National Library of Energy BETA

Sample records for monterey laurel yard

  1. Laurel Mountain | Open Energy Information

    Open Energy Info (EERE)

    Laurel Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner AES Corp. Developer AES Corp. Energy Purchaser Merchant Location Belington...

  2. Solar Power Generates Big Savings in Salinas, California

    Broader source: Energy.gov [DOE]

    A new solar panel array at Monterey County's Laurel Yard Complex is expected to save the county thousands of dollars a year in energy costs.

  3. Recovery Act | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, DBA Sandbar. Solar Power Generates Big Savings in Salinas, California A new solar panel array at Monterey County's Laurel Yard Complex is expected to save the county...

  4. QER- Comment of Laurel Greenberg

    Broader source: Energy.gov [DOE]

    To the Energy Review Task Force, I am a resident of Boston and also have property in Cummington, Mass. I am commenting specifically on a proposed gas pipeline by Kinder Morgan through the state of Massachusetts, but also generically on energy policy in New England. I am against building another gas pipeline in Massachusetts. The environmental and ecological risk of running a high pressure gas pipeline through conservation land, pristine nature, important water reservoirs, and residents farms and properties is great, and not where we as stewards of the earth should be putting our efforts. We should heed the findings that climate change is upon us and to the recommendations that we must curtail global warming emissions (like methane) and promote and support renewable energy. We should pay attention to recent independent findings that hydraulic fracturing has serious environmental problems, contributes to global warming, is harming water supplies, causes earthquakes, and is not a safe, secure, renewable method of obtaining energy. In summary, as leaders in environmental policy, we in New England should not be encouraging the production of fracked gas by building a conduit for that gas through our states. Laurel Greenberg

  5. Monterey County, California: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    BioJet Corporation Energy Generation Facilities in Monterey County, California Marina Landfill Gas Biomass Facility Monterey Regional Water Cogen Facility Biomass Facility...

  6. CXD 4601, Line Yard Fence Project (4601)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Line Yard Fence Project (4601) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to install fencing around the Old Line Yard to provide protected...

  7. CX-004502: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficiency and Conservation Block Grant: Installation of Photovoltaic System to Serve County of Monterey Laurel Yard Facilities (Activity 1)CX(s) Applied: B5.1Date: 11/19/2010Location(s): County of Monterey, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  8. DOE Tour of Zero Floorplans: Laurel Gardens #794 by Habitat for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laurel Gardens 794 by Habitat for Humanity South Sarasota County DOE Tour of Zero Floorplans: Laurel Gardens 794 by Habitat for Humanity South Sarasota County DOE Tour of Zero...

  9. DOE Tour of Zero Floorplans: Laurel Gardens #794 by Habitat for Humanity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Sarasota County | Department of Energy Laurel Gardens #794 by Habitat for Humanity South Sarasota County DOE Tour of Zero Floorplans: Laurel Gardens #794 by Habitat for Humanity South Sarasota County DOE Tour of Zero Floorplans: Laurel Gardens #794 by Habitat for Humanity South Sarasota County

  10. Microsoft PowerPoint - AAVP.ASTM.Monterey..ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Science Team Meeting Hyatt Regency Monterey Monterey, CA Rickey Petty March 29 th , 2007 ARM Aerial Vehicle Program (AAVP) ARM-UAV conducted 12 major field campaigns Field Campaigns to date: Fall 1993, Edwards AFB, CA Spring 1994, Northern OK Fall 1995, Northern OK Spring 1996, Northern OK Fall 1996, Northern OK Fall 1997, Northern OK Spring 1999, PMRF Kauai, HI Summer 1999, Monterey, CA Winter 2000, Northern OK Fall 2002, Northern OK Fall 2004, North Slope, AK Winter 2006, Darwin, Australia

  11. Monterey Park, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Monterey Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0625106, -118.1228476 Show Map Loading map......

  12. APPALACHIAN STATE UNIVERSITY MOUNTAIN LAUREL HOME Project Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APPALACHIAN STATE UNIVERSITY MOUNTAIN LAUREL HOME Project Summary Our design process started with an exciting partnership with Dan Ryan Homes, a national production homebuilder with regional headquarters in Raleigh. We wanted to design a single family residence that would not only be sustainable and zero-ready, but livable and marketable as well. Our goal was to find a balance between these three directions. Relevance of Project to the Goals of the Competition We want to inspire a progressive

  13. philadelphia navy yard | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficient Buildings Hub at the Philadelphia Navy Yard (managed by Penn State) The Energy Efficient Buildings Hub (EEB Hub) was established as an Energy-Regional Innovation Cluster (E-RIC) on February 1, 2011 with funding from the U.S. Department of Energy (DOE), the Economic Development Administration (EDA), the National Institute of Standards and Technology (NIST), the Small Business Administration (SBA), and the Commonwealth of Pennsylvania. More than 90 percent of the Federal funding

  14. UESC Case Study: Philadelphia Navy Yard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study: Philadelphia Navy Yard UESC Case Study: Philadelphia Navy Yard Presentation-given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting-features a utility energy services contract (UESC) case study concerning the Philadelphia Navy Yard. PDF icon fupwg_fall11_wade.pdf More Documents & Publications Guide to Government Witnessing and Review of Measurement and Verification Activities M&V Guidelines: Measurement and Verification for Federal Energy Projects

  15. Porosity reduction in Monterey Formation, California

    SciTech Connect (OSTI)

    Compton, J.S.

    1987-05-01

    Porosity and grain density were determined for different lithologies from throughout a 1.2-km thick section of the Monterey and Sisquoc formations in the Santa Maria basin area, California. Porosity reduction by physical and chemical compaction in the predominantly siliceous sediment is controlled largely by the bulk sediment composition and silica phase transformations. Physical compaction of sediment grains from increasing overburden pressure is responsible for most of the gradual porosity reduction with increasing burial depth in opal-A siliceous ooze and diatomite. The porous, incompressible diatom frustule maintains a high porosity relative to clayey and calcareous sediment. Therefore, a positive correlation exists between porosity and biogenic silica (diatom) content of the sediment. During the opal-A to opal-CT silica phase transformation, solution of the porous diatom frustule and precipitation of cryptocrystalline opal-CT results in a porosity reduction that roughly correlates with the biogenic silica content of the sediment. Local porosity reduction occurs in pore-filling dolomite and chert nodules. Dry bulk density as well as porosity reduction tend to increase with sediment depth. Dolomite and organic matter have the most significant influence on the bulk density because of their respective high and low density. The maximum burial depth of the uplifted and eroded section is estimated by overlapping the porosity-depth relation of average deep-sea siliceous ooze.

  16. Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—provides information on the Philadelphia Navy Yard's utility energy services contract (UESC) project with Philadelphia Gas Works (PGW).

  17. DOE - Office of Legacy Management -- Philadelphia Navy Yard - PA 08

    Office of Legacy Management (LM)

    Philadelphia Navy Yard - PA 08 FUSRAP Considered Sites Site: PHILADELPHIA NAVY YARD (PA.08) Eliminated from further consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Philadelphia , Pennsylvania PA.08-1 Evaluation Year: 1987 PA.08-1 Site Operations: Abelson's S-50 thermal diffusion pilot plant was built and operated on this facility in 1944 and large quantities of uranium hexafluoride were processed in 1945. PA.08-1 Site Disposition:

  18. Seismic expressions of Monterey Formation diagenesis: examples from offshore California

    SciTech Connect (OSTI)

    Roy, M.B.

    1988-03-01

    Diagenesis of the diatomaceous rocks in the Monterey Formation in California coastal and offshore basins involves changes from amorphous biogenic silica to a stable crystalline quartz facies. In the intermediate stage, the transformation undergoes passage from the Opal-A to the Opal-CT phase. Associated with this diagenetic process is a marked increase in bulk densities between the different silica phases, owing to loss of porosity from compaction and solution recrystallization caused by increase in burial load and other physical factors. The sharp density contrast between the silica phases is manifested by an acoustic impedance boundary that may be expressed on seismic records. This seismic event can be distinct and independent of structural configuration, and in many places cuts through stratigraphic boundaries. Several examples of seismic records from offshore California demonstrate the diagenetically caused reflection cutting through Monterey and post-Monterey formations. Current and future exploration efforts in offshore California will continue to center on the widespread Monterey Formation. In addition to being the main source rock, the Monterey is also the reservoir rock. Recent discoveries indicate that oil production is mainly from the highly permeable, fractured, silica-rich sections. It is therefore important to recognize the diagenetic boundaries on seismic records and to delineate the more brittle quartz-rich facies where the reservoir quality is expected to be better than the intermediate Opal-A or Opal-CT facies. Furthermore, these boundaries could also provide good diagenetic traps off the flanks of structures where updip unaltered impermeable rocks hinder fluid migration.

  19. DOE Tour of Zero: Laurel Gardens #794 by Habitat for Humanity South

    Energy Savers [EERE]

    Sarasota County | Department of Energy Laurel Gardens #794 by Habitat for Humanity South Sarasota County DOE Tour of Zero: Laurel Gardens #794 by Habitat for Humanity South Sarasota County 1 of 10 Habitat for Humanity South Sarasota County built this 1,290-square-foot home in Nokomis, Florida, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 10 Even without solar panels, the energy-efficient features of these Habitat for Humanity homes

  20. DOE Tour of Zero: Laurel Gardens #794 by Habitat for Humanity South

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sarasota County | Department of Energy Laurel Gardens #794 by Habitat for Humanity South Sarasota County DOE Tour of Zero: Laurel Gardens #794 by Habitat for Humanity South Sarasota County Addthis 1 of 10 Habitat for Humanity South Sarasota County built this 1,290-square-foot home in Nokomis, Florida, to the performance criteria of the U.S. Department of Energy Zero Energy Ready Home (ZERH) program. 2 of 10 Even without solar panels, the energy-efficient features of these Habitat for

  1. Proceedings of the Monterey Containment Symposium, Monterey, California, August 26-28, 1981. Volume 1

    SciTech Connect (OSTI)

    Hudson, B.C.; Jones, E.M.; Keller, C.E.; Smith, C.W.

    1983-02-01

    Since the Atmospheric Test Ban Treaty was signed in 1963, the United States has conducted all nuclear weapons tests underground. To meet US treaty responsibilities and to ensure public safety, the containment community must prevent any release of radioactive gases to the atmosphere. In the past two decades we have gained considerable insight into the scientific and engineering requirements for complete containment, but the papers and discussions at the Monterey Symposium indicate that a great deal remains to be done. Among papers included here, those dealing with mature topics will serve as reviews and introductions for new workers in the field. Others, representing first looks at new areas, contain more speculative material. Active research topics include propagation of stress waves in rocks, formation and decay of residual hoop stresses around a cavity, hydrofracture out of a cavity, formation of chimneys, and geologic and geophysical investigations of the Nevada Test Site. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  2. An update on corrosion monitoring in cylinder storage yards

    SciTech Connect (OSTI)

    Henson, H.M.; Newman, V.S.; Frazier, J.L.

    1991-12-31

    Depleted uranium, from US uranium isotope enrichment activities, is stored in the form of solid uranium hexafluoride (UF{sub 6}) in A285 and A516 steel cylinders designed and manufactured to ASME Boiler and Pressure Vessel Code criteria. In general, storage facilities are open areas adjacent to the enrichment plants where the cylinders are exposed to weather. This paper describes the Oak Ridge program to determine the general corrosion behavior of UF{sub 6} cylinders, to determine cylinder yard conditions which are likely to affect long term storage of this material, and to assess cylinder storage yards against these criteria. This program is targeted at conditions specific to the Oak Ridge cylinder yards. Based on (a) determination of the current cylinder yard conditions, (b) determination of rusting behavior in regions of the cylinders showing accelerated attack, (c) monitoring of corrosion rates through periodic measurement of test coupons placed within the cylinder yards, and (d) establishment of a computer base to incorporate and retain these data, the technical division is working with the enrichment sites to implement an upgraded system for storage of this material until such time as it is used or converted.

  3. Y-12 old salvage yard scrap metal characterization study

    SciTech Connect (OSTI)

    Anderson, L.M.; Melton, S.G.; Shaw, S.S.

    1993-11-01

    The purpose of the Y-12 Old Salvage Yard scrap metal Characterization Study is to make conservative estimates of the quantities of total uranium and the wt % {sup 235}U contained in scrap metal. The original project scope included estimates of thorium, but due to the insignificant quantities found in the yards, thorium was excluded from further analysis. Metal in three of the four Y-12 scrap metal yards were characterized. The scrap metal yard east of the PIDAS fence is managed by the Environmental Restoration Program and therefore was not included in this study. For all Y-12 Plant scrap metal shipments, Waste Transportation, Storage, and Disposal (WTSD) personnel must complete a Request for Authorization to Ship Nuclear Materials, UCN-16409, which requires the grams of total uranium, the wt % {sup 235}U, and the grams of {sup 235}U contained in the shipment. This information is necessary to ensure compliance with Department of Transportation regulations, as well as to ensure that the receiving facility is adhering to its operating license. This characterization study was designed to provide a technical basis for determining these necessary radioactive quantities.

  4. Silica diagenesis in Monterey Formation: controls and application

    SciTech Connect (OSTI)

    Kablanow, R.I. II

    1987-05-01

    The factors controlling diagenesis of biogenic silica (opal-A to opal-CT to quartz) in the Monterey Formation of California has been an ongoing subject of study. The accepted concept proposes that a high detrital content inhibits the opal-A to opal-CT reaction, whereas it accelerates the opal-CT to quartz reaction. Others have suggested that clay minerals directly influence the rate of silica transformation by the adsorption of silica from solution. It is proposed that the primary control on silica diagenesis is the thermal regime of the basin. Important variables which influence the temperature development include time, sediment accumulation rate, burial depth, porosity, thermal conductivity, temperature of silica phase change, and heat flow. The Miocene Monterey Formation had fairly rapid sedimentation rates which produced a thick section of fine-grained sediments (up to 13,000 ft, 4 km, in the Salinas basin). As these sediments underwent progressive burial, both compaction and silica transformation reduced porosity, resulting in an increase in thermal conductivity. To simulate the thermal, depositional, and diagenetic events, detailed thermal models were used. These models clearly reflect the difference in the geologic history observed between the Huasna, Pismo, and Salinas basins. The thermal models used in this study strongly confirm that silica diagenesis is primarily dependent on the temperature structure of a basin and that any catalytic influence which detrital minerals may have on silica diagenesis is a second-order effect and does not alter the regional reaction boundaries. These models can also be used as powerful tools in hydrocarbon exploration by providing a clearer picture of the thermal development of the basin.

  5. DOE - Office of Legacy Management -- Mare Island Navy Yard - CA 0-01

    Office of Legacy Management (LM)

    Mare Island Navy Yard - CA 0-01 FUSRAP Considered Sites Site: MARE ISLAND NAVY YARD (CA.0-01 ) Eliminated from consideration under FUSRAP - Referred to DoD Designated Name: Not Designated Alternate Name: None Location: Mare Island , California CA.0-01-2 Evaluation Year: 1989 CA.0-01-1 Site Operations: Naval yard and shipping station. CA.0-01-2 Site Disposition: Eliminated - Referred to DOD CA.0-01-1 CA.0-01-2 Radioactive Materials Handled: None Indicated Primary Radioactive Materials Handled:

  6. Artificial lift with coiled tubing for flow testing the Monterey formation, offshore California

    SciTech Connect (OSTI)

    Peavy, M.A.; Fahel, R.A. )

    1991-05-01

    This paper provides a technical comparison of jet-pump and nitrogen lift during the drillstem tests (DST's) of a low-gravity, high-viscosity crude on a semisubmersible drilling vessel. Eight DST testing sequences are presented to demonstrate that jet-pump-lift operations are better suited than nitrogen-lift techniques for obtaining reservoir data during Monterey DST's.

  7. Microsoft PowerPoint - 01_Schmid_AWG_Monterey_Intro.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STM, Monterey, CA Aerosol Working Group Breakout Session March 26, 2007 Beat Schmid AWG PIs (as of December 2006) AWG Instruments * Raman Lidar * Raman Lidar * Micropulse Lidars * Aerosol Observation Systems * Aerosol Observation Systems - scattering, absorption, number, size distribution, hygroscopicity, CCN, composition (major ions). yg p y, , p ( j ) * In situ Aerosol Profile (Cessna) - scattering, absorption, number, hygroscopicity, CO 2 g, p , , yg p y, 2 * Radiometers: - MFRSR, NIMFR, RSS,

  8. EA-1876: Pennsylvania State Energy Program’s Conergy Navy Yard Solar Project, Philadelphia, Pennsylvania

    Broader source: Energy.gov [DOE]

    Conergy Projects, Inc. (Conergy) proposes to construct and operate a 1.251 megawatt (MW) solar photovoltaic (PV) facility at the former Navy Yard site in south Philadelphia in Pennsylvania’s Philadelphia County to provide up to 1,596 MW hours of electricity per year, feeding directly into the distribution grid.

  9. Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1996-07-01

    The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.

  10. Implications from a study of the timing of oil entrapment in Monterey siliceous shales, Lost Hills, San Joaquin Valley, California

    SciTech Connect (OSTI)

    Julander, D.R. )

    1992-01-01

    The oil and gas-rich upper Miocene siliceous shales of the Monterey Group are the primary development target in the Lost Hills Oil Field, San Joaquin Valley, California. As a result of diagenesis, the siliceous shales can be subdivided by opal phase into three sections (from shallow to deep): the Opal-A diatomites which are rich in oil saturation; the Opal-CT porcellanites which are predominantly wet but include pockets of moderate oil saturation; and the Quartz cherts and porcellanites which in some places are highly oil saturated immediately below the Opal CT section. Productivity trends in each of the three sections have been established through drilling and production testing, but a predictive model was not available until a study of the timing of oil entrapment at Lost Hills was recently completed. The study included an analysis of the depositional history of the siliceous shales and timing of: (1) structural growth of the Lost Hills fold, (2) source-rock maturation, and (3) development of the opal-phase segregation of the Monterey shales. The study led to enhanced understanding of the known oil saturation and production trends in the three opal-phase sections and yielded a predictive model that is being used to identify areas in the field with remedial or delineation potential. The study also produced evidence of fold axis rotation during the Pliocene and Pleistocene that helps explain differences in fracture orientations within the Monterey shales.

  11. Closure Report for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-08-01

    Corrective Action Unit (CAU) 166 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Storage Yards and Contaminated Materials' and consists of the following seven Corrective Action Sites (CASs), located in Areas 2, 3, 5, and 18 of the Nevada Test Site: CAS 02-42-01, Condo Release Storage Yd - North; CAS 02-42-02, Condo Release Storage Yd - South; CAS 02-99-10, D-38 Storage Area; CAS 03-42-01, Conditional Release Storage Yard; CAS 05-19-02, Contaminated Soil and Drum; CAS 18-01-01, Aboveground Storage Tank; and CAS 18-99-03, Wax Piles/Oil Stain. Closure activities were conducted from March to July 2009 according to the FF ACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 166 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2007b). The corrective action alternatives included No Further Action and Clean Closure. Closure activities are summarized. CAU 166, Storage Yards and Contaminated Materials, consists of seven CASs in Areas 2, 3, 5, and 18 of the NTS. The closure alternatives included No Further Action and Clean Closure. This CR provides a summary of completed closure activities, documentation of waste disposal, and confirmation that remediation goals were met. The following site closure activities were performed at CAU 166 as documented in this CR: (1) At CAS 02-99-10, D-38 Storage Area, approximately 40 gal of lead shot were removed and are currently pending treatment and disposal as MW, and approximately 50 small pieces of DU were removed and disposed as LLW. (2) At CAS 03-42-01, Conditional Release Storage Yard, approximately 7.5 yd{sup 3} of soil impacted with lead and Am-241 were removed and disposed as LLW. As a BMP, approximately 22 ft{sup 3} of asbestos tile were removed from a portable building and disposed as ALLW, approximately 55 gal of oil were drained from accumulators and are currently pending disposal as HW, the portable building was removed and disposed as LLW, and accumulators, gas cylinders, and associated debris were removed and are currently pending treatment and disposal as MW. (3) At CAS 05-19-02, Contaminated Soil and Drum, as a BMP, an empty drum was removed and disposed as sanitary waste. (4) At CAS 18-01-01, Aboveground Storage Tank, approximately 165 gal of lead-impacted liquid were removed and are currently pending disposal as HW, and approximately 10 gal of lead shot and 6 yd{sup 3} of wax embedded with lead shot were removed and are currently pending treatment and disposal as MW. As a BMP, approximately 0.5 yd{sup 3} of wax were removed and disposed as hydrocarbon waste, approximately 55 gal of liquid were removed and disposed as sanitary waste, and two metal containers were grouted in place. (5) At CAS 18-99-03, Wax Piles/Oil Stain, no further action was required; however, as a BMP, approximately l.5 yd{sup 3} of wax were removed and disposed as hydrocarbon waste, and one metal container was grouted in place.

  12. HRTEM of microcrystalline opal in chert and porcelanite from the Monterey Formation, California

    SciTech Connect (OSTI)

    Cady, S.L.; Wenk, H.R.; Downing, K.H.

    1996-11-01

    Microcrystalline opal was investigated using low-dose transmission electron microscopy (TEM) methods to identify microstructural characteristics and possible phase-transformation mechanisms that accommodate silica diagenesis. High-resolution TEM (HRTEM) revealed that microcrystalline opal in opal-CT chert (>90 wt% silica) and opal-CT porcelanite (50-90 wt% silica) from the Miocene Monterey Formation of California displays various amounts of structural disorder and coherent and incoherent lamellar intergrowths. Species of microfibrous opal identified by HRTEM in early-formed opal-CT chert include length-slow opal-C and unidimensionally disordered length-slow opal-CT ({open_quotes}lussatite{close_quotes}). These fibers often display a microstructure characterized by an aperiodic distribution of highly strained domains that separate ordered domains located at discrete positions along the direction of the fiber axes. Microfibrous opal occurs as several types of fiber-aggregation forms. TEM revealed that the siliceous matrix in later-formed opal-CT porcelanite consists of equidimensional, nanometer-size opal-CT crystallites and lussatite fibers. Pseudo-orthorhombic tridymite (PO-2) was identified by HRTEM in one sample of opal-CT porcelanite. Burial diagenesis of chert and porcelanite results in the precipitation of opal-C and the epitaxial growth of opal-C domains on opal-CT substrates. Diagenetic maturation of lussatite was identified by TEM in banded opal-CT-quartz chert to occur as a result of solid-state ordering. The primary diagenetic silica phase transformations between noncrystalline opal, microcrystalline opal, and quartz occur predominantly by a series of dissolution-precipitation reactions. However, TEM showed that in banded opal-CT-quartz chert, the epitaxial growth of quartz on microfibrous opal enhances the rate of silica diagenesis.

  13. Laurel | Open Energy Information

    Open Energy Info (EERE)

    RPM Access Wind Development Energy Purchaser MidAmerican Energy Location Haverhill IA Coordinates 41.89096884, -92.97214508 Show Map Loading map... "minzoom":false,"mapp...

  14. Biogenic opal germanium/silicon ratios used to monitor upwelling intensity in Newport Lagoon section, Monterey Formation, California

    SciTech Connect (OSTI)

    Murnane, R.J.

    1986-04-01

    Empirical evidence and modeling of geochemical cycles of silicon (Si) and germanium (Ge) suggest that opal Ge/Si ratios record water Ge/Si ratios although some fractionation of germanium from silicon occurs during biogenic opal formation. Modeling results also suggest that opal Ge/Si ratios could record changes in upwelling intensity. In today's oceans, areas of high productivity associated with upwelling show relatively elevated surface-water nutrient concentrations, whereas areas of low productivity with restricted upwelling exhibit low surface-water nutrient concentrations. Fractionation of germanium from silicon during biogenic opal formation would cause the surface ocean's Ge/Si ratio to increase as surface-water nutrient concentrations are lowered. Diatomites from the Newport Lagoon section of the Monterey Formation were analyzed to test the hypothesis that biogenic opal Ge/Si ratios could be used to trace upwelling intensity. Diatom assemblages of the Monterey Formation vary with upwelling intensity over a time scale of millions of years. Samples collected from the middle and late Miocene have high ratios (up to 8 x 10/sup -7/) when diatom assemblages indicate relatively weak upwelling, and low ratios (less than 6 x 10/sup -7/) when diatom assemblages indicate relatively strong upwelling. These ratios agree with modeling predictions. Opal Ge/Si ratios may also record upwelling fluctuations on much shorter times scales. Adjacent, centimeter-scale, lighter and darker layers record past variations in biogenic and terrigenous inputs to ocean-bottom sediments. Opal Ge/Si ratios may indicate whether the darker layers result from a relative decrease in surface-water productivity in response to a reduction in upwelling intensity, or only from a relative increase in terrigenous detrital inputs.

  15. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect (OSTI)

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  16. Closure Report for Corrective Action Unit 481: Area 12 T-Tunnel Conditional Release Storage Yard, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-11-01

    Corrective Action Unit (CAU) 481 is identified in the Federal Facility Agreement and Consent Order (FFACO) as Area 12 T-Tunnel Conditional Release Storage Yard. CAU 481 is located in Area 12 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. This CAU consists of one Corrective Action Site (CAS), CAS 12-42-05, Housekeeping Waste. CAU 481 closure activities were conducted by the Defense Threat Reduction Agency from August 2007 through July 2008 according to the FFACO and Revision 3 of the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites. Closure activities included removal and disposal of construction debris and low-level waste. Drained fluids, steel, and lead was recycled as appropriate. Waste generated during closure activities was appropriately managed and disposed.

  17. Revised RCRA closure plan for the Interim Drum Yard (S-030) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Smith, C.M.

    1994-09-01

    The Interim Drum Yard (IDY) facility is a containerized waste storage area located in the Y-12 exclusion area. It was used to store waste materials which are regulated by RCRA (Resource Conservation and Recovery Act); uranyl nitrate solutions were also stored there. The closure plan outlines the actions required to achieve closure of IDY and is being submitted in accordance with TN Rule 1200-1-11.05(7) and 40 CFR 265.110.

  18. Laurel Hill | Open Energy Information

    Open Energy Info (EERE)

    W 69,000,000,000 mW 0.069 GW Number of Units 30 Commercial Online Date 2012 Wind Turbine Manufacturer Siemens References AWEA 2012 Market Report1 Loading map......

  19. CHANGING THE LANDSCAPE--LOW-TECH SOLUTIONS TO THE PADUCAH SCRAP METAL REMOVAL PROJECT ARE PROVIDING SAFE, COST-EFFECTIVE REMEDIATION OF CONTAMINATED SCRAP YARDS

    SciTech Connect (OSTI)

    Watson, Dan; Eyman, Jeff

    2003-02-27

    Between 1974 and 1983, contaminated equipment was removed from the Paducah Gaseous Diffusion Plant (PGDP) process buildings as part of an enrichment process upgrade program. The upgrades consisted of the dismantlement, removal, and on-site storage of contaminated equipment, cell components, and scrap material (e.g., metal) from the cascade facilities. Scrap metal including other materials (e.g., drums, obsolete equipment) not related to this upgrade program have thus far accumulated in nine contiguous radiologically-contaminated and non-contaminated scrap yards covering 1.05E5 m2 (26 acres) located in the northwestern portion of the PGDP. This paper presents the sequencing of field operations and methods used to achieve the safe removal and disposition of over 47,000 tonnes (53,000 tons) of metal and miscellaneous items contained in these yards. The methods of accomplishment consist of mobilization, performing nuclear criticality safety evaluations, moving scrap metal to ground level, inspection and segregation, sampling and characterization, scrap metal sizing, packaging and disposal, and finally demobilization. Preventing the intermingling of characteristically hazardous and non-hazardous wastes promotes waste minimization, allowing for the metal and materials to be segregated into 13 separate waste streams. Low-tech solutions such as using heavy equipment to retrieve, size, and package scrap materials in conjunction with thorough planning that integrates safe work practices, commitment to teamwork, and incorporating lessons learned ensures that field operations will be conducted efficiently and safely.

  20. SURVEY REPORT FOR THE CHARACTERIZATION OF THE FIVE TANKS LOCATED NEAR THE OLD SALVAGE YARD AT THE Y-12 NATIONAL SECURITY COMPLEX, OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    Rollow, Kathy

    2012-08-23

    This summary report presents analytical results, radiological survey data, and other data/information for disposition planning of the five tanks located west of the Old Salvage Yard (OSY) at the Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. Field personnel from Oak Ridge Associated Universities (ORAU) and URS?CH2M Oak Ridge LLC completed data collection in May 2012 per the project-specific plan (PSP) (ORAU 2012). Deviations from the PSP are addressed in the body of this report. Characterization activities included three data collection modes: visual inspection, radiological survey, and volumetric sampling/analysis. This report includes the final validated dataset and updates associated with the Tank 2 residues originally thought to be a biological bloom (e.g., slime mold) but ultimately identified as iron sulfate crystals.

  1. An Advanced Fracture Characterization and Well Path Navigation System for Effective Re-Development and Enhancement of Ultimate Recovery from the Complex Monterey Reservoir of South Ellwood Field, Offshore California

    SciTech Connect (OSTI)

    Steve Horner

    2006-01-31

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the ninth quarter of Budget Period II.

  2. AN ADVANCED FRACTURE CHARACTERIZATION AND WELL PATH NAVIGATION SYSTEM FOR EFFECTIVE RE-DEVELOPMENT AND ENHANCEMENT OF ULTIMATE RECOVERY FROM THE COMPLEX MONTEREY RESERVOIR OF SOUTH ELLWOOD FIELD, OFFSHORE CALIFORNIA

    SciTech Connect (OSTI)

    Steve Horner

    2005-08-01

    Venoco Inc, intends to re-develop the Monterey Formation, a Class III basin reservoir, at South Ellwood Field, Offshore Santa Barbara, California. Well productivity in this field varies significantly. Cumulative Monterey production for individual wells has ranged from 260 STB to 8,700,000 STB. Productivity is primarily affected by how well the well path connects with the local fracture system and the degree of aquifer support. Cumulative oil recovery to date is a small percentage of the original oil in place. To embark upon successful re-development and to optimize reservoir management, Venoco intends to investigate, map and characterize field fracture patterns and the reservoir conduit system. State of the art borehole imaging technologies including FMI, dipole sonic and cross-well seismic, interference tests and production logs will be employed to characterize fractures and micro faults. These data along with the existing database will be used for construction of a novel geologic model of the fracture network. Development of an innovative fracture network reservoir simulator is proposed to monitor and manage the aquifer's role in pressure maintenance and water production. The new fracture simulation model will be used for both planning optimal paths for new wells and improving ultimate recovery. In the second phase of this project, the model will be used for the design of a pilot program for downhole water re-injection into the aquifer simultaneously with oil production. Downhole water separation units attached to electric submersible pumps will be used to minimize surface fluid handling thereby improving recoveries per well and field economics while maintaining aquifer support. In cooperation with the DOE, results of the field studies as well as the new models developed and the fracture database will be shared with other operators. Numerous fields producing from the Monterey and analogous fractured reservoirs both onshore and offshore will benefit from the methodologies developed in this project. This report presents a summary of all technical work conducted during the seventh quarter of Budget Period II.

  3. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO{sub 2} Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Michael F. Morea

    1997-03-14

    The Buena Vista Hills field is located about 25 miles southwest of Bakersfield, in Kern County, California, about two miles north of the city of Taft, and five miles south of the Elk Hills field. The Antelope Shale zone was discovered at the Buena Vista Hills field in 1952, and has since been under primary production. Little research was done to improve the completion techniques during the development phase in the 1950s, so most of the wells are completed with about 1000 ft of slotted liner. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization of the first phase of the project will be performed using data collected in the pilot pattern wells. This is the first annual report of the project. It covers the period February 12, 1996 to February 11, 1997. During this period the Chevron Murvale 653Z-26B well was drilled in Section 26-T31S/R23E in the Buena Vista Hills field, Kern County, California. The Monterey Formation equivalent Brown and Antelope Shales were continuously cored, the zone was logged with several different kinds of wireline logs, and the well was cased to a total depth of 4907 ft. Core recovery was 99.5%. Core analyses that have been performed include Dean Stark porosity, permeability and fluid saturations, field wettability, anelastic strain recovery, spectral core gamma, profile permeametry, and photographic imaging. Wireline log analysis includes mineral-based error minimization (ELAN), NMR T2 processing, and dipole shear wave anisotropy. A shear wave vertical seismic profile was acquired after casing was set and processing is nearly complete.

  4. An HRTEM investigation of the metastable low-temperature silica phase opal-CT in cherts and porcelanites from the Monterey Formation, CA

    SciTech Connect (OSTI)

    Cady, S.L.; Wenk, H.R. )

    1992-01-01

    High resolution transmission electron microscopy (HRTEM) is used to investigate the metastable low-temperature silica phase opal-CT in cherts and porcelanites from the Miocene Monterey Formation of California. Low-dose imaging techniques developed to image highly beam sensitive proteins were used in this study and have resulted in good phase contrast images of this hydrous silica phase. Detailed X-ray powder diffraction studies of stratigraphically equivalent rocks along the Santa Barbara coast indicate that the primary d-spacing of newly formed opal-CT differs in rocks with different ratios of silica and detrital minerals. Opal-CT forms progressively later and with a smaller primary d-spacing in rocks with increasing amounts of detrital minerals. In siliceous cherts opal-CT occurs as long needles that most often form dense spherulitic fiber bundles which are randomly dispersed within the rock matrix. The random orientation of fiber bundle nucleation centers does not appear to be associated with any obvious nucleation site, unlike the length-slow opal-CT fibers known as lussatite. Opal-CT needles produce optical diffractogram patterns that are compatible with tridymite and crystobalite. Streaking in the diffraction pattern of individual needles is attributed to a high density of planar defects parallel to their length. Planar defects are not as abundant in opal-CT needles formed in detrital-rich rocks suggesting the rapid growth of opal-CT in highly siliceous environments results in a greater proportion of stacking disorder in the needles. HRTEM provides a method for investigating the development of the microstructure of opal-CT during diagenesis.

  5. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-09-29

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

  6. Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2006-06-30

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

  7. USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    George Witter; Robert Knoll; William Rehm; Thomas Williams

    2005-02-01

    This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

  8. McGrawMonterey1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    size regime (on account of the vapor depletion effect). Thus drizzle is a kinetically up-hill process and only a few lucky drops make it into the collection regime McGraw and...

  9. Corrective Action Investigation Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    David Strand

    2006-06-01

    Corrective Action Unit 166 is located in Areas 2, 3, 5, and 18 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit (CAU) 166 is comprised of the seven Corrective Action Sites (CASs) listed below: (1) 02-42-01, Cond. Release Storage Yd - North; (2) 02-42-02, Cond. Release Storage Yd - South; (3) 02-99-10, D-38 Storage Area; (4) 03-42-01, Conditional Release Storage Yard; (5) 05-19-02, Contaminated Soil and Drum; (6) 18-01-01, Aboveground Storage Tank; and (7) 18-99-03, Wax Piles/Oil Stain. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 28, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 166. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 166 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Perform field screening. (4) Collect and submit environmental samples for laboratory analysis to determine if contaminants of concern are present. (5) If contaminants of concern are present, collect additional step-out samples to define the extent of the contamination. (6) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes. This Corrective Action Investigation Plan has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection, and field work will commence following approval.

  10. Remedial Investigation Report on Bear Creek Valley Operable Unit 2 (Rust Spoil Area, Spoil Area 1, and SY-200 Yard) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text

    SciTech Connect (OSTI)

    1995-01-01

    This report on the BCV OU 2 at the Y-12 Plant, was prepared in accordance with requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) for reporting the results of a site characterization for public review. It provides the Environmental Restoration Program with information about the results of the 1993 investigation. It includes information on risk assessments that have evaluated impacts to human health and the environment. Field activities included collection of subsurface soil samples, groundwater and surface water samples, and sediments and seep at the Rust Spoil Area (RSA), SY-200 Yard, and SA-1.

  11. Laurel, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.6691159, -108.7715328 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  12. Meteorological Data Report for Laurel, Nebraska

    Open Energy Info (EERE)

    PM Meteo data report, height: 66.0 Feet Weibull Data k-parameter correction: 0.0080m Sector A- parameter Mean wind speed k- parameter Frequency Frequency Wind shear ms m...

  13. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO{sub 2} enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 12, 1996--February 11, 1997

    SciTech Connect (OSTI)

    Toronyi, R.M.

    1997-12-01

    The Buena Vista Hills field is located about 25 miles southwest of Bakersfield, in Kern County, California, about two miles north of the city of Taft, and five miles south of the Elk Hills field. The Antelope Shale zone was discovered at the Buena Vista Hills field in 1952, and has since been under primary production. Little research was done to improve the completion techniques during the development phase in the 1950s, so most of the wells are completed with about 1000 ft of slotted liner. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization of the first phase of the project will be performed using data collected in the pilot pattern wells. This is the first annual report of the project. It covers the period February 12, 1996 to February 11, 1997. During this period the Chevron Murvale 653Z-26B well was drilled in Section 26-T31S/R23E in the Buena Vista Hills field, Kern County, California. The Monterey Formation equivalent Brown and Antelope Shales were continuously cored, the zone was logged with several different kinds of wireline logs, and the well was cased to a total depth of 4907 ft. Core recovery was 99.5%. Core analyses that have been performed include Dean Stark porosity, permeability and fluid saturations, field wettability, anelastic strain recovery, spectral core gamma, profile permeametry, and photographic imaging. Wireline log analysis includes mineral-based error minimization (ELAN), NMR T2 processing, and dipole shear wave anisotropy. A shear wave vertical seismic profile was acquired after casing was set and processing is nearly complete.

  14. Environmental Management Waste Management Facility Waste Lot Profile for the K-770 Scrap Yard Soils and Miscellaneous Debris, East Tennessee Technology Park, Oak Ridge, Tennessee - EMWMF Waste Lot 4.12

    SciTech Connect (OSTI)

    Davenport M.

    2009-04-15

    Waste Lot 4.12 consists of approximately 17,500 yd{sup 3} of low-level, radioactively contaminated soil, concrete, and incidental metal and debris generated from remedial actions at the K-770 Scrap Metal Yard and Contaminated Debris Site (the K-770 Scrap Yard) at the East Tennessee Technology Park (ETTP). The excavated soil will be transported by dump truck to the Environmental Management Waste Management Facility (EMWMF). This profile provides project-specific information to demonstrate compliance with Attainment Plan for Risk/Toxicity-based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee (DOE 2001). The K-770 Scrap Yard is an approximately 36-acre storage area located southwest of the main portion of ETTP, outside the security perimeter fence in the Powerhouse Area adjacent to the Clinch River. The K-770 area was used to store radioactively contaminated or suspected contaminated materials during and previous to the K-25 Site cascade upgrading program. The waste storage facility began operation in the 1960s and is estimated to at one time contain in excess of 40,000 tons of low-level, radioactively contaminated scrap metal. Scrap metal was taken to the site when it was found to contain alpha or beta/gamma activity on the surface or if the scrap metal originated from a process building. The segregated metal debris was removed from the site as part of the K-770 Scrap Removal Action (RA) Project that was completed in fiscal year (FY) 2007 by Bechtel Jacobs Company LLC (BJC). An area of approximately 10 acres is located in EUs 29 and 31 where the scrap was originally located in the 100-year floodplain. In the process of moving the materials around and establishing segregated waste piles above the 100-year floodplain, the footprint of the site was expanded by 10-15 acres in EUs 30 and 32. The area in EUs 29 and 31 that was cleared of metallic debris in the floodplain was sown with grass. The areas in EUs 30 and 32 have some scattered vegetation but are generally open and accessible. With limited exception, all materials contained in the scrap yard have been removed and disposed at the EMWMF. Soils that underlay the original waste storage area in EUs 29 and 31 as well as soils that underlay the scrap piles in EUs 30 and 32 show substantially elevated radioactivity. In addition to soils present at the site, remaining portions of foundations/floor slabs for Bldgs. K-725, K-726, and K-736 as well as the unnamed pad at the northeast corner of the site constructed to support the sort and segregation operations at the K-770 Scrap Removal Project in 2006 and several other small, unnamed concrete pads are included in this waste lot. While many of these foundations/floor slabs will be removed because they are contaminated, some of the smaller unamed concrete pads will be removed in order to access contaminated soils that are around and under the pads and regrade the site. Appendix E contains a map showing the areas of soil and concrete pads that are expected to be excavated. Soils in the areas indicated on this map will be removed to approximately one foot below the surface. (This corresponds to the soil interval sampled and analyzed to characterize this waste lot.) Contaminants present in the soils are directly derived from metallic debris and rubbish handled by the waste storage operations, are concentrated in the top few inches, and include the predominant constituents of concern associated with the metallic waste already disposed at EMWMF. Additionally, some residual metallic debris remains embedded in the shallow soils that underlay the former debris piles. This residual metallic debris is eligible for disposal in the EMWMF WAC criteria as defined in Waste Profile for: Disposal of the Scrap Removal Project Waste Lot 65.1 East Tennessee Technology Park, Oak Ridge, Tennessee (BJC 2004a). This waste, however, has been included in Waste Lot 4.12 to conform to the more rigorous profiling requirements currently contained in Waste Acceptance Criteria Attainment Team Project Execution Plan Environmental Management Waste Management Facility, Oak Ridge Reservation, Tennessee (BJC 2008a). It comprises approximately 5% of the total mass of material that will be generated under this RA. Incidental amounts of wood and other debris items and secondary waste generated during the RA are also included in this waste lot.

  15. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former Chicago, Milwaukee, and St. Paul Rail Yard Company Site in Perry, Iowa. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Salasovich, J.; Geiger, J.; Healey, V.; Mosey, G.

    2013-03-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Former Chicago, Milwaukee & St. Paul Rail Yard Company site in Perry, Iowa, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site. This study did not assess environmental conditions at the site.

  16. Laurel Park, North Carolina: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Park, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1245734, -81.6809391 Show Map Loading map... "minzoom":false,"mappings...

  17. Microsoft Word - RSSkied_AWG_Monterey2007.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aeronet Procedure 11 yes MFRSR C1&E13 5: 415,...,869 10 1/20sec no yes yes no In situ Langley yes MFRSR USDA 5: 410,..., 860 10 1/3min no yes In situ Langley UV-MFRSR USDA 2: 332 & 368 1.65 & 2.13 1/3min no yes n/n n/n n/n In situ Langley RSS 999: 362-1070 0.44 - 3.82 1/1min no yes yes yes no no In situ Langley & Lamp 1/2weeks no 8 This table is incomplete. Missing information will be provided by co-authors. PK will appreciate references to formulas used (air mass, etc.) and to

  18. DOE ZERH Case Study: Habitat for Humanity South Sarasota, Laurel Gardens #794, Nakomis, FL

    SciTech Connect (OSTI)

    none,

    2015-09-01

    Case study of a DOE 2015 Housing Innovation Award winning affordable home in the hot-humid climate that got a HERS 51 without PV, with foam-filled masonry block walls with .75” rigid foam, furring strips, and foil-faced paper on interior walls; R-20 ocsf in roof of sealed attic, uninsulated slab, 15 SEER 8.0 HSPF heat pump walls for heating and cooling, heat pump water heater.

  19. DOE Tour of Zero: Laurel Gardens #794 by Habitat for Humanity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for their homeowners. 3 of 10 Deep overhangs, gutters, and site grading help to carry water away from the slab-on-grade foundation. A rain barrel collects some rainwater for...

  20. DOE Tour of Zero: The Laurel Gardens by Habitat for Humanity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    construction includes durable, fiber-cement siding and stucco cladding over foam-filled concrete-block walls and a raised slab foundation. 5 of 13 High-efficiency...

  1. DOE Tour of Zero: Laurel Gardens #794 by Habitat for Humanity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    requirements that help to promote healthy indoor air. 6 of 10 The hip roof design, concrete block construction, and a sealed attic all help to make the home more storm...

  2. DOE Zero Ready Home Case Study: Habitat for Humanity South Sarasota County,Laurel Gardens, Nokomis, FL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nokomis, FL DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give you superior

  3. DOE Zero Energy Ready Home Case Study: Habitat for Humanity South Sarasota, Laurel Gardens #794, Nakomis, FL

    Broader source: Energy.gov [DOE]

    Case study of a DOE 2015 Housing Innovation Award winning affordable home in the hot-humid climate that got a HERS 51 without PV, with foam-filled masonry block walls with .75” rigid foam, furring strips, and foil-faced paper on interior walls; R-20 ocsf in roof of sealed attic, uninsulated slab, 15 SEER 8.0 HSPF heat pump walls for heating and cooling, heat pump water heater.

  4. HIA 2015 DOE Zero Energy Ready Home Case Study: Habitat for Humanity South Sarasota, Laurel Gardens #794, Nakomis, FL

    Energy Savers [EERE]

    #794 Nokomis, FL DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give you superior

  5. Wave Energy Converter (WEC) Array Effects on Wave Current and Sediment Circulation: Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Jones, Craig; Magalen, Jason

    2014-09-01

    The goal s of this study were to develop tools to quantitatively characterize environments where wave energy converter ( WEC ) devices may be installed and to assess e ffects on hydrodynamics and lo cal sediment transport. A large hypothetical WEC array was investigated using wave, hydrodynamic, and sediment transport models and site - specific average and storm conditions as input. The results indicated that there were significant changes in sediment s izes adjacent to and in the lee of the WEC array due to reduced wave energy. The circulation in the lee of the array was also altered; more intense onshore currents were generated in the lee of the WECs . In general, the storm case and the average case show ed the same qualitative patterns suggesting that these trends would be maintained throughout the year. The framework developed here can be used to design more efficient arrays while minimizing impacts on nearshore environmen ts.

  6. Microsoft PowerPoint - 02_A_AWG_Monterey_ALIVE_Schmid_short.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lidar Validation Experiment (ALIVE) NASA Ames Airborne Tracking 14-channel Sun photometer (AATS-14) Sky Research J-31 Research Scanning Polarimeter (RSP) N i ti l d M t l i l Cessna 206 Navigational and Meteorological Parameters Raman Lidar Micro Pulse Lidar SGP, Sep 11-22, 2005 2005 ALIVE Operations Summary ALIVE Operations Summary * Sep 11 - 22, 2005 Sep 11 22, 2005 * 23 research flight hours * 12 flights over SGP on 8 days 12 flights over SGP on 8 days * 5 coordinated flights with C206 *

  7. Renewable Energy, Right in Your Back Yard | OpenEI Community

    Open Energy Info (EERE)

    select from "solar" or "wind" energy. Under solar, the application lets you draw your own solar panel square on the roof, input a few values (size, derating, tilt angle, Azimuth...

  8. etter, Specifications, and Survey Report: Removal of Overhead Yard Piping and Asbestos Insulation

    Office of Legacy Management (LM)

  9. Investigation of Wave Energy Converter Effects on the Nearshore Environment: A Month-Long Study in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool, SNL - SWAN, was used to perform model simulations for hourly initial wave conditio ns measured during the month of October 2009. The model was run with an array of 50 wave energy converters (WECs) and compared with model runs without WECs. Maximum changes in H s were found in the lee of the WEC array along the angles of incident wave dire ction and minimal changes were found along the western side of the model domain due to wave shadowing by land. The largest wave height reductions occurred during observed typhoon conditions and resulted in 14% decreases in H s along the Santa Cruz shoreline . Shoreline reductions in H s were 5% during s outh swell wave conditions and negligible during average monthly wave conditions.

  10. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  11. Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay CA.

    SciTech Connect (OSTI)

    Roberts, Jesse D.; Chang, Grace; Magalen, Jason; Jones, Craig

    2014-09-01

    A modified version of an indust ry standard wave modeling tool was evaluated, optimized, and utilized to investigate model sensitivity to input parameters a nd wave energy converter ( WEC ) array deployment scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that wave direction and WEC device type we r e most sensitive to the variation in the model parameters examined in this study . Generally, the changes in wave height we re the primary alteration caused by the presence of a WEC array. Specifically, W EC device type and subsequently their size directly re sult ed in wave height variations; however, it is important to utilize ongoing laboratory studies and future field tests to determine the most appropriate power matrix values for a particular WEC device and configuration in order to improve modeling results .

  12. Results of I-V Curves and Visual Inspection of PV Modules Deployed at TEP Solar Test Yard (Poster)

    SciTech Connect (OSTI)

    McNutt, P.; Wohlgemuth, J.; Miller, D.; Stoltenberg, B.

    2014-02-01

    The purpose of the PV Service Life Prediction project is to examine and report on how solar modules are holding up after being in the field for 5 or more years. This poster presents the common problems crystalline-silicon and thin-film modules exhibit, including details of modules from three manufactures that were tested January 13-16, 2014.

  13. Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage ... Monterey R. Gardiner Technology Manager Monterey.Gardiner@ee.doe.gov Fuel Cell ...

  14. DOE Zero Energy Ready Home Case Study: Habitat for Humanity South...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sarasota, Laurel Gardens 794, Nakomis, FL DOE Zero Energy Ready Home Case Study: Habitat for Humanity South Sarasota, Laurel Gardens 794, Nakomis, FL Case study of a DOE 2015 ...

  15. CX-001228: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Laurel Road Pole Relocation, Laurel Road and Rose Avenue (18/3) - Addendum to Laurel Road Pole Relocation Brown Road to Woodhill Drive (18/13-19/3)CX(s) Applied: B4.13Date: 03/08/2010Location(s): Oakley, CaliforniaOffice(s): Western Area Power Administration-Sierra Nevada Region

  16. CX-004874: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Laurel Road Pole Relocation, Laurel Road and Rose Avenue (18/3)-Addendum to 061202-Laurel Road Pole Project Relocation Brown Road to Woodhill Drive (18/13-19/3)CX(s) Applied: B4.13Date: 03/08/2010Location(s): Oakley, CaliforniaOffice(s): Western Area Power Administration-Sierra Nevada Region

  17. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Morea, Michael F.

    1999-11-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  18. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of C02 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Michael F. Morea.

    1998-04-23

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: Reservoir Matrix and Fluid Characterization; Fracture Characterization; Reservoir Modeling and Simulation; and CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  19. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    SciTech Connect (OSTI)

    Morea, Michael F.

    1999-11-08

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

  20. ADVANCED RESERVOIR CHARACTERIZATION IN THE ANTELOPE SHALE TO ESTABLISH THE VIABILITY OF CO2 ENHANCED OIL RECOVERY IN CALIFORNIA'S MONTEREY FORMATION SILICEOUS SHALES

    SciTech Connect (OSTI)

    Pasquale R. Perri

    2003-05-15

    This report describes the evaluation, design, and implementation of a DOE funded CO{sub 2} pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO{sub 2} pilot is the Belridge Diatomite. The pilot location was selected based on geologic considerations, reservoir quality and reservoir performance during the waterflood. A CO{sub 2} pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO{sub 2} utilization rate and premature CO{sub 2} breakthrough, and overall uncertainty in the unproven CO{sub 2} flood process in the San Joaquin Valley. A summary of the design and objectives of the CO{sub 2} pilot are included along with an overview of the Lost Hills geology, discussion of pilot injection and production facilities, and discussion of new wells drilled and remedial work completed prior to commencing injection. Actual CO{sub 2} injection began on August 31, 2000 and a comprehensive pilot monitoring and surveillance program has been implemented. Since the initiation of CO{sub 2} injection, the pilot has been hampered by excessive sand production in the pilot producers due to casing damage related to subsidence and exacerbated by the injected CO{sub 2}. Therefore CO{sub 2} injection was very sporadic in 2001 and 2002 and we experienced long periods of time with no CO{sub 2} injection. As a result of the continued mechanical problems, the pilot project was terminated on January 30, 2003. This report summarizes the injection and production performance and the monitoring results through December 31, 2002 including oil geochemistry, CO{sub 2} injection tracers, crosswell electromagnetic surveys, crosswell seismic, CO{sub 2} injection profiling, cased hole resistivity, tiltmetering results, and corrosion monitoring results. Although the Lost Hills CO{sub 2} pilot was not successful, the results and lessons learned presented in this report may be applicable to evaluate and design other potential San Joaquin Valley CO{sub 2} floods.

  1. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III

    SciTech Connect (OSTI)

    Perri, Pasquale R.

    2001-04-04

    This report describes the evaluation, design, and implementation of a DOE funded CO2 pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO2 pilot is the Belridge Diatomite. The pilot location was selected based on geology, reservoir quality and reservoir performance during the waterflood. A CO2 pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO2 utilization rate and premature CO2 breakthrough, and overall uncertainty in the unproven CO2 flood process in the San Joaquin Valley.

  2. CX-000253: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    California County MontereyCX(s) Applied: A9, A11, B5.1Date: 12/20/2009Location(s): Monterey County, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  3. USAJobs Search | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to both announcements . Where is this position located? Washington Navy Yard 1240 Isaac Hull Avenue Washington Navy Yard, DC 20376 Naval Reactors Mission: Provide the Nation with...

  4. North America Power Partners | Open Energy Information

    Open Energy Info (EERE)

    North America Power Partners Place: Mount Laurel, New Jersey Product: New Jersey-based demand response specialists focusing on large scale energy savings. References: North...

  5. Aclara Software | Open Energy Information

    Open Energy Info (EERE)

    Aclara Software Jump to: navigation, search Name: Aclara Software Address: 16 Laurel Avenue Place: Wellesley, Massachusetts Zip: 02481 Region: Greater Boston Area Sector:...

  6. Henderson County, North Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    East Flat Rock, North Carolina Etowah, North Carolina Flat Rock, North Carolina Fletcher, North Carolina Hendersonville, North Carolina Laurel Park, North Carolina Mills...

  7. Howard County, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Maryland Ellicott City, Maryland Jessup, Maryland North Laurel, Maryland Savage-Guilford, Maryland Retrieved from "http:en.openei.orgwindex.php?titleHowardCounty,Maryl...

  8. Henrico County, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Highland Springs, Virginia Lakeside, Virginia Laurel, Virginia Montrose, Virginia Short Pump, Virginia Tuckahoe, Virginia Wyndham, Virginia Retrieved from "http:en.openei.orgw...

  9. Beaufort County, South Carolina: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Burton, South Carolina Hilton Head Island, South Carolina Laurel Bay, South Carolina Port Royal, South Carolina Shell Point, South Carolina Yemassee, South Carolina Retrieved...

  10. Cumberland County, New Jersey: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    New Jersey Fairton, New Jersey Laurel Lake, New Jersey Millville, New Jersey Port Norris, New Jersey Rosenhayn, New Jersey Seabrook Farms, New Jersey Shiloh, New Jersey...

  11. Sarasota County, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lake Sarasota, Florida Laurel, Florida Longboat Key, Florida Nokomis, Florida North Port, Florida North Sarasota, Florida Osprey, Florida Ridge Wood Heights, Florida Sarasota...

  12. Agenda for the Derived Liquids to Hydrogen Distributed Reforming...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review This is the agenda for the working group sessions held in Laurel, Maryland...

  13. Renewable Hydrogen Production Using Sugars and Sugar Alcohols (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  14. Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  15. EA-1110: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Use of Herbicide for Vegetation Control at VHF Stations, Microwave Stations, Electrical Substations, and Pole Yards

  16. Advanced reservoir characterization in the Antelope Shale to establish the viability of CO2 enhanced oil recovery in California`s Monterey Formation siliceous shales. Annual report, February 7, 1997--February 6, 1998

    SciTech Connect (OSTI)

    Morea, M.F.

    1998-06-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO{sub 2} enhanced oil recovery project in the antelope Shale in Buena Vista Hills Field. The proposed pilot consists of four existing producers on 20 acre spacing with a new 10 acre infill well drilled as the pilot CO{sub 2} injector. Most of the reservoir characterization during Phase 1 of the project will be performed using data collected in the pilot pattern wells. During this period the following tasks have been completed: laboratory wettability; specific permeability; mercury porosimetry; acoustic anisotropy; rock mechanics analysis; core description; fracture analysis; digital image analysis; mineralogical analysis; hydraulic flow unit analysis; petrographic and confocal thin section analysis; oil geochemical fingerprinting; production logging; carbon/oxygen logging; complex lithologic log analysis; NMR T2 processing; dipole shear wave anisotropy logging; shear wave vertical seismic profile processing; structural mapping; and regional tectonic synthesis. Noteworthy technological successes for this reporting period include: (1) first (ever) high resolution, crosswell reflection images of SJV sediments; (2) first successful application of the TomoSeis acquisition system in siliceous shales; (3) first detailed reservoir characterization of SJV siliceous shales; (4) first mineral based saturation algorithm for SJV siliceous shales, and (5) first CO{sub 2} coreflood experiments for siliceous shale. Preliminary results from the CO{sub 2} coreflood experiments (2,500 psi) suggest that significant oil is being produced from the siliceous shale.

  17. Remedial investigation work plan for Bear Creek Valley Operable Unit 2 (Rust Spoil Area, SY-200 Yard, Spoil Area 1) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The enactment of the Resource Conservation and Recovery Act (RCRA) in 1976 and the Hazardous and Solid Waste Amendments (HSWA) to RCRA in 1984 created management requirements for hazardous waste facilities. The facilities within the Oak Ridge Reservation (ORR) were in the process of meeting the RCRA requirements when ORR was placed on the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) National Priorities List (NPL) on November 21, 1989. Under RCRA, the actions typically follow the RCRA Facility Assessment (RFA)/RCRA Facility Investigation (RFI)/Corrective Measures Study (CMS)/Corrective Measures implementation process. Under CERCLA the actions follow the PA/SI/Remedial Investigation (RI)/Feasibility Study (FS)/Remedial Design/Remedial Action process. The development of this document will incorporate requirements under both RCRA and CERCLA into an RI work plan for the characterization of Bear Creek Valley (BCV) Operable Unit (OU) 2.

  18. Putnam County, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Putnam County, Tennessee Algood, Tennessee Baxter, Tennessee Cookeville, Tennessee Monterey, Tennessee Retrieved from "http:...

  19. Owen County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Owen County, Kentucky Gratz, Kentucky Monterey, Kentucky Owenton, Kentucky Sparta, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleOwenCounty,Kentucky...

  20. Abundant Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Abundant Biofuels Place: Monterey, California Sector: Biofuels Product: Abundant Biofuels plans to develop biodiesel feedstock...

  1. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay, CA Grace Chang, Jason Magalen, Craig Jones, Jesse Roberts Prepared by Sandia National Laboratories...

  2. E. Parke, D. J. Den Hartog, L. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on High-Temperature Plasma Diagnostics, Monterey, California, May 2012. b) eparke@wisc.edu. c) Present address: Pierce College, Lakewood, Washington 98498, USA. d) Present...

  3. Successful Field-Scale In Situ Thermal NAPL Remediation at the Young- Rainey STAR Center

    Broader source: Energy.gov [DOE]

    Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds.May 2004, Monterey, California.Randall Juhlin, Michael Butherus, Joseph Daniel, David S....

  4. CX-008664: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    Excavate New Storm Drainage Ditch to Divert Storm Water from A-Area Coal Yard to Outfall ... Establish a new storm drainage ditch to divert storm water from the A-Area Coal Yard to an ...

  5. PORTSMOUTH 2015 YEAR IN REVIEW

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on- site waste disposal facility (which will be able to hold more than 5 million cubic yards of waste) as part of the remedy for more than 2 million cubic yards of D&D waste. ...

