compact Mesh Generator

    Energy Science and Technology Software Center (OSTI)

    2007-02-02

    The CMG is a small, lightweight, structured mesh generation code. It features a simple text input parser that allows setup of various meshes via a small set of text commands. Mesh generation data can be output to text, the silo file format, or the API can be directly queried by applications. It can run serially or in parallel via MPI. The CMG includes the ability to specify varius initial conditions on a mesh via meshmoretags.less

  14. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  15. Monte Carlo event generators for hadron-hadron collisions

    SciTech Connect (OSTI)

    Knowles, I.G.; Protopopescu, S.D.

    1993-06-01

    A brief review of Monte Carlo event generators for simulating hadron-hadron collisions is presented. Particular emphasis is placed on comparisons of the approaches used to describe physics elements and identifying their relative merits and weaknesses. This review summarizes a more detailed report.

  16. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  17. MCNP LWR Core Generator

    SciTech Connect (OSTI)

    Fischer, Noah A.

    2012-08-14

    The reactor core input generator allows for MCNP input files to be tailored to design specifications and generated in seconds. Full reactor models can now easily be created by specifying a small set of parameters and generating an MCNP input for a full reactor core. Axial zoning of the core will allow for density variation in the fuel and moderator, with pin-by-pin fidelity, so that BWR cores can more accurately be modeled. LWR core work in progress: (1) Reflectivity option for specifying 1/4, 1/2, or full core simulation; (2) Axial zoning for moderator densities that vary with height; (3) Generating multiple types of assemblies for different fuel enrichments; and (4) Parameters for specifying BWR box walls. Fuel pin work in progress: (1) Radial and azimuthal zoning for generating further unique materials in fuel rods; (2) Options for specifying different types of fuel for MOX or multiple burn assemblies; (3) Additional options for replacing fuel rods with burnable poison rods; and (4) Control rod/blade modeling.

  18. MHD Generating system

    DOE Patents [OSTI]

    Petrick, Michael (Joliet, IL); Pierson, Edward S. (Chicago, IL); Schreiner, Felix (Mokena, IL)

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  19. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  20. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  1. Spherical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2006-11-21

    A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.

  2. External split field generator

    DOE Patents [OSTI]

    Thundat, Thomas George (Knoxville, TN); Van Neste, Charles W. (Kingston, TN); Vass, Arpad Alexander (Oak Ridge, TN)

    2012-02-21

    A generator includes a coil disposed about a core. A first stationary magnetic field source may be disposed on a first end portion of the core and a second stationary magnetic field source may be disposed on a second end portion of core. The first and second stationary magnetic field sources apply a stationary magnetic field to the coil. An external magnetic field source may be disposed outside the coil to apply a moving magnetic field to the coil. Electrical energy is generated in response to an interaction between the coil, the moving magnetic field, and the stationary magnetic field.

  3. Sidetone generator flowmeter

    DOE Patents [OSTI]

    Fritz, R.J.

    1983-11-03

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  4. Sidetone generator flowmeter

    DOE Patents [OSTI]

    Fritz, Robert J. (Schenectady, NY)

    1986-01-01

    A flowmeter is provided which uses the sidetones generated in a cavity formed in the wall of a flowpipe or the like in response to fluid flowing past the cavity to provide a measure of the flow velocity of that fluid. The dimensions of the cavity are such as to provide a dominant vibratory frequency which is sensed by a pressure sensor. The flowmeter is adapted for use for a range of frequencies in which the Strouhal number is constant and under these conditions the vibratory frequency is directly related to the flow rate. The tone generator cavity and pressure transducer form a unit which is connected in-line in the flowpipe.

  5. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine cycle. Results of this study indicate that dual flash type plants are preferred at resources with temperatures above 400 F. Closed loop (binary type) plants are preferred at resources with temperatures below 400 F. A rotary separator turbine upstream of a dual flash plant can be beneficial at Salton Sea, the hottest resource, or at high temperature resources where there is a significant variance in wellhead pressures from well to well. Full scale demonstration is required to verify cost and performance. Hot water turbines that recover energy from the spent brine in a dual flash cycle improve that cycle's brine efficiency. Prototype field tests of this technology have established its technical feasibility. If natural gas prices remain low, a combustion turbine/binary hybrid is an economic option for the lowest temperature sites. The use of mixed fluids appear to be an attractive low risk option. The synchronous turbine option as prepared by Barber-Nichols is attractive but requires a pilot test to prove cost and performance. Dual flash binary bottoming cycles appear promising provided that scaling of the brine/working fluid exchangers is controllable. Metastable expansion, reheater, Subatmospheric flash, dual flash backpressure turbine, and hot dry rock concepts do not seem to offer any cost advantage over the baseline technologies. If implemented, the next generation geothermal power plant concept may improve brine utilization but is unlikely to reduce the cost of power generation by much more than 10%. Colder resources will benefit more from the development of a next generation geothermal power plant than will hotter resources. All values presented in this study for plant cost and for busbar cost of power are relative numbers intended to allow an objective and meaningful comparison of technologies. The goal of this study is to assess various technologies on an common basis and, secondarily, to give an approximate idea of the current costs of the technologies at actual resource sites. Absolute costs at a given site will be determined by the specifics of a given pr

  6. Using Backup Generators: Choosing the Right Backup Generator - Homeowners |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Homeowners Using Backup Generators: Choosing the Right Backup Generator - Homeowners Using Backup Generators: Choosing the Right Backup Generator - Homeowners Determine the amount of power you will need-How much power do you need to operate equipment and appliances connected to the generator? Portable generators made for household use can provide temporary power to a small number of selected appliances or lights. For example, light bulb wattage indicates the power needed

  7. Iridium 191-M generator

    DOE Patents [OSTI]

    Treves, Salvador (Newton, MA); Cheng, Chris C. (Brookline, MA)

    1988-03-08

    Potassium osmate, of the formula K.sub.2 Os O.sub.2 (OH).sub.4), used to make a column for the generation of Ir-191 m, which is used in first pass angiography to detect cardiac defects in patients.

  8. Iridium 191-m generator

    DOE Patents [OSTI]

    Treves, S.; Cheng, C.C.

    1988-03-08

    Potassium osmate, of the formula K[sub 2]OsO[sub 2](OH)[sub 4], is used to make a column for the generation of Ir-191 m, which is used in first pass angiography to detect cardiac defects in patients. 2 figs.

  9. Using Backup Generators: Choosing the Right Backup Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Homeowners Using Backup Generators: Choosing the Right Backup Generator - Homeowners Using ... Speak with your utility company or an experienced electrician, engineer, andor sales ...

  10. Using Backup Generators: Choosing the Right Backup Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Backup Generators: Choosing the Right Backup Generator - Business Owners Identify ... Speak with your utility company or an experienced electrician, engineer, andor sales ...

  11. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  12. SSE Generation | Open Energy Information

    Open Energy Info (EERE)

    SSE Generation Jump to: navigation, search Name: SSE Generation Place: Perth, Scotland, United Kingdom Zip: PH1 3AQ Sector: Renewable Energy Product: Owns and operates around half...

  13. Solaire Generation | Open Energy Information

    Open Energy Info (EERE)

    Generation Place: New York, New York Zip: 10001 Sector: Solar Product: New York-based rooftop PV mounting systems and solar canopy maker. References: Solaire Generation1 This...

  14. Hydro Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation > Generation Hydro Power FCRPS Hydro Projects FCRPS Information Kiosk Current Hydrological Info Fish Funding Agreement FCRPS Definitions Wind Power Monthly GSP BPA White...

  15. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-07-08

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid.

  16. Generation of energy

    DOE Patents [OSTI]

    Kalina, Alexander I. (12214 Clear Fork, Houston, TX 77077)

    1984-01-01

    A method of generating energy which comprises utilizing relatively lower temperature available heat to effect partial distillation of at least portion of a multicomponent working fluid stream at an intermediate pressure to generate working fluid fractions of differing compositions. The fractions are used to produce at least one main rich solution which is relatively enriched with respect to the lower boiling component, and to produce at least one lean solution which is relatively improverished with respect to the lower boiling component. The pressure of the main rich solution is increased whereafter it is evaporated to produce a charged gaseous main working fluid. The main working fluid is expanded to a low pressure level to release energy. The spent low pressure level working fluid is condensed in a main absorption stage by dissolving with cooling in the lean solution to regenerate an initial working fluid for reuse.

  17. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, J.P.; Larson, R.A.; Goodrich, L.D.; Hall, H.J.; Stoddard, B.D.; Davis, S.G.; Kaser, T.G.; Conrad, F.J.

    1995-09-26

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet. 10 figs.

  18. Calibrated vapor generator source

    DOE Patents [OSTI]

    Davies, John P. (Idaho Falls, ID); Larson, Ronald A. (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Hall, Harold J. (Idaho Falls, ID); Stoddard, Billy D. (Idaho Falls, ID); Davis, Sean G. (Idaho Falls, ID); Kaser, Timothy G. (Idaho Falls, ID); Conrad, Frank J. (Albuquerque, NM)

    1995-01-01

    A portable vapor generator is disclosed that can provide a controlled source of chemical vapors, such as, narcotic or explosive vapors. This source can be used to test and calibrate various types of vapor detection systems by providing a known amount of vapors to the system. The vapor generator is calibrated using a reference ion mobility spectrometer. A method of providing this vapor is described, as follows: explosive or narcotic is deposited on quartz wool, placed in a chamber that can be heated or cooled (depending on the vapor pressure of the material) to control the concentration of vapors in the reservoir. A controlled flow of air is pulsed over the quartz wool releasing a preset quantity of vapors at the outlet.

  19. conventional diesel generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conventional diesel generator - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  20. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, I.G.; Galvin, J.

    1987-12-22

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

  1. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  2. Monodisperse aerosol generator

    DOE Patents [OSTI]

    Ortiz, Lawrence W. (Los Alamos, NM); Soderholm, Sidney C. (Pittsford, NY)

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  3. Negative ion generator

    DOE Patents [OSTI]

    Stinnett, Regan W. (Albuquerque, NM)

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  4. Ion beam generating apparatus

    DOE Patents [OSTI]

    Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

    1987-01-01

    An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

  5. next-generation biofuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    next-generation biofuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  6. Hydro-electric generator

    SciTech Connect (OSTI)

    Vauthier, P.

    1980-06-03

    The efficiency of a hydro-electric generator is improved by providing open-ended hollow tubes having influx ends proximate the axis and efflux ends proximate the periphery of a fan-bladed turbine. The jets of water developed by rotation of the fanbladed turbine are directed against turbine vanes at the periphery of the fan blades. The device is particularly suitable for mounting in a water current such as in an ocean current or river.

  7. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, Carl A. (Albuquerque, NM)

    1986-01-01

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  8. High power microwave generator

    DOE Patents [OSTI]

    Ekdahl, C.A.

    1983-12-29

    A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

  9. Hydrogen Generation for Refineries

    Office of Environmental Management (EM)

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MEETING May 5-6, 2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. Jeff Martin TDA Research Inc. 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Overview *

  10. Optical harmonic generator

    DOE Patents [OSTI]

    Summers, Mark A.; Eimerl, David; Boyd, Robert D.

    1985-01-01

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The "extraordinary" or "e" directions of the crystal elements are oriented in the integral assembly to be in quadrature (90.degree.). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude "o" and "e" components. For a third-harmonic generation, the input fundamental wave has "o" and "e" components whose amplitudes are in a ratio of 2:1 ("o":"e" reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10.degree.. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axes ("o").

  11. Optical harmonic generator

    DOE Patents [OSTI]

    Summers, M.A.; Eimerl, D.; Boyd, R.D.

    1982-06-10

    A pair of uniaxial birefringent crystal elements are fixed together to form a serially arranged, integral assembly which, alternatively, provides either a linearly or elliptically polarized second-harmonic output wave or a linearly polarized third-harmonic output wave. The extraordinary or e directions of the crystal elements are oriented in the integral assembly to be in quadrature (90/sup 0/). For a second-harmonic generation in the Type-II-Type-II angle tuned case, the input fundamental wave has equal amplitude o and e components. For a third-harmonic generation, the input fundamental wave has o and e components whose amplitudes are in a ratio of 2:1 (o:e reference first crystal). In the typical case of a linearly polarized input fundamental wave this can be accomplished by simply rotating the crystal assembly about the input beam direction by 10/sup 0/. For both second and third harmonic generation input precise phase-matching is achieved by tilting the crystal assembly about its two sensitive axeses (o).

  12. Distributed generation implementation guidelines

    SciTech Connect (OSTI)

    Guzy, L.; O`Sullivan, J.B.; Jacobs, K.; Major, W.

    1999-11-01

    The overall economics of a distributed generation project is based on cost elements which include: Equipment and financing, fuel, displaced electricity cost, operation and maintenance. Of critical importance is how the facility is managed, including adequate provision for a comprehensive operator training program. Proper equipment maintenance and fuel procurement policy will also lead to greater system availability and optimal system economics. Various utility tariffs are available which may be economically attractive, with an added benefit to the utility of providing a peak shaving resource during peak periods. Changing modes of operation of the distributed generation system may affect staff readiness, require retraining and could affect maintenance costs. The degree of control and oversight that is provided during a project`s implementation and construction phases will impact subsequent maintenance and operating costs. The long term effect of siting impacts, such as building facades that restrict turbine inlet airflow will affect subsequent operations and require supplemental maintenance action. It is possible to site a variety of distributed generation technologies in settings which vary from urban to remote unattended locations with successful results from both an economic and operational perspective.

  13. Fuel cell generator energy dissipator

    DOE Patents [OSTI]

    Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  14. Energy Replacement Generation Tax Exemption

    Broader source: Energy.gov [DOE]

    Under the Energy Replacement Generation Tax Exemption, the following facilities are exempt from the replacement tax:

  15. Highly stable aerosol generator

    DOE Patents [OSTI]

    DeFord, Henry S. (Kennewick, WA); Clark, Mark L. (Kennewick, WA)

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  16. Highly stable aerosol generator

    DOE Patents [OSTI]

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  17. Profile Interface Generator

    Energy Science and Technology Software Center (OSTI)

    2013-11-09

    The Profile Interface Generator (PIG) is a tool for loosely coupling applications and performance tools. It enables applications to write code that looks like standard C and Fortran functions calls, without requiring that applications link to specific implementations of those function calls. Performance tools can register with PIG in order to listen to only the calls that give information they care about. This interface reduces the build and configuration burden on application developers and allowsmore » semantic instrumentation to live in production codes without interfering with production runs.« less

  18. Hermetic turbine generator

    DOE Patents [OSTI]

    Meacher, John S.; Ruscitto, David E.

    1982-01-01

    A Rankine cycle turbine drives an electric generator and a feed pump, all on a single shaft, and all enclosed within a hermetically sealed case. The shaft is vertically oriented with the turbine exhaust directed downward and the shaft is supported on hydrodynamic fluid film bearings using the process fluid as lubricant and coolant. The selection of process fluid, type of turbine, operating speed, system power rating, and cycle state points are uniquely coordinated to achieve high turbine efficiency at the temperature levels imposed by the recovery of waste heat from the more prevalent industrial processes.

  19. Computer generated holographic microtags

    DOE Patents [OSTI]

    Sweatt, William C.

    1998-01-01

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them.

  20. Computer generated holographic microtags

    DOE Patents [OSTI]

    Sweatt, W.C.

    1998-03-17

    A microlithographic tag comprising an array of individual computer generated holographic patches having feature sizes between 250 and 75 nanometers is disclosed. The tag is a composite hologram made up of the individual holographic patches and contains identifying information when read out with a laser of the proper wavelength and at the proper angles of probing and reading. The patches are fabricated in a steep angle Littrow readout geometry to maximize returns in the -1 diffracted order. The tags are useful as anti-counterfeiting markers because of the extreme difficulty in reproducing them. 5 figs.

  1. Long History of IAM Comparisons

    SciTech Connect (OSTI)

    Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Kejun, Jiang; Kriegler, Elmar; Masui, Toshihiko; Riahi, Keywan; Shukla, Priyadarshi R.; Tavoni, Massimo; Van Vuuren, Detlef; Weyant, John

    2015-04-23

    Correspondence to editor: We agree with the editors that the assumptions behind models of all types, including integrated assessment models (IAMs), should be as transparent as possible. The editors were in error, however, when they implied that the IAM community is just now emulating the efforts of climate researchers by instigating their own model inter-comparison projects (MIPs). In fact, model comparisons for integrated assessment and climate models followed a remarkably similar trajectory. Early General Circulation Model (GCM) comparison efforts, evolved to the first Atmospheric Model Inter-comparison Project (AMIP), which was initiated in the early 1990s. Atmospheric models evolved to coupled atmosphere-ocean models (AOGCMs) and results from the first Coupled Model Inter-Comparison Project (CMIP1) become available about a decade later. Results of first energy model comparison exercise, conducted under the auspices of the Stanford Energy Modeling Forum, were published in 1977. A summary of the first comparison focused on climate change was published in 1993. As energy models were coupled to simple economic and climate models to form IAMs, the first comparison exercise for IAMs (EMF-14) was initiated in 1994, and IAM comparison exercises have been on-going since this time.

  2. Tailpulse signal generator

    DOE Patents [OSTI]

    Baker, John; Archer, Daniel E.; Luke, Stanley John; Decman, Daniel J.; White, Gregory K.

    2009-06-23

    A tailpulse signal generating/simulating apparatus, system, and method designed to produce electronic pulses which simulate tailpulses produced by a gamma radiation detector, including the pileup effect caused by the characteristic exponential decay of the detector pulses, and the random Poisson distribution pulse timing for radioactive materials. A digital signal process (DSP) is programmed and configured to produce digital values corresponding to pseudo-randomly selected pulse amplitudes and pseudo-randomly selected Poisson timing intervals of the tailpulses. Pulse amplitude values are exponentially decayed while outputting the digital value to a digital to analog converter (DAC). And pulse amplitudes of new pulses are added to decaying pulses to simulate the pileup effect for enhanced realism in the simulation.

  3. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  4. Downhole hydraulic seismic generator

    DOE Patents [OSTI]

    Gregory, Danny L. (Corrales, NM); Hardee, Harry C. (Albuquerque, NM); Smallwood, David O. (Albuquerque, NM)

    1992-01-01

    A downhole hydraulic seismic generator system for transmitting energy wave vibrations into earth strata surrounding a borehole. The system contains an elongated, unitary housing operably connected to a well head aboveground by support and electrical cabling, and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a hydraulic oscillator containing a double-actuating piston whose movement is controlled by an electro-servovalve regulating a high pressure hydraulic fluid flow into and out of upper and lower chambers surrounding the piston. The spent hydraulic fluid from the hydraulic oscillator is stored and pumped back into the system to provide high pressure fluid for conducting another run at the same, or a different location within the borehole.

  5. Stratified vapor generator

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Hassani, Vahab (Golden, CO)

    2008-05-20

    A stratified vapor generator (110) comprises a first heating section (H.sub.1) and a second heating section (H.sub.2). The first and second heating sections (H.sub.1, H.sub.2) are arranged so that the inlet of the second heating section (H.sub.2) is operatively associated with the outlet of the first heating section (H.sub.1). A moisture separator (126) having a vapor outlet (164) and a liquid outlet (144) is operatively associated with the outlet (124) of the second heating section (H.sub.2). A cooling section (C.sub.1) is operatively associated with the liquid outlet (144) of the moisture separator (126) and includes an outlet that is operatively associated with the inlet of the second heating section (H.sub.2).

  6. Peak power ratio generator

    DOE Patents [OSTI]

    Moyer, Robert D. (Albuquerque, NM)

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  7. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, John D. (Eaton's Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  8. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  9. Glovebox decontamination technology comparison

    SciTech Connect (OSTI)

    Quintana, D.M.; Rodriguez, J.B.; Cournoyer, M.E.