  6. Microsoft PowerPoint - 02.11.2010_Smart Grid Conference.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WV D-20 Ethernet Switch D-20 D-60 Ethernet Switch Control Bldg Control Bldg D-60 Media Media Amperion Electronics B Converter Amperion Electronics Yard Yard Converter Box...

  7. From Processing Juice to Producing Biofuels

    Broader source: Energy.gov [DOE]

    Abandoned juice process plant converted into new bioethanol plant to process renewable biomass from yard, wood and vegetable waste.

  8. CX-002033: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery Act: County of Monterey, California Energy Efficiency and Conservation Block GrantCX(s) Applied: A9, A11, B5.1Date: 04/20/2010Location(s): Monterey County, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. CX-001698: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery Act, County of Monterey, California Energy Efficiency and Conservation Block GrantCX(s) Applied: A9, A11, B5.1Date: 04/16/2010Location(s): Monterey County, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  10. CX-002324: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    County of Monterey, California Energy Efficiency and Conservation Block Grant (EECBG): Activity 6, Energy Efficiency Retrofits of County FacilitiesCX(s) Applied: A9, A11, B5.1Date: 05/13/2010Location(s): County of Monterey, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  11. Microsoft PowerPoint - Wolf Creek Brief SWPA 6-10-08_File#1 Slides 1 to 9.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Engineers Of Engineers ® ® Nashville District Nashville District Wolf Wolf Creek Creek Dam Dam Saftey Saftey US Army Corps US Army Corps Of Engineers Of Engineers ® ® Nashville District Nashville District Outline of Topics Outline of Topics * Project Features and Benefits * History of Problems * Inital Fix * Current Repair Measures US Army Corps US Army Corps Of Engineers Of Engineers ® ® Nashville District Nashville District SOUTH CAROLINA SOUTH CAROLINA Laurel Laurel Martins Fork

  12. Valencia County, New Mexico: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Zone Subtype B. Places in Valencia County, New Mexico Belen, New Mexico Bosque Farms, New Mexico Casa Colorada, New Mexico El Cerro-Monterey Park, New Mexico Jarales, New Mexico...

  13. BioJet Corporation | Open Energy Information

    Open Energy Info (EERE)

    93940 Sector: Carbon Product: Monterey-based carbon credit developer and producer of bio-jet fuel derived from jatropha. References: BioJet Corporation1 This article is a...

  14. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An ARM-Enhanced Analysis of GOES-10 Cloud Optical Property Retrievals S. D. Miller Naval Research Laboratory Monterey, California G. L. Stephens and R. T. Austin Colorado State...

  15. Annual Energy Outlook 2013 Early Release Reference Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (CO, WY) Haynesville Utica (OH, PA & WV) Marcellus (PA,WV,OH & NY) Woodford (OK) Granite Wash (OK & TX) Austin Chalk (LA & TX) Monterey (CA) U.S. tight oil production...

  16. Steam and ET-DSP Combined for DNAPL Remediation: Full-Scale Site Restoration at Young- Rainey STAR Center

    Broader source: Energy.gov [DOE]

    Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds.May 2004, Monterey, California.Gorm Heron, Steven Carroll, Hank Sowers, Bruce McGee,...

  17. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Monterey Bookmark and Share Nearly 300 participants from countries as far away as Japan, Australia, and Finland attended the 2007 ARM Science Team Meeting. A spring mix of...

  18. Microsoft PowerPoint - ARM_2007_Presentation(Lawson).ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microphysical Properties of Arctic Clouds Microphysical Properties of Arctic Clouds and Analysis of Airborne Instrumentation and Analysis of Airborne Instrumentation Paul Lawson Paul Lawson ARM Science Team Meeting ARM Science Team Meeting - - Monterey Monterey 29 March 2007 29 March 2007 OUTLINE OUTLINE Revisiting C-130 Microphysical Observations from SHEBA- FIRE.ACE Capability of Current Particle Probes Some New Airborne Microphysics & Radiation Measurement Instrumentation Example of

  19. CX-011626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Line Yard Fence Project CX(s) Applied: B1.11 Date: 06/05/2013 Location(s): Tennessee Offices(s): Y-12 Site Office

  20. Sun Valley to Morgan Transmission Line | Open Energy Information

    Open Energy Info (EERE)

    Construction areas, including storage yards, would be free of waste material and trash accumulations, unless stored in appropriate containers. All unused materials and solid...

  1. Guides and Case Studies for Hot-Dry and Mixed-Dry Climates |...

    Broader source: Energy.gov (indexed) [DOE]

    sink, and clothes washer water for yard irrigation; smart appliances; and an electronic energy management system. Project: Carsten Crossing - Rocklin Builder: Grupe Profile: This...

  2. ARM - Blog Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Science Lesson Starts in the Yard Bookmark and Share Madie Houdeshell and David Breedlove each hold a weather balloon data transmitter called a radiosonde. Madie...

  3. MHK Technologies/ITRI WEC | Open Energy Information

    Open Energy Info (EERE)

    University wave tank, and CSBC ship building yard. Was This Project DOE Funded? No Collaborators *CSBC Corporation Date Submitted 20130903 << Return to the MHK database homepage...

  4. U.S. Energy Information Administration | Annual Coal Report 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    Includes all employees engaged in production, preparation, processing, development, maintenance, repair shop, or yard work at mining operations, including office workers. Excludes ...

  5. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    ... "Note: Includes all employees engaged in production, preparation, processing, development, maintenance, repair shop, or yard work at mining operations, including office workers. ...

  6. U.S. Energy Information Administration | Annual Coal Report 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Note: Includes all employees engaged in production, preparation, processing, development, maintenance, repair shop, or yard work at mining operations, including office workers. ...

  7. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    Includes all employees engaged in production, preparation, processing, development, maintenance, repair shop, or yard work at mining operations, including office workers. Excludes ...

  8. Northwoods | Open Energy Information

    Open Energy Info (EERE)

    Northwoods Jump to: navigation, search Logo: Northwoods Name: Northwoods Address: The Old Stables Grey's Yard Place: Morpeth, Northumberland, UK Zip: NE61 1QD Number of Employees:...

  9. EA-1876: Final Environmental Assessment and Finding of No Significant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pennsylvania State Energy Program's Conergy Navy Yard Solar Project PDF icon EA-1876-FEA-2011.pdf More Documents & Publications Microsoft Word - Conergy DRAFT EA 1876...

  10. DOE Announces Start of Recovery Act Funded Cleanup Projects at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office announced that cleanup of the Old Salvage Yard at the Y-12 National Security Complex, has started with funding received from the American Recovery and Reinvestment Act...

  11. Electricity Advisory Committee Meeting Presentations June 2012...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microgrids Panel Jeff Marqusee, DODOSD Will Agate, Philadelphia Navy Yard Angie Beehler, WalMart Interoperability Presentation - Erich Gunther, GridWise Architecture Council EAC ...

  12. Aasgard subsea installation on schedule

    SciTech Connect (OSTI)

    Perdue, J.M.

    1998-09-01

    Statoil`s Aasgard A FPSO vessel is set to sail away from the Aker Stord yard on November 22, 1998, and construction of the Aasgard B semisubmersible gas platform has begun at the Daewoo yard in Korea. While Aasgard A and Aasgard B are receiving a lot of attention on land, the Aasgard subsea installation is quietly being readied for the big day.

  13. CX-000717: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pennsylvania - Economic Development Authority Sustainable Business Recovery - Philadelphia Navy YardCX(s) Applied: B1.15, B1.24, B1.31, B5.1Date: 01/31/2010Location(s): Philadelphia Navy Yard, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  14. Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy Storage Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2/2011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage Workshop on Hydrogen Energy Storage Grid and Transportation Services Sacramento, California Dr. Monterey R. Gardiner Technology Manager Monterey.Gardiner@ee.doe.gov Fuel Cell Technologies Office U.S. Department of Energy May 14 th & 15 th 2014 at the Grand Sheraton Hotel 2 | Fuel Cell Technologies Program Source: US DOE 11/2/2011 eere.energy.gov * Previous Analysis Efforts by DOE * National Laboratories,

  15. CX-009053: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Establish Laydown Yard East of 281-3F CX(s) Applied: B1.15 Date: 08/03/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  16. Recovery Act Exceeds Major Cleanup Milestone, DOE Complex Now...

    Office of Environmental Management (EM)

    30-month effort to close the P and R nuclear reactors included grouting the facilities to ground level with approximately 254,000 cubic yards of concrete. Hanford In September...

  17. Slide 1

    Office of Environmental Management (EM)

    * Capacity 2.18 million cubic yards (equivalent to 872,000 pickup truck loads) * 43 acre footprint under final cover Final cover system Waste and fill Liner system Geologic buffer...

  18. CX-004990: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Cerritos, Photovoltaic System at the Cerritos Corporate YardCX(s) Applied: B5.1Date: 01/13/2011Location(s): Cerritos, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  19. CX-002828: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Equipment Staging at the Yard TentCX(s) Applied: B1.15Date: 06/10/2010Location(s): Amarillo, TexasOffice(s): Pantex Site Office

  20. City of Chandler- Expedited Plan Review for Green Buildings

    Broader source: Energy.gov [DOE]

    Participating projects will also receive recognition from the city in the form of yard and window signs, and will have a chance to receive the Chandler Architectural Excellence Award in the Green...

  1. DOE Zero Energy Ready Home Case Study: KB Home, Lancaster, CA...

    Energy Savers [EERE]

    and clothes washer water for yard irrigation, smart appliances, and an electronic energy management system. The home has R-4 polyiso over 2x4 fiberglass batt-filled walls, an...

  2. Construction Begins on the Expansion of the EMWMF

    Broader source: Energy.gov [DOE]

    Construction of a $35 million, 465,000 cubic yard expansion of the Environmental Management Waste Management Facility (EMWMF) is now underway, using funds from the American Recovery and Reinvestment Act.

  3. Mr. Carl Schafer Director of Environmental Policy

    Office of Legacy Management (LM)

    ... J 7. Naval Ammunition Depot Red BankNJ ,j, (. ."< .' 8. Naval Boiler and Turbine Lab. Philadelphia Navy Yard Philadelphia, PA , ,,,I' , , 9. Naval Gun Factory and Bureau of ...

  4. ARM - Education Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science teachers in Barrow, Alaska, know that climate change is something their students can experience simply by stepping out into their own back yards. But that doesn't...

  5. CX-006732: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Concrete Storage YardCX(s) Applied: B1.13, B1.30, B3.12, B6.1Date: 12/02/2010Location(s): Casper, WyomingOffice(s): RMOTC

  6. September

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. - 92211 Bradbury Science Museum Museum Day at Bradbury...

  7. CX-010669: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    484-17D Coal Yard Remediation CX(s) Applied: B6.1 Date: 06/07/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  8. CX-006664: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rocky Mountain Oilfield Testing Center Process Improvement Old Pipe Yard Clean UpCX(s) Applied: B1.3, B1.23Date: 11/16/2009Location(s): Casper, WyomingOffice(s): RMOTC

  9. CX-012091: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Substation Temporary Laydown Yard CX(s) Applied: B1.3 Date: 03282013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region Western Area...

  10. Media Contact: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    yards of grout will be placed inside the canyon cells and supporting galleries, rooms, tunnels and piping. Finally, the upper section of the canyon will be demolished prior to...

  11. Wzeng's blog | OpenEI Community

    Open Energy Info (EERE)

    in Your Back Yard Among popular trends in renewable energy today is for the everyday person to find ways to make use of clean energy and be part of the national effort to go...

  12. Strengthening the Workforce in Better Buildings Neighborhoods...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... So, for example, we have collateral materials that we can give them, yard signs, door hangers, and printed flyers that talk about the program. Laura Fiori, Key Green Energy ...

  13. MHK Projects/Falmouth | Open Energy Information

    Open Energy Info (EERE)

    welcomed its first wave converter - Fred Olsen's BOLT "Lifesaver" - to its waters. The machine, previously called BOLT 2, was manu-factured at A&P's yard facility in Falmouth and...

  14. EIA - Greenhouse Gas Emissions Overview

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    grasslands 34 Net carbon dioxide sequestration in U.S. urban trees, yard trimmings, and food scraps 35 Emissions of carbon dioxide from biofuelbioenergy use by sector and fuel

  15. Mr. Carl Schafer Director of Environmental Policy

    Office of Legacy Management (LM)

    OH ."" 7. Naval Ammunition Depot Red Bank,'NJ I' -ii;.. ,.'I 8. Naval Boiler and Turbine Lab. Philadelphia Navy Yard Philadelphia, PA ,j ,,,: i.% 9. Naval Gun Factory and...

  16. 2010sr32.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and twenty cubic yards of the cement slurry, the approximate volume of large at-home swimming pool, was poured into the reactor vessel over two days. The next step in the reactor...

  17. Government Affairs Specialist

    Broader source: Energy.gov [DOE]

    This vacancy may be filled at: U.S. Department of Energy National Nuclear Security Administration Washington Navy Yard 1240 Isaac Hull, SE Washington, DC 20376 Naval Reactors Mission: Provide the...

  18. LANL completes high-priority flood and erosion control work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    600 feet of water diversion barriers and removed more than 1,200 cubic yards of sediment in anticipation of flash flooding. July 11, 2011 Los Alamos National Laboratory sits...

  19. Notices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Jeff Marqusee, DODOSD * Will Agate, Vice President, PIDC (Philadelphia Navy Yard) * Angie Beehler, Walmart (Invited) 9:00 to 9:20 a.m. EAC Discussion of Microgrids Impacts and ...

  20. CX-009352: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Navy Yard Network Operations Center (Energy Regional Innovation Cluster) CX(s) Applied: A1, A9, B2.2 Date: 09/20/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  1. MONTICELLO PROJECTS

    Office of Legacy Management (LM)

    Quarterly Report: April 1-June 30, 2009 U.S. Department of Energy Doc. No. S05572 July 2009 Page 2 1.4 Temporary Storage Facility (TSF) * Approximately 16 cubic yards of ...

  2. CX-009049: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Laydown Yard Expansion East of 706-1F CX(s) Applied: B1.15 Date: 08/08/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. NASA's Curiosity Rover Team Features Women Team Members | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Some of the women working on NASA's Mars Science Laboratory Project, which built and operates the Curiosity Mars rover, gathered for this photo in the Mars Yard used for rover testing at NASA's Jet Propulsion Laboratory, Pasadena, California. Image Credit: NASA/JPL-Caltech Some of the women working on NASA's Mars Science Laboratory Project, which built and operates the Curiosity Mars rover, gathered for this photo in the Mars Yard used for rover testing at NASA's Jet Propulsion

  4. Microsoft Word - Conergy DRAFT EA 1876 7.20.2011.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    76D 1 Pennsylvania State Energy Program's Conergy Navy Yard Solar Project Philadelphia, Philadelphia County, Pennsylvania , DRAFT ENVIRONMENTAL ASSESSMENT DOE/EA-1876D 2 ENVIRONMENTAL ASSESSMENT For The PENNSYLVANIA STATE ENERGY PROGRAM'S CONERGY NAVY YARD SOLAR PROJECT PHILADELPHIA, PENNSYLVANIA U.S. Department of Energy National Energy Technology Laboratory TABLE OF CONTENTS CONTENTS 1.0 SUMMARY 5 1.1 INTRODUCTION AND BACKGROUND 5 1.2 PURPOSE AND NEED 7 1.3 SCOPE OF THIS ENVIRONMENTAL

  5. Savannah River Site Liquid Waste Contractor Earns Excellent Performance

    Energy Savers [EERE]

    Rating | Department of Energy Liquid Waste Contractor Earns Excellent Performance Rating Savannah River Site Liquid Waste Contractor Earns Excellent Performance Rating February 11, 2016 - 12:35pm Addthis SRR workers oversaw placement of nearly 6,100 cubic yards of grout into Tank 16 from June to September 2015, achieving operational closure ahead of the October 2015 scheduled deadline, and making it the seventh tank closed at SRS. SRR workers oversaw placement of nearly 6,100 cubic yards of

  6. INEOS-New Planet: Indian River Bioenergy Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INEOS-New Planet: Indian River Bioenergy Center INEOS-New Planet: Indian River Bioenergy Center INEOS infographic Waste Biomass Photo via iStock by Getty Images. The feedstock-flexible processing technology at Indian River BioEnergy Center takes advantage of the abundant local supply of agricultural and yard waste. Municipal trucks delivering these wastes pay a tipping fee to the biorefinery, while local residents can drop off yard waste at no charge. Diverting this organic material from the

  7. Document

    Office of Environmental Management (EM)

    57 Federal Register / Vol. 73, No. 198 / Friday, October 10, 2008 / Notices Facilities Associated With the Caliente Rail Alignment DOE also has decided to construct and operate the Nevada Railroad Control Center and the National Transportation Operations Center, co- located with the Upland Staging Yard, along the Caliente alternative segment, rather than one mile from the southern boundary of the geologic repository operations area at the Rail Equipment Maintenance Yard. In making this

  8. United States

    Energy Savers [EERE]

    CEK-1-I Availability: This rate schedule shall be available to East Kentucky Power Cooperative (hereinafter called the Customer). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the "Cumberland Projects") and power available from the Laurel Project and sold in

  9. United States

    Energy Savers [EERE]

    Rate Schedule Replacement-3 Availability: This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Alabama, Georgia, Illinois, Kentucky, North Carolina, Mississippi, Tennessee and Virginia to whom power is provided pursuant to contracts between the Government and the customer from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, Cordell Hull, and Laurel Projects (all of such projects

  10. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 04_h2gen_low-cost_h2_distributed_production_systems.pdf More Documents & Publications Low-Cost Hydrogen-from-Ethanol: A Distributed Production System

  11. H2A Hydrogen Production Analysis Tool (Presentation) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Production Analysis Tool (Presentation) H2A Hydrogen Production Analysis Tool (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 02_nrel_h2a_production_analysis_tool.pdf More Documents & Publications BILIWG: Consistent "Figures of Merit" (Presentation) Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology (Presentation) Pioneer Plants Study User's Manu

  12. Hydrogen from Bio-Derived Liquids (Presentation) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from Bio-Derived Liquids (Presentation) Hydrogen from Bio-Derived Liquids (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 09_pnnl_h2_from_bio-derived_liquids.pdf More Documents & Publications Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), Hydrogen Separation and Purification Working Group (PURIWG) & Hydrogen Production Technical Team Renewable

  13. Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Group (BILIWG) Hydrogen Production Technical Team Research Review | Department of Energy Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review This is the agenda for the working group sessions held in Laurel, Maryland on November 6, 2007. PDF icon biliwg_agenda.pdf More Documents &

  14. Quantum & Energy Materials Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum & Energy Materials Capabilities Synthesis Colloidal chemistry and self-assembly techniques Complex oxide film synthesis via molecular beam epitaxy (DCA R450 Custom) Glovebox system for organic photovoltaics device fabrication Physical vapor deposition (Lesker CMS 18 and PVD 250) Spin coating (Laurell WS-400) Characterization Variable-temperature (VT) scanning tunneling microscope with atomic force microscopy capabilities (Omicron VT-AFM/STM), operates in an ultrahigh vacuum (UHV)

  15. Microsoft PowerPoint - APPALACHIAN_STATE_Presentation 4 27 2015 lower quality pics.pptx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mountain Laurel Home Race-to-Zero Design Competition Lena Burkett, Chase Ambler, and Brad Painting Jeff Tiller, Faculty Advisor Department of Sustainable Technology and the Built Environment APPALACHIAN STATE UNIVERSITY 19 April 2015 2 The App State Team Jake Smith Chris Schoonover A.J. Smith Josh Brooks Chase Ambler Brad Painting Harrison Sytz Chelsea Davis Kaitlyn Morgan Pedro Franco Josh Smith Jeff Tiller Brenton Faircloth David Leonard Marshall Dressler Lena Burkett Kenny High Chase Edge

  16. Cost Analysis of Bio-Derived Liquids Reforming (Presentation) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Bio-Derived Liquids Reforming (Presentation) Cost Analysis of Bio-Derived Liquids Reforming (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 03_dti_cost_analysis_bio-derived_liquids_reforming.pdf More Documents & Publications BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Bio-Derived Liquids to Hydrogen Distributed Reforming Working

  17. Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy Fueling Station Based on GEGR SCPO Technology (Presentation) Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 05_ge_distributed_h2_fueling_station.pdf More Documents & Publications BILIWG: Consistent "Figures of Merit" (Presentation) Idaho Operations AMWTP Fact Sheet

  18. Distributed Reforming of Biomass Pyrolysis Oils (Presentation) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Biomass Pyrolysis Oils (Presentation) Distributed Reforming of Biomass Pyrolysis Oils (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 06_nrel_distributed_reforming_biomass_pyrolysis_oils.pdf More Documents & Publications Distributed Bio-Oil Reforming Bioenergy Technologies Office R&D Pathways: In-Situ Catalytic Fast Pyrolysis Bioenergy Technologies Office R&D

  19. Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transport Membrane (OTM) (Presentation) | Department of Energy Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 11_anl_distributed_reforming_using_otm.pdf More Documents & Publications Cost

  20. BILIWG Meeting: DOE Hydrogen Quality Working Group Update and Recent

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress (Presentation) | Department of Energy DOE Hydrogen Quality Working Group Update and Recent Progress (Presentation) BILIWG Meeting: DOE Hydrogen Quality Working Group Update and Recent Progress (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 12_anl_h2_quality_working_group_update.pdf More Documents & Publications Effects of Fuel and Air Impurities on PEM Fuel Cell

  1. BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 07_anl_high_pressure_steam_ethanol_reforming.pdf More Documents & Publications High Pressure Ethanol Reforming for Distributed Hydrogen Production Bio-Derived

  2. BILIWG: Consistent "Figures of Merit" (Presentation) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BILIWG: Consistent "Figures of Merit" (Presentation) BILIWG: Consistent "Figures of Merit" (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 14_doe_biliwg_figures_of_merit.pdf More Documents & Publications Idaho Operations AMWTP Fact Sheet Greenpower Trap Mufflerl System CERTIFIED REALTY SPECIALIST

  3. Bio-Derived Liquids to Hydrogen Distributed Reforming Targets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation) | Department of Energy Targets (Presentation) Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland. PDF icon 01_doe_bio-derived_liquids_to_h2_reforming_targets.pdf More Documents & Publications BILIWG: Consistent "Figures of Merit" (Presentation) Distributed Hydrogen Fueling Station Based on GEGR SCPO

  4. Slide 1

    Energy Savers [EERE]

    Operations Update David Mistakovich September 2015 BUILDING STRONG ® Nashville District Plant Staffing BARKLEY RET. ELG. YEAR CHEATHAM RET. ELG. YEAR OLD HICKORY RET. ELG. YEAR CORDELL HULL RET. ELG. YEAR CENTER HILL RET. ELG. YEAR DALE HOLLOW RET. ELG. YEAR WOLF CREEK RET. ELG. YEAR LAUREL RET. ELG. YEAR ESS RET. ELG. YEAR DISTRICT OFFICE RET. ELG. YEAR PPM CRABTREE 2001 CONATSER - TA 2009 FLOWERS 2013 MARLOW 2033 RIEGER 2016 MISTAKOVICH 2005 SUPT. HOLT 2034 TIESLER 2027 KENNEDY - TA 2018

  5. HORIZON SENSING (PROPOSAL NO.51)

    SciTech Connect (OSTI)

    Larry G. Stolarczyk

    2003-07-30

    Real-time horizon sensing on continuous mining (CM) machines is becoming an industry tool. Installation and testing of production-grade Horizon Sensor (HS) systems has been ongoing this quarter at Monterey Coal Company (ExxonMobil), Mountain Coal Company West Elk Mine (Arch), Deserado Mining Company (Blue Mountain Energy), and The Ohio Valley Coal Company (TOVCC). Monitoring of system function, user experience, and mining benefits is ongoing. All horizon sensor components have finished MSHA (U.S.) and IEC (International) certification.

  6. HORIZON SENSING (PROPOSAL NO.51)

    SciTech Connect (OSTI)

    Larry G. Stolarczyk

    2003-07-01

    Real-time horizon sensing on continuous mining machines is becoming an industry tool. Installation and testing of production-grade Horizon Sensor (HS) systems continued this quarter at Monterey Coal Company (ExxonMobil), Mountain Coal Company West Elk Mine (Arch), and Ohio Valley Coal Company (OVC). Monitoring of system function, user experience, and mining benefits is ongoing. All horizon sensor components have finished MSHA (U.S.) and IEC (International) certification.

  7. HORIZON SENSING

    SciTech Connect (OSTI)

    Larry G. Stolarczyk, Sc.D.

    2002-07-31

    Real-time horizon sensing (HS) on continuous mining (CM) machines is becoming an industry tool. Installation and testing of production-grade HS systems has been ongoing this quarter at Oxbow Mining Company, Monterey Coal Company (EXXON), FMC Trona, Twentymile Coal Company (RAG America), and SASOL Coal. Detailed monitoring of system function, user experience, and mining benefits is ongoing. All horizon sensor components have finished MSHA (United States) and IEC (International) certification.

  8. HORIZON SENSING (PROPOSAL No.51)

    SciTech Connect (OSTI)

    Larry G. Stolarczyk, Sc.D.

    2002-04-30

    Real-time horizon sensing on continuous mining machines is becoming an industry tool. Installation and testing of production-grade HS systems has been ongoing this quarter at Monterey Coal Company (EXXON), FMC Trona, Twentymile Coal Company (RAG America), and SASOL Coal. Detailed monitoring of system function, user experience, and mining benefits is ongoing. All horizon sensor components have finished MSHA (U.S.) and IEC (International) certification.

  9. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    840 Unlimited Release Printed Month and Year Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay, CA Grace Chang, Jason Magalen, Craig Jones, and Jesse Roberts Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.

  10. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Unlimited Release Printed Month and Year Wave Energy Converter (WEC) Array Effects on Wave, Current, and Sediment Circulation: Monterey Bay, CA Craig Jones, Jason Magalen, and Jesse Roberts, Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's

  11. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60 Unlimited Release Printed Month and Year Wave Energy Converter Effects on Wave Fields: Evaluation of SNL-SWAN and Sensitivity Studies in Monterey Bay, CA Grace Chang, Jason Magalen, Craig Jones, Jesse Roberts Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department

  12. SANDIA REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    74 Unlimited Release Printed Month and Year Investigation of Wave Energy Converter Effects on the Nearshore Environment: A Month-Long Study in Monterey Bay, CA Grace Chang, Jason Magalen, Craig Jones, and Jesse Roberts Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.

  13. ARM07Chang_poster.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii Fu-Lung Chang @ , Patrick Minnis # , Bing Lin # , Sunny Sun-Mack & , Mandana Khaiyer & @National Institute of Aerospace #NASA Langley Research Center &Science System Applications Inc The 17th ARM Science Team Meeting, Monterey, California, March 26-30, 2007 Contact: Dr. Fu-Lung Chang, National Institute of Aerospace (NIA) Email: f.chang@larc.nasa.gov  How different are the retrievals

  14. 1B-03.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1B-03, in: A.R. Gavaskar and A.S.C. Chen (Eds.), Remediation of Chlorinated and Recalcitrant Compounds -2004. Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2004). ISBN 1-57477-145-0, published by Battelle Press, Columbus, OH, www.battelle.org/bookstore. NONAQUEOUS-PHASE LIQUID CHARACTERIZATION AND POST-REMEDIATION VERIFICATION SAMPLING ABSTRACT: Light and dense nonaqueous-phase liquids (NAPLs) were identified in the

  15. 2B-01.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1, in: A.R. Gavaskar and A.S.C. Chen (Eds.), Remediation of Chlorinated and Recalcitrant Compounds -2004. Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2004). ISBN 1-57477-145-0, published by Battelle Press, Columbus, OH, www.battelle.org/bookstore. SUCCESSFUL FIELD-SCALE IN SITU THERMAL NAPL REMEDIATION AT THE YOUNG-RAINEY STAR CENTER ABSTRACT: The U.S. Department of Energy (DOE) successfully completed a field-

  16. Effect of Fuel and Design Options on RTG Performance versus PFF Power Demand

    SciTech Connect (OSTI)

    Schock, Alfred; Or, Chuen T

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper confines its attention to the relatively conservative option employing standard thermoelectric unicouples, since that may be the only one flight-ready for the projected PFF launch in 2001. There are four copies in the file; also a copy in the ESD files. Included in the file are two previous documents with the same title dated 4/18/1994.

  17. Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage: Experimental analysis and modeling Monterey Gardiner U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Hydrogen Energy Storage: Experimental analysis and modeling FCTO Webinar Josh Eichman, PhD

  18. Emerging Memory Technologies: IRPS Tutorial. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Emerging Memory Technologies: IRPS Tutorial. Citation Details In-Document Search Title: Emerging Memory Technologies: IRPS Tutorial. Authors: Marinella, Matthew Publication Date: 2013-03-01 OSTI Identifier: 1067670 Report Number(s): SAND2013-1732C DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the International Reliability Physics Symposium held April 14-18, 2013 in Monterey, CA

  19. Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sampling | Department of Energy Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Nonaqueous-Phase Liquid Characterization and Post-Remediation Verification Sampling Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. May 2004, Monterey, California. Charles Tabor, Randall Juhlin, Paul Darr, Julian Caballero, Joseph Daniel, David Ingle PDF icon Nonaqueous-Phase Liquid Characterization and

  20. Nuclear Proliferation Challenges

    SciTech Connect (OSTI)

    Professor William Potter

    2005-11-28

    William C. Potter, Director of the Center for Non Proliferation Studies and the Center for Russian and Eurasian Studies at the Monterey Institute of International Studies, will present nuclear proliferation challenges following the 2005 Nuclear Non-Proliferation Treaty (NPT) Review Conference. In addition to elucidating reasons for, and implications of, the conferences failure, Dr. Potter will discuss common ground between nuclear proliferation and terrorism issues and whether corrective action can be taken.

  1. MFRSR Head Refurbishment, Data Logger Upgrade and Calibration Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MFRSR Head Refurbishment, Data Logger Upgrade and Calibration Improvements Gary Hodges, CIRES/NOAA and John Schmelzer, PNL gary.hodges@noaa.gov, john.schmelzer@pnl.gov 17th Annual ARM Science Team Meeting 26-30 March 2006 Monterey, CA Head Refurbishment The Process Includes: * New filter detectors * Relocate internal thermistors * New connectors * Gain resistors moved to head * Improved insulation The Finished Heads: * Are lamp calibrated * Have filter profiles measured * Cosine characterized *

  2. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site During the May 2003 Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site During the May 2003 Aerosol IOP B. Schmid and J. Redemann Bay Area Environmental Research Institute National Aeronautics and Space Administration Ames Research Center Moffett Field, California W. P. Arnott Desert Research Institute Reno, Nevada A. Bucholtz and J. Reid Naval Research Laboratory Monterey, California P. Colarco Earth System Science Interdisciplinary Center

  3. Microsoft PowerPoint - DOE_ARM_March29_b.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autonomous Unmanned Aerial Vehicles as a Tool for Measuring Cloud-Aerosol-Radiation- Chemistry Scripps Institution of Oceanography V Ramanathan, Craig Corrigan, D Kim, H Nguyen, M Ramana, Greg Roberts ARM Aerial Vehicle Program science team meeting, Monterey; March 29, 2007 Outline * Introduction * MAC Campaign * Radiation Results * Aerosol Results * Future Missions and Collaborations - Possible Experiment with DOE Advantages of Using Lightweight AUAVs * Complement manned aircraft missions *

  4. Microsoft PowerPoint - Lubin.ARM_Year4_Talk.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnitude of the Shortwave Aerosol Indirect Effect in Shortwave Aerosol Indirect Effect in Springtime Arctic Liquid-Water Clouds Dan Lubin Dan Lubin Scripps Institution of Oceanography Andrew Vogelmann Brookhaven National Laboratory Brookhaven National Laboratory 28 March 2007 ARM Science Team Meeting Monterey, CA Why the Arctic? Why the Arctic? 1. The great "bellwether" for global climate warming 2. Well known potential impacts on global ocean circulation Why the Arctic? Why the

  5. Microsoft PowerPoint - Naudetal_pres_ARM2007.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phase profiles in mid- latitudes Catherine Naud (Columbia/GISS) and Tony Del Genio (GISS) In collaboration with M. Haeffelin, Y. Morille and V. Noel (IPSL/LMD) (IPSL/LMD) Thanks to Dave Turner for help with SGP data ARM meeting, Monterey, March 2007 Introduction Introduction * Presence of supercooled clouds at temperatures less than 273 K has significant impact on cloud feedbacks in GCMs but current has significant impact on cloud feedbacks in GCMs but current models use different datasets to

  6. Microsoft PowerPoint - arm_2007_slingo.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meeting, Monterey, March 2007 Results from the ARM Mobile Facility in Niamey Results from the ARM Mobile Facility in Niamey and the RADAGAST project Tony Slingo Environmental Systems Science Centre Tony Slingo, Environmental Systems Science Centre University of Reading * with important contributions from: p - Mark Miller and the AMF team - Richard Allan, Nazim Ali Bharmal, Gary Robinson, Jeff Settle (ESSC, UK) - Jim Haywood, Sean Milton and colleagues (UK Met Office) y g ( ) - Peter Lamb and

  7. Microsoft PowerPoint - arm_flare.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEW TECHNIQUE FOR STUDYING AEROSOL-CLOUD INTERACTIONS IN MARINE STRATOCUMULUS Virendra P. Ghate 1 , Bruce A. Albrecht 1 , Pavlos Kollias 2 1. MPO/RSMAS, Univ. of Miami, FL; 2. Brookhaven National Laboratory, NY 1. Introduction A cloud seeding experiment conducted offshore of Monterey, California in June 2006 aimed to study aerosol interaction with marine stratocumulus clouds. Instrument loaded Center for Interdisciplinary and Remotely Piloted Aircraft Studies (CIRPAS)'s Twin Otter Research

  8. Microsoft PowerPoint - donovan_arm.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EarthCARE Simulator: A unified Active and Passive Atmospheric Remote sensing End-to-End Simulation System End to End Simulation System D.Donovan KNMI Contributions from many others.... Outline The Earth Clouds and Radiation Explorer Mission The EarthCARE simulator. Sample Applications. New (ground-based) developments Future of the simulator. Conclusion Monterey March, 2007 Active Atmospheric Cloud/Aerosol/Rad. missions A-train CloudSAT (Cloud radar) CALIPSO (Lidar) Launched ! ADM (Atmospheric

  9. Investigation summary and proposed alternative for lead remediation at a small arms trainfire range

    SciTech Connect (OSTI)

    Beekman, S.M.; Stemper, M.L. [Harding Lawson Associates, Novato, CA (United States)

    1995-12-31

    The small arms trainfire ranges are part of the former Fort Ord Army Base Superfund site in Monterey County, California. Trainees fired small caliber weapons at targets near the leeward dune faces along Monterey Bay. Monterey Bay is a National Marine Sanctuary and the dunes contain endangered species and endangered species habitat. This paper summarizes results of the remedial investigation, human health risk assessment, ecological risk assessment, and feasibility study, and presents the results of bench-scale studies and proposed pilot studies for the site. Results of the RI showed that lead is the primary chemical of concern in soil (i.e., dune sands) and was detected at the highest concentrations where surface coverage of spent ammunition was greater than 10 percent (areas of heavy bullet distribution). A regulatory-approved health-based level of 1,860 mg/kg was developed as an acceptable level for lead-bearing soil in areas of heavy deposition to be protective of human health and the environment for planned reuse. Concentrations near or above 1,860 mg/kg correspond to areas of heavy distribution of spent ammunition. Plant and animal species were sampled and tested to evaluate the potential risk to ecological receptors.

  10. Interim Closure Activities at Corrective Action Unit 114: Area 25 EMAD Facility, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Boehlecke, R. F.

    2011-10-24

    This letter report documents interim activities that have been completed at CAU 114 to support ongoing access and generate information necessary to plan future closure activities. General housekeeping and cleanup of debris was conducted in the EMAD yard, cold bays, support areas of Building 3900, and postmortem cell tunnel area of the hot bay. All non-asbestos ceiling tiles and loose and broken non-friable asbestos floor tiles were removed from support galleries and office areas. Non-radiologically contaminated piping and equipment in the cold areas of the building and in the two 120-ton locomotives in the yard were tapped, characterized, drained, and verified free of contents.

  11. DUF6 Conversion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » PPPO Cleanup Projects - Portsmouth, Paducah, & DUF6 » DUF6 Conversion DUF6 Conversion DUF6 Facility at the Paducah Site DUF6 Facility at the Paducah Site DUF6 Facility at the Portsmouth Site DUF6 Facility at the Portsmouth Site There are more than 63,000 cylinders filled with DUF6 stored in cylinder yards at the Paducah and Portsmouth Sites. There are more than 63,000 cylinders filled with DUF6 stored in cylinder yards at the Paducah and Portsmouth Sites. DUF6 cylinder

  12. UF{sub 6} cylinder inspections at PGDP

    SciTech Connect (OSTI)

    Lamb, G.W.; Whinnery, W.N.

    1991-12-31

    Routine inspections of all UF{sub 6} cylinders at the Paducah Gaseous Diffusion Plant have been mandated by the Department of Energy. A specific UF{sub 6} cylinder inspection procedure for what items to inspect and training for the operators prior to inspection duty are described. The layout of the cylinder yards and the forms used in the inspections are shown. The large number of cylinders (>30,000) to inspect and the schedule for completion on the mandated time table are discussed. Results of the inspections and the actions to correct the deficiencies are explained. Future inspections and movement of cylinders for relocation of certain cylinder yards are defined.

  13. Passive treatment of wastewater and contaminated groundwater

    DOE Patents [OSTI]

    Phifer, Mark A.; Sappington, Frank C.; Millings, Margaret R.; Turick, Charles E.; McKinsey, Pamela C.

    2006-12-12

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  14. Passive treatment of wastewater and contaminated groundwater

    DOE Patents [OSTI]

    Phifer, Mark A. (N. Augusta, SC); Sappington, Frank C. (Dahlonega, GA); Millings, Margaret R. (N. Augusta, SC); Turick, Charles E. (Aiken, SC); McKinsey, Pamela C. (Aiken, SC)

    2007-11-06

    A bioremediation system using inorganic oxide-reducing microbial consortia for the treatment of, inter alia coal mine and coal yard runoff uses a containment vessel for contaminated water and a second, floating phase for nutrients. Biodegradable oils are preferred nutrients.

  15. Harvesting the Sun's Energy with Antennas

    ScienceCinema (OSTI)

    INL

    2009-09-01

    Researchers at Idaho National Laboratory, along with partners at Microcontinuum Inc. (Cambridge, MA) and Patrick Pinhero of the University of Missouri, are developing a novel way to collect energy from the sun with a technology that could potentially cost pennies a yard, be imprinted on flexible materials and still draw energy after the sun has set.

  16. CX-005071: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vehicle Test Location at Bone YardCX(s) Applied: A9, B3.6, B5.1Date: 01/21/2011Location(s): Golden, ColoradoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  17. Title:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kg Gasoline 1 liter 2.3 kg Diesel 1 gallon (USA) 9.95 kg Diesel 1 liter 2.7 kg Key Vocabulary * Acre: The easiest way to visualize an acre is as a rectangle measuring 88 yards by...

  18. Remedial Investigation Work Plan for Upper East Fork Poplar Creek Operable Unit 3 at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    Upper East Fork Popular Creek Operable Unit 3 (UEFPC OU 3) is a source term OU composed of seven sites, and is located in the western portion of the Y-12 Plant. For the most part, the UEFPC OU 3 sites served unrelated purposes and are geographically removed from one another. The seven sites include the following: Building 81-10, the S-2 Site, Salvage Yard oil storage tanks, the Salvage Yard oil/solvent drum storage area, Tank Site 2063-U, the Salvage Yard drum deheader, and the Salvage Yard scrap metal storage area. All of these sites are contaminated with at least one or more hazardous and/or radioactive chemicals. All sites have had some previous investigation under the Y-12 Plant RCRA Program. The work plan contains summaries of geographical, historical, operational, geological, and hydrological information specific to each OU 3 site. The potential for release of contaminants to receptors through various media is addressed, and a sampling and analysis plan is presented to obtain objectives for the remedial investigation. Proposed sampling activities are contingent upon the screening level risk assessment, which includes shallow soil sampling, soil borings, monitoring well installation, groundwater sampling, and surface water sampling. Data from the site characterization activities will be used to meet the above objectives. A Field Sampling Investigation Plan, Health and Safety Plan, and Waste Management Plan are also included in this work plan.

  19. DOE Zero Energy Ready Home Case Study: KB Home — Double ZeroHouse, Lancaster, CA

    SciTech Connect (OSTI)

    none,

    2014-09-01

    The home that won a Production Builder award in the 2014 Housing Innovation Awards serves as a model for this builder, showcasing high-tech features including an electric car charging station; a compressed natural gas (CNG) car fueling station; a greywater recycling system that filters shower, sink, and clothes washer water for yard irrigation; smart appliances; and an electronic energy management system.

  20. Out of bounds additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  1. Out of Bounds Additive Manufacturing

    SciTech Connect (OSTI)

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  2. The politics of garbage

    SciTech Connect (OSTI)

    Taylor, H.F. )

    1989-10-01

    This article examines the forces that lead to the success or failure of waste management strategies. The topics discussed include hierarchy logic; disposal strategies; public perceptions, misconceptions, and education; rejection of combustion; siting and not in my back yard; myths versus facts in the battle of public perception; and logic, facts and lessons.

  3. 3rd Thermoelectrics Applications Workshop 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3rd Thermoelectrics Applications Workshop 2012 3rd Thermoelectrics Applications Workshop 2012 March 19-22, 2012 Marriott Inner Harbor at Camden Yards Baltimore, MD Tuesday, March 20, 2012 Opening Plenary Session Thermoelectric Applications I Thermoelectric Applications II Thermoelectric Technologies Wednesday, March 21, 2012 Thermoelectric Applications II Thermoelectric Applications III Thermoelectric Materials III Thermoelectric Applications IV Thursday, March 22, 2012 Thermoelectric

  4. Use of Biostratigraphy to Increase Production, Reduce Operating Costs and Risks and Reduce Environmental Concerns in Oil Well Drilling

    SciTech Connect (OSTI)

    Edward Marks

    2005-09-09

    In the Santa Maria Basin, Santa Barbara County, California, four wells were processed and examined to determine the age and environment parameters in the oil producing sections. From west to east, we examined Cabot No. 1 Ferrero-Hopkins,from 3917.7 m (12850 ft) to 4032 m (13225 ft); Sun No. 5 Blair, from 3412 m (11190 ft) to 3722.5 m (12210 ft); Triton No. 10 Blair, from 1552 m (5090 ft) to 1863 m (6110 ft); and OTEC No. 1 Boyne, from 2058 m (6750 ft) to 2528 m (8293 ft). Lithic reports with lithic charts were prepared and submitted on each well. These tested for Sisquoc Fm lithology to be found in the Santa Maria area. This was noted in the OTEC No. 1 Boyne interval studied. The wells also tested for Monterey Fm. lithology, which was noted in all four wells examined. Composite samples of those intervals [combined into 9.15 m (30 foot) intervals] were processed for paleontology. Although the samples were very refractory and siliceous, all but one (Sun 5 Blair) yielded index fossil specimens, and as Sun 5 Blair samples below 3686 m (12090 ft) were processed previously, we were able to make identifications that would aid this study. The intervals examined were of the Sisquoc Formation, the Low Resistivity and the High Resistivity sections of the Monterey Formation. The Lower Sisquoc and the top of the late Miocene were identified by six index fossils: Bolivina barbarana, Gyroidina soldanii rotundimargo, Bulimina montereyana, Prunopyle titan, Axoprunum angelinum and Glyphodiscus stellatus. The Low Resistivity Monterey Fm. was identified by eight index fossils, all of which died out at the top of the late Miocene, late Mohnian: Nonion goudkoffi, Brizalina girardensis, Cibicides illingi, Siphocampe nodosaria, Stephanogonia hanzawai, Uvigerina modeloensis, Buliminella brevior, Tytthodiscus sp.and the wide geographic ranging index pelagic fossil, Sphaeroidinellopsis subdehiscens. The High Resistivity Monterey Fm. was identified by eight index fossils, all of which died out at the top of the late Miocene, early Mohnian: Bolivina aff hughesi, Rotalia becki, Suggrunda californica, Virgulina grandis, Virgulina ticensis, Bulimina ecuadorana, Denticula lauta and Nonion medio-costatum. Please see Appendix B, Fig. 1, Neogene Zones, p. 91 and Appendix C, chart 5, p. 99 By the use of Stratigraphy, employing both Paleontology and Lithology, we can increase hydrocarbon production, reduce operating costs and risks by the identification of the productive sections, and reduce environmental concerns by drilling less dry holes needlessly.

  5. Amended Record of Decision for the Surplus Plutonium Disposition Program (4/19/02)

    Broader source: Energy.gov (indexed) [DOE]

    432 Federal Register / Vol. 67, No. 76 / Friday, April 19, 2002 / Notices Publisher: The test publisher and the address, contact person, telephone, and fax number of the test publisher are: CTB/McGraw-Hill, 20 Ryan Ranch Road, Monterey, California 93940- 5703, Contact: Ms. Veronika Henderson, Telephone: (831) 393- 7363, Fax: (831) 393-7142. 7. Wonderlic Basic Skills Test (WBST)- Verbal Forms VS-1 & VS-2, Quantitative Forms QS-1 & QS-2 Passing scores: The approved passing scores on this

  6. yzk90a0.tmp

    Office of Scientific and Technical Information (OSTI)

    >, ) Y SAND98- 1176C * To'be presented at the 24ti International Pyrotechnics Seminar, Monterey, CA. July 1998 5@!LD .-WI-M4C THEORETICAL ENERGY RELEASE OF THERNIITES, COQF"9807 INTERMETALLICS, AND CO\ IBWrTIBLE METALS+ S. H. Fischer and N1.C. Grubelich Sandia National Laboratories Albuquerque. Nhl S71S5- 1453 A BSTR.4 CT Thermite mixtures. intermelallic reactants, and metal fuels ha~,e long been used in pyrotechnic applications. Ad\>antages of rhese systems ~pically include high

  7. Microsoft PowerPoint - ARM_032607_3647c.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Ground-Based Remote Sensing of Mineral Dust Using MODIS IR Window Channels, AERI Spectra and ARM Data Richard Hansell Jr. (rhansell@atmos.ucla.edu) 1 , K.N. Liou 1 , S.C. Ou 1 , S.C. Tsay 2 ,J. Ji 3 and J. Reid 4 1 Department of Atmospheric and Oceanic Sciences, UCLA, 2 Goddard Space Flight Center, NASA, Greenbelt, Maryland 3 University of Maryland College Park, Maryland, 4 Naval Research Laboratory, Monterey, California 1. Introduction 2. MODIS Dust Detection - method * The effects of

  8. Union Pacific Railroad`s LNG locomotive test program

    SciTech Connect (OSTI)

    Grimaila, B.

    1995-12-31

    Union Pacific Railroad is testing LNG in six locomotives through 1997 to determine if the liquefied natural gas technology is right for them. Two of the six LNG test locomotives are switch, or yard, locomotives. These 1,350 horsepower locomotives are the industry`s first locomotives totally fueled by natural gas. They`re being tested in the yard in the Los Angeles area. The other four locomotives are long-haul locomotives fueled by two tenders. These units are duel-fueled, operating on a mixture of LNG and diesel and are being tested primarily on the Los Angeles to North Platte, Nebraska corridor. All the information concerning locomotive emissions, locomotive performance, maintenance requirements, the overall LNG system design and the economic feasibility of the project will be analyzed to determine if UPR should expand, or abandon, the LNG technology.

  9. Microsoft Word - DOE-ID-INL-14-042 R1.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R1 SECTION A. Project Title: National Cybersecurity and Communications Integration Center (NCCIC)/Industrial Control Systems Cyber Emergency Response Team (ICS-CERT) Idaho High Frequency (HF) Shared Resources (SHARES) Station SECTION B. Project Description: The purpose of this revision is to add road maintenance to the scope of the work. In order to install, access, and maintain the proposed communication system, approximately 75-80 linear yards of the road near the facility (see Figure 1) will

  10. Microsoft Word - DOE-ID-INL-15-013 (1).docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SECTION A. Project Title: Test Reactor Area (TRA)-774 Substation Equipment Upgrades SECTION B. Project Description: Electricity for heat at the Advanced Test Reactor (ATR) heaters is fed from the substation yard TRA-774 on the northeast corner of TRA-670. The proposed action would replace equipment in TRA-774 to improve efficiency of the equipment and to improve safety during maintenance operations. The proposed action would replace and upgrade the following components: 1. The fused

  11. Microsoft Word - DOE-ID-INL-15-013 R1.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R1 SECTION A. Project Title: Test Reactor Area (TRA)-774 Substation Equipment Upgrades SECTION B. Project Description: This EC is being revised to capture the use of sulfur hexaflouride (SF 6 ) in the proposed new sectionalizer switch. Electricity for heat at the Advanced Test Reactor (ATR) heaters is fed from the substation yard TRA-774 on the northeast corner of TRA-670. The proposed action would replace equipment in TRA-774 to improve efficiency of the equipment and to improve safety during

  12. Portsmouth Waste Disposition Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Disposition Record of Decision Portsmouth Waste Disposition Record of Decision The Ohio Environmental Protection Agency (Ohio EPA) and the U.S. Department of Energy (DOE) have agreed upon a plan for the disposition of more than two million cubic yards of waste that would be generated from the decontamination and decommissioning (D&D) of the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. Ohio EPA's concurrence with the Record of Decision (ROD) prepared by DOE comes after a

  13. Out of bounds additive manufacturing (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Out of bounds additive manufacturing Citation Details In-Document Search Title: Out of bounds additive manufacturing Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size. Authors: Holshouser, Chris [1] ; Newell, Clint [1] ; Palas, Sid [1] ; Love,

  14. Slide 1

    Office of Environmental Management (EM)

    CERCLA* Waste Disposal Capacity for the Oak Ridge Reservation Presentation to the Oak Ridge Site Specific Advisory Board February 11, 2015 Laura O. Wilkerson Portfolio Federal Project Director Oak Ridge Office of Environmental Management *Comprehensive Environmental Response, Compensation, and Liability Act of 1980 www.energy.gov/EM 2 Oak Ridge Reservation ETTP ORNL Y-12 City of Oak Ridge EMWMF www.energy.gov/EM 3 * Engineered landfill with six disposal cells * Capacity 2.18 million cubic yards

  15. The use of audibility analysis to minimize community noise impact of today's smaller generation facilities located near residential areas

    SciTech Connect (OSTI)

    Liebich, R.E. ); Cristoforo, M.P. )

    1988-01-01

    This paper demonstrates practical applications of the Fidell-Horonjeff audibility model to the analysis of power plant noise sources, such as cooling towers, transformers, pumps, ventilation fans, mobile diesel-powered yard equipment, loudspeaker systems, and even sodium-vapor-type outdoor lighting. Because plant-design engineers currently are relatively unfamiliar with the Fidell-Horonjeff model, the first part of this paper summarizes and reviews the model.

  16. Use of audibility analysis to minimize community noise impact of today's smaller generation facilities located near residential areas

    SciTech Connect (OSTI)

    Leibich, R.E.; Cristoforo, M.P.

    1988-01-01

    This paper is intended to demonstrate practical applications of the Fidell-Horonjeff audibility model (2) to the analysis of power plant noise sources, such as cooling towers, transformers, pumps, ventilation fans, mobile diesel-powered yard equipment, loudspeaker systems, and even sodium-vapor-type outdoor lighting. Because plant-design engineers currently are relatively unfamiliar with the Fidell-Horonjeff model, the first part of this paper summarizes and reviews the model.

  17. - 1222.2 Construction Schedule_v3

    Broader source: Energy.gov (indexed) [DOE]

    Activity Description Duration 1. HVDC Transmission Line 760d T-Line construction mobilization 3 mons Right-of-way surveys, clearing, erosion control and site prep 18 mons Materials delivered to laydown yard 18 mons Access road construction 16 mons Foundation excavation and installation 16 mons Materials delivered to erection site 18 mons Structure framing and erection 18 mons Conductor and optical ground wire stringing and clipping 20 mons Clean up and restoration 12 mons 2. AC/DC Converter

  18. DOE Idaho site reaches 20-year cleanup milestone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IDAHO FALLS, IDAHO, 83403 Media Contact: Brad Bugger (208) 526-0833 For Immediate Release: January 19, 2012 DOE Idaho site reaches 20-year cleanup milestone IDAHO FALLS, ID- In two decades of Superfund cleanup work, the U.S. Department of Energy's Idaho site has removed hundreds of thousands of cubic yards of radioactive and hazardously contaminated soils, excavated radioactive waste buried since the 1950s, removed three nuclear reactors and hundreds of buildings, completely closed three major

  19. NEVADA NATIONAL SECURITY SITE (NNSS) DRIVERS ROUTE/SHIPMENT INFORMATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NNSS) DRIVERS ROUTE/SHIPMENT INFORMATION (12/2014 Log No. 2014-229) NOTE: THIS FORM IS TWO (2) PAGES - YOU MUST COMPLETE BOTH PAGES NNSS SHIPMENT NUMBER: CARRIER NAME: TRACTOR NO.: TRAILER NO.: AT ORIGIN AT NNSS Main Gate NNSS OFFICE USE ONLY DEPARTURE DATE: ARRIVAL DATE: DESTINATION AREA: Area 5 DEPARTURE TIME: ARRIVAL TIME: NNSS DEPARTURE TIME: LOCATION: HELD OVER? No Yes REASON: ROUTE INFORMATION REVIEWED BY: ONSITE SHIPMENT (MAP NOT APPLICABLE) DROP YARD; LEAVE THIS FORM WITH SHIPPING

  20. Microsoft Word - Sandalow Detroit National Summit Speech 6-17.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REMARKS PREPARED FOR DELIVERY REMARKS OF DAVID SANDALOW ASSISTANT SECRETARY FOR POLICY & INTERNATIONAL AFFAIRS U.S. DEPARTMENT OF ENERGY DETROIT ECONOMIC CLUB NATIONAL SUMMIT JUNE 17, 2009 [Acknowledgements.] It's good to be home in Michigan. I grew up a mile from the Michigan Football Stadium - close enough to hear the roar of the crowd from the front yard when the Wolverines scored. My first job after graduation was at the Michigan Department of Commerce. That was many years ago. In the

  1. E1304048_3_8_FH.FH11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Percentage of Waste Received at ERDF Requires Macroencapsulation 98% Waste not requiring treatment 2% Waste requiring treatment 80% Out of cell soil treatment 20% Macroencapsulation 40% Large or Complex 30% Bulk Hazardous Debris 30% Containerized E1304048_3 Small Percentage of Waste Received at ERDF Requires Macroencapsulation 40% Large or Complex 30% Bulk Hazardous Debris 30% Containerized E1304048_4 3,000 cubic yards of hazardous debris from the 324 Building alone will be disposed at ERDF. The

  2. LANL completes excavation of 1940s waste disposal site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL completes excavation LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 22, 2011 Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation Workers sample contents of LANL's Material Disposal Area B (MDA-B) before excavation. Contact Colleen Curran Communications Office (505) 664-0344 Email LOS ALAMOS, New Mexico, September 22, 2011-Los Alamos

  3. Council of Athabascan Tribal Governments - Wood Energy Program in the Yukon Flats Region

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Collaborative Integrated Wood Energy Program for Fort Yukon Implementation DOE Tribal Energy Program 2 0 November 2008 Gwitchyaa Zhee Corporation CATG - AWEA For-Profit Wood Energy Business Model Fort Yukon * Forest Management Service - CATG * For-Profit Wood Utility Company - Vertically Integrated * Gwitchyaa Zhee Native Corporation - Wood Harvest Company - Village Wood Yard/Distribution Company - Wood Energy Utility - Diesel Biomass - Wood diesel hybrid power plant CHP - still dreaming for

  4. U.S. Navy Marine Diesel Engines and the Environment - Part 1 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 1 U.S. Navy Marine Diesel Engines and the Environment - Part 1 2002 DEER Conference Presentation: NAVSEA PDF icon 2002_deer_osborne1.pdf More Documents & Publications Philadelphia Navy Yard: UESC Project with Philadelphia Gas Works 2013 Federal Energy and Water Management Award Winner Naval Sea Systems Command EIS-0409: EPA Notice of Availability of the Final Environmental Impact Statement

  5. ENERGY STAR for Homes - Building America Top Innovation | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ENERGY STAR for Homes - Building America Top Innovation ENERGY STAR for Homes - Building America Top Innovation Photo of a house with a "SOLD" sign in front yard. This Top Innovation highlights Building America's support of ENERGY STAR for Homes, which is leading the U.S. housing industry to high performance homes and driving the development of a national Home Energy Rating System (HERS) infrastructure. ENERGY STAR for Homes has profoundly impacted the nation's housing. In

  6. CBEI … Demonstrating On-bill Financing to Drive Deep Retrofits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrating On-bill Financing to Drive Deep Retrofits 2015 Building Technologies Office Peer Review Rudy Terry, rterry@PIDCphila.com CBEI/Philadelphia Industrial Development Corporation Project Summary Timeline: Start date: May 1, 2014 Planned end date: April 30, 2016 Key Milestones 1. Proposed tariff approach and tenant engagement strategy; 9/30/2014 2. Build out recommended program for proposing to tenants, 10/1/2014 3. Provide materials to engage Navy Yard tenants, including tenant

  7. The U.S. Department of Energy will initiate the excavation and hauling of tailin

    Office of Legacy Management (LM)

    will initiate the excavation and hauling of tailings and contaminated material in May 1997 at the Monticello millsite in Monticello, Utah. Remediation of the former millsite will remove approximately 2.3 million cubic yards of radioactive mill tailings and other materials and place them in a permanent repository located 1 mile south of the existing millsite. Background The Monticello mill was built in 1942 to provide vanadium during World War II. The plant was later modified to mill uranium ore.

  8. Performance Assurance for Multi-Year Contracts Under the Utility Incentive

    Energy Savers [EERE]

    Program | Department of Energy Performance Assurance for Multi-Year Contracts Under the Utility Incentive Program Performance Assurance for Multi-Year Contracts Under the Utility Incentive Program Fact sheet describes guidance for Federal energy and facility managers about participating in utility programs for the management of electricity demand and energy and water conservation. PDF icon 41898.pdf More Documents & Publications UESC Case Study: Philadelphia Navy Yard Utility Energy

  9. Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits

    Office of Environmental Management (EM)

    Could Support 23,500 Jobs | Department of Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs November 10, 2011 - 10:36am Addthis This is the Greater Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy Efficiency Buildings

  10. Paducah Waste Disposal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediation » Paducah Waste Disposal Paducah Waste Disposal The U.S. Department of Energy (DOE) is looking at options to dispose of waste that will be generated from further cleanup of the Paducah Gaseous Diffusion Plant. Cleanup of the Site is projected to create an estimated 3.6 million cubic yards of demolition debris, metals, soils, asbestos and other material. DOE is using the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA) process to make a decision

  11. DOE - Office of Legacy Management -- New York Shipbuilding Corp - NJ 34

    Office of Legacy Management (LM)

    Shipbuilding Corp - NJ 34 FUSRAP Considered Sites Site: NEW YORK SHIPBUILDING CORP. (NJ.34) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: South Yard, New York Shipbuilding facility on the Delaware River , Camden , New Jersey NJ.34-1 Evaluation Year: Circa 1990 NJ.34-2 Site Operations: NYX Project (1951 - 1954) - fabricated and assembled equipment (reactors) for the AEC Savannah River Plant under subcontract to AEC Prime. Later built the

  12. Council of Athabascan Tribal Governments - Wood Energy Program in the Yukon Flats Region

    Office of Environmental Management (EM)

    Collaborative Integrated Wood Energy Program for Fort Yukon Implementation DOE Tribal Energy Program 2 0 November 2008 Gwitchyaa Zhee Corporation CATG - AWEA For-Profit Wood Energy Business Model Fort Yukon * Forest Management Service - CATG * For-Profit Wood Utility Company - Vertically Integrated * Gwitchyaa Zhee Native Corporation - Wood Harvest Company - Village Wood Yard/Distribution Company - Wood Energy Utility - Diesel Biomass - Wood diesel hybrid power plant CHP - still dreaming for

  13. Y-12 National Security Complex Cleanup | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    fact sheet provides an update on all of the current cleanup projects at the site, and it also lists the major projects completed at the Y-12 National Security Complex. This document discusses the following projects: Old Salvage Yard Scrap Removal Building 9735 Demolition Alpha 5 Project Beta 3 (9204-3) Legacy Material Disposition Project Beta 4 Legacy Material Disposition Project Biology Complex and Building 9769 Deactivation and Demolition Project Outfall 200 Conceptual Design Project Mercury

  14. Background

    Office of Legacy Management (LM)

    explains the potential health hazards associated with air quality related to the removal and storage of mill tailings and other contaminated materials. Background From 1942 to 1960, uranium ore was processed at the Monticello mill in southeast Utah. When the mill was closed, approximately 2.3 million cubic yards of low-level radioactive mill tailings, contaminated soil, and other miscellaneous debris remained on the site. The U.S. Department of Energy (DOE) Grand Junction Projects Office, in

  15. Solar Decathlon 2015: Nation's Leading Sustainable Home Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Competition on the Horizon | Department of Energy Nation's Leading Sustainable Home Design Competition on the Horizon Solar Decathlon 2015: Nation's Leading Sustainable Home Design Competition on the Horizon July 13, 2015 - 2:15pm Addthis The New York City College of Technology is weatherproofing its house, called DURA, at a Brooklyn Navy Yard construction site. | Photo courtesy of New York City College of Technology. The New York City College of Technology is weatherproofing its house,

  16. LTS Plan Workshop Questions and Comments

    Office of Legacy Management (LM)

    LTS Plan Workshop Questions and Comments August 28, 2002 Monitoring and Maintenance 1. Is there a possibility of spontaneous combustion in the disposal cell? Response J-1: The concerns raised by the comments are valid for certain well-defined scenarios, most of which involve either composting protocols or disposal of organic mass in demolition or municipal landfills. The commentator references the quantity of more than 10,000 cubic yards of wood or other similar materials incorporated into the

  17. Mr. Carl Schafer Director of Environmental Policy

    Office of Legacy Management (LM)

    .., ;: i' ., . '" ._~ .> DEPARTMENT OF THE Installation/Facility 1. Alabama Ordnance Works Sylacauga, AL ;' 2. Morgantown Ordnance Works Morgantown, WV 3. Naval Office - University of New Mexico Albuquerque, NM ,A 4. Naval Ordnance Laboratory White Oak Silver Spring, MD 5. Navy Yard Mare Island, CA DEFENSE INSTALLATIONS/FACILITIES MED/AEC Activity A heavy water (P9) plantwas constructed and operated on this installation from January j 1944 to June 1945. No residual radioactive L+*

  18. Mr. Carl Schafer Director of Environmental Policy

    Office of Legacy Management (LM)

    .., ;: i' ., . '" ._~ .> DEPARTMENT OF THE Installation/Facility 1. Alabama Ordnance Works Sylacauga, AL ;' 2. Morgantown Ordnance Works Morgantown, WV 3. Naval Office - University of New Mexico Albuquerque, NM ,A 4. Naval Ordnance Laboratory White Oak Silver Spring, MD 5. Navy Yard Mare Island, CA DEFENSE INSTALLATIONS/FACILITIES MED/AEC Activity A heavy water (P9) plantwas constructed and operated on this installation from January j 1944 to June 1945. No residual radioactive L+*

  19. Electricity Advisory Committee Meeting Presentations June 2012 - Tuesday,

    Office of Environmental Management (EM)

    June 12, 2012 | Department of Energy Tuesday, June 12, 2012 Electricity Advisory Committee Meeting Presentations June 2012 - Tuesday, June 12, 2012 The Department of Energy's Electricity Advisory Committee held a meeting on Monday, June 11 and Tuesday, June 12 at the Capital Hilton Hotel, 16th and K Streets, NW, Washington, DC. Tuesday, June 12, 2012 Microgrids Panel Jeff Marqusee, DOD/OSD Will Agate, Philadelphia Navy Yard Angie Beehler, WalMart Interoperability Presentation - Erich

  20. Analysis of Aquifer Response, Groundwater Flow, and PlumeEvolution at Site OU 1, Former Fort Ord, California

    SciTech Connect (OSTI)

    Jordan, Preston D.; Oldenburg, Curtis M.; Su, Grace W.

    2005-02-24

    This report presents a continuation from Oldenburg et al. (2002) of analysis of the hydrogeology, In-Situ Permeable Flow Sensor (ISPFS) results, aquifer response, and changes in the trichloroethylene (TCE) groundwater plume at Operational Unit 1 (OU 1) adjacent to the former Fritzsche Army Airfield at the former Fort Ord Army Base, located on Monterey Bay in northern Monterey County. Fuels and solvents were burned on a portion of OU 1 called the Fire Drill Area (FDA) during airport fire suppression training between 1962 and 1985. This activity resulted in soil and groundwater contamination in the unconfined A-aquifer. In the late 1980's, soil excavation and bioremediation were successful in remediating soil contamination at the site. Shortly thereafter, a groundwater pump, treat, and recharge system commenced operation. This system has been largely successful at remediating groundwater contamination at the head of the groundwater plume. However, a trichloroethylene (TCE) groundwater plume extends approximately 3000 ft (900 m) to the northwest away from the FDA. In the analyses presented here, we augment our prior work (Oldenburg et al., 2002) with new information including treatment-system totalizer data, recent water-level and chemistry data, and data collected from new wells to discern trends in contaminant migration and groundwater flow that may be useful for ongoing remediation efforts. Some conclusions from the prior study have been modified based on these new analyses, and these are pointed out clearly in this report.

  1. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect (OSTI)

    Robert A. Liske

    2003-09-26

    This report summarizes the work performed from 1 April 2003 to 30 September 2003 and recommends the tasks to be performed during Phase II (Pilot Evaluation). During this period discussions were held with various water agencies regarding use of the treated produced water either directly or indirectly through a water trading arrangement. In particular, several discussions were held with Monterey County Water Resources Agency, that has been charged with the long-term management and preservation of water resources in Monterey County. The Agency is very supportive of the program. However, they would like to see water quality/cost estimate data for the treated produced water from the pilot study prior to evaluating water use/water trade options. The agency sent a letter encouraging the project team to perform the pilot study to evaluate feasibility of the project. In addition, the regulations related to use of the treated water for various applications were updated during this period. Finally, the work plan, health and safety plan and sample analyses plan for performing pilot study to treat the oilfield produced water were developed during this period.

  2. Spoil handling and reclamation costs at a contour surface mine in steep slope Appalachian topography

    SciTech Connect (OSTI)

    Zipper, C.E.; Hall, A.T.; Daniels, W.L.

    1985-12-09

    Accurate overburden handling cost estimation methods are essential to effective pre-mining planning for post-mining landforms and land uses. With the aim of developing such methods, the authors have been monitoring costs at a contour surface mine in Wise County, Virginia since January 1, 1984. Early in the monitoring period, the land was being returned to its Approximate Original Contour (AOC) in a manner common to the Appalachian region since implementation of the Surface Mining Control and Reclamation Act of 1977 (SMCRA). More recently, mining has been conducted under an experimental variance from the AOC provisions of SMCRA which allowed a near-level bench to be constructed across the upper surface of two mined points and an intervening filled hollow. All mining operations are being recorded by location. The cost of spoil movement is calculated for each block of coal mined between January 1, 1984, and August 1, 1985. Per cubic yard spoil handling and reclamation costs are compared by mining block. The average cost of spoil handling was $1.90 per bank cubic yard; however, these costs varied widely between blocks. The reasons for those variations included the landscape positions of the mining blocks and spoil handling practices. The average reclamation cost was $0.08 per bank cubic yard of spoil placed in the near level bench on the mined point to $0.20 for spoil placed in the hollow fill. 2 references, 4 figures.

  3. Thermionic Reactor Design Studies

    SciTech Connect (OSTI)

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  4. ICENES `91:Sixth international conference on emerging nuclear energy systems. Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, {mu}-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  5. ICENES '91:Sixth international conference on emerging nuclear energy systems

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This document contains the program and abstracts of the sessions at the Sixth International Conference on Emerging Nuclear Energy Systems held June 16--21, 1991 at Monterey, California. These sessions included: The plenary session, fission session, fission and nonelectric session, poster session 1P; (space propulsion, space nuclear power, electrostatic confined fusion, fusion miscellaneous, inertial confinement fusion, [mu]-catalyzed fusion, and cold fusion); Advanced fusion session, space nuclear session, poster session 2P, (nuclear reactions/data, isotope separation, direct energy conversion and exotic concepts, fusion-fission hybrids, nuclear desalting, accelerator waste-transmutation, and fusion-based chemical recycling); energy policy session, poster session 3P (energy policy, magnetic fusion reactors, fission reactors, magnetically insulated inertial fusion, and nuclear explosives for power generation); exotic energy storage and conversion session; and exotic energy storage and conversion; review and closing session.

  6. The Influence of deep-sea bed CO2 sequestration on small metazoan (meiofaunal) community structure and function

    SciTech Connect (OSTI)

    Carman, Kevin R; Fleeger, John W; Thistle, David

    2013-02-17

    We conducted a series of experiments in Monterey Submarine Canyon to examine potential ecological impacts of deep-ocean CO2 sequestration. Our focus was on responses of meiofaunal invertebrates (< 1 mm body length) living within the sediment at depths ranging between 3000-3600 m. Our particular emphasis was on harpacticoid copepods and nematodes. In the first phase of our DOE funding, we reported findings that suggest substantial (~80%) mortality to harpacticoid copepods. In the second phase of our funding we published additional findings from phase one and conducted follow-up experiments in the Monterey Canyon and in the laboratory. In one experiment we looked for evidence that meiofauna seek to escape areas where CO2 concentrations are elevated. â??Emergence trapsâ? near the source of the CO2-rich seawater caught significantly more harpacticoids than those far from it. The harpacticoids apparently attempted to escape from the advancing front of carbon dioxide-rich seawater and therefore presumably found exposure to it to be stressful. Although most were adversely affected, species differed significantly in the degree of their susceptibility. Unexpectedly, six species showed no effect and may be resistant. The hypothesis that harpacticoids could escape the effects of carbon dioxide-rich seawater by moving deeper into the seabed was not supported. Exposure to carbon dioxide-rich seawater created partially defaunated areas, but we found no evidence that disturbance-exploiting harpacticoid species invaded during the recovery of the affected area. Based on a detailed analysis of nematode biovolumes, we postulated that the nematode community in Monterey Canyon throughout the upper 3 cm suffered a high rate of mortality after exposure to CO2, and that nematodes were larger because postmortem expansions in body length and width occurred. Decomposition rates were probably low and corpses did not disintegrate in 30 days. The observable effects of a reduction in pH to about 7.0 after 30 days were as great as an extreme pH reduction (5.4), suggesting that â??moderateâ?? CO2 exposure, compared to the range of exposures possible following CO2 release, causes high mortality rates in the two most abundant sediment-dwelling metazoans (nematodes and copepods). While we found evidence for negative impacts on deep-sea benthos, we also observed that small-scale experiments with CO2 releases were difficult to replicate in the deep sea. Specifically, in one CO2-release experiment in the Monterey Canyon we did not detect an adverse impacts on benthic meiofauan. In laboratory experiments, we manipulated seawater acidity by addition of HCl and by increasing CO2 concentration and observed that two coastal harpacticoid copepod species were both more sensitive to increased acidity when generated by CO2. Copepods living in environments more prone to hypercapnia, such as mudflats, may be less sensitive to future acidification. Ocean acidification is also expected to alter the toxicity of waterborne metals by influencing their speciation in seawater. CO2 enrichment did not affect the free-ion concentration of Cd but did increase the free-ion concentration of Cu. Antagonistic toxicities were observed between CO2 with Cd, Cu and Cu free-ion. This interaction could be due to a competition for H+ and metals for binding sites.

  7. Bonneville Power Administration Transmission System Vegetation Management Program - Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2000-06-23

    Bonneville is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations in a region of diverse vegetation. This vegetation can interfere with electric power flow, pose safety problems for us and the public, and interfere with our ability to maintain these facilities. We need to (1) keep vegetation away from our electric facilities; (2) increase our program efficiency and consistency; (3) review herbicide use (under increased public scrutiny); and (4) maximize the range of tools we can use while minimizing environmental impact (Integrated Vegetation Management). This Final Environmental Impact Statement (FEIS) establishes Planning Steps for managing vegetation for specific projects (to be tiered to this Environmental Impact Statement (EIS)). In addition to No Action (current practice), alternatives are presented for Rights-of-way, Electric Yards, and Non-electric Facilities (landscaping, work yards). Four vegetation control methods are analyzed manual, mechanical, herbicide, and biological. Also evaluated are 23 herbicide active ingredients and 4 herbicide application techniques (spot, localized, broadcast, and aerial). For rights-of-way, we consider three sets of alternatives: alternative management approaches (time-driven or establishing low-growing plant communities); alternative method packages; and, if herbicides are in a methods package, alternative vegetation selections (noxious weeds, deciduous, or any vegetation). For electric yards, one herbicide-use alternative is considered. For non-electric facilities, two method package alternatives are considered. For rights-of-way, the environmentally preferred alternative(s) would use manual, mechanical, and biological control methods, as well as spot and localized herbicide applications for noxious and deciduous plant species; the BPA-preferred alternative(s) would add broadcast and aerial herbicide applications, and would use herbicides on any vegetation. Both would favor a management approach that fosters low-growing plant communities.

  8. Field studies of beach cones as coastal erosion control/reversal devices for areas with significant oil and gas activities. Final report, February 24, 1992--September 18, 1995

    SciTech Connect (OSTI)

    Law, V.J.

    1995-09-18

    The primary objective of this project was to evaluate the utility of a device called the {open_quotes}beach cone{close_quotes} in combating coastal erosion. Seven initial sites were selected for testing beach cones in a variety of geometric configurations. Permits were obtained from the State of Louisiana and the U.S. Army Corps of Engineers to perform the work associated with this study. Six hundred beach cones were actually installed at six of the sites in late July and early August, 1992. Findings indicate that beach cones accreted significant amounts of materials along the beach of a barrier island, and they might have been instrumental in repairing an approximately 200 meter gap in the island. At the eighth installation the amount of accreted material was measured by surveys to be 2200 cubic meters (2900 cubic yards) in February of 1993, when the cones were found to have been completely covered by the material. At other test sites, accretion rates have been less dramatic but importantly, no significant additional erosion has occurred, which is a positive result. The cost of sediment accretion using beach cones was found to be about $13.72 per cubic yard, which would be much lower if the cones were mass produced (on the order of $3.00 per cubic yard). The survival of the cones through the fringes of Hurricane Andrew indicates that they can be anchored sufficiently to survive significant storms. The measurements of the cones settling rates indicate that this effect is not significant enough to hinder their effectiveness. A subcontract to Xavier University to assess the ecological quality of the experimental sites involved the study of the biogeochemical cycle of trace metals. The highest concentration of heavy metals were near a fishing camp while the lowest levels were in the beach sand of a barrier island. This suggests that the metals do not occur naturally in these areas, but have been placed in the sediments by man`s activities.

  9. Raley's LNG Truck Site Final Data Report

    SciTech Connect (OSTI)

    Battelle

    1999-07-01

    Raley's is a 120-store grocery chain with headquarters in Sacramento, California, that has been operating eight heavy-duty LNG trucks (Kenworth T800 trucks with Cummins L10-300G engines) and two LNG yard tractors (Ottawa trucks with Cummins B5.9G engines) since April 1997. This report describes the results of data collection and evaluation of the eight heavy-duty LNG trucks compared to similar heavy-duty diesel trucks operating at Raley's. The data collection and evaluation are a part of the U.S. Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) Alternative Fuel Truck Evaluation Project.

  10. Section J.14 Changes.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Modification 489 HANFORD WASTE SITE ASSIGNMENT LIST Site Code Site Names Designated Area Assigned Contractor 100-B-1 100-B-1; Laydown Yard; Surface Chemical and Solid Waste Dumping Area 100B WCH 100-B-10 100-B-10; 107-B Basin Leak and Warm Springs 100B WCH 100-B-11 100-B-11; 115-B Tank; 115-B/C Caisson Site; 115-B/C Caisson Valve Pit; 115-BC Drywell; 115-BC Sump 100B WCH 100-B-12 100-B-12; Filter Box Radiological Materials Area (RMA) 100B WCH 100-B-14 100-B-14; 100-B Area Process and Sanitary

  11. Recovery Act milestone: Excavation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    milestone: Excavation begins at Manhattan Project landfill July 1, 2010 Extra safety precautions for six-acre site LOS ALAMOS, New Mexico, July 1, 2010-Los Alamos National Laboratory today began excavating a World War II-era landfill that could contain an entire truck used at the Trinity atomic bomb test-the world's first test of an atomic weapon. Crews will scoop out 22,000 cubic yards of trash and dirt-enough to cover a football field to a depth of about 11 feet-and fill the excavated areas

  12. Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-04-01

    Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

  13. Plan Approved for Waste Disposition at DOE's Portsmouth Site | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Plan Approved for Waste Disposition at DOE's Portsmouth Site Plan Approved for Waste Disposition at DOE's Portsmouth Site July 7, 2015 - 3:01pm Addthis PIKETON, Ohio - The Ohio Environmental Protection Agency (Ohio EPA) and the U.S. Department of Energy (DOE) have agreed upon a plan for the disposition of more than two million cubic yards of waste that would be generated from the decontamination and decommissioning (D&D) of the Portsmouth Gaseous Diffusion Plant in Piketon,

  14. WS-J 14 Update Worksheet(20April14).xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Modification 350, Attachment 4 HANFORD WASTE SITE ASSIGNMENT LIST Site Code Site Names Designated Area Assigned Contractor 100-B-1 100-B-1; Laydown Yard; Surface Chemical and Solid Waste Dumping Area 100B WCH 100-B-10 100-B-10; 107-B Basin Leak and Warm Springs 100B WCH 100-B-11 100-B-11; 115-B Tank; 115-B/C Caisson Site; 115-B/C Caisson Valve Pit; 115-BC Drywell; 115-BC Sump 100B WCH 100-B-12 100-B-12; Filter Box Radiological Materials Area (RMA) 100B WCH 100-B-14 100-B-14; 100-B Area Process

  15. Rail Networks Are Getting Smarter | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rail Networks Are Getting Smarter Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) RailConnect 360 makes rail networks and operations smarter RailConnect 360 includes Movement Planner, Yard Planner and Trip Optimizer RailConnect 360 increases efficiency Freight trains moving faster could save railroads millions yearly

  16. Flight Path 5 - About

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ER1) Target 1 Flight Path 05 (1FP05) utilizes low-energy neutrons from a water moderator on the 1L target. About Target 1 Flight Path 05 (ER1 and Silo) Target 1 Flight Path 05 (1FP05) utilizes low-energy neutrons from a water moderator on the 1L target. This flight path has two detector areas: (1) In experiment building ER-1 (MPF-30) at a distance of approximately 6 m and (2) in a detector shed in the Target-4 yard at a flight path length of approximately 60 m. The relatively short flight path

  17. AUM14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learning with Purpose Learning with Purpose The X ---Array a nd S ATURN: A n ew d ecay---spectroscopy s tation for C ARIBU AJ M itchell University o f M assachusetts L owell ATLAS U sers' M eeting 1 5 M ay 2 014 Email: A lan_Mitchell@uml.edu Learning with Purpose The C ARIBU h all Kicker X-Array/SATURN CPT tower and electronics Stub-line tape station CARIBU high-voltage platform To ATLAS To Low-Energy experiments Switch yard Learning with Purpose The " X---Array" @ C ARIBU * Five H PGe

  18. LANL completes excavation of 1940s waste disposal site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Excavation of waste disposal site completed LANL completes excavation of 1940s waste disposal site The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. September 30, 2011 Material Disposal Area B Material Disposal Area B, the Lab's oldest waste disposal site, was excavated inside sturdy metal enclosures.There was no open air excavation at MDA-B. Contact Small Business Office (505) 667-4419 Email "Safety for the public, the environment, and

  19. The Story of NIFFY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Story of NIFFY When NIF was being planned and built, we got a big surprise. In 1997, while removing 210,000 cubic yards of earth-enough to fill 2½ Olympic-size swimming pools-for utility trenches at the site, we discovered the oldest known Livermore Valley resident: a prehistoric elephant called a mammoth. We assembled a team of experts. Archeologist Dr. Roger Kelly from the Department of the Interior and Scott Samuelson of the Department of Energy worked together with LLNL scientists to

  20. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect (OSTI)

    Helm, C.; Burman, K.

    2010-04-01

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  1. Estimated Cost Description Determination Date:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Title, Location Estimated Cost Description Determination Date: 2010 LCLS Undulator 2 is envisioned to be a 0.2 - 2keV FEL x-ray source, capable of delivering x-rays to End Station A (ESA), located in the existing Research Yard at SLAC. It will also be configurable as a non- FEL hard x-ray source capable of delivering a chirped x-ray pulse for single-shot broad-spectrum measurements. The project would entail reconstruction of the electron beam transport to End Station A, construction and

  2. DURA URBAN HOUSE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DURA URBAN HOUSE Solar Decathlon DURA URBAN HOUSE People from many nations arrive in New York City to pursue the American Dream. The New York City College of Technology team embodies this spirit in Solar Decathlon 2015, called DURA-an acronym for Diverse, Urban, Resilient, and Adaptable. The group is assembled DURA in the Brooklyn Navy Yard in preparation for the competition in Irvine, California. The slender, 24-ft. by 50-ft. house is suitable for single family living on a small city lot.

  3. Briggs & Stratton: Putting All Energy Efficiency Options on the Table - Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Briggs & Stratton: Putting All Energy Efficiency Options on the Table Briggs & Stratton manufactures internal combustion engines, as well as yard and home power products for customers in more than 100 countries on 6 continents. 1 Briggs & Stratton is also a company that makes full use of any and all available resources to reduce energy intensity. To date, Briggs & Stratton has been successful in reducing its energy use by 37.1 million kilowatt hours (kWh)*. The company was able

  4. Los Alamos Lab Completes Excavation of Waste Disposal Site Used in the 1940s

    Office of Environmental Management (EM)

    September 29, 2011 LOS ALAMOS, N.M. - Los Alamos National Laboratory recently completed excava- tion of its oldest waste disposal site, Material Disposal Area B (MDA-B), thanks to American Recovery and Reinvestment Act funding. The excavation removed about 43,000 cubic yards of contaminated debris and soil from the six-acre site. MDA-B was used from 1944 to 1948 as a waste disposal site for Manhat- tan Project and Cold War-era research and production. "The completion of the excavation of

  5. Recycling and computerized garbage tracking cut city's costs

    SciTech Connect (OSTI)

    Norris, J.L. )

    1994-02-01

    This article describes Athens, Ohio efforts to encourage recycling and minimizing of landfilled garbage by a sliding rate system for garbage collection that accommodates the highly transient nature of this college community. Residential waste going to the landfill has been reduced by as much as 50 percent. Recycling is scheduled the same day as garbage collection. Recycling crews sort all items and package them for sale. Yard wastes are also recycled and are co-mingled with digested municipal sludge generated at the waste-water treatment plant and applied on agricultural fields as a soil conditioner.

  6. DOE - Office of Legacy Management -- Seaway Industrial Park - NY 09

    Office of Legacy Management (LM)

    Seaway Industrial Park - NY 09 FUSRAP Considered Sites Seaway Industrial Park, NY Alternate Name(s): Seaway Industrial Landfill Seaway Landfill Charles St. Plant NY.09-2 NY.09-3 Location: River Road, Tonawanda, New York NY.09-4 Historical Operations: Received approximately 6,000 cubic yards of low-grade uranium mill tailings and processing residues from the Ashland (Tonawanda North Units 1 and 2) sites. NY.09-5 Eligibility Determination: Eligible NY.09-1 Radiological Survey(s): Assessment

  7. Weldon Spring Site„Connecting lessons from the past with a vision for the future.

    Office of Legacy Management (LM)

    Custody of the Weldon Spring Site was transferred to DOE in 1985 to conduct a major operation that would clean up contamination left from the site's prior activities. The cleanup effort was designated the Weldon Spring Site Remedial Action Project. Surface remediation concluded with completion of a 41-acre, onsite disposal cell in 2001. The cell provides long-term isolation for 1.48 million cubic yards of low-level radioactive waste and chemical waste. The Weldon Spring Site is managed by the

  8. Microsoft PowerPoint - 5 Richard Abitz

    Office of Environmental Management (EM)

    Performance Assessment of the Portsmouth On Site Waste Disposal Facility R.J. Abitz & J.D. Chiou Fluor-BWXT Portsmouth J. Reising DOE Portsmouth P&RA CoP Technical Exchange Meeting Richland, WA 16 December 2015 PORTS End-State Vision 2 Today Post Remediation OSWDF Overview 3 Key Features of OSWDF ~100-acre liner footprint with 10 cells and 2 contingent cells On competent bedrock and 100 feet above the upper most aquifer Over 5 million cubic yards of waste capacity Accept LLW, MLLW, TSCA,

  9. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 390: AREAS 9, 10, AND 12 SPILL SITES, NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    2005-10-01

    Corrective Action Unit (CAU) 390 consists four Corrective Action Sites (CASs) located in Areas 9, 10, and 12 of the Nevada Test Site. The closure activities performed at the CASs include: (1) CAS 09-99-03, Wax, Paraffin: 2 cubic yards of drilling polymer was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (2) CAS 10-99-01, Epoxy Tar Spill: 2 cubic feet of asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (3) CAS 10-99-03, Tar Spills: 3 cubic yards of deteriorated asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (4) CAS 12-25-03, Oil Stains (2); Container: Approximately 16 ounces of used oil were removed from ventilation equipment on June 28,2005, and recycled. One CAS 10-22-19, Drums, Stains, was originally part of CAU 390 but was transferred out of CAU 390 and into CAU 550, Drums, Batteries, and Lead Materials. The transfer was approved by the Nevada Division of Environmental Protection on August 19,2005, and a copy of the approval letter is included in Appendix D of this report.

  10. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S. . Rocky Flats Plant); Rivera, M.A. )

    1993-01-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  11. Disposal of Rocky Flats residues as waste

    SciTech Connect (OSTI)

    Dustin, D.F.; Sendelweck, V.S.; Rivera, M.A.

    1993-03-01

    Work is underway at the Rocky Flats Plant to evaluate alternatives for the removal of a large inventory of plutonium-contaminated residues from the plant. One alternative under consideration is to package the residues as transuranic wastes for ultimate shipment to the Waste Isolation Pilot Plant. Current waste acceptance criteria and transportation regulations require that approximately 1000 cubic yards of residues be repackaged to produce over 20,000 cubic yards of WIPP certified waste. The major regulatory drivers leading to this increase in waste volume are the fissile gram equivalent, surface radiation dose rate, and thermal power limits. In the interest of waste minimization, analyses have been conducted to determine, for each residue type, the controlling criterion leading to the volume increase, the impact of relaxing that criterion on subsequent waste volume, and the means by which rules changes may be implemented. The results of this study have identified the most appropriate changes to be proposed in regulatory requirements in order to minimize the costs of disposing of Rocky Flats residues as transuranic wastes.

  12. Installation restoration program. Phase I. Records search. Niagara Falls Air Force Reserve facility, New York

    SciTech Connect (OSTI)

    Not Available

    1983-12-01

    The Department of Defense (DOD) has developed a program to identify and evaluate past hazardous material disposal sites on DOD property, to control the migration of hazardous contaminants, and to control hazards to health or welfare that may result from these past disposal operations. This program is called the Installation Restoration Program (IRP). The IRP has four phases consisting of Phase I, Initial Assessment/Records Search; Phase II, Confirmation and Quantification; Phase III, Technology Base Development; and Phase IV, Operations/Remedial Measures. Niagara Falls AFRF is located in Niagara County, New York, approximately six miles northeast of the City of Niagara Falls and approximately fifteen miles north of Buffalo. The installation is currently comprised of 985 acres with a base population of approximately 2,560. The following areas were determined to have a sufficient potential to create environmental contamination and follow-on investigation is warranted: Bldg. 600 JP-4 Pipeline Leak; POL JP-4 Tank C; Landfill; BX MOGAS Tank Leak; NYANG Hazardous Waste Drum Storage; POL JP-4 Tank A; JP-4 Tank Truck Spill; Bldg. 202 Drum Storage Yard; Fire Training Facility No. 1, 2 and 3; Bldg. 850 Drum Storage Yard; and AFRES Hazardous Waste Drum Storage.

  13. Beneficial Reuse of San Ardo Produced Water

    SciTech Connect (OSTI)

    Robert A. Liske

    2006-07-31

    This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron, and organics. Pilot study results indicate that produced water from the San Ardo oilfield can be treated to meet project water quality goals. Approximately 600 mg/l of caustic and 100 mg/l magnesium dosing were required to meet the hardness and silica goals in the warm softening unit. Approximately 30% of the ammonia was removed in the cooling tower; additional ammonia could be removed by ion exchange or other methods if necessary. A brackish water reverse osmosis membrane was effective in removing total dissolved solids and organics at all pH levels evaluated; however, the boron treatment objective was only achieved at a pH of 10.5 and above.

  14. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    SciTech Connect (OSTI)

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and approximately 3,900 cubic yards (2,989 cubic meters) of structural concrete which will be placed over about an eighteen month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  15. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect (OSTI)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs and testing, and fill placement strategy. This information is applicable to decommissioning both the 105-P and 105-R facilities. The ISD process for the entire 105-P and 105-R reactor facilities will require approximately 250,000 cubic yards (191,140 cubic meters) of grout and 2,400 cubic yards (1,840 cubic meters) of structural concrete which will be placed over a twelve month period to meet the accelerated schedule ISD schedule. The status and lessons learned in the SRS Reactor Facility ISD process will be described.

  16. St. Louis FUSRAP-A Strategy for Success

    SciTech Connect (OSTI)

    Lyerla, M.; Fox, B.; Chinnock, J.; Haase, A.; Wojinski, S.; Bretz, M.; Cotner, S.; Dellorco, L.; Mueller, D.; Roberts, S.; Overmohle, D.

    2002-02-27

    In October 1997, Congress transferred the Formerly Utilized Sites Remedial Action Program (FUSRAP) from the Department of Energy (DOE) to the United States Army Corps of Engineers (USACE). FUSRAP addresses contamination generated by activities of the Manhattan Engineering District and the Atomic Energy Commission during the 1940's and 50's in support of the nation's nuclear weapons development program. The USACE Operation Order for FUSRAP gave responsibility for remediation of five sites in Missouri and Illinois to the USACESt. Louis District. The principal site is the St. Louis Airport Site (SLAPS), which involves the removal, transportation, disposal, and restoration of approximately 28 acres and 245,000 bank cubic yards (bcy) of contaminated soils. This paper will focus on the progress and achievements in removal action efficiencies of the SLAPS team. This team consists primarily of the USACE and Stone & Webster, Incorporated.

  17. EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site

    Broader source: Energy.gov [DOE]

    This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Paducah site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion coproduct; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold.

  18. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  19. Analysis of sediments and soils for chemical contamination for the design of US Navy homeport facility at East Waterway of Everett Harbor, Washington. Final report. [Macoma inquinata; Mytilus edulis

    SciTech Connect (OSTI)

    Anderson, J.W.; Crecelius, E.A.

    1985-03-01

    Contaminated sediments in the East Waterway of Everett Harbor, Washington, are extremely localized; they consist of a layer of organically-rich, fine sediments overlying a relatively cleaner, more sandy native material. The contaminated layer varies in thickness throughout the waterway from as much as 2 meters to only a few centimeters. Generally, the layer is thicker and more contaminated at the head of the waterway (northern end) and becomes thinner and less contaminated as one proceeds southerly out of the waterway and into Port Gardner. These sediments contain elevated levels of heavy metals and polynuclear aromatic hydrocarbons (PAH) and scattered concentrations of polychlorinated biphenyls (PCB). Approximately 500,000 cubic yards of material exhibit elevated chemical contamination compared to Puget Sound background levels. The contaminated sediments in this waterway require biological testing before decisions can be made regarding the acceptability of unconfined disposal.

  20. Solar Policy Environment: Philadelphia

    Broader source: Energy.gov [DOE]

    The project will identify promising locations for photovoltaic installations and create a roadmap for commercial and residential system developers. The roadmap, published as the Solar Developers Guide to Philadelphia, will be used to promote and attract solar energy investment. Philadelphia’s long-term goal for solar energy is to fully utilize the potential of solar energy to safely, reliably, and cost-effectively displace the use of energy generated by fossil fuels. To achieve its solar energy goals, the City of Philadelphia must add large commercial scale (> 500 kW) solar installations to its ongoing efforts on the smaller scale (we note that a new 1 MW PV installation will be installed at the Philadelphia Navy Yard by the end of 2008).

  1. Transporation Energy

    SciTech Connect (OSTI)

    Clifford Mirman; Promod Vohra

    2012-06-30

    This Transportation Energy Project is comprised of four unique tasks which work within the railroad industry to provide solutions in various areas of energy conservation. These tasks addressed: energy reducing yard related decision issues; alternate fuels; energy education, and energy storage for railroad applications. The NIU Engineering and Technology research team examined these areas and provided current solutions which can be used to both provide important reduction in energy usage and system efficiency in the given industry. This project also sought a mode in which rural and long-distance education could be provided. The information developed in each of the project tasks can be applied to all of the rail companies to assist in developing efficiencies.

  2. Facing America's trash

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    One coherent MSW (municipal solid waste) policy is that trash touches virtually all the threads of the social fabric. Products and packaging, yard waste all eventually become part of the MSW stream. The system that produces MSW is so complex and dynamic that no single option is guaranteed in and of itself to solve MSW problems. In fact, it is not clear that there is a single given combination of options that is best. What is clear, however, is that unless there is development of a more comprehensive approach, the Nation will continue to have problems with capacity, siting, and costs for MSW management. Many of the options described in this paper have been suggested before. They have not been acted on, however, and problems have worsened.

  3. Wind turbine with automatic pitch and yaw control

    DOE Patents [OSTI]

    Cheney, Jr., Marvin Chapin (Glastonbury, CT); Spierings, Petrus A. M. (Middletown, CT)

    1978-01-01

    A wind turbine having a flexible central beam member supporting aerodynamic blades at opposite ends thereof and fabricated of uni-directional high tensile strength material bonded together into beam form so that the beam is lightweight, and has high tensile strength to carry the blade centrifugal loads, low shear modulus to permit torsional twisting thereof for turbine speed control purposes, and adequate bending stiffness to permit out-of-plane deflection thereof for turbine yard control purposes. A selectively off-set weighted pendulum member is pivotally connected to the turbine and connected to the beam or blade so as to cause torsional twisting thereof in response to centrifugal loading of the pendulum member for turbine speed control purposes.

  4. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    SciTech Connect (OSTI)

    1997-05-06

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D&D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D&D activities beginning in 1997.

  5. Sidetracking technology for coiled-tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Doremus, D.M.; Hearn, D.D.; Rike, E.A.; Paslay, P.R.

    1996-05-01

    Coiled-tubing (CT) drilling is a rapidly growing new technology that has been used for shallow new wells and re-entry applications. Through-tubing drilling has evolved as a major application for CT drilling. The remaining key enabling technology for viable through-tubing drilling is the ability to sidetrack in casing below the tubing tail. This paper describes the three technologies developed for sidetracking and presents a mathematical model of forces, penetration rates, and torques for window milling with the cement-sidetracking (CS) technique. Window milling has been a seat of the pants operation in the past. To the authors` knowledge, this is the first published work on the mechanics of window milling. The results from several yard tests and one field test are presented and show some of the problems associated with sidetracking.

  6. Lessons Learned: Tribal Community Engagement, Remediation and Restoration of a Uranium Mine Tailings Site, Navajo Nation - 12484

    SciTech Connect (OSTI)

    Wadsworth, Donald K.; Hicks, Allison H.

    2012-07-01

    In May, 2011 New World Environmental Inc. was awarded a contract by the Navajo Nation Environmental Protection Agency to remediate an illegal radioactive waste disposal site located in the Navajo Nation. The initial scope included the excavation and shipment of an estimated 3,000 cubic yards of Uranium mine tailings and associated industrial waste. In this instance Stakeholders were supportive of the project, remediation and restoration, yet the movement of residual radioactive materials through tribal communities was a controversial issue. Other Stakeholder issues included site security, water sources for remediation activities, local residents' temporary re-location and care of livestock, right of way permissions and local workforce development. This presentation recaps the technical and non-technical issues encountered in the remediation and restoration the seven acre site and the outreach to surrounding communities. Cultural and equity issues resulting from historical problems associated with this and other sites in the immediate area and education and training. (authors)

  7. Energy Production from Zoo Animal Wastes

    SciTech Connect (OSTI)

    Klasson, KT

    2003-04-07

    Elephant and rhinoceros dung was used to investigate the feasibility of generating methane from the dung. The Knoxville Zoo produces 30 cubic yards (23 m{sup 3}) of herbivore dung per week and cost of disposal of this dung is $105/week. The majority of this dung originates from the Zoo's elephant and rhinoceros population. The estimated weight of the dung is 20 metric tons per week and the methane production potential determined in experiments was 0.033 L biogas/g dung (0.020 L CH{sub 4}/g dung), and the digestion of elephant dung was enhanced by the addition of ammonium nitrogen. Digestion was better overall at 37 C when compared to digestion at 50 C. Based on the amount of dung generated at the Knoxville Zoo, it is estimated that two standard garden grills could be operated 24 h per day using the gas from a digester treating 20 metric ton herbivore dung per week.

  8. Nashville Gas treads carefully to replace pipe

    SciTech Connect (OSTI)

    1997-06-01

    The private gas utility, Nashville Gas, was responsible for replacing damaged or inadequate 2- and 4-inch steel gas lines beneath Music City, USA. The line replacements required either size for size or upsizing. The first choice was directional drilling, which was quickly determined to be unpractical because of rocky soil conditions. The second option was open trenching. Undoubtedly, trenching would mean having to contend with angry residents and tourists, since gas lines ran beneath yards, mature trees, sidewalks, roadways, and railways. In addition to the negative social factors, trenching would require additional funds for substantial landscaping and pavement replacement. It at all possible, a no-dig alternative was desired. Nashville Gas found Grundomat piercing tools which create a bore, then pushes pipe back through it. These same tools can simultaneously pull in pipe. These tools were customized for the Nashville project.

  9. Hot Springs-Garrison Fiber Optic Project

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

  10. Summary of the engineering analysis report for the long-term management of depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Dubrin, J.W., Rahm-Crites, L.

    1997-09-01

    The Department of Energy (DOE) is reviewing ideas for the long-term management and use of its depleted uranium hexafluoride. DOE owns about 560,000 metric tons (over a billion pounds) of depleted uranium hexafluoride. This material is contained in steel cylinders located in storage yards near Paducah, Kentucky; Portsmouth, Ohio; and at the East Tennessee Technology Park (formerly the K-25 Site) in Oak Ridge, Tennessee. On November 10, 1994, DOE announced its new Depleted Uranium Hexafluoride Management Program by issuing a Request for Recommendations and an Advance Notice of Intent in the Federal Register (59 FR 56324 and 56325). The first part of this program consists of engineering, costs and environmental impact studies. Part one will conclude with the selection of a long-term management plan or strategy. Part two will carry out the selected strategy.

  11. Field studies of beach cones as coastal erosion control/reversal devices for areas with significant oil and gas activities. Annual report, February 24, 1993--February 23, 1994

    SciTech Connect (OSTI)

    Law, V.J.

    1994-07-07

    The primary objective of this project was to evaluate the utility of a device called the ``beach cone`` in combating coastal erosion. Seven initial sites were selected for testing beach cones in a variety of geometric configurations, and six sites were actually used. Six hundred beach cones were installed at the six sites in late July and early August, 1992. An additional 109 cones were installed at an eighth site in December of 1992. Findings indicate that beach cones accreted significant amounts of materials along the beach of a barrier island. At the eighth installation the amount of accreted material was measured by surveys to be 2200 cubic meters (2900 cubic yards) in February of 1993, when the cones were found to have been completely covered by the material. The average increase in elevation was about 7 inches (0. 18 in) with a maximum buildup of 3 ft. (I in). At other test sites, accretion rates have been less dramatic but importantly, no significant additional erosion has occurred, which is a positive result. The cost of sediment accretion using beach cones was found to be about $13.72 per cubic yard of sand or approximately $500,000 per mile of beach, which would be much lower if the cones were mass produced. The survival of the cones through the fringes of Hurricane Andrew indicates that they can be anchored sufficiently to survive significant storms. The measurements of the cones settling rates indicate that this effect is negligible, does not hinder their effectiveness. We do not yet have sufficient data to state the categorical success of the beach cones, but results to date are encouraging.

  12. Reevaluation of Stevens sand potential - Maricopa depocenter, southern San Joaquin basin, California

    SciTech Connect (OSTI)

    Kolb, M.M.; Parks, S.L. )

    1991-02-01

    During the upper Miocene in the Southern San Joaquin basin surrounding highlands contributed coarse material to a deep marine basin dominated by fine grained silicious bioclastic deposition. these coarse deposits became reservoirs isolated within the silicious Antelope Shale Member of the Monterey Formation. In the southern Maricopa depocenter these Stevens sands are productive at Yowlumne, Landslide, Aqueduct, Rio Viejo, San Emidio Nose, Paloma, and Midway-Sunset fields, and are major exploration targets in surrounding areas. In the ARCO Fee lands area of the southern Maricopa depocenter, Stevens sands occur as rapidly thickening lens-shaped bodies that formed as channel, levee, and lobe deposits of deep-marine fan systems. These fans were fed from a southerly source, with apparent transport in a north-northwesterly direction. Sands deflect gently around present-day structural highs indicating that growth of structures influenced depositional patterns. Correlations reveal two major fan depositional intervals bounded by regional N, O, and P chert markers. Each interval contains numerous individual fan deposits, with many lobes and channels recognizable on three-dimensional seismic data. In addition to these basinal sand plays presently being evaluated, ARCO is pursuing a relatively new trend on Fee lands along the southern basin margin, where correlation to mountain data reveals Stevens sands trend into the steeply dipping beds of the mountain front. This area, the upturned Stevens,' has large reserve potential and producing analogies at Metson, Leutholtz, Los Lobos, and Pleito Ranch fields.

  13. An evaluation of the contaminant impacts on plants serving as habitat for an endangered species

    SciTech Connect (OSTI)

    DeShields, B.R.; Stelljes, M.E.; Hawkins, E.T.; Alsop, W.R. [Harding Lawson Associates, Novato, CA (United States); Collins, W. [Dept. of the Army, Fort Ord, CA (United States)

    1995-12-31

    As part of an ecological risk assessment at a Superfund site in Monterey County, California, potential impacts on an endangered species, the Smith`s blue butterfly (Euphilotes enoptes smithi) were evaluated. This species of butterfly lives along beach dunes historically used as small arms trainfire ranges. Historical land use resulted in the accumulation of spent bullets and varying concentrations of metals in site soil. Two species of buckwheat occurring at the site (Erigonium parvifolium and E. latifolium) that serve as the sole habitat for the butterfly were evaluated. It was assumed that if there were no impacts to the habitat, there would be no impacts to the endangered species itself. Surface soil and collocated plants were sampled and chemically analyzed in order to correlate soil concentrations with plant tissue concentrations. Surface soil and collocated plants were also sampled at reference sites to determine background concentrations. Tissue concentrations were compared to benchmark concentrations to evaluate potential impacts. In addition, soil samples and seeds from buckwheat growing at the site were collected and used to conduct root elongation assays in the laboratory. The objective of the assays was to assess effects of metals associated with the spent bullets in soil on plant growth. Within the plants, higher concentrations of all metals except zinc were found in the roots; zinc was equally distributed throughout the plants. No chemical-related impacts to the plants were identified.

  14. Design Modifications for Increasing the BOm and EOM Power Output and Reducing the Size and Mass of RTG for the Pluto Mission

    SciTech Connect (OSTI)

    Schock, Alfred; Or, Chuen T; Kumar, Vasanth

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. A companion paper analyzed the effect on source modules for three specific fuel options, and compared the predicted power output with JPL's latest goals for the Pluto Fast Flyby (PFF) mission. The results showed that a 5-module RTG cannot fully meet JPL's goals with any of the available fuels; and that a 6-module RTG more than meets those goals with Russian fuel, almost meets them with U.S. (Cassini-type) fuel, but still falls far short of meeting them with the depleted fuel from the aged (1982) Galileo spare RTG. The inadequacy of the aged fuel was disappointing,because heat source modules made from it already exist, and their use in PFF could result in substantial cost savings. The present paper describes additional analyses which showed that a six-module RTG with the aged fuel can meet JPL's stipulated power margin with a relatively simple design modification, that a second design modification makes it possible to recover all of the mass and size penalty for going from five to six heat source modules, and that a third modification could raise the EOM power margin to 16%.

  15. Summary Report of Summer 2009 NGSI Human Capital Development Efforts at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Dougan, A; Dreicer, M; Essner, J; Gaffney, A; Reed, J; Williams, R

    2009-11-16

    In 2009, Lawrence Livermore National Laboratory (LLNL) engaged in several activities to support NA-24's Next Generation Safeguards Initiative (NGSI). This report outlines LLNL's efforts to support Human Capital Development (HCD), one of five key components of NGSI managed by Dunbar Lockwood in the Office of International Regimes and Agreements (NA-243). There were five main LLNL summer safeguards HCD efforts sponsored by NGSI: (1) A joint Monterey Institute of International Studies/Center for Nonproliferation Studies-LLNL International Safeguards Policy and Information Analysis Course; (2) A Summer Safeguards Policy Internship Program at LLNL; (3) A Training in Environmental Sample Analysis for IAEA Safeguards Internship; (4) Safeguards Technology Internships; and (5) A joint LLNL-INL Summer Safeguards Lecture Series. In this report, we provide an overview of these five initiatives, an analysis of lessons learned, an update on the NGSI FY09 post-doc, and an update on students who participated in previous NGSI-sponsored LLNL safeguards HCD efforts.

  16. Silica phase changes: Diagenetic agent for oil entrapment, Lost Hills field, California

    SciTech Connect (OSTI)

    Julander, D.R.; Szymanski, D.L. )

    1991-02-01

    The siliceous shales of the Monterey Group are the primary development target at Lost Hills. Silica phase changes have influenced the distribution and entrapment of hydrocarbons. With increasing temperature, opal A phase diatomite is converted to opal CT and finally quartz phase rock. All phases are low in permeability. The opal A diatomite is characteristically high in oil saturation and productive saturation. Productivity from this phase is dependent on structural position and fieldwide variations in oil viscosity and biodegradation. The deeper chert reservoir coincides with the opal CT to quartz phase transition. Porosity is again reduced in this transition, but saturations in the quartz phase rocks increase. Tests in the chert reservoir indicate a single, low-permeability system, suggesting the importance of matric contribution. resistivity and porosity in the diatomite, and resistivity and velocity in the chert, are the physical properties which best reflect saturation. Methods exploiting these properties (FMS, BHTV, borehole, and surface shear wave studies) should be helpful in further characterizing the reservoirs and identifying future pay.

  17. Constitutive models for the Etchegoin Sands, Belridge Diatomite, and overburden formations at the Lost Hills oil field, California

    SciTech Connect (OSTI)

    FOSSUM,ARLO F.; FREDRICH,JOANNE T.

    2000-04-01

    This report documents the development of constitutive material models for the overburden formations, reservoir formations, and underlying strata at the Lost Hills oil field located about 45 miles northwest of Bakersfield in Kern County, California. Triaxial rock mechanics tests were performed on specimens prepared from cores recovered from the Lost Hills field, and included measurements of axial and radial stresses and strains under different load paths. The tested intervals comprise diatomaceous sands of the Etchegoin Formation and several diatomite types of the Belridge Diatomite Member of the Monterey Formation, including cycles both above and below the diagenetic phase boundary between opal-A and opal-CT. The laboratory data are used to drive constitutive parameters for the Extended Sandler-Rubin (ESR) cap model that is implemented in Sandia's structural mechanics finite element code JAS3D. Available data in the literature are also used to derive ESR shear failure parameters for overburden formations. The material models are being used in large-scale three-dimensional geomechanical simulations of the reservoir behavior during primary and secondary recovery.

  18. Application of Fourier transform infrared spectroscopy to silica diagenesis: The opal-A to opal-CT transformation

    SciTech Connect (OSTI)

    Rice, S.B.; Freund, H.; Huang, W.L.; Clouse, J.A.; Isaacs, C.M.

    1995-10-02

    An important goal in silica diagenesis research is to understand the kinetics of opal transformation from noncrystalline opal-A to the disordered silica polymorph opal-CT. Because the conventional technique for monitoring the transformation, powder X-ray diffraction (XRD), is applicable only to phases with long-range order, the authors used Fourier transform infrared spectroscopy (FTIR) to monitor the transformation. They applied this technique, combined with XRD and TEM, to experimental run products and natural opals from the Monterey Formation and from siliceous deposits in the western Pacific Ocean. Using a ratio of two infrared absorption intensities ({omega} = I{sub 472 cm{sup {minus}1}}/I{sub 500 cm{sup {minus}1}}), the relative proportions of opal-A and opal-CT can be determined. The progress of the transformation is marked by changes in slope of {omega} vs. depth or time when a sufficient stratigraphic profile is available. There are three stages in the opal-A to opal-CT reaction: (1) opal-A dissolution; (2) opal-CT precipitation, whose end point is marked by completion of opal-A dissolution; and (3) opal-CT ordering, during which tridymite stacking is eliminated in favor of crystobalite stacking.

  19. Domoic acid production near California coastal upwelling zones, June 1998

    SciTech Connect (OSTI)

    Trainer, V L. (National Marine Fisheries Service); Adams, Nicolaus G. (National Marine Fisheries Service); Bill, Brian D. (National Marine Fisheries Service); Stehr, Carla M. (National Marine Fisheries Service); Wekell, John C. (National Marine Fisheries Service); Moeller, Peter (National Ocean Service, Marine Biotoxins Program); Busman, Mark (National Ocean Service, Marine Biotoxins Program); Woodruff, Dana L. (BATTELLE (PACIFIC NW LAB))

    2000-01-01

    Sea lion mortalities in central California during May and June 1998 were traced to their ingestion of sardines and anchovies that had accumulated the neurotoxin domoic acid. The detection of toxin in urine, feces, and stomach contents of several sea lions represents the first proven occurrence of domoic acid transfer through the food chain to a marine mammal. The pennate diatoms, Pseudo-nitzschia multiseries and P. australis, were the dominant, toxin-producing phytoplankton constituting algal blooms near Monterey Bay, Half Moon Bay, and Oceano Dunes, areas where sea lions with neurological symptoms stranded. Toxic Pseudo-nitzschia were also found near Morrow Bay, Point Conception, Point Arguello, and Santa Barbara, demonstrating that these species were widespread along the central California coast in June 1998. Measurements of domoic acid during three cruises in early June showed the highest cellular toxin levels in P. multiseries near Point A?o Nuevo and in P. australis from Morro w Bay. Maximum cellular domoic acid levels were observed within 20 km of the coast between 0 and 5 m depth, although toxin was also measured to depths of 40 m. Hydrographic data indicated that the highest toxin levels and greatest numbers of toxic cells were positioned in water masses associated with upwelling zones near coastal headlands. Nutrient levels at these sites were less than those typically measured during periods of active upwelling, due to the 1998 El Ni?o event. The flow of cells and/or nutrients from coastal headlands into embayments where cells can multiply in a stratified environment is a possible mechanism of bloom development along the central California coast. This coupling of toxic Pseudo-nitzschia growth near upwelling zones with physical processes involved in cell transport will be understood only when long-term measurements are made at several key coastal locations, aiding in our capability to predict domoic-acid producing algal blooms.

  20. THE ESTABLISHMENT OF A U.S. SUPPORT PROGRAM INTERSHIP PROGRAM.

    SciTech Connect (OSTI)

    PEPPER,S.E.

    2003-07-13

    In 2002, the U.S. Support Program to IAEA Safeguards established a program of one-year paid internships with the IAEA Department of Safeguards for students and recent graduates. Six interns are currently working with the IAEA in software development and information collection activities. The program is administered through the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL). Software development assignments were considered to be most feasible because of the considerable abilities of many computer science students after a few years' education. Candidates in information science were also recruited because of an existing internship program managed by the Monterey Institute of International Studies. ISPO recruited students from US. colleges and other sources. Applications were collected and provided to the IAEA for review and selection. SGIT then identified the best applicants and, after confirming their intention to accept the position, tailored assignments based on their qualifications. Before the assignments started, ISPO conducted an orientation to provide the interns with information to ease their transition into working with the IAEA and living in Vienna. Four interns began their assignments in software development in June 2002 and two others began their assignments in information collection in July and August. The IAEA, the interns, and the Subgroup on Safeguards Technical Support have found the assignments to be beneficial. The internship program provides additional staff to the IAEA at low cost to the USSP, introduces young professionals to careers in the nuclear industry and international civil service, and provides the IAEA access to U.S. academic institutions. In 2003, the program will be expanded to include engineering and technical writing in support of the Division of Safeguards Technical Services. The paper will discuss the recruitment and selection of interns and the administration of the program.

  1. Silica diagenesis in Santa Cruz mudstone, Late Miocene, California

    SciTech Connect (OSTI)

    El-Sabbagh, D.

    1987-05-01

    The silica-rich upper Miocene Santa Cruz Mudstone is similar to the Miocene Monterey Formation. Previous studies have suggested the Santa Cruz Mudstone was not buried deeply nor had it undergone extensive diagenesis. Because opaline diagenesis is temperature dependent, the author examined the silica diagenesis of the Santa Cruz Mudstone using scanning electron microscopy and x-ray diffraction methods to study its burial history. In a series of samples from Santa Cruz to Davenport, California (over 16 km), opal-CT is the dominant silica phase present and clay minerals are notably absent. The d(101)-spacing values of opal-CT range from 4.11 A (Santa Cruz area) to 4.06 A (north of Santa Cruz), exhibiting the complete range of d(101)-spacing values found in opal-CT zones. Scanning electron micrographs of crystalline microtextures show rosettes of opal-CT (lepispheres) in cavities of samples with medium to high d(101)-spacing values. The morphology of lepisphere crystallites grades from bladed to spiny with decreasing d(101)-spacing values, reflecting an internal crystal ordering with increased diagenesis. Further diagenetic changes occurred in a sample with 4.06 A d(101)-spacing where incipient quartz crystals signal the initial conversion of opal-CT to microcrystalline quartz. Silica diagenesis demonstrates that burial temperatures surpassed the range of opal-A to opal-CT conversion and approached conversion temperatures (55/sup 0/C to 110/sup 0/C) of opal-CT to microcrystalline quartz. The conversion occurred when the Santa Cruz Mudstone was buried over 1900 m (depth calculated from a geohistory diagram). This burial temperature brings the Santa Cruz Mudstone within the oil generation window, and could account for the presence of hydrocarbons in the unit.

  2. Mixing of biogenic siliceous and terrigenous clastic sediments: South Belridge field and Beta field, California

    SciTech Connect (OSTI)

    Schwartz, D.E. )

    1990-05-01

    The intermixing and interbedding of biogenically derived siliceous sediment with terrigenous clastic sediment in reservoirs of upper Miocene age provides both reservoir rock and seal and influences productivity by affecting porosity and permeability. Miocene reservoirs commonly contain either biogenic-dominated cyclic diatomite, porcelanite, or chert (classic Monterey Formation) or clastic-dominated submarine fan sequences with interbedded or intermixed siliceous members of biogenic origin. Biogenic-clastic cycles, 30-180 ft thick, at South Belridge field were formed by episodic influx of clastic sediment from distant submarine fans mixing with slowly accumulating diatomaceous ooze. The cycles consist of basal silt and pelletized massive diatomaceous mudstone, overlain by burrowed, faintly bedded clayey diatomite and topped by laminated diatomite. Cycle tops have higher porosity and permeability, lower grain density, and higher oil saturation than clay and silt-rich portions of the cycles. Submarine fan sediments forming reservoirs at the Beta field are comprised of interbedded sands and silts deposited in a channelized middle fan to outer fan setting. Individual turbidites display fining-upward sequences, with oil-bearing sands capped by wet micaceous silts. Average sands are moderately to poorly sorted, fine- to medium-grained arkosic arenites. Sands contain pore-filling carbonate and porcelaneous cements. Porcelaneous cement consists of a mixture of opal-A, opal-CT, and chert with montmorillonite and minor zeolite. This cement is an authigenic material precipitated in intergranular pore space. The origin of the opal is biogenic, with recrystallization of diatom frustules (opal-A) into opal-CT lepispheres and quartz crystals. Porcelaneous cement comprises 4-21% of the bulk volume of the rock. Seventy percent of the bulk volume of the cement is micropore space.

  3. Closure End States for Facilities, Waste Sites, and Subsurface Contamination - 12543

    SciTech Connect (OSTI)

    Gerdes, Kurt; Chamberlain, Grover; Whitehurst, Latrincy; Marble, Justin; Wellman, Dawn; Deeb, Rula; Hawley, Elisabeth

    2012-07-01

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOE's Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation and decommissioning (D and D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites. (authors)

  4. Closure End States for Facilities, Waste Sites, and Subsurface Contamination

    SciTech Connect (OSTI)

    Gerdes, Kurt D.; Chamberlain, Grover S.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Whitehurst, Latrincy; Marble, Justin

    2012-11-21

    The United States (U.S.) Department of Energy (DOE) manages the largest groundwater and soil cleanup effort in the world. DOEs Office of Environmental Management (EM) has made significant progress in its restoration efforts at sites such as Fernald and Rocky Flats. However, remaining sites, such as Savannah River Site, Oak Ridge Site, Hanford Site, Los Alamos, Paducah Gaseous Diffusion Plant, Portsmouth Gaseous Diffusion Plant, and West Valley Demonstration Project possess the most complex challenges ever encountered by the technical community and represent a challenge that will face DOE for the next decade. Closure of the remaining 18 sites in the DOE EM Program requires remediation of 75 million cubic yards of contaminated soil and 1.7 trillion gallons of contaminated groundwater, deactivation & decommissioning (D&D) of over 3000 contaminated facilities and thousands of miles of contaminated piping, removal and disposition of millions of cubic yards of legacy materials, treatment of millions of gallons of high level tank waste and disposition of hundreds of contaminated tanks. The financial obligation required to remediate this volume of contaminated environment is estimated to cost more than 7% of the to-go life-cycle cost. Critical in meeting this goal within the current life-cycle cost projections is defining technically achievable end states that formally acknowledge that remedial goals will not be achieved for a long time and that residual contamination will be managed in the interim in ways that are protective of human health and environment. Formally acknowledging the long timeframe needed for remediation can be a basis for establishing common expectations for remedy performance, thereby minimizing the risk of re-evaluating the selected remedy at a later time. Once the expectations for long-term management are in place, remedial efforts can be directed towards near-term objectives (e.g., reducing the risk of exposure to residual contamination) instead of focusing on long-term cleanup requirements. An acknowledgement of the long timeframe for complete restoration and the need for long-term management can also help a site transition from the process of pilot testing different remedial strategies to selecting a final remedy and establishing a long-term management and monitoring approach. This approach has led to cost savings and the more efficient use of resources across the Department of Defense complex and at numerous industrial sites across the U.S. Defensible end states provide numerous benefits for the DOE environmental remediation programs including cost-effective, sustainable long-term monitoring strategies, remediation and site transition decision support, and long-term management of closure sites.