    1999-09-26

    Reconfiguration of the CMR Building and TA-55 Plutonium Facility for mission requirements will require the disposal or recycle of 200--300 gloveboxes or open front hoods. These gloveboxes and open front hoods must be decontaminated to meet discharge limits for Low Level Waste. Gloveboxes and open front hoods at CMR have been painted. One of the deliverables on this project is to identify the best method for stripping the paint from large numbers of gloveboxes. Four methods being considered are the following: conventional paint stripping, dry ice pellets, strippable coatings, and high pressure water technology. The advantages of each technology will be discussed. Last, cost comparisons between the technologies will be presented.

  10. Comparison with Carrier Multiplication

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complete Theory of Down-Conversion, and a Comparison with Carrier Multiplication 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 22 24 26 28 30 32 34 Measured Quantum Efficiency (QE) Efficiency [%] with Down-Conversion Single- Junction Threshold Solar Cell 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 Peak Efficiency [%] Splitting Multiplicity (M) C=max C=1000 C=100 C=1 C=10 Down Conversion Carrier Multiplication Ze'ev R. Abrams, Avi Niv, Majid Gharghi, Chris Gladden & Xiang Zhang Materials Science

  11. A Clustering Graph Generator

    SciTech Connect (OSTI)

    Winlaw, Manda; De Sterck, Hans; Sanders, Geoffrey

    2015-10-26

    In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.

  12. Using Backup Generators: Choosing the Right Backup Generator - Business

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Owners | Department of Energy Business Owners Using Backup Generators: Choosing the Right Backup Generator - Business Owners Using Backup Generators: Choosing the Right Backup Generator - Business Owners Identify essential systems and equipment-What do you need to keep your business operating? These may include heating, ventilation, and air conditioning systems; industrial equipment and major appliances, such as refrigerators and freezers; lights (interior and exterior), computers, and other

  13. Reducing gas generators and methods for generating a reducing gas

    DOE Patents [OSTI]

    Scotto, Mark Vincent; Perna, Mark Anthony

    2015-11-03

    One embodiment of the present invention is a unique reducing gas generator. Another embodiment is a unique method for generating a reducing gas. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for generating reducing gas. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  14. Investigation of thermal storage and steam generator issues

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

  15. Self-assembling software generator

    DOE Patents [OSTI]

    Bouchard, Ann M. (Albuquerque, NM); Osbourn, Gordon C. (Albuquerque, NM)

    2011-11-25

    A technique to generate an executable task includes inspecting a task specification data structure to determine what software entities are to be generated to create the executable task, inspecting the task specification data structure to determine how the software entities will be linked after generating the software entities, inspecting the task specification data structure to determine logic to be executed by the software entities, and generating the software entities to create the executable task.

  16. Electricity Generation | Department of Energy

    Office of Environmental Management (EM)

    Electricity Generation Electricity Generation The United States of America continues to generate the most geothermal electricity in the world: more than 3.5 gigawatts, predominantly from the western United States. That's enough to power about three and half million homes! Pictured above, the Raft River geothermal plant is located in Idaho. Source: Geothermal Resources Council The United States of America continues to generate the most geothermal electricity in the world: more than 3.5 gigawatts,

  17. Utility Static Generation Reliability

    Energy Science and Technology Software Center (OSTI)

    1993-03-05

    PICES (Probabilistic Investigation of Capacity and Energy Shortages) was developed for estimating an electric utility''s expected frequency and duration of capacity deficiencies on a daily on and off-peak basis. In addition to the system loss-of-load probability (LOLP) and loss-of-load expectation (LOLE) indices, PICES calculates the expected frequency and duration of system capacity deficiencies and the probability, expectation, and expected frequency and duration of a range of system reserve margin states. Results are aggregated and printedmore » on a weekly, monthly, or annual basis. The program employs hourly load data and either the two-state (on/off) or a more sophisticated three-state (on/partially on/fully off) generating unit representation. Unit maintenance schedules are determined on a weekly, levelized reserve margin basis. In addition to the 8760-hour annual load record, the user provides the following information for each unit: plant capacity, annual maintenance requirement, two or three-state unit failure and repair rates, and for three-state models, the partial state capacity deficiency. PICES can also supply default failure and repair rate values, based on the Edison Electric Institute''s 1979 Report on Equipment Availability for the Ten-Year Period 1968 Through 1977, for many common plant types. Multi-year analysis can be performed by specifying as input data the annual peak load growth rates and plant addition and retirement schedules for each year in the study.« less

  18. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  19. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  20. To Generate, or Not to Generate? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To Generate, or Not to Generate? To Generate, or Not to Generate? April 9, 2012 - 6:06pm Addthis Amanda McAlpin What could be more liberating than providing your own electricity, and not getting a bill each month? With a small renewable energy system, you can use alternative sources to create energy-maybe even enough to power your entire home. There are several options to choose from when considering a renewable energy system, such as solar electric systems, which can gather sun even from

  1. The Next Generation Photoinjector

    SciTech Connect (OSTI)

    Palmer, Dennis Thomas; /Stanford U., Appl. Phys. Dept.

    2005-09-12

    This dissertation will elucidate the design, construction, theory, and operation of the Next Generation Photoinjector (NGP). This photoinjector is comprised of the BNL/SLAC/UCLA 1.6 cell symmetrized S-band photocathode radio frequency (rf) electron gun and a single emittance-compensation solenoidal magnet. This photoinjector is a prototype for the Linear Coherent Light Source X-ray Free Electron Laser operating in the 1.5 {angstrom} range. Simulations indicate that this photoinjector is capable of producing a 1nC electron bunch with transverse normalized emittance less than 1 {pi} mm mrad were the cathode is illuminated with a 10 psec longitudinal flat top pulse. Using a Gaussian longitudinal laser profile with a full width half maximum (FWHM) of 10 psec, simulation indicates that the NGP is capable of producing a normalized rms emittance of 2.50 {pi} mm mrad at 1 nC. Using the removable cathode plate we have studied the quantum efficiency (QE) of both copper and magnesium photo-cathodes. The Cu QE was found to be 4.5 x 10{sup -5} with a 25% variation in the QE across the emitting surface of the cathode, while supporting a field gradient of 125 MV/m. At low charge, the transverse normalized rms emittance, {epsilon}{sub n,rms}, produced by the NGP is {epsilon}{sub n,rms} = 1.2 {pi} mm mrad for Q{sub T} = 0.3 nC. The 95% electron beam bunch length was measured to 10.9 psec. The emittance due to the finite magnetic field at the cathode has been studied. The scaling of this magnetic emittance term as a function of cathode magnetic field was found to be 0.01 {pi} mm mrad per Gauss. The 1.6 cell rf gun has been designed to reduce the dipole field asymmetry of the longitudinal accelerating field. Low level rf measurements show that this has in fact been accomplished, with an order of magnitude decrease in the dipole field. High power beam studies also show that the dipole field has been decreased. An upper limit of the intrinsic non-reducible thermal emittance of a photocathode under high field gradient was found to be {epsilon}{sub n,rms} = 0.8 {pi} mm mrad. Agreement is found between the theoretical calculation of the thermal emittance, {epsilon}{sub 0} = 0.62 {pi} mm mrad, and the experimental results, after taking into account all of the emittance contribution terms. The 1 nC emittance was found to be {epsilon}{sub n,rms} = 4.75 {pi} mm mrad with a 95% electron beam bunch length of 14.7 psec. Systematic bunch length measurements showed electron beam bunch lengthening due the electron beam charge. They will show that the discrepancy between measurement and simulation is due to three effects. The major effect is due to the variation of the QE in the photo-emitting area of the Cu cathode. Also, space charge emittance blowup in the transport line will be shown to be a significant effect because the electron beam is still in the space charge dominated regime. The last effect, which has been observed experimentally, is the electron bunch lengthening as a function of total electron bunch charge.

  2. HIGH EFFICIENCY SYNGAS GENERATION

    SciTech Connect (OSTI)

    Robert J. Copeland; Yevgenia Gershanovich; Brian Windecker

    2005-02-01

    This project investigated an efficient and low cost method of auto-thermally reforming natural gas to hydrogen and carbon monoxide. Reforming is the highest cost step in producing products such as methanol and Fisher Tropsch liquids (i.e., gas to liquids); and reducing the cost of reforming is the key to reducing the cost of these products. Steam reforming is expensive because of the high cost of the high nickel alloy reforming tubes (i.e., indirectly fired reforming tubes). Conventional auto-thermal or Partial Oxidation (POX) reforming minimizes the size and cost of the reformers and provides a near optimum mixture of CO and hydrogen. However POX requires pure oxygen, which consumes power and significantly increases the cost to reforming. Our high efficiency process extracts oxygen from low-pressure air with novel oxygen sorbent and transfers the oxygen to a nickel-catalyzed reformer. The syngas is generated at process pressure (typically 20 to 40 bar) without nitrogen dilution and has a 1CO to 2H{sub 2} ratio that is near optimum for the subsequent production of Fisher-Tropsch liquid to liquids and other chemicals (i.e., Gas to Liquids, GTL). Our high process efficiency comes from the way we transfer the oxygen into the reformer. All of the components of the process, except for the oxygen sorbent, are commonly used in commercial practice. A process based on a longlived, regenerable, oxygen transfer sorbent could substantially reduce the cost of natural gas reforming to syngas. Lower cost syngas (CO + 2H{sub 2}) that is the feedstock for GTL would reduce the cost of GTL and for other commercial applications (e.g., methanol, other organic chemicals). The vast gas resources of Alaska's North Slope (ANS) offer more than 22 Tcf of gas and GTL production in this application alone, and could account for as much as 300,000 to 700,000 bpd for 20 to 30+ years. We developed a new sorbent, which is an essential part of the High Efficiency Oxygen Process (HOP). We tested the sorbent and observed that it has both a good oxygen capacity and operates as a highly effective reforming catalyst. We conducted a long duration tests of the sorbent (1,500 hours of continuous operation in the HOP cycle). Although the sorbent lost some oxygen capacity with cycling, the sorbent oxygen capacity stabilized after 1,000 hours and remained constant to the end of the test, 1,500 hour. The activity of the catalyst to reform methane to a hydrogen and carbon monoxide mixture was unchanged through the oxidation/reduction cycling. Our cost and performance analyses indicated a significant reduction in the cost of GTL production when using the HOP process integrated into a GTL plant.

  3. Micro thrust and heat generator

    DOE Patents [OSTI]

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  4. Intelligent Generation | Open Energy Information

    Open Energy Info (EERE)

    Chicago, Illinois Zip: 60603 Sector: Renewable Energy Product: Chicago-based maker of software aimed at optimising distributed renewable energy generation and power storage....

  5. Cosmic Ray Shower Generation Utility

    Energy Science and Technology Software Center (OSTI)

    2007-01-18

    Generates correlated cosmic-ray particle showers at one of three elevations (sea level, 2100m, and 11300m) for use as input transport and detector simulation codes.

  6. Sandia Energy - Wind Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generator Modeling Home Infrastructure Security Renewable Energy Energy Surety Energy Grid Integration News Wind Energy News & Events SMART Grid Systems Analysis Modeling...

  7. Macquarie Generation | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Macquarie Generation Place: New South Wales, Australia Zip: 2299 Sector: Hydro, Solar, Wind energy Product: Australian state-owned on-grid...

  8. Wind Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wind Power (Updated June 16, 2014) Project Descriptions Foote Creek I Wind Project (Carbon...

  9. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  10. Submersible Generator for Marine Hydrokinetics

    SciTech Connect (OSTI)

    Robert S. Cinq-Mars; Timothy Burke; Dr. James Irish; Brian Gustafson; Dr. James Kirtley; Dr. Aiman Alawa

    2011-09-01

    A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: â?¢ Identified the conditions and requirements for MHK generators. â?¢ Defined a methodology for sizing and rating MHK systems. â?¢ Selected an MHK generator topology and form factor. â?¢ Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. â?¢ Investigated MHK generator manufacturing requirements. â?¢ Reviewed cost implications and financial viability. â?¢ Completed final reporting and deliverables

  11. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  12. Sempra Generation | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Sempra Generation Place: California Website: www.sempra.com Twitter: @sempraenergy Outage Hotline: (619) 696-2000 References: EIA Form EIA-861 Final Data...

  13. Interconnection Agreements for Onsite Generation

    Broader source: Energy.gov [DOE]

    Presentation covers Interconnection Agreements for Onsite Generation and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  14. Automotive Thermoelectric Generator (TEG) Controls

    Broader source: Energy.gov [DOE]

    Addresses functions to be controlled that make the difference between a barely functional and an efficient, cost-effective thermoelectric generator(TEG)

  15. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. PDF icon

  16. TurboGenerator Power Systems{trademark} for distributed generation

    SciTech Connect (OSTI)

    Weinstein, C.H.

    1998-12-31

    The AlliedSignal TurboGenerator is a cost effective, environmentally benign, low cost, highly reliable and simple to maintain generation source. Market Surveys indicate that the significant worldwide market exists, for example, the United States Electric Power Research Institute (EPRI) which is the uniform research facility for domestic electric utilities, predicts that up to 40% of all new generation could be distributed generation by the year 2006. In many parts of the world, the lack of electric infrastructure (transmission and distribution lines) will greatly expedite the commercialization of distributed generation technologies since central plants not only cost more per kW, but also must have expensive infrastructure installed to deliver the product to the consumer. Small, multi-fuel, modular distributed generation units, such as the TurboGenerator, can help alleviate current afternoon brownouts and blackouts prevalent in many parts of the world. Its simple, one moving part concept allows for low technical skill maintenance and its low overall cost allows for wide spread purchase in those parts of the world where capital is sparse. In addition, given the United States emphasis on electric deregulation and the world trend in this direction, consumers of electricity will now have not only the right to choose the correct method of electric service but also a new cost effective choice from which to choose.

  17. Generating power with waste wood

    SciTech Connect (OSTI)

    Atkins, R.S.

    1995-02-01

    Among the biomass renewables, waste wood has great potential with environmental and economic benefits highlighting its resume. The topics of this article include alternate waste wood fuel streams; combustion benefits; waste wood comparisons; waste wood ash; pilot scale tests; full-scale test data; permitting difficulties; and future needs.

  18. Micro thrust and heat generator

    DOE Patents [OSTI]

    Garcia, Ernest J. (Albuquerque, NM)

    1998-01-01

    A micro thrust and heat generator has a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator's ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA).

  19. Underwater slow current turbo generator

    SciTech Connect (OSTI)

    Wracsaricht, L.J.

    1981-12-15

    A self-contained electrical generating device for placement in a naturally flowing stream. The generating device converts the kinetic energy generated by fluid flow or gravity contained within the flowing stream whether river or ocean current into useful electric energy using blade configuration and placement to maximize the usable energy. The present invention also using auxiliary means to increase the rate of flow of the fluid by the blades of the generator thus increasing the energy capable of conversion. The rotor and the stator are located radially outwardly from the rotating hub of the generating system and are supported by spoke like legs thus greatly reducing any resistance to water flow, minimizing the disturbance to the flowing stream and maximizing the relative linear velocity between the rotor and the stator.

  20. Generator modification and characterization of the Ranchero explosive generator

    SciTech Connect (OSTI)

    Oona, Henn; Goforth, James H; Tasker, Douglas G

    2008-01-01

    Magnetic Flux Compression Generators (FCG) have been used as a power source for plasma and metal liner implosions over several decades. We have used the cost effective Ranchero generator to study hydrodynamic effects and instability growth in aluminium liners. Sometimes it is useful to tailor the shape of the current and voltage pulse. Modifications to the geometry can facilitate this task. Changes in the geometrical features of the generator can be used to allow the desired current waveform to be delivered to the load region.

  1. Generation Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Generation Energy Inc Jump to: navigation, search Name: Generation Energy, Inc. Place: Sterling, Virginia Zip: 20166 Sector: Renewable Energy, Wind energy Product: Generation...

  2. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating...

  3. Turn emergency generators into dollars

    SciTech Connect (OSTI)

    Sheahen, T.P.; Stegen, G.R.

    1997-10-01

    The concept of distributed, dispatchable power generation is essentially the reverse of interruptible service. It can be understood by regarding both power and money as vectors: when the direction of the power flow switches, so does the direction of the money flow. At a signal given by the utility, a factory activates its emergency generating system and briefly becomes an independent power producer (IPP), feeding power into a local region of the grid. Upon receipt of another signal, it retires from that role. It may, however, continue to generate power for its own use.

  4. Trends in packaged steam generators

    SciTech Connect (OSTI)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1996-09-01

    Oil and gas-fired packaged steam generators are used in many industrial plants. They generate saturated or superheated steam up to 250,000 lb/hr, 1000 psig, and 950 F. They may be used for continuous steam generation or as standby boilers in cogeneration systems. Numerous variables affect the design of this equipment. A few important considerations should be addressed at an early point by the plant engineer specifying or evaluating equipment options. These considerations include trends such as customized designs that minimize operating costs and ensure emissions regulations are met. The paper discusses efficiency considerations first.

  5. Fluorine separation and generation device

    DOE Patents [OSTI]

    Jacobson, Craig P. (Moraga, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard C. (Lafayette, CA); Stefan, Constantin I. (Hayward, CA)

    2010-03-02

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  6. Fluorine separation and generation device

    DOE Patents [OSTI]

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.; Stefan, Constantin I.

    2006-08-15

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  7. Fluorine separation and generation device

    DOE Patents [OSTI]

    The Regents of the University of California (Oakland, CA)

    2008-12-23

    A process and apparatus for the electrolytic separation of fluorine from a mixture of gases is disclosed. Also described is the process and apparatus for the generation of fluorine from fluorine/fluoride containing solids, liquids or gases.

  8. Levelized Power Generation Cost Codes

    Energy Science and Technology Software Center (OSTI)

    1996-04-30

    LPGC is a set of nine microcomputer programs for estimating power generation costs for large steam-electric power plants. These programs permit rapid evaluation using various sets of economic and technical ground rules. The levelized power generation costs calculated may be used to compare the relative economics of nuclear and coal-fired plants based on life-cycle costs. Cost calculations include capital investment cost, operation and maintenance cost, fuel cycle cost, decommissioning cost, and total levelized power generationmore » cost. These programs can be used for quick analyses of power generation costs using alternative economic parameters, such as interest rate, escalation rate, inflation rate, plant lead times, capacity factor, fuel prices, etc. The two major types of electric generating plants considered are pressurized water reactor (PWR) and pulverized coal-fired plants. Data are also provided for the Large Scale Prototype Breeder (LSPB) type liquid metal reactor.« less

  9. Next Generation Light Source Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the...

  10. Next Generation of Government Summit

    Broader source: Energy.gov [DOE]

    GovLoop and Young Government Leaders will hold its 4th Annual Next Generation of Government Summit from July 25 to July 26, 2013, in Washington, DC. The theme for the conference is 2013 Next...

  11. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  12. Western Renewable Energy Generation Information System | Open...

    Open Energy Info (EERE)

    Renewable Energy Generation Information System Jump to: navigation, search Name: Western Renewable Energy Generation Information System Place: Sacramento, California Zip:...

  13. Quadrennial Technology Review's Alternative Generation Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Review's Alternative Generation Workshop Slides Preliminary Slides for Alternative Generation Workshop including Carbon Capture and Sequestration, Nuclear Power,...

  14. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - ...

  15. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  16. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  17. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May...

  18. Solid state pulsed power generator

    DOE Patents [OSTI]

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  19. Frequency regulator for synchronous generators

    DOE Patents [OSTI]

    Karlicek, R.F.

    1982-08-10

    The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices. 11 figs.

  20. Frequency regulator for synchronous generators

    DOE Patents [OSTI]

    Karlicek, Robert F. (1920 Camino Centroloma, Fullerton, CA 92633)

    1982-01-01

    The present invention is directed to a novel frequency regulator which controls a generator output frequency for variations in both the input power to the generator and the power supplied to an uncontrolled external load. The present invention further includes over current and current balance protection devices which are relatively inexpensive to manufacture, which may be encapsulated to provide protection from the operating environment and which respond more quickly than previously known electromechanical devices.