  5. Closure Report for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-12-01

    This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 326, Areas 6 and 27 Release Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration Plan (SAFER) Plan for CAU 326 (US Department of Energy, Nevada Operations Office [DOE/NV, 2001]). CAU 326 consists of four Corrective Action Sites (CASs), 06-25-01, 06-25-02, 06-25-04, and 27-25-01. CAS 06-25-01 is a release site associated with an underground pipeline that carried heating oil from the heating oil underground storage tank (UST), Tank 6-CP-1, located to the west of Building CP-70 to the boiler in Building CP-1 located in the Area 6 Control Point (CP) compound. This site was closed in place administratively by implementing use restrictions. CAS 06-25-02 is a hydrocarbon release associated with an active heating oil UST, Tank 6-DAF-5, located west of Building 500 at the Area 6 Device Assembly Facility. This site was closed in place administratively by implementing use restrictions. CAS 06-25-04 was a hydrocarbon release associated with Tank 6-619-4. This site was successfully remediated when Tank 6-619-4 was removed. No further action was taken at this site. CAS 27-25-01 is an excavation that was created in an attempt to remove hydrocarbon-impacted soil from the Site Maintenance Yard in Area 27. Approximately 53 cubic meters (m{sup 3}) (70 cubic yards [yd{sup 3}]) of soil impacted by total petroleum hydrocarbons (TPH) and polychlorinated biphenyls (PCBs) was excavated from the site in August of 1994. Clean closure of this site was completed in 2002 by the excavation and disposal of approximately 160 m{sup 3} (210 yd{sup 3}) of PCB-impacted soil.

  6. Waste Characteristics of the Former S-3 Ponds and Outline of Uranium Chemistry Relevant to NABIR Field Research Center Studies

    SciTech Connect (OSTI)

    Brooks, S.C.

    2001-06-29

    The Environmental Sciences Division at Oak Ridge National Laboratory (ORNL) was awarded the first Naturaland Accelerated Bioremediation Research (NABIR) Program, Field Research Center (FRC) based upon the recommendation of a review panel following a competitive peer-reviewed proposal process. The contaminated FRC site at ORNL is centered on groundwater plumes that originate from the former S-3 Waste Disposal Ponds located at the Y-12 Plant and the Y-12 Bone Yard/Bum Yard. Proposals for individual science research projects at the FRC were submitted in the spring of 2000 in response to a solicitation issued by the Department of Energy (DOE). Proposals selected for funding began work in Fiscal Year 2001 (October 1, 2000). The FRC staff have initiated several characterization efforts intended to support, inform, and educate individual FRC investigators, NABIR principal investigators (PIs), and the broader community of the specific conditions, opportunities, and challenges of this site. These efforts include both physical site characterization as well as numerical simulation (modeling) studies. Geochemical modeling has been conducted with the goal of: (1) providing a baseline understanding of the geochemical behavior of uranium (U); (2) examining the interaction of geochemistry and uranium transport in the subsurface; (3) elucidating some potential pitfalls for researchers with respect to manipulating subsurface environments for the purpose of demonstrating bacterially induced U immobilization. The geochemical modeling effort focused on using existing data and resources and did not involve the collection of new data or samples from the field site. Specifically, the following three tasks have been performed to date. (1) Searching for information on the wastes disposed in to the S-3 ponds. These data are typically found in internal technical reports at the labs and are rarely published in the peer-reviewed literature; thus, this information can be very difficult for the scientific community to access. Therefore, these searches may provide a nontrivial resource to investigators. To that end, some analytical data have already been located and the search for more data will continue. (2) Critical evaluation of thermodynamic data that are needed in the modeling calculations. (3) Generating model simulations to illustrate important aspects of U geochemistry and transport behavior in idealized solutions. This report summarizes the results of the geochemical modeling efforts.

  7. Corrective Action Decision Document for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (Rev. No.: 0, February 2001)

    SciTech Connect (OSTI)

    DOE /NV

    2001-02-23

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended Corrective Action Alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 490, Station 44 Burn Area, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 490 is located on the Nellis Air Force Range and the Tonopah Test Range and is approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (located southwest of Area 3); RG-56-001-RGBA, Station 44 Burn Area (located west of Main Lake); 03-58-001-03FN, Sandia Service Yard (located north of the northwest corner of Area 3); and 09-54-001-09L2, Gun Propellant Burn Area (located south of the Area 9 Compound on the TTR). A Corrective Action Investigation was performed in July and August 2000, and analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine contaminants of concern (COCs). There were no COCs identified in soil at the Gun Propellant Burn Area or the Station 44 Burn Area; therefore, there is no need for corrective actions at these two sites. Five soil samples at the Fire Training Area and seven at the Sandia Service Yard exceeded PALs for total petroleum hydrocarbons-diesel. Upon the identification of COCs specific to CAU 490, Corrective Action Objectives were developed based on a review of existing data, future use, and current operations at the TTR, with the following three CAAs under consideration: Alternative 1 - No Further Action, Alternative 2 - Closure In Place - No Further Action With Administrative Controls, and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of this evaluation, the preferred choice for CAU 490 was Alternative 3. This alternative was judged to meet all requirements for the technical components evaluated, all applicable state and federal regulations for closure of the site, and will eliminate potential future exposure pathways to the contaminated soils at this site.

  8. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    2000-06-09

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the question of whether or not potentially hazardous wastes were generated at three of the four CASs within CAU 490, and whether or not potentially hazardous and radioactive wastes were generated at the fourth CAS in CAU 490 (CAS 09-54-001-09L2). Suspected CAS-specific COPCs include volatile organic compounds, semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, pesticides, explosives, and uranium and plutonium isotopes. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  9. PRELIMINARY EVALUATION OF POTENTIAL OCCUPATIONAL AND PUBLIC HEALTH IMPACTS OF SEDIMENT DECONTAMINATION FACILITIES FOR NEW YORK/NEW JERSEY HARBOR

    SciTech Connect (OSTI)

    ROWE,M.D.; KLEIN,R.C.; JONES,K.W.

    1999-07-31

    Sediment is accumulating in New York/New Jersey Harbor, and shipping channels are rapidly becoming too shallow for large ships. The Port Authority of New York/New Jersey has determined that dredging of the ship channels is essential to keep them navigable. About five million cubic yards of sediment must be removed per year to keep the channels open. Without dredging, the channels will soon become unusable, and the shoreside shipping and warehousing businesses that depend on them will fade away. The economic loss to the area would be devastating. But the deeper layers of sediment in the Harbor contain a broad range of pollutants that are hazardous to humans and the environment-a legacy of past discharges that are no longer permitted. These include heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), chlorinated pesticides, and dioxins. As a result, there are several million cubic yards of sediments to be dredged per year that do not meet applicable criteria for ocean disposal and must be dealt with in some other way. A possible solution to the problem is to treat the dredged material to immobilize or destroy the contaminants and make the treated sediments suitable for disposal in the ocean or on land at acceptable cost. A variety of technologies can be used to achieve this goal. The simplest approach is to make manufactured soil from untreated sediment. The most complex approaches involve high-temperature destruction of organic contaminants and immobilization of inorganic contaminants. When any of these technologies are used, there is potential for risks to human health from process wastes and from the treated materials themselves. Also, disposal or beneficial use of treated materials may generate other risks to human health or the environment. A description of some of the technologies considered is given in Table 1. Success in removing or immobilizing the contaminants, which varies significantly among technologies, is reported elsewhere. This report provides a preliminary evaluation, or ``screening assessment,'' of potential occupational, public, and environmental health risks from dredging, transporting, and treating contaminated harbor sediments with thermal treatment methods to render them suitable for disposal or beneficial use. The assessment was done in stages as the project advanced and data became available from other tasks on characteristics of sediments and treatment processes.

  10. Alternate retrieval technology demonstrations program - test report (ARD Environmental, Inc.)

    SciTech Connect (OSTI)

    Berglin, E.J.

    1997-07-31

    A prototype vehicle, control system, and waste and water scavenging system were designed and fabricated with essentially the full capabilities of the vehicle system proposed by ARD Environmental. A test tank mockup, including riser and decontamination chamber were designed and fabricated, and approximately 830 cubic feet of six varieties of waste simulants poured. The tests were performed by ARD Environmental personnel at its site in Laurel, Maryland, from 4/22/97 through 5/2/97. The capabilities tested were deployment and retrieval, extended mobility and productivity, the ability to operate the system using video viewing only, retrieval after simulated failure, and retrieval and decontamination. Testing commenced with deployment of the vehicle into the tank. Deployment was accomplished using a crane and auxiliary winch to position the vehicle and lower it through the decontamination chamber, into the 36`` diameter x 6` high riser, and touch down on the waste field in the tank. The initial mobility tests were conducted immediately after deployment, prior to sluicing, as the waste field exhibited the greatest amount of variation at this time. This test demonstrated the ability of the vehicle to maneuver over the simulated waste field, and the ability of the operator to work with only video viewing available. In addition, the ability of the vehicle to right itself after being turned on its side was demonstrated. The production rate was evaluated daily through the testing period by measuring the surface and estimating the amount of material removed. The test demonstrated the ability of the vehicle to reduce the waste surface using 400 psi (nominal) water jets, scavenge water and material from the work area, and move to any location, even in the relatively confined space of the 20` diameter test tank. In addition, the ability to sluice to a remote scavenging module was demonstrated. The failure mode test demonstrated the ability to retrieve a stuck vehicle by pulling on the tether, even if the vehicle wheels were locked or the vehicle was on its side. Line pull required to retrieve the vehicle was measured, and side load on the riser calculated from the line pull and line angles. Finally, the decontamination test demonstrated the ability to effectively clean the umbilical and vehicle. The issues addressed and resolved during the testing were: Feasibility of deploying a vehicle- based system, mobility, production rate and limitation of water in the tank during sluicing, mining strategy, operator efficiency, vehicle recovery, and decontamination. Water usage and waste removal rates were used to estimate the time and water usage requirements for cleaning a Hanford SST.

  11. Extending facility life by combining embankments: permitting energy solutions class a combined disposal cell

    SciTech Connect (OSTI)

    McCandless, S.J.; Shrum, D.B.

    2007-07-01

    EnergySolutions' Class A low-level radioactive waste management operations are limited to a 540-acre section of land in Utah's west desert. In order to optimize the facility lifetime, EnergySolutions has launched an effort to improve the waste disposal utilization of this acreage. A chief component of this effort is the Class A Combined embankment. The Class A Combined embankment incorporates the footprint of both the currently licensed Class A cell and the Class A North cell, and also includes an increase in the overall embankment height. By combining the cells and raising the height of the embankment, disposal capacity is increased by 50% over the two-cell design. This equates to adding a second Class A cell, at approximately 3.8 million cubic yards capacity, without significantly increasing the footprint of disposal operations. In order to justify the design, EnergySolutions commissioned geotechnical and infiltration fate and transport evaluations, modeling, and reports. Cell liner and cover materials, specifications, waste types, and construction methods will not change. EnergySolutions estimates that the Class A Combined cell will add at least 10 years of capacity to the site, improving utilization of the permitted area without unacceptable environmental impacts. (authors)

  12. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).

  13. TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY

    SciTech Connect (OSTI)

    Stefanko, D.; Langton, C.

    2012-01-03

    High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale up test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.

  14. Railroad electrification in America's future: an assessment of prospects and impacts. Final report

    SciTech Connect (OSTI)

    White, R.K.; Yabroff, I.W.; Dickson, E.M.; Zink, R.A.; Gray, M.E.; Moon, A.E.

    1980-01-01

    Such considerations as the level of traffic, the relative financial health of individual railroads, the capacity of the associated supply and engineering/construction industries, and the logical connecting points at classifying yards, as well as the national interest value of creating a continuous system, continental in scope, were used to construct a scenario for railroad electrification that closely approximates how an electrification program might be implemented. For the economic reasons cited, much of the US railroad system would remain conventionally powered. This scenario provides for an electrified network involving 14 mainlines operated by 10 companies that could transport much of the nation's rail-borne freight. Five years of planning and engineering work would be required for each link before construction could begin. With 1000 miles or less of electrified route per year, 14 years would be needed to construct the 9000-mile network of our scenario. (The scenario constructed runs from 1980 to 1998.) The analysis was aided with the construction of the SRI Railroad Industry Model. Basically a model of industry operations and finances, the model produces income statements and balance sheets at yearly intervals. Railroad energy costs, railroad freight levels, maintenance costs, purchases and leases of rooling stock, electrification facility investments, future inflation, rate setting practices, annual depreciation, taxes, and profits were calculated.

  15. Environmental emergency response plans (EERPs): A single plan approach to satisfy multiple regulations

    SciTech Connect (OSTI)

    Muzyka, L.

    1995-11-01

    Conrail is a freight railroad operating in twelve northeast and midwestern states transporting goods and materials over 11,700 miles of railroad. To repair, maintain, rebuild, and manufacture locomotives and rail cars, and to maintain the track, right of way, bridges, tunnels and other structures, Conrail uses petroleum products, solvents and cleaners. These products are stored in hundreds of storage tanks in and around the yards and right of way. To power the trains, locomotives are fueled with diesel fuel. With large volumes of fuel, lubricants, solvents and cleaners, safe and efficient handling of petroleum and chemicals is crucial to avoid negative impacts on the environment. Conrail recently revisited the issue of environmental emergency response planning. In an attempt to assure full compliance with a myriad of federal, state, and local regulation, a ``single plan approach`` was chosen. Single plans for each facility, coined EERPs, were decided on after careful review of the regulations, and evaluation of the company`s operational and organizational needs.

  16. Railroad accident report: Head-on collision between Iowa Interstate Railroad Extra 470 West and Extra 406 East with release of hazardous materials near Altoona, Iowa, on July 30, 1988. Irregular report

    SciTech Connect (OSTI)

    Not Available

    1989-07-06

    About 11:40 a.m. central daylight saving time on July 30, 1988, Iowa Interstate Railroad Ltd. (IAIS) freight trains Extra 470 West and Extra 406 East collided head on within the yard limits of Altoona, Iowa, about 10 miles east of Des Moines, Iowa. All 5 locomotive units from both trains; 11 cars of Extra 406 East; and 3 cars, including two tank cars containing denatured alcohol, of Extra 470 West derailed. The denatured alcohol, which was released through the pressure relief valves and the manway domes of the two derailed tank cars, was ignited by the fire resulting from the collision of the locomotives. Both crew members of Extra 470 West were fatally injured; the two crew members of Extra 406 East were only slightly injured. The estimated damage (including lading) as a result of this accident exceeded $1 million. The major safety issues in the accident include operational methods employed by the IAIS, training and selection of train and engine personnel, supervisory oversight by the IAIS, design of closure fittings on hazardous materials rail tanks, and oversight of regional railroads by the Federal Railroad Administration.

  17. Investigation of breached depleted UF{sub 6} cylinders

    SciTech Connect (OSTI)

    DeVan, J.H.

    1991-12-31

    In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.

  18. Development and pilot test of an intensive municipal solid waste recycling system for the Town of East Hampton

    SciTech Connect (OSTI)

    Commoner, B.; Frisch, M.; Pitot, H.A.; Quigley, J.; Stege, A.; Wallace, D.; Webster, T.

    1990-02-01

    This report presents the results of a project to design and test a new type of trash disposal system for the Town of East Hampton, Long Island: the Intensive Recycling System. The system is intended to serve as the Town's primary means of regular trash disposal. The Intensive Recycling System is based on separation of regular trash, by household and commercial establishments, into four fractions: (1) food garbage and soiled paper; (2) paper/cardboard; (3) metal cans/glass bottles; (4) non-recyclables. Fraction 1, together with yard waste, is processed at a compost facility, yielding marketable compost. Fractions 2 and 3 are processed by a materials recovery facility (MRF) into marketable products: several grades of paper and cardboard; aluminum cans; tin cans; scrap metal; and color-sorted crushed glass (cullet). The non-recyclable components (fraction 4) and misclassified components rejected during processing are consigned to a landfill. This document is Volume 2 of two volumes and contains the appendix for Volume 1.

  19. Low tipping at the gate: Solid waste management in St. Louis

    SciTech Connect (OSTI)

    Sager, K.A.

    1997-10-01

    With the largest solid waste management district in the state of Missouri, St. Louis offers low tipping fees and plenty of capacity for waste and recyclables at virtually no cost to the city`s nearly 400,000 residents. The city of St. Louis has its own refuse collection and is doing curbside pickup on a pilot basis for about 3,500 homes, says Lee Fox, president of the Missouri Recycling Association (St. Louis). Also for waste management, there is blue-bag drop-off and a series of drop-off sites at different fire stations throughout the city. The central-west side has once-a-week curbside service. There are 92 separate municipalities and 35% of the area is unincorporated. It really depends on where one lives and the service. St. Louis has twice-a-week trash service, with a once-a-week curbside and yard waste pickup. The city collects all residential trash, which is financed by the city`s general revenue fund, with no direct user fees to residents. Solid waste is shipped to an Illinois landfill owned by Allied Waste Industries, Inc. (Scottsdale, Ariz.). With no current citywide curbside recycling program, private recyclers provide collection to a small percentage of homes throughout the metropolitan area.

  20. Development and pilot test of an intensive municipal solid waste recycling system for the Town of East Hampton

    SciTech Connect (OSTI)

    Commoner, B.; Frisch, M.; Pitot, H.A.; Quigley, J.; Stege, A.; Wallace, D.; Webster, T.

    1990-02-01

    This report presents the results of a project to design and test a new type of trash disposal system for the Town of East Hampton, Long Island: the Intensive Recycling System. The system is intended to serve as the Town's primary means of regular trash disposal. The Intensive Recycling System is based on separation of regular trash, by households and commercial establishments, into four fractions: (1) food garbage and soiled paper; (2) paper/cardboard; (3) metal cans/glass bottles; (4) non-recyclables. Fraction 1, together with yard waste, is processed at a compost facility, yielding marketable compost. Fractions 2 and 3 are processed by a materials recovery facility (MRF) into marketable products: several grades of paper and cardboard; aluminum cans; tin cans; scrap metal; and color-sorted crushed glass (cullet). The non-recyclable components (fraction 4) and misclassified components rejected during processing are consigned to a landfill. This document is Volume 1 of two volumes. 75 refs., 24 figs., 81 tabs.

  1. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers.

  2. Addendum to the East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    SAIC

    2011-04-01

    The East Tennessee Technology Park Site-Wide Residual Contamination Remedial Investigation Work Plan (DOE 2004) describes the planned fieldwork to support the remedial investigation (RI) for residual contamination at the East Tennessee Technology Park (ETTP) not addressed in previous Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) decisions. This Addendum describes activities that will be conducted to gather additional information in Zone 1 of the ETTP for groundwater, surface water, and sediments. This Addendum has been developed from agreements reached in meetings held on June 23, 2010, August 25, 2010, October 13, 2010, November 13, 2010, December 1, 2010, and January 13, 2011, with representatives of the U. S. Department of Energy (DOE), U. S. Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC). Based on historical to recent groundwater data for ETTP and the previously completed Sitewide Remedial Investigation for the ETTP (DOE 2007a), the following six areas of concern have been identified that exhibit groundwater contamination downgradient of these areas above state of Tennessee and EPA drinking water maximum contaminant levels (MCLs): (1) K-720 Fly Ash Pile, (2) K-770 Scrap Yard, (3) Duct Island, (4) K-1085 Firehouse Burn/J.A. Jones Maintenance Area, (5) Contractor's Spoil Area (CSA), and (6) Former K-1070-A Burial Ground. The paper presents a brief summary of the history of the areas, the general conceptual models for the observed groundwater contamination, and the data gaps identified.

  3. LHeC ERL Design and Beam-dynamics Issues

    SciTech Connect (OSTI)

    S.A. Bogacz, I. Shin, D. Schulte, F. Zimmermann

    2011-09-01

    We discuss machine and beam parameter choices for a Linac-Ring option of the Large Hadron electron Collider (LHeC) based on the LHC. With the total wall-plug power limited to 100 MW and a target current of about 6 mA the desired luminosity of 1033 cm-2 s-1 can be reached, providing one exploits unique features of the Energy Recovery Linac (ERL). Here, we describe the overall layout of such ERL complex located on the LHC site. We present an optimized multi-pass linac optics enabling operation of the proposed 3-pass Recirculating Linear Accelerator (RLA) in the Energy Recovery mode. We also describe emittance preserving return arc optics architecture; including layout and optics of the arc switch-yard. Furthermore, we discuss importance of collective effects such as: beam breakup in the RLA, as well as ion accumulation, with design-integrated mitigation measures, and the electron-beam disruption in collision. Finally, a few open questions are highlighted.

  4. ORNL Soils Remediation and Slabs Removal The Bridge from D&D to Redevelopment

    SciTech Connect (OSTI)

    Conger, M Malinda; Schneider, Ken R

    2012-01-01

    The landscape of the Oak Ridge National Laboratory (ORNL) has dramatically changed over the past 2 years with demolition of aging facilities in the Central Campus. Removal of these infrastructure legacies was possible due to an influx of DOE-Environmental Management funding through the American Recovery and Reinvestment Act of 2009 (ARRA). Facility D&D traditionally removes everything down to the building slab, and the Soils and Sediments Program is responsible for slabs, below-grade footers, abandoned waste utilities, and soils contaminated above certain risk levels that must be removed before the site can be considered for redevelopment. , DOE-EM has used a combination of base and ARRA funding to facilitate the clean-up process in ORNL s 2000 Area. Demolition of 13 buildings in the area was funded by the ARRA. Characterization of the remaining slabs, underground pipelines and soils was funded by DOE-EM base funding. Additional ARRA funding was provided for the removal of the slabs, pipelines and contaminated soils. Removal work is in progress and consists of removing and disposing of approximately 10,000 cubic yards (CY) of concrete, 2,500 CY of debris, and 500 CY of contaminated soil. The completion of this work will allow the site to be available for redevelopment and site reuse efforts at ORNL.

  5. Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).

    SciTech Connect (OSTI)

    Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

    2005-01-01

    A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

  6. Biological testing of sediment for the Olympia Harbor Navigation Improvement Project, 1988: Geoduck, amphipod, and echinoderm bioassays

    SciTech Connect (OSTI)

    Ward, J.A.; Word, J.Q.; Antrim, L.D.

    1989-05-01

    The Olympia Harbor Navigation Improvement Project requires the dredging of approximately 330,000 cubic yards (cy) of sediment from the harbor entrance channel and 205,185 cy from the turning basin. Puget Sound Dredged Disposal Analysis (PSDDA) partial characterization studies were used to plan a full sediment characterization in which chemical analyses and biological testing of sediments evaluated the suitability of the dredged material for unconfined, open-water disposal. The US Army Corps of Engineers (COE), Seattle District, contracted with NOAA/NMFS, Environmental Conservation Division, to perform the chemical analysis and Microtox bioassay tests, and with the Battelle/Marine Sciences Laboratory (MSL) in Sequim to perform flow-through solid-phase bioassays utilizing juvenile (8 to 10 mm) geoduck clams, Panopea generosa, and static solid phase bioassays using the phoxocephalid amphipod, Rhepoxynius abronius, developing embryos and gametes of the purple sea urchin, Strongylocentrotus purpuratus, and the larvae of the Pacific oyster Crassostrea gigas. When the results of the biological tests were evaluated under PSDDA guidelines, it was found that all the tested sediment treatments from Olympia Harbor are suitable for unconfined open-water disposal. 14 refs., 12 figs., 3 tabs.

  7. Regional solid waste management study

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    In 1990, the Lower Savannah Council of Governments (LSCOG) began dialogue with the United States Department of Energy (DOE) regarding possibilities for cooperation and coordination of solid waste management practices among the local governments and the Savannah River Site. The Department of Energy eventually awarded a grant to the Lower Savannah Council of Governments for the development of a study, which was initiated on March 5, 1992. After careful analysis of the region`s solid waste needs, this study indicates a network approach to solid waste management to be the most viable. The network involves the following major components: (1) Rural Collection Centers, designed to provide convenience to rural citizens, while allowing some degree of participation in recycling; (2) Rural Drop-Off Centers, designed to give a greater level of education and recycling activity; (3) Inert landfills and composting centers, designed to reduce volumes going into municipal (Subtitle D) landfills and produce useable products from yard waste; (4) Transfer Stations, ultimate landfill disposal; (5) Materials Recovery Facilities, designed to separate recyclables into useable and sellable units, and (6) Subtitle D landfill for burial of all solid waste not treated through previous means.

  8. Preliminary characterization of the 100 area at Argonne National Laboratory

    SciTech Connect (OSTI)

    Biang, C.; Biang, R.; Patel, P.

    1994-06-01

    This characterization report is based on the results of sampling and an initial environmental assessment of the 100 Area of Argonne National Laboratory. It addresses the current status, projected data requirements, and recommended actions for five study areas within the 100 Area: the Lime Sludge Pond, the Building 108 Liquid Retention Pond, the Coal Yard, the East Area Burn Pit, and the Eastern Perimeter Area. Two of these areas are solid waste management units under the Resource Conservation and Recovery Act (the Lime Sludge Pond and the Building 108 Liquid Retention Pond); however, the Illinois Environmental Protection Agency has determined that no further action is necessary for the Lime Sludge Pond. Operational records for some of the activities were not available, and one study area (the East Area Burn Pit) could not be precisely located. Recommendations for further investigation include sample collection to obtain the following information: (1) mineralogy of major minerals and clays within the soils and underlying aquifer, (2) pH of the soils, (3) total clay fraction of the soils, (4) cation exchange capacity of the soils and aquifer materials, and (5) exchangeable cations of the soils and aquifer material. Various other actions are recommended for the 100 Area, including an electromagnetic survey, sampling of several study areas to determine the extent of contamination and potential migration pathways, and sampling to determine the presence of any radionuclides. For some of the study areas, additional actions are contingent on the results of the initial recommendations.

  9. INTERIM BARRIER AT HANFORDS TY FARM TO PROTECT GROUNDWATER AT THE HANFORD SITE WASHINGTON USA

    SciTech Connect (OSTI)

    PARKER DL; HOLM MJ; HENDERSON JC; LOBER RW

    2011-01-13

    An innovative interim surface barrier was constructed as a demonstration project at the Hanford Site's TY Tank Farm. The purpose of the demonstration barrier is to stop rainwater and snowmelt from entering the soils within the tank farm and driving contamination from past leaks and spills toward the ground water. The interim barrier was constructed using a modified asphalt material with very low permeability developed by MatCon{reg_sign}. Approximately 2,400 cubic yards of fill material were added to the tank farm to create a sloped surface that will gravity drain precipitation to collection points where it will be routed through buried drain lines to an evapotranspiration basin adjacent to the farm. The evapotranspiration basin is a lined basin with a network of perforated drain lines covered with soil and planted with native grasses. The evapotranspiration concept was selected because it prevents the runoff from percolating into the soil column and also avoids potential monitoring and maintenance issues associated with standing water in a traditional evaporation pond. Because of issues associated with using standard excavation and earth moving equipment in the farm a number of alternate construction approaches were utilized to perform excavations and prepare the site for the modified asphalt.

  10. Design of a large-scale anaerobic digestion facility for the recovery of energy from municipal solid waste

    SciTech Connect (OSTI)

    Kayhanian, M.; Jones, D.

    1996-12-31

    The California Prison Industry Authority, in conjunction with the City of Folsom, operates a 100 ton/d municipal solid waste (MSW) recovery facility using inmate labor. Through manual sorting, all useful organic and inorganic materials are recycled for marketing. The remaining organic material will be further processed to remove hazardous and inert material and prepared as a feedstock for an anaerobic digestion process. The clean organic waste (approximately 78 ton/d) will then be shredded and completely mixed with sewage water prior feeding to the digester. Off gas from the digester will be collected as a fuel for the steam boiler or combusted in a waste gas burner. Steam will be injected directly into the digester for heating. The anaerobically digested material will be moved to compost area where it will be mixed with wood faction of yard waste and processed aerobically for the production of compost material as a soil amendment. Anaerobic digesters will be constructed in two phases. The first phase consists of the construction of one 26 ton/d digester to confirm the suitability of feeding and mixing equipment. Modifications will be made to the second and third digesters, in the second phase, based on operating experience of the first digester. This paper discusses important design features of the anaerobic digestion facility.

  11. History and stabilization of the Plutonium Finishing Plant (PFP) complex, Hanford Site

    SciTech Connect (OSTI)

    Gerber, M.S., Fluor Daniel Hanford

    1997-02-18

    The 231-Z Isolation Building or Plutonium Metallurgy Building is located in the Hanford Site`s 200 West Area, approximately 300 yards north of the Plutonium Finishing Plant (PFP) (234-5 Building). When the Hanford Engineer Works (HEW) built it in 1944 to contain the final step for processing plutonium, it was called the Isolation Building. At that time, HEW used a bismuth phosphate radiochemical separations process to make `AT solution,` which was then dried and shipped to Los Alamos, New Mexico. (AT solution is a code name used during World War II for the final HEW product.) The process was carried out first in T Plant and the 224-T Bulk Reduction Building and B Plant and the 224-B Bulk Reduction Building. The 224-T and -B processes produced a concentrated plutonium nitrate stream, which then was sent in 8-gallon batches to the 231-Z Building for final purification. In the 231-Z Building, the plutonium nitrate solution underwent peroxide `strikes` (additions of hydrogen peroxide to further separate the plutonium from its carrier solutions), to form the AT solution. The AT solution was dried and shipped to the Los Alamos Site, where it was made into metallic plutonium and then into weapons hemispheres.` The 231-Z Building began `hot` operations (operations using radioactive materials) with regular runs of plutonium nitrate on January 16, 1945.

  12. Empowerment: A fundamental tenet of risk communication and the Nimby syndrome

    SciTech Connect (OSTI)

    Stevens, A.D.

    1995-12-01

    Why do people want to be involved in decisions that have the potential to affect their community? Why not-wouldn`t you? The answer seems to obvious that it makes the question appear naive and trite. Yet, for years, government agencies and corporations have behaved in a manner that assumed the correctness of decisions and forced local residents to prove a right to be heard and to fight for the courtesy of respect. To the surprise and growing irritation of organization officials, the degree of trust and acceptance residents have for organizational pronouncements and activities has eroded into a seemingly intractable impediment. Given this environment, it is significant that two veins of social science research, risk communication and rhetorical theroy analyzing the Not-In-My-Back Yard (NIMBY) Phenomenon, are converging to the same point. Both approaches are finding that citizen empowerment--the legitimate intellectual sovereignty and meaningful involvement of individuals in decision making processes--is essential to the success of either type of communicative interaction. An appropriate context must precede the content in risk dialogue.

  13. Technology Transfer Plan

    SciTech Connect (OSTI)

    1998-12-31

    BPF developed the concept of a mobile, on-site NORM remediation and disposal process in late 1993. Working with Conoco and receiving encouragement born the Department of Energy, Metarie Office, and the Texas Railroad Commission the corporation conducted extensive feasibility studies on an on-site disposal concept. In May 1994, the Department of Energy issued a solicitation for cooperative agreement proposal for, "Development and Testing of a Method for Treatment and Underground Disposal of Naturally Occurring Radioactive Materials (NORM)". BPF submitted a proposal to the solicitation in July 1994, and was awarded a cooperative agreement in September 1995. BPF proposed and believed that proven equipment and technology could be incorporated in to a mobile system. The system would allow BPF to demonstrate an environmentally sound and commercially affordable method for treatment and underground disposal of NORM. The key stop in the BPF process incorporates injection of the dissolved radioactive materials into a water injection or disposal well. Disposal costs in the BPF proposal of July 1995 were projected to range from $1000 to $5000 per cubic yard. The process included four separate steps. (1) De-oiling (2) Volume Reduction (3) Chemical Dissolution of the Radium (4) Injection

  14. Field demonstration of coal combustion by-products based road sub-base in Illinois

    SciTech Connect (OSTI)

    Chugh, Y.P.; Mohanty, S.; Bryant, M.

    2006-07-01

    Development and demonstration of large-volume beneficial use applications for ponded fly ash are considered very important as a cost reduction strategy for the generation industry and value enhancement for the coal mining industry. One such application described is the road sub-base fo the Industry Access Truck Route in Meredosia, Illinois, which used approximately 77,000 cubic yard of compacted high loss-on-ignition (LOI) Class-F ponded fly ash. The Truck Route is a 24-feet wide road built on a 0 to 7 feet thick compacted fly ash sub-base. Illinois Department of Transportation estimated that the use of fly ash in this project saved more than $100,000 to the State of Illinois. Furthermore, natural resources in the form of relatively fertile soil were preserved by substituting fly ash for the available borrow in the area; quality agricultural topsoil is limited in the area. The article gives details of the project and reports favourable results on monitoring ground water quality. 2 refs., 1 fig.

  15. Health-hazard evaluation report HETA 88-391-2156, Morton Salt Company, Weeks Island, Louisiana

    SciTech Connect (OSTI)

    Ferguson, R.P.; Knutti, E.B.

    1991-11-01

    In response to a request from the International Chemical Workers Union, project director, an evaluation was undertaken of possible hazardous working conditions at the Morton Salt Company (SIC-1479), Weeks Island, Louisiana. At Weeks Island the salt was mined from large domes, circular in shape and from a few hundred yards to a mile across. The only detectable overexposures in the mining operation were to coal-tar pitch volatiles. None of the 20 personal breathing zone and area air samples collected in the mill were above detectable limits for asbestos (1332214). The prevalences of chronic cough and chronic phlegm reported were statistically different, exceeding those reported by a group of nonexposed blue collar workers. Chronic symptoms were reported by underground workers in all smoking categories, but only by those surface workers who also smoked. There were more complaints about eye irritation and tearing of the eyes in the underground workers, consistent with diesel byproduct exposure. Four workers were identified through pulmonary function test results with mild obstructive lung disease and one with moderate obstructive lung disease. Three workers with mild restriction of lung volume were noted. None of the 61 chest films taken read positively for pneumoconiosis. The authors conclude that overexposures to coal-tar pitch volatiles existed at the time of the survey. The authors recommend measures for reducing occupational exposures to workplace contaminants. A follow up medical questionnaire survey should be conducted.

  16. Superfund Record of Decision (EPA Region 7): Vogel Paint and Wax, Maurice, IA. (First remedial action), September 1989. Final report

    SciTech Connect (OSTI)

    Not Available

    1989-09-20

    The Vogel Paint and Wax (VPW) site is an approximately two-acre disposal area two miles southwest of the town of Maurice, in Sioux County, Iowa. Adjacent land uses are primarily agricultural; however, several private residences are within one-quarter mile of the site. A surficial sand and gravel aquifer underlies the site and supplies nearby private wells and the Southern Sioux County Rural Water System, located a mile and one half southeast of the site. Paint sludge, resins, solvents, and other paint-manufacturing wastes were disposed of at the site between 1971 and 1979. VPW records indicate that approximately 43,000 gallons of aliphatic and aromatic hydrocarbons and 6,000 pounds of metals waste were buried at the site. The primary contaminants of concern affecting the soil and ground water are VOCs including benzene, toluene, and xylenes; and metals including chromium and lead. The selected remedial action for this site includes excavation of contaminated soil and separation of solid and liquid wastes; onsite bioremediation of 3,000 cubic yards of the contaminated soil in a fully contained surface impoundment unit, or onsite thermal treatment if soil contains high metal content; and stabilization of treated soil, if necessary to prevent leaching of metals, followed by disposal in the excavated area.

  17. Superfund Record of Decision (EPA Region 5): Naval Industrial Reserve Ordnance Plant, Fridley, MN. (First remedial action), September 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    The 82.6-acre Naval Industrial Reserve Ordnance Plant (NIROP) site is a weapons system manufacturing facility in Fridley, Minnesota, which began operations in 1940. The site is a government-owned, contractor-operated, plant located just north of the FMC Corp. During the 1970s, paint sludge and chlorinated solvents were disposed of onsite in pits and trenches. In 1981, State investigations identified TCE in onsite water supply wells drawing from the Prairie DuChien/Jordan aquifer, and the wells were shut down. In 1983, EPA found drummed waste in the trenches or pits at the northern portion of the site, and as a result, during 1983 and 1984, the Navy authorized an installation restoration program, during which approximately 1,200 cubic yards of contaminated soil and 42 drums were excavated and landfilled offsite. The Record of Decision (ROD) addresses the remediation of a shallow ground water operable unit. The primary contaminants of concern affecting the ground water are VOCs including PCE, TCE, toluene, and xylene.

  18. Data summary of municipal solid waste management alternatives. Volume 10, Appendix H: Anaerobic digestion of MSW

    SciTech Connect (OSTI)

    1992-10-01

    While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

  19. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

  20. Composting in tandem

    SciTech Connect (OSTI)

    Sheehan, K.

    1994-03-01

    A composting company, a county, and a waste company have formed a symbiotic public/private relationship that is helping to extend the life of the area's landfills, as well as produce a needed product. California state assembly bill 939, passed in 1989, directed local governments to reduce the amount of garbage being landfilled in order to curtail the need for new landfills. Cities and counties in California are now mandated to reduce the volume of their waste stream by 25% by 1995. By the year 2000, the waste stream must be reduced by 50%. And the law has teeth -- to ensure these percentages are met, a $10,000 fine can be imposed for each day a deadline is missed. According to 1990 figures, Sonoma County's well-established recycling programs have been successful at diverting 15% of the county's waste stream from the landfill. Paula Magyari, a waste management specialist with the county Public Works Department, says yard wastes account for 13% of the waste stream in Sonoma County; wood wastes for at least 15%. At 13% and 15%, they are two of the largest components of the waste stream, and, equally important, they represent the portion of the waste stream that is most readily reusable to meet the 25% goal.

  1. Enewetak radiological support project. Final report

    SciTech Connect (OSTI)

    Friesen, B.

    1982-09-01

    From 1972 through 1980, the Department of Energy acted in an advisory role to the Defense Nuclear Agency during planning for and execution of the cleanup of Enewetak Atoll. The Nevada Operations Office of the Department of Energy was responsible for the radiological characterization of the atoll and for certification of radiological condition of each island upon completion of the project. In-situ measurements of gamma rays emitted by americium-241 were utilized along with wet chemistry separation of plutonium from soil samples to identify and delineate surface areas requiring removal of soil. Military forces removed over 100,000 cubic yards of soil from the surface of five islands and deposited this material in a crater remaining from the nuclear testing period. Subsurface soil was excavated and removed from several locations where measurements indicated the presence of radionuclides above predetermined criteria. The methodologies of data acquisition, analysis and interpretation are described and detailed results are provided in text, figures and microfiche. The final radiological condition of each of 43 islets is reported.

  2. Prediction of external corrosion for steel cylinders at the Paducah Gaseous Diffusion Plant: Application of an empirical method

    SciTech Connect (OSTI)

    Lyon, B.F.

    1996-02-01

    During the summer of 1995, ultrasonic wall thickness data were collected for 100 steel cylinders containing depleted uranium (DU) hexafluoride located at Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The cylinders were selected for measurement to assess the condition of the more vulnerable portion of the cylinder inventory at PGDP. The purpose of this report is to apply the method used in Lyon to estimate the effects of corrosion for larger unsampled populations as a function of time. The scope of this report is limited and is not intended to represent the final analyses of available data. Future efforts will include continuing analyses of available data to investigate defensible deviations from the conservative assumptions made to date. For each cylinder population considered, two basic types of analyses were conducted: (1) estimates were made of the number of cylinders as a function of time that will have a minimum wall thickness of either 0 mils (1 mil = 0.00 1 in.) or 250 mils and (2) the current minimum wall thickness distributions across cylinders were estimated for each cylinder population considered. Additional analyses were also performed investigating comparisons of the results for F and G yards with the results presented in Lyon (1995).

  3. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    SciTech Connect (OSTI)

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-08-01

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation--or neutrino oscillation--by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5% respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock mechanical and acoustic properties. The rock strength values range from 23 to 219 MPa and the Poisson's ratio from 0.1 to 0.38. Potential geologic hazards in the Diablo Canyon area were identified and described to provide an overall picture of processes that may affect tunnel construction activities.

  4. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    SciTech Connect (OSTI)

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-06-11

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation or neutrino oscillation by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5 percent respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock mechanical and acoustic properties. The rock strength values range from 23 to 219 MPa and the Poisson's ratio from 0.1 to 0.38. Potential geologic hazards in the Diablo Canyon area were identified and described to provide an overall picture of processes that may affect tunnel construction activities.

  5. Market Assessment and Demonstration of Lignite FBC Ash Flowable Fill Applications

    SciTech Connect (OSTI)

    Alan E. Bland

    2003-09-30

    Montana-Dakota Utilities (MDU) and Western Research Institute (WRI) have been developing flowable fill materials formulated using ash from the Montana-Dakota Utilities R. M. Heskett Station in Mandan, North Dakota. MDU and WRI have partnered with the U.S. Department of Energy (DOE) and the North Dakota Industrial Commission (NDIC) to further the development of these materials for lignite-fired fluidized-bed combustion (FBC) facilities. The MDU controlled density fill (CDF) appears to be a viable engineering material and environmentally safe. WRI is pursuing the commercialization of the technology under the trademark Ready-Fill{trademark}. The project objectives were to: (1) assess the market in the Bismarck-Mandan area; (2) evaluate the geotechnical properties and environmental compatibility; and (3) construct and monitor demonstrations of the various grades of flowable fill products in full-scale demonstrations. The scope of initial phase of work entailed the following: Task I--Assess Market for MDU Flowable Fill Products; Task II--Assess Geotechnical and Environmental Properties of MDU Flowable Fill Products; and Task III--Demonstrate and Monitor MDU Flowable Fill Products in Field-Scale Demonstrations. The results of these testing and demonstration activities proved the following: (1) The market assessment indicated that a market exists in the Bismarck-Mandan area for structural construction applications, such as sub-bases for residential and commercial businesses, and excavatable fill applications, such as gas line and utility trench filling. (2) The cost of the MDU flowable fill product must be lower than the current $35-$45/cubic yard price if it is to become a common construction material. Formulations using MDU ash and lower-cost sand alternatives offer that opportunity. An estimated market of 10,000 cubic yards of MDU flowable fill products could be realized if prices could be made competitive. (3) The geotechnical properties of the MDU ash-based flowable fill can be modified to meet the needs of a range of applications from structural fill applications to excavatable applications, such as utility trench fill. (4) Environmental assessments using standard testing indicate that the environmental properties of the fill materials are compatible with numerous construction applications and do not pose a threat to either adjacent groundwater or soils. (5) WRI developed an Environmental Field Simulator (EFS) method for assessing the impact of flowable fill materials on adjacent soils and found that the zone of impact is less than a couple of inches, thereby posing no threat to adjacent soils. (6) Field-scale demonstrations of the MDU flowable fill were constructed and were successful for structural, as well as excavatable applications. Monitoring has demonstrated the geotechnical performance, environmental performance, and compatibility with common embed materials with the MDU flowable fill products. Technical and economic issues were identified that may hinder the commercial acceptance of MDU flowable fill materials, including: (1) the ability to produce a consistent product; (2) the ability to provide a product year round (cold weather retards strength development); and (3) the ability to evaluate and produce commercial quantities of MDU flowable fill using inexpensive materials.

  6. Livingston Parish Landfill Methane Recovery Project (Feasibility Study)

    SciTech Connect (OSTI)

    White, Steven

    2012-11-15

    The Woodside Landfill is owned by Livingston Parish, Louisiana and is operated under contract by Waste Management of Louisiana LLC. This public owner/private operator partnership is commonplace in the solid waste industry today. The landfill has been in operation since approximately 1988 and has a permitted capacity of approximately 41 million cubic yards. Based on an assumed in-place waste density of 0.94 ton per cubic yard, the landfill could have an expected design capacity of 39.3 million tons. The landfill does have an active landfill gas collection and control system (LFGCCS) in place because it meets the minimum thresholds for the New Source Performance Standards (NSPS). The initial LFGCS was installed prior to 2006 and subsequent phases were installed in 2007 and 2010. The Parish received a grant from the United States Department of Energy in 2009 to evaluate the potential for landfill gas recovery and utilization at the Woodside Landfill. This includes a technical and economic feasibility study of a project to install a landfill gas to energy (LFGTE) plant and to compare alternative technologies. The LFGTE plant can take the form of on-site electrical generation, a direct use/medium Btu option, or a high-Btu upgrade technology. The technical evaluation in Section 2 of this report concludes that landfill gas from the Woodside landfill is suitable for recovery and utilization. The financial evaluations in sections 3, 4, and 5 of this report provide financial estimates of the returns for various utilization technologies. The report concludes that the most economically viable project is the Electricity Generation option, subject to the Parish’s ability and willingness to allocate adequate cash for initial capital and/or to obtain debt financing. However, even this option does not present a solid return: by our estimates, there is a 19 year simple payback on the electricity generation option. All of the energy recovery options discussed in this report economically stressed. The primary reason for this is the recent fundamental shift in the US energy landscape. Abundant supplies of natural gas have put downward pressure on any project that displaces natural gas or natural gas substitutes. Moreover, this shift appears long-term as domestic supplies for natural gas may have been increased for several hundred years. While electricity prices are less affected by natural gas prices than other thermal projects, they are still significantly affected since much of the power in the Entergy cost structure is driven by natural gas-fired generation. Consequently, rates reimbursed by the power company based on their avoided cost structure also face downward pressure over the near and intermediate term. In addition, there has been decreasing emphasis on environmental concerns regarding the production of thermal energy, and as a result both the voluntary and mandatory markets that drive green attribute prices have softened significantly over the past couple of years. Please note that energy markets are constantly changing due to fundamental supply and demand forces, as well as from external forces such as regulations and environmental concerns. At any point in the future, the outlook for energy prices may change and could deem either the electricity generation or pipeline injection project more feasible. This report is intended to serve as the primary background document for subsequent decisions made at Parish staff and governing board levels.

  7. A Historical Evaluation of the U12n Tunnel, Nevada National Security Site, Nye County, Nevada Part 1

    SciTech Connect (OSTI)

    Drollinger, Harold; Jones, Robert C; Bullard, Thomas F; Ashbaugh, Laurence J; Griffin, Wayne R

    2011-06-01

    This report presents a historical evaluation of the U12n Tunnel on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12n Tunnel was one of a series of tunnels used for underground nuclear weapons effects tests in Rainier and Aqueduct Mesas. A total of 22 nuclear tests were conducted in the U12n Tunnel from 1967 to 1992. These tests include Midi Mist, Hudson Seal, Diana Mist, Misty North, Husky Ace, Ming Blade, Hybla Fair, Mighty Epic, Diablo Hawk, Miners Iron, Huron Landing, Diamond Ace, Mini Jade, Tomme/Midnight Zephyr, Misty Rain, Mill Yard, Diamond Beech, Middle Note, Misty Echo, Mineral Quarry, Randsburg, and Hunters Trophy. DTRA sponsored all tests except Tomme and Randsburg which were sponsored by the Lawrence Livermore National Laboratory. Midnight Zephyr, sponsored by DTRA, was an add on experiment to the Tomme test. Eleven high explosive tests were also conducted in the tunnel and included a Stemming Plan Test, the Pre-Mill Yard test, the two seismic Non-Proliferation Experiment tests, and seven Dipole Hail tests. The U12n Tunnel complex is composed of the portal and mesa areas, encompassing a total area of approximately 600 acres (240 hectares). Major modifications to the landscape have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to testing, and construction of retention ponds. A total of 202 cultural features were recorded for the portal and mesa areas. At the portal area, features relate to the mining, construction, testing, and general everyday operational support activities within the tunnel. These include concrete foundations for buildings, ventilation equipment, air compressors, communications equipment, mining equipment, rail lines, retention ponds to impound tunnel effluent, and storage containers. Features on the mesa above the tunnel generally relate to tunnel ventilation and cooling, borehole drilling, and data recording facilities. Feature types include concrete foundations, instrument cable holes, drill holes, equipment pads, ventilation shafts, and ventilation equipment. The U12n Tunnel complex is eligible to the National Register of Historic Places under criteria a and c, consideration g of 36 CFR Part 60.4 as a historic landscape. Scientific research conducted at the tunnel has made significant contributions to the broad patterns of our history, particularly in regard to the Cold War era that was characterized by competing social, economic, and political ideologies between the former Soviet Union and the United States. The tunnel also possesses distinctive construction and engineering methods for conducting underground nuclear tests. The Desert Research Institute recommends that the U12n Tunnel area be left in place in its current condition and that the U12n Tunnel historic landscape be included in the NNSS monitoring program and monitored for disturbances or alterations on a regular basis.

  8. A Historical Evaluation of the U12n Tunnel, Nevada national Security Site, Nye County, Nevada Part 2 of 2

    SciTech Connect (OSTI)

    Drollinger, Harold; Jones, Robert C; Bullard, Thomas F; Ashbaugh, Laurence J; Griffin, Wayne R

    2011-06-01

    This report presents a historical evaluation of the U12n Tunnel on the Nevada National Security Site (NNSS) in southern Nevada. The work was conducted by the Desert Research Institute at the request of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office and the U.S. Department of Defense, Defense Threat Reduction Agency (DTRA). The U12n Tunnel was one of a series of tunnels used for underground nuclear weapons effects tests in Rainier and Aqueduct Mesas. A total of 22 nuclear tests were conducted in the U12n Tunnel from 1967 to 1992. These tests include Midi Mist, Hudson Seal, Diana Mist, Misty North, Husky Ace, Ming Blade, Hybla Fair, Mighty Epic, Diablo Hawk, Miners Iron, Huron Landing, Diamond Ace, Mini Jade, Tomme/Midnight Zephyr, Misty Rain, Mill Yard, Diamond Beech, Middle Note, Misty Echo, Mineral Quarry, Randsburg, and Hunters Trophy. DTRA sponsored all tests except Tomme and Randsburg which were sponsored by the Lawrence Livermore National Laboratory. Midnight Zephyr, sponsored by DTRA, was an add on experiment to the Tomme test. Eleven high explosive tests were also conducted in the tunnel and included a Stemming Plan Test, the Pre-Mill Yard test, the two seismic Non-Proliferation Experiment tests, and seven Dipole Hail tests. The U12n Tunnel complex is composed of the portal and mesa areas, encompassing a total area of approximately 600 acres (240 hectares). Major modifications to the landscape have resulted from four principal activities. These are road construction and maintenance, mining activities related to development of the tunnel complex, site preparation for activities related to testing, and construction of retention ponds. A total of 202 cultural features were recorded for the portal and mesa areas. At the portal area, features relate to the mining, construction, testing, and general everyday operational support activities within the tunnel. These include concrete foundations for buildings, ventilation equipment, air compressors, communications equipment, mining equipment, rail lines, retention ponds to impound tunnel effluent, and storage containers. Features on the mesa above the tunnel generally relate to tunnel ventilation and cooling, borehole drilling, and data recording facilities. Feature types include concrete foundations, instrument cable holes, drill holes, equipment pads, ventilation shafts, and ventilation equipment. The U12n Tunnel complex is eligible to the National Register of Historic Places under criteria a and c, consideration g of 36 CFR Part 60.4 as a historic landscape. Scientific research conducted at the tunnel has made significant contributions to the broad patterns of our history, particularly in regard to the Cold War era that was characterized by competing social, economic, and political ideologies between the former Soviet Union and the United States. The tunnel also possesses distinctive construction and engineering methods for conducting underground nuclear tests. The Desert Research Institute recommends that the U12n Tunnel area be left in place in its current condition and that the U12n Tunnel historic landscape be included in the NNSS monitoring program and monitored for disturbances or alterations on a regular basis.

  9. An assessment of potential environmental impacts of cement kiln dust produced in kilns co-fired with hazardous waste fuels

    SciTech Connect (OSTI)

    Goad, P.T.; Millner, G.C.; Nye, A.C.

    1998-12-31

    The Keystone Cement Company (Keystone), located in Bath, Pennsylvania, produces cement in two kilns that are co-fired with hazardous waste-derived fuels. Beginning in the late 1970`s Keystone began storing cement kiln dust (CKD) in an aboveground storage pile located on company property adjacent to the cement kilns. Storm water runoff from the CKD pile is channeled into a storm water settling pond which in turn discharges into Monocacy Creek, a stream running along the eastern property boundary. Monocacy Creek sustains a thriving trout fishery and is routinely fished during the open recreational fishing season in pennsylvania. The CKD pile has a surface area of approximately 12 acres, with an average height of approximately 35 feet. The southern edge of the pile is contiguous with an adjacent company-owned field in which field corn is grown for cattle feed. Some of the corn on the edges of the field is actually grown in direct contact with CKD that comprises the edge of the storage pile. The CKD pile is located approximately 150 yards to the west of Monocacy Creek. In 1995--1996 water, sediment and fish (trout) samples were obtained from Monocacy Creek sampling stations upstream and downstream of the point of discharge of storm water runoff from the CKD pile. In addition, corn samples were obtained from the field contiguous with the CKD pile and from a control field located distant to the site. The sediment, water, fish, and corn samples were analyzed for various chemicals previously identified as chemicals of potential concern in CKD. These data indicate that chemical constituents of CKD are not contaminating surface water or sediment in the stream, and that bioaccumulation of organic chemicals and/or metals has not occurred in field corn grown in direct contact with undiluted CKD, or in fish living in the waters that receive CKD pile runoff.

  10. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

  11. Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

  12. Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-06-01

    Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536 Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure

  13. Explosive Contamination from Substrate Surfaces: Differences and Similarities in Contamination Techniques using RDX and C-4

    SciTech Connect (OSTI)

    C.J. Miller; T.S. Yoder

    2010-06-01

    The amount of time that an explosive is present on the surface of a material is dependent upon the original amount of explosive on the surface, temperature, humidity, rain, etc. This laboratory study focused on looking at similarities and differences in three different surface contamination techniques that are used when performance testing explosive trace detection equipment in an attempt to determine how effective the techniques are at replicating actual field samples. The three techniques used were dry transfer deposition of solutions using the Transportation Security Laboratory (TSL) patented dry transfer techniques (US patent 6470730), direct deposition of explosive standards, and fingerprinting of actual explosives. Explosives were deposited on the surface of one of five substrates using one of the three different deposition techniques. The process was repeated for each surface type using each contamination technique. The surface types used were: 50% cotton/50% polyester as found in T-shirts, 100% cotton with a smooth surface such as that found in a cotton dress shirt, 100% cotton on a rough surface such as that found on canvas or denim, suede leather such as might be found on jackets, purses, or shoes, and metal obtained from a car hood at a junk yard. The samples were not pre-cleaned prior to testing and contained sizing agents, and in the case of the metal, oil and dirt. The substrates were photographed using a Zeiss Discover V12 stereoscope with Axiocam ICc1 3 megapixel digital camera to determine the difference in the crystalline structure and surface contamination in an attempt to determine differences and similarities associated with current contamination techniques.

  14. Transmittal of the Calculation Package that Supports the Analysis of Performance of the Environmental Management Waste Management Facility Oak Ridge, Tennessee (Based 5-Cell Design Issued 8/14/09)

    SciTech Connect (OSTI)

    Williams M.J.

    2009-09-14

    This document presents the results of an assessment of the performance of a build-out of the Environmental Management Waste Management Facility (EMWMF). The EMWMF configuration that was assessed includes the as-constructed Cells 1 through 4, with a groundwater underdrain that was installed beneath Cell 3 during the winter of 2003-2004, and Cell 5, whose proposed design is an Addendum to Remedial Design Report for the Disposal of Oak Ridge Reservation Comprehensive Environmental Response, Compensation, and Liability Act of 1980 Waste, Oak Ridge, Tennessee, DOE/OR/01-1873&D2/A5/R1. The total capacity of the EMWMF with 5 cells is about 1.7 million cubic yards. This assessment was conducted to determine the conditions under which the approved Waste Acceptance Criteria (WAC) for the EMWMF found in the Attainment Plan for Risk/Toxicity-Based Waste Acceptance Criteria at the Oak Ridge Reservation, Oak Ridge, Tennessee [U.S. Department of Energy (DOE) 2001a], as revised for constituents added up to October 2008, would remain protective of public health and safety for a five-cell disposal facility. For consistency, the methods of analyses and the exposure scenario used to predict the performance of a five-cell disposal facility were identical to those used in the Remedial Investigation and Feasibility Study (RI/FS) and its addendum (DOE 1998a, DOE 1998b) to develop the approved WAC. To take advantage of new information and design changes departing from the conceptual design, the modeling domain and model calibration were upaded from those used in the RI/FS and its addendum. It should be noted that this analysis is not intended to justify or propose a change in the approved WAC.

  15. Chemical aspects of cylinder corrosion and a scenario for hole development

    SciTech Connect (OSTI)

    Barber, E.J.

    1991-12-31

    In June 1990, two cylinders in the depleted UF{sub 6} cylinder storage yards at Portsmouth were discovered to have holes in their walls at the valve-end stiffening ring at a point below the level of the gas-solid interface of the UF{sub 6}. The cylinder with the larger hole, which extended under the stiffening ring, was stacked in a top row 13 years ago. The cylinder with the smaller hole had been stacked in a bottom row 4 years ago. The lifting lugs of the adjacent cylinders pointed directly at the holes. A Cylinder Investigating Committee was appointed to determine the cause or causes of the holes and to assess the implications of these findings. This report contains a listing of the chemically related facts established by the Investigating Committee with the cooperation of the Operations and Technical Support Divisions at the Portsmouth Gaseous Diffusion Plant, the scenario developed to explain these findings and some implications of this scenario. In summary, the interrelated reactions of water, solid UF{sub 6} and iron presented by R. L. Ritter are used to develop a scenario which explains the observations and deductions made during the investigation. The chemical processes are intimately related to the course of the last three of the four stages of hole development. A simple model is proposed which permits semiquantitative prediction of such information as the HF loss rates as a function of time, the rate of hole enlargement, the time to hydrolyze a cylinder of UF{sub 6} and the approximate size of the hole. The scenario suggests that the environmental consequences associated with a developing hole in a depleted UF{sub 6} cylinder are minimal for the first several years but will become significant if too many years pass before detection. The overall environmental picture is presented in more detail elsewhere.

  16. Thermal-Structural Analysis of the MacArthur Maze Freeway Collapse

    SciTech Connect (OSTI)

    Noble, C R; Wemhoff, A P; McMichael, L D

    2008-02-26

    At approximately 3:41 AM on the morning of April 29, 2007, a tractor-trailer rig carrying 8,600 gallons (32.6 m{sup 3}) of fuel overturned on Interstate 880 in Oakland, CA. The resultant fire weakened the surrounding steel superstructure and caused a 50-yard (45.7 m) long section of the above connecting ramp from Interstate 80 to Interstate 580 to fail in approximately 18 minutes. In this study, we performed a loosely-coupled thermal-structural finite element analysis of the freeway using the LLNL Engineering codes NIKE3D, DYNA3D and TOPAZ3D. First, we applied an implicit structural code to statically initialize the stresses and displacements in the roadway at ambient conditions due to gravity loading. Next, we performed a thermal analysis by approximating the tanker fire as a moving box region of uniform temperature. This approach allowed for feasible calculation of the fire-to-structure radiative view factors and convective heat transport. We used a mass scaling methodology in the thermal analysis to reduce the overall simulation time so an explicit structural analysis could be used, which provided a more computationally efficient simulation of structural failure. Our approach showed structural failure of both spans due to thermal softening under gravity loading at approximately 20 minutes for a fixed fire temperature of 1200 C and fixed thermal properties. When temperature-dependent thermal properties were applied, the south and north spans collapsed at approximately 10 minutes and 16 minutes, respectively. Finally, we performed a preliminary fully-coupled analysis of the system using the new LLNL implicit multi-mechanics code Diablo. Our investigation shows that our approach provides a reasonable first-order analysis of the system, but improved modeling of the transport properties and the girder-box beam connections is required for more accurate predictions.

  17. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    SciTech Connect (OSTI)

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  18. Reducing Contingency through Sampling at the Luckey FUSRAP Site - 13186

    SciTech Connect (OSTI)

    Frothingham, David; Barker, Michelle; Buechi, Steve; Durham, Lisa

    2013-07-01

    Typically, the greatest risk in developing accurate cost estimates for the remediation of hazardous, toxic, and radioactive waste sites is the uncertainty in the estimated volume of contaminated media requiring remediation. Efforts to address this risk in the remediation cost estimate can result in large cost contingencies that are often considered unacceptable when budgeting for site cleanups. Such was the case for the Luckey Formerly Utilized Sites Remedial Action Program (FUSRAP) site near Luckey, Ohio, which had significant uncertainty surrounding the estimated volume of site soils contaminated with radium, uranium, thorium, beryllium, and lead. Funding provided by the American Recovery and Reinvestment Act (ARRA) allowed the U.S. Army Corps of Engineers (USACE) to conduct additional environmental sampling and analysis at the Luckey Site between November 2009 and April 2010, with the objective to further delineate the horizontal and vertical extent of contaminated soils in order to reduce the uncertainty in the soil volume estimate. Investigative work included radiological, geophysical, and topographic field surveys, subsurface borings, and soil sampling. Results from the investigative sampling were used in conjunction with Argonne National Laboratory's Bayesian Approaches for Adaptive Spatial Sampling (BAASS) software to update the contaminated soil volume estimate for the site. This updated volume estimate was then used to update the project cost-to-complete estimate using the USACE Cost and Schedule Risk Analysis process, which develops cost contingencies based on project risks. An investment of $1.1 M of ARRA funds for additional investigative work resulted in a reduction of 135,000 in-situ cubic meters (177,000 in-situ cubic yards) in the estimated base volume estimate. This refinement of the estimated soil volume resulted in a $64.3 M reduction in the estimated project cost-to-complete, through a reduction in the uncertainty in the contaminated soil volume estimate and the associated contingency costs. (authors)

  19. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-05-03

    The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

  20. Sidetracking technology for coiled tubing drilling

    SciTech Connect (OSTI)

    Leising, L.J.; Hearn, D.D.; Rike, E.A.

    1995-12-31

    Coiled tubing (CT) drilling is a rapidly growing new technology that has been used for shallow new wells and reentry applications. A new market has evolved as being a major application for CT drilling. This market is through-tubing drilling. The lower cost of mobilization of a coiled tubing unit (CTU) to an offshore platform or Arctic wellsite vs. a rotary rig provides additional economic incentive. In addition, the ease of drilling 4-3/4-in. and smaller boreholes with CT is an advantage in a region which does not have an established practice of slimhole drilling. The remaining key enabling technology for viable through-tubing drilling is the ability to sidetrack in casing below the tubing tail. The three technologies (cement sidetracking, whipstock in cement, and through-tubing whipstock) that have been developed for sidetracking are described in this paper. A mathematical model of forces, penetration rates, and torques for window milling with the cement sidetracking technique is presented. Window milling has been a {open_quotes}seat of the pants{close_quotes} operation in the past, to the authors` knowledge, this is the first published work on the mechanics of window milling. The analysis has shed much light on the interaction between motor bending stiffness, motor bend angle, and allowable advance rates for {open_quotes}time drilling.{close_quotes} The results from several yard tests are presented, and indicate some of the problems associated with sidetracking. The photographs of the sectioned hole/window illustrate the ledges caused downhole from {open_quotes}minor{close_quotes} bottomhole assembly (BHA) changes. The cement sidetrack technique has been successfully applied many times in the field, and the results of one of these field applications is presented.

  1. Site observational work plan for the UMTRA Project Site at Tuba City, Arizona

    SciTech Connect (OSTI)

    1994-09-01

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. A total of 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. Two processes were used to refine the ore: an acid leach process and a sodium carbonate alkaline process. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The preliminary ground water compliance strategy at the Tuba City site is active remediation. The specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  2. Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement

    SciTech Connect (OSTI)

    1986-12-01

    This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

  3. Site observational work plan for the UMTRA Project site at Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. The wet tailings remaining after processing were placed as a slurry in three piles at the site. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The site is expected to remain in this status until licensed by the U.S. Nuclear Regulatory Commission (NRC) for long-term surveillance and maintenance. The preliminary ground water compliance strategy at the Tuba City site is active remediation-specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  4. An integrated analytical framework for quantifying the LCOE of waste-to-energy facilities for a range of greenhouse gas emissions policy and technical factors

    SciTech Connect (OSTI)

    Townsend, Aaron K.; Webber, Michael E.

    2012-07-15

    This study presents a novel integrated method for considering the economics of waste-to-energy (WTE) facilities with priced greenhouse gas (GHG) emissions based upon technical and economic characteristics of the WTE facility, MSW stream, landfill alternative, and GHG emissions policy. The study demonstrates use of the formulation for six different policy scenarios and explores sensitivity of the results to ranges of certain technical parameters as found in existing literature. The study shows that details of the GHG emissions regulations have large impact on the levelized cost of energy (LCOE) of WTE and that GHG regulations can either increase or decrease the LCOE of WTE depending on policy choices regarding biogenic fractions from combusted waste and emissions from landfills. Important policy considerations are the fraction of the carbon emissions that are priced (i.e. all emissions versus only non-biogenic emissions), whether emissions credits are allowed due to reducing fugitive landfill gas emissions, whether biogenic carbon sequestration in landfills is credited against landfill emissions, and the effectiveness of the landfill gas recovery system where waste would otherwise have been buried. The default landfill gas recovery system effectiveness assumed by much of the industry yields GHG offsets that are very close to the direct non-biogenic GHG emissions from a WTE facility, meaning that small changes in the recovery effectiveness cause relatively larger changes in the emissions factor of the WTE facility. Finally, the economics of WTE are dependent on the MSW stream composition, with paper and wood being advantageous, metal and glass being disadvantageous, and plastics, food, and yard waste being either advantageous or disadvantageous depending upon the avoided tipping fee and the GHG emissions price.

  5. Survey and analysis of selected jointly owned large-scale electric utility storage projects

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    The objective of this study was to examine and document the issues surrounding the curtailment in commercialization of large-scale electric storage projects. It was sensed that if these issues could be uncovered, then efforts might be directed toward clearing away these barriers and allowing these technologies to penetrate the market to their maximum potential. Joint-ownership of these projects was seen as a possible solution to overcoming the major barriers, particularly economic barriers, of commercializaton. Therefore, discussions with partners involved in four pumped storage projects took place to identify the difficulties and advantages of joint-ownership agreements. The four plants surveyed included Yards Creek (Public Service Electric and Gas and Jersey Central Power and Light); Seneca (Pennsylvania Electric and Cleveland Electric Illuminating Company); Ludington (Consumers Power and Detroit Edison, and Bath County (Virginia Electric Power Company and Allegheny Power System, Inc.). Also investigated were several pumped storage projects which were never completed. These included Blue Ridge (American Electric Power); Cornwall (Consolidated Edison); Davis (Allegheny Power System, Inc.) and Kttatiny Mountain (General Public Utilities). Institutional, regulatory, technical, environmental, economic, and special issues at each project were investgated, and the conclusions relative to each issue are presented. The major barriers preventing the growth of energy storage are the high cost of these systems in times of extremely high cost of capital, diminishing load growth and regulatory influences which will not allow the building of large-scale storage systems due to environmental objections or other reasons. However, the future for energy storage looks viable despite difficult economic times for the utility industry. Joint-ownership can ease some of the economic hardships for utilites which demonstrate a need for energy storage.

  6. In situ destruction of contaminants via hydrous pyrolysis/oxidation. Visalia Field Test

    SciTech Connect (OSTI)

    Newmark, Robin L.; Aines, Roger D.; Knauss, Kevin; Leif, Roald; Chiarappa, Marina; Hudson, Bryant; Carrigan, Charles; Tompson, Andy; Richards, Jim; Eaker, Craig; Weidner, Randall; Sciarotta, Terry

    1998-12-01

    A field test of hydrous pyrolysis/oxidation (HPO) was conducted during the summer of 1997, during a commercial application of thermal remediation (Dynamic Underground Stripping (DUS)) at the Visalia Pole Yard (a super-fund site) in southern California. At Visalia, Southern California Edison Co. is applying the DUS thermal remediation method to clean up a large (4.3 acre) site contaminated with pole-treating compounds. This is a full-scale cleanup, during which initial extraction of contaminants is augmented by combined steam/air injection in order to enhance the destruction of residual contaminants by HPO. Laboratory results indicate that the contaminants at Visaha react at similar rates to TCE, which has been the focus of extensive laboratory work (Knauss et al., 1998a-c). Field experimental results from this application yield valuable information (1) confirming the destruction of contaminants in soil and groundwater by HPO, (2) validating the predictive models used to design HP0 steam injection systems, (3) demonstrating that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells and (4) obtaining a reasonable prediction of the cost and effectiveness of HPO, working at a commercial scale and with commercial partners. The goal of our additional study and demonstration in conjunction with Edison has been to obtain early proof of hydrous pyrolysis/oxidation in the field, and validate our predictive models and monitoring strategies. This demonstration provides valuable economic and practicability data obtained on a commercial scale, with more detailed field validation than is commonly available on a commercially-conducted cleanup. The results of LLNL' s field experiments constrain the destruction rates throughout the site, and enable site management to make accurate estimates of total in situ destruction based on the recovered carbon. As of October, 1998, over 900,000 lb of contaminant have been removed from the site; about 18% of this has been destroyed in situ.

  7. Semivolatile organic (GC-MS) and inorganic analyses of groundwater samples during the hydrous pyrolysis/oxidation (HPO) field test in Visalia, CA, 1997

    SciTech Connect (OSTI)

    Chiarappa, M; Knauss, K G; Kumamoto, G; Leif, R N; Newmark, R L

    1998-02-05

    Hydrous pyrolysis/oxidation (HPO) is a novel, in situ, thermal-remediation technology that uses hot, oxygenated groundwater to completely oxidize a wide range of organic pollutants. A field demonstration of HPO was performed during the summer of 1997 at the Southern California Edison Pole Yard in Visalia, California, a site contaminated with creosote. The goal of the field experiment was to confirm the success of HPO under field remediation conditions. The groundwater was heated by steam injections, and oxygen was added by co-injection of compressed air. The progress of the HPO remediation process was evaluated by monitoring groundwater from multiple wells for dissolved oxygen, dissolved inorganic carbon, and dissolved organic contaminant levels. Analyses of groundwater chemistry allowed us to measure the concentrations of creosote components and to identify oxygenated intermediates produced by the HPO treatment. Dissolved organic carbon levels increased in response to steam injections because of the enhanced dissolution and mobilization of the creosote into the heated groundwater. Elevated concentrations of phenols and benzoic acid were measured in wells affected by the steam injections. Concentrations of other oxygenated compounds (i.e., fluorenone, anthrone, and 9,10-anthracenedione) increased in response to the steam injections. The production of these partially oxidized compounds is consistent with the aqueous-phase HPO reactions of creosote. Additional changes in the groundwater in response to steam injection were also consistent with the groundwater HPO chemistry. A drop in dissolved oxygen was observed in the aquifer targeted for the steam injections, and isotope shifts in the dissolved inorganic pool reflected the input of oxidized carbon derived from the creosote carbon.

  8. In situ destruction of contaminants via hydrous pyrolysis/

    SciTech Connect (OSTI)

    Aines, R D; Carrigan, C; Chiarappa, M; Eaker, C; Hudson, B; Knauss, K; Leif, R; Newmark, R L; Richards, J; Sciarotta, T; Tompson, A; Weidner, R.

    1998-12-01

    A field test of hydrous pyrolysis/oxidation (HPO) was conducted during the summer of 1997, during a commercial application of thermal remediation (Dynamic Underground Stripping (DUS)) at the Visalia Pole Yard (a super-fund site) in southern California. At Visalia, Southern California Edison Co. is applying the DUS thermal remediation method to clean up a large (4.3 acre) site contaminated with pole-treating compounds. This is a full-scale cleanup, during which initial extraction of contaminants is augmented by combined steam/air injection in order to enhance the destruction of residual contaminants by HPO. Laboratory results indicate that the contaminants at Visaha react at similar rates to TCE, which has been the focus of extensive laboratory work (Knauss et al., 1998a-c). Field experimental results from this application yield valuable information (1) confirming the destruction of contaminants in soil and groundwater by HPO, (2) validating the predictive models used to design HP0 steam injection systems, (3) demonstrating that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells and (4) obtaining a reasonable prediction of the cost and effectiveness of HPO, working at a commercial scale and with commercial partners. The goal of our additional study and demonstration in conjunction with Edison has been to obtain early proof of hydrous pyrolysis/oxidation in the field, and validate our predictive models and monitoring strategies. This demonstration provides valuable economic and practicability data obtained on a commercial scale, with more detailed field validation than is commonly available on a commercially-conducted cleanup. The results of LLNL s field experiments constrain the destruction rates throughout the site, and enable site management to make accurate estimates of total in situ destruction based on the recovered carbon. As of October, 1998, over 900,000 lb of contaminant have been removed from the site; about 18% of this has been destroyed in situ.

  9. INDEPENDENT TECHNICAL REVIEW OF THE FOCUSED FEASIBILITY STUDY AND PROPOSED PLAN FOR DESIGNATED SOLID WASTE MANAGEMENT UNITS CONTRIBUTING TO THE SOUTHWEST GROUNDWATER PLUME AT THE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.; Amidon, M.; Rossabi, J.; Stewart, L.

    2011-05-31

    The U. S. Department of Energy (DOE) is currently developing a Proposed Plan (PP) for remediation of designated sources of chlorinated solvents that contribute contamination to the Southwest (SW) Groundwater Plume at the Paducah Gaseous Diffusion Plant (PGDP), in Paducah, KY. The principal contaminants in the SW Plume are trichloroethene (TCE) and other volatile organic compounds (VOCs); these industrial solvents were used and disposed in various facilities and locations at PGDP. In the SW plume area, residual TCE sources are primarily in the fine-grained sediments of the Upper Continental Recharge System (UCRS), a partially saturated zone that delivers contaminants downward into the coarse-grained Regional Gravel Aquifer (RGA). The RGA serves as the significant lateral groundwater transport pathway for the plume. In the SW Plume area, the four main contributing TCE source units are: (1) Solid Waste Management Unit (SWMU) 1 / Oil Landfarm; (2) C-720 Building TCE Northeast Spill Site (SWMU 211A); (3) C-720 Building TCE Southeast Spill Site (SWMU 211B); and (4) C-747 Contaminated Burial Yard (SWMU 4). The PP presents the Preferred Alternatives for remediation of VOCs in the UCRS at the Oil Landfarm and the C-720 Building spill sites. The basis for the PP is documented in a Focused Feasibility Study (FFS) (DOE, 2011) and a Site Investigation Report (SI) (DOE, 2007). The SW plume is currently within the boundaries of PGDP (i.e., does not extend off-site). Nonetheless, reasonable mitigation of the multiple contaminant sources contributing to the SW plume is one of the necessary components identified in the PGDP End State Vision (DOE, 2005). Because of the importance of the proposed actions DOE assembled an Independent Technical Review (ITR) team to provide input and assistance in finalizing the PP.

  10. The role of acceptable knowledge in transuranic waste disposal operations - 11117

    SciTech Connect (OSTI)

    Chancellor, Christopher John; Nelson, Roger

    2010-11-08

    The Acceptable Knowledge (AK) process plays a key role in the delineation of waste streams destined for the Waste Isolation Pilot Plant (WIPP). General Electric's Vallecitos Nuclear Center (GEVNC) provides for an ideal case study of the application of AK in a multiple steward environment. In this review we will elucidate the pivotal role Acceptable Knowledge played in segregating Department of Energy (DOE) responsibilities from a commercial facility. The Acceptable Knowledge process is a necessary component of waste characterization that determines whether or not a waste stream may be considered for disposal at the WIPP site. This process may be thought of as an effort to gain a thorough understanding of the waste origin, chemical content, and physical form gleaned by the collection of documentation that concerns generator/storage site history, mission, and operations; in addition to waste stream specific information which includes the waste generation process, the waste matrix, the quantity of waste concerned, and the radiological and chemical make up of the waste. The collection and dissemination of relevant documentation is the fundamental requirement for the AK process to work. Acceptable Knowledge is the predominant process of characterization and, therefore, a crucial part of WIPP's transuranic waste characterization program. This characterization process, when conducted to the standards set forth in WIPP's operating permit, requires confirmation/verification by physical techniques such as Non-Destructive Examination (NDE), Visual Examination (VE), and Non-Destructive Assay (NDA). These physical characterization techniques may vary in their appropriateness for a given waste stream; however, nothing will allow the substitution or exclusion of AK. Beyond the normal scope of operations, AK may be considered, when appropriate, a surrogate for the physical characterization techniques in a procedure that appeals to concepts such As Low As Reasonably Achievable (ALARA) and budgetary savings. This substitution is referred to as an Acceptable Knowledge Sufficiency Determination. With a Sufficiency Determination Request, AK may supplant the need for one or all of the physical analysis methods. This powerful procedure may be used on a scale as small as a single container to that of a vast waste stream. Only under the most stringent requirements will an AK Sufficiency Determination be approved by the regulators and, to date, only six such Sufficiency Determinations have been approved. Although Acceptable Knowledge is legislated into the operational procedures of the WIPP facility there is more to it than compliance. AK is not merely one of a long list of requirements in the characterization and verification of transuranic (TRU) waste destined for the WIPP. Acceptable Knowledge goes beyond the regulatory threshold by offering a way to reduce risk, cost, time, and uncertainty on its own laurels. Therefore, AK alone can be argued superior to any other waste characterization technique.

  11. FY 2008 Next Generation Safeguards Initiative International Safeguards Education and Training Pilot Progerams Summary Report

    SciTech Connect (OSTI)

    Dreicer, M; Anzelon, G; Essner, J; Dougan, A; Doyle, J; Boyer, B; Hypes, P; Sokova, E; Wehling, F

    2008-10-17

    Key component of the Next Generation Safeguards Initiative (NGSI) launched by the National Nuclear Security Administration is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. Two pilot programs at university level, involving 44 students, were initiated and implemented in spring-summer 2008 and linked to hands-on internships at LANL or LLNL. During the internships, students worked on specific safeguards-related projects with a designated Laboratory Mentor to provide broader exposure to nuclear materials management and information analytical techniques. The Safeguards and Nuclear Material Management pilot program was a collaboration between the Texas A&M University (TAMU), Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). It included a 16-lecture course held during a summer internship program. The instructors for the course were from LANL together with TAMU faculty and LLNL experts. The LANL-based course was shared with the students spending their internship at LLNL via video conference. A week-long table-top (or hands-on) exercise on was also conducted at LANL. The student population was a mix of 28 students from a 12 universities participating in a variety of summer internship programs held at LANL and LLNL. A large portion of the students were TAMU students participating in the NGSI pilot. The International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at the Monterey Institute for International Studies (MIIS) in cooperation with LLNL. It included a two-week intensive course consisting of 20 lectures and two exercises. MIIS, LLNL, and speakers from other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were senior classmen or new master's degree graduates from MIIS specializing in nonproliferation policy studies. Other university/organizations represented: University of California in LA, Stanford University, and the IAEA. Four of the students that completed this intensive course participated in a 2-month internship at LLNL. The conclusions of the two pilot courses and internships was a NGSI Summer Student Symposium, held at LLNL, where 20 students participated in LLNL facility tours and poster sessions. The Poster sessions were designed to provide a forum for sharing the results of their summer projects and providing experience in presenting their work to a varied audience of students, faculty and laboratory staff. The success of bringing together the students from the technical and policy pilots was notable and will factor into the planning for the continued refinement of their two pilot efforts in the coming years.

  12. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-Lived Surface Caps

    SciTech Connect (OSTI)

    Piet, Steven James; Breckenridge, Robert Paul; Burns, Douglas Edward

    2003-02-01

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someones back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: a) improve the knowledge of degradation mechanisms in times shorter than service life; b) improve modeling of barrier degradation dynamics; c) develop sensor systems to identify early degradation; and d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing at the intermediate meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The emphasis on meso-scale (coupled) tests, accelerated effects testing, and dynamic modeling differentiates the project from other efforts, while simultaneously building on that body of knowledge. The performance of evapotranspiration, capillary, and grout-based barriers is being examined. To date, the project can report new approaches to the problem, building new experimental and modeling capabilities, and a few preliminary results.

  13. Testing, Modeling, and Monitoring to Enable Simpler, Cheaper, Longer-lived Surface Caps

    SciTech Connect (OSTI)

    Piet, S. J.; Breckenridge, R. P.; Burns, D. E.

    2003-02-25

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone's back yard); most of these storage sites include a surface barrier (cap) to prevent downward water migration. Some of the hazards will persist indefinitely. As society and regulators have demanded additional proof that caps are robust against more threats and for longer time periods, the caps have become increasingly complex and expensive. As in other industries, increased complexity will eventually increase the difficulty in estimating performance, in monitoring system/component performance, and in repairing or upgrading barriers as risks are managed. An approach leading to simpler, less expensive, longer-lived, more manageable caps is needed. Our project, which started in April 2002, aims to catalyze a Barrier Improvement Cycle (iterative learning and application) and thus enable Remediation System Performance Management (doing the right maintenance neither too early nor too late). The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions, improve barrier management, and enable improved solutions for future decisions. We believe it will be possible to develop simpler, longer-lived, less expensive caps that are easier to monitor, manage, and repair. The project is planned to: (a) improve the knowledge of degradation mechanisms in times shorter than service life; (b) improve modeling of barrier degradation dynamics; (c) develop sensor systems to identify early degradation; and (d) provide a better basis for developing and testing of new barrier systems. This project combines selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing at the intermediate meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The emphasis on meso-scale (coupled) tests, accelerated effects testing, and dynamic modeling differentiates the project from other efforts, while simultaneously building on that body of knowledge. The performance of evapotranspiration, capillary, and grout-based barriers is being examined. To date, the project can report new approaches to the problem, building new experimental and modeling capabilities, and a few preliminary results.

  14. Remedial action selection report Maybell, Colorado, site. Final report

    SciTech Connect (OSTI)

    1996-12-01

    The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The site is 2.5 mi (4 km) northeast of the Yampa River on relatively flat terrain broken by low, flat-topped mesas. U.S. Highway 40 runs east-west 2 mi (3.2 km) south of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. The site is situated between Johnson Wash to the east and Rob Pit Mine to the west. Numerous reclaimed and unreclaimed mines are in the immediate vicinity. Aerial photographs (included at the end of this executive summary) show evidence of mining activity around the Maybell site. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [ml]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd 3 (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3}(420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}).

  15. Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory

    SciTech Connect (OSTI)

    Kingston, Tim; Kelly, John

    2008-08-01

    The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy Conservation Construction Code of New York State (No CHP applied and no EE above the code); (2) Current Policy: This is a business-as-usual (BAU) scenario that incorporates some EE and DER based on market potential in the current economic and regulatory environment; (3) Modified Rate 14RA: This economic strategy is meant to decrease CHP payback by removing the contract demand from, and adding the delivery charge to the Con Edison Standby Rate PSC2, SC14-RA; (4) Carbon Trade at $20/metric tonne (mt): This policy establishes a robust carbon trading system in NY that would allow building owners to see the carbon reduction resulting from CHP and EE.

  16. USE OF CEMENTITIOUS MATERIALS FOR SRS REACTOR FACILITY IN-SITU DECOMMISSIONING - 11620

    SciTech Connect (OSTI)

    Langton, C.; Stefanko, D.; Serrato, M.; Blankenship, J.; Griffin, W.; Waymer, J.; Matheny, D.; Singh, D.

    2010-12-07

    The United States Department of Energy (US DOE) concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., producing (reactor facilities), processing (isotope separation facilities) or storing radioactive materials. The Savannah River Site 105-P and 105-R Reactor Facility ISD requires about 250,000 cubic yards of grout to fill the below grade structure. The fills are designed to prevent subsidence, reduce water infiltration, and isolate contaminated materials. This work is being performed as a Comprehensive Environmental Response, Compensations and Liability Act (CERCLA) action and is part of the overall soil and groundwater completion projects for P- and R-Areas. Cementitious materials were designed for the following applications: (1) Below grade massive voids/rooms: Portland cement-based structural flowable fills for - Bulk filling, Restricted placement and Underwater placement. (2) Special below grade applications for reduced load bearing capacity needs: Cellular portland cement lightweight fill (3) Reactor vessel fills that are compatible with reactive metal (aluminum metal) components in the reactor vessels: Calcium sulfoaluminate flowable fill, and Magnesium potassium phosphate flowable fill. (4) Caps to prevent water infiltration and intrusion into areas with the highest levels of radionuclides: Portland cement based shrinkage compensating concrete. A system engineering approach was used to identify functions and requirements of the fill and capping materials. Laboratory testing was performed to identify candidate formulations and develop final design mixes. Scale-up testing was performed to verify material production and placement as well as fresh and cured properties. The 105-P and 105-R ISD projects are currently in progress and are expected to be complete in 2012. The focus of this paper is to describe the (1) grout mixes for filling the reactor vessels, and (2) a specialty grout mix to fill a selected portion of the P-Reactor Disassembly Basin. Details of the grout mixes designed for ISD of he SRS Reactor Disassembly Basins and below grade portions of the 105-Buildings was described elsewhere. Material property test results, placement strategies, full-scale production and delivery systems will also be described.

  17. Closure Report for Corrective Action Unit 224: Decon Pad and Septic Systems, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-10-01

    Corrective Action Unit (CAU) 224 is located in Areas 02, 03, 05, 06, 11, and 23 of the Nevada Test Site, which is situated approximately 65 miles northwest of Las Vegas, Nevada. CAU 224 is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Decon Pad and Septic Systems and is comprised of the following nine Corrective Action Sites (CASs): CAS 02-04-01, Septic Tank (Buried); CAS 03-05-01, Leachfield; CAS 05-04-01, Septic Tanks (4)/Discharge Area; CAS 06-03-01, Sewage Lagoons (3); CAS 06-05-01, Leachfield; CAS 06-17-04, Decon Pad and Wastewater Catch; CAS 06-23-01, Decon Pad Discharge Piping; CAS 11-04-01, Sewage Lagoon; and CAS 23-05-02, Leachfield. The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 02-04-01, 03-05-01, 06-03-01, 11-04-01, and 23-05-02 is no further action. As a best management practice, the septic tanks and distribution box were removed from CASs 02-04-01 and 11-04-01 and disposed of as hydrocarbon waste. The NDEP-approved correction action alternative for CASs 05-04-01, 06-05-01, 06-17-04, and 06-23-01 is clean closure. Closure activities for these CASs included removing and disposing of radiologically and pesticide-impacted soil and debris. CAU 224 was closed in accordance with the NDEP-approved CAU 224 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 224 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2005). This Closure Report documents CAU 224 closure activities. During closure activities, approximately 60 cubic yards (yd3) of mixed waste in the form of soil and debris; approximately 70 yd{sup 3} of sanitary waste in the form of soil, liquid from septic tanks, and concrete debris; approximately 10 yd{sup 3} of hazardous waste in the form of pesticide-impacted soil; approximately 0.5 yd{sup 3} of universal waste in the form of fluorescent light bulbs; and approximately 0.5 yd{sup 3} of low-level waste in the form of a radiologically impacted fire hose rack were generated, managed, and disposed of appropriately. Waste minimization techniques, such as the utilization of laboratory analysis and field screening to guide the extent of excavations, were employed during the performance of closure work.

  18. Isotope Enrichment Detection by Laser Ablation - Laser Absorption Spectrometry: Automated Environmental Sampling and Laser-Based Analysis for HEU Detection

    SciTech Connect (OSTI)

    Anheier, Norman C.; Bushaw, Bruce A.

    2010-01-01

    The global expansion of nuclear power, and consequently the uranium enrichment industry, requires the development of new safeguards technology to mitigate proliferation risks. Current enrichment monitoring instruments exist that provide only yes/no detection of highly enriched uranium (HEU) production. More accurate accountancy measurements are typically restricted to gamma-ray and weight measurements taken in cylinder storage yards. Analysis of environmental and cylinder content samples have much higher effectiveness, but this approach requires onsite sampling, shipping, and time-consuming laboratory analysis and reporting. Given that large modern gaseous centrifuge enrichment plants (GCEPs) can quickly produce a significant quantity (SQ ) of HEU, these limitations in verification suggest the need for more timely detection of potential facility misuse. The Pacific Northwest National Laboratory (PNNL) is developing an unattended safeguards instrument concept, combining continuous aerosol particulate collection with uranium isotope assay, to provide timely analysis of enrichment levels within low enriched uranium facilities. This approach is based on laser vaporization of aerosol particulate samples, followed by wavelength tuned laser diode spectroscopy to characterize the uranium isotopic ratio through subtle differences in atomic absorption wavelengths. Environmental sampling (ES) media from an integrated aerosol collector is introduced into a small, reduced pressure chamber, where a focused pulsed laser vaporizes material from a 10 to 20-m diameter spot of the surface of the sampling media. The plume of ejected material begins as high-temperature plasma that yields ions and atoms, as well as molecules and molecular ions. We concentrate on the plume of atomic vapor that remains after the plasma has expanded and then cooled by the surrounding cover gas. Tunable diode lasers are directed through this plume and each isotope is detected by monitoring absorbance signals on a shot-to-shot basis. The media is translated by a micron resolution scanning system, allowing the isotope analysis to cover the entire sample surface. We also report, to the best of our knowledge, the first demonstration of laser-based isotopic measurements on individual micron-sized particles that are minor target components in a much larger heterogeneous mix of background particles. This composition is consistent with swipe and environmental aerosol samples typically collected for safeguards ES purposes. Single-shot detection sensitivity approaching the femtogram range and relative isotope abundance uncertainty better than 10% has been demonstrated using gadolinium isotopes as surrogate materials.

  19. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    SciTech Connect (OSTI)

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found to be higher than values reported in comparable housing by Hodgson et al.,3. Emissions of phenol were also found to be slightly higher than values reported in earlier studies1,2,3. This study can assist in retrospective formaldehyde exposure assessments of THUs where estimates of the occupants indoor formaldehyde exposures are needed.

  20. Wetland and Sensitive Species Survey Report for Y-12: Proposed Uranium Processing Facility (UPF)

    SciTech Connect (OSTI)

    Giffen, N.; Peterson, M.; Reasor, S.; Pounds, L.; Byrd, G.; Wiest, M. C.; Hill, C. C.

    2009-11-01

    This report summarizes the results of an environmental survey conducted at sites associated with the proposed Uranium Processing Facility (UPF) at the Y-12 National Security Complex in September-October 2009. The survey was conducted in order to evaluate potential impacts of the overall project. This project includes the construction of a haul road, concrete batch plant, wet soil storage area and dry soil storage area. The environmental surveys were conducted by natural resource experts at ORNL who routinely assess the significance of various project activities on the Oak Ridge Reservation (ORR). Natural resource staff assistance on this project included the collection of environmental information that can aid in project location decisions that minimize impacts to sensitive resource such as significant wildlife populations, rare plants and wetlands. Natural resources work was conducted in various habitats, corresponding to the proposed areas of impact. Thc credentials/qualifications of the researchers are contained in Appendix A. The proposed haul road traverses a number of different habitats including a power-line right-of-way. wetlands, streams, forest and mowed areas. It extends from what is known as the New Salvage Yard on the west to the Polaris Parking Lot on the east. This haul road is meant to connect the proposed concrete batch plant to the UPF building site. The proposed site of the concrete batch plant itself is a highly disturbed fenced area. This area of the project is shown in Fig. 1. The proposed Wet Soils Disposal Area is located on the north side of Bear Creek Road at the former Control Burn Study Area. This is a second growth arce containing thick vegetation, and extensive dead and down woody material. This area of the project is shown in Fig. 2. Thc dry soils storage area is proposed for what is currently known as the West Borrow Area. This site is located on the west side of Reeves Road south of Bear Creek Road. The site is an early successional field. This area of the project is shown in Fig. 2.

  1. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed from the MCO back to the K Basins.

  2. Shallow Water Offshore Wind Optimization for the Great Lakes (DE-FOA-0000415) Final Report: A Conceptual Design for Wind Energy in the Great Lakes

    SciTech Connect (OSTI)

    Wissemann, Chris; White, Stanley M

    2014-02-28

    The primary objective of the project was to develop a innovative Gravity Base Foundation (GBF) concepts, including fabrication yards, launching systems and installation equipment, for a 500MW utility scale project in the Great Lakes (Lake Erie). The goal was to lower the LCOE by 25%. The project was the first to investigate an offshore wind project in the Great Lakes and it has furthered the body of knowledge for foundations and installation methods within Lake Erie. The project collected historical geotechnical information for Lake Erie and also used recently obtained data from the LEEDCo Icebreaker Project (FOA DE-EE0005989) geotechnical program to develop the conceptual designs. Using these data-sets, the project developed design wind and wave conditions from actual buoy data in order to develop a concept that would de-risk a project using a GBF. These wind and wave conditions were then utilized to create reference designs for various foundations specific to installation in Lake Erie. A project partner on the project (Weeks Marine) provided input for construction and costing the GBF fabrication and installation. By having a marine contractor with experience with large marine projects as part of the team provides credibility to the LCOE developed by NREL. NREL then utilized the design and construction costing information as part of the LCOE model. The report summarizes the findings of the project. • Developed a cost model and “baseline” LCOE • Documented Site Conditions within Lake Erie • Developed Fabrication, Installation and Foundations Innovative Concept Designs • Evaluated LCOE Impact of Innovations • Developed Assembly line “Rail System” for GBF Construction and Staging • Developed Transit-Inspired Foundation Designs which incorporated: Semi-Floating Transit with Supplemental Pontoons Barge mounted Winch System • Developed GBF with “Penetration Skirt” • Developed Integrated GBF with Turbine Tower • Developed Turbine, Plant Layout and O&M Strategies The report details lowering LCOE by 22.3% and identified additional strategies that could further lower LCOE when building an utility scale wind farm in the Great Lakes.

  3. Prediction of External Corrosion for Steel Cylinders--2004 Report

    SciTech Connect (OSTI)

    Schmoyer, RLS

    2004-07-07

    Depleted uranium hexafluoride (UF{sub 6}) is stored in over 60,000 steel cylinders at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The cylinders range in age from 4 to 53 years. Although when new the cylinders had wall thicknesses specified to within manufacturing tolerances, over the years corrosion has reduced their actual wall thicknesses. The UF{sub 6} Cylinder Project is managed by the United States Department of Energy (DOE) to safely maintain the UF{sub 6} and the cylinders containing it. This report documents activities that address UF{sub 6} Cylinder Project requirements and actions involving forecasting cylinder wall thicknesses. These requirements are delineated in the System Requirements Document (LMES 1997a), and the actions needed to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). The report documents cylinder wall thickness projections based on models fit to ultrasonic thickness (UT) measurement data. UT data is collected at various locations on randomly sampled cylinders. For each cylinder sampled, the minimum UT measurement approximates the actual minimum thickness of the cylinder. Projections of numbers of cylinders expected to fail various thickness criteria are computed from corrosion models relating minimum wall thickness to cylinder age, initial thickness estimates, and cylinder subpopulations defined in terms of plant site, yard, top or bottom storage positions, nominal thickness, etc. In this report, UT data collected during FY03 is combined with UT data collected in earlier years (FY94-FY02), and all of the data is inventoried chronologically and by various subpopulations. The UT data is used to fit models of maximum pit depth and minimum thickness, and the fitted models are used to extrapolate minimum thickness estimates into the future and in turn to compute estimates of numbers of cylinders expected to fail various thickness criteria. A model evaluation is performed comparing UT measurements made in FY03 with model-fitted projections based only on data collected before FY03.

  4. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect (OSTI)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01

    This semi-annual technical progress report is for Task 4 site evaluation, Task 5 seismic reflection design and acquisition, and Task 6 seismic reflection processing and interpretation on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. During this reporting period the project had an ASME peer review. The findings and recommendation of the review panel, as well at the project team response to comments, are in Appendix A. After the SUBCON midyear review in Albuquerque, NM and the peer review it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. Under the rescope of the project, Task 4 would be performed at the Charleston Navy Weapons Station, Charleston, SC and not at the Dynamic Underground Stripping (DUS) project at SRS. The project team had already completed Task 4 at the M-area seepage basin, only a few hundred yards away from the DUS site. Because the geology is the same, Task 4 was not necessary. However, a Vertical Seismic Profile (VSP) was conducted in one well to calibrate the geology to the seismic data. The first deployment to the DUS Site (Tasks 5 and 6) has been completed. Once the steam has been turned off these tasks will be performed again to compare the results to the pre-steam data. The results from the first deployment to the DUS site indicated a seismic amplitude anomaly at the location and depths of the known high concentrations of DNAPL. The deployment to another site with different geologic conditions was supposed to occur during this reporting period. The first site selected was DOE Paducah, Kentucky. After almost eight months of negotiation, site access was denied requiring the selection of another site. An alternate, site the Department of Defense (DOD) Charleston Navy Weapons Station, Charleston, SC was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Navy Facilities Engineering Command Southern Division (NAVFAC) personnel. Tasks 4, 5, and 6 will be performed at the Charleston Navy Weapons Station. Task 4 will be executed twice. The project team had almost completed Task 4 at Paducah before access was denied.

  5. Closure Report for Corrective Action Unit 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Burmeister

    2009-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 117 comprises Corrective Action Site (CAS) 26-41-01, Pluto Disassembly Facility, located in Area 26 of the Nevada Test Site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CAU 117 were met. To achieve this, the following actions were performed: Review the current site conditions, including the concentration and extent of contamination. Implement any corrective actions necessary to protect human health and the environment. Properly dispose of corrective action and investigation wastes. Document Notice of Completion and closure of CAU 117 issued by the Nevada Division of Environmental Protection. From May 2008 through February 2009, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 117, Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. The purpose of the activities as defined during the data quality objectives process were: Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels to determine COCs for CAU 117. Assessment of the data generated from closure activities indicated that the final action levels were exceeded for polychlorinated biphenyls (PCBs) reported as total Aroclor and radium-226. A corrective action was implemented to remove approximately 50 cubic yards of PCB-contaminated soil, approximately 1 cubic foot of radium-226 contaminated soil (and scabbled asphalt), and a high-efficiency particulate air filter that was determined to meet the criteria of a potential source material (PSM). Electrical and lighting components (i.e., PCB-containing ballasts and capacitors) and other materials (e.g., mercury-containing thermostats and switches, lead plugs and bricks) assumed to be PSM were also removed from Building 2201, as practical, without the need for sampling. Because the COC contamination and PSMs have been removed, clean closure of CAS 26-41-01 is recommended, and no use restrictions are required to be placed on this CAU. No further action is necessary because no other contaminants of potential concern were found above preliminary action levels. The physical end state for Building 2201 is expected to be eventual demolition to slab. The DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: Clean closure is the recommended corrective action for CAS 26-41-01 in CAU 117. A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office is requested from the Nevada Division of Environmental Protection for closure of CAU 117. Corrective Action Unit 117 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

  6. Environmental Remediation Activities in Japan Following the Fukushima Dai-ichi Reactor Incident - 12603

    SciTech Connect (OSTI)

    Lively, J.W.; Kelley, J.L.; Marcial, M.R.; Yashio, Shoko; Kuriu, Nobou; Kamijo, Hiroaki; Jotatsu, Kato

    2012-07-01

    In March 2011, the Fukushima Dai-ichi reactor power plant was crippled by the Great Pacific earthquake and subsequent tsunami. Much of the focus in the news was on the reactor site itself as the utility company (TEPCO), the Japanese government, and experts from around the world worked to bring the damaged plants into a safe shutdown condition and stem the release of radioactivity to the environment. Most of the radioactivity released was carried out to sea with the prevailing winds. Still, as weather patterns changed and winds shifted, a significant plume of radioactive materials released from the plant deposited in the environment surrounding the plant, contaminating large land areas of the Fukushima Prefecture. The magnitude of the radiological impact to the surrounding environmental is so large that the Japanese government has had to reevaluate the meaning of 'acceptably clean'. In many respects, 'acceptably clean' cannot be a one-size-fits-all standard. The economics costs of such an approach would make impossible what is already an enormous and costly environmental response and remediation task. Thus, the Japanese government has embarked upon an approach that is both situation-specific and reasonably achievable. For example, the determination of acceptably clean for a nursery school or kindergarten play yard may be different from that for a parking lot. The acceptably clean level of residual radioactivity in the surface soil of a rice paddy is different from that in a forested area. The recognized exposure situation (scenario) thus plays a large role in the decision process. While sometimes complicated to grasp or implement, such an approach does prioritize national resources to address environment remediation based upon immediate and significant risks. In addition, the Japanese government is testing means and methods, including advanced or promising technologies, that could be proven to be effective in reducing the amount of radioactivity in the environment beyond a fixed, concentration based limit. Essentially, the definition of acceptably clean includes the concept of reasonably achievable, given the available technology, means and methods, and the cost to implement such. The Japanese government recently issued three technology demonstration contracts expressly designed to test and evaluate the available technologies, means, and methods, which, if implemented, might produce the greatest risk reduction from environmental contamination for the best value. One of the Japanese contract holders, Obayashi JV, has teamed with AMEC to demonstrate the applicability and capabilities of the Orion ScanPlot{sup SM} and ScanSort{sup SM} technologies in radiologically impacted towns both inside and immediately outside the 20 km restricted zone. This presentation provides some unique images and informative insight into the environmental radioactive impacts in and around the exclusion zone. It will provide a look at one element of the Japanese government?s efforts to achieve the greatest risk reduction that is reasonably achievable. The Orion ScanPlot{sup SM} and ScanSort{sup SM} are being used with success on the Japan Town Demonstration Project to assess pre-remedial action contamination levels, document the post-remedial action contamination levels and to precisely measure and segregate excavated soils based on their radioactive content and the prescribed segregation limits (DCS). Initial results suggest that these technologies could provide capabilities to the remedial action efforts that would result in considerable improvements in field data certainty and compliance with remedial objectives while reducing overall costs. (authors)

  7. ALDEHYDE AND OTHER VOLATILE ORGANIC CHEMICAL EMISSIONS IN FOUR FEMA TEMPORARY HOUSING UNITS ? FINAL REPORT

    SciTech Connect (OSTI)

    Salazar, Olivia; Maddalena, Randy L.; Russell, Marion; Sullivan, Douglas P.; Apte, Michael G.

    2008-05-04

    Four unoccupied FEMA temporary housing units (THUs) were studied to assess their indoor emissions of volatile organic compounds including formaldehyde. Measurement of whole-THU VOC and aldehyde emission factors (mu g h-1 per m2 of floor area) for each of the four THUs were made at FEMA's Purvis MS staging yard using a mass balance approach. Measurements were made in the morning, and again in the afternoon in each THU. Steady-state indoor formaldehyde concentrations ranged from 378 mu g m-3 (0.31ppm) to 632 mu g m-3 (0.52 ppm) in the AM, and from 433 mu g m-3 (0.35 ppm) to 926 mu g m-3 (0.78 ppm) in the PM. THU air exchange rates ranged from 0.15 h-1 to 0.39 h-1. A total of 45 small (approximately 0.025 m2) samples of surface material, 16 types, were collected directly from the four THUs and shipped to Lawrence Berkeley Laboratory. The material samples were analyzed for VOC and aldehyde emissions in small stainless steel chambers using a standard, accurate mass balance method. Quantification of VOCs was done via gas chromatography -- mass spectrometry and low molecular weight aldehydes via high performance liquid chromatography. Material specific emission factors (mu g h-1 per m2 of material) were quantified. Approximately 80 unique VOCs were tentatively identified in the THU field samples, of which forty-five were quantified either because of their toxicological significance or because their concentrations were high. Whole-trailer and material specific emission factors were calculated for 33 compounds. The THU emission factors and those from their component materials were compared against those measured from other types of housing and the materials used in their construction. Whole THU emission factors for most VOCs were typically similar to those from comparative housing. The three exceptions were exceptionally large emissions of formaldehyde and TMPD-DIB (a common plasticizer in vinyl products), and somewhat elevated for phenol. Of these three compounds, formaldehyde was the only one with toxicological significance at the observed concentrations. Whole THU formaldehyde emissions ranged from 173 to 266 mu g m-2 h 1 in the morning and 257 to 347 mu g m-2 h-1 in the afternoon. Median formaldehyde emissions in previously studied site-built and manufactured homes were 31 and 45 mu g m-2 h-1, respectively. Only one of the composite wood materials that was tested appeared to exceed the HUD formaldehyde emission standard (430 mu g/m2 h-1 for particleboard and 130 mu g/m2 h-1 for plywood). The high loading factor (material surface area divided by THU volume) of composite wood products in the THUs and the low fresh air exchange relative to the material surface area may be responsible for the excessive concentrations observed for some of the VOCs and formaldehyde.

  8. HANFORD DECOMMISSIONING UPDATE 09/2007

    SciTech Connect (OSTI)

    GERBER, M.S.

    2007-08-20

    Fluor Hanford's K Basins Closure (KBC) Project tallied three major accomplishments at the U.S. Department of Energy's (DOE's) Hanford Site in Southeastern Washington State this past summer. The Project finished emptying the aging K East Basin of both sludge and the last pieces of scrap spent nuclear fuel. It also Completed vacuuming the bulk of the sludge in the K West Basin into underwater containers. The 54-year-old concrete basins once held more than four million pounds of spent nuclear fuel and sit less than 400 yards from the Columbia River. Each basin holds more than a million gallons of radioactive water. In 2004, Fluor finished removing all the spent nuclear fuel from the K Basins. Nearly 50 cubic meters of sludge remained--a combination of dirt, sand, small pieces of corroded uranium fuel and fuel cladding, corrosion products from racks and canisters, ion-exchange resin beads, polychlorinated biphenyls, and fission products that had formed during the decades that the spent nuclear fuel was stored underwater. Capturing the sludge into underwater containers in the K East Basin took more than two years, and vacuuming the much smaller volume of sludge into containers in the K West Basin required seven months. Workers stood on grating above the basin water and vacuumed the sludge through long, heavy hoses. The work was complicated by murky water and contaminated solid waste (debris). Pumping was paused several times to safely remove and package debris that totaled more than 370 tons. In October 2006, Fluor Hanford workers began pumping the sludge captured in the K East Basin containers out through a specially designed pipeline to underwater containers in the K West Basin, about a half mile away. They used a heavy but flexible, double-walled ''hose-in-hose'' system. Pumping work progressed slowly at first, but ramped up in spring 2007 and was completed on May 31. Just a week before sludge transfers finished, the KBC Project removed the last few small pieces of irradiated fuel (about 19 pounds) found as the last remnants of sludge were vacuumed up. The fuel was loaded into a cask that sat underwater. The cask was hoisted out of the water, decontaminated, and transported to the K West Basin, where it is now being stored underwater until it can be dried and taken to storage in central Hanford. Removing the sludge and fuel from the K East Basin eliminated the final major radioactive sources there, and made the Columbia River and the adjacent environment safer for everyone who lives downstream. Fluor's priority at the K East Basin quickly turned to final preparations for demolishing the structure. Final activities to sort debris are progressing, along with plans to de-water the basin and turn it to rubble in the next two years. At the K West Basin, after the bulk sludge was removed July 3, workers began preparing to load out the last of the ''found'' nuclear fuel and to complete final pass sludge collection this coming year.

  9. RCRA Summary Document for the David Witherspoon 1630 Site, Knoxville, Tennessee

    SciTech Connect (OSTI)

    Pfeffer, J.

    2008-06-10

    The 48-acre David Witherspoon, Inc. (DWI) 1630 Site operated as an unregulated industrial landfill and scrap yard. The Tennessee Division of Superfund (TDSF) closed the landfill in 1974. During the period of operation, the site received solid and liquid wastes from salvage and industrial operations. The site consists of five separate tracts of land including a small portion located across the Norfolk Southern Railroad track. The landfill occupies approximately 5 acres of the site, and roughly 20 acres of the 48 acres contains surface and buried debris associated with the DWI dismantling business operation. Beginning in 1968, the state of Tennessee licensed DWI to receive scrap metal at the DWI 1630 Site, contaminated with natural uranium and enriched uranium (235U) not exceeding 0.1 percent by weight (TDSF 1990). The U.S. Department of Energy (DOE) has agreed to undertake remedial actions at the DWI 1630 Site as specified under a Consent Order with the Tennessee Department of Environment and Conservation (TDEC) (Consent Order No. 90-3443, April 4, 1991), and as further delineated by a Memorandum of Understanding (MOU) between DOE and the State of Tennessee (MOU Regarding Implementation of Consent Orders, October 6, 1994). The soil and debris removal at the DWI 1630 Site is being performed by Bechtel Jacobs Company LLC (BJC) on behalf of the DOE. Remediation consists of removing contaminated soil and debris from the DWI 1630 site except for the landfill area and repairing the landfill cap. The DWI 1630 remediation waste that is being disposed at the Environmental Management Waste Management Facility (EMWMF) as defined as waste lot (WL) 146.1 and consists primarily of soils and soil like material, incidental debris and secondary waste generated from the excavation of debris and soil from the DWI 1630 site. The WL 146.1 includes soil, soil like material (e.g., shredded or chipped vegetation, ash), discrete debris items (e.g., equipment, drums, large scrap metal, cylinders, and cable) and populations of debris type items (e.g., piles of bricks, small scrap metal, roofing material, scaffolding, and shelving) that are located throughout the DWI 1630 site. The project also generates an additional small volume of secondary waste [e.g., personal protective equipment (PPE), and miscellaneous construction waste] that is bagged and included in bulk soil shipments to the EMWMF. The Waste Acceptance Criteria (WAC) for the EMWMF does not allow for material that does not meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs). The waste being excavated in certain areas of the DWI 1630 site contained soil that did not meet RCRA LDR criteria; therefore this waste had to be segregated for treatment or alternate disposal offsite. This document identifies the approach taken by the DWI 1630 project to further characterize the areas identified during the Phase II Remedial Investigation (RI) as potentially containing RCRA-characteristic waste. This document also describes the methodology used to determine excavation limits for areas determined to be RCRA waste, post excavation sampling, and the treatment and disposal of this material.

  10. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    SciTech Connect (OSTI)

    Ernie F. Stine

    2002-08-14

    The Department of Energy (DOE) currently has mercury (Hg) contaminated materials and soils at the various sites. Figure 1-1 (from http://www.ct.ornl.gov/stcg.hg/) shows the estimated distribution of mercury contaminated waste at the various DOE sites. Oak Ridge and Idaho sites have the largest deposits of contaminated materials. The majorities of these contaminated materials are soils, sludges, debris, and waste waters. This project concerns treatment of mercury contaminated soils. The technology is applicable to many DOE sites, in-particular, the Y-12 National Security Complex in Oak Ridge Tennessee and Idaho National Engineering and Environmental Laboratory (INEEL). These sites have the majority of the soils and sediments contaminated with mercury. The soils may also be contaminated with other hazardous metals and radionuclides. At the Y12 plant, the baseline treatment method for mercury contaminated soil is low temperature thermal desorption (LTTD), followed by on-site landfill disposal. LTTD is relatively expensive (estimated cost of treatment which exclude disposal cost for the collect mercury is greater than $740/per cubic yard [cy] at Y-12), does not treat any of the metal or radionuclides. DOE is seeking a less costly alternative to the baseline technology. As described in the solicitation (DE-RA-01NT41030), this project initially focused on evaluating cost-effective in-situ alternatives to stabilize or remove the mercury (Hg) contamination from high-clay content soil. It was believed that ex-situ treatment of soil contaminated with significant quantities of free-liquid mercury might pose challenges during excavation and handling. Such challenges may include controlling potential mercury vapors and containing liquid mercury beads. As described below, the focus of this project was expanded to include consideration of ex-situ treatment after award of the contract to International Technology Corporation (IT). After award of the contract, IT became part of Shaw E&I. The company will be denoted as ''IT'' for the rest of the document since the original contract was awarded to IT. This report details IT, Knoxville, TN and its subcontractor Nuclear Fuels Services (NFS) study to investigate alternative mercury treatment technology. The IT/NFS team demonstrated two processes for the amalgamation/stabilization/fixation of mercury and potentially Resource Conservation Recovery Act (RCRA) and radionuclide-contaminated soils. This project was to identify and demonstrate remedial methods to clean up mercury-contaminated soil using established treatment chemistries on soil from the Oak Ridge Reservation, Y-12 National Security Complex, the off-site David Witherspoon properties, and/or other similarly contaminated sites. Soil from the basement of Y-12 Plant Alpha 2 Building at the Oak Ridge Reservation was received at IT and NFS on December 20, 2001. Soils from the other locations were not investigated. The soil had background levels of radioactivity and had all eight RCRA metals well below the Toxicity Characteristic (TC) criteria. This project addresses the new DOE Environmental Management Thrust 2 ''Alternative Approaches to Current High Risk/High Cost Baselines''. Successful completion of this project will provide a step-change in DOE's treatment ability.

  11. The Excavation and Remediation of the Sandia National Laboratories Chemical Waste Landfill

    SciTech Connect (OSTI)

    KWIECINSKI,DANIEL ALBERT; METHVIN,RHONDA KAY; SCHOFIELD,DONALD P.; YOUNG,SHARISSA G.

    1999-11-23

    The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during the excavation of the CWL. As part of the excavation process, soil is being separated from the buried debris using a 2-inch mechanical screen. After separation from the soil, debris items are further-segregated by matrix into the following categories: wood, scrap metal, concrete/aggregates, resins, compatible debris, intact chemical containers, radioactive and mixed waste, and high hazard items. One of the greatest sources of hazards throughout the excavation process is the removal of numerous intact chemical containers with unknown contents. A large portion of the excavated soil is contaminated with metals and/or solvents, Polychlorinated biphenyls (PCBs) are also known to be present. Most of the contaminated soils being excavated will be taken to the nearby Corrective Action Management Unit (CAMU) for treatment and management while a majority of the containers will be taken to the Hazardous Waste Management Facility or the Radioactive and Mixed Waste Management Facility for proper treatment and/or disposal at permitted offsite facilities.

  12. Corrective Action Investigation Plan for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada (Rev. 0) includes Record of Technical Change No. 1 (dated 8/28/2002), Record of Technical Change No. 2 (dated 9/23/2002), and Record of Technical Change No. 3 (dated 6/2/2004)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada

    2001-11-21

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 168 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 168 consists of a group of twelve relatively diverse Corrective Action Sites (CASs 25-16-01, Construction Waste Pile; 25-16-03, MX Construction Landfill; 25-19-02, Waste Disposal Site; 25-23-02, Radioactive Storage RR Cars; 25-23-18, Radioactive Material Storage; 25-34-01, NRDS Contaminated Bunker; 25-34-02, NRDS Contaminated Bunker; CAS 25-23-13, ETL - Lab Radioactive Contamination; 25-99-16, USW G3; 26-08-01, Waste Dump/Burn Pit; 26-17-01, Pluto Waste Holding Area; 26-19-02, Contaminated Waste Dump No.2). These CASs vary in terms of the sources and nature of potential contamination. The CASs are located and/or associated wit h the following Nevada Test Site (NTS) facilities within three areas. The first eight CASs were in operation between 1958 to 1984 in Area 25 include the Engine Maintenance, Assembly, and Disassembly Facility; the Missile Experiment Salvage Yard; the Reactor Maintenance, Assembly, and Disassembly Facility; the Radioactive Materials Storage Facility; and the Treatment Test Facility Building at Test Cell A. Secondly, the three CASs located in Area 26 include the Project Pluto testing area that operated from 1961 to 1964. Lastly, the Underground Southern Nevada Well (USW) G3 (CAS 25-99-16), a groundwater monitoring well located west of the NTS on the ridgeline of Yucca Mountain, was in operation during the 1980s. Based on site history and existing characterization data obtained to support the data quality objectives process, contaminants of potential concern (COPCs) for CAU 168 are primarily radionuclide; however, the COPCs for several CASs were not defined. To address COPC uncertainty, the analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. Upon reviewing historical data and current site conditions, it has been determined that no further characterization is required at USW G3 (CAS 25-99-16) to select the appropriate corrective action. A cesium-137 source was encased in cement within the vadous zone during the drilling of the well (CAS 25-99-16). A corrective action of closure in place with a land-use restriction for drilling near USW G3 is appropriate. This corrective action will be documented in the Corrective Action Decision Document (CADD) for CAU 168. The results of the remaining field investigation will support a defensible evaluation of corrective action alternatives for the other CASs within CAU 168 in this CADD.