  1. Hydrogen storage and generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-08-24

    A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  2. High precision triangular waveform generator

    DOE Patents [OSTI]

    Mueller, Theodore R. (Oak Ridge, TN)

    1983-01-01

    An ultra-linear ramp generator having separately programmable ascending and descending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  3. Exelôn. Generation

    Office of Environmental Management (EM)

    Exelôn. Generation 4300 Winfield Road Warrenville, Illinois 60555 Writer's Direct Dial: 630/657-3753 Writer's Direct Fax: 630/657-4323 Tamra.Domever@exeloncorp corn March 21, 2011 Memorandum Memorializing Ex Parte Communication To: expartecommunications@hg.doe.gov (sent via email) On March 14, 2011, representatives of Exelon Generation Company, LLC and Exelon Nuclear Partners (referred to collectively as "Exelon") met with staff of the U.S. Department of Energy to discuss Exelon's

  4. Lexicon generation methods, lexicon generation devices, and lexicon generation articles of manufacture

    DOE Patents [OSTI]

    Carter, Richard J [Richland, WA; McCall, Jonathon D [West Richland, WA; Whitney, Paul D [Richland, WA; Gregory, Michelle L [Richland, WA; Turner, Alan E [Kennewick, WA; Hetzler, Elizabeth G [Kennewick, WA; White, Amanda M [Kennewick, WA; Posse, Christian [Seattle, WA; Nakamura, Grant C [Kennewick, WA

    2010-10-26

    Lexicon generation methods, computer implemented lexicon editing methods, lexicon generation devices, lexicon editors, and articles of manufacture are described according to some aspects. In one aspect, a lexicon generation method includes providing a seed vector indicative of occurrences of a plurality of seed terms within a plurality of text items, providing a plurality of content vectors indicative of occurrences of respective ones of a plurality of content terms within the text items, comparing individual ones of the content vectors with respect to the seed vector, and responsive to the comparing, selecting at least one of the content terms as a term of a lexicon usable in sentiment analysis of text.

  5. Annual report of waste generation and pollution prevention progress 1998

    SciTech Connect (OSTI)

    1999-09-01

    This seventh Annual Report presents and analyzes DOE Complex-wide waste generation and pollution prevention activities at 45 reporting sites from 1993 through 1998. This section summarizes Calendar Year 1998 Complex-wide waste generation and pollution prevention accomplishments. More detailed information follows this section in the body of the Report. In May 1996, the Secretary of Energy established a 50 percent Complex-Wide Waste Reduction Goal (relative to the 1993 baseline) for routine operations radioactive, mixed, and hazardous waste generation, to be achieved by December31, 1999. DOE has achieved its Complex-Wide Waste Reduction Goals for routine operations based upon a comparison of 1998 waste generation to the 1993 baseline. Excluding sanitary waste, routine operations waste generation decreased 67 percent overall from 1993 to 1998. However, for the first time since 1994, the total amount of materials recycled by the Complex decreased from 109,600 metric tons in 1997 to 92,800 metric tons in 1998. This decrease is attributed to the fact that in 1997, several large ''one-time only'' recycling projects were conducted throughout the Complex. In order to demonstrate commitment to DOE's Complex-wide recycling goal, it is important for sites to identify all potential large-scale recycling/reuse opportunities.

  6. Ultra-short pulse generator

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1993-01-01

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shockwave diode, which increases and sharpens the pulse even more.

  7. Ultra-short pulse generator

    DOE Patents [OSTI]

    McEwan, T.E.

    1993-12-28

    An inexpensive pulse generating circuit is disclosed that generates ultra-short, 200 picosecond, and high voltage 100 kW, pulses suitable for wideband radar and other wideband applications. The circuit implements a nonlinear transmission line with series inductors and variable capacitors coupled to ground made from reverse biased diodes to sharpen and increase the amplitude of a high-voltage power MOSFET driver input pulse until it causes non-destructive transit time breakdown in a final avalanche shock wave diode, which increases and sharpens the pulse even more. 5 figures.

  8. Method for generating surface plasma

    DOE Patents [OSTI]

    Miller, Paul A. (Albuquerque, NM); Aragon, Ben P. (Albuquerque, NM)

    2003-05-27

    A method for generating a discharge plasma which covers a surface of a body in a gas at pressures from 0.01 Torr to atmospheric pressure, by applying a radio frequency power with frequencies between approximately 1 MHz and 10 GHz across a plurality of paired insulated conductors on the surface. At these frequencies, an arc-less, non-filamentary plasma can be generated to affect the drag characteristics of vehicles moving through the gas. The plasma can also be used as a source in plasma reactors for chemical reaction operations.

  9. Comparison between two Lysholm engines

    SciTech Connect (OSTI)

    Frau, B.A.

    1983-01-01

    The University of California at Berkeley (UCB) and the Jet Propulsion Laboratory (JPL) both have been working on the Lysholm engine as an expander of two phase geothermal brine. The sizes of the machines, (The machine at UCB is rated at 25 kW, and the machine that JPL tested is rated at 1MW) as well as the approaches, are different. Here, some comparisons are made in order to clarify the direction in which future efforts should be conducted.

  10. Brigham City Hydro Generation Project

    SciTech Connect (OSTI)

    Ammons, Tom B.

    2015-10-31

    Brigham City owns and operates its own municipal power system which currently includes several hydroelectric facilities. This project was to update the efficiency and capacity of current hydro production due to increased water flow demands that could pass through existing generation facilities. During 2006-2012, this project completed efficiency evaluation as it related to its main objective by completing a feasibility study, undergoing necessary City Council approvals and required federal environmental reviews. As a result of Phase 1 of the project, a feasibility study was conducted to determine feasibility of hydro and solar portions of the original proposal. The results indicated that the existing Hydro plant which was constructed in the 1960’s was running at approximately 77% efficiency or less. Brigham City proposes that the efficiency calculations be refined to determine the economic feasibility of improving or replacing the existing equipment with new high efficiency equipment design specifically for the site. Brigham City completed the Feasibility Assessment of this project, and determined that the Upper Hydro that supplies the main culinary water to the city was feasible to continue with. Brigham City Council provided their approval of feasibility assessment’s results. The Upper Hydro Project include removal of the existing powerhouse equipment and controls and demolition of a section of concrete encased penstock, replacement of penstock just upstream of the turbine inlet, turbine bypass, turbine shut-off and bypass valves, turbine and generator package, control equipment, assembly, start-up, commissioning, Supervisory Control And Data Acquisition (SCADA), and the replacement of a section of conductors to the step-up transformer. Brigham City increased the existing 575 KW turbine and generator with an 825 KW turbine and generator. Following the results of the feasibility assessment Brigham City pursued required environmental reviews with the DOE and the U.S. Fish and Wildlife Services (USFWS) concurring with the National Environmental Policy Act of 1969 (NEPA) It was determined that Brigham City’s Upper Hydroelectric Power Plant upgrade would have no effect to federally listed or candidate species. However Brigham City has contributed a onetime lump sum towards Bonneville cutthroat trout conservation in the Northern Bonneville Geographic Management Unit with the intention to offset any impacts from the Upper Hydro Project needed to move forward with design and construction and is sufficient for NEPA compliance. No work was done in the river or river bank. During construction, the penstock was disconnected and water was diverted through and existing system around the powerhouse and back into the water system. The penstock, which is currently a 30-inch steel pipe, would be removed and replaced with a new section of 30-inch pipe. Brigham City worked with the DOE and was awarded a new modification and the permission to proceed with Phase III of our Hydro Project in Dec. 2013; with the exception to the modification of the award for the construction phase. Brigham City developed and issued a Request for Proposal for Engineer and Design vendor. Sunrise Engineering was selected for the Design and throughout the Construction Phase of the Upper Hydroelectric Power Plant. Brigham City conducted a Kickoff Meeting with Sunrise June 28, 2013 and received a Scope of Work Brigham City along with engineering firm sent out a RFP for Turbine, Generator and Equipment for Upper Hydro. We select Turbine/Generator Equipment from Canyon Industries located in Deming, WA. DOE awarded Brigham City a new modification and the permission to proceed with Phase III Construction of our Hydro Project. Brigham City Crews removed existing turbine/generator and old equipment alone with feeder wires coming into the building basically giving Caribou Construction an empty shell to begin demolition. Brigham City contracted with Caribou Construction from Jerome, Idaho for the Upper Power Plant construction. A kickoff meeting was June 24, 2014 and demolition was immediately started on building. Because of a delivery delay of Turbine, Generator and Equipment from Canyon Brigham City had to request another extension for the final date of completion. DOE awarded modification (.007) to Brigham City with a new completion date of August 1, 2015. The Turbine has had a few adjustments to help with efficiency; but the Generator had a slight vibration when generator got hot so Canyon Industries had U S Motor’s that manufactured the generator come to check out the issue. The other Equipment seems to be running normal. Brigham City, Sunrise Engineering and Canyon Industries met to determine what the vibration in the generator was and how to solve the issue Us Motor’s found some welds that failed: they have been repaired. U S Motor’s delivered the repaired generator Feb. 17, 2015. Canyon Industries arranged for a crane to installed generator in Power Plant. U S Motor’s balanced and wired generator. Plant Operators put the generator back on line. Canyon Industries returned and gave their approval to keep Hydro online. After Hydro was put back into operations it kept going off line because of overheating issues. Canyon Industries returned and replaced sensors and adjusted them to the proper settings for normal operations. Brigham City added additional steel screens to windows to increase air flow in Power Plant Building. After construction phase of the Upper Hydro Plant some landscaping has been restored around the building additional gravel brought in and leveled out and the road that was cut through for conduits to run wires. A retaining wall was installed to protect penstock. The Upper Hydro Plant is complete and in full operations. The final reimbursement was submitted.

  11. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  12. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A. Michael (Murrysville, PA); Draper, Robert (Churchill Boro, PA)

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  13. Reduced waste generation, FY 1986

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  14. Operating Reserves and Variable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Kirby, B.

    2011-08-01

    This report tries to first generalize the requirements of the power system as it relates to the needs of operating reserves. It also includes a survey of operating reserves and how they are managed internationally in system operations today and then how new studies and research are proposing they may be managed in the future with higher penetrations of variable generation.

  15. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

  16. Comparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these response statistics for data collected from either physical experimentation or numerical modeling. Here, we consider the application of a series of such methods to...

  17. Comparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chord although this will later be shown to be un- a Electronic mail: jcreardon@wisc.edu REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 74, NUMBER 3 MARCH 2003 1892 0034-6748...

  18. What is the role of hydroelectric power in the United States?

    Reports and Publications (EIA)

    2011-01-01

    The importance of hydropower as a source of electricity generation varies by geographic region. While hydropower accounted for 6% of total U.S. electricity generation in 2010, it provided over half of the electricity in the Pacific Northwest. Because hydroelectric generation relies on precipitation, it varies widely from month to month and year to year.

  19. Statistical scaling of geometric characteristics in stochastically generated pore microstructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hyman, Jeffrey D.; Guadagnini, Alberto; Winter, C. Larrabee

    2015-05-21

    In this study, we analyze the statistical scaling of structural attributes of virtual porous microstructures that are stochastically generated by thresholding Gaussian random fields. Characterization of the extent at which randomly generated pore spaces can be considered as representative of a particular rock sample depends on the metrics employed to compare the virtual sample against its physical counterpart. Typically, comparisons against features and/patterns of geometric observables, e.g., porosity and specific surface area, flow-related macroscopic parameters, e.g., permeability, or autocorrelation functions are used to assess the representativeness of a virtual sample, and thereby the quality of the generation method. Here, wemore » rely on manifestations of statistical scaling of geometric observables which were recently observed in real millimeter scale rock samples [13] as additional relevant metrics by which to characterize a virtual sample. We explore the statistical scaling of two geometric observables, namely porosity (Φ) and specific surface area (SSA), of porous microstructures generated using the method of Smolarkiewicz and Winter [42] and Hyman and Winter [22]. Our results suggest that the method can produce virtual pore space samples displaying the symptoms of statistical scaling observed in real rock samples. Order q sample structure functions (statistical moments of absolute increments) of Φ and SSA scale as a power of the separation distance (lag) over a range of lags, and extended self-similarity (linear relationship between log structure functions of successive orders) appears to be an intrinsic property of the generated media. The width of the range of lags where power-law scaling is observed and the Hurst coefficient associated with the variables we consider can be controlled by the generation parameters of the method.« less

  20. Statistical scaling of geometric characteristics in stochastically generated pore microstructures

    SciTech Connect (OSTI)

    Hyman, Jeffrey D.; Guadagnini, Alberto; Winter, C. Larrabee

    2015-05-21

    In this study, we analyze the statistical scaling of structural attributes of virtual porous microstructures that are stochastically generated by thresholding Gaussian random fields. Characterization of the extent at which randomly generated pore spaces can be considered as representative of a particular rock sample depends on the metrics employed to compare the virtual sample against its physical counterpart. Typically, comparisons against features and/patterns of geometric observables, e.g., porosity and specific surface area, flow-related macroscopic parameters, e.g., permeability, or autocorrelation functions are used to assess the representativeness of a virtual sample, and thereby the quality of the generation method. Here, we rely on manifestations of statistical scaling of geometric observables which were recently observed in real millimeter scale rock samples [13] as additional relevant metrics by which to characterize a virtual sample. We explore the statistical scaling of two geometric observables, namely porosity (?) and specific surface area (SSA), of porous microstructures generated using the method of Smolarkiewicz and Winter [42] and Hyman and Winter [22]. Our results suggest that the method can produce virtual pore space samples displaying the symptoms of statistical scaling observed in real rock samples. Order q sample structure functions (statistical moments of absolute increments) of ? and SSA scale as a power of the separation distance (lag) over a range of lags, and extended self-similarity (linear relationship between log structure functions of successive orders) appears to be an intrinsic property of the generated media. The width of the range of lags where power-law scaling is observed and the Hurst coefficient associated with the variables we consider can be controlled by the generation parameters of the method.

  1. Using Backup Generators | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generators Using Backup Generators Using Backup Generators Power outages are commonplace during disasters, and they may last for several days. You can reduce losses and speed the recovery process by installing an emergency generator. Portable generators made for household use can provide temporary power to a small number of selected appliances or lights, and commercial generators can help prevent the interruption of operations at businesses and critical infrastructure facilities like hospitals,

  2. Technology Advancements for Next Generation Falling Particle...

    Office of Scientific and Technical Information (OSTI)

    Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle...

  3. Solar Generations LLC | Open Energy Information

    Open Energy Info (EERE)

    Generations LLC Jump to: navigation, search Name: Solar Generations LLC Address: 965 W. Main Street Place: Branford, Massachusetts Zip: 06405 Region: Greater Boston Area Sector:...

  4. National Grid Generation, LLC | Open Energy Information

    Open Energy Info (EERE)

    Grid Generation, LLC Jump to: navigation, search Name: National Grid Generation, LLC Place: New York Service Territory: Massachusetts, New Hampshire, New York, Rhode Island Phone...

  5. Other Distributed Generation Technologies | Open Energy Information

    Open Energy Info (EERE)

    Other Distributed Generation Technologies Jump to: navigation, search TODO: Add description List of Other Distributed Generation Technologies Incentives Retrieved from "http:...

  6. Advanced Thermoelectric Materials and Generator Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM ...

  7. Next Generation Luminaires Design Competition Announces 2013...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners February 27, 2014 -...

  8. BPA Power Generation (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Power Generation Hydro Power Federal Columbia River Power System (FCRPS) Hydro Projects FCRPS...

  9. Maharashtra State Power Generation Company Limited MAHAGENCO...

    Open Energy Info (EERE)

    search Name: Maharashtra State Power Generation Company Limited (MAHAGENCO) Place: Mumbai, Maharashtra, India Zip: 400051 Product: Power generating firm planning to set up a...

  10. Microsoft Word - Connecting Variable Generating Resources to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and down simultaneously, frequently resulting in large, unscheduled swings in wind generation. This causes BPA to increase or back off generation in like amounts in real time to...

  11. Duke Energy Generation Services formerly Cinergy Solutions |...

    Open Energy Info (EERE)

    Generation Services formerly Cinergy Solutions Jump to: navigation, search Name: Duke Energy Generation Services (formerly Cinergy Solutions) Place: Cincinatti, Ohio Zip: 45202...

  12. Siemens Power Generation | Open Energy Information

    Open Energy Info (EERE)

    Siemens Power Generation Jump to: navigation, search Name: Siemens Power Generation Place: Erlangen, Bavaria, Germany Zip: 91058 Product: Erlangen-based subsidiary of Siemens AG...

  13. State Generation & Transmission Siting Directory | Open Energy...

    Open Energy Info (EERE)

    Directory Jump to: navigation, search OpenEI Reference LibraryAdd to library General: State Generation & Transmission Siting Directory Abstract A guide of generation and...

  14. Next Generation Luminaires Design Competition Announces 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Luminaires Design Competition Announces 2015 Winners Next Generation Luminaires Design Competition Announces 2015 Winners May 5, 2015 - 2:17pm Addthis Winners in ...

  15. Generation IV International Forum Updates Technology Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration Generation IV International Forum Updates Technology Roadmap and Builds Future ...

  16. REC Generator Certification Application - Texas | Open Energy...

    Open Energy Info (EERE)

    REC Generator Certification Application - Texas Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: REC Generator Certification Application - Texas...

  17. Policy Makers' Guidebook for Geothermal Electricity Generation...

    Open Energy Info (EERE)

    Electricity Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policy Makers' Guidebook for Geothermal Electricity Generation AgencyCompany Organization:...

  18. Liupanshui Shuiliandong Electricity Generation Co Ltd | Open...

    Open Energy Info (EERE)

    Liupanshui Shuiliandong Electricity Generation Co Ltd Jump to: navigation, search Name: Liupanshui Shuiliandong Electricity Generation Co.Ltd. Place: Liupanshui City, Guizhou...

  19. Generators for Small Electrical and Thermal Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  20. CalEnergy Generation | Open Energy Information

    Open Energy Info (EERE)

    Generation Name: CalEnergy Generation Place: Calipatria, California Sector: Geothermal energy Year Founded: 1971 Website: www.calenergy.com Coordinates: 33.1255957,...

  1. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency ...

  2. Renewable Energy Generation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Generation Ltd Jump to: navigation, search Name: Renewable Energy Generation Ltd Place: Guildford, Surrey, England, United Kingdom Zip: GU1 3DE Sector: Renewable Energy, Wind...

  3. Renewable Generation Inc | Open Energy Information

    Open Energy Info (EERE)

    Generation Inc Jump to: navigation, search Name: Renewable Generation Inc Place: Austin, Texas Sector: Wind energy Product: Developer of utility-scale wind projects. References:...

  4. Tidal Hydraulic Generators Ltd | Open Energy Information

    Open Energy Info (EERE)

    Hydraulic Generators Ltd Jump to: navigation, search Name: Tidal Hydraulic Generators Ltd Address: 14 Thislesboon Drive Place: Mumbles Zip: SA3 4HY Region: United Kingdom Sector:...

  5. Using Backup Generators: Alternative Backup Power Options

    Office of Energy Efficiency and Renewable Energy (EERE)

    Using Backup Generators: In preparing for emergencies, in addition to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options

  6. Ancillary Service Revenue Potential for Geothermal Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ancillary Service Revenue Potential for Geothermal Generators in California Ancillary Service Revenue Potential for Geothermal Generators in California PDF icon Ancillary Service...

  7. BioGenerator | Open Energy Information

    Open Energy Info (EERE)

    search Name: BioGenerator Place: United States Sector: Services Product: General Financial & Legal Services ( Private family-controlled ) References: BioGenerator1...

  8. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Document covers the Regulatory...

  9. Multiple Exciton Generation Solar Cells

    SciTech Connect (OSTI)

    Luther, J. M.; Semonin, O. E.; Beard, M. C.; Gao, J.; Nozik, A. J.

    2012-01-01

    Heat loss is the major factor limiting traditional single junction solar cells to a theoretical efficiency of 32%. Multiple Exciton Generation (MEG) enables efficient use of the solar spectrum yielding a theoretical power conversion efficiency of 44% in solar cells under 1-sun conditions. Quantum-confined semiconductors have demonstrated the ability to generate multiple carriers but present-day materials deliver efficiencies far below the SQ limit of 32%. Semiconductor quantum dots of PbSe and PbS provide an active testbed for developing high-efficiency, inexpensive solar cells benefitting from quantum confinement effects. Here, we will present recent work of solar cells employing MEG to yield external quantum efficiencies exceeding 100%.