  13. Microhole High-Pressure Jet Drill for Coiled Tubing

    SciTech Connect (OSTI)

    Ken Theimer; Jack Kolle

    2007-06-30

    Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

  14. Prediction of External Corrosion for Steel Cylinders--2007 Report

    SciTech Connect (OSTI)

    Schmoyer, Richard L

    2008-01-01

    Depleted uranium hexafluoride (DUF{sub 6}) is stored in over 62,000 containment cylinders at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. Over 4,800 of the cylinders at Portsmouth were recently moved there from the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. The cylinders range in age up to 56 years and come in various models, but most are 48-inch diameter 'thin-wall'(312.5 mil) and 'thick-wall' (625 mil) cylinders and 30-inch diameter '30A' (including '30B') cylinders with 1/2-inch (500 mil) walls. Most of the cylinders are carbon steel, and they are subject to corrosion. The United States Department of Energy (DOE) manages the cylinders to maintain them and the DUF{sub 6} they contain. Cylinder management requirements are specified in the System Requirements Document (LMES 1997a), and the activities to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). This report documents activities that address DUF{sub 6} cylinder management requirements involving measuring and forecasting cylinder wall thicknesses. As part of these activities, ultrasonic thickness (UT) measurements are made on samples of cylinders. For each sampled cylinder, multiple measurements are made in an attempt to find, approximately, the minimum wall thickness. Some cylinders have a skirt, which is an extension of the cylinder wall to protect the head (end) and valve. The head/skirt interface crevice is thought to be particularly vulnerable to corrosion, and for some skirted cylinders, in addition to the main body UT measurements, a separate suite of measurements is also made at the head/skirt interface. The main-body and head/skirt minimum thickness data are used to fit models relating minimum thickness to cylinder age, nominal thicknesses, and cylinder functional groups defined in terms of plant site, storage yard, top or bottom row storage positions, etc. These models are then used to compute projections of numbers of cylinders expected to fail various minimum wall thickness criteria. The minimum wall thickness criteria are as follows. For thin-wall cylinders: 0 (breach), 62.5, and 250 mils. For thick-wall cylinders: 0, 62.5, and 500 mils. For 30A cylinders: 0, 62.5, and 100 mils. Each of these criteria triplets are based respectively on (1) loss of DUF{sub 6} (breaching), (2) safe handling and stacking operations, and (3) ANSI N14.1 standards for off-site transport and contents transfer. This report complements and extends previous editions of the cylinder corrosion report by Lyon (1995, 1996, 1997, 1998, 2000), by Schmoyer and Lyon (2001, 2002, 2003), and by Schmoyer (2004). These reports are based on UT data collected in FY03 and before. In this report UT data collected after FY03 but before FY07 is combined with the earlier data, and all of the UT data is inventoried chronologically and by the various functional groups. The UT data is then used to fit models of maximum pit depth and minimum wall thickness, statistical outliers are investigated, and the fitted models are used to extrapolate minimum thickness estimates into the future and in turn to compute projections of numbers of cylinders expected to fail various thickness criteria. A model evaluation is performed comparing UT measurements made after FY05 with model-fitted projections based only on data collected in FY05 and before. As in previous reports, the projections depend on the treatment of outliers.

  15. Prediction of External Corrosion for Steel Cylinders 2003 Report

    SciTech Connect (OSTI)

    Schmoyer, RLS

    2003-09-24

    Depleted uranium hexafluoride (UF{sub 6}) is stored in over 60,000 steel cylinders at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The cylinders range in age from six to 52 years. Although when new the cylinders had wall thicknesses specified to within manufacturing tolerances, over the years corrosion has reduced their actual wall thicknesses. The UF{sub 6} Cylinder Project is managed by the United States Department of Energy (DOE) to safely maintain the UF{sub 6} and the cylinders containing it. The requirements of the Project are delineated in the System Requirements Document (LMES 1997a), and the actions needed to fulfill those requirements are specified in the System Engineering Management Plan (LMES 1997b). This report documents activities that address requirements and actions involving forecasting cylinder wall thicknesses. Wall thickness forecasts are based on models fit to ultrasonic thickness (UT) measurement data. First, UT data collected during FY02 is combined with UT data collected in earlier years (FY92-FY01), and all of the data is inventoried chronologically and by various subpopulations. Next, the data is used to model either maximum pit depth or minimum thickness as a function of cylinder age, subpopulation (e.g., PGDP G-yard, bottom-row cylinders), and initial thickness estimates. The fitted models are then used to extrapolate minimum thickness estimates into the future and to compute estimates of numbers of cylinders expected to fail various thickness criteria. A model evaluation is performed comparing UT measurements made in FY02 with model-fitted projections based only on data collected before FY02. The FY02 UT data, entered into the corrosion model database and not available for the previous edition of this report (Schmoyer and Lyon 2002), consists of thickness measurements of 48'' thin-wall cylinders: 102 cylinders at Paducah, 104 at ETTP, and 117 at Portsmouth; and 72 thick-wall cylinders at Portsmouth. However, because of missing values, repeated measures on the same cylinders, outliers, and other data problems, not all of these measurements are necessarily used in the corrosion analysis, and some previous measurements may simply be replaced with the new ones. In this edition of the report, cylinder subpopulation definitions and counts are updated using the latest (as of June 2003) information from the Cylinder Inventory Database (CID). Cylinders identified in the CID as painted during the last ten years are excluded from subpopulations considered at-risk of failing minimum thickness criteria, because it is assumed that painting fully arrests corrosion for ten years. As in the previous edition of the report, two different approaches to corrosion modeling are pursued: (1) a direct approach in which minimum thickness is modeled directly as a function of age, subpopulation, and initial thickness estimates; and (2) an indirect approach, in which maximum pit depth is modeled, and the pit-depth model is then combined with a model of initial thickness to compute estimates of minimum thickness.

  16. Demonstration of the BNL Continuous Dual Trap Analyzer to Detect Perfluorocarbon Tracers for the Tag, Track and Location Program

    SciTech Connect (OSTI)

    Heiser,J.H.; Adams, J.; Dietz, R..; Milian, L.; Watson, T.

    2008-10-07

    The Tag, Track and Location System (TTL) Program is investigating methods of tracking an asset using perfluorocarbon tracers (PFT). The success of any TTL method requires sound detection/location instrumentation. Tracer Detection Technologies Corp (TDT), through a contract with the Office of Naval Research (ONR), is investigating different detection systems. The detections systems generally fall into two categories; proximity detectors and standoff detectors. Proximity detectors, as the name implies, need to be in close proximity (e.g., meter to 10's of meters) to the PFT source. Standoff detection searches for the PFT from a greater distance away from the source (e.g., 100's of meters to kilometers). Gas Chromatographs (GC) are generally considered a proximity detection systems, but in the case of PFTs should be considered for both proximity and standoff detection with the caveat that in standoff use the GC needs to be somewhere in the PFT plume, i.e., generally downwind of the source. With a properly sized PFT source, the right GC can afford fairly large standoff (distance from the source) distances; 100's of meters to kilometers downwind. Brookhaven National Laboratory (BNL) has such a GC system and offered to demonstrate the CDTA for TTL as a no cost addition to the TDTTTL project, of which BNL was a participant. BNL is a leading authority on the sampling, collection, release and detection of PFTs. In addition, the BNL team has extensive background in atmospheric dispersion, the application of PFTs to such studies and the development of applications utilizing PFTs such as building infiltration measurements, control room integrity determination, leak location and environmental investigations. This experience and expertise is essential in developing any PFT application were dispersion, dilution and overcoming environmental conditions and interferences are integral to success. BNL has developed sophisticated gas chromatography methods and instruments that allow detection of up to seven PFTs at part per quadrillion levels (1015) with sample times as short as 60 seconds. The Continuous Dual-Trap Analyzer (CDTA) was developed for leak hunting applications and can continuously sample the air for PFTs without interruption. Sample time can be as short as 60 seconds. The CDTA has been extensively used in the commercial sector to detect PFTs that have been introduced to leaking buried dielectric fluid-filled cables or leaking subsurface gas lines. The PFTs travel through the cable or pipe until they reach the leak site. PFTs then escape into the surrounding soil and permeate/diffuse to the surface where they can be detected with the CDTA. Typically a cable is tagged with ppm levels of PFTs resulting in ppt to ppq concentrations in the air at the leak site. The CDTA is proven to be rugged, reliable and has a proven track record of successful leak location. The application of the CDTA to PFT detection for TTL is identical to application for leak detection. The CDTA operator has a general idea, with a few miles of roadway, where the leak is located, but no specific knowledge of the location (it can be any where along the road). The CDTA is mounted in a Chevy Astro Van and is dispatched to the field. In the field the van is driven at nominally 15 mph along the road. The CDTA continuously samples the air outside the van (via a 1/4-inch plastic sample tube stuck out a side window) until a positive detection occurs. The van then covers the road section where the detection occurred at a slightly slower pace to pin-point the area where the leak is and to direct soil probe samples. The soil probe samples take soil gas samples every 10 yards or so and the samples are analyzed on the CDTA. The leak can be located to within a few feet in 95% of the cases. To date the CDTA has been successful in every leak hunt performed by BNL. One interesting case was a leak hunt that resulted in repeated negative detections. The confidence in the CDTA forced the utility to recheck its 'plumbing' which lead to the discovery that a valve was turned that sho

  17. Fiscal Year 2010 Phased Construction Completion Report for EU Z2-32 in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Bechtel Jacobs

    2010-02-01

    The Record of Decision for Soil, Buried Waste, and Subsurface Structure Actions in Zone 2, East Tennessee Technology Park, Oak Ridge, Tennessee (DOEIORJO 1-2161 &D2) (Zone 2 ROD) acknowledged that most of the 800 acres in Zone 2 were contaminated, but that sufficient data to confirm the levels of contamination were lacking. The Zone 2 ROD further specified that a sampling strategy for filling the data gaps would be developed. The Remedial Design Report/Remedial Action Work Plan for Zone 2 Soils, Slabs, and Subsurface Structures, East Tennessee Technology Park, Oak Ridge, Tennessee (DOEIORIO 1 -2224&D3) (RDRJRAWP) defined the sampling strategy as the Dynamic Verification Strategy (DVS), generally following the approach used for characterization of the Zone I exposure units (EUs). The Zone 2 ROD divided the Zone 2 area into seven geographic areas and 44 EUs. To facilitate the data quality objectives (DQOs) of the DVS process, the RDR/RAWP regrouped the 44 EUs into 12 DQO scoping EU groups. These groups facilitated the DQO process by placing similar facilities and their support facilities together, which allowed identification of data gaps. The EU groups were no longer pertinent after DQO planning was completed and characterization was conducted as areas became accessible. As the opportunity to complete characterization became available, the planned DVS program was completed for the EU addressed in this document (EU Z2-32). The purpose of this Phased Construction Completion Report (PCCR) is to address the following: (1) Document DVS characterization results for EU Z2-32. (2) Describe and document the risk evaluation and determine if the EU meets the Zone 2 ROD requirements for unrestricted industrial use to 10 ft bgs. (3) Identify additional areas not defined in the Zone 2 ROD that require remediation based on the DVS evaluation results. (4) Describe the remedial action performed in the K-1066-G Yard in EU Z2-32. Approximately 18.4 acres are included in the EU addressed in this PCCR. Based on results of the DVS evaluation, all 18.4 acres are recommended for unrestricted industrial use to 10 ft bgs. There are no Federal Facility Agreement Sites included in Appendix A of the Zone 2 ROD in EU Z2-32. The Zone 2 ROD requires land use controls to prevent disturbance of soils below 10 ft deep and to restrict future land use to industrial/commercial activities. In response to stakeholder comments, the U.S. Department of Energy agreed to re-evaluate the need for such land use restrictions. This document includes a screening evaluation to determine the likelihood of land use controls in EU Z2-32 being modified to: (1) eliminate the restriction on disturbance of soils below 10 ft bgs where data indicate the absence of residual contamination at any depth that would result in an unacceptable risk to the future industrial worker, and (2) permit alternative land uses that would be protective of future site occupants. Results of this screening evaluation indicate a high probability that restrictions on disturbing soil below 10 ft bgs could be safely eliminated for EU Z2-32. A qualitative screening evaluation considered the likelihood of unrestricted land use being protective of future site occupants. Based on this qualitative assessment, all 18.4 acres addressed in this PCCR were assigned a high probability for consideration of release for unrestricted land use. This document contains the main text (Sects. 1 through 13) and one appendix. The main text addresses the purpose for this PCCR as described above. Additional supporting detail (e.g., field work and data summaries, graphics) is provided in the EU Z2-32 technical memorandum (Appendix A). Historical and DVS analytical data used in this PCCR are provided on a compact disc accompanying this document and can be accessed through the Oak Ridge Environmental Information System.

  18. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-09-14

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325

  19. Matter in Extreme Conditions Instrument - Conceptual Design Report

    SciTech Connect (OSTI)

    Boyce, R.F.; Boyce, R.M.; Haller, G.; Hastings, J.B.; Hays, G.; Lee, H.J.; Lee, R.W.; Nagler, B.; Scharfenstein, M.; Marsh, D.; White, W.E.; ,

    2009-12-09

    The SLAC National Accelerator Laboratory (SLAC), in collaboration with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) research facility. The FEL has already met its performance goals in the wavelength range 1.5 nm - 0.15 nm. This facility, the Linac Coherent Light Source (LCLS), utilizes the SLAC 2-Mile Linear Accelerator (linac) and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac is used as the source of electrons for the LCLS. The high energy electrons are transported across the SLAC Research Yard, into a tunnel which houses a long undulator. In passing through the undulator, the electrons are bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength is tunable from 1.5 nm to 0.15 nm. The LCLS includes two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing an X-ray instrument in order to exploit the unique scientific capability of LCLS by creating extreme conditions and study the behavior of plasma under those controlled conditions. This instrument will address the Office of Science, Fusion Energy Sciences, mission objective related to study of Plasma and Warm Dense Matter as described in the report titled LCLS, the First Experiments, prepared by the LCLS Scientific Advisory Committee (SAC) in September 2000. The technical objective of the LCLS Matter in Extreme Conditions (MEC) Instrument project is to design, build, and install at the LCLS an X-ray instrument that will complement the initial instrument suite included in the LCLS construction and the LUSI Major Item of Equipment (MIE) Instruments. As the science programs advance and new technological challenges appear, instrumentation must be developed and ready to conquer these new opportunities. The MEC concept has been developed in close consultation with the scientific community through a series of workshops team meetings and focused reviews. In particular, the MEC instrument has been identified as meeting one of the most urgent needs of the scientific community based on the advice of the LCLS Scientific Advisory Committee (SAC) in response to an open call for letters of intent (LOI) from the breadth of the scientific community. The primary purpose of the MEC instrument is to create High Energy Density (HED) matter and measure its physical properties. There are three primary elements of the MEC instrument: (A) Optical laser drivers that will create HED states by irradiation in several ways and provide diagnostics capability; (B) The LCLS x-ray free electron laser, which will provide the unique capability to create, probe and selectively pump HED states; and, (C) A suite of diagnostic devices required to observe the evolution of the HED state. These elements when combined in the MEC instrument meet the 'Mission Need' as defined in CD-0. For the purposes of the description we separate the types of experiments to be performed into three categories: (1) High pressure: Here we are interested in the generation of high pressure using the optical lasers to irradiate a surface that ablates and drives a pressure wave into a sample, similar to a piston. The pressures that can be reached exceed 1 Mbar and the properties of interest are for example, the reflectivity, conductivity, opacity as well as the changes driven by the pressure wave on, e.g., condensed matter structure. These phenomena will be studied by means of diffraction measurements, measurements of the pressure wave characteristics, in situ probing by x-ray scattering of various types all time resolved. The necessary diagnostics are discussed.

  20. QER- Comment of Jennifer Markens 8

    Broader source: Energy.gov [DOE]

    I am writing to express profound concern about the proposed pipeline that will bring shale gas directly from the Marcellus shale beds all along the top of Northern Massachusetts. After careful examination over the past three months, since this was announced, I strongly feel that this scheme has very little to do with the needs of Massachusetts residents for "more gas" and much more to do with the needs of a private, obscenely wealthy corporation to profit from the Marcellus shale by bringing this gas to port and its waiting tankers, for sale abroad. This pipeline is many times larger than any current demand by a mind-boggling factor: there are other pipeline expansion/development efforts underway, also running through Massachusetts. It is very clear that we are being set up as the shipping and storage grid for the Marcellus shale. Marcellus gas is well known to be high in radioactivity. A report by Marvin Resnikoff, Phd. details reasons why bringing this gas to New York will be deadly to citizens. Given Massachusetts proximity to the Marcellus shale, everything in that report would be equally true for Massachusetts. Fugitive emissions will ruin land all across Norther Mass, and permanently destroy water and land. This level of radioactivity: the benzene, neurotoxins, VOC's and carcinogens will be pumped all over Massachusetts under high pressure to meet shipping deadlines: so that an obscenely wealthy company can make profits for a handful of individuals while all of the expense, risk, and destruction, now and in the future will be put on Massachusetts citizens: now and for many years in the future. Due to the endless advertising budgets of the gas industry, the public has no idea how much their safety and well being are at risk, when radioactive gas, and the chemicals used to produce and extract shale gas, are shipped through neighborhoods and yards for sale abroad. This pipeline is being planned as a feeder line all around the Marcellus shale. This has the additional concern of opening up gas development in NY: This will erase any benefits from closing coal plants and our Massachusetts air quality will grow worse: not be improved. While gas burns cleanly, its production now destroys drinking water, and contributes in a far worse manner to climate change. It is deeply concerning that only gas investment interests were involved in this decision: that our electrical infrastructure is now monopolized by gas investment interests, and that rates to consumers of electricity are determined by a corporation whose principle concern in gas investment and development for private profit: Even the consultants who determined this "need" were primarily involved in gas investments and development. There was NO effort to seek alternatives, and there has been no investigation of the long term destruction to Massachusetts, the safety of citizens, or the safety and well being of land within our state borders. NO renewable and less invasive option was considered, and the meetings held that made this determination were secretive. Northeast Utilities posted a profit following a merger. The expense of this seems to have been passed on to electricity customers: and prices on the "spot" market can be artificially inflated to create advantageous scenarios for gas investment interests. A further concern is that the only people involved in determining this need appear to have both the power to create the need, and a means of filling it which provides windfall for themselves. All of these entities have been involved with Massachusetts before: violating merger agreements: FERC agreements: DPU agreements according to what we have observed: NSTAR/NU immediately eliminated work positions despite merger agreements with the DPU: TGP has failed to complete restoration and conservation agreements from their existing pipeline, according to citizens living along the southern, existing route, and I have no confidence, as a citizen, that our electrical bill or the tariff imposed will be used for anything that will benefit Massachusetts: only gas investments. Allowing this pipeline to locate itself along high voltage transmission cables is a national security risk, both from the standpoint of terrorism, and because a private corporation is seeking to create this, with out of state monitoring and control, and there is no clear evidence of any concern for the safety and well being of Massachusetts citizens: in fact this is a company that will have no accountability for safety and security whatsoever. Other states have rejected these schemes for precisely this reason. The preamble to our state's constitution states that we covenant as a people "without surprise or fraud". I feel that this proposal was a "surprise" to individuals, the communities affected, and because of any lack of public disclosure or discussion. And its pretext is very thin. and proportionally, barely respectful of intelligence. This will have deadly consequences to the well being of Massachusetts, and the fact that it was announced after a year of secretive meetings with gas investments is appalling. L Best regards, Jennifer Markens

  1. Annual Site Environmental Report: 2010 (ASER)

    SciTech Connect (OSTI)

    Sabba, D.

    2011-11-11

    This report provides information about environmental programs during the calendar year of 2010 at the SLAC National Accelerator Laboratory (SLAC), Menlo Park, California. Activities that overlap the calendar year - i.e., stormwater monitoring covering the winter season of 2010/2011 (October 2010 through May 2011) are also included. SLAC is a federally-funded research and development center with Stanford University as the M&O contractor. Under Executive Order (EO) 13423, Strengthening Federal Environmental, Energy, and Transportation Management, EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, and DOE Order 450.1A, Environmental Protection Program, SLAC effectively implements and integrates the key elements of an Environmental Management System (EMS) to achieve the site's integrated safety and environmental management system goals. For normal daily activities, SLAC managers and supervisors are responsible for ensuring that policies and procedures are understood and followed so that: (1) Worker safety and health are protected; (2) The environment is protected; and (3) Compliance is ensured. Throughout 2010, SLAC continued to improve its management systems. These systems provided a structured framework for SLAC to implement 'greening of the government' initiatives such as EO 13423, EO 13514, and DOE Orders 450.1A and 430.2B. Overall, management systems at SLAC are effective, supporting compliance with all relevant statutory and regulatory requirements. During 2010, there were no reportable releases to the environment from SLAC operations. In addition, many improvements in waste minimization, recycling, stormwater management, groundwater restoration, and SLAC's chemical management system (CMS) were continued. The following are among SLAC's environmental accomplishments for 2010. To facilitate management and identification of future potential greenhouse gases (GHG) reduction opportunities, SLAC voluntarily completed GHG inventories for calendar year (CY) 2008 and CY 2009 and submitted the results to The Climate Registry. A Lead Management Plan was completed to reduce the potential of lead impacting the environment, and two large legacy tube-trailer modules, each containing 38 tubes of compressed ethane, were reused or recycled by an outside contractor, resulting in hazardous waste avoidance and cost savings of approximately $100,000 in transportation and disposal costs. SLAC continues to make progress on achieving the sustainability goals of EOs 13423 and 13514, which include, but are not limited to reductions in the use of water, energy, and fuel, building to green standards and reductions in GHG emissions. Phase I of the SLAC Advanced Metering project for electrical and natural gas systems was completed. Phase I included the design of the metering system and purchase of the enterprise software. The planning, design, and installation of an advanced water metering system for select buildings, landscape, and process systems were completed. In addition, the last major onsite chiller containing a Class I ozone-depleting substance was taken out of service, and SLAC continued to replace conventional vehicles with electric vehicles. In 2010, there were no radiological impacts to the public or the environment from SLAC operations. The potential doses to the public were negligible and far below the regulatory and SLAC administrative limits. No radiological incidents occurred that increased radiation levels to the public or released radioactivity to the environment. In addition to managing its radioactive wastes safely and responsibly, SLAC worked to reduce the amount of waste generated. SLAC shipped 2,891 cubic feet of low-level radioactive waste, half of which was legacy waste, to appropriate treatment and disposal facilities for low-level radioactive waste. SLAC also continued its efforts to reduce the inventory of materials no longer needed for its mission by permanently removing 125 sealed radioactive sources from the inventory. Ninety-seven of the sealed sources were returned to the manufacturer, and 28 were sent to Energy Solutions for processing before being sent to the Nevada Test Site for burial. In addition, 87 concrete blocks which had been stored in an area known as the Bone Yard were surveyed for potential surface contamination and volumetric activation prior to off-site release. Based on the comprehensive measurements, all 87 blocks were qualified for release and were disposed of as ordinary materials at a landfill. In 2010, the SLAC Environmental Restoration Program personnel continued work on site characterization and evaluation of remedial alternatives at four sites with volatile organic compounds in groundwater and several areas with polychlorinated biphenyls and low concentrations of lead in soil.

  2. Assessment of Reusing 14-ton, Thin-Wall, Depleted UF{sub 6} Cylinders as LLW Disposal Containers

    SciTech Connect (OSTI)

    O'Connor, D.G.

    2000-11-30

    Approximately 700,000 MT of DUF{sub 6} is stored, or will be produced under a current agreement with the USEC, at the Paducah site in Kentucky, Portsmouth site in Ohio, and ETTP site in Tennessee. On July 21, 1998, the 105th Congress approved Public Law 105-204 (Ref; 1), which directed that facilities be built at the Kentucky and Ohio sites to convert DUF{sub 6} to a stable form for disposition. On July 6, 1999, the Department of Energy (DOE) issued the ''Final Plan for the Conversion of Depleted Uranium Hexafluoride as Required by Public Law 105-204 (Ref. 2), in which DOE committed to develop a Depleted Uranium Hexafluoride Materials Use Roadmap''. On September 1, 2000, DOE issued the Draft Depleted Uranium Hexafluoride Materials Use Roadmap (Ref. 3) (Roadmap), which provides alternate paths for the long-term storage, beneficial use, and eventual disposition of each product form and material that will result from the DUF{sub 6} conversion activity. One of the paths being considered for DUF{sub 6} cylinders is to reuse the empty cylinders as containers to transport and dispose of LLW, including the converted DU. The Roadmap provides results of the many alternate uses and disposal paths for conversion products and the empty DUF{sub 6} storage cylinders. As a part of the Roadmap, evaluations were conducted of cost savings, technical maturity, barriers to implementation, and other impacts. Results of these evaluations indicate that using the DUF{sub 6} storage cylinders as LLW disposal containers could provide moderate cost savings due to the avoided cost of purchasing LLW packages and the avoided cost of disposing of the cylinders. No significant technical or institutional issues were identified that would make using cylinders as LLW packages less effective than other disposition paths. Over 58,000 cylinders have been used, or will be used, to store DUF{sub 6}. Over 51,000 of those cylinders are 14TTW cylinders with a nominal wall thickness of 5/16-m (0.79 cm). These- 14TTW cylinders, which have a nominal diameter of 48 inches and nominally contain 14 tons (12.7 MT) of DUF{sub 6}, were originally designed and fabricated for temporary storage of DUF{sub 6}. They were fabricated from pressure-vessel-grade steels according to the provisions of the ASME Boiler and Pressure Vessel Code (Ref. 4). Cylinders are stored in open yards at the three sites and, due to historical storage techniques, were subject to corrosion. Roughly 10,000 of the 14TTW cylinders are considered substandard (Ref. 5) due to corrosion and other structural anomalies caused by mishandling. This means that approximately 40,000 14TTW cylinders could be made available as containers for LLW disposal In order to demonstrate the use of 14TTW cylinders as LLW disposal containers, several qualifying tasks need to be performed. Two demonstrations are being considered using 14TTW cylinders--one demonstration using contaminated soil and one demonstration using U{sub 3}O{sub 8}. The objective of this report are to determine how much information is known that could be used to support the demonstrations, and how much additional work will need to be done in order to conduct the demonstrations. Information associated with the following four qualifying tasks are evaluated in this report. (1) Perform a review of structural assessments that have been conducted for 14TTW. (2) Develop a procedure for filling 14TTW cylinders with LLW that have been previously washed. (3) Evaluate the transportation requirements for shipping 14TTW cylinders containing LLW. (4) Evaluate the WAC that will be imposed by the NTS. Two assumptions are made to facilitate this evaluation of using DUF{sub 6} cylinders as LLW disposal containers. (1) Only 14TTW cylinders will be considered for use as LLW containers, and (2) The NTS will be the LLW disposal site.