  10. NUCLEAR FLASH TYPE STEAM GENERATOR

    DOE Patents [OSTI]

    Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.

    1962-09-01

    A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)

  11. Emergency generator facility noise control

    SciTech Connect (OSTI)

    Cass, G.R.

    1982-01-01

    In the past decade, great strides have been made in the adoption of noise control regulations and implementation of noise control measures; however, still prevelant are problems in the interpretation and enforcement of these regulations. Many planning commissions, building departments, and other local government officials are not aware of acoustical nomenclature and principles, although their responsibilities include making binding decisions regarding their community's noise control programs. This paper discusses a project undertaken by Dames and Moore to aid a developer to comply with strict noise regulation. Construction called for a computer/office complex in a light industrial park, located adjacent to an established suburban residential neighborhood. The major noise source consisted of an emergency generating facility including twelve-1200 kw diesel generators, twelve rooftop-mounted radiator units, six rooftop-mounted 20-hp, 50,000 cfm vaneaxial exhaust fans, and four 100-hp cooling towers.

  12. Photoconductive circuit element pulse generator

    DOE Patents [OSTI]

    Rauscher, Christen (Alexandria, VA)

    1989-01-01

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  13. Sandia's research spans generation, storage,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research spans generation, storage, and load management at the component and systems levels and examines advanced materials, controls, and communications to achieve the Labs' vision of a reliable, low-carbon electric infrastructure. DETL research is conducted on behalf of the U.S. Department of Energy, the U.S. Department of Defense, and other customers, often in collaboration with industry and academic partners. Advanced R&D Expertise & Partnerships DETL's reconfigurable infrastructure

  14. Next Generation Light Source Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Light Source Workshops A series of workshops will be held in late August with the goal of refining the scientific drivers for the facility and translating the scientific needs into the technical performance requirements. Feedback from these workshops will provide important input for advancing the design of the facility. Workshops are planned in the following areas Fundamental Atomic, Molecular, Optical Physics & Combustion Dynamics Mon. Aug. 20 - Tues. Aug 21, 2012 Physical

  15. Electrostatic generator/motor configurations

    DOE Patents [OSTI]

    Post, Richard F

    2014-02-04

    Electrostatic generators/motors designs are provided that generally may include a first cylindrical stator centered about a longitudinal axis; a second cylindrical stator centered about the axis, a first cylindrical rotor centered about the axis and located between the first cylindrical stator and the second cylindrical stator. The first cylindrical stator, the second cylindrical stator and the first cylindrical rotor may be concentrically aligned. A magnetic field having field lines about parallel with the longitudinal axis is provided.

  16. Down hole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1989-01-01

    A down hole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  17. Advanced downhole periodic seismic generator

    DOE Patents [OSTI]

    Hardee, Harry C. (Albuquerque, NM); Hills, Richard G. (Las Cruces, NM); Striker, Richard P. (Albuquerque, NM)

    1991-07-16

    An advanced downhole periodic seismic generator system for transmitting variable frequency, predominantly shear-wave vibration into earth strata surrounding a borehole. The system comprises a unitary housing operably connected to a well head by support and electrical cabling and contains clamping apparatus for selectively clamping the housing to the walls of the borehole. The system further comprises a variable speed pneumatic oscillator and a self-contained pneumatic reservoir for producing a frequency-swept seismic output over a discrete frequency range.

  18. Particulate Generation in Tritium Systems

    Office of Environmental Management (EM)

    Particulate Generation in a Tritium System Paul Cloessner, PhD Laboratory Fellow Tritium Focus Group February 22, 2014 Outline * Description of Events * Analysis of Material * Sources of material contamination * System Restoration/Modifications * Contaminant Minimization and Control * Lessons Learned 2 An Unpleasant Surprise * Let down filter on compressor became plugged after 10 years of operation. * Tritium processing interrupted when other filters (flow orifices) became plugged approximately

  19. Password Generation, Protection, and Use

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-23

    To establish minimum requirements for the generation, protection, and use of passwords to support authentication when accessing classified and unclassified Department of Energy (DOE) information systems. DOE N 205.16, dated 9-15-05, extends this Notice until 9-30-06, unless sooner rescinded. Cancels DOE M 471.2-2, Chapter VI, paragraphs 4j(2), and 4j(6) and Chapter VII, paragraph 12a(2)(a).

  20. Precision linear ramp function generator

    DOE Patents [OSTI]

    Jatko, W. Bruce (Knoxville, TN); McNeilly, David R. (Maryville, TN); Thacker, Louis H. (Knoxville, TN)

    1986-01-01

    A ramp function generator is provided which produces a precise linear ramp unction which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  1. Precision linear ramp function generator

    DOE Patents [OSTI]

    Jatko, W.B.; McNeilly, D.R.; Thacker, L.H.

    1984-08-01

    A ramp function generator is provided which produces a precise linear ramp function which is repeatable and highly stable. A derivative feedback loop is used to stabilize the output of an integrator in the forward loop and control the ramp rate. The ramp may be started from a selected baseline voltage level and the desired ramp rate is selected by applying an appropriate constant voltage to the input of the integrator.

  2. Magma energy for power generation

    SciTech Connect (OSTI)

    Dunn, J.C.

    1987-01-01

    Thermal energy contained in crustal magma bodies represents a large potential resource for the US and magma generated power could become a viable alternative in the future. Engineering feasibility of the magma energy concept is being investigated as part of the Department of Energy's Geothermal Program. This current project follows a seven-year Magma Energy Research Project where scientific feasibility of the concept was concluded.

  3. Method of generating chemiluminescent light

    DOE Patents [OSTI]

    Spurlin, Stanford R. (Ames, IA); Yeung, Edward S. (Ames, IA)

    1986-01-01

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction.

  4. Self-Organizing Mesh Generation

    Energy Science and Technology Software Center (OSTI)

    1991-11-01

    A set of five programs which make up a self organizing mesh generation package. QMESH generates meshes having quadrilateral elements on arbitrarily shaped two-dimensional (planar or axisymmetric) bodies. It is designed for use with two-dimensional finite element analysis applications. A flexible hierarchal input scheme is used to describe bodies to QMESH as collections of regions. A mesh for each region is developed independently, with the final assembly and bandwidth minimization performed by the independent program,more » RENUM or RENUM8. RENUM is applied when four-node elements are desired. Eight node elements (with mid side nodes) may be obtained with RENUM8. QPLOT and QPLOT8 are plot programs for meshes generated by the QMESH/RENUM and QMESH/RENUM8 program pairs respectively. QPLOT and QPLOT8 automatically section the mesh into appropriately-sized sections for legible display of node and element numbers, An overall plot showing the position of the selected plot areas is produced.« less

  5. Coiled transmission line pulse generators

    DOE Patents [OSTI]

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  6. Microplasma generator and methods therefor

    DOE Patents [OSTI]

    Hopwood, Jeffrey A

    2015-04-14

    A low-temperature, atmospheric-pressure microplasma generator comprises at least one strip of metal on a dielectric substrate. A first end of the strip is connected to a ground plane and the second end of the strip is adjacent to a grounded electrode, with a gap being defined between the second end of the strip and the grounded electrode. High frequency power is supplied to the strip. The frequency is selected so that the length of the strip is an odd integer multiple of 1/4 of the wavelength traveling on the strip. A microplasma forms in the gap between the second end of the strip and the grounded electrode due to electric fields in that region. A microplasma generator array comprises a plurality of strongly-coupled resonant strips in close proximity to one another. At least one of the strips has an input for high-frequency electrical power. The remaining strips resonate due to coupling from the at least one powered strip. The array can provide a continuous line or ring of plasma. The microplasma generator can be used to alter the surface of a substrate, such as by adding material (deposition), removal of material (etching), or modifying surface chemistry.

  7. Truck Thermoacoustic Generator and Chiller

    SciTech Connect (OSTI)

    Robert Keolian

    2011-03-31

    This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to be tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.

  8. Current responsive devices for synchronous generators

    DOE Patents [OSTI]

    Karlicek, Robert F. (Fullerton, CA)

    1983-01-01

    A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current.

  9. Current responsive devices for synchronous generators

    DOE Patents [OSTI]

    Karlicek, R.F.

    1983-09-27

    A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current. 11 figs.

  10. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar May 23, 2012 | Department of Energy Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Document covers the Regulatory Considerations for Developing Distributed Generation Projects. PDF icon regulatory_considerations_052312.pdf More Documents & Publications Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for

  11. Method for protecting an electric generator

    DOE Patents [OSTI]

    Kuehnle, Barry W. (Ammon, ID); Roberts, Jeffrey B. (Ammon, ID); Folkers, Ralph W. (Ammon, ID)

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  12. Next Generation Inverter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inverter Next Generation Inverter 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape040_smith_2012_o.pdf More Documents & Publications Next Generation Inverter Vehicle Technologies Office Merit Review 2014: Next Generation Inverter Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

  13. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar May 23, 2012 | Department of Energy Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects PDF icon regulatory_considerations_052312.pdf More Documents & Publications Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory

  14. Fuel cells in distributed generation

    SciTech Connect (OSTI)

    O'Sullivan, J.B.

    1999-07-01

    In the past the vertically integrated electric utility industry has not utilized Distributed Generation (DG) because it was viewed as competition to central station power production. Gas utilities have been heavily and aggressively involved in the promotion of gas fired DG because for them it is additional load that may also balance the winter load. With deregulation and restructuring of the electricity industry DG is now viewed in a different light. For those utilities that have sold their generation assets DG can be a new retail service to provide to their customers. For those who are still vertically integrated, DG can be an asset management tool at the distribution level. DG can be utilized to defer capital investments involving line and substation upgrades. Coupled to this new interest in DG technologies and their performance characteristics are the associated interests in implementation issues. These range from the codes and standards requirements and hardware for interfacing to the grid as well as C{sup 3}-I (command, control, communication--intelligence) issues. The latter involves dispatching on-grid or customer sited resources, monitoring their performance and tracking the economic transactions. Another important aspect is the impact of DG resources (size, number and location) on service area dynamic behavior (power quality, reliability, stability, etc.). EPRI has ongoing programs addressing all these aspects of DG and the distribution grid. Since fuel cells can be viewed as electrochemical engines, and as with thermomechanical engines, there doesn't have to be a best fuel cell. Each engine can serve many markets and some will be better suited than others in a specific market segment (e.g. spark ignition in cars and turbines in planes). This paper will address the status of developing fuel cell technologies and their application to various market areas within the context of Distributed Generation.

  15. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8 cents/kwhr.« less

  16. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect (OSTI)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  17. Compact ion source neutron generator

    DOE Patents [OSTI]

    Schenkel, Thomas; Persaud, Arun; Kapadia, Rehan; Javey, Ali; Chang-Hasnain, Constance; Rangelow, Ivo; Kwan, Joe

    2015-10-13

    A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.

  18. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  19. Method of generating chemiluminescent light

    DOE Patents [OSTI]

    Spurlin, S.R.; Yeung, E.S.

    1986-03-11

    A method of chemiluminescently determining a sulfide which is either hydrogen sulfide or methyl mercaptan by reacting the sulfide with chlorine dioxide at low pressure and under conditions which allow a longer reaction time in emission of a single photon for every two sulfide containing species, and thereafter, chemiluminescently detecting and determining the sulfide. The invention also relates not only to the detection method, but the novel chemical reaction that generates chemiluminescent light and a specifically designed chemiluminescence detection cell for the reaction. 4 figs.

  20. In vivo generator for radioimmunotherapy

    DOE Patents [OSTI]

    Mausner, Leonard F. (Stony Brook, NY); Srivastava, Suresh G. (Setauket, NY); Straub, Rita F. (Brookhaven, NY)

    1988-01-01

    The present invention involves labeling monoclonal antibodies with intermediate half-life radionuclides which decay to much shorter half-life daughters with desirable high energy beta emissions. Since the daughter will be in equilibrium with the parent, it can exert an in-situ tumoricidal effect over a prolonged period in a localized fashion, essentially as an "in-vivo generator". This approach circumvents the inverse relationship between half-life and beta decay energy. Compartmental modeling was used to determine the relative distribution of dose from both parent and daughter nuclei in target and non-target tissues. Actual antibody biodistribution data have been used to fit realistic rate constants for a model containing tumor, blood, and non-tumor compartments. These rate constants were then used in a variety of simulations for two generator systems, Ba-128/Cs-128 (t.sub.1/2 =2.4d/3.6m) and Pd-112/Ag-112 (t.sub.1/2 =0.9d/192m). The results show that higher tumor/background dose ratios may be achievable by virtue of the rapid excretion of a chemically different daughter during the uptake and clearance phases. This modeling also quantitatively demonstrates the favorable impact on activity distribution of a faster monoclonal antibody tumor uptake, especially when the antibody is labeled with a radionuclide with a comparable half-life.

  1. Comparisons of Independent Petroleum Supply Statistics

    Reports and Publications (EIA)

    2005-01-01

    Compares final petroleum data published in the Petroleum Supply Annual with similar petroleum data obtained from other sources. Data comparisons are presented for 1994 through 2003.

  2. Secondary heat exchanger design and comparison for advanced high temperature reactor

    SciTech Connect (OSTI)

    Sabharwall, P.; Kim, E. S.; Siahpush, A.; McKellar, M.; Patterson, M.

    2012-07-01

    Next generation nuclear reactors such as the advanced high temperature reactor (AHTR) are designed to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. This study considers two different types of heat exchangers - helical coiled heat exchanger and printed circuit heat exchanger - as possible options for the AHTR secondary heat exchangers with distributed load analysis and comparison. Comparison is provided for all different cases along with challenges and recommendations. (authors)

  3. Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the U.S. Market | Department of Energy Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market Economic Comparison of LNT Versus Urea SCR for Light-Duty Diesel Vehicles in the U.S. Market 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Ford Motor Company PDF icon 2004_deer_hoard.pdf More Documents & Publications Laboratory and Vehicle Demonstration of a "2nd-Generation" LNT+in-situ SCR Diesel NOx Emission Control Concept NH3

  4. Comparison of Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Information More information on the Fuel Cell Technologies Offce is available at http://www.hydrogenandfuelcells.energy.gov. Fuel Cell Type Common Electrolyte Operating Temperature Typical Stack Size Electrical Efficiency (LHV) Applications Advantages Challenges Polymer Electrolyte Membrane (PEM) Perfluorosulfonic acid <120°C <1 kW - 100 kW 60% direct H 2 ; i 40% reformed fuel ii * Backup power * Portable power * Distributed generation * Transportation * Specialty vehicles * Solid

  5. Heat engine generator control system

    DOE Patents [OSTI]

    Rajashekara, Kaushik (Carmel, IN); Gorti, Bhanuprasad Venkata (Towson, MD); McMullen, Steven Robert (Anderson, IN); Raibert, Robert Joseph (Fishers, IN)

    1998-01-01

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

  6. Heat engine generator control system

    DOE Patents [OSTI]

    Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

    1998-05-12

    An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

  7. Discharge cell for ozone generator

    DOE Patents [OSTI]

    Nakatsuka, Suguru (Amagasaki, JP)

    2000-01-01

    A discharge cell for use in an ozone generator is provided which can suppress a time-related reduction in ozone concentration without adding a catalytic gas such as nitrogen gas to oxygen gas as a raw material gas. The discharge cell includes a pair of electrodes disposed in an opposed spaced relation with a discharge space therebetween, and a dielectric layer of a three-layer structure consisting of three ceramic dielectric layers successively stacked on at least one of the electrodes, wherein a first dielectric layer of the dielectric layer contacting the one electrode contains no titanium dioxide, wherein a second dielectric layer of the dielectric layer exposed to the discharge space contains titanium dioxide in a metal element ratio of not lower than 10 wt %.

  8. Fast fluidized bed steam generator

    DOE Patents [OSTI]

    Bryers, Richard W. (Flemington, NJ); Taylor, Thomas E. (Bergenfield, NJ)

    1980-01-01

    A steam generator in which a high-velocity, combustion-supporting gas is passed through a bed of particulate material to provide a fluidized bed having a dense-phase portion and an entrained-phase portion for the combustion of fuel material. A first set of heat transfer elements connected to a steam drum is vertically disposed above the dense-phase fluidized bed to form a first flow circuit for heat transfer fluid which is heated primarily by the entrained-phase fluidized bed. A second set of heat transfer elements connected to the steam drum and forming the wall structure of the furnace provides a second flow circuit for the heat transfer fluid, the lower portion of which is heated by the dense-phase fluidized bed and the upper portion by the entrained-phase fluidized bed.

  9. Precision digital pulse phase generator

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-10-08

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.

  10. Precision digital pulse phase generator

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.

  11. Technetium-99m generator system

    DOE Patents [OSTI]

    Mirzadeh, Saed (Knoxville, TN); Knapp, Jr., Furn F. (Oak Ridge, TN); Collins, Emory D. (Knoxville, TN)

    1998-01-01

    A .sup.99 Mo/.sup.99m Tc generator system includes a sorbent column loaded with a composition containing .sup.99 Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating .sup.99m Tc eluted from the sorbent column. A method of preparing a concentrated solution of .sup.99m Tc includes the general steps of: a. providing a sorbent column loaded with a composition containing .sup.99 Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; b. eluting the sorbent column with a salt solution to elute .sup.99m Tc from the sorbent and to trap and concentrate the eluted .sup.99m Tc on the ion-exchange column; and c. eluting the concentrated .sup.99m Tc from the ion-exchange column with a solution comprising a reductive complexing agent.

  12. Technetium-99m generator system

    DOE Patents [OSTI]

    Mirzadeh, S.; Knapp, F.F. Jr.; Collins, E.D.

    1998-06-30

    A {sup 99}Mo/{sup 99m}Tc generator system includes a sorbent column loaded with a composition containing {sup 99}Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating {sup 99m}Tc eluted from the sorbent column. A method of preparing a concentrated solution of {sup 99m}Tc includes the general steps of: (a) providing a sorbent column loaded with a composition containing {sup 99}Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; (b) eluting the sorbent column with a salt solution to elute {sup 99m}Tc from the sorbent and to trap and concentrate the eluted {sup 99m}Tc on the ion-exchange column; and (c) eluting the concentrated {sup 99m}Tc from the ion-exchange column with a solution comprising a reductive complexing agent. 1 fig.

  13. Electrostatic generator/motor configurations

    DOE Patents [OSTI]

    Post, Richard Freeman

    2012-09-11

    Electrostatic generators/motors designs are provided that include a stator fixedly connected to a first central support centered about a central axis. The stator elements are attached to the first central support. Similarly, a second stator is connected to a central support centered about the central axis, and the second stator has stator elements attached to the second central support. A rotor is located between the first stator and the second stator and includes an outer support, where the rotor is rotatably centered about the central axis, the rotor having elements in contact with the outer support, each rotor element having an extending rotor portion that extends radially from the outer support toward the axis of rotation.

  14. Next Generation National Security Leaders

    SciTech Connect (OSTI)

    Mahy, Heidi A.; Fankhauser, Jana G.; Stein, Steven L.; Toomey, Christopher

    2012-07-19

    It is generally accepted that the international security community faces an impending challenge in its changing leadership demographics. The workforce that currently addresses nonproliferation, arms control, and verification is moving toward retirement and there is a perceived need for programs to train a new set of experts for both technical- and policy-related functions to replace the retiring generation. Despite the perceived need, there are also indicators that there are not sufficient jobs for individuals we are currently training. If we had right-sized the training programs, there would not be a shortage of jobs. The extent and scope of the human resource crisis is unclear, and information about training programs and how they meet existing needs is minimal. This paper seeks to achieve two objectives: 1) Clarify the major human resource problem and potential consequences; and 2) Propose how to characterize the requirement with sufficient granularity to enable key stakeholders to link programs aimed at developing the next generations of experts with employment needs. In order to accomplish both these goals, this paper recommends establishing a forum comprised of key stakeholders of this issue (including universities, public and private sectors), and conducting a study of the human resources and resource needs of the global security community. If there is indeed a human resource crisis in the global security field, we cannot address the problem if we are uninformed. The solution may lie in training more (or fewer) young professions to work in this community or it may lie in more effectively using our existing resources and training programs.

  15. Method of generating a surface mesh

    DOE Patents [OSTI]

    Shepherd, Jason F. (Albuquerque, NM); Benzley, Steven (Provo, UT); Grover, Benjamin T. (Tracy, CA)

    2008-03-04

    A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.

  16. Apparatuses and methods for generating electric fields

    DOE Patents [OSTI]

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  17. Design of a low-cost thermoacoustic electricity generator and its experimental verification

    SciTech Connect (OSTI)

    Backhaus, Scott N; Yu, Z; Jaworski, A J

    2010-01-01

    This paper describes the design and testing of a low cost thermoacoustic generator. A travelling-wave thermoacoustic engine with a configuration of a looped-tube resonator is designed and constructed to convert heat to acoustic power. A commercially available, low-cost loudspeaker is adopted as the alternator to convert the engine's acoustic power to electricity. The whole system is designed using linear thermoacoustic theory. The optimization of different parts of the thermoacoustic generator, as well as the matching between the thermoacoustic engine and the alternator are discussed in detail. A detailed comparison between the preliminary test results and linear thermoacoustic predictions is provided.

  18. Life Cycle GHG Emissions from Conventional Natural Gas Power Generation: Systematic Review and Harmonization (Presentation)

    SciTech Connect (OSTI)

    Heath, G.; O'Donoughue, P.; Whitaker, M.

    2012-12-01

    This research provides a systematic review and harmonization of the life cycle assessment (LCA) literature of electricity generated from conventionally produced natural gas. We focus on estimates of greenhouse gases (GHGs) emitted in the life cycle of electricity generation from conventionally produced natural gas in combustion turbines (NGCT) and combined-cycle (NGCC) systems. A process we term "harmonization" was employed to align several common system performance parameters and assumptions to better allow for cross-study comparisons, with the goal of clarifying central tendency and reducing variability in estimates of life cycle GHG emissions. This presentation summarizes preliminary results.

  19. Generation PV Inc | Open Energy Information

    Open Energy Info (EERE)

    PV Inc Jump to: navigation, search Name: Generation PV Inc. Place: Markham, Ontario, Canada Zip: L6E 1A9 Sector: Wind energy Product: Ontario-based Generation PV distributes and...

  20. Science on Tap - Next Generation Rocket Propellants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Next Generation Rocket Propellants Science on Tap - Next Generation Rocket Propellants WHEN: Dec 17, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central...

  1. Using Beam Echo Effect for Generation of Short-Wavelength Radiation

    SciTech Connect (OSTI)

    Stupakov, G; /SLAC

    2008-10-31

    We propose to use an echo effect previously observed in hadron accelerators for up-frequency conversion of density modulation in an electron beam. We show that, for generation of high harmonics, this method is much more efficient in comparison with the currently used approach. A one dimensional model of the effect is developed which allows to optimize the amplitude of the modulation for a given harmonic number.

  2. Hydro Generation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Services Product: Micro hydropower company. Provides technical services such as feasibility studies, mechanicalcivilelectical design. References: Hydro Generation Ltd1...

  3. Eastern Renewable Generation Integration Study (Presentation)

    SciTech Connect (OSTI)

    Bloom, A.

    2014-05-01

    This presentation provides a high-level overview of the Eastern Renewable Generation Integration Study process, scenarios, tools, and goals.

  4. Next Generation Electric Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines Next Generation Electric Machines Next Generation Electric Machines AMO's Next Generation Electric Machines (NGEM) program is an RD&D effort leveraging recent technology advancements in power electronics and electric motors to develop a new generation of energy efficient, high power density, high speed, integrated MV drive systems for a wide variety of critical energy applications. Industrial electric motor systems are employed in a wide range of applications including

  5. Distributed Generation Operational Reliability, Executive Summary Report,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2004 | Department of Energy Reliability, Executive Summary Report, January 2004 Distributed Generation Operational Reliability, Executive Summary Report, January 2004 This report summarizes the results of the project, "Distributed Generation Market Transformation Tools: Distributed Generation Reliability and Availability Database," sponsored by Oak Ridge National Laboratory (ORNL), Energy Solutions Center (ESC), New York State Energy Research and Development Authority

  6. Aerodynamic beam generator for large particles

    DOE Patents [OSTI]

    Brockmann, John E. (Albuquerque, NM); Torczynski, John R. (Albuquerque, NM); Dykhuizen, Ronald C. (Albuquerque, NM); Neiser, Richard A. (Albuquerque, NM); Smith, Mark F. (Albuquerque, NM)

    2002-01-01

    A new type of aerodynamic particle beam generator is disclosed. This generator produces a tightly focused beam of large material particles at velocities ranging from a few feet per second to supersonic speeds, depending on the exact configuration and operating conditions. Such generators are of particular interest for use in additive fabrication techniques.

  7. Storage, generation, and use of hydrogen

    DOE Patents [OSTI]

    McClaine, Andrew W.; Rolfe, Jonathan L.; Larsen, Christopher A.; Konduri, Ravi K.

    2006-05-30

    A composition comprising a carrier liquid; a dispersant; and a chemical hydride. The composition can be used in a hydrogen generator to generate hydrogen for use, e.g., as a fuel. A regenerator recovers elemental metal from byproducts of the hydrogen generation process.

  8. The Industrialization of Thermoelectric Power Generation Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability PDF icon miner.pdf More Documents & Publications Performance, Market and

  9. Distributed Wind Policy Comparison Tool

    SciTech Connect (OSTI)

    2011-12-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOEs '20% Wind Energy by 2030' report and helping to meet COE targets.

  10. Attractor comparisons based on density

    SciTech Connect (OSTI)

    Carroll, T. L.

    2015-01-15

    Recognizing a chaotic attractor can be seen as a problem in pattern recognition. Some feature vector must be extracted from the attractor and used to compare to other attractors. The field of machine learning has many methods for extracting feature vectors, including clustering methods, decision trees, support vector machines, and many others. In this work, feature vectors are created by representing the attractor as a density in phase space and creating polynomials based on this density. Density is useful in itself because it is a one dimensional function of phase space position, but representing an attractor as a density is also a way to reduce the size of a large data set before analyzing it with graph theory methods, which can be computationally intensive. The density computation in this paper is also fast to execute. In this paper, as a demonstration of the usefulness of density, the density is used directly to construct phase space polynomials for comparing attractors. Comparisons between attractors could be useful for tracking changes in an experiment when the underlying equations are too complicated for vector field modeling.

  11. RTU Comparison Calculator Enhancement Plan

    SciTech Connect (OSTI)

    Miller, James D.; Wang, Weimin; Katipamula, Srinivas

    2014-03-31

    Over the past two years, Department of Energys Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.

  12. RTU Comparison Calculator Enhancement Plan

    SciTech Connect (OSTI)

    Miller, James D.; Wang, Weimin; Katipamula, Srinivas

    2015-07-01

    Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.

  13. Vapor generation methods for explosives detection research

    SciTech Connect (OSTI)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  14. Torque/Moab vs. SLURM Comparisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users » Torque/Moab vs. SLURM Comparisons Torque/Moab vs. SLURM Comparisons TORQUE vs. SLURM Comparison Tables Moab/Torque vs. Slurm Environment Variables Description Moab/Torque Slurm Job Id $PBS_JOBID $SLURM_JOB_ID Job Name $PBS_JOBNAME $SLURM_JOB_NAME Submit Directory $PBS_O_WORKDIR $SLURM_SUBMIT_DIR Node List $PBS_NODEFILE $SLURM_NODELIST Host submitted from $PBS_O_HOST $SLURM_SUBMIT_HOST Nodes allocated $PBS_NUM_NODES $SLURM_JOB_NUM_NODES Number cores/nodes $PBS_NUM_PPN $SLURM_CPUS_ON_NODE

  15. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Broader source: Energy.gov (indexed) [DOE]

    Power Systems | Department of Energy A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. PDF icon lifecycle_analysis_of_geothermal_systems_draft.pdf More Documents & Publications Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Water Use in the

  16. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  17. Comparison of methods for geologic storage of carbon dioxide...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Comparison of methods for geologic storage of carbon dioxide in saline formations Citation Details In-Document Search Title: Comparison of methods for geologic...

  18. Comparison of Real World Energy Consumption to Models and DOE...

    Energy Savers [EERE]

    Comparison of Real World Energy Consumption to Models and DOE Test Procedures Comparison of Real World Energy Consumption to Models and DOE Test Procedures This study investigates ...

  19. Particle Measurement Methodology: Comparison of On-road and Lab...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement Methodology: Comparison of On-road and Lab Diesel Particle Size Distributions Particle Measurement Methodology: Comparison of On-road and Lab Diesel Particle Size ...

  20. Comparison of Fuel Cell Technologies: Fact Sheet | Department...

    Broader source: Energy.gov (indexed) [DOE]

    An overview comparison of fuel cell technologies by the Fuel Cell Technologies Office. Comparison of Fuel Cell Technologies More Documents & Publications Hydrogen and Fuel Cell...

  1. Comparison Between Keyhole Weld Model and Laser Welding Experiments...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Comparison Between Keyhole Weld Model and Laser Welding Experiments Citation Details In-Document Search Title: Comparison Between Keyhole Weld Model and Laser...

  2. Comparison of the Amanzi Model against Analytical Solutions and...

    Office of Scientific and Technical Information (OSTI)

    Comparison of the Amanzi Model against Analytical Solutions and the FEHM Model Citation Details In-Document Search Title: Comparison of the Amanzi Model against Analytical...

  3. Comparison of Uncertainty of Two Precipitation Prediction Models...

    Office of Scientific and Technical Information (OSTI)

    Comparison of Uncertainty of Two Precipitation Prediction Models at Los Alamos National Lab Technical Area 54 Citation Details In-Document Search Title: Comparison of Uncertainty...

  4. Assessment of Distributed Generation Potential in JapaneseBuildings

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

    2005-05-25

    To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment. It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.

  5. DYNAMIC AND CLASSICAL PRA: A BWR SBO CASE COMPARISON

    SciTech Connect (OSTI)

    Mandelli, Diego; Smith, Curtis L; Ma, Zhegang

    2011-07-01

    As part of the Light-Water Sustainability Program (LWRS), the purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain the safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic (i.e., dynamic system simulators) and probabilistic (stochastic sampling strategies) approaches are combined in a dynamic PRA fashion in order to estimate safety margins. We use the scenario of a station blackout (SBO) wherein offsite power and onsite power are lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and compare this with traditional risk analysis modeling for this type of accident scenario. In the RISMC approach the dataset obtained consists of set of simulation runs (performed by using codes such as RELAP5/3D) where timing and ordering of events is changed accordingly to the stochastic sampling strategy adopted. On the other side, classical PRA methods, which are based on event-tree (FT) and fault-tree (FT) structures, generate minimal cut sets and probability values associated to each ET branch. The comparison of the classical and RISMC approaches is performed not only in terms of overall core damage probability but also considering statistical differences in the actual sequence of events. The outcome of this comparison analysis shows similarities and dissimilarities between the approaches but also highlights the greater amount of information that can be generated by using the RISMC approach.

  6. Posters Comparisons of Brightness Temperature Measurements and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90 GHz: A comparison of measurements and theory. IEEE Trans. Antennas Prop. AP-38:1569...

  7. Generator configuration for solid oxide fuel cells

    DOE Patents [OSTI]

    Reichner, Philip (Plum Boro, PA)

    1989-01-01

    Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

  8. Control of flow through a vapor generator

    DOE Patents [OSTI]

    Radcliff, Thomas D.

    2005-11-08

    In a Rankine cycle system wherein a vapor generator receives heat from exhaust gases, provision is made to avoid overheating of the refrigerant during ORC system shut down while at the same time preventing condensation of those gases within the vapor generator when its temperature drops below a threshold temperature by diverting the flow of hot gases to ambient and to thereby draw ambient air through the vapor generator in the process. In one embodiment, a bistable ejector is adjustable between one position, in which the hot gases flow through the vapor generator, to another position wherein the gases are diverted away from the vapor generator. Another embodiment provides for a fixed valve ejector with a bias towards discharging to ambient, but with a fan on the downstream side of said vapor generator for overcoming this bias.

  9. The Chemistry of Flammable Gas Generation

    SciTech Connect (OSTI)

    ZACH, J.J.

    2000-10-30

    The document collects information from field instrumentation, laboratory tests, and analytical models to provide a single source of information on the chemistry of flammable gas generation at the Hanford Site. It considers the 3 mechanisms of formation: radiolysis, chemical reactions, and thermal generation. An assessment of the current models for gas generation is then performed. The results are that the various phenomena are reasonably understood and modeled compared to field data.

  10. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, James F. (Bonneville County, ID); Koenig, John F. (Idaho Falls, ID)

    1985-01-01

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  11. New generation of the SORTI instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New generation of the SORTI instruments Hawat, Tom Denver University Murcray, Frank University of Denver Category: Instruments In order to generate long-term monitoring data of the atmospheric composition using SORTI instrument and integrated in the Aura validation campaign, a new instrument generation has been developed. SORTI is a Fourier Transform Spectrometer system, including an automatic solar tracker and a computer for control, data processing, and storage. SORTI is refurbished and

  12. Projectile-generating explosive access tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos; Hughs, Chance G; Todd, Steven N

    2013-06-11

    A method for generating a projectile using an explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

  13. Distributed Generation: Challenges and Opportunities, 7. edition

    Office of Scientific and Technical Information (OSTI)

    (Miscellaneous) | SciTech Connect Miscellaneous: Distributed Generation: Challenges and Opportunities, 7. edition Citation Details In-Document Search Title: Distributed Generation: Challenges and Opportunities, 7. edition The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling

  14. Next Generation Photovoltaics 3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Photovoltaics 3 Next Generation Photovoltaics 3 SunShot's next generation PV projects investigate transformational photovoltaic (PV) technologies with the potential to meet SunShot cost targets. The projects' goals are to: Increase efficiency Reduce costs Improve reliability Create more secure and sustainable supply chains. On October 22, 2014, SunShot awarded more than $14 million to 10 research institutions to meet or exceed SunShot targets by improving performance, efficiency,

  15. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit (RTU). More than half of U.S. commercial building space is cooled by packaged heating, ventilation, and air conditioning (HVAC) equipment. Existing rooftop HVAC units consume more than 1.3% of the United States' annual energy usage annually. Project Description This project seeks to evaluate optimal design strategies

  16. NREL: Transmission Grid Integration - Eastern Renewable Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration Study Eastern Renewable Generation Integration Study The Eastern Renewable Generation Integration Study (ERGIS) is a multi-year U.S. Department of Energy-funded research project designed to simulate operations of the largest power system in the world with high penetrations of wind and solar generation. The study will inform critical questions on how system operations could be impacted by various wind and solar deployment strategies and operational paradigms. It is the first study

  17. Distributed Generation Operational Reliability and Availability Database,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report, January 2004 | Department of Energy Reliability and Availability Database, Final Report, January 2004 Distributed Generation Operational Reliability and Availability Database, Final Report, January 2004 This final report documents the results of an 18-month project entitled, "Distributed Generation Market Transformation Tools: Distributed Generation Reliability and Availability Database," sponsored by Oak Ridge National Laboratory (ORNL), Energy Solutions Center

  18. Control system for fluid heated steam generator

    DOE Patents [OSTI]

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  19. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation

    Office of Environmental Management (EM)

    Institute | Department of Energy Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a

  20. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  1. Interconnection Standards for Small Generators | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    (FERC) adopted new "small generator" interconnection standards for distributed energy resources up to 20 megawatts (MW) in capacity in November 2013 and September 2014,...

  2. Vermont Conditionally Exempt Generator Handbook: A Hazardous...

    Open Energy Info (EERE)

    Conditionally Exempt Generator Handbook: A Hazardous Waste Management Guide for Smaller Vermont Business Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  3. Deseret Generation & Tran Coop | Open Energy Information

    Open Energy Info (EERE)

    Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  4. Radiolytic gas generation in crystalline silicotitanate slurries

    SciTech Connect (OSTI)

    Walker, D.D.

    1999-12-15

    This study measured the impact of crystalline silicotitanate (CST) solids on the rate of formation and composition of radiolytically generated gases in simulated Savannah River Site liquid waste.

  5. Eastern Renewable Generation Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01

    This one-page, two-sided fact sheet provides an overview of the Eastern Renewable Generation and Integration Study process.

  6. Power Generating Inc | Open Energy Information

    Open Energy Info (EERE)

    A privately held Texas corporation, which provides a direct-fired, biomass-fueled cogeneration system that generates electricity and process heat while consuming on-site...

  7. Distributed Generation Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Colorado Zip: 80228 Region: Rockies Area Sector: Wind energy Product: Developer of electricity generation wind power facilities Website: www.disgenonline.com Coordinates:...

  8. Generation Inputs Workshop June 25, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inputs Workshop 25 June 2014 BPA's Centralized Wind Power Forecasting Initiative Scott Winner June 25, 2014 Generation Inputs Workshop Predecisional. For Discussion Purposes Only....

  9. List of Other Distributed Generation Technologies Incentives...

    Open Energy Info (EERE)

    Solar Thermal Process Heat Photovoltaics Wind Biomass Fuel Cells Ground Source Heat Pumps Hydrogen Biodiesel Fuel Cells using Renewable Fuels Other Distributed Generation...

  10. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  11. Electricity Generating Portfolios with Small Modular Reactors

    Broader source: Energy.gov [DOE]

    A paper by Geoffrey Rothwell, Ph.D., Stanford University (retired), and Francesco Ganda, Ph.D., Argonne National Laboratory on "Electricity Generating Portfolios with Small Modular Reactors".

  12. Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

  13. International Symposium For Next Generation Infrastructure

    Broader source: Energy.gov [DOE]

    The International Symposium for Next Generation Infrastructure is designed to support the rapidly expanding international research community seeking to understand the interactions between...

  14. Quadrennial Energy Review Second Installment Electricity: Generation...

    Energy Savers [EERE]

    Quadrennial Energy Review Second Installment Electricity: Generation to End-Use ... Ernest Moniz, United States Secretary of Energy As United States Secretary of Energy, Dr. ...

  15. Generation Resources Holding Co | Open Energy Information

    Open Energy Info (EERE)

    Resources Holding Co Jump to: navigation, search Name: Generation Resources Holding Co Place: Leawood, Kansas Zip: 66211-2607 Sector: Renewable Energy, Wind energy Product:...

  16. Distributed Generation Operational Reliability and Availability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation (DG)combined heat and power (CHP) project operators, owners, and developers, ... Specifically, the project team analyzed event histories for 121 DGCHP units over a ...

  17. High Energy Output Marx Generator Design

    SciTech Connect (OSTI)

    Monty Lehmann

    2011-07-01

    High Energy Output Marx Generator Design a design of a six stage Marx generator that has a unipolar pulse waveform of 200 kA in a 50500 microsecond waveform is presented. The difficulties encountered in designing the components to withstand the temperatures and pressures generated during the output pulse are discussed. The unique methods and materials used to successfully overcome these problems are given. The steps necessary to increase the current output of this Marx generator design to the meg-ampere region or higher are specified.

  18. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  19. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bel,; Lon E.; Crane, Douglas Todd

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  20. Baseload Concentrating Solar Power Generation | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power PPG: Next-Generation Low-Cost Reflector Rocketdyne: Solar Power Tower Improvements with the Potential to Reduce Costs SENER: High-Efficiency Thermal Storage System ...

  1. Next Generation Environmentally Friendly Driving Feedback Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss086barth2012o.pdf More Documents & Publications Next Generation Environmentally Friendly...

  2. Generation Investment Management LLP | Open Energy Information

    Open Energy Info (EERE)

    Investment Management LLP Jump to: navigation, search Name: Generation Investment Management LLP Place: London, Greater London, United Kingdom Zip: W1J 0AH Product: Fund manager of...