  3. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,1179,"0A",1294,,,95,2941,0,0,3518,0,0,4870,0,0,1732,0,0,3252,0,0,2193,0,0,134,0,0,447,0,0,465,0,0,538,0,0,4295,0,0,3601,0,0,1469,6,50159,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    NAD_UTIL","FILLER","EFFDATE","STATUS","MULTIST","YEAR","GEN01","CON01","STK01","GEN02","CON02","STK02","GEN03","CON03","STK03","GEN04","CON04","STK04","GEN05","CON05","STK05","GEN06","CON06","STK06","GEN07","CON07","STK07","GEN08","CON08","STK08","GEN09","CON09","STK09","GEN10","CON10","STK10","GEN11","CON11","STK11","GEN12","CON12","STK12","PCODE","NERC","UTILCODE","FUELDESC","PMDESC" 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,1179,"0A",1294,,,95,2941,0,0,3518,0,0,4870,0,0,1732,0,0,3252,0,0,2193,0,0,134,0,0,447,0,0,465,0,0,538,0,0,4295,0,0,3601,0,0,1469,6,50159,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,1179,"0A",1294,,,95,772,0,0,858,0,0,1012,0,0,727,0,0,1061,0,0,917,0,0,385,0,0,118,0,0,0,0,0,657,0,0,905,0,0,820,0,0,1472,6,50159,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,,1179,"0A",1294,,,95,2116,0,0,1715,0,0,1459,0,0,1821,0,0,1946,0,0,2134,0,0,2157,0,0,1797,0,0,1745,0,0,1829,0,0,2224,0,0,2386,0,0,1474,6,50159,"WAT","HY" 11,23,1,3,2,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,"LIGHT OIL",1179,"0A",1294,,,95,0,0,553,181,307,419,0,0,593,31,55,538,66,120,418,219,399,383,324,598,481,313,579,614,97,178,575,1,2,573,0,0,608,98,171,611,1474,6,50159,"FO2","IC" 11,23,1,1,,19,35,"BANGOR HYDRO ELECTRIC CO","MILFORD",0,,1179,"0A",1294,,,95,3843,0,0,3348,0,0,4177,0,0,3759,0,0,4855,0,0,4740,0,0,2971,0,0,2432,0,0,1786,0,0,1561,0,0,3510,0,0,4606,0,0,1475,6,50159,"WAT","HY" 11,23,1,1,,19,45,"BANGOR HYDRO ELECTRIC CO","ORONO",0,,1179,"0A",1294,,,95,895,0,0,836,0,0,966,0,0,576,0,0,624,0,0,736,0,0,684,0,0,464,0,0,408,0,0,616,0,0,849,0,0,896,0,0,1476,6,50159,"WAT","HY" 11,23,1,1,,19,55,"BANGOR HYDRO ELECTRIC CO","STILLWATER",0,,1179,"0A",1294,,,95,1191,0,0,844,0,0,939,0,0,1021,0,0,1114,0,0,1181,0,0,1170,0,0,878,0,0,818,0,0,880,0,0,923,0,0,950,0,0,1478,6,50159,"WAT","HY" 11,23,1,1,,19,60,"BANGOR HYDRO ELECTRIC CO","VEAZIE A",0,,1179,"0A",1294,,,95,4314,0,0,3855,0,0,5043,0,0,5153,0,0,6053,0,0,5342,0,0,3542,0,0,2651,0,0,2281,0,0,3932,0,0,5128,0,0,3842,0,0,1479,6,50159,"WAT","HY" 11,23,1,1,,19,62,"BANGOR HYDRO ELECTRIC CO","VEAZIE B",0,,1179,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7199,6,50159,"WAT","HY" 11,23,1,3,2,19,68,"BANGOR HYDRO ELECTRIC CO","BAR HARBOR",0,"LIGHT OIL",1179,"0A",1294,,,95,42,73,538,379,659,574,0,0,574,73,128,446,69,125,512,225,420,440,312,579,556,449,813,455,32,60,586,49,89,497,6,10,487,152,264,571,1466,6,50159,"FO2","IC" 11,23,1,3,2,19,75,"BANGOR HYDRO ELECTRIC CO","EASTPORT",0,"LIGHT OIL",1179,"0A",1294,,,95,39,70,576,80,139,412,0,0,586,10,18,557,32,58,494,111,204,464,172,317,495,182,334,509,19,36,472,0,0,470,15,29,429,67,117,460,1468,6,50159,"FO2","IC" 11,23,1,1,,37,5,"CENTRAL MAINE POWER CO","ANDROSCOG 3",0,,3266,"0M",1294,,,95,2536,0,0,2573,0,0,2732,0,0,2703,0,0,2639,0,0,2235,0,0,2379,0,0,2201,0,0,1657,0,0,2352,0,0,2282,0,0,2805,0,0,1480,6,50491,"WAT","HY" 11,23,1,1,,37,10,"CENTRAL MAINE POWER CO","BAR MILLS",0,,3266,"0M",1294,,,95,2420,0,0,1389,0,0,2414,0,0,2364,0,0,2584,0,0,1195,0,0,623,0,0,586,0,0,293,0,0,1310,0,0,2401,0,0,2056,0,0,1481,6,50491,"WAT","HY" 11,23,1,1,,37,20,"CENTRAL MAINE POWER CO","BONNY EAGLE",0,,3266,"0M",1294,,,95,6041,0,0,3654,0,0,5858,0,0,5255,0,0,4575,0,0,2217,0,0,1233,0,0,1084,0,0,592,0,0,3323,0,0,7098,0,0,4100,0,0,1482,6,50491,"WAT","HY" 11,23,1,1,,37,40,"CENTRAL MAINE POWER CO","CATARACT",0,,3266,"0M",1294,,,95,5330,0,0,4194,0,0,4953,0,0,4656,0,0,4888,0,0,5331,0,0,818,0,0,662,0,0,102,0,0,2232,0,0,5064,0,0,4090,0,0,1486,6,50491,"WAT","HY" 11,23,1,1,,37,42,"CENTRAL MAINE POWER CO","CONTINENTAL",0,,3266,"0M",1294,,,95,-14,0,0,-15,0,0,322,0,0,72,0,0,147,0,0,12,0,0,3,0,0,13,0,0,15,0,0,109,0,0,555,0,0,-18,0,0,1487,6,50491,"WAT","HY" 11,23,1,1,,37,50,"CENTRAL MAINE POWER CO","DEER RIP 1",0,,3266,"0M",1294,,,95,2694,0,0,2434,0,0,4080,0,0,3776,0,0,4034,0,0,2023,0,0,686,0,0,215,0,0,83,0,0,1916,0,0,3984,0,0,3453,0,0,1488,6,50491,"WAT","HY" 11,23,1,1,,37,60,"CENTRAL MAINE POWER CO","FT HALIFAX",0,,3266,"0M",1294,,,95,959,0,0,424,0,0,1026,0,0,961,0,0,925,0,0,526,0,0,51,0,0,5,0,0,155,0,0,380,0,0,977,0,0,659,0,0,1490,6,50491,"WAT","HY" 11,23,1,1,,37,75,"CENTRAL MAINE POWER CO","GULF ISLAND",0,,3266,"0M",1294,,,95,10764,0,0,9131,0,0,13512,0,0,13282,0,0,13485,0,0,8299,0,0,5537,0,0,4070,0,0,2892,0,0,9130,0,0,15549,0,0,11464,0,0,1491,6,50491,"WAT","HY" 11,23,1,1,,37,80,"CENTRAL MAINE POWER CO","HARRIS",0,,3266,"0M",1294,,,95,14325,0,0,24479,0,0,22937,0,0,6538,0,0,5448,0,0,21283,0,0,13285,0,0,11928,0,0,12813,0,0,10770,0,0,19708,0,0,26783,0,0,1492,6,50491,"WAT","HY" 11,23,1,1,,37,85,"CENTRAL MAINE POWER CO","HIRAM",0,,3266,"0M",1294,,,95,5791,0,0,3447,0,0,5873,0,0,6762,0,0,6516,0,0,2778,0,0,1397,0,0,1182,0,0,155,0,0,2992,0,0,7160,0,0,4285,0,0,1493,6,50491,"WAT","HY" 11,23,1,1,,37,90,"CENTRAL MAINE POWER CO","MESALONSK 2",0,,3266,"0M",1294,,,95,1280,0,0,585,0,0,1625,0,0,606,0,0,869,0,0,350,0,0,2,0,0,-1,0,0,9,0,0,710,0,0,1668,0,0,745,0,0,1497,6,50491,"WAT","HY" 11,23,1,1,,37,95,"CENTRAL MAINE POWER CO","MESALONSK 3",0,,3266,"0M",1294,,,95,753,0,0,330,0,0,977,0,0,349,0,0,507,0,0,180,0,0,0,0,0,-6,0,0,0,0,0,414,0,0,1038,0,0,416,0,0,1498,6,50491,"WAT","HY" 11,23,1,1,,37,100,"CENTRAL MAINE POWER CO","MESALONSK 4",0,,3266,"0M",1294,,,95,405,0,0,183,0,0,451,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1499,6,50491,"WAT","HY" 11,23,1,1,,37,105,"CENTRAL MAINE POWER CO","MESALONSK 5",0,,3266,"0M",1294,,,95,699,0,0,292,0,0,0,0,0,378,0,0,0,0,0,203,0,0,13,0,0,9,0,0,4,0,0,408,0,0,923,0,0,390,0,0,1500,6,50491,"WAT","HY" 11,23,1,1,,37,110,"CENTRAL MAINE POWER CO","NO GORHAM",0,,3266,"0M",1294,,,95,1215,0,0,963,0,0,842,0,0,520,0,0,455,0,0,503,0,0,595,0,0,604,0,0,413,0,0,340,0,0,740,0,0,1180,0,0,1501,6,50491,"WAT","HY" 11,23,1,1,,37,125,"CENTRAL MAINE POWER CO","SHAWMUT",0,,3266,"0M",1294,,,95,5226,0,0,5495,0,0,6547,0,0,5776,0,0,5295,0,0,4910,0,0,3475,0,0,2346,0,0,2571,0,0,3529,0,0,4803,0,0,6066,0,0,1504,6,50491,"WAT","HY" 11,23,1,1,,37,130,"CENTRAL MAINE POWER CO","SKELTON",0,,3266,"0M",1294,,,95,13276,0,0,8614,0,0,12134,0,0,11304,0,0,11550,0,0,5199,0,0,2833,0,0,2610,0,0,687,0,0,6731,0,0,13037,0,0,9456,0,0,1505,6,50491,"WAT","HY" 11,23,1,1,,37,145,"CENTRAL MAINE POWER CO","WEST BUXTON",0,,3266,"0M",1294,,,95,4424,0,0,2556,0,0,4381,0,0,3723,0,0,3292,0,0,1602,0,0,798,0,0,745,0,0,418,0,0,1944,0,0,4334,0,0,3045,0,0,1508,6,50491,"WAT","HY" 11,23,1,1,,37,150,"CENTRAL MAINE POWER CO","WESTON",0,,3266,"0M",1294,,,95,8095,0,0,8443,0,0,9513,0,0,8520,0,0,7843,0,0,7850,0,0,5819,0,0,4618,0,0,4257,0,0,5361,0,0,7925,0,0,9347,0,0,1509,6,50491,"WAT","HY" 11,23,1,1,,37,155,"CENTRAL MAINE POWER CO","WILLIAMS",0,,3266,"0M",1294,,,95,9171,0,0,9162,0,0,10255,0,0,6585,0,0,7543,0,0,8658,0,0,6098,0,0,5593,0,0,5308,0,0,5891,0,0,8857,0,0,10646,0,0,1510,6,50491,"WAT","HY" 11,23,1,1,,37,160,"CENTRAL MAINE POWER CO","WYMAN HYDRO",0,,3266,"0M",1294,,,95,30298,0,0,37016,0,0,38382,0,0,18735,0,0,24745,0,0,31774,0,0,20433,0,0,17564,0,0,16353,0,0,19735,0,0,40234,0,0,38504,0,0,1511,6,50491,"WAT","HY" 11,23,1,4,2,37,175,"CENTRAL MAINE POWER CO","CAPE",0,"LIGHT OIL",3266,"0M",1294,,,95,40,282,7937,40,336,7601,-57,44,7557,-40,24,7533,5,162,7371,38,208,7316,611,1872,6581,497,1571,5887,-24,32,5855,-32,27,5828,-45,25,5803,-25,145,5552,1484,6,50491,"FO2","GT" 11,23,1,2,2,37,200,"CENTRAL MAINE POWER CO","WYMAN STEAM",0,"LIGHT OIL",3266,"0M",1294,,,95,707,1587,1149,810,1542,1579,117,264,1534,980,1825,1680,366,883,1468,854,1640,1807,783,1460,2327,653,1307,1677,115,266,1410,20,76,1335,486,1282,2039,604,1177,2212,1507,6,50491,"FO2","ST" 11,23,1,2,3,37,200,"CENTRAL MAINE POWER CO","WYMAN STEAM",0,"HEAVY OIL",3266,"0M",1294,,,95,47051,97029,319010,122493,214459,275338,22777,47240,228098,127804,222606,207728,22560,50003,278752,79660,140051,253816,153893,263859,173676,74046,134076,202289,16596,35140,288543,3258,10955,197963,18538,44437,353526,107031,192190,308382,1507,6,50491,"FO6","ST" 11,23,1,3,2,37,204,"CENTRAL MAINE POWER CO","ISLESBORO",0,"LIGHT OIL",3266,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1494,6,50491,"FO2","IC" 11,23,1,3,2,37,206,"CENTRAL MAINE POWER CO","PEAK IS",0,"LIGHT OIL",3266,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1502,6,50491,"FO2","IC" 11,23,1,1,,37,210,"CENTRAL MAINE POWER CO","BRUNSWICK",0,,3266,"0M",1294,,,95,7964,0,0,6898,0,0,11266,0,0,10237,0,0,10095,0,0,6009,0,0,3698,0,0,2974,0,0,2429,0,0,6541,0,0,12216,0,0,8541,0,0,1483,6,50491,"WAT","HY" 11,23,1,1,,37,215,"CENTRAL MAINE POWER CO","W CHANNEL",0,,3266,"0M",1294,,,95,0,0,0,-33,0,0,-20,0,0,-22,0,0,-1,0,0,-1,0,0,-1,0,0,-21,0,0,-1,0,0,19,0,0,-11,0,0,-22,0,0,695,6,50491,"WAT","HY" 11,23,1,1,,37,220,"CENTRAL MAINE POWER CO","BATES UPPER",0,,3266,"0M",1294,,,95,-41,0,0,-34,0,0,610,0,0,144,0,0,273,0,0,15,0,0,1,0,0,15,0,0,18,0,0,217,0,0,4223,0,0,-30,0,0,7044,6,50491,"WAT","HY" 11,23,1,1,,37,225,"CENTRAL MAINE POWER CO","BATES LOWER",0,,3266,"0M",1294,"S",,95,-17,0,0,-16,0,0,-8,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-3,0,0,-17,0,0,7045,6,50491,"WAT","HY" 11,23,1,1,,37,235,"CENTRAL MAINE POWER CO","ANDRO LOWER",0,,3266,"0M",1294,,,95,23,0,0,-11,0,0,21,0,0,-2,0,0,12,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,5,0,0,38,0,0,-14,0,0,7047,6,50491,"WAT","HY" 11,23,1,1,,37,240,"CENTRAL MAINE POWER CO","HILL MILL",0,,3266,"0M",1294,,,95,-3,0,0,-2,0,0,183,0,0,-6,0,0,60,0,0,2,0,0,1,0,0,0,0,0,1,0,0,105,0,0,467,0,0,-6,0,0,7048,6,50491,"WAT","HY" 11,23,1,1,,37,245,"CENTRAL MAINE POWER CO","C E MONTY",0,,3266,"0M",1294,,,95,11840,0,0,10124,0,0,14280,0,0,13297,0,0,13808,0,0,8324,0,0,5496,0,0,4271,0,0,3199,0,0,9333,0,0,15686,0,0,12247,0,0,805,6,50491,"WAT","HY" 11,23,1,1,,37,250,"CENTRAL MAINE POWER CO","SMELT HILL",0,,3266,"0M",294,"A",,95,0,0,0,400,0,0,352,0,0,239,0,0,180,0,0,162,0,0,191,0,0,178,0,0,-608,0,0,766,0,0,224,0,0,283,0,0,7514,6,50491,"WAT","HY" 11,23,1,2,"B",37,255,"CENTRAL MAINE POWER CO","AROOSTOOK V",0,"WOOD",3266,"0M",294,"A",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,165,0,0,134,0,0,0,0,0,0,0,0,7513,6,50491,"WD","ST" 11,23,1,1,,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,,11522,"0M",1294,,,95,454,0,0,469,0,0,519,0,0,451,0,0,454,0,0,410,0,0,48,0,0,1,0,0,-2,0,0,178,0,0,536,0,0,504,0,0,1513,6,51747,"WAT","HY" 11,23,1,2,3,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,"HEAVY OIL",11522,"0M",1294,,,95,343,903,9375,592,1410,7984,-32,0,8005,-29,0,7995,-26,6,8015,-27,4,8057,-26,0,8067,222,644,7448,-28,0,7396,-29,0,7390,857,1841,5557,2237,4973,2370,1513,6,51747,"FO6","ST" 11,23,1,3,2,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,"LIGHT OIL",11522,"0M",1294,,,95,50,251,1746,5,143,1693,-65,0,1583,78,225,1932,-18,17,1865,-9,6,1829,38,115,1683,233,500,1802,86,210,1776,-6,65,2071,-56,28,1948,244,599,2098,1513,6,51747,"FO2","IC" 11,23,1,1,,94,10,"MAINE PUBLIC SERVICE CO","SQUA PAN",0,,11522,"0M",1294,,,95,115,0,0,363,0,0,152,0,0,-10,0,0,-7,0,0,-3,0,0,-3,0,0,-4,0,0,-6,0,0,-7,0,0,3,0,0,223,0,0,1516,6,51747,"WAT","HY" 11,23,1,3,2,94,23,"MAINE PUBLIC SERVICE CO","FLOS INN",0,"LIGHT OIL",11522,"0M",1294,,,95,27,115,314,19,82,232,-29,0,232,19,79,373,-23,2,371,-16,0,371,13,80,290,124,284,232,74,135,323,-3,51,272,-25,8,264,217,451,388,1514,6,51747,"FO2","IC" 11,23,1,3,2,94,25,"MAINE PUBLIC SERVICE CO","HOULTON",0,"LIGHT OIL",11522,"0M",1294,,,95,6,28,13,-8,1,12,-8,2,10,-8,0,10,-6,0,10,-3,0,10,-2,0,10,-3,0,10,-3,0,10,-4,0,11,-4,2,8,14,34,6,1515,6,51747,"FO2","IC" 11,23,1,2,1,97,1,"MAINE YANKEE ATOMIC PWR C","MAIN YANKEE",0,"NUCLEAR",11525,"0M",1294,,,95,197577,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1517,6,51748,"UR","ST" 11,23,1,3,2,116,10,"PUB SERV CO OF NEW HAMP","SWANS FALLS",0,"LIGHT OIL",15472,"0M",1294,"R",180,95,-7,0,2,-7,0,2,-6,0,2,-3,0,2,-2,0,2,-1,0,2,-1,0,2,-1,0,2,-1,0,2,-1,0,2,-3,0,2,0,0,0,1518,6,52411,"FO2","IC" 11,23,5,1,,525,1,"LEWISTON (CITY OF)","ANDRO UPPER",0,,10963,"0A",1294,,,95,296,0,0,378,0,0,310,0,0,424,0,0,264,0,0,390,0,0,256,0,0,258,0,0,304,0,0,270,0,0,342,0,0,324,0,0,7046,6,54168,"WAT","HY" 11,23,5,1,,566,1,"MADISON (CITY OF)","NORRIDGEWCK",0,,11477,"0A",1294,,,95,306,0,0,241,0,0,261,0,0,291,0,0,379,0,0,277,0,0,75,0,0,0,0,0,26,0,0,121,0,0,197,0,0,224,0,0,6701,6,51737,"WAT","HY" 11,23,8,3,2,835,5,"EASTERN MAINE ELEC COOP","PORTABLE",0,"LIGHT OIL",5609,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6366,6,50848,"FO2","IC" 11,23,8,3,2,940,1,"SWANS ISLAND ELEC COOP","MINTURN",0,"LIGHT OIL",18368,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1550,6,52863,"FO2","IC" 12,33,1,1,,106,5,"NEW ENGLAND POWER CO","COMERFORD",0,,13433,"0M",1294,,90,95,34273,0,0,19125,0,0,43429,0,0,11874,0,0,22700,0,0,13853,0,0,5565,0,0,11061,0,0,5412,0,0,30636,0,0,45527,0,0,18948,0,0,2349,6,52007,"WAT","HY" 12,33,1,1,,106,10,"NEW ENGLAND POWER CO","MCINDOES",0,,13433,"0M",1294,,90,95,4420,0,0,3434,0,0,6350,0,0,3330,0,0,4648,0,0,2664,0,0,1453,0,0,2497,0,0,1353,0,0,4755,0,0,7050,0,0,3740,0,0,6483,6,52007,"WAT","HY" 12,33,1,1,,106,13,"NEW ENGLAND POWER CO","S C MOORE",0,,13433,"0M",1294,,90,95,29434,0,0,15866,0,0,34014,0,0,9521,0,0,19359,0,0,12124,0,0,4787,0,0,9805,0,0,4357,0,0,27013,0,0,40020,0,0,16551,0,0,2351,6,52007,"WAT","HY" 12,33,1,1,,106,15,"NEW ENGLAND POWER CO","VERNON",0,,13433,"0M",1294,,90,95,7120,0,0,5523,0,0,9186,0,0,7993,0,0,7582,0,0,3197,0,0,1355,0,0,2525,0,0,19,0,0,5912,0,0,9702,0,0,7342,0,0,2352,6,52007,"WAT","HY" 12,33,1,1,,106,20,"NEW ENGLAND POWER CO","WILDER",0,,13433,"0M",1294,,90,95,1974,0,0,3326,0,0,18722,0,0,7773,0,0,8911,0,0,4713,0,0,4047,0,0,5176,0,0,2849,0,0,9330,0,0,12667,0,0,7471,0,0,2353,6,52007,"WAT","HY" 12,33,1,2,1,123,1,"PUB SERV CO OF NEW HAMP","SEABROOK",0,"NUCLEAR",15472,"0M",1294,,180,95,857441,0,0,778373,0,0,863021,0,0,832472,0,0,865152,0,0,495425,0,0,690261,0,0,805711,0,0,800410,0,0,828658,0,0,60958,0,0,501494,0,0,6115,6,52411,"UR","ST" 12,33,1,1,,123,4,"PUB SERV CO OF NEW HAMP","AMOSKEAG",0,,15472,"0M",1294,,180,95,10690,0,0,7028,0,0,11425,0,0,749,0,0,15769,0,0,4245,0,0,2251,0,0,3257,0,0,434,0,0,5760,0,0,11044,0,0,6264,0,0,2354,6,52411,"WAT","HY" 12,33,1,1,,123,6,"PUB SERV CO OF NEW HAMP","AYERS IS",0,,15472,"0M",1294,,180,95,3909,0,0,2249,0,0,4743,0,0,3555,0,0,4487,0,0,1520,0,0,1448,0,0,1727,0,0,380,0,0,3303,0,0,5711,0,0,2632,0,0,2355,6,52411,"WAT","HY" 12,33,1,1,,123,16,"PUB SERV CO OF NEW HAMP","EASTMAN FLS",0,,15472,"0M",1294,,180,95,2843,0,0,1293,0,0,2781,0,0,2587,0,0,2725,0,0,1214,0,0,1763,0,0,10079,0,0,-9794,0,0,1729,0,0,3266,0,0,1701,0,0,2356,6,52411,"WAT","HY" 12,33,1,1,,123,20,"PUB SERV CO OF NEW HAMP","GARVIN FLS",0,,15472,"0M",1294,,180,95,5209,0,0,3143,0,0,5693,0,0,4388,0,0,3956,0,0,2019,0,0,755,0,0,1667,0,0,350,0,0,3233,0,0,6336,0,0,3913,0,0,2357,6,52411,"WAT","HY" 12,33,1,1,,123,22,"PUB SERV CO OF NEW HAMP","GORHAM",0,,15472,"0M",1294,,180,95,989,0,0,1031,0,0,1249,0,0,885,0,0,1193,0,0,756,0,0,568,0,0,530,0,0,580,0,0,864,0,0,1116,0,0,1202,0,0,2358,6,52411,"WAT","HY" 12,33,1,1,,123,28,"PUB SERV CO OF NEW HAMP","HOOKSETT",0,,15472,"0M",1294,,180,95,787,0,0,865,0,0,912,0,0,1164,0,0,1141,0,0,791,0,0,156,0,0,317,0,0,43,0,0,751,0,0,952,0,0,776,0,0,2359,6,52411,"WAT","HY" 12,33,1,1,,123,30,"PUB SERV CO OF NEW HAMP","JACKMAN",0,,15472,"0M",1294,,180,95,1997,0,0,535,0,0,1239,0,0,236,0,0,557,0,0,305,0,0,191,0,0,722,0,0,-8,0,0,1339,0,0,2326,0,0,864,0,0,2360,6,52411,"WAT","HY" 12,33,1,1,,123,50,"PUB SERV CO OF NEW HAMP","SMITH STA",0,,15472,"0M",1294,,180,95,8143,0,0,9737,0,0,11648,0,0,6108,0,0,8349,0,0,6172,0,0,4454,0,0,4871,0,0,3742,0,0,6861,0,0,10860,0,0,10308,0,0,2368,6,52411,"WAT","HY" 12,33,1,4,2,123,57,"PUB SERV CO OF NEW HAMP","LOST NATION",0,"LIGHT OIL",15472,"0M",1294,,180,95,-15,0,2159,79,306,1853,-15,0,1853,-12,0,1853,42,125,1728,50,140,1587,209,595,1527,275,828,1235,-11,0,1235,-11,0,1235,-10,0,1235,111,338,1076,2362,6,52411,"FO2","GT" 12,33,1,2,2,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"LIGHT OIL",15472,"0M",1294,,180,95,27,45,275,16,29,156,22,38,180,23,38,218,0,0,0,29,52,151,6,14,205,30,55,180,52,96,222,62,108,185,57,96,176,20,35,176,2364,6,52411,"FO2","ST" 12,33,1,2,6,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"BIT COAL",15472,"0M",1294,,180,95,266403,101539,253077,274308,103830,266334,256612,98157,263978,216443,80934,278945,76504,17154,315133,246563,95683,297713,281671,111493,247571,263463,95839,235114,181335,71786,264069,207269,81066,275589,253852,96425,269715,287608,108204,247069,2364,6,52411,"BIT","ST" 12,33,1,4,2,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"LIGHT OIL",15472,"0M",1294,,180,95,-47,0,3032,411,1048,3032,-21,0,1984,-18,0,1984,112,282,1702,122,334,1367,613,1576,1494,582,1554,2033,-14,0,2033,-11,20,2013,-20,0,2013,242,603,1411,2364,6,52411,"FO2","GT" 12,33,1,2,3,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"HEAVY OIL",15472,"0M",1294,,180,95,1350,2702,31413,820,1554,92325,2073,4352,187620,1454,2823,184796,1826,3479,189663,2478,4626,184835,4062,7903,176932,2011,4193,53637,1321,2911,170000,1885,4329,165671,5233,10859,154812,3538,6785,118334,2367,6,52411,"FO6","ST" 12,33,1,2,6,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"BIT COAL",15472,"0M",1294,,180,95,53534,27148,87087,68779,32692,50318,47008,24972,52027,65230,33724,53967,55312,27020,32185,49976,24400,75043,55074,26887,62380,30313,18396,42154,18241,9931,51974,16092,9642,54786,30357,16856,90418,65541,32424,72200,2367,6,52411,"BIT","ST" 12,33,1,4,2,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"LIGHT OIL",15472,"0M",1294,,180,95,-13,0,804,95,260,723,-12,0,723,-9,0,723,57,118,604,-7,0,604,90,262,723,242,963,714,-7,0,714,0,0,714,-9,0,714,120,301,794,2367,6,52411,"FO2","GT" 12,33,1,4,9,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"NAT GAS",15472,"0M",1294,,180,95,19,240,0,12,140,0,24,310,0,25,300,0,22,264,0,17,210,0,219,2700,0,121,2803,0,14,190,0,15,220,0,24,320,0,22,260,0,2367,6,52411,"NG","GT" 12,33,1,4,2,123,70,"PUB SERV CO OF NEW HAMP","WHITE LAKE",0,"LIGHT OIL",15472,"0M",1294,,180,95,-17,0,2383,97,350,2033,-14,4,2029,-7,0,2029,48,94,1935,136,341,1595,147,405,1763,357,924,1410,-3,0,1410,-3,0,1410,-13,0,1410,-6,129,1281,2369,6,52411,"FO2","GT" 12,33,1,2,2,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"LIGHT OIL",15472,"0M",1294,,180,95,2141,4247,1577,1729,3274,1766,1111,2327,1824,1584,4149,1209,1580,3072,1209,1589,3168,1640,1162,2239,1856,1703,3313,1598,1134,2258,1388,173,817,1751,1894,3703,1630,507,3096,1651,8002,6,52411,"FO2","ST" 12,33,1,2,3,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"HEAVY OIL",15472,"0M",1294,,180,95,73391,138116,328850,119485,206586,321529,32827,62816,434361,89003,159420,245596,100291,177704,321055,73382,134661,317462,125529,216497,100965,57182,118647,2305699,45699,82009,405756,1560,6611,399144,100544,177099,222046,136392,231245,388270,8002,6,52411,"FO6","ST" 12,33,1,2,9,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"NAT GAS",15472,"0M",1294,,180,95,1463,17053,0,0,0,0,0,0,0,0,0,0,35353,394385,0,45744,527451,0,57696,624462,0,48968,544320,0,10747,122302,0,57,1545,0,742,8312,0,0,0,0,8002,6,52411,"NG","ST" 13,50,1,1,,22,2,"CENTRAL VT PUB SERV CORP","ARNOLD FLS",0,,3292,"0A",1294,,350,95,112,0,0,27,0,0,168,0,0,290,0,0,100,0,0,18,0,0,33,0,0,37,0,0,17,0,0,172,0,0,245,0,0,135,0,0,3707,6,50503,"WAT","HY" 13,50,1,1,,22,10,"CENTRAL VT PUB SERV CORP","CAVENDISH",0,,3292,"0A",1294,,350,95,534,0,0,309,0,0,847,0,0,607,0,0,267,0,0,83,0,0,0,0,0,134,0,0,-3,0,0,391,0,0,928,0,0,383,0,0,3710,6,50503,"WAT","HY" 13,50,1,1,,22,11,"CENTRAL VT PUB SERV CORP","CLARKS FLS",0,,3292,"0A",1294,,350,95,1404,0,0,1026,0,0,1689,0,0,1865,0,0,1729,0,0,855,0,0,596,0,0,1076,0,0,567,0,0,1648,0,0,1970,0,0,1412,0,0,3711,6,50503,"WAT","HY" 13,50,1,1,,22,15,"CENTRAL VT PUB SERV CORP","FAIRFAX",0,,3292,"0A",1294,,350,95,1873,0,0,1589,0,0,2321,0,0,2516,0,0,2499,0,0,1241,0,0,878,0,0,1432,0,0,744,0,0,2114,0,0,2573,0,0,2233,0,0,3712,6,50503,"WAT","HY" 13,50,1,1,,22,16,"CENTRAL VT PUB SERV CORP","GAGE",0,,3292,"0A",1294,,350,95,221,0,0,24,0,0,244,0,0,307,0,0,290,0,0,73,0,0,85,0,0,38,0,0,48,0,0,305,0,0,523,0,0,226,0,0,3713,6,50503,"WAT","HY" 13,50,1,1,,22,18,"CENTRAL VT PUB SERV CORP","GLEN",0,,3292,"0A",1294,,350,95,1041,0,0,605,0,0,731,0,0,367,0,0,238,0,0,98,0,0,83,0,0,323,0,0,183,0,0,629,0,0,1307,0,0,401,0,0,3714,6,50503,"WAT","HY" 13,50,1,1,,22,22,"CENTRAL VT PUB SERV CORP","LW MIDLEBRY",0,,3292,"0A",1294,,350,95,725,0,0,534,0,0,1054,0,0,920,0,0,550,0,0,286,0,0,79,0,0,150,0,0,104,0,0,524,0,0,1220,0,0,492,0,0,3716,6,50503,"WAT","HY" 13,50,1,1,,22,26,"CENTRAL VT PUB SERV CORP","MILTON",0,,3292,"0A",1294,,350,95,3538,0,0,2446,0,0,4215,0,0,4336,0,0,3864,0,0,1806,0,0,1204,0,0,2514,0,0,1210,0,0,4046,0,0,4879,0,0,3192,0,0,3717,6,50503,"WAT","HY" 13,50,1,1,,22,28,"CENTRAL VT PUB SERV CORP","PASSUMPSIC",0,,3292,"0A",1294,,350,95,315,0,0,97,0,0,378,0,0,435,0,0,415,0,0,90,0,0,51,0,0,150,0,0,94,0,0,370,0,0,434,0,0,44,0,0,3718,6,50503,"WAT","HY" 13,50,1,1,,22,30,"CENTRAL VT PUB SERV CORP","PATCH",0,,3292,"0A",1294,,350,95,107,0,0,58,0,0,59,0,0,21,0,0,7,0,0,5,0,0,5,0,0,28,0,0,7,0,0,42,0,0,158,0,0,30,0,0,3719,6,50503,"WAT","HY" 13,50,1,1,,22,34,"CENTRAL VT PUB SERV CORP","PIERCE MLS",0,,3292,"0A",1294,,350,95,113,0,0,81,0,0,121,0,0,180,0,0,161,0,0,59,0,0,47,0,0,47,0,0,17,0,0,102,0,0,181,0,0,116,0,0,3721,6,50503,"WAT","HY" 13,50,1,1,,22,36,"CENTRAL VT PUB SERV CORP","PITTSFORD",0,,3292,"0A",1294,,350,95,1275,0,0,941,0,0,158,0,0,47,0,0,-2,0,0,9,0,0,0,0,0,489,0,0,354,0,0,726,0,0,1999,0,0,679,0,0,3722,6,50503,"WAT","HY" 13,50,1,1,,22,38,"CENTRAL VT PUB SERV CORP","SALISBURY",0,,3292,"0A",1294,,350,95,325,0,0,210,0,0,191,0,0,62,0,0,141,0,0,65,0,0,25,0,0,72,0,0,111,0,0,88,0,0,-6,0,0,303,0,0,3724,6,50503,"WAT","HY" 13,50,1,1,,22,40,"CENTRAL VT PUB SERV CORP","SILVER LAKE",0,,3292,"0A",1294,,350,95,800,0,0,508,0,0,722,0,0,405,0,0,402,0,0,227,0,0,103,0,0,275,0,0,84,0,0,500,0,0,973,0,0,535,0,0,3725,6,50503,"WAT","HY" 13,50,1,1,,22,41,"CENTRAL VT PUB SERV CORP","TAFTSVILLE",0,,3292,"0A",1294,,350,95,150,0,0,135,0,0,208,0,0,200,0,0,119,0,0,12,0,0,0,0,0,17,0,0,-1,0,0,55,0,0,175,0,0,162,0,0,3727,6,50503,"WAT","HY" 13,50,1,1,,22,44,"CENTRAL VT PUB SERV CORP","WEYBRIDGE",0,,3292,"0A",1294,,350,95,1391,0,0,616,0,0,1819,0,0,1459,0,0,991,0,0,370,0,0,156,0,0,354,0,0,167,0,0,1042,0,0,2031,0,0,856,0,0,3728,6,50503,"WAT","HY" 13,50,1,1,,22,45,"CENTRAL VT PUB SERV CORP","PETERSON",0,,3292,"0A",1294,,350,95,2522,0,0,1281,0,0,3601,0,0,3092,0,0,2335,0,0,1090,0,0,702,0,0,1605,0,0,681,0,0,2814,0,0,4021,0,0,1742,0,0,3720,6,50503,"WAT","HY" 13,50,1,4,2,22,48,"CENTRAL VT PUB SERV CORP","RUTLAND",0,"LIGHT OIL",3292,"0A",1294,,350,95,13,125,4525,45,327,4198,40,218,3979,19,143,3836,20,127,3709,101,381,3328,272,898,2430,277,932,1498,34,167,3475,-8,46,3429,32,195,3234,152,651,2583,3723,6,50503,"FO2","GT" 13,50,1,4,2,22,49,"CENTRAL VT PUB SERV CORP","ASCUTNEY",0,"LIGHT OIL",3292,"0A",1294,,350,95,27,136,2572,77,326,2246,69,300,1946,18,96,1851,8,65,1786,41,144,1641,268,895,2175,226,765,1409,-1,38,3277,-15,0,3277,-3,71,3206,88,353,2853,3708,6,50503,"FO2","GT" 13,50,1,3,2,22,60,"CENTRAL VT PUB SERV CORP","ST ALBANS",0,"LIGHT OIL",3292,"0A",1294,,350,95,-14,0,89,5,38,214,-11,4,210,-10,5,205,7,17,188,21,40,148,72,149,234,59,123,111,-1,2,110,-3,0,110,-6,0,108,9,42,236,3726,6,50503,"FO2","IC" 13,50,1,1,,22,65,"CENTRAL VT PUB SERV CORP","SMITH",0,,3292,"0A",1294,,350,95,361,0,0,154,0,0,495,0,0,658,0,0,519,0,0,163,0,0,121,0,0,123,0,0,72,0,0,258,0,0,692,0,0,170,0,0,3709,6,50503,"WAT","HY" 13,50,1,1,,22,70,"CENTRAL VT PUB SERV CORP","EAST BARNET",0,,3292,"0A",1294,,350,95,595,0,0,399,0,0,900,0,0,1046,0,0,922,0,0,325,0,0,322,0,0,358,0,0,203,0,0,790,0,0,1148,0,0,702,0,0,788,6,50503,"WAT","HY" 13,50,1,1,,24,5,"CITIZENS UTILITIES CO","CHARLESTON",0,,3611,"0A",1294,,,95,339,0,0,244,0,0,393,0,0,445,0,0,409,0,0,252,0,0,154,0,0,192,0,0,90,0,0,382,0,0,461,0,0,314,0,0,3729,6,50560,"WAT","HY" 13,50,1,1,,24,10,"CITIZENS UTILITIES CO","NEWPORT",0,,3611,"0A",1294,,,95,1625,0,0,946,0,0,1961,0,0,1655,0,0,1645,0,0,917,0,0,474,0,0,1107,0,0,331,0,0,1614,0,0,2652,0,0,1235,0,0,3731,6,50560,"WAT","HY" 13,50,1,3,2,24,15,"CITIZENS UTILITIES CO","NEWPORT DSL",0,"LIGHT OIL",3611,"0A",1294,,,95,0,0,377,16,33,290,0,0,259,0,0,229,0,0,206,0,0,206,0,0,206,7,12,194,8,16,177,0,0,177,0,0,137,0,0,85,3730,6,50560,"FO2","IC" 13,50,1,1,,24,20,"CITIZENS UTILITIES CO","TROY",0,,3611,"0A",1294,,,95,150,0,0,72,0,0,150,0,0,267,0,0,209,0,0,71,0,0,28,0,0,30,0,0,3,0,0,74,0,0,244,0,0,128,0,0,3733,6,50560,"WAT","HY" 13,50,1,1,,47,10,"GREEN MOUNTAIN POWER CORP","ESSEX 19",0,,7601,"0M",1294,,,95,2888,0,0,2870,0,0,4338,0,0,3931,0,0,3261,0,0,980,0,0,333,0,0,1531,0,0,936,0,0,2161,0,0,3540,0,0,2964,0,0,3737,6,51169,"WAT","HY" 13,50,1,3,2,47,10,"GREEN MOUNTAIN POWER CORP","ESSEX 19",0,"LIGHT OIL",7601,"0M",1294,,,95,0,0,311,11,27,284,1,1,283,0,0,283,7,16,267,28,61,385,45,85,300,33,65,235,9,19,394,0,0,394,0,0,394,12,25,369,3737,6,51169,"FO2","IC" 13,50,1,1,,47,15,"GREEN MOUNTAIN POWER CORP","GORGE NO 18",0,,7601,"0M",1294,,,95,901,0,0,986,0,0,1573,0,0,1661,0,0,1125,0,0,122,0,0,113,0,0,692,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6475,6,51169,"WAT","HY" 13,50,1,1,,47,20,"GREEN MOUNTAIN POWER CORP","MARSHFIELD6",0,,7601,"0M",1294,,,95,891,0,0,1188,0,0,245,0,0,107,0,0,0,0,0,3,0,0,2,0,0,54,0,0,53,0,0,604,0,0,1300,0,0,430,0,0,3739,6,51169,"WAT","HY" 13,50,1,1,,47,25,"GREEN MOUNTAIN POWER CORP","MIDDLESEX 2",0,,7601,"0M",1294,,,95,1134,0,0,848,0,0,1580,0,0,1697,0,0,1156,0,0,150,0,0,111,0,0,717,0,0,45,0,0,1158,0,0,2061,0,0,1133,0,0,3740,6,51169,"WAT","HY" 13,50,1,1,,47,40,"GREEN MOUNTAIN POWER CORP","VERGENNES 9",0,,7601,"0M",1294,,,95,972,0,0,799,0,0,1171,0,0,1224,0,0,968,0,0,441,0,0,247,0,0,499,0,0,318,0,0,590,0,0,1307,0,0,899,0,0,6519,6,51169,"WAT","HY" 13,50,1,3,2,47,40,"GREEN MOUNTAIN POWER CORP","VERGENNES 9",0,"LIGHT OIL",7601,"0M",1294,,,95,15,27,282,68,118,164,15,24,319,5,8,311,4,25,465,108,264,200,174,319,417,163,302,294,20,35,437,3,2,436,2,4,432,35,62,370,6519,6,51169,"FO2","IC" 13,50,1,1,,47,53,"GREEN MOUNTAIN POWER CORP","WATRBRY 22",0,,7601,"0M",1294,,,95,2101,0,0,2029,0,0,1441,0,0,318,0,0,823,0,0,444,0,0,464,0,0,1190,0,0,485,0,0,2251,0,0,2609,0,0,1566,0,0,6520,6,51169,"WAT","HY" 13,50,1,1,,47,55,"GREEN MOUNTAIN POWER CORP","W DANVIL 15",0,,7601,"0M",1294,,,95,445,0,0,146,0,0,507,0,0,509,0,0,301,0,0,77,0,0,87,0,0,220,0,0,103,0,0,544,0,0,661,0,0,151,0,0,3743,6,51169,"WAT","HY" 13,50,1,4,2,47,58,"GREEN MOUNTAIN POWER CORP","BERLIN NO 5",0,"LIGHT OIL",7601,"0M",1294,,,95,32,270,10962,606,1501,9460,21,72,9388,0,0,9338,254,677,8711,731,1834,7632,1214,3039,11011,1354,3377,12369,189,463,14376,681,1521,12855,79,209,12646,389,879,11767,3734,6,51169,"FO2","GT" 13,50,1,4,2,47,60,"GREEN MOUNTAIN POWER CORP","COLCHSTR 16",0,"LIGHT OIL",7601,"0M",1294,,,95,7,28,1071,86,296,775,5,25,750,0,0,750,9,33,717,6,26,1583,117,472,1112,76,320,791,0,0,1506,0,0,1506,0,0,1507,0,0,1506,3735,6,51169,"FO2","GT" 13,50,1,1,,47,65,"GREEN MOUNTAIN POWER CORP","BOLTON FALL",0,,7601,"0M",1294,,,95,3020,0,0,2253,0,0,3823,0,0,2884,0,0,2258,0,0,636,0,0,502,0,0,1603,0,0,428,0,0,2596,0,0,4478,0,0,2430,0,0,7056,6,51169,"WAT","HY" 13,50,1,7,"D",47,70,"GREEN MOUNTAIN POWER CORP","CARTHUSIANS",0,"N/A",7601,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7260,6,51169,"WI","WI" 13,50,1,1,,73,5,"NEW ENGLAND POWER CO","BELLOWS FLS",0,,13433,"0M",1294,,90,95,22299,0,0,16448,0,0,28735,0,0,22260,0,0,21635,0,0,10244,0,0,6175,0,0,10541,0,0,3991,0,0,19464,0,0,30239,0,0,18843,0,0,3745,6,52007,"WAT","HY" 13,50,1,1,,73,10,"NEW ENGLAND POWER CO","HARRIMAN",0,,13433,"0M",1294,,90,95,14391,0,0,13610,0,0,13092,0,0,2630,0,0,807,0,0,1394,0,0,2040,0,0,2968,0,0,2416,0,0,10136,0,0,16468,0,0,11713,0,0,3746,6,52007,"WAT","HY" 13,50,1,1,,73,15,"NEW ENGLAND POWER CO","SEARSBURG",0,,13433,"0M",1294,,90,95,3120,0,0,2878,0,0,3094,0,0,1942,0,0,1012,0,0,853,0,0,152,0,0,1319,0,0,954,0,0,2077,0,0,3042,0,0,2675,0,0,6529,6,52007,"WAT","HY" 13,50,1,1,,73,18,"NEW ENGLAND POWER CO","VERNON",0,,13433,"0M",1294,,90,95,4592,0,0,4182,0,0,5197,0,0,4922,0,0,4427,0,0,2397,0,0,1604,0,0,3525,0,0,1667,0,0,3876,0,0,4946,0,0,3693,0,0,8904,6,52007,"WAT","HY" 13,50,1,1,,73,20,"NEW ENGLAND POWER CO","WILDER",0,,13433,"0M",1294,,90,95,9053,0,0,5888,0,0,8525,0,0,1765,0,0,2559,0,0,1204,0,0,21,0,0,1756,0,0,407,0,0,4556,0,0,8802,0,0,2669,0,0,8905,6,52007,"WAT","HY" 13,50,1,1,,98,5,"PUB SERV CO OF NEW HAMP","CANAAN",0,,15472,"0M",1294,,180,95,729,0,0,718,0,0,805,0,0,483,0,0,569,0,0,345,0,0,252,0,0,190,0,0,195,0,0,728,0,0,765,0,0,738,0,0,3750,6,52411,"WAT","HY" 13,50,1,2,1,135,1,"VT YANKEE NUCLEAR PR CORP","VT YANKEE",0,"NUCLEAR",19796,"0M",1294,,,95,384928,0,0,346136,0,0,192519,0,0,0,0,0,335965,0,0,365673,0,0,371198,0,0,375476,0,0,363210,0,0,389313,0,0,379730,0,0,354361,0,0,3751,6,53128,"UR","ST" 13,50,1,1,,304,1,"VERMONT MARBLE CO","PROCTOR",0,,19794,"0A",1294,,,95,3213,0,0,2009,0,0,3559,0,0,3058,0,0,2032,0,0,1143,0,0,395,0,0,893,0,0,294,0,0,1839,0,0,3796,0,0,1853,0,0,6450,6,53127,"WAT","HY" 13,50,1,1,,304,5,"VERMONT MARBLE CO","CTR RUTLAND",0,,19794,"0A",1294,,,95,161,0,0,164,0,0,188,0,0,211,0,0,211,0,0,121,0,0,26,0,0,62,0,0,19,0,0,85,0,0,190,0,0,184,0,0,6453,6,53127,"WAT","HY" 13,50,1,1,,304,10,"VERMONT MARBLE CO","BELDENS",0,,19794,"0A",1294,,,95,2174,0,0,1009,0,0,2729,0,0,1624,0,0,972,0,0,405,0,0,95,0,0,369,0,0,149,0,0,1679,0,0,2997,0,0,1013,0,0,6451,6,53127,"WAT","HY" 13,50,1,4,2,304,15,"VERMONT MARBLE CO","FLORENCE",0,"LIGHT OIL",19794,"0A",1294,,,95,-2,95,12708,118,200,12076,184,475,11934,674,1762,7457,74,191,4607,157,358,9260,354,1040,6925,210,559,6363,167,435,4707,-11,3,10761,-13,60,8428,167,550,7887,7337,6,53127,"FO2","GT" 13,50,5,1,,520,1,"BARTON (VILLAGE OF)","W CHARLESTN",0,,1299,"0A",1294,,,95,477,0,0,231,0,0,556,0,0,533,0,0,570,0,0,256,0,0,132,0,0,351,0,0,83,0,0,382,0,0,680,0,0,196,0,0,3753,6,50178,"WAT","HY" 13,50,5,3,2,520,1,"BARTON (VILLAGE OF)","W CHARLESTN",0,"LIGHT OIL",1299,"0A",1294,,,95,0,0,206,14,34,172,0,0,172,0,0,172,1,3,169,19,51,118,39,103,190,42,112,78,7,19,59,0,0,59,0,0,118,10,86,32,3753,6,50178,"FO2","IC" 13,50,5,4,2,536,1,"BURLINGTON (CITY OF)","GAS TURB",0,"LIGHT OIL",2548,"0M",1294,,,95,0,1,1628,248,707,868,0,4,2022,0,0,2015,19,66,1949,459,1365,1742,608,1830,1698,485,1472,1476,56,189,1287,0,0,1285,84,242,1001,165,472,1772,3754,6,50375,"FO2","GT" 13,50,5,2,"B",536,10,"BURLINGTON (CITY OF)","J C MC NEIL",0,"WOD CHIPS",2548,"0M",1294,,,95,7742,0,0,12138,0,0,4790,0,0,12108,0,0,15618,0,0,11949,0,0,14425,0,0,8887,0,0,5359,0,0,3746,0,0,10817,0,0,19589,0,0,589,6,50375,"WOD","ST" 13,50,5,2,2,536,10,"BURLINGTON (CITY OF)","J C MC NEIL",0,"LIGHT OIL",2548,"0M",1294,,,95,136,326,2416,132,350,1989,41,99,1826,0,216,1559,0,39,1448,0,22,1351,4,23,1264,0,81,1183,0,52,1021,0,40,945,19,99,3170,24,98,2994,589,6,50375,"FO2","ST" 13,50,5,2,9,536,10,"BURLINGTON (CITY OF)","J C MC NEIL",0,"NAT GAS",2548,"0M",1294,,,95,1750,24386,0,816,12632,0,1337,18689,0,0,2252,0,0,3244,0,0,3721,0,177,4800,0,0,2471,0,0,2396,0,0,2708,0,449,13380,0,2064,47618,0,589,6,50375,"NG","ST" 13,50,5,1,,551,5,"ENOSBURG FALLS (VILLAGE)","KENDALL",0,,5915,"0A",1294,,,95,52,0,0,126,0,0,145,0,0,160,0,0,164,0,0,130,0,0,102,0,0,121,0,0,68,0,0,109,0,0,147,0,0,64,0,0,3757,6,50910,"WAT","HY" 13,50,5,3,2,551,10,"ENOSBURG FALLS (VILLAGE)","DIESEL PLT",0,"LIGHT OIL",5915,"0A",1294,,,95,1,5,320,14,24,296,0,1,296,1,3,293,4,13,280,16,34,246,20,37,351,23,44,307,2,6,301,0,0,301,0,0,0,12,21,279,4247,6,50910,"FO2","IC" 13,50,5,1,,551,15,"ENOSBURG FALLS (VILLAGE)","VILLAGE PLT",0,,5915,"0A",1294,,,95,370,0,0,204,0,0,298,0,0,433,0,0,408,0,0,218,0,0,87,0,0,140,0,0,45,0,0,324,0,0,364,0,0,395,0,0,4246,6,50910,"WAT","HY" 13,50,5,1,,567,1,"HARDWICK (VILLAGE OF)","WOLCOTT",0,,8104,"0A",1294,,,95,228,0,0,139,0,0,381,0,0,480,0,0,332,0,0,55,0,0,41,0,0,20,0,0,22,0,0,331,0,0,526,0,0,262,0,0,6477,6,51238,"WAT","HY" 13,50,5,3,2,567,5,"HARDWICK (VILLAGE OF)","HARDWICK",0,"LIGHT OIL",8104,"0A",1294,,,95,0,0,451,0,0,451,0,0,451,0,0,451,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6476,6,51238,"FO2","IC" 13,50,5,1,,644,5,"LYNDONVILLE (CITY OF)","GREAT FALLS",0,,11359,"0A",1294,,,95,160,0,0,115,0,0,308,0,0,489,0,0,746,0,0,350,0,0,273,0,0,122,0,0,171,0,0,457,0,0,558,0,0,437,0,0,3762,6,51721,"WAT","HY" 13,50,5,1,,644,10,"LYNDONVILLE (CITY OF)","VAIL",0,,11359,"0A",1294,,,95,100,0,0,71,0,0,99,0,0,123,0,0,225,0,0,93,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,107,0,0,3763,6,51721,"WAT","HY" 13,50,5,1,,659,5,"MORRISVILLE (VILLAGE OF)","CADYS FALLS",0,,12989,"0A",1294,,,95,396,0,0,268,0,0,387,0,0,226,0,0,403,0,0,133,0,0,101,0,0,2,0,0,71,0,0,356,0,0,337,0,0,160,0,0,3765,6,51943,"WAT","HY" 13,50,5,1,,659,10,"MORRISVILLE (VILLAGE OF)","MORRISVILLE",0,,12989,"0A",1294,,,95,250,0,0,312,0,0,619,0,0,801,0,0,581,0,0,131,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,0,-2,0,0,227,0,0,3764,6,51943,"WAT","HY" 13,50,5,1,,659,15,"MORRISVILLE (VILLAGE OF)","W K SANDERS",0,,12989,"0A",1294,,,95,-5,0,0,114,0,0,24,0,0,13,0,0,33,0,0,10,0,0,-1,0,0,38,0,0,-2,0,0,83,0,0,177,0,0,7,0,0,678,6,51943,"WAT","HY" 13,50,5,1,,737,5,"SWANTON (VILLAGE OF)","HIGHGATE FL",0,,18371,"0A",1294,,,95,3846,0,0,2084,0,0,5329,0,0,5012,0,0,4484,0,0,2556,0,0,711,0,0,1431,0,0,444,0,0,4486,0,0,6056,0,0,2920,0,0,6618,6,52864,"WAT","HY" 13,50,8,1,,800,5,"VERMONT ELECTRIC COOP","N HARTLAND",0,,19791,"0A",1294,,,95,1260,0,0,415,0,0,212,0,0,990,0,0,623,0,0,190,0,0,90,0,0,4,0,0,8,0,0,484,0,0,1466,0,0,734,0,0,590,6,53125,"WAT","HY" 13,50,8,1,,810,5,"WASHINGTON ELECTRIC COOP","WRIGHTSVILE",0,,20151,"0A",1294,,,95,270,0,0,88,0,0,334,0,0,327,0,0,246,0,0,50,0,0,54,0,0,128,0,0,47,0,0,3224,0,0,418,0,0,153,0,0,7051,6,58100,"WAT","HY" 14,25,1,2,1,23,1,"BOSTON EDISON CO","PILGRIM",0,"NUCLEAR",1998,"0M",1294,,,95,494219,0,0,433548,0,0,370903,0,0,0,0,0,0,0,0,313826,0,0,476983,0,0,486906,0,0,466384,0,0,470820,0,0,479805,0,0,492451,0,0,1590,6,50300,"UR","ST" 14,25,1,4,2,23,15,"BOSTON EDISON CO","EDGAR",0,"LIGHT OIL",1998,"0M",1294,,,95,43,139,1048,160,393,893,25,79,1053,64,124,929,28,74,855,110,379,953,323,950,955,245,760,910,38,108,1040,37,107,933,56,139,1032,134,337,934,1585,6,50300,"FO2","GT" 14,25,1,4,2,23,17,"BOSTON EDISON CO","FRAMINGHAM",0,"LIGHT OIL",1998,"0M",1294,,,95,141,378,1770,276,681,1804,67,203,1601,44,165,1674,70,215,1698,449,1329,1559,788,2383,1819,766,2306,1658,95,258,1630,53,142,1734,74,277,1695,278,761,1649,1586,6,50300,"FO2","GT" 14,25,1,4,2,23,20,"BOSTON EDISON CO","L STREET",0,"LIGHT OIL",1998,"0M",1294,,,95,18,71,606,223,524,481,31,74,586,101,254,571,64,181,628,302,790,611,232,657,597,450,1241,537,70,195,581,33,121,579,41,95,603,202,478,601,1587,6,50300,"FO2","GT" 14,25,1,2,2,23,25,"BOSTON EDISON CO","MYSTIC",0,"LIGHT OIL",1998,"0M",1294,,,95,251,519,1723,2082,3518,560,0,0,2480,874,1565,1748,1508,2858,1987,1285,2470,2852,2284,4277,1789,1325,2537,1992,119,230,1762,111,219,2019,220,439,1580,238,420,1327,1588,6,50300,"FO2","ST" 14,25,1,2,3,23,25,"BOSTON EDISON CO","MYSTIC",0,"HEAVY OIL",1998,"0M",1294,,,95,112692,212897,634701,250006,389639,396000,28170,35809,578539,46219,75659,622498,47350,81843,540595,74633,131731,529651,114158,195470,453259,65504,114254,339850,9543,16899,623019,18574,33314,589243,137777,234264,549412,333744,539006,466193,1588,6,50300,"FO6","ST" 14,25,1,2,9,23,25,"BOSTON EDISON CO","MYSTIC",0,"NAT GAS",1998,"0M",1294,,,95,54301,611365,0,41760,387451,0,199825,2260608,0,223483,2242300,0,121095,1295784,0,76698,835115,0,229079,2424349,0,221936,2420968,0,166749,1844575,0,138588,1545200,0,1185,12271,0,4690,47014,0,1588,6,50300,"NG","ST" 14,25,1,4,2,23,25,"BOSTON EDISON CO","MYSTIC",0,"LIGHT OIL",1998,"0M",1294,,,95,27,56,491,103,175,435,20,57,497,61,110,506,37,71,435,192,369,532,279,524,365,264,506,455,27,53,523,26,52,471,36,92,498,52,92,444,1588,6,50300,"FO2","GT" 14,25,1,2,2,23,30,"BOSTON EDISON CO","NEW BOSTON",0,"LIGHT OIL",1998,"0M",1294,,,95,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,1589,6,50300,"FO2","ST" 14,25,1,2,3,23,30,"BOSTON EDISON CO","NEW BOSTON",0,"HEAVY OIL",1998,"0M",1294,,,95,215120,320592,70394,155709,225131,71506,167349,258313,38374,0,0,38374,0,0,38374,0,0,38374,0,0,38403,0,0,38403,0,0,38403,0,0,38808,0,0,73197,633,1026,94600,1589,6,50300,"FO6","ST" 14,25,1,2,9,23,30,"BOSTON EDISON CO","NEW BOSTON",0,"NAT GAS",1998,"0M",1294,,,95,0,0,0,151,1334,0,2301,23751,0,201560,2042478,0,231080,2303282,0,366745,3613841,0,376840,3697457,0,381210,3746576,0,337660,3311625,0,328300,3254233,0,343010,3322669,0,159417,1573389,0,1589,6,50300,"NG","ST" 14,25,1,4,2,23,40,"BOSTON EDISON CO","WEST MEDWAY",0,"LIGHT OIL",1998,"0M",1294,,,95,532,1305,6724,2615,5858,6588,305,882,6659,441,1064,6548,648,1783,6907,1922,5806,5619,2304,7193,6789,2376,1139,6841,43,153,6688,33,101,6587,199,636,6665,2492,6199,6929,1592,6,50300,"FO2","GT" 14,25,1,4,9,23,40,"BOSTON EDISON CO","WEST MEDWAY",0,"NAT GAS",1998,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,963,16262,0,363,42170,0,305,906,0,134,2149,0,0,0,0,0,0,0,1592,6,50300,"NG","GT" 14,25,1,2,3,25,5,"COMMONWEALTH ENERGY SYS","BLACKSTONE",0,"HEAVY OIL",4120,"0M",1294,,80,95,12,9,1622,622,891,254,0,0,0,12,11,3277,4,9,3067,8,31,3303,19,66,3122,71,286,2313,8,25,2707,0,0,2900,388,267,2375,216,151,3016,1594,6,50412,"FO6","ST" 14,25,1,2,9,25,5,"COMMONWEALTH ENERGY SYS","BLACKSTONE",0,"NAT GAS",4120,"0M",1294,,80,95,643,3052,0,809,7234,0,0,0,0,329,1924,0,176,2782,0,306,7064,0,840,18553,0,641,16359,0,98,2009,0,0,0,0,26,113,0,3,12,0,1594,6,50412,"NG","ST" 14,25,1,2,3,25,10,"COMMONWEALTH ENERGY SYS","KENDALL SQ",0,"HEAVY OIL",4120,"0M",1294,,80,95,1966,3331,44639,4440,7426,46357,571,1025,43350,551,1184,40895,279,518,39729,76,146,39422,226,384,45928,178,367,45253,473,969,43288,91,206,42859,6937,10643,43043,10035,14044,33074,1595,6,50412,"FO6","ST" 14,25,1,2,9,25,10,"COMMONWEALTH ENERGY SYS","KENDALL SQ",0,"NAT GAS",4120,"0M",1294,,80,95,8305,87563,0,5498,57215,0,7487,85115,0,6963,94695,0,6096,81153,0,7445,90078,0,8638,93009,0,7941,103714,0,6154,79756,0,5898,84299,0,580,5629,0,447,3954,0,1595,6,50412,"NG","ST" 14,25,1,4,2,25,10,"COMMONWEALTH ENERGY SYS","KENDALL SQ",0,"LIGHT OIL",4120,"0M",1294,,80,95,0,0,1889,173,442,1930,0,0,1930,10,26,1904,381,951,1671,340,886,1969,587,1240,1863,822,2088,2078,160,754,1323,0,0,1561,0,0,1561,183,453,1925,1595,6,50412,"FO2","GT" 14,25,1,2,3,25,15,"COMMONWEALTH ENERGY SYS","CANAL",0,"HEAVY OIL",4120,"0M",1294,,80,95,162391,279085,64428,147412,254620,37606,178077,310890,35916,210807,342420,34150,172965,296386,68134,149960,274442,64297,204907,357210,66759,386648,623547,65078,202416,316252,66152,59087,109907,66707,307766,492512,64272,421791,645524,63446,1599,6,50412,"FO6","ST" 14,25,1,3,2,25,25,"COMMONWEALTH ENERGY SYS","OAK BLUFFS",0,"LIGHT OIL",4120,"0M",1294,,80,95,0,0,1131,70,125,1006,0,0,1006,3,6,1000,58,98,1011,55,97,1035,183,321,1005,196,350,1036,1,4,1032,0,0,1159,6,15,1144,63,118,1026,1597,6,50412,"FO2","IC" 14,25,1,3,2,25,30,"COMMONWEALTH ENERGY SYS","W TISBURY",0,"LIGHT OIL",4120,"0M",1294,,80,95,0,0,2023,42,87,1936,0,0,1936,2,4,1932,38,68,1918,40,70,1848,243,439,1711,204,373,1827,0,0,1827,0,0,2044,5,18,2026,47,98,1928,6049,6,50412,"FO2","IC" 14,25,1,3,2,25,35,"COMMONWEALTH ENERGY SYS","AIRPORT DIE",0,"LIGHT OIL",4120,"0M",1294,,80,95,2,4,65,20,32,57,6,9,48,14,26,23,3,17,6,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7184,6,50412,"FO2","IC" 14,25,1,4,2,46,1,"FITCHBURG GAS & ELEC LGT","FITCHBURG",0,"LIGHT OIL",6374,"0M",1294,,,95,113,320,1233,544,1372,812,0,0,1289,68,210,1079,120,416,1139,539,1444,1109,663,1798,2154,708,1974,1126,70,191,2125,49,166,1960,0,0,1960,461,1173,2216,1601,6,50990,"FO2","GT" 14,25,1,1,,59,5,"HOLYOKE WTR PWR CO","BB HOLBROOK",0,,8779,"0M",1294,,554,95,215,0,0,12,0,0,439,0,0,48,0,0,0,0,0,-4,0,0,-2,0,0,111,0,0,7,0,0,88,0,0,177,0,0,95,0,0,1602,6,51327,"WAT","HY" 14,25,1,1,,59,7,"HOLYOKE WTR PWR CO","CHEMICAL",0,,8779,"0M",1294,,554,95,390,0,0,65,0,0,264,0,0,560,0,0,1378,0,0,-3,0,0,-2,0,0,33,0,0,-2,0,0,199,0,0,228,0,0,152,0,0,1604,6,51327,"WAT","HY" 14,25,1,1,,59,10,"HOLYOKE WTR PWR CO","HADLEY FLLS",0,,8779,"0M",1294,,554,95,19318,0,0,16252,0,0,20835,0,0,17997,0,0,1047,0,0,10005,0,0,4815,0,0,8945,0,0,1536,0,0,13795,0,0,19251,0,0,19209,0,0,1605,6,51327,"WAT","HY" 14,25,1,1,,59,15,"HOLYOKE WTR PWR CO","RIVERSIDE",0,,8779,"0M",1294,,554,95,2283,0,0,798,0,0,2407,0,0,2806,0,0,1058,0,0,-32,0,0,-28,0,0,236,0,0,-31,0,0,991,0,0,1475,0,0,1658,0,0,1607,6,51327,"WAT","HY" 14,25,1,1,,59,20,"HOLYOKE WTR PWR CO","BOATLOCK",0,,8779,"0M",1294,,554,95,1401,0,0,440,0,0,1465,0,0,1749,0,0,-1985,0,0,-45,0,0,34,0,0,364,0,0,188,0,0,1015,0,0,1030,0,0,1719,0,0,1603,6,51327,"WAT","HY" 14,25,1,1,,59,21,"HOLYOKE WTR PWR CO","SKINNER",0,,8779,"0M",1294,,554,95,1087,0,0,-990,0,0,135,0,0,122,0,0,0,0,0,-3,0,0,-3,0,0,10,0,0,-5,0,0,48,0,0,88,0,0,144,0,0,1608,6,51327,"WAT","HY" 14,25,1,2,2,59,23,"HOLYOKE WTR PWR CO","MT TOM",0,"LIGHT OIL",8779,"0M",1294,,554,95,253,312,334,85,74,223,86,144,363,96,161,0,210,338,471,128,216,400,63,106,0,319,575,0,148,244,0,283,596,339,311,528,442,268,461,289,1606,6,51327,"FO2","ST" 14,25,1,2,6,59,23,"HOLYOKE WTR PWR CO","MT TOM",0,"BIT COAL",8779,"0M",1294,,554,95,83436,31625,65901,94304,36568,48767,100316,38568,48417,92219,34981,57613,86828,32256,68520,89522,33641,55040,96838,37232,50903,67013,26869,64337,58083,21428,72102,20300,9635,85211,75120,28714,96373,83498,33548,87268,1606,6,51327,"BIT","ST" 14,25,1,2,3,85,1,"MONTAUP ELECTRIC COMPANY","SOMERSET",0,"HEAVY OIL",12833,"0M",1294,,,95,5362,8778,70647,3605,6271,64376,3682,6389,57987,572,894,57093,4068,7388,49705,3861,6474,101371,1808,3090,98281,1729,8455,89825,4071,6826,83000,7484,12748,70251,8762,14647,55605,1259,3587,97942,1613,6,56511,"FO6","ST" 14,25,1,2,6,85,1,"MONTAUP ELECTRIC COMPANY","SOMERSET",0,"BIT COAL",12833,"0M",1294,,,95,57318,21462,76767,61443,26125,64290,61730,25219,52529,14739,5125,47404,25607,10149,50811,58410,21998,42203,65563,26654,42553,52228,21241,48670,53057,20314,65856,44642,17190,76089,48433,18499,83931,70559,26084,98563,1613,6,56511,"BIT","ST" 14,25,1,4,2,85,1,"MONTAUP ELECTRIC COMPANY","SOMERSET",0,"LIGHT OIL",12833,"0M",1294,,,95,143,374,5116,433,1118,3998,115,229,3769,65,186,3583,285,740,4510,629,1593,4110,1349,3410,5229,1777,4429,5348,136,348,5000,0,0,4999,5,26,5687,653,1369,4318,1613,6,56511,"FO2","GT" 14,25,1,3,2,90,15,"NANTUCKET ELEC CO","NANTUCKET",0,"LIGHT OIL",13206,"0M",1294,,,95,7539,12658,2602,7625,13184,8503,7218,12056,5494,6969,12757,2261,7465,13354,7937,7820,14759,9687,10453,19444,7486,10644,19689,5848,7894,13523,10626,6823,12246,7898,7832,14492,3042,9557,16800,2912,1615,6,51977,"FO2","IC" 14,25,1,1,,96,5,"NEW ENGLAND POWER CO","DEERFIELD 2",0,,13433,"0M",1294,,90,95,3908,0,0,2952,0,0,3971,0,0,2045,0,0,1064,0,0,520,0,0,442,0,0,617,0,0,404,0,0,2016,0,0,3583,0,0,2747,0,0,6047,6,52007,"WAT","HY" 14,25,1,1,,96,10,"NEW ENGLAND POWER CO","DEERFIELD 3",0,,13433,"0M",1294,,90,95,4040,0,0,3243,0,0,4233,0,0,2293,0,0,1182,0,0,848,0,0,445,0,0,722,0,0,460,0,0,1885,0,0,3570,0,0,3116,0,0,6083,6,52007,"WAT","HY" 14,25,1,1,,96,15,"NEW ENGLAND POWER CO","DEERFIELD 4",0,,13433,"0M",1294,,90,95,3691,0,0,2835,0,0,3555,0,0,1674,0,0,865,0,0,673,0,0,414,0,0,621,0,0,420,0,0,1920,0,0,3135,0,0,2638,0,0,6119,6,52007,"WAT","HY" 14,25,1,1,,96,20,"NEW ENGLAND POWER CO","DEERFIELD 5",0,,13433,"0M",1294,,90,95,8684,0,0,6946,0,0,8699,0,0,2314,0,0,807,0,0,564,0,0,515,0,0,177,0,0,0,0,0,0,0,0,3382,0,0,5810,0,0,1620,6,52007,"WAT","HY" 14,25,1,1,,96,25,"NEW ENGLAND POWER CO","SHERMAN",0,,13433,"0M",1294,,90,95,4117,0,0,3467,0,0,4264,0,0,1151,0,0,407,0,0,439,0,0,377,0,0,602,0,0,527,0,0,2183,0,0,3889,0,0,2917,0,0,6012,6,52007,"WAT","HY" 14,25,1,2,3,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"HEAVY OIL",13433,"0M",1294,,90,95,40093,74054,435541,65951,116563,318656,49098,75749,438283,41100,69916,368366,2212,5326,519600,0,0,519442,0,0,519401,488,4266,515767,0,0,516617,0,0,516584,7553,10954,505630,71672,125949,379784,1619,6,52007,"FO6","ST" 14,25,1,2,6,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"BIT COAL",13433,"0M",1294,,90,95,657136,245754,255528,538158,200282,277893,335153,130042,379361,336389,128159,523785,552184,203304,520224,709319,259373,461575,714608,267126,390587,681408,256270,431828,600517,222478,518312,676108,250140,322224,643066,226804,159986,692743,256541,166201,1619,6,52007,"BIT","ST" 14,25,1,2,9,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"NAT GAS",13433,"0M",1294,,90,95,2475,65992,0,19895,234494,0,87264,1046891,0,115149,1305242,0,165738,1925331,0,192541,2159965,0,121121,1465806,0,138514,1578722,0,90677,1067560,0,7950,208839,0,642,50267,0,499,65467,0,1619,6,52007,"NG","ST" 14,25,1,3,2,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"LIGHT OIL",13433,"0M",1294,,90,95,48,91,0,168,321,0,49,91,0,66,120,0,149,212,0,229,427,0,434,803,0,429,813,0,49,97,0,17,33,0,0,0,0,122,221,0,1619,6,52007,"FO2","IC" 14,25,1,2,3,96,33,"NEW ENGLAND POWER CO","SALEM HABR",0,"HEAVY OIL",13433,"0M",1294,,90,95,4216,6811,427550,19621,51462,372000,43825,80929,296042,52176,100975,196885,88546,157427,294207,74155,134469,405510,143472,245061,157683,78033,135040,315193,15952,29894,481681,10242,22800,451257,31856,63264,446411,130138,177251,300301,1626,6,52007,"FO6","ST" 14,25,1,2,6,96,33,"NEW ENGLAND POWER CO","SALEM HABR",0,"BIT COAL",13433,"0M",1294,,90,95,170230,67910,116594,174526,68827,87604,182421,75469,107334,180983,73494,87888,123760,53441,145441,149482,64633,132065,157915,67184,148469,169338,69504,116124,140768,59871,93091,133365,56779,72780,147538,65216,99054,158287,70574,72828,1626,6,52007,"BIT","ST" 14,25,1,3,2,96,40,"NEW ENGLAND POWER CO","GLOUCESTER",0,"LIGHT OIL",13433,"0M",1294,,90,95,180,400,1027,365,1056,1255,495,500,1183,191,320,863,798,1430,1148,331,615,1333,398,757,1219,767,1957,1197,100,165,1033,0,0,1031,2,3,1465,491,918,1190,1624,6,52007,"FO2","IC" 14,25,1,3,2,96,50,"NEW ENGLAND POWER CO","NEWBURYPORT",0,"LIGHT OIL",13433,"0M",1294,,90,95,23,31,898,242,431,942,1,0,943,124,222,720,79,135,986,279,516,828,384,714,746,466,834,770,24,47,723,5,10,715,0,0,929,200,360,998,1625,6,52007,"FO2","IC" 14,25,1,1,,96,55,"NEW ENGLAND POWER CO","FIFE BROOK",0,,13433,"0M",1294,,90,95,4107,0,0,3775,0,0,4880,0,0,1321,0,0,312,0,0,338,0,0,198,0,0,494,0,0,291,0,0,2274,0,0,4150,0,0,3161,0,0,8004,6,52007,"WAT","HY" 14,25,1,1,,96,60,"NEW ENGLAND POWER CO","BEAR SWAMP",0,"P-PUMPSTG",13433,"0M",1294,,90,95,-17861,61325,0,-15324,57381,0,-16082,58258,0,-15241,53916,0,-14630,56226,0,-16812,61971,0,-18159,63682,0,-15902,62948,0,-16995,61404,0,-17477,62001,0,-15650,58713,0,-16215,58454,0,8005,6,52007,"WAT","HY" 14,25,1,1,,145,5,"W MASSACHUSETTS ELEC CO","CABOT",0,,20455,"0M",1294,,555,95,27350,0,0,20962,0,0,33562,0,0,28813,0,0,2450,0,0,11373,0,0,5730,0,0,10888,0,0,1060,0,0,21360,0,0,32264,0,0,23532,0,0,1629,6,53266,"WAT","HY" 14,25,1,1,,145,10,"W MASSACHUSETTS ELEC CO","COBBLE MT",0,,20455,"0M",1294,,555,95,2687,0,0,2401,0,0,3134,0,0,1490,0,0,613,0,0,1371,0,0,1579,0,0,2606,0,0,404,0,0,934,0,0,679,0,0,2257,0,0,1630,6,53266,"WAT","HY" 14,25,1,1,,145,12,"W MASSACHUSETTS ELEC CO","DWIGHT",0,,20455,"0M",1294,,555,95,541,0,0,520,0,0,744,0,0,709,0,0,972,0,0,422,0,0,241,0,0,219,0,0,137,0,0,316,0,0,187,0,0,450,0,0,6378,6,53266,"WAT","HY" 14,25,1,1,,145,20,"W MASSACHUSETTS ELEC CO","GARDER FLS",0,,20455,"0M",1294,,555,95,1535,0,0,1501,0,0,2140,0,0,1273,0,0,591,0,0,393,0,0,159,0,0,373,0,0,244,0,0,740,0,0,1394,0,0,1292,0,0,1634,6,53266,"WAT","HY" 14,25,1,1,,145,30,"W MASSACHUSETTS ELEC CO","IND ORCHARD",0,,20455,"0M",1294,,555,95,1913,0,0,854,0,0,1614,0,0,786,0,0,661,0,0,177,0,0,8,0,0,59,0,0,4,0,0,434,0,0,1375,0,0,741,0,0,6379,6,53266,"WAT","HY" 14,25,1,1,,145,32,"W MASSACHUSETTS ELEC CO","PUTTS BRDGE",0,,20455,"0M",1294,,555,95,224,0,0,252,0,0,1368,0,0,249,0,0,550,0,0,741,0,0,249,0,0,393,0,0,186,0,0,1233,0,0,1150,0,0,251,0,0,1637,6,53266,"WAT","HY" 14,25,1,1,,145,33,"W MASSACHUSETTS ELEC CO","RED BRIDGE",0,,20455,"0M",1294,,555,95,2265,0,0,1259,0,0,1699,0,0,1592,0,0,1025,0,0,689,0,0,212,0,0,256,0,0,150,0,0,1248,0,0,7724,0,0,1271,0,0,1638,6,53266,"WAT","HY" 14,25,1,1,,145,35,"W MASSACHUSETTS ELEC CO","TURNERS FL",0,,20455,"0M",1294,,555,95,1180,0,0,-9,0,0,2580,0,0,457,0,0,2357,0,0,3,0,0,320,0,0,753,0,0,1529,0,0,1437,0,0,3487,0,0,96,0,0,6388,6,53266,"WAT","HY" 14,25,1,1,,145,37,"W MASSACHUSETTS ELEC CO","NORTHFLD MT",0,"P-PUMPSTG",20455,"0M",1294,,555,95,-40582,142177,0,-33131,122422,0,-34507,127754,0,-38191,123876,0,-53574,130653,0,-54650,139615,0,-65287,149806,0,-58299,150495,0,-60095,144418,0,-65178,152081,0,-51403,135668,0,-54958,140849,0,547,6,53266,"WAT","HY" 14,25,1,4,2,145,38,"W MASSACHUSETTS ELEC CO","DOREEN",0,"LIGHT OIL",20455,"0M",1294,,555,95,50,156,956,319,789,738,14,84,997,11,135,1029,31,63,967,166,460,863,117,360,1099,422,1231,1099,69,204,1073,-10,0,1073,34,122,951,162,418,771,1631,6,53266,"FO2","GT" 14,25,1,2,2,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"LIGHT OIL",20455,"0M",1294,,555,95,0,0,533,101,224,458,0,0,458,19,36,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,379,1642,6,53266,"FO2","ST" 14,25,1,2,3,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"HEAVY OIL",20455,"0M",1294,,555,95,3033,6175,75421,4119,8425,75374,344,607,80604,1867,3252,77352,19,33,77318,750,1321,75997,1456,2596,73401,758,1343,72058,0,0,72058,0,0,72923,2320,5181,76520,13739,24402,55074,1642,6,53266,"FO6","ST" 14,25,1,2,9,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"NAT GAS",20455,"0M",1294,,555,95,2167,27681,0,81,1046,0,24872,278755,0,28674,316564,0,33801,372726,0,33691,376470,0,34950,395433,0,39329,440670,0,21443,242289,0,3420,45099,0,110,1547,0,158,1773,0,1642,6,53266,"NG","ST" 