  3. Environmentally Protective Power Generation EPPG | Open Energy...

    Open Energy Info (EERE)

    Environmentally Protective Power Generation (EPPG) Place: Tucson, Arizona Sector: Wind energy Product: Seeking financing for a Tower system, about which little has been disclosed,...

  4. Fuel dissipater for pressurized fuel cell generators

    DOE Patents [OSTI]

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  5. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    following as the list of resources with Western Renewable Energy Generation Information System (WREGIS) Renewable Energy Certificates (RECs) associated with them that will be...

  6. Thermoelectric Generator (TEG) Fuel Displacement Potential using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    model of GM-developed TEG as part of the engine connected to a dynamometer that emulates ... Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles ...

  7. Pod Generating Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Pod Generating Group Place: Sault Ste Marie, Ontario, Canada Zip: P6A 2G4 Sector: Solar Product: Canadian developer of...

  8. Enhanced structural color generation in aluminum metamaterials...

    Office of Scientific and Technical Information (OSTI)

    with a thin polymer layer Citation Details In-Document Search Title: Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer Authors: ...

  9. Local Generation Limited | Open Energy Information

    Open Energy Info (EERE)

    United Kingdom Sector: Biomass Product: UK-based biomass firm developing anaerobic digestion plants. References: Local Generation Limited1 This article is a stub. You can help...

  10. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  11. CalEnergy Generation | Open Energy Information

    Open Energy Info (EERE)

    electric power and steam-producing facilities in the United States and the Philippines. Worldwide, CalEnergy Generation focuses on growth through acquisition and fuel source...

  12. NREL: Transmission Grid Integration - Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generator Modeling Renewable power plants (RPPs) are different from conventional power plants (CPPs) in several ways. While a 300-megawatt (MW) CPP may consist of one or two large generators (e.g., two 150-MW synchronous generators), an RPP may consist of hundreds of 1.5-MW solar photovoltaic (PV) inverters or wind turbine generators. In addition, many RPPs have a power-electronics-based interface with the grid; thus, the time constant of a RPP system is a lot faster than that of the

  13. Generating Demand for Multifamily Building Upgrades

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Peer Exchange Call Series: Generating Demand for Multifamily Building Upgrades, call slides and discussion summary, May 14, 2015.

  14. Mesh Generation for SHARP: Unprecedented Complexity

    Broader source: Energy.gov [DOE]

    During this quarter, the framework team was involved in two primary efforts, mesh generation and implementation of a MOAB-based coupled multi-physics simulation.

  15. Laying the Groundwork: Lessons Learned from the Telecommunications Industry for Distributed Generation; Preprint

    SciTech Connect (OSTI)

    Wise, A. L.

    2008-05-01

    The telecommunications industry went through growing pains in the past that hold some interesting lessons for the growing distributed generation (DG) industry. The technology shifts and stakeholders involved with the historic market transformation of the telecommunications sector mirror similar factors involved in distributed generation today. An examination of these factors may inform best practices when approaching the conduits necessary to accelerate the shifting of our nation's energy system to cleaner forms of generation and use. From a technical perspective, the telecom industry in the 1990s saw a shift from highly centralized systems that had no capacity for adaptation to highly adaptive, distributed network systems. From a management perspective, the industry shifted from small, private-company structures to big, capital-intensive corporations. This presentation will explore potential correlation and outline the lessons that we can take away from this comparison.

  16. NREL: Technology Deployment - Distributed Generation Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborative Distributed Generation Interconnection Collaborative Become a Member DGIC members are included in quarterly informational meetings and discussions related to distributed PV interconnection practices, research, and innovation. For more information, contact Kristen Ardani. Subscribe to DGIC Updates Learn about upcoming webinars and other DGIC announcements. NREL facilitates the Distributed Generation Interconnection Collaborative (DGIC) with support from the Solar Electric Power

  17. High reliability low jitter pulse generator

    DOE Patents [OSTI]

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  18. Distributed generation: Early markets for emerging technologies

    SciTech Connect (OSTI)

    Lenssen, N.; Cler, G.

    1999-11-01

    How will developers of emerging distributed generation technologies successfully commercialize their products. This paper presents one approach for these developers, borrowing from the experience of other developers of innovative technologies and services. E Source`s analysis suggests, however, that there is already more of a market for distributed generation than is generally recognized. US and Canadian firms already buy about 3,400 megawatts of small generators each year, mostly for backup power but some as the primary power source for selected loads and facilities. This demand is expected to double in 10 years. The global market for small generators is already more than 10 times this size, at some 40,000 megawatts per year, and it is expected to continue growing rapidly, especially in developing nations. Just how the emerging distributed generation technologies, such as microturbines, fuel cells, and Stirling engines compete-or surpass-the conventional technologies will have a huge impact on their eventual commercial success.

  19. Two Dimensional Polymer That Generates Nitric Oxide.

    DOE Patents [OSTI]

    McDonald, William F. (Utica, OH); Koren, Amy B. (Lansing, MI)

    2005-10-04

    A polymeric composition that generates nitric oxide and a process for rendering the surface of a substrate nonthrombogenic by applying a coating of the polymeric composition to the substrate are disclosed. The composition comprises: (1) a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, and (ii) a crosslinking agent containing functional groups capable of reacting with the amino groups; and (2) a plurality of nitric oxide generating functional groups associated with the crosslinked chemical combination. Once exposed to a physiological environment, the coating generates nitric oxide thereby inhibiting platelet aggregation. In one embodiment, the nitric oxide generating functional groups are provided by a nitrated compound (e.g., nitrocellulose) imbedded in the polymeric composition. In another embodiment, the nitric oxide generating functional groups comprise N2O2- groups covalently bonded to amino groups on the polymer.

  20. Massively parallel mesh generation for physics codes

    SciTech Connect (OSTI)

    Hardin, D.D.

    1996-06-01

    Massively parallel processors (MPPs) will soon enable realistic 3-D physical modeling of complex objects and systems. Work is planned or presently underway to port many of LLNL`s physical modeling codes to MPPs. LLNL`s DSI3D electromagnetics code already can solve 40+ million zone problems on the 256 processor Meiko. However, the author lacks the software necessary to generate and manipulate the large meshes needed to model many complicated 3-D geometries. State-of-the-art commercial mesh generators run on workstations and have a practical limit of several hundred thousand elements. In the foreseeable future MPPs will solve problems with a billion mesh elements. The objective of the Parallel Mesh Generation (PMESH) Project is to develop a unique mesh generation system that can construct large 3-D meshes (up to a billion elements) on MPPs. Such a capability will remove a critical roadblock to unleashing the power of MPPs for physical analysis and will put LLNL at the forefront of mesh generation technology. PMESH will ``front-end`` a variety of LLNL 3-D physics codes, including those in the areas of electromagnetics, structural mechanics, thermal analysis, and hydrodynamics. The DSI3D and DYNA3D codes are already running on MPPs. The primary goal of the PMESH project is to provide the robust generation of large meshes for complicated 3-D geometries through the appropriate distribution of the generation task between the user`s workstation and the MPP. Secondary goals are to support the unique features of LLNL physics codes (e.g., unusual elements) and to minimize the user effort required to generate different meshes for the same geometry. PMESH`s capabilities are essential because mesh generation is presently a major limiting factor in simulating larger and more complex 3-D geometries. PMESH will significantly enhance LLNL`s capabilities in physical simulation by advancing the state-of-the-art in large mesh generation by 2 to 3 orders of magnitude.

  1. Template:Energy Generation Facilities by Sector | Open Energy...

    Open Energy Info (EERE)

    Energy Generation Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the...

  2. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Next-Generation Wind Technology Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase...

  3. Peoples Generating Station Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Peoples Generating Station Biomass Facility Jump to: navigation, search Name Peoples Generating Station Biomass Facility Facility Peoples Generating Station Sector Biomass Facility...

  4. Datang Gansu Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gansu Power Generation Co Ltd Jump to: navigation, search Name: Datang Gansu Power Generation Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730050 Product: A power generation...

  5. PP-206 Frontera Generation Limited Partnership | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PP-206 Frontera Generation Limited Partnership PP-206 Frontera Generation Limited Partnership Presidential permit authorizing Frontera Generation Limited Partnership to construct,...

  6. Brent Run Generating Station Biomass Facility | Open Energy Informatio...

    Open Energy Info (EERE)

    Brent Run Generating Station Biomass Facility Jump to: navigation, search Name Brent Run Generating Station Biomass Facility Facility Brent Run Generating Station Sector Biomass...

  7. WETGen (Wave Energy Turbine GENerator) | Open Energy Information

    Open Energy Info (EERE)

    WETGen (Wave Energy Turbine GENerator) Jump to: navigation, search Logo: WETGen (Wave Energy Turbine GENerator) Name WETGen (Wave Energy Turbine GENerator) Place Coos Bay, Oregon...

  8. Solana Generating Plant Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Solana Generating Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type...

  9. EA-249-A Exelon Generation Company LLC | Department of Energy

    Energy Savers [EERE]

    Generation Company LLC Order authorizing Exelon Generation Company LLC to export electric energy to Canada. EA-249-A Exelon Generation Company LLC More Documents &...

  10. Martin Next Generation Solar Energy Center Solar Power Plant...

    Open Energy Info (EERE)

    Next Generation Solar Energy Center Solar Power Plant Jump to: navigation, search Name Martin Next Generation Solar Energy Center Solar Power Plant Facility Martin Next Generation...

  11. Loranger Power Generation Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type...

  12. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has Declined while ...

  13. Electricity market design for generator revenue sufficiency with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity market design for generator revenue sufficiency with increased variable generation Title Electricity market design for generator revenue sufficiency with increased...

  14. EA-290 Ontario Power Generation, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ontario Power Generation, Inc. EA-290 Ontario Power Generation, Inc. Order authorizing Ontario Power Generation, Inc. to export electric energy to Canada PDF icon EA-290 Ontario...

  15. EA-345 New Brunswick Power Generation Corporation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Brunswick Power Generation Corporation EA-345 New Brunswick Power Generation Corporation Order authorizing New Brunswick Power Generation Corporation to export electric energy...

  16. Blackburn Landfill Co-Generation Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation...

  17. A comparison of observables for solid-solid phase transitions

    SciTech Connect (OSTI)

    Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory

    2009-01-01

    The study of solid-solid phase transformations is hindered by the difficulty of finding a volumetric probe to use as a progress variable. Solids are typically optically opaque and heterogeneous. Over the past several years, second harmonic generation (SHG) has been used as a kinetic probe for a solid-solid phase transition in which the initial and final phases have different symmetries. Bulk generation of SHG is allowed by symmetry only in noncentrosymmetric crystallographic space groups. For the organic energetic nitramine octahydro-1,3 ,5,7 -tetranitro-1,3 ,5,7 -tatrazocine (HMX), the beta phase is centro symmetric (space group P2{sub 1}/c) and the delta phase iS noncentrosymmetric (space group P6{sub 1}22) making SHG an extremely sensitive, essentially zero background probe of the phase change progress. We have used SHG as a tool to follow the progress of the transformation from beta to delta phase during the solid-solid transformation. However, kinetic models of the transformation derived using different observables from several other groups have differed, showing later onset for the phase change and faster progression to completion. In this work, we have intercompared several techniques to understand these differences. The three techniques discussed are second harmonic generation, Raman spectroscopy, and differential scanning calorimetry (DSC). The progress of the beta to delta phase transition in HMX observed with each of these different probes will be discussed and advantages and disadvantages of each technique described. This paper compares several different observables for use in measuring the kinetics of solid-solid phase transitions. Relative advantages and disadvantages for each technique are described and a direct comparison of results is made for the beta to delta polymorphic phase transition of the energetic nitramine, octahydro-1,3,5,7-tetranitro-1,3,5,7-tatrazocine.

  18. EIS-0362: Colorado Springs Utilities' Next Generation CFB Coal Generating Unit, CO

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve Colorado Springs Utilities design, construction, and operation of their Next- Generation Circulating Fluidized Bed (CFB) Coal Generating Unit demonstration plant near Fountain, El Paso County, Colorado.

  19. New York State 2009 NHTS Comparison Report

    SciTech Connect (OSTI)

    Southworth, Frank; Reuscher, Tim; Hwang, Ho-Ling

    2012-06-01

    The U.S. Department of Transportation (USDOT) initiated an effort in 1969 to collect detailed data on personal travel, with the most recent surveys being the 1995 Nationwide Personal Transportation Survey (NPTS) and the 2001 and 2009 National Household Travel Surveys (NHTS). The primary objective of these surveys is to collect trip-based data on the nature and characteristics of personal travel so that the relationships between the characteristics of personal travel and the socio-economic and demographic characteristics of the traveler and his/her household can be established. In addition to the number of sample households that the national NPTS/NHTS survey allotted to New York State, NYDOT procured an additional sample of households in the 1995, 2001, and 2009 surveys. The comparisons drawn in this report compare the results from these NYS sampled households to the results from households drawn for the rest of the nation. Many of the differences between NYC counties and others in the state result from the striking differences in private vehicle ownership levels, with less than one in two NYC drivers and only 64% of NYC households owning a vehicle in 2009: versus 9 out of 10 drivers owning a vehicle, and between 1.5 and 2 vehicles owned per household, on the average, in the state's other metro areas. And this situation has changed very little over the past fourteen years covered by the three latest NPTS/NHTS surveys. While households in metro areas outside NYC do not own a vehicle largely due to income constraints, many households in NYC/Manhattan do not own a vehicle by choice. However, the statistics suggest that the mobility of zero-vehicle households in NYC/Manhattan is by no means deterred by the lack of a vehicle. While the private vehicle tripmaking rate of NYC residents was between one half and one third that in the state's other metro areas, and their daily VMT about half that of other metro areas, most of their daily travel needs were met by walking or by public transit. As a result, their daily trip-making rates remain consistent with those of vehicle-owning households when all modes of travel are considered. This again indicates that owning a vehicle or being a driver in NYC was less important for meeting a household's mobility needs than anywhere else in NYS. The high levels of public transit usage within NYC replace a great deal of automobile use, and this plus greater use of walk trips results in significantly lower travel generated carbon dioxide emissions per household in NYC than elsewhere in the state. In contrast, the comparatively limited level of public transit ridership in the state's smaller and medium sized metro areas places a much greater reliance on the privately owned vehicle, be it an automobile or the increasingly popular SUV.

  20. ARM - Field Campaign - ARRA AERI Comparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsARRA AERI Comparison ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARRA AERI Comparison 2011.01.07 - 2011.01.23 Lead Scientist : David Turner For data sets, see below. Abstract The ARM program, using stimulus funds from the ARRA, acquired a new AERI instrument for the SGP site. This new instrument was run side-by-side with the operational AERI at the SGP central facility to evaluate its

  1. Performance comparison between Edison and Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance comparison between Edison and Hopper Performance comparison between Edison and Hopper Edison compute node memory was upgraded to 1866 MHz from 1600 MHz on Jan 16, 2015. We rerun the SSP applications in dedicted or semi-dedicated mode on Edison again, and have observed 2-9% of increase in performance with the NERSC 6 application benchmark. The table below is the updated performance data: Application CAM GAMESS GTC IMPACT-T MAESTRO MILC PARATEC Concurrency 240 1024 2048 1024 2048 8192

  2. Fossil generation restructuring in the Ukraine

    SciTech Connect (OSTI)

    Galambas, J.W.

    1996-12-31

    This paper describes the Ukrainian electrical system as it was in 1991, defines the need for restructuring, outlines the restructuring process, identifies a number of major obstacles that are hindering the implementation of the fossil generation, restructuring process, and points out major problems in the coal procurement system. It describes the visits to several Ukrainian power plants, defines restructuring success to date, makes suggestions for improved restructuring progress, highlights lessons learned, and enlightens the audience on the opportunities of investing in the Ukrainian power generation industry. The primary focus is on the Fossil Generator Advisor task, which was carried out under the direction of Hagler Bailly Consulting, Inc. (Hagler Bailly).

  3. Microelectromechanical power generator and vibration sensor

    DOE Patents [OSTI]

    Roesler, Alexander W. (Tijeras, NM); Christenson, Todd R. (Albuquerque, NM)

    2006-11-28

    A microelectromechanical (MEM) apparatus is disclosed which can be used to generate electrical power in response to an external source of vibrations, or to sense the vibrations and generate an electrical output voltage in response thereto. The MEM apparatus utilizes a meandering electrical pickup located near a shuttle which holds a plurality of permanent magnets. Upon movement of the shuttle in response to vibrations coupled thereto, the permanent magnets move in a direction substantially parallel to the meandering electrical pickup, and this generates a voltage across the meandering electrical pickup. The MEM apparatus can be fabricated by LIGA or micromachining.

  4. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, Craig L. (Albuquerque, NM)

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  5. Apparatus for millimeter-wave signal generation

    DOE Patents [OSTI]

    Vawter, G. Allen (Albuquerque, NM); Hietala, Vincent M. (Placitas, NM); Zolper, John C. (Albuquerque, NM); Mar, Alan (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM)

    1999-01-01

    An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency .gtoreq.10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).

  6. Energy Intensity Indicators: Electricity Generation Energy Intensity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electricity Generation Energy Intensity Energy Intensity Indicators: Electricity Generation Energy Intensity A kilowatt-hour (kWh) of electric energy delivered to the final user has an energy equivalent to 3,412 British thermal units (Btu). Figure E1, below, tracks how much energy was used by the various categories of electricity generators to produce a kWh of electricity (i.e., the heat rate). As shown in the figure, in 1950, central power plants producing only

  7. Next-Generation Thermionic Solar Energy Conversion

    Broader source: Energy.gov [DOE]

    This fact sheet describes a next-generation thermionic solar energy conversion project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by Stanford University, seeks to demonstrate the feasibility of photon-enhanced, microfabricated thermionic energy converters as a high-efficiency topping cycle for CSP electricity generation. With the potential to double the electricity output efficiency of solar-thermal power stations, this topping cycle application can significantly reduce the cost of solar-thermal electricity below that of the lowest-cost, fossil-fuel generated electricity.

  8. Extended core for motor/generator

    DOE Patents [OSTI]

    Shoykhet, Boris A.

    2005-05-10

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  9. Extended core for motor/generator

    DOE Patents [OSTI]

    Shoykhet, Boris A.

    2006-08-22

    An extended stator core in a motor/generator can be utilized to mitigate losses in end regions of the core and a frame of the motor/generator. To mitigate the losses, the stator core can be extended to a length substantially equivalent to or greater than a length of a magnetically active portion in the rotor. Alternatively, a conventional length stator core can be utilized with a shortened magnetically active portion to mitigate losses in the motor/generator. To mitigate the losses in the core caused by stator winding, the core can be extended to a length substantially equivalent or greater than a length of stator winding.

  10. Short rise time intense electron beam generator

    DOE Patents [OSTI]

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  11. Proposed guidelines for reporting performance of a solar dish/Stirling electric generation system

    SciTech Connect (OSTI)

    Stine, W.B.; Powell, M.A.

    1992-12-31

    Experimental performance data from dish/Stirling system testing can be analyzed to generate a system performance model. An approach to developing an experimentally based performance model of a dish/Stirling system is given. Two methods for analyzing the experimental data are described. To provide information that will permit comparison of dish/Stirling systems, it is necessary to define many of the details involved in calculating system performance data such as the net system output and system solar-to-electric efficiency. This paper describes a set of guidelines for these calculations, based on past experience, especially with the Vanguard dish/Stirling system. Also presented are a set of rating conditions at which a maximum value for system efficiency can be calculated. Comparison between systems of their rated peak solar-to-electric efficiency is made possible when these rating conditions are in common use by manufacturers and testing agencies.

  12. Tidal Generation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Generation Ltd EMEC This company is involved in the following MHK Technologies: Deep Gen Tidal Turbines This article is a stub. You can help OpenEI by expanding it. Tidal...

  13. Apparatus and method for generating mechanical waves

    DOE Patents [OSTI]

    Allensworth, D.L.; Chen, P.J.

    1982-10-25

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  14. Review of Variable Generation Integration Charges

    SciTech Connect (OSTI)

    Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

    2013-03-01

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

  15. electric generation | OpenEI Community

    Open Energy Info (EERE)

    Submitted by Graham7781(2017) Super contributor 2 August, 2012 - 13:30 The Transparent Cost Database (TCDB) advanced vehicles electric generation NREL OpenEI renewables tcdb This...

  16. " Onsite Generation from Noncombustible Renewable Energy"...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Coal ",1.2 "Natural Gas",1.8 "Net Electricity",2.2 " Purchases",2.1 " Transfers In",4.6 " Onsite Generation from Noncombustible Renewable Energy",2.6 " Sales and Transfers ...

  17. Solar Generation Has a Bright Future

    Broader source: Energy.gov [DOE]

    The amount of electricity the United States generates from solar power has started to grow rapidly and is projected to reach 18,000 megawatt hours per day in 2013.

  18. Apparatus and method for generating mechanical waves

    DOE Patents [OSTI]

    Allensworth, Dwight L. (Albuquerque, NM); Chen, Peter J. (Albuquerque, NM)

    1985-01-01

    Mechanical waves are generated in a medium by subjecting an electromechanical element to an alternating electric field having a frequency which induces mechanical resonance therein and is below any electrical resonance frequency thereof.

  19. Western Renewable Energy Generation Information System ACCOUNT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Renewable Energy Generation Information System ACCOUNT HOLDER REGISTRATION AGREEMENT (Also referred to as the "TERMS OF USE") June 22,2007 Revised May 1,2008 JUL 3 1 REC'D...

  20. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  1. Digital gate pulse generator for cycloconverter control

    DOE Patents [OSTI]

    Klein, Frederick F. (Monroeville, PA); Mutone, Gioacchino A. (Pleasant Hills, PA)

    1989-01-01

    The present invention provides a digital gate pulse generator which controls the output of a cycloconverter used for electrical power conversion applications by determining the timing and delivery of the firing pulses to the switching devices in the cycloconverter. Previous gate pulse generators have been built with largely analog or discrete digital circuitry which require many precision components and periodic adjustment. The gate pulse generator of the present invention utilizes digital techniques and a predetermined series of values to develop the necessary timing signals for firing the switching device. Each timing signal is compared with a reference signal to determine the exact firing time. The present invention is significantly more compact than previous gate pulse generators, responds quickly to changes in the output demand and requires only one precision component and no adjustments.

  2. U.S. Nuclear Generation of Electricity

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Capacity and Generation by State and Reactor 2015 P XLS ... data information in the Annual Energy Review, table 9.2. U. S. Nuclear power plants projected electricity ...

  3. Property Tax Exemption for Wind Generators

    Broader source: Energy.gov [DOE]

    In May 2015, Oklahoma enacted a bill (SB 498) ending the property tax exemption for wind power generators. The exemption will end on January 1, 2017; projects currently in production or put into...

  4. Xcel Energy Wind and Biomass Generation Mandate

    Broader source: Energy.gov [DOE]

    A separate law (Minn. Stat. 216B.2424, also originally enacted in 1994) requires Xcel Energy to build or contract for 110 MW of electricity generated from biomass resources. The original...

  5. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations ...

  6. Manufacture of thermoelectric generator structures by fiber drawing

    DOE Patents [OSTI]

    McIntyre, Timothy J; Simpson, John T; West, David L

    2014-11-18

    Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

  7. Trapped field internal dipole superconducting motor generator

    DOE Patents [OSTI]

    Hull, John R.

    2001-01-01

    A motor generator including a high temperature superconductor rotor and an internally disposed coil assembly. The motor generator superconductor rotor is constructed of a plurality of superconductor elements magnetized to produce a dipole field. The coil assembly can be either a conventional conductor or a high temperature superconductor. The superconductor rotor elements include a magnetization direction and c-axis for the crystals of the elements and which is oriented along the magnetization direction.

  8. Science on Tap - Next Generation Rocket Propellants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Next Generation Rocket Propellants Science on Tap - Next Generation Rocket Propellants WHEN: Dec 17, 2015 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, NM 87544, USA SPEAKER: Bryce Tappan, Los Alamos National Laboratory CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Science on Tap happens every third Thursday Event Description Science On Tap happens every third Thursday of the month, featuring a new topic

  9. THE BIRTH OF NUCLEAR-GENERATED ELECTRICITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BIRTH OF NUCLEAR-GENERATED ELECTRICITY The first time that electricity was generated from nuclear energy occurred in an experimental breeder reactor in Idaho in 1951. The idea for a breeder reactor (a reactor that could produce more fuel than it uses) first occurred to scientists working on the nation's wartime atomic energy program in the early 1940's. Experimental evidence indicated that the breeding of nuclear fuel was possible in a properly designed reactor, but time and resources were not

  10. High-precision triangular-waveform generator

    DOE Patents [OSTI]

    Mueller, T.R.

    1981-11-14

    An ultra-linear ramp generator having separately programmable ascending and decending ramp rates and voltages is provided. Two constant current sources provide the ramp through an integrator. Switching of the current at current source inputs rather than at the integrator input eliminates switching transients and contributes to the waveform precision. The triangular waveforms produced by the waveform generator are characterized by accurate reproduction and low drift over periods of several hours. The ascending and descending slopes are independently selectable.

  11. Power generation method including membrane separation

    DOE Patents [OSTI]

    Lokhandwala, Kaaeid A. (Union City, CA)

    2000-01-01

    A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

  12. Projectile-generating explosive access tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos; Todd, Steven N.

    2011-10-18

    An explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

  13. Next-Generation Solar Collectors for CSP

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet on Next-Generation Collectors for CSP highlights a solar energy program awarded through the 2012 SunShot Concentrating Solar Power R&D awards. The team is developing new solar collector base technologies for next-generation heliostats used in power tower systems. If successful, this project will result in a 50% reduction in solar field equipment cost and a 30% reduction in field installation cost compared to existing heliostat designs.

  14. Next Generation Household Refrigerator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Household Refrigerator Next Generation Household Refrigerator Embraco's high efficiency, oil-free linear compressor.<br /> Credit: Whirlpool Embraco's high efficiency, oil-free linear compressor. Credit: Whirlpool ORNL's Pradeep Bansal examines an Embraco linear compressor, which will be used in a Whirlpool-ORNL project aimed at building a more energy-efficient refrigerator. ORNL's Pradeep Bansal examines an Embraco linear compressor, which will be used in a Whirlpool-ORNL

  15. Fuel cell using a hydrogen generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  16. Illinois Nuclear Profile - Braidwood Generation Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Braidwood Generation Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,178","9,197",89.1,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  17. Illinois Nuclear Profile - Byron Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Byron Generating Station" ,"Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,164","10,337",101.4,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  18. Current generation by minority species heating

    SciTech Connect (OSTI)

    Fisch, N.J.

    1980-07-01

    It is proposed that electric currents be generated from the preferential heating of ions traveling in one direction but with no net momentum injected into the system. This can be accomplished with, for example, traveling waves in a two-ion-species plasma. The current can be generated efficiently enough for the scheme to be of interest in maintaining steady-state toroidal currents in a reactor.

  19. Modeling distributed generation in the buildings sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any

  20. AEO Early Release 2013 - renewable generation

    Gasoline and Diesel Fuel Update (EIA)

    Renewables account for a bigger share of U.S. electricity generation in decades ahead The United States will generate a bigger share of its electricity from renewable sources such as solar, wind, and biomass energy in the decades ahead, according to the new long-term outlook just released by the U.S. Energy Information Administration. EIA says that lower costs are making renewable electricity more economical, and along with federal and state policies that promote renewables, EIA projects that

  1. Thermoelectric Generator (TEG) Fuel Displacement Potential using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine-in-the-Loop and Simulation | Department of Energy (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation Thermoelectric Generator (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation Assessment of fuel savings with thermoelectric generators (TEGs) using detailed model of GM-developed TEG as part of the engine connected to a dynamometer that emulates the rest of the vehicle PDF icon vijayagopal.pdf More Documents & Publications Establishing

  2. Next Generation Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Next Generation Materials Innovative materials with increased functionality can improve the energy productivity of U.S. manufacturing. Materials with novel properties will enable energy savings in energy-intensive processes and applications and will create a new design space for renewable energy generation. Breakthroughs in materials science and engineering are needed to enable these new capabilities. Our R&D portfolio will pursue promising materials technologies that offer the

  3. Renewable Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Electricity Generation Renewable Electricity Generation Geothermal Geothermal Read more Solar Solar Read more Water Water Read more Wind Wind Read more Our nation has abundant solar, water, wind, and geothermal energy resources, and many U.S. companies are developing, manufacturing, and installing cutting-edge, high-tech renewable energy systems. The Office of Energy Efficiency and Renewable Energy (EERE) leads a large network of researchers and other partners to deliver innovative

  4. Reduced waste generation technical work plan

    SciTech Connect (OSTI)

    Not Available

    1987-05-01

    The United States Department of Energy has established policies for avoiding plutonium losses to the waste streams and minimizing the generation of wastes produced at its nuclear facilities. This policy is evidenced in DOE Order 5820.2, which states Technical and administrative controls shall be directed towards reducing the gross volume of TRU waste generated and the amount of radioactivity in such waste.'' To comply with the DOE directive, the Defense Transuranic Waste Program (DTWP) supports and provides funding for specific research and development tasks at the various DOE sites to reduce the generation of waste. This document has been prepared to give an overview of current and past Reduced Waste Generation task activities which are to be based on technical and cost/benefit factors. The document is updated annually, or as needed, to reflect the status of program direction. Reduced Waste Generation (RWG) tasks encompass a wide range of goals which are basically oriented toward (1) avoiding the generation of waste, (2) changing processes or operations to reduce waste, (3) converting TRU waste into LLW by sorting or decontamination, and (4) reducing volumes through operations such as incineration or compaction.

  5. Multiple output timing and trigger generator

    SciTech Connect (OSTI)

    Wheat, Robert M.; Dale, Gregory E

    2009-01-01

    In support of the development of a multiple stage pulse modulator at the Los Alamos National Laboratory, we have developed a first generation, multiple output timing and trigger generator. Exploiting Commercial Off The Shelf (COTS) Micro Controller Units (MCU's), the timing and trigger generator provides 32 independent outputs with a timing resolution of about 500 ns. The timing and trigger generator system is comprised of two MCU boards and a single PC. One of the MCU boards performs the functions of the timing and signal generation (the timing controller) while the second MCU board accepts commands from the PC and provides the timing instructions to the timing controller. The PC provides the user interface for adjusting the on and off timing for each of the output signals. This system provides 32 output or timing signals which can be pre-programmed to be in an on or off state for each of 64 time steps. The width or duration of each of the 64 time steps is programmable from 2 {micro}s to 2.5 ms with a minimum time resolution of 500 ns. The repetition rate of the programmed pulse train is only limited by the time duration of the programmed event. This paper describes the design and function of the timing and trigger generator system and software including test results and measurements.

  6. Low- and high-order harmonic generation in the extended plasmas produced by laser ablation of zinc and manganese targets

    SciTech Connect (OSTI)

    Ganeev, R. A.; Baba, M.; Suzuki, M.; Yoneya, S.; Kuroda, H.

    2014-12-28

    The systematic studies of the harmonic generation of ultrashort laser pulses in the 5-mm-long Zn and Mn plasmas (i.e., application of nanosecond, picosecond, and femtosecond pulses for ablation, comparison of harmonic generation from atomic, ionic, and cluster-contained species of plasma, variation of plasma length, two-color pump of plasmas, etc.) are presented. The conversion efficiency of the 11th–19th harmonics generated in the Zn plasma was ∼5 × 10{sup −5}. The role of the ionic resonances of Zn near the 9th and 10th harmonics on the enhancement of harmonics is discussed. The enhancement of harmonics was also analyzed using the two-color pump of extended plasmas, which showed similar intensities of the odd and even harmonics along the whole range of generation. The harmonics up to the 107th order were demonstrated in the case of manganese plasma. The comparison of harmonic generation in the 5-mm-long and commonly used short (≤0.5 mm) plasma plumes showed the advanced properties of extended media.

  7. Accounting for fuel price risk when comparing renewable togas-fired generation: the role of forward natural gas prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2004-07-17

    Unlike natural gas-fired generation, renewable generation (e.g., from wind, solar, and geothermal power) is largely immune to fuel price risk. If ratepayers are rational and value long-term price stability, then--contrary to common practice--any comparison of the levelized cost of renewable to gas-fired generation should be based on a hedged gas price input, rather than an uncertain gas price forecast. This paper compares natural gas prices that can be locked in through futures, swaps, and physical supply contracts to contemporaneous long-term forecasts of spot gas prices. We find that from 2000-2003, forward gas prices for terms of 2-10 years have been considerably higher than most contemporaneous long-term gas price forecasts. This difference is striking, and implies that comparisons between renewable and gas-fired generation based on these forecasts over this period have arguably yielded results that are biased in favor of gas-fired generation.

  8. Comparison of absolute spectral irradiance responsivity measurement techniques using wavelength-tunable lasers

    SciTech Connect (OSTI)

    Ahtee, Ville; Brown, Steven W.; Larason, Thomas C.; Lykke, Keith R.; Ikonen, Erkki; Noorma, Mart

    2007-07-10

    Independent methods for measuring the absolute spectral irradiance responsivity of detectors have been compared between the calibration facilities at two national metrology institutes, the Helsinki University of Technology (TKK), Finland, and the National Institute of Standards and Technology (NIST). The emphasis is on the comparison of two different techniques for generating a uniform irradiance at a reference plane using wavelength-tunable lasers. At TKK's Laser Scanning Facility (LSF) the irradiance is generated by raster scanning a single collimated laser beam, while at the NIST facility for Spectral Irradiance and Radiance Responsivity Calibrations with Uniform Sources (SIRCUS), lasers are introduced into integrating spheres to generate a uniform irradiance at a reference plane. The laser-based irradiance responsivity results are compared to a traditional lamp-monochromator-based irradiance responsivity calibration obtained at the NIST Spectral Comparator Facility (SCF). A narrowband filter radiometer with a24 nm bandwidth and an effective band-center wavelength of 801 nm was used as the artifact. The results of the comparison between the different facilities, reported for the first time in the near-infrared wavelength range, demonstrate agreement at the uncertainty level of less than 0.1%. This result has significant implications in radiation thermometry and in photometry as well as in radiometry.

  9. Capturing the benefits of distributed generation

    SciTech Connect (OSTI)

    Coles, L.R.

    1999-11-01

    Existing and future distributed generation (DG) can provide significant benefits to customers, utilities and other service providers. For the customer, these benefits could include improved reliability, better power quality and lower costs. For the utility distribution company, these benefits could include deferral of costly distribution upgrades and local voltage support. For the region`s generation and transmission suppliers, DG can provide dependable capacity supply, relief from transmission constraints, and ancillary transmission services such as reactive supply and supplemental reserves. The promise of DG technologies is strong. The technical hurdles to capturing these benefits are being met with improved generators and with enhanced command, control, and communications technologies. However, institutional and regulatory hurdles to capturing these distributed generation benefits appear to be significant. Restructuring for retail access and the delamination of utilities into wires companies and generation companies may make it difficult to capture many of the multiple benefits of DG. Policy-makers should be aware of these factors and strive to craft policies and rules that give DG a fair change to deliver these strong benefits.

  10. Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

  11. Plasma driven neutron/gamma generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Antolak, Arlyn

    2015-03-03

    An apparatus for the generation of neutron/gamma rays is described including a chamber which defines an ion source, said apparatus including an RF antenna positioned outside of or within the chamber. Positioned within the chamber is a target material. One or more sets of confining magnets are also provided to create a cross B magnetic field directly above the target. To generate neutrons/gamma rays, the appropriate source gas is first introduced into the chamber, the RF antenna energized and a plasma formed. A series of high voltage pulses are then applied to the target. A plasma sheath, which serves as an accelerating gap, is formed upon application of the high voltage pulse to the target. Depending upon the selected combination of source gas and target material, either neutrons or gamma rays are generated, which may be used for cargo inspection, and the like.

  12. Fast generation of sparse random kernel graphs

    SciTech Connect (OSTI)

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in time at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.

  13. Rechargeable thin-film electrochemical generator

    DOE Patents [OSTI]

    Rouillard, Roger; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.

    2000-09-15

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  14. Method of operating a thermoelectric generator

    DOE Patents [OSTI]

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  15. Mesaba next-generation IGCC plant

    SciTech Connect (OSTI)

    2006-01-01

    Through a US Department of Energy (DOE) cooperative agreement awarded in June 2006, MEP-I LLC plans to demonstrate a next generation integrated gasification-combined cycle (IGCC) electric power generating plant, the Mesaba Energy Project. The 606-MWe plant (the first of two similarly sized plants envisioned by project sponsors) will feature next-generation ConocoPhillips E-Gas{trademark} technology first tested on the DOE-funded Wabash River Coal Gasification Repowering project. Mesaba will benefit from recommendations of an industry panel applying the Value Improving Practices process to Wabash cost and performance results. The project will be twice the size of Wabash, while demonstrating better efficient, reliability and pollutant control. The $2.16 billion project ($36 million federal cost share) will be located in the Iron Range region north of Duluth, Minnesota. Mesaba is one of four projects selected under Round II of the Clean Coal Power Initiative. 1 fig.

  16. Fast generation of sparse random kernel graphs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in timemore » at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.« less

  17. COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES

    SciTech Connect (OSTI)

    Lowell, D.; Parsley, W.; Bush,C; Zupo, D.

    2003-08-24

    Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particle number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.

  18. Distributed Wind Policy Comparison Tool Website | Open Energy...

    Open Energy Info (EERE)

    TOOL Name: Distributed Wind Policy Comparison Tool Website Focus Area: Renewable Energy Topics: Security & Reliability Website: www.eformativeoptions.comdwpolicytool...

  19. Discussion on a Code Comparison Effort for the Geothermal Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy Discussion on a Code Comparison Effort for the Geothermal Technologies Program Discussion on a Code Comparison Effort for the Geothermal Technologies Program Code comparison presentation by Mark White of PNNL at the 2012 Peer Review meeting on May 10. PDF icon gtp_2012peerreview_pnnl_white.pdf More Documents & Publications PNNL Support of the DOE GTO Model Comparison Activity Methane Hydrate Annual Reports Fiscal Year 2014 ASCEM Status Report

  20. DEVELOPMENT OF A METHODOLOGY TO ASSESS PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION FOR GENERATION IV SYSTEMS

    SciTech Connect (OSTI)

    Nishimura, R.; Bari, R.; Peterson, P.; Roglans-Ribas, J.; Kalenchuk, D.

    2004-10-06

    Enhanced proliferation resistance and physical protection (PR&PP) is one of the technology goals for advanced nuclear concepts, such as Generation IV systems. Under the auspices of the Generation IV International Forum, the Office of Nuclear Energy, Science and Technology of the U.S. DOE, the Office of Nonproliferation Policy of the National Nuclear Security Administration, and participating organizations from six other countries are sponsoring an international working group to develop an evaluation methodology for PR&PP. This methodology will permit an objective PR&PP comparison between alternative nuclear systems (e.g., different reactor types or fuel cycles) and support design optimization to enhance robustness against proliferation, theft and sabotage. The paper summarizes the proposed assessment methodology including the assessment framework, measures used to express the PR&PP characteristics of the system, threat definition, system element and target identification, pathway identification and analysis, and estimation of the measures.

  1. Infrasound Generation from the HH Seismic Hammer.

    SciTech Connect (OSTI)

    Jones, Kyle Richard

    2014-10-01

    The HH Seismic hammer is a large, %22weight-drop%22 source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  2. SPRNG Scalable Parallel Random Number Generator LIbrary

    Energy Science and Technology Software Center (OSTI)

    2010-03-16

    This revision corrects some errors in SPRNG 1. Users of newer SPRNG versions can obtain the corrected files and build their version with it. This version also improves the scalability of some of the application-based tests in the SPRNG test suite. It also includes an interface to a parallel Mersenne Twister, so that if users install the Mersenne Twister, then they can test this generator with the SPRNG test suite and also use some SPRNGmore » features with that generator.« less

  3. Next Generation Solar Collectors for CSP

    SciTech Connect (OSTI)

    Molnar, Attila; Charles, Ruth

    2014-07-31

    The intent of “Next Generation Solar Collectors for CSP” program was to develop key technology elements for collectors in Phase 1 (Budget Period 1), design these elements in Phase 2 (Budget Period 2) and to deploy and test the final collector in Phase 3 (Budget Period 3). 3M and DOE mutually agreed to terminate the program at the end of Budget Period 1, primarily due to timeline issues. However, significant advancements were achieved in developing a next generation reflective material and panel that has the potential to significantly improve the efficiency of CSP systems.

  4. Operation of Distributed Generation Under Stochastic Prices

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris

    2005-11-30

    We model the operating decisions of a commercial enterprisethatneeds to satisfy its periodic electricity demand with either on-sitedistributed generation (DG) or purchases from the wholesale market. Whilethe former option involves electricity generation at relatively high andpossibly stochastic costs from a set of capacity-constrained DGtechnologies, the latter implies unlimited open-market transactions atstochastic prices. A stochastic dynamic programme (SDP) is used to solvethe resulting optimisation problem. By solving the SDP with and withoutthe availability of DG units, the implied option values of the DG unitsare obtained.

  5. Synchronization System for Next Generation Light Sources

    SciTech Connect (OSTI)

    Zavriyev, Anton

    2014-03-27

    An alternative synchronization technique one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

  6. Fiscalini Farms Renewable Energy Power Generation Project

    SciTech Connect (OSTI)

    2009-02-01

    Funded by the American Recovery and Reinvestment Act of 2009 Fiscalini Farms L.P., in collaboration with University of the Pacific, Biogas Energy, Inc., and the University of California at Berkeley will measure and analyze the efficiency and regulatory compliance of a renewable energy system for power generation. The system will utilize digester gas from an anaerobic digester located at the Fiscalini Farms dairy for power generation with a reciprocating engine. The project will provide power, efficiency, emissions, and cost/benefit analysis for the system and evaluate its compliance with federal and California emissions standards.

  7. Illinois Nuclear Profile - Dresden Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Dresden Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,867,"7,727",101.7,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" 3,867,"6,866",90.4,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  8. Kansas Nuclear Profile - Wolf Creek Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    April 2012" "Next Release Date: February 2013" "Wolf Creek Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,160","9,556",94.0,"PWR","application/vnd.ms-excel","application/vnd.ms-excel"

  9. Washington Nuclear Profile - Columbia Generating Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Columbia Generating Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 2,"1,097","9,241",96.2,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,097","9,241",96.2

  10. INVESTING IN NEW BASE LOAD GENERATING CAPACITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INVESTING IN NEW BASE LOAD GENERATING CAPACITY Paul L. Joskow April 8, 2008 The views expressed here are my own. They do not reflect the views of the Alfred P. Sloan Foundation, MIT or any other organization with which I am affiliated. THE 25-YEAR VIEW * Significant investment in base-load generating capacity is required over the next 25 years to balance supply and demand efficiently - ~ 200 to 250 Gw (Gross) - Depends on retirements of older steam and peaking units - Depends on demand growth *

  11. Protective, Modular Wave Power Generation System

    SciTech Connect (OSTI)

    Vvedensky, Jane M.; Park, Robert Y.

    2012-11-27

    The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

  12. Metrics for comparison of crystallographic maps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Lunin, Vladimir Y.; Terwilliger, Thomas C.; Adams, Paul D.

    2014-10-01

    Numerical comparison of crystallographic contour maps is used extensively in structure solution and model refinement, analysis and validation. However, traditional metrics such as the map correlation coefficient (map CC, real-space CC or RSCC) sometimes contradict the results of visual assessment of the corresponding maps. This article explains such apparent contradictions and suggests new metrics and tools to compare crystallographic contour maps. The key to the new methods is rank scaling of the Fourier syntheses. The new metrics are complementary to the usual map CC and can be more helpful in map comparison, in particular when only some of their aspects,more » such as regions of high density, are of interest.« less

  13. Comparison of Virtualization and Containerization Techniques for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Performance Computing | Argonne Leadership Computing Facility Comparison of Virtualization and Containerization Techniques for High-Performance Computing Event Sponsor: Mathematics and Computer Science Division Seminar Start Date: Feb 9 2016 - 12:00pm Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Balaji Subramaniam Host: Kate Keahey High Performance Computing (HPC) users have traditionally used dedicated clusters hosted in national laboratories

  14. Workplace Charging: Comparison of Sustainable Commuting Options

    Broader source: Energy.gov (indexed) [DOE]

    Workplace Charging: Comparison of Sustainable Commuting Options November 18, 2014 Austin Brown National Renewable Energy Laboratory vehicles.energy.gov Relevance of ROI calculation * Value Proposition for Employers - How are Lifecycle/Scope 3 GHG emissions affected? - What are my (employer) direct costs? - What is the Return on Investment (ROI)? - What are possible ancillary benefits? * How does Workplace Charging compare to: - Transit Subsidies - Vanpool Subsidies - Bike Purchase Subsidies 2 -

  15. Generating power with drained coal mine methane

    SciTech Connect (OSTI)

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  16. Draft Submission; Social Cost of Energy Generation

    SciTech Connect (OSTI)

    1990-01-05

    This report is intended to provide a general understanding of the social costs associated with electric power generation. Based on a thorough review of recent literature on the subject, the report describes how these social costs can be most fully and accurately evaluated, and discusses important considerations in applying this information within the competitive bidding process. [DJE 2005

  17. Thermoacoustic co-generation unit. Final report

    SciTech Connect (OSTI)

    Swift, G.W.; Corey, J.

    1997-12-09

    The combination of a thermoacoustic engine with a STAR alternator promises to comprise a simple, reliable combustion-powered electric generator. In this CRADA, the authors married these two technologies for the first time, to learn what technical issues arise in the combination. The results are encouraging, but the work is not yet complete.

  18. Next Generation Drivetrain Development and Test Program

    SciTech Connect (OSTI)

    Keller, Jonathan; Erdman, Bill; Blodgett, Doug; Halse, Chris; Grider, Dave

    2015-11-03

    This presentation was given at the Wind Energy IQ conference in Bremen, Germany, November 30 through December 2, 2105. It focused on the next-generation drivetrain architecture and drivetrain technology development and testing (including gearbox and inverter software and medium-voltage inverter modules.

  19. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E. (Finleyville, PA)

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  20. Apparatus and method for thermal power generation

    DOE Patents [OSTI]

    Cohen, Paul (Pittsburgh, PA); Redding, Arnold H. (Export, PA)

    1978-01-01

    An improved thermal power plant and method of power generation which minimizes thermal stress and chemical impurity buildup in the vaporizing component, particularly beneficial under loss of normal feed fluid and startup conditions. The invention is particularly applicable to a liquid metal fast breeder reactor plant.

  1. Titanium nitride electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Novak, Robert F. (Farmington Hills, MI); Schmatz, Duane J. (Dearborn Heights, MI); Hunt, Thomas K. (Ann Arbor, MI)

    1987-12-22

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

  2. Molybdenum oxide electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Schmatz, Duane J. (Dearborn Heights, MI)

    1989-01-01

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film comprising molybdenum oxide as an electrode deposited by physical deposition techniques onto solid electrolyte. The invention is also directed to the method of making same.

  3. Secondary electron ion source neutron generator

    DOE Patents [OSTI]

    Brainard, J.P.; McCollister, D.R.

    1998-04-28

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter is disclosed. The target contains occluded deuterium, tritium, or a mixture thereof. 4 figs.

  4. Communication Graph Generator for Parallel Programs

    Energy Science and Technology Software Center (OSTI)

    2014-04-08

    Graphator is a collection of relatively simple sequential programs that generate communication graphs/matrices for commonly occurring patterns in parallel programs. Currently, there is support for five communication patterns: two-dimensional 4-point stencil, four-dimensional 8-point stencil, all-to-alls over sub-communicators, random near-neighbor communication, and near-neighbor communication.

  5. Hanford Generating Project (HGP) Repowering Analysis.

    SciTech Connect (OSTI)

    Fluor Daniel Fernald

    1988-12-01

    The Hanford Generating Project (HGP), owned by the Washington Public Power Supply System, consists of two low pressure steam turbines, generators, and associated equipment located adjacent to the Department of Energy's (DOE) N-Reactor. HGP has been able to produce approximately 800 MWe with low pressure steam supplied by N-Reactor. DOE has placed N-Reactor in cold standby status for an undetermined length of time. This results in the idling of the HGP since no alternative source of steam is available. Bonneville Power Administration contracted with Fluor Daniel, Inc. to investigate the feasibility and cost of constructing a new source of steam for (repowering) one of the HGP turbines. The steam turbine is currently operated with 135 psia steam. The turbines can be rebuilt to operate with 500 psia steam pressure by adding additional stages, buckets, nozzles, and diaphragms. Because of the low pressure design, this turbine can never achieve the efficiencies possible in new high pressure turbines by the presences of existing equipment reduces the capital cost of a new generating resource. Five repowering options were investigated in this study. Three cases utilizing gas turbine combined cycle steam generation equipment, one case utilizing a gas fired boiler, and a case utilizing a coal fired boiler. This report presents Fluor Daniel's analysis of these repowering options.

  6. Plasma plume MHD power generator and method

    DOE Patents [OSTI]

    Hammer, J.H.

    1993-08-10

    A method is described of generating power at a situs exposed to the solar wind which comprises creating at separate sources at the situs discrete plasma plumes extending in opposed directions, providing electrical communication between the plumes at their source and interposing a desired electrical load in the said electrical communication between the plumes.

  7. Customizing pays off in steam generators

    SciTech Connect (OSTI)

    Ganapathy, V. (ABCO Industries, Inc., Abilene, TX (United States))

    1995-01-01

    Packaged steam generators are the workhorses of chemical process plants, power plants and cogeneration systems. They are available as oil- or gas-fired models, and are used to generate either high-pressure superheated steam (400 to 1,200 psig, at 500 to 900 F) or saturated steam at low pressures (100 to 300 psig). In today's emission- and efficiency- conscious environment, steam generators have to be custom designed. Gone are the days when a boiler supplier--or for that matter an end user--could look up a model number from a list of standard sizes and select one for a particular need. Thus, before selecting a system, it is desirable to know the features of oil- and gas-fired steam generators, and the important variables that influence their selection, design and performance. It is imperative that all of these data are supplied to the boiler supplier so that the engineers may come up with the right design. Some of the parameters which are discussed in this paper are: duty, steam temperature, steam purity, emissions, and furnace design. Superheaters, economizers, and overall performance are also discussed.

  8. SPECTRA: A subroutine for response spectra generation

    SciTech Connect (OSTI)

    McCallen, D.B.

    1991-11-01

    A simple Fortran subroutine for generation of response spectra has been written and implemented on a Sun Sparc2 workstation. The routine generates absolute acceleration spectra, relative velocity spectra and relative displacement spectra for a given input acceleration time history. The subroutine will automatically set the period (i.e. the abscissa values of the spectra) at which spectral quantities are determined, and the user can select one of three options for determining the period values: Periods correspond to the periods utilized by the California Department of Mines and Geology strong motion instrumentation program (CSMIP) in generating the spectra which they distribute; periods correspond to the periods suggested by the American Society of Civil Engineers (ASCE) Seismic Analysis of Safety Related Nuclear Structures and Commentary on Standard for Seismic Analysis of Safety Related Nuclear Structures'' (ASCE 4-86) for in-structure spectra; periods correspond closely to the periods utilized by CSMIP, but a higher density of periods are utilized, resulting in a very high resolution spectra. To enable the use of the subroutine on any platform, simplicity has been maintained in the Fortran coding of the subroutine. The methodology utilized in generating the spectra, a discussion of the limitations of the spectra in the high frequency regime, and a listing of the subroutine are included in this report.

  9. SPECTRA: A subroutine for response spectra generation

    SciTech Connect (OSTI)

    McCallen, D.B.

    1991-11-01

    A simple Fortran subroutine for generation of response spectra has been written and implemented on a Sun Sparc2 workstation. The routine generates absolute acceleration spectra, relative velocity spectra and relative displacement spectra for a given input acceleration time history. The subroutine will automatically set the period (i.e. the abscissa values of the spectra) at which spectral quantities are determined, and the user can select one of three options for determining the period values: Periods correspond to the periods utilized by the California Department of Mines and Geology strong motion instrumentation program (CSMIP) in generating the spectra which they distribute; periods correspond to the periods suggested by the American Society of Civil Engineers (ASCE) ``Seismic Analysis of Safety Related Nuclear Structures and Commentary on Standard for Seismic Analysis of Safety Related Nuclear Structures`` (ASCE 4-86) for in-structure spectra; periods correspond closely to the periods utilized by CSMIP, but a higher density of periods are utilized, resulting in a very high resolution spectra. To enable the use of the subroutine on any platform, simplicity has been maintained in the Fortran coding of the subroutine. The methodology utilized in generating the spectra, a discussion of the limitations of the spectra in the high frequency regime, and a listing of the subroutine are included in this report.

  10. RGG: Reactor geometry (and mesh) generator

    SciTech Connect (OSTI)

    Jain, R.; Tautges, T.

    2012-07-01

    The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)

  11. Combined propellant for pulse MHD generator

    SciTech Connect (OSTI)

    Dogadayev, R.V.; Dyogtev, Yu.G.; Gomozov, V.A.; Klyachko, L.A.

    1994-12-31

    The results of the experimental researches and calculations of the pulse MHD generator equilibrium plasma which is the products of the solid pyrotechnical (metal) fuel (PF) combustion in the air (combined propellant - CP) are presented. The optimum fuel composition and the excess air factor have been determined. The magnesium- and aluminium-based PF experimental samples have been calculated, manufactured and tested. The conception has been suggested, the model plasma generator has been designed and manufactured. The dependencies of pressure, temperature, heat losses, electrical conductivity and electron mobility and their pulsations in the small-scale MHD generator channel (m{approx}1.5 kg/s, M{approx}3, p{approx}0.07MPa, T{approx}2800K) upon different factors have been determined experimentally. Under these conditions the electrical conductivity reached 25 S/m. The solid MgO particles spectrum in the supersonic flow has been determined. The MHD conversion with the use of the CP has been demonstrated. The maximum electrical power of the {open_quotes}Pamir-0-KT{close_quotes} small-scale MHD generator was 68 kW with the magnetic field 1.9 T.

  12. Sustainability protects resources for future generations

    SciTech Connect (OSTI)

    1995-04-01

    This publication by the National Renewable Energy Laboratory addresses the steps necessary to provide livable urban centers for future generations through sustainable development, or sustainability. To illustrate this concept, nonsustainable cities and sustainable cities are compared. Sustainable city projects for several major US cites are reviewed.

  13. Waste Heat Recovery Opportunities for Thermoelectric Generators |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Thermoelectrics have unique advantages for integration into selected waste heat recovery applications. PDF icon fleurial.pdf More Documents & Publications High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications

  14. Secondary electron ion source neutron generator

    DOE Patents [OSTI]

    Brainard, John P. (Albuquerque, NM); McCollister, Daryl R. (Albuquerque, NM)

    1998-01-01

    A neutron generator employing an electron emitter, an ion source bombarded by the electrons from the electron emitter, a plasma containment zone, and a target situated between the plasma containment zone and the electron emitter. The target contains occluded deuterium, tritium, or a mixture thereof

  15. Multi-attribute criteria applied to electric generation energy system analysis LDRD.

    SciTech Connect (OSTI)

    Kuswa, Glenn W.; Tsao, Jeffrey Yeenien; Drennen, Thomas E.; Zuffranieri, Jason V.; Paananen, Orman Henrie; Jones, Scott A.; Ortner, Juergen G.; Brewer, Jeffrey D.; Valdez, Maximo M.

    2005-10-01

    This report began with a Laboratory-Directed Research and Development (LDRD) project to improve Sandia National Laboratories multidisciplinary capabilities in energy systems analysis. The aim is to understand how various electricity generating options can best serve needs in the United States. The initial product is documented in a series of white papers that span a broad range of topics, including the successes and failures of past modeling studies, sustainability, oil dependence, energy security, and nuclear power. Summaries of these projects are included here. These projects have provided a background and discussion framework for the Energy Systems Analysis LDRD team to carry out an inter-comparison of many of the commonly available electric power sources in present use, comparisons of those options, and efforts needed to realize progress towards those options. A computer aid has been developed to compare various options based on cost and other attributes such as technological, social, and policy constraints. The Energy Systems Analysis team has developed a multi-criteria framework that will allow comparison of energy options with a set of metrics that can be used across all technologies. This report discusses several evaluation techniques and introduces the set of criteria developed for this LDRD.

  16. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  17. Status of Monte-Carlo Event Generators

    SciTech Connect (OSTI)

    Hoeche, Stefan; /SLAC

    2011-08-11

    Recent progress on general-purpose Monte-Carlo event generators is reviewed with emphasis on the simulation of hard QCD processes and subsequent parton cascades. Describing full final states of high-energy particle collisions in contemporary experiments is an intricate task. Hundreds of particles are typically produced, and the reactions involve both large and small momentum transfer. The high-dimensional phase space makes an exact solution of the problem impossible. Instead, one typically resorts to regarding events as factorized into different steps, ordered descending in the mass scales or invariant momentum transfers which are involved. In this picture, a hard interaction, described through fixed-order perturbation theory, is followed by multiple Bremsstrahlung emissions off initial- and final-state and, finally, by the hadronization process, which binds QCD partons into color-neutral hadrons. Each of these steps can be treated independently, which is the basic concept inherent to general-purpose event generators. Their development is nowadays often focused on an improved description of radiative corrections to hard processes through perturbative QCD. In this context, the concept of jets is introduced, which allows to relate sprays of hadronic particles in detectors to the partons in perturbation theory. In this talk, we briefly review recent progress on perturbative QCD in event generation. The main focus lies on the general-purpose Monte-Carlo programs HERWIG, PYTHIA and SHERPA, which will be the workhorses for LHC phenomenology. A detailed description of the physics models included in these generators can be found in [8]. We also discuss matrix-element generators, which provide the parton-level input for general-purpose Monte Carlo.

  18. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    SciTech Connect (OSTI)

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    SECTION 01000SUMMARY OF WORK PART 1GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractors responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

  19. New compact hohlraum configuration research at the 1.7 MA Z-pinch generator

    SciTech Connect (OSTI)

    Kantsyrev, V. L. Shrestha, I. K.; Esaulov, A. A.; Safronova, A. S.; Shlyaptseva, V. V.; Osborne, G. C.; Astanovitsky, A. L.; Weller, M. E.; Stafford, A.; Schultz, K. A.; Cooper, M. C.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.; Cuneo, M. E.; Jones, B.; Vesey, R. A.

    2014-12-15

    A new compact Z-pinch x-ray hohlraum design with parallel-driven x-ray sources was experimentally demonstrated in a full configuration with a central target and tailored shine shields (to provide a symmetric temperature distribution on the target) at the 1.7 MA Zebra generator. This presentation reports on the joint success of two independent lines of research. One of these was the development of new sources planar wire arrays (PWAs). PWAs turned out to be a prolific radiator. Another success was the drastic improvement in energy efficiency of pulsed-power systems, such as the Load Current Multiplier (LCM). The Zebra/LCM generator almost doubled the plasma load current to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum design for ICF, as jointly proposed by SNL and UNR. Good agreement between simulated and measured radiation temperature of the central target is shown. Experimental comparison of PWAs with planar foil liners (PFL) - another viable alternative to wire array loads at multi-MA generators show promising data. Results of research at the University of Nevada Reno allowed for the study of hohlraum coupling physics at University-scale generators. The advantages of new hohlraum design applications for multi-MA facilities with W or Au double PWAs or PFL x-ray sources are discussed.

  20. EA-249-B Exelon Generation Company LLC | Department of Energy

    Energy Savers [EERE]

    9-B Exelon Generation Company LLC EA-249-B Exelon Generation Company LLC Order authorizing Exelon Generation Company LLC to export electric energy to Canada. PDF icon EA-249-B...