14,25,1,4,2,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"LIGHT OIL",20455,"0M",1294,,555,95,45,159,682,84,220,801,-17,0,801,-12,0,801,-3,12,789,108,297,6777,282,717,1096,319,633,977,0,0,977,0,0,977,0,0,977,0,0,977,1642,6,53266,"FO2","GT" 14,25,1,4,2,145,60,"W MASSACHUSETTS ELEC CO","WOODLAND RD",0,"LIGHT OIL",20455,"0M",1294,,555,95,38,127,1027,218,623,814,3,20,1144,11,96,1048,22,56,992,219,604,924,341,963,1130,373,1030,1017,32,105,1090,-7,0,1090,5,59,1032,156,398,534,1643,6,53266,"FO2","GT" 14,25,5,3,2,532,5,"BRAINTREE (CITY OF)","POTTER",0,"LIGHT OIL",2144,"0M",1294,,,95,1,3,0,40,86,0,2,4,0,8,15,0,18,33,0,0,0,0,66,37,0,90,173,0,8,15,0,16,29,0,0,0,0,47,86,0,1660,6,50315,"FO2","IC" 14,25,5,5,9,532,5,"BRAINTREE (CITY OF)","POTTER",0,"WASTE HT",2144,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1660,6,50315,"NG","CC" 14,25,5,6,2,532,5,"BRAINTREE (CITY OF)","POTTER",0,"LIGHT OIL",2144,"0M",1294,,,95,597,1163,3860,1950,3916,4922,529,946,3897,722,1243,2632,0,0,2595,0,0,2595,0,0,0,0,0,0,0,0,0,418,803,0,0,0,0,563,1271,0,1660,6,50315,"FO2","CT" 14,25,5,6,9,532,5,"BRAINTREE (CITY OF)","POTTER",0,"NAT GAS",2144,"0M",1294,,,95,6985,76876,0,16116,164048,0,4161,42418,0,25648,268544,0,6647,61554,0,0,0,0,6439,68107,0,22225,231091,0,11633,125960,0,2826,30097,0,605,6473,0,2795,30378,0,1660,6,50315,"NG","CT" 14,25,5,1,,597,5,"HOLYOKE (CITY OF)","HOLYOKE",0,,8776,"0M",1294,,,95,1039,0,0,94,0,0,1200,0,0,538,0,0,244,0,0,216,0,0,169,0,0,308,0,0,243,0,0,308,0,0,843,0,0,63,0,0,9864,6,51325,"WAT","HY" 14,25,5,2,3,597,5,"HOLYOKE (CITY OF)","HOLYOKE",0,"HEAVY OIL",8776,"0M",1294,,,95,-34,8,21223,-7,161,18597,-32,0,17335,-149,242,9944,-157,0,11105,-26,144,12014,197,918,10400,173,751,10383,0,0,21744,-26,2,23445,-45,21,21407,48,571,24539,9864,6,51325,"FO6","ST" 14,25,5,2,9,597,5,"HOLYOKE (CITY OF)","HOLYOKE",0,"NAT GAS",8776,"0M",1294,,,95,-406,548,0,-47,7095,0,-432,0,0,-151,1508,0,-180,0,0,-82,2775,0,358,10343,0,495,13260,0,-282,0,0,-300,136,0,-310,907,0,116,8617,0,9864,6,51325,"NG","ST" 14,25,5,3,2,602,1,"HUDSON (CITY OF)","CHERRY ST",0,"LIGHT OIL",8973,"0A",1294,,,95,126,216,6535,468,801,5733,24,47,5687,49,79,5608,60,99,5509,136,242,5267,334,576,4687,237,442,10028,21,36,9992,0,0,9992,0,0,9992,0,613,9379,9038,6,51362,"FO2","IC" 14,25,5,3,9,602,1,"HUDSON (CITY OF)","CHERRY ST",0,"NAT GAS",8973,"0A",1294,,,95,16,177,0,0,0,0,0,0,0,27,276,0,223,2327,0,514,5353,0,813,8555,0,1067,10973,0,248,2679,0,0,0,0,0,0,0,0,0,0,9038,6,51362,"NG","IC" 14,25,5,3,2,613,1,"IPSWICH (CITY OF)","IPSWICH",0,"LIGHT OIL",9442,"0A",1294,,,95,3,144,1524,185,504,1020,-44,84,928,26,97,839,45,81,751,112,229,1817,221,430,1388,171,335,1053,42,71,981,0,0,1991,0,13,1901,70,285,1616,1670,6,51411,"FO2","IC" 14,25,5,3,9,613,1,"IPSWICH (CITY OF)","IPSWICH",0,"NAT GAS",9442,"0A",1294,,,95,0,0,0,0,0,0,-7,91,0,26,564,0,193,2049,0,356,4180,0,540,6225,0,488,5467,0,218,2149,0,0,0,0,0,164,0,0,0,0,1670,6,51411,"NG","IC" 14,25,5,3,2,630,20,"MARBLEHEAD (CITY OF)","COMM ST 2",0,"LIGHT OIL",11624,"0A",1294,,,95,0,0,134,30,54,153,0,0,124,1,4,109,8,23,86,22,43,163,30,67,96,40,77,139,3,3,134,0,0,129,0,0,107,16,31,153,6585,6,51769,"FO2","IC" 14,25,5,3,2,630,25,"MARBLEHEAD (CITY OF)","WILKINS STA",0,"LIGHT OIL",11624,"0A",1294,,,95,24,42,422,242,404,495,3,4,490,17,25,466,41,67,398,140,249,387,184,331,532,214,384,390,17,34,833,0,0,831,0,0,833,105,187,646,6586,6,51769,"FO2","IC" 14,25,5,4,2,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"LIGHT OIL",11806,"0M",1294,,,95,868,1812,0,3250,6760,0,1070,2159,0,1016,2152,0,1531,3641,0,3583,7206,0,6923,15010,0,5440,12228,0,1296,2825,0,251,525,0,0,0,0,2081,4355,0,6081,6,56516,"FO2","GT" 14,25,5,5,2,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"LIGHT OIL",11806,"0M",1294,,,95,4867,0,0,4882,0,0,1895,0,0,0,0,0,1645,0,0,1298,0,0,2909,0,0,2231,0,0,542,0,0,137,0,0,778,0,0,7866,0,0,6081,6,56516,"FO2","CC" 14,25,5,5,9,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"WASTE HT",11806,"0M",1294,,,95,667,6409,0,33,225,0,713,7903,0,38860,226425,0,32080,282829,0,30410,271547,0,30355,268417,0,22281,199679,0,16911,152536,0,13731,126250,0,649,6336,0,0,0,0,6081,6,56516,"NG","CC" 14,25,5,6,2,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"LIGHT OIL",11806,"0M",1294,,,95,16765,34499,275954,17076,35625,171066,1732,3145,164811,15194,31318,130811,4458,10049,117055,3259,6474,203614,7129,14689,223923,5719,12097,199458,1427,2966,193410,406,852,191674,2974,6318,192851,24527,50346,140778,6081,6,56516,"FO2","CT" 14,25,5,6,9,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"NAT GAS",11806,"0M",1294,,,95,2298,22081,0,33,225,0,7123,78947,0,38860,226425,0,85133,750563,0,75927,677993,0,74156,655728,0,57044,511219,0,44278,399380,0,38588,354794,0,2475,24166,0,0,0,0,6081,6,56516,"NG","CT" 14,25,5,4,2,668,10,"PEABODY (CITY OF)","WATERS RIVR",0,"LIGHT OIL",14605,"0M",1294,,,95,4,11,7009,461,990,6019,3,13,6006,114,218,5789,218,411,5378,259,572,4806,1447,3081,5724,79,204,5787,0,0,5770,0,0,5770,0,0,5770,751,1304,4214,1678,6,52270,"FO2","GT" 14,25,5,4,9,668,10,"PEABODY (CITY OF)","WATERS RIVR",0,"NAT GAS",14605,"0M",1294,,,95,71,948,0,818,8676,0,0,0,0,298,3898,0,500,6079,0,1161,14052,0,735,10563,0,2810,34245,0,871,10971,0,16,244,0,0,0,0,136,1612,0,1678,6,52270,"NG","GT" 14,25,5,3,2,695,1,"SHREWSBURY (CITY OF)","SHREWSBURY",0,"LIGHT OIL",17127,"0A",1294,,,95,-48,53,1717,-20,96,1621,-72,0,1621,-59,0,1621,-27,43,1577,28,133,1444,206,450,994,393,793,1630,-12,58,1571,-52,4,1568,-66,0,1568,5,146,1421,6125,6,52653,"FO2","IC" 14,25,5,2,3,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"HEAVY OIL",18488,"0M",1294,,,95,707,1487,45484,117,274,41056,124,1171,40232,227,881,38944,154,338,18232,1782,3821,13122,1997,4404,13146,1671,3714,26632,1017,1981,30701,285,1042,41468,209,665,43572,1269,2308,3691,1682,6,52885,"FO6","ST" 14,25,5,5,3,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"HEAVY OIL",18488,"0M",1294,,,95,2588,4259,0,3074,4987,0,7,71,0,264,1016,0,10569,21610,0,5376,8750,0,7132,10296,0,7761,11325,0,6430,8473,0,269,1218,0,135,435,0,7563,7563,0,1682,6,52885,"FO6","CC" 14,25,5,5,9,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"NAT GAS",18488,"0M",1294,,,95,0,0,0,88,2162,0,0,0,0,0,7,0,70,898,0,11828,118101,0,7953,72245,0,11517,102477,0,3409,38796,0,275,3743,0,0,0,0,0,0,0,1682,6,52885,"NG","CC" 14,25,5,6,2,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"LIGHT OIL",18488,"0M",1294,,,95,600,1721,500,1175,3321,414,0,10,405,0,0,405,23,155,250,230,719,0,424,1426,393,75,247,983,20,69,920,0,0,922,172,601,798,1596,4611,881,1682,6,52885,"FO2","CT" 14,25,5,6,3,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"HEAVY OIL",18488,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1682,6,52885,"FO6","CT" 14,25,5,6,9,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"NAT GAS",18488,"0M",1294,,,95,215,3547,0,0,0,0,0,0,0,9,220,0,91,2523,0,3269,55134,0,3573,59309,0,4974,79500,0,4776,58796,0,188,2751,0,2,41,0,0,0,0,1682,6,52885,"NG","CT" 15,44,1,3,2,59,1,"BLOCK ISLAND POWER CO","BLOCK ISL",0,"LIGHT OIL",1857,"0A",1294,,,95,640,929,1894,560,757,1368,454,801,1953,666,926,2412,871,1183,2384,728,1492,1815,1748,2173,1258,1686,2317,1251,852,1532,1104,890,1214,1044,683,904,1044,537,1042,1378,6567,6,50270,"FO2","IC" 15,44,1,2,3,60,5,"NEW ENGLAND POWER CO","MANCHSTR ST",0,"HEAVY OIL",13433,"0M",1294,,90,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6954,6984,12805,21121,8031,15471,21089,11950,17787,9381,10642,17134,20900,3236,6,52007,"FO6","ST" 15,44,1,2,6,60,5,"NEW ENGLAND POWER CO","MANCHSTR ST",0,"BIT COAL",13433,"0M",1294,,90,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3236,6,52007,"BIT","ST" 15,44,1,2,9,60,5,"NEW ENGLAND POWER CO","MANCHSTR ST",0,"NAT GAS",13433,"0M",1294,,90,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,6790,0,5496,108488,0,22180,283931,0,57696,544903,0,43911,426261,0,200212,1571059,0,273062,2060878,0,3236,6,52007,"NG","ST" 15,44,1,3,2,71,5,"NEWPORT ELECTRIC CORP","ELDRED",0,"LIGHT OIL",13549,"0A",1294,,,95,0,0,912,146,241,919,0,0,916,14,24,893,280,476,872,38,285,806,254,445,603,431,759,765,53,97,884,0,0,884,30,55,818,186,311,942,3240,6,52046,"FO2","IC" 15,44,1,3,2,71,15,"NEWPORT ELECTRIC CORP","JEPSON",0,"LIGHT OIL",13549,"0A",1294,,,95,10,19,1047,104,179,864,0,0,1112,13,24,1094,58,103,998,35,303,926,228,421,966,339,620,1037,31,56,977,0,0,977,0,0,977,162,273,920,3241,6,52046,"FO2","IC" 15,44,5,1,,600,1,"PROVIDENCE (CITY OF)","PROVIDENCE",0,,15440,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3245,6,52404,"WAT","HY" 16,9,1,1,,21,1,"GILMAN BROTHERS CO","GILMAN",0,,6885,"0A",1294,"R",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,536,6,50309,"WAT","HY" 16,9,1,1,,37,5,"CONNECTICUT LGT & PWR CO","BULLS BRDGE",0,,4176,"0M",1294,,550,95,4542,0,0,3859,0,0,4535,0,0,4526,0,0,711,0,0,1545,0,0,596,0,0,576,0,0,83,0,0,3291,0,0,5258,0,0,4512,0,0,541,6,50651,"WAT","HY" 16,9,1,1,,37,15,"CONNECTICUT LGT & PWR CO","ROBERTSVLE",0,,4176,"0M",1294,,550,95,228,0,0,144,0,0,74,0,0,117,0,0,0,0,0,23,0,0,4,0,0,14,0,0,1,0,0,58,0,0,0,0,0,7,0,0,549,6,50651,"WAT","HY" 16,9,1,1,,37,20,"CONNECTICUT LGT & PWR CO","ROCKY RIVER",0,"C-PUMPSTG",4176,"0M",1294,,550,95,-532,573,0,-108,831,0,-5011,4942,0,-3890,3881,0,-2483,2464,0,-30,0,0,-50,160,0,-45,941,0,-34,0,0,-295,262,0,3242,0,0,3543,0,0,539,6,50651,"WAT","HY" 16,9,1,1,,37,25,"CONNECTICUT LGT & PWR CO","SCOTLAND DM",0,,4176,"0M",1294,,550,95,1196,0,0,762,0,0,1285,0,0,753,0,0,65,0,0,169,0,0,32,0,0,83,0,0,9,0,0,401,0,0,43,0,0,524,0,0,551,6,50651,"WAT","HY" 16,9,1,1,,37,28,"CONNECTICUT LGT & PWR CO","SHEPAUG",0,,4176,"0M",1294,,550,95,19987,0,0,8510,0,0,16746,0,0,8668,0,0,479,0,0,3113,0,0,1323,0,0,1665,0,0,561,0,0,4280,0,0,17593,0,0,9586,0,0,552,6,50651,"WAT","HY" 16,9,1,1,,37,30,"CONNECTICUT LGT & PWR CO","STEVENSON",0,,4176,"0M",1294,,550,95,14594,0,0,6873,0,0,12878,0,0,7022,0,0,5946,0,0,2333,0,0,1155,0,0,1565,0,0,585,0,0,7574,0,0,15018,0,0,7269,0,0,553,6,50651,"WAT","HY" 16,9,1,1,,37,33,"CONNECTICUT LGT & PWR CO","TAFTVILLE",0,,4176,"0M",1294,,550,95,1047,0,0,773,0,0,1181,0,0,662,0,0,0,0,0,286,0,0,106,0,0,168,0,0,58,0,0,376,0,0,802,0,0,539,0,0,554,6,50651,"WAT","HY" 16,9,1,1,,37,35,"CONNECTICUT LGT & PWR CO","TUNNEL",0,,4176,"0M",1294,,550,95,1344,0,0,790,0,0,1127,0,0,808,0,0,808,0,0,130,0,0,51,0,0,62,0,0,13,0,0,528,0,0,1238,0,0,756,0,0,557,6,50651,"WAT","HY" 16,9,1,4,2,37,35,"CONNECTICUT LGT & PWR CO","TUNNEL",0,"LIGHT OIL",4176,"0M",1294,,550,95,92,241,1121,148,413,1052,-10,0,1052,8,34,1017,-9,0,1017,174,492,1054,399,1075,1028,391,1123,1060,-10,0,1060,-9,0,1060,-8,0,1060,247,642,1013,557,6,50651,"FO2","GT" 16,9,1,4,2,37,37,"CONNECTICUT LGT & PWR CO","COS COB",0,"LIGHT OIL",4176,"0M",1294,,550,95,338,879,6366,1004,2550,5530,-6,0,6730,61,328,6402,100,252,6836,1043,2766,6164,1606,4183,6744,1574,4512,6417,89,372,6045,10,115,5931,-7,47,5884,478,1250,6205,542,6,50651,"FO2","GT" 16,9,1,2,2,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"LIGHT OIL",4176,"0M",1294,,550,95,4,7,607,26,48,738,10,19,719,8,14,705,6,12,693,5,10,683,12,21,662,5,10,652,35,67,586,12,21,564,10,19,545,126,250,652,544,6,50651,"FO2","ST" 16,9,1,2,3,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"HEAVY OIL",4176,"0M",1294,,550,95,1691,2896,140820,5317,8938,131882,6310,10503,160145,2309,3909,156236,1040,1748,154488,1026,1746,152742,366,624,152118,0,0,152118,0,0,152118,1119,1895,186866,0,0,223227,52715,95704,164704,544,6,50651,"FO6","ST" 16,9,1,2,9,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"NAT GAS",4176,"0M",1294,,550,95,139882,1480772,0,125833,1333372,0,140034,1484076,0,74718,805341,0,129292,1364215,0,113222,1209824,0,134347,1440396,0,141005,1520883,0,84240,919763,0,92690,988325,0,85651,910220,0,1027,11734,0,544,6,50651,"NG","ST" 16,9,1,4,2,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"LIGHT OIL",4176,"0M",1294,,550,95,-8,0,826,52,143,1016,-6,0,1016,11,41,975,15,50,924,93,252,873,213,464,899,323,840,1155,12,42,1113,14,46,864,-8,0,864,126,312,755,544,6,50651,"FO2","GT" 16,9,1,2,2,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"LIGHT OIL",4176,"0M",1294,,550,95,79,187,224,71,184,282,0,0,277,35,81,316,26,52,254,126,275,254,225,460,205,169,342,281,13,78,193,-9,27,344,11,35,57,248,530,404,546,6,50651,"FO2","ST" 16,9,1,2,3,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"HEAVY OIL",4176,"0M",1294,,550,95,19404,42123,179930,11903,28403,229734,496,984,267130,8852,18669,287361,73,131,287230,16090,31789,255441,33046,60820,194621,29759,54794,250449,448,2452,286041,-459,1261,284780,4782,14127,272628,50192,96782,219079,546,6,50651,"FO6","ST" 16,9,1,2,9,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"NAT GAS",4176,"0M",1294,,550,95,2644,35575,0,1337,19886,0,14239,177907,0,15760,209674,0,26332,300080,0,15321,191070,0,33080,384304,0,29657,341116,0,660,22744,0,-410,7132,0,948,17617,0,2622,31910,0,546,6,50651,"NG","ST" 16,9,1,3,2,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"LIGHT OIL",4176,"0M",1294,,550,95,5,11,429,51,91,429,3,5,429,21,47,429,5,10,429,32,60,429,47,88,429,44,82,429,5,10,429,0,0,429,7,15,429,14,27,429,546,6,50651,"FO2","IC" 16,9,1,2,2,37,46,"CONNECTICUT LGT & PWR CO","NORWALK HAR",0,"LIGHT OIL",4176,"0M",1294,,550,95,1942,3751,1166,1049,1831,1166,1411,2570,1166,801,1409,746,830,1566,1275,1306,2393,1275,1212,2164,1208,1005,1793,1129,448,996,1090,743,1549,1201,1863,3623,816,1573,2830,1073,548,6,50651,"FO2","ST" 16,9,1,2,3,37,46,"CONNECTICUT LGT & PWR CO","NORWALK HAR",0,"HEAVY OIL",4176,"0M",1294,,550,95,61485,109340,281515,116317,186438,251428,53269,89422,277523,112195,177490,244461,49615,86635,387526,72024,117143,423659,87276,142042,395624,69104,110519,365065,12764,26032,444868,12966,24423,458286,56112,97835,437824,98414,160154,343905,548,6,50651,"FO6","ST" 16,9,1,4,2,37,46,"CONNECTICUT LGT & PWR CO","NORWALK HAR",0,"LIGHT OIL",4176,"0M",1294,"R",550,95,0,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,548,6,50651,"FO2","GT" 16,9,1,1,,37,60,"CONNECTICUT LGT & PWR CO","BANTAM",0,,4176,"0M",1294,,550,95,166,0,0,122,0,0,177,0,0,99,0,0,0,0,0,24,0,0,2,0,0,9,0,0,0,0,0,66,0,0,182,0,0,126,0,0,6457,6,50651,"WAT","HY" 16,9,1,1,,37,65,"CONNECTICUT LGT & PWR CO","FLS VILLAGE",0,,4176,"0M",1294,,550,95,6485,0,0,3067,0,0,6148,0,0,4269,0,0,57,0,0,1043,0,0,359,0,0,386,0,0,86,0,0,3283,0,0,6134,0,0,3241,0,0,560,6,50651,"WAT","HY" 16,9,1,4,2,37,70,"CONNECTICUT LGT & PWR CO","FRANKLIN DR",0,"LIGHT OIL",4176,"0M",1294,,550,95,87,251,1073,112,303,770,-21,0,770,6,41,429,9,45,1229,156,508,1033,386,937,931,385,1480,880,-11,0,808,-12,0,808,-14,0,0,109,306,1000,561,6,50651,"FO2","GT" 16,9,1,2,2,37,75,"CONNECTICUT LGT & PWR CO","MIDDLETOWN",0,"LIGHT OIL",4176,"0M",1294,,550,95,52,116,72,106,200,205,37,72,134,69,119,181,93,171,177,62,115,62,142,274,121,143,283,195,159,331,184,25,61,123,89,174,116,58,124,159,562,6,50651,"FO2","ST" 16,9,1,2,3,37,75,"CONNECTICUT LGT & PWR CO","MIDDLETOWN",0,"HEAVY OIL",4176,"0M",1294,,550,95,28156,57773,619646,82338,144562,470965,28954,52136,494722,112799,180932,367774,91771,154447,321716,103385,178821,285273,180564,315539,192342,120265,219668,308678,14240,27382,395204,9172,20697,432521,29631,53865,465010,116423,197687,379501,562,6,50651,"FO6","ST" 16,9,1,4,2,37,75,"CONNECTICUT LGT & PWR CO","MIDDLETOWN",0,"LIGHT OIL",4176,"0M",1294,,550,95,0,0,986,60,155,998,2,12,986,0,0,986,18,56,1096,133,235,803,220,518,962,326,864,969,6,21,948,0,0,946,0,0,936,0,0,936,562,6,50651,"FO2","GT" 16,9,1,2,"C",37,80,"CONNECTICUT LGT & PWR CO","S MEADOW",0,"REFUSE",4176,"0M",1294,,550,95,36668,0,0,31584,0,0,30750,0,0,36558,0,0,4988,0,0,38064,0,0,35273,0,0,35840,0,0,37803,0,0,39379,0,0,36583,0,0,40236,0,0,563,6,50651,"GEO","ST" 16,9,1,4,2,37,80,"CONNECTICUT LGT & PWR CO","S MEADOW",0,"LIGHT OIL",4176,"0M",1294,,550,95,547,1286,33605,2263,5797,27807,-4,195,27613,257,794,4952,465,1373,43574,2527,6621,35953,4081,8784,28189,3486,11650,34410,234,1143,29931,-49,0,29931,56,271,29660,2479,6072,23588,563,6,50651,"FO2","GT" 16,9,1,4,2,37,85,"CONNECTICUT LGT & PWR CO","TORRINGTN T",0,"LIGHT OIL",4176,"0M",1294,,550,95,80,183,802,-19,0,802,9,49,753,4,24,729,-6,0,1062,163,373,867,4081,6864,28189,583,1059,947,4,16,931,-7,0,931,-8,0,931,173,446,1006,565,6,50651,"FO2","GT" 16,9,1,4,2,37,90,"CONNECTICUT LGT & PWR CO","BRANFORD",0,"LIGHT OIL",4176,"0M",1294,,550,95,-23,0,993,-11,0,993,-12,0,983,-9,0,993,-12,0,993,-15,0,963,303,888,1170,580,1248,981,112,115,1073,-7,12,1061,12,62,999,103,312,1042,540,6,50651,"FO2","GT" 16,9,1,2,1,45,1,"CONN YANKEE ATOMIC PWR CO","HADDAM NECK",0,"NUCLEAR",4187,"0M",1294,,551,95,349804,0,0,-2724,0,0,-2714,0,0,80321,0,0,411060,0,0,385019,0,0,346822,0,0,397229,0,0,404771,0,0,427136,0,0,421633,0,0,435253,0,0,558,6,50652,"UR","ST" 16,9,1,1,,70,1,"FARMINGTON RIVER POWER CO","RAINBOW",0,,6207,"0A",1294,,,95,4465,0,0,2602,0,0,3654,0,0,2574,0,0,1712,0,0,1108,0,0,787,0,0,842,0,0,700,0,0,2530,0,0,4222,0,0,2756,0,0,559,6,50970,"WAT","HY" 16,9,1,2,1,85,1,"NORTHEAST NUCL ENERGY CO","MILLSTONE",0,"NUCLEAR",21687,"0M",1294,,553,95,474794,0,0,424364,0,0,479164,0,0,452923,0,0,470915,0,0,397551,0,0,307242,0,0,369216,0,0,459416,0,0,478184,0,0,46176,0,0,-2630,0,0,566,6,50005,"UR","ST" 16,9,1,2,1,85,2,"NORTHEAST NUCL ENERGY CO","MILLSTONE",0,"NUCLEAR",21687,"0M",1294,,553,95,-2968,0,0,-3117,0,0,-2841,0,0,12840,0,0,0,0,0,0,0,0,-8427,0,0,340333,0,0,625348,0,0,645987,0,0,618792,0,0,511064,0,0,566,6,50005,"UR","ST" 16,9,1,2,1,85,3,"NORTHEAST NUCL ENERGY CO","MILLSTONE",0,"NUCLEAR",21687,"0M",1294,,553,95,853882,0,0,758672,0,0,851613,0,0,328284,0,0,0,0,0,594786,0,0,853005,0,0,844847,0,0,822134,0,0,852985,0,0,817800,0,0,422956,0,0,566,6,50005,"UR","ST" 16,9,1,2,2,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"LIGHT OIL",19497,"0M",1294,,,95,289,498,533,83,144,555,103,183,538,278,575,297,94,164,466,159,276,523,127,224,632,239,436,363,60,105,591,207,368,557,52,92,465,58,101,530,568,6,53003,"FO2","ST" 16,9,1,2,3,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"HEAVY OIL",19497,"0M",1294,,,95,12678,20036,157706,31465,49414,142873,1716,2749,140124,28015,51807,143380,11615,18496,124884,34707,55499,150609,43253,69685,122107,18699,30642,149294,6814,10677,163242,4908,7842,155400,4195,6665,148735,54634,86347,0,568,6,53003,"FO6","ST" 16,9,1,2,6,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"BIT COAL",19497,"0M",1294,,,95,193441,73716,182983,223214,85285,166858,221070,86802,148636,4755,2176,201542,224862,86475,170775,217578,84500,168741,225684,88542,121774,166492,67303,123827,199715,77070,157924,143992,56780,199095,198867,77375,176894,249682,95223,163986,568,6,53003,"BIT","ST" 16,9,1,4,2,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"LIGHT OIL",19497,"0M",1294,,,95,4,8,549,151,259,469,0,0,647,5,12,635,10,18,617,12,22,595,145,256,696,308,560,493,63,111,560,0,0,560,9,16,545,75,130,594,568,6,53003,"FO2","GT" 16,9,1,2,2,159,5,"UNITED ILLUMINATING CO","ENGLISH",0,"LIGHT OIL",19497,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,569,6,53003,"FO2","ST" 16,9,1,2,3,159,5,"UNITED ILLUMINATING CO","ENGLISH",0,"HEAVY OIL",19497,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,569,6,53003,"FO6","ST" 16,9,1,2,2,159,12,"UNITED ILLUMINATING CO","N HAVEN HBR",0,"LIGHT OIL",19497,"0M",1294,,,95,876,1540,484,437,731,468,424,737,445,327,564,583,511,892,406,254,441,667,361,632,570,401,702,762,359,651,646,23,502,680,959,1741,546,779,1314,482,6156,6,53003,"FO2","ST" 16,9,1,2,3,159,12,"UNITED ILLUMINATING CO","N HAVEN HBR",0,"HEAVY OIL",19497,"0M",1294,,,95,104071,166097,286634,171042,260046,151260,95848,151028,241794,147390,227183,379543,69013,110799,306351,74009,117219,286218,97251,153426,333078,88533,139665,374595,39346,64393,310202,163,3184,307018,72476,120773,186245,162959,252660,0,6156,6,53003,"FO6","ST" 16,9,1,2,9,159,12,"UNITED ILLUMINATING CO","N HAVEN HBR",0,"NAT GAS",19497,"0M",1294,,,95,0,0,0,0,0,0,31250,307224,0,64504,630374,0,76077,749979,0,81590,800742,0,99404,985733,0,49501,489902,0,13044,134068,0,34,4180,0,0,0,0,0,0,0,6156,6,53003,"NG","ST" 16,9,5,1,,556,5,"NORWICH (CITY OF)","SECOND ST",0,,13831,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,174,0,0,101,0,0,67,0,0,17,0,0,180,0,0,272,0,0,324,0,0,580,6,52123,"WAT","HY" 16,9,5,1,,556,10,"NORWICH (CITY OF)","OCCUM",0,,13831,"0A",1294,,,95,516,0,0,356,0,0,529,0,0,370,0,0,225,0,0,257,0,0,63,0,0,95,0,0,42,0,0,215,0,0,420,0,0,292,0,0,582,6,52123,"WAT","HY" 16,9,5,1,,556,13,"NORWICH (CITY OF)","TENTH ST",0,,13831,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,83,0,0,0,0,0,113,0,0,54,0,0,255,0,0,534,0,0,636,0,0,583,6,52123,"WAT","HY" 16,9,5,4,2,556,20,"NORWICH (CITY OF)","N MAIN ST",0,"LIGHT OIL",13831,"0A",1294,,,95,0,0,1935,53,168,1767,0,0,1767,0,0,1767,23,56,1711,62,161,1550,402,1007,1693,531,1325,1518,0,0,1518,0,0,1518,0,0,1518,117,296,2388,581,6,52123,"FO2","GT" 16,9,5,3,2,560,1,"SOUTH NORWALK (CITY OF)","SO NORWALK",0,"LIGHT OIL",17569,"0A",1294,,,95,50,90,1114,84,147,1614,27,49,1523,27,45,1455,71,123,1331,70,125,1235,242,444,819,209,351,1604,20,34,1570,2,4,1736,9,13,1671,98,158,1418,6598,6,52704,"FO2","IC" 16,9,5,2,3,567,1,"WALLINGFORD (CITY OF)","PIERCE",0,"HEAVY OIL",20038,"0A",1294,,,95,0,15,1540,368,1067,2318,0,0,2318,0,0,2318,0,0,2318,0,0,2318,0,0,2318,0,0,2318,146,445,1873,0,0,1873,0,0,1873,0,0,1873,6635,6,53175,"FO6","ST" 21,36,1,1,,35,10,"CENTRAL HUDSON GAS & ELEC","DASHVILLE",0,,3249,"0M",1294,,,95,2381,0,0,502,0,0,1130,0,0,814,0,0,844,0,0,273,0,0,156,0,0,52,0,0,6,0,0,1173,0,0,1735,0,0,901,0,0,2481,6,50484,"WAT","HY" 21,36,1,1,,35,18,"CENTRAL HUDSON GAS & ELEC","NEVERSINK",0,,3249,"0M",1294,,,95,4408,0,0,4221,0,0,4645,0,0,2716,0,0,2618,0,0,2849,0,0,10968,0,0,9289,0,0,3298,0,0,2724,0,0,2482,0,0,4970,0,0,2483,6,50484,"WAT","HY" 21,36,1,1,,35,20,"CENTRAL HUDSON GAS & ELEC","STURGEON PL",0,,3249,"0M",1294,,,95,9300,0,0,4140,0,0,8251,0,0,4665,0,0,3127,0,0,1123,0,0,872,0,0,359,0,0,111,0,0,5834,0,0,7954,0,0,3663,0,0,2486,6,50484,"WAT","HY" 21,36,1,2,3,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"HEAVY OIL",3249,"0M",1294,,,95,0,0,10567,2887,4585,13091,0,0,13091,0,0,13091,377,619,12472,1176,2123,10349,198,406,9943,0,0,9943,0,0,9943,0,0,9943,16,30,9913,0,0,9913,2480,6,50484,"FO6","ST" 21,36,1,2,6,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"BIT COAL",3249,"0M",1294,,,95,180547,67912,176943,208851,77841,149786,144579,54893,173619,180437,67955,164986,58267,23110,161831,149627,57630,163884,131893,51114,152154,127793,49654,170960,144488,55872,134561,60315,24424,150152,137406,60589,138420,208309,77898,129136,2480,6,50484,"BIT","ST" 21,36,1,2,9,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"NAT GAS",3249,"0M",1294,,,95,12788,136338,0,5348,58875,0,52133,554622,0,1003,12881,0,26410,269381,0,9355,110458,0,50047,563362,0,64005,727957,0,42268,475832,0,72329,806049,0,21208,238996,0,526,5007,0,2480,6,50484,"NG","ST" 21,36,1,3,2,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"LIGHT OIL",3249,"0M",1294,,,95,38,70,119,10,15,278,29,38,240,10,9,231,5,9,222,30,55,167,29,60,281,48,81,200,48,99,274,48,83,191,38,76,289,9,16,273,2480,6,50484,"FO2","IC" 21,36,1,4,2,35,35,"CENTRAL HUDSON GAS & ELEC","SOUTH CAIRO",0,"LIGHT OIL",3249,"0M",1294,,,95,74,178,2486,0,0,2486,0,0,2486,0,0,2486,13,31,2455,198,577,1878,16,34,1844,70,197,1647,0,0,2719,0,0,2719,39,93,2626,18,49,2577,2485,6,50484,"FO2","GT" 21,36,1,4,2,35,40,"CENTRAL HUDSON GAS & ELEC","W COXSACKIE",0,"LIGHT OIL",3249,"0M",1294,,,95,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,2487,6,50484,"FO2","GT" 21,36,1,4,9,35,40,"CENTRAL HUDSON GAS & ELEC","W COXSACKIE",0,"NAT GAS",3249,"0M",1294,,,95,90,1181,0,32,427,0,0,0,0,45,632,0,59,962,0,631,9351,0,109,1557,0,530,7243,0,0,0,0,52,789,0,180,2430,0,69,1043,0,2487,6,50484,"NG","GT" 21,36,1,2,2,35,45,"CENTRAL HUDSON GAS & ELEC","ROSETON JO",0,"LIGHT OIL",3249,"0M",1294,,,95,1744,3069,2289,782,1361,3014,1071,2036,2369,0,0,2542,0,0,2542,0,0,2542,0,0,2542,0,0,2542,0,0,2542,0,17,2525,654,2512,1229,581,1004,2137,8006,6,50484,"FO2","ST" 21,36,1,2,3,35,45,"CENTRAL HUDSON GAS & ELEC","ROSETON JO",0,"HEAVY OIL",3249,"0M",1294,,,95,49649,80148,781308,157108,249990,495225,13890,23984,478029,0,0,478029,0,0,478029,0,0,604069,0,0,604069,0,0,604069,0,0,604069,0,0,589640,1356,4755,599314,189513,299562,451927,8006,6,50484,"FO6","ST" 21,36,1,2,9,35,45,"CENTRAL HUDSON GAS & ELEC","ROSETON JO",0,"NAT GAS",3249,"0M",1294,,,95,33526,336575,0,69660,692555,0,24026,260204,0,0,0,0,177930,1880760,0,186946,1950511,0,310122,3310810,0,247281,2627847,0,0,0,0,0,0,0,2849,61824,0,7068,69278,0,8006,6,50484,"NG","ST" 21,36,1,1,,35,50,"CENTRAL HUDSON GAS & ELEC","HIGH FALLS",0,,3249,"0M",1294,,,95,1184,0,0,92,0,0,1122,0,0,69,0,0,143,0,0,23,0,0,26,0,0,0,0,0,0,0,0,340,0,0,1057,0,0,170,0,0,579,6,50484,"WAT","HY" 21,36,1,1,,37,5,"CENTRAL VT PUB SERV CORP","CARVERS FLS",0,,3292,"0A",1294,,350,95,921,0,0,597,0,0,1182,0,0,1121,0,0,691,0,0,250,0,0,18,0,0,58,0,0,0,0,0,391,0,0,1196,0,0,502,0,0,6456,6,50503,"WAT","HY" 21,36,1,2,3,40,1,"CONSOL EDISON CO N Y INC","ARTHUR KILL",0,"HEAVY OIL",4226,"0M",1294,,,95,0,0,5711,0,0,5711,0,0,5711,0,0,5711,0,0,5711,0,0,5711,0,0,5711,7328,11940,18519,0,0,18519,0,0,18519,0,0,18513,0,0,18513,2490,6,50653,"FO6","ST" 21,36,1,2,9,40,1,"CONSOL EDISON CO N Y INC","ARTHUR KILL",0,"NAT GAS",4226,"0M",1294,,,95,-1408,17220,0,-1393,16473,0,-1276,5546,0,42517,495291,0,55216,582417,0,194234,1938196,0,301093,2957985,0,278373,2754690,0,147636,1480827,0,-1783,3561,0,-1398,5,0,-1433,5,0,2490,6,50653,"NG","ST" 21,36,1,4,2,40,1,"CONSOL EDISON CO N Y INC","ARTHUR KILL",0,"LIGHT OIL",4226,"0M",1294,,,95,13,44,1913,67,194,1823,0,0,1823,36,79,1744,215,635,1882,298,918,2083,566,1739,2154,371,1201,1884,0,0,0,0,0,0,0,0,0,0,0,0,2490,6,50653,"FO2","GT" 21,36,1,2,1,40,2,"CONSOL EDISON CO N Y INC","INDIAN PT",0,"NUCLEAR",4226,"0M",1294,,,95,562851,0,0,52711,0,0,-6970,0,0,-3790,0,0,-13730,0,0,241777,0,0,674078,0,0,678357,0,0,681364,0,0,661697,0,0,694091,0,0,636105,0,0,2497,6,50653,"UR","ST" 21,36,1,2,3,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"HEAVY OIL",4226,"0M",1294,,,95,44284,69523,204071,87234,136417,162405,51168,80603,150832,37361,58624,135192,36339,59441,192317,36196,59149,130130,89762,143025,106180,87335,138221,98117,59995,93814,117887,54037,87216,125085,64568,101738,117638,289554,461968,161157,8906,6,50653,"FO6","ST" 21,36,1,2,9,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"NAT GAS",4226,"0M",1294,,,95,270672,2666431,0,244705,2376465,0,354262,3528212,0,241575,2383868,0,275033,2732177,0,466083,4630924,0,417404,4132582,0,422777,4216725,0,331846,3235732,0,333120,3377003,0,267480,2653281,0,78615,787377,0,8906,6,50653,"NG","ST" 21,36,1,4,2,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"LIGHT OIL",4226,"0M",1294,,,95,1484,3523,70541,935,2176,68112,695,1314,66869,1270,3125,63744,1033,2385,61076,1517,3666,57410,5121,12698,44790,1655,4191,48468,794,1989,67296,758,1842,65454,651,1541,63965,4785,11328,52945,8906,6,50653,"FO2","GT" 21,36,1,4,9,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"NAT GAS",4226,"0M",1294,,,95,1238,16825,0,4723,63317,0,9436,102713,0,19761,279920,0,13199,175023,0,14602,203072,0,50641,721027,0,30754,443611,0,22755,324431,0,10683,150198,0,29807,410036,0,1300,17862,0,8906,6,50653,"NG","GT" 21,36,1,2,3,40,5,"CONSOL EDISON CO N Y INC","EAST RIVER",0,"HEAVY OIL",4226,"0M",1294,,,95,48411,100447,260377,52328,112594,251467,22577,46041,196293,14368,29471,111609,10915,20599,75923,9443,18148,129321,17347,33410,143239,17145,35799,154704,57,119,208820,391,883,155405,24581,53489,125358,26299,56899,135819,2493,6,50653,"FO6","ST" 21,36,1,2,9,40,5,"CONSOL EDISON CO N Y INC","EAST RIVER",0,"NAT GAS",4226,"0M",1294,,,95,22936,297706,0,16423,222129,0,33740,432005,0,32894,424765,0,83114,976015,0,52018,626673,0,74759,901280,0,43540,571392,0,62070,814818,0,38780,549257,0,26334,362630,0,4079,55677,0,2493,6,50653,"NG","ST" 21,36,1,2,3,40,8,"CONSOL EDISON CO N Y INC","59TH STREET",0,"HEAVY OIL",4226,"0M",1294,,,95,134,711,28019,-168,0,13932,-186,0,17029,-180,0,14663,-186,0,16921,-180,0,14962,-186,0,34238,-186,0,28013,0,0,18655,-186,0,24175,-180,0,21506,-186,0,15408,2503,6,50653,"FO6","ST" 21,36,1,2,9,40,8,"CONSOL EDISON CO N Y INC","59TH STREET",0,"NAT GAS",4226,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-180,0,0,0,0,0,0,0,0,0,0,0,2503,6,50653,"NG","ST" 21,36,1,4,2,40,8,"CONSOL EDISON CO N Y INC","59TH STREET",0,"LIGHT OIL",4226,"0M",1294,,,95,0,0,2421,12,43,2379,0,0,2379,34,63,2315,382,920,2169,220,532,2101,517,1422,2132,154,399,2018,0,0,2018,0,0,2018,0,0,2019,0,0,2019,2503,6,50653,"FO2","GT" 21,36,1,4,2,40,10,"CONSOL EDISON CO N Y INC","GOWANUS",0,"LIGHT OIL",4226,"0M",1294,,,95,3431,10187,54995,3032,8863,61517,3332,9885,51514,5596,16946,54888,9656,30399,58173,10867,35156,51183,35078,112111,54362,18095,69179,54055,9925,32320,51120,3062,9091,61678,11850,35551,63660,11082,31386,52408,2494,6,50653,"FO2","GT" 21,36,1,4,2,40,17,"CONSOL EDISON CO N Y INC","INDIAN PT",0,"LIGHT OIL",4226,"0M",1294,,,95,10,470,1357,110,334,1476,0,0,1438,10,26,1387,190,648,1553,120,502,1367,618,1994,1429,339,1276,1561,10,65,1518,10,49,1466,70,568,1361,10,79,1524,2497,6,50653,"FO2","GT" 21,36,1,2,3,40,18,"CONSOL EDISON CO N Y INC","HUDSON AVE",0,"HEAVY OIL",4226,"0M",1294,,,95,13942,16640,116475,22892,27677,121761,19571,25683,88715,5881,7513,112117,13579,17821,145862,8960,11221,121321,17004,23012,156902,16358,21789,184711,8488,11589,233738,9039,12876,207818,15377,22058,190563,21649,30797,210122,2496,6,50653,"FO6","ST" 21,36,1,4,2,40,18,"CONSOL EDISON CO N Y INC","HUDSON AVE",0,"LIGHT OIL",4226,"0M",1294,,,95,32,106,3790,262,520,3270,24,63,4088,0,0,4088,318,932,4131,366,1254,4363,1154,3982,3948,684,2253,4361,44,148,4212,7,28,4185,255,954,4157,0,0,4471,2496,6,50653,"FO2","GT" 21,36,1,4,2,40,23,"CONSOL EDISON CO N Y INC","NARROWS BAY",0,"LIGHT OIL",4226,"0M",1294,,,95,1815,5002,70995,2374,6488,64363,3121,8503,70742,4829,13085,57595,4696,13259,61188,7112,20641,70359,14360,43802,86922,0,0,86754,113,310,61193,358,1046,60146,2527,7040,53007,5977,17365,64411,2499,6,50653,"FO2","GT" 21,36,1,4,9,40,23,"CONSOL EDISON CO N Y INC","NARROWS BAY",0,"NAT GAS",4226,"0M",1294,,,95,160,2545,0,0,0,0,1437,23105,0,3151,50378,0,5478,91177,0,7841,132409,0,26727,472807,0,23321,410674,0,8725,137237,0,6684,112244,0,14121,266734,0,726,12168,0,2499,6,50653,"NG","GT" 21,36,1,2,3,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"HEAVY OIL",4226,"0M",1294,,,95,56562,96769,43835,156038,248776,28947,15866,27428,34677,22910,42845,42500,30055,54093,37926,31922,55970,39660,31596,55334,44269,54612,90412,42941,11656,19796,32055,4144,7555,26939,45172,77641,44297,97823,181018,43354,2500,6,50653,"FO6","ST" 21,36,1,2,9,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"NAT GAS",4226,"0M",1294,,,95,209768,2234824,0,193780,1928735,0,161992,1747544,0,161776,1895581,0,200509,2260799,0,241862,2659354,0,377330,4132582,0,492580,5112387,0,269868,2872681,0,121326,1378858,0,190022,2065045,0,34903,408143,0,2500,6,50653,"NG","ST" 21,36,1,4,2,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"LIGHT OIL",4226,"0M",1294,,,95,317,1144,40469,1114,3166,37304,412,1109,36195,1364,3752,32443,0,0,32613,292,765,31848,1020,2785,39004,707,2001,37003,43,116,38759,232,819,37940,91,256,37684,3105,8078,40525,2500,6,50653,"FO2","GT" 21,36,1,4,9,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"NAT GAS",4226,"0M",1294,,,95,699,14506,0,461,7543,0,1614,25061,0,3849,61087,0,2639,36379,0,6191,93115,0,11215,178768,0,7292,120354,0,2766,43431,0,1873,38571,0,2782,45521,0,533,8123,0,2500,6,50653,"NG","GT" 21,36,1,2,3,40,30,"CONSOL EDISON CO N Y INC","74TH STREET",0,"HEAVY OIL",4226,"0M",1294,,,95,4001,11849,37330,7337,16422,1428,4042,7539,1190,6302,7774,1190,11192,14181,1190,8567,12004,1190,7521,9483,1190,3846,5472,1365,3937,4892,1428,-949,0,1429,3253,6242,1429,3602,5677,1429,2504,6,50653,"FO6","ST" 21,36,1,4,2,40,30,"CONSOL EDISON CO N Y INC","74TH STREET",0,"LIGHT OIL",4226,"0M",1294,,,95,-13,0,1690,-11,0,2143,-12,0,2083,-12,0,1952,-3,12,1881,-12,0,1762,-12,24,1738,-13,0,1747,-12,0,1548,-12,0,1524,-12,0,1595,-12,0,2202,2504,6,50653,"FO2","GT" 21,36,1,2,3,40,40,"CONSOL EDISON CO N Y INC","WATERSIDE",0,"HEAVY OIL",4226,"0M",1294,,,95,3119,5797,0,25178,41438,0,1003,1798,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,146,266,0,2502,6,50653,"FO6","ST" 21,36,1,2,9,40,40,"CONSOL EDISON CO N Y INC","WATERSIDE",0,"NAT GAS",4226,"0M",1294,,,95,59934,697096,0,47441,490868,0,53623,603408,0,39082,449151,0,37250,448243,0,36423,288224,0,55999,633276,0,55829,627391,0,38346,480259,0,35286,396996,0,48220,540897,0,63071,723341,0,2502,6,50653,"NG","ST" 21,36,1,2,3,40,50,"CONSOL EDISON CO N Y INC","OIL STORAGE",0,"HEAVY OIL",4226,"0M",1294,,,95,0,0,2766499,0,0,2324286,0,0,2545579,0,0,2254272,0,0,1899927,0,0,1649376,0,0,1484314,0,0,1332860,0,0,1420463,0,0,1532278,0,0,1814997,0,0,1473629,8801,6,50653,"FO6","ST" 21,36,1,4,2,40,60,"CONSOL EDISON CO N Y INC","OIL STORAGE",0,"LIGHT OIL",4226,"0M",1294,,,95,0,0,204071,0,0,265070,0,0,259969,0,0,242953,0,0,247234,0,0,245330,0,0,259288,0,0,251578,0,0,241219,0,0,257945,0,0,250930,0,0,243796,8802,6,50653,"FO2","GT" 21,36,1,4,2,40,65,"CONSOL EDISON CO N Y INC","BUCHANAN",0,"LIGHT OIL",4226,"0M",1294,,,95,55,213,3746,295,599,4326,12,22,4481,20,42,4440,199,586,4211,634,1857,4497,979,2573,4452,907,2783,4475,35,172,4303,63,247,4282,398,1093,4230,56,191,4039,4233,6,50653,"FO2","GT" 21,36,1,1,,49,5,"HYDRO DEV GROUP INC","DEXTER",0,,9145,"0A",1294,,,95,2082,0,0,1260,0,0,2412,0,0,1860,0,0,1134,0,0,690,0,0,834,0,0,558,0,0,666,0,0,1998,0,0,2619,0,0,1908,0,0,2505,6,50785,"WAT","HY" 21,36,1,1,,49,10,"HYDRO DEV GROUP INC","PYRITES #1",0,,9145,"0A",1294,,,95,228,0,0,53,0,0,337,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2506,6,50785,"WAT","HY" 21,36,1,1,,49,12,"HYDRO DEV GROUP INC","PYRITES #2",0,,9145,"0A",1294,,,95,2658,0,0,1453,0,0,3335,0,0,2856,0,0,2370,0,0,1044,0,0,630,0,0,678,0,0,606,0,0,2458,0,0,3186,0,0,2166,0,0,7031,6,50785,"WAT","HY" 21,36,1,1,,49,15,"HYDRO DEV GROUP INC","HAILESBORO",0,,9145,"0A",1294,,,95,1037,0,0,706,0,0,1087,0,0,1097,0,0,854,0,0,509,0,0,415,0,0,624,0,0,389,0,0,982,0,0,1159,0,0,780,0,0,6573,6,50785,"WAT","HY" 21,36,1,1,,49,20,"HYDRO DEV GROUP INC","FOWLER",0,,9145,"0A",1294,,,95,426,0,0,394,0,0,515,0,0,491,0,0,515,0,0,316,0,0,245,0,0,349,0,0,250,0,0,398,0,0,507,0,0,434,0,0,6572,6,50785,"WAT","HY" 21,36,1,1,,49,25,"HYDRO DEV GROUP INC","#6 MILL",0,,9145,"0A",1294,,,95,471,0,0,407,0,0,463,0,0,491,0,0,394,0,0,231,0,0,201,0,0,313,0,0,208,0,0,384,0,0,494,0,0,499,0,0,453,6,50785,"WAT","HY" 21,36,1,1,,49,50,"HYDRO DEV GROUP INC","COPENHAGEN",0,,9145,"0A",1294,,,95,1176,0,0,560,0,0,1460,0,0,1532,0,0,460,0,0,108,0,0,360,0,0,112,0,0,312,0,0,1396,0,0,1884,0,0,924,0,0,742,6,50785,"WAT","HY" 21,36,1,1,,49,55,"HYDRO DEV GROUP INC","DIAMOND IS",0,,9145,"0A",1294,,,95,665,0,0,468,0,0,733,0,0,702,0,0,504,0,0,251,0,0,228,0,0,190,0,0,239,0,0,583,0,0,773,0,0,616,0,0,2553,6,50785,"WAT","HY" 21,36,1,1,,49,60,"HYDRO DEV GROUP INC","THERESA",0,,9145,"0A",1294,,,95,752,0,0,606,0,0,800,0,0,836,0,0,556,0,0,150,0,0,78,0,0,202,0,0,34,0,0,710,0,0,842,0,0,794,0,0,2618,6,50785,"WAT","HY" 21,36,1,1,,49,70,"HYDRO DEV GROUP INC","#3 MILL",0,,9145,"0A",1294,,,95,456,0,0,350,0,0,485,0,0,483,0,0,398,0,0,240,0,0,157,0,0,294,0,0,180,0,0,283,0,0,456,0,0,346,0,0,743,6,50785,"WAT","HY" 21,36,1,1,,49,75,"HYDRO DEV GROUP INC","GOODYEAR LK",0,,9145,"0A",1294,,,95,640,0,0,400,0,0,757,0,0,542,0,0,315,0,0,166,0,0,49,0,0,25,0,0,19,0,0,171,0,0,575,0,0,550,0,0,7358,6,50785,"WAT","HY" 21,36,1,3,2,59,1,"FISHERS IS ELEC CORP (THE","FISHERS ISL",0,"LIGHT OIL",6369,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6575,6,50989,"FO2","IC" 21,36,1,4,2,87,1,"LONG ISLAND LIGHTING CO","W BABYLON",0,"LIGHT OIL",11172,"0M",1294,,,95,-9,0,10978,184,398,10580,-10,0,10580,-8,0,10580,-10,0,10580,-10,0,10580,1589,3799,6781,1012,2525,9994,-8,0,9994,23,63,9931,12,52,9878,-6,0,9878,2521,6,51685,"FO2","GT" 21,36,1,2,2,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"LIGHT OIL",11172,"0M",1294,,,95,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,189,351,31,0,0,31,0,0,0,0,0,0,2511,6,51685,"FO2","ST" 21,36,1,2,3,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"HEAVY OIL",11172,"0M",1294,,,95,7679,13204,183912,19277,32691,151221,6888,12026,167809,7622,13054,154755,21364,35883,118872,5001,8521,110351,0,0,100351,0,0,150055,0,0,176621,0,0,176621,4499,7876,168745,30931,52133,130983,2511,6,51685,"FO6","ST" 21,36,1,2,9,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"NAT GAS",11172,"0M",1294,,,95,88641,923891,0,72376,743992,0,119516,1265049,0,108791,1129535,0,161464,1644681,0,176300,1817157,0,201713,2124759,0,207176,2182914,0,194067,2023621,0,176719,1855067,0,152642,1622397,0,111293,1143313,0,2511,6,51685,"NG","ST" 21,36,1,4,2,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"LIGHT OIL",11172,"0M",1294,,,95,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,89,272,21050,2511,6,51685,"FO2","GT" 21,36,1,4,9,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"NAT GAS",11172,"0M",1294,,,95,2584,48858,0,2455,39578,0,396,9580,0,7540,115964,0,15423,241318,0,13024,203027,0,13183,202506,0,13611,214090,0,2215,41056,0,3367,60239,0,3070,49795,0,1324,23100,0,2511,6,51685,"NG","GT" 21,36,1,2,3,87,5,"LONG ISLAND LIGHTING CO","FAR ROCKWAY",0,"HEAVY OIL",11172,"0M",1294,,,95,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,2513,6,51685,"FO6","ST" 21,36,1,2,9,87,5,"LONG ISLAND LIGHTING CO","FAR ROCKWAY",0,"NAT GAS",11172,"0M",1294,,,95,35652,370173,0,-382,0,0,37901,413154,0,47344,499677,0,39814,418408,0,43785,454694,0,44918,522402,0,46370,490439,0,46043,485717,0,32114,356625,0,40424,437203,0,48243,507731,0,2513,6,51685,"NG","ST" 21,36,1,2,3,87,15,"LONG ISLAND LIGHTING CO","GLENWOOD",0,"HEAVY OIL",11172,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2514,6,51685,"FO6","ST" 21,36,1,2,9,87,15,"LONG ISLAND LIGHTING CO","GLENWOOD",0,"NAT GAS",11172,"0M",1294,,,95,57152,656357,0,88875,989013,0,43090,513102,0,64609,758501,0,65972,764067,0,85437,987225,0,91585,1053103,0,91614,1044546,0,87436,984844,0,70615,831640,0,65930,771090,0,72860,814525,0,2514,6,51685,"NG","ST" 21,36,1,4,2,87,15,"LONG ISLAND LIGHTING CO","GLENWOOD",0,"LIGHT OIL",11172,"0M",1294,,,95,-13,0,28987,348,833,28155,-2,113,28042,-10,0,28042,-15,0,28042,308,112,27929,1020,3353,24576,1330,3635,20941,-16,0,20941,52,122,20819,-18,0,20787,-15,0,20787,2514,6,51685,"FO2","GT" 21,36,1,3,2,87,17,"LONG ISLAND LIGHTING CO","E HAMPTON",0,"LIGHT OIL",11172,"0M",1294,,,95,-6,0,971,33,69,902,-4,4,898,-6,0,898,-1,8,890,2,12,878,464,935,369,527,862,816,51,112,705,-6,0,705,-1,4,915,0,3,911,2512,6,51685,"FO2","IC" 21,36,1,4,2,87,17,"LONG ISLAND LIGHTING CO","E HAMPTON",0,"LIGHT OIL",11172,"0M",1294,,,95,-17,0,2876,-11,17,2859,-15,0,2859,-9,0,2859,-4,25,2834,34,116,2718,2330,5851,265,2246,5851,2259,76,212,2471,-10,0,2471,27,113,2789,-12,0,2789,2512,6,51685,"FO2","GT" 21,36,1,4,2,87,18,"LONG ISLAND LIGHTING CO","SOUTHOLD",0,"LIGHT OIL",11172,"0M",1294,,,95,-8,0,2716,-15,0,2716,-15,0,2716,-11,0,2716,-9,0,2716,14,79,2637,79,316,2534,39,174,2784,-8,0,2784,-8,0,2784,33,160,2624,-15,0,2624,2520,6,51685,"FO2","GT" 21,36,1,2,2,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"LIGHT OIL",11172,"0M",1294,,,95,393,703,2446,1919,3360,10568,787,1448,10918,244,438,10694,0,0,10694,1255,2346,10708,543,987,10787,859,1604,10653,1224,1286,10857,0,0,11070,42,78,10992,866,1558,10948,2516,6,51685,"FO2","ST" 21,36,1,2,3,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"HEAVY OIL",11172,"0M",1294,,,95,251839,410183,917940,419721,669714,545119,137170,230153,627264,93546,156459,751601,4614,7948,743653,138528,235371,730114,232571,387065,831393,198326,339587,780654,65679,111985,948390,0,0,1048629,13006,22156,1026473,263245,435054,787488,2516,6,51685,"FO6","ST" 21,36,1,2,9,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"NAT GAS",11172,"0M",1294,,,95,161173,1656185,0,109357,1099738,0,179917,1902183,0,179876,1858552,0,249772,2620522,0,277680,2980882,0,392501,4094975,0,395601,4243388,0,332956,3533654,0,339896,3613412,0,310631,3313635,0,259449,2673147,0,2516,6,51685,"NG","ST" 21,36,1,4,2,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"LIGHT OIL",11172,"0M",1294,,,95,-16,0,2030,-16,0,2030,11,87,1943,-13,0,1943,-12,0,1943,-8,15,1928,10,25,1904,24,175,1729,-2,17,1712,-7,0,0,-15,0,1290,-10,0,1506,2516,6,51685,"FO2","GT" 21,36,1,3,2,87,23,"LONG ISLAND LIGHTING CO","SHOREHAM",0,"LIGHT OIL",11172,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2518,6,51685,"FO2","IC" 21,36,1,4,2,87,23,"LONG ISLAND LIGHTING CO","SHOREHAM",0,"LIGHT OIL",11172,"0M",1294,,,95,-4,0,10375,81,259,11414,11,38,11377,-7,0,11377,340,528,10848,91,128,10720,441,1417,9303,551,846,15679,5,41,15638,18,32,15605,-4,0,15605,-7,3,15602,2518,6,51685,"FO2","GT" 21,36,1,2,2,87,24,"LONG ISLAND LIGHTING CO","P JEFFERSON",0,"LIGHT OIL",11172,"0M",1294,,,95,505,940,248,368,651,173,451,865,267,430,769,71,340,624,210,273,507,271,308,573,265,205,379,265,120,230,224,260,511,310,181,337,162,173,317,229,2517,6,51685,"FO2","ST" 21,36,1,2,3,87,24,"LONG ISLAND LIGHTING CO","P JEFFERSON",0,"HEAVY OIL",11172,"0M",1294,,,95,83231,142447,374658,116002,187180,292517,84682,149701,363973,88134,146337,217636,86246,147673,240914,86540,147162,367784,119762,202643,388397,116504,197519,283029,62653,110443,267311,37059,67418,404544,57551,98596,305948,73017,122780,291514,2517,6,51685,"FO6","ST" 21,36,1,4,2,87,24,"LONG ISLAND LIGHTING CO","P JEFFERSON",0,"LIGHT OIL",11172,"0M",1294,,,95,14,70,2055,36,150,1905,-16,0,1905,-11,0,1905,30,100,1805,15,79,1726,94,282,1444,49,175,2118,-8,0,2118,2,49,2069,-12,0,2069,-14,0,2069,2517,6,51685,"FO2","GT" 21,36,1,4,2,87,26,"LONG ISLAND LIGHTING CO","SOUTHAMPTON",0,"LIGHT OIL",11172,"0M",1294,,,95,-16,0,2575,22,137,2438,-17,0,2438,-9,0,2438,-4,9,2430,36,153,2277,200,649,2266,170,698,2628,-11,0,2628,-8,0,2628,-2,0,2628,-18,0,2628,2519,6,51685,"FO2","GT" 21,36,1,3,2,87,29,"LONG ISLAND LIGHTING CO","MONTAUK",0,"LIGHT OIL",11172,"0M",1294,,,95,-6,0,685,34,66,619,-6,0,619,-6,0,619,0,0,619,2,46,572,274,574,424,184,319,529,57,109,420,-6,0,420,0,23,611,-6,0,611,2515,6,51685,"FO2","IC" 21,36,1,4,2,87,30,"LONG ISLAND LIGHTING CO","HOLTSVILLE",0,"LIGHT OIL",11172,"0M",1294,,,95,3418,7966,65483,2730,6945,98989,1349,3183,95807,3573,8991,86815,1220,3009,83806,4957,12317,71489,13538,28073,71475,15481,41712,89159,785,2396,86763,-94,234,86529,427,1487,85042,2296,5778,79264,8007,6,51685,"FO2","GT" 21,36,1,4,2,87,35,"LONG ISLAND LIGHTING CO","BROOKHAVEN",0,"LIGHT OIL",11172,"0M",1294,,,95,2290,4982,38416,2652,6010,38901,226,279,38622,3165,6704,37310,6210,13571,28376,6235,12488,40846,9816,21210,30472,9736,19194,39142,-52,0,39142,113,688,40071,528,1470,40751,2660,5996,37572,7146,6,51685,"FO2","GT" 21,36,1,1,,100,1,"N Y STATE ELEC & GAS CORP","CADYVILLE",0,,13511,"0M",1294,,,95,2289,0,0,1760,0,0,2697,0,0,2249,0,0,2033,0,0,1277,0,0,1043,0,0,1271,0,0,873,0,0,1835,0,0,2411,0,0,1256,0,0,2522,6,52036,"WAT","HY" 21,36,1,1,,100,3,"N Y STATE ELEC & GAS CORP","MILL 'C'",0,,13511,"0M",1294,,,95,1082,0,0,1120,0,0,1325,0,0,1217,0,0,1424,0,0,918,2,0,782,0,0,1153,0,0,591,0,0,1982,0,0,2696,0,0,728,0,0,6486,6,52036,"WAT","HY" 21,36,1,1,,100,8,"N Y STATE ELEC & GAS CORP","HIGH FALLS",0,,13511,"0M",1294,,,95,8036,0,0,6467,0,0,9348,0,0,7548,0,0,6945,0,0,4111,0,0,3127,0,0,4402,0,0,2270,0,0,1885,0,0,8998,0,0,6023,0,0,2530,6,52036,"WAT","HY" 21,36,1,1,,100,9,"N Y STATE ELEC & GAS CORP","KENT FALLS",0,,13511,"0M",1294,,,95,4267,0,0,3614,0,0,5729,0,0,4500,0,0,4403,0,0,2459,0,0,1821,0,0,2011,0,0,1112,0,0,2429,0,0,0,0,0,2462,0,0,2532,6,52036,"WAT","HY" 21,36,1,1,,100,11,"N Y STATE ELEC & GAS CORP","KEUKA",0,,13511,"0M",1294,,,95,479,0,0,618,0,0,1104,0,0,424,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,246,0,0,368,0,0,87,0,0,2533,6,52036,"WAT","HY" 21,36,1,1,,100,18,"N Y STATE ELEC & GAS CORP","RAINBOW FLS",0,,13511,"0M",1294,,,95,844,0,0,484,0,0,1136,0,0,1424,0,0,2008,0,0,1044,0,0,972,0,0,828,0,0,572,0,0,920,0,0,1432,0,0,800,0,0,6526,6,52036,"WAT","HY" 21,36,1,1,,100,20,"N Y STATE ELEC & GAS CORP","SENECA FLS",0,,13511,"0M",1294,,,95,929,0,0,0,0,0,237,0,0,418,0,0,57,0,0,12,0,0,35,0,0,0,0,0,0,0,0,144,0,0,1097,0,0,1515,0,0,6525,6,52036,"WAT","HY" 21,36,1,1,,100,26,"N Y STATE ELEC & GAS CORP","WATERLOO",0,,13511,"0M",1294,,,95,218,0,0,0,0,0,91,0,0,167,0,0,47,0,0,38,0,0,63,0,0,15,0,0,0,0,0,28,0,0,273,0,0,435,0,0,2538,6,52036,"WAT","HY" 21,36,1,2,2,100,28,"N Y STATE ELEC & GAS CORP","GOUDEY",0,"LIGHT OIL",13511,"0M",1294,,,95,4,6,902,7,12,922,38,860,816,166,1093,889,115,412,787,23,40,755,14,25,726,19,34,1012,88,159,674,17,29,652,15,27,781,57,99,755,2526,6,52036,"FO2","ST" 21,36,1,2,6,100,28,"N Y STATE ELEC & GAS CORP","GOUDEY",0,"BIT COAL",13511,"0M",1294,,,95,49140,18404,38386,47957,17309,33487,38535,14154,31196,29944,11570,19706,47570,19243,17396,46082,17833,16951,48114,18609,8401,48907,19270,14458,47509,18547,11816,46734,17563,21803,47743,17962,29205,49938,18814,16951,2526,6,52036,"BIT","ST" 21,36,1,2,2,100,30,"N Y STATE ELEC & GAS CORP","GREENIDGE",0,"LIGHT OIL",13511,"0M",1294,,,95,49,84,1482,143,249,1673,49,85,1663,69,118,1503,97,194,1276,101,268,963,140,255,1024,312,565,929,134,232,1184,28,65,1082,27,47,1003,135,254,963,2527,6,52036,"FO2","ST" 21,36,1,2,6,100,30,"N Y STATE ELEC & GAS CORP","GREENIDGE",0,"BIT COAL",13511,"0M",1294,,,95,59064,22369,46139,64896,24628,34337,56536,21560,33567,61588,23327,27754,60141,23147,16512,44718,17812,44179,56844,23346,35975,63282,25535,39483,33115,12718,51031,52461,19935,48906,51733,19814,48981,79778,32545,44179,2527,6,52036,"BIT","ST" 21,36,1,2,6,100,32,"N Y STATE ELEC & GAS CORP","HICKLING",0,"BIT COAL",13511,"0M",1294,,,95,29937,25353,59845,37278,28317,42388,31428,24287,26231,36848,29367,9739,25540,20965,7417,26619,21486,11619,19927,15033,13417,19292,17747,12211,16109,14260,19398,15799,13125,25995,15584,11444,38506,16518,14020,11619,2529,6,52036,"BIT","ST" 21,36,1,2,"B",100,34,"N Y STATE ELEC & GAS CORP","JENNISON",0,"WOOD CHIP",13511,"0M",1294,,,95,1937,0,0,2506,0,0,1706,0,0,446,0,0,510,0,0,631,0,0,0,0,0,966,0,0,1443,0,0,1357,0,0,215,0,0,517,0,0,2531,6,52036,"WOD","ST" 21,36,1,2,6,100,34,"N Y STATE ELEC & GAS CORP","JENNISON",0,"BIT COAL",13511,"0M",1294,,,95,18813,12027,31771,27918,18374,13300,18598,13682,9272,12405,9568,1166,10568,8258,1035,8066,6810,737,10639,7167,2889,9803,7780,5121,7664,6371,9926,7104,5362,9933,11173,7198,8195,18436,12369,737,2531,6,52036,"BIT","ST" 21,36,1,2,2,100,35,"N Y STATE ELEC & GAS CORP","MILLIKEN",0,"LIGHT OIL",13511,"0M",1294,,,95,206,337,1812,188,320,1856,273,465,1873,142,244,1879,53,94,1978,249,452,1841,116,209,1815,158,288,1863,211,385,1831,258,462,1670,59,105,1738,26,47,1841,2535,6,52036,"FO2","ST" 21,36,1,2,6,100,35,"N Y STATE ELEC & GAS CORP","MILLIKEN",0,"BIT COAL",13511,"0M",1294,,,95,192258,68792,79141,180255,67185,80127,183681,68408,89806,153861,58397,69230,98273,37927,98714,132074,52498,118633,185234,73165,90889,184163,73756,101056,131693,53020,97110,185372,73940,102961,167135,65625,99048,191784,76075,118633,2535,6,52036,"BIT","ST" 21,36,1,3,2,100,35,"N Y STATE ELEC & GAS CORP","MILLIKEN",0,"LIGHT OIL",13511,"0M",1294,,,95,0,1,0,20,38,0,3,84,0,104,107,0,54,144,0,1,38,0,-64,39,0,10,20,0,0,1,0,12,39,0,11,44,0,17,32,0,2535,6,52036,"FO2","IC" 21,36,1,3,2,100,40,"N Y STATE ELEC & GAS CORP","HARRIS LAKE",0,"LIGHT OIL",13511,"0M",1294,,,95,-11,0,405,0,0,349,0,0,0,-4,0,313,0,0,260,0,0,242,64,122,269,12,25,244,2,0,436,0,0,357,0,0,290,-13,0,242,2528,6,52036,"FO2","IC" 21,36,1,1,,100,43,"N Y STATE ELEC & GAS CORP","MECHANICVLE",0,,13511,"0M",1294,,,95,9072,0,0,6867,0,0,9702,0,0,6867,0,0,4347,0,0,2961,0,0,1134,0,0,2331,0,0,1953,0,0,5670,0,0,12663,0,0,8946,0,0,625,6,52036,"WAT","HY" 21,36,1,2,2,100,50,"N Y STATE ELEC & GAS CORP","KINTIGH",0,"LIGHT OIL",13511,"0M",1294,,,95,219,378,4169,770,1322,2904,474,811,3335,953,1656,3113,165,283,2839,314,543,2288,879,1523,3426,394,685,2738,627,1087,4124,1183,2162,2118,626,1094,4657,509,873,2288,6082,6,52036,"FO2","ST" 21,36,1,2,6,100,50,"N Y STATE ELEC & GAS CORP","KINTIGH",0,"BIT COAL",13511,"0M",1294,,,95,429496,166336,132032,393694,148405,142690,419527,160683,178911,416807,160659,178855,418612,159916,174957,381565,146069,162034,348178,133246,124345,413546,158604,73112,376458,141570,75380,181079,73253,130474,363691,142233,133771,423315,159637,162034,6082,6,52036,"BIT","ST" 21,36,1,2,1,105,1,"NIAGARA MOHAWK POWER CORP","NINE MILE P",0,"NUCLEAR",13573,"0M",1294,,190,95,368414,0,0,58742,0,0,0,0,0,332154,0,0,459193,0,0,439571,0,0,434942,0,0,437261,0,0,420930,0,0,452099,0,0,441551,0,0,459844,0,0,2589,6,52053,"UR","ST" 21,36,1,2,1,105,2,"NIAGARA MOHAWK POWER CORP","NINE MILE P",0,"NUCLEAR",13573,"0M",1294,,190,95,694823,0,0,533574,0,0,742888,0,0,149501,0,0,0,0,0,575400,0,0,821880,0,0,766368,0,0,443850,0,0,845303,0,0,824493,0,0,841323,0,0,2589,6,52053,"UR","ST" 21,36,1,1,,105,5,"NIAGARA MOHAWK POWER CORP","ALLENS FLS",0,,13573,"0M",1294,,190,95,2087,0,0,1758,0,0,2479,0,0,2662,0,0,2344,0,0,1289,0,0,1268,0,0,1240,0,0,1099,0,0,2308,0,0,2305,0,0,2092,0,0,2540,6,52053,"WAT","HY" 21,36,1,1,,105,10,"NIAGARA MOHAWK POWER CORP","BALDWINSVLE",0,,13573,"0M",1294,,190,95,205,0,0,112,0,0,221,0,0,171,0,0,60,0,0,7,0,0,-3,0,0,16,0,0,1,0,0,57,0,0,217,0,0,140,0,0,2542,6,52053,"WAT","HY" 21,36,1,1,,105,15,"NIAGARA MOHAWK POWER CORP","BELFORT",0,,13573,"0M",1294,,190,95,861,0,0,751,0,0,805,0,0,464,0,0,550,0,0,561,0,0,714,0,0,764,0,0,730,0,0,557,0,0,1171,0,0,1354,0,0,2544,6,52053,"WAT","HY" 21,36,1,1,,105,20,"NIAGARA MOHAWK POWER CORP","BENNETTS B",0,,13573,"0M",1294,,190,95,10231,0,0,5759,0,0,9838,0,0,5346,0,0,4404,0,0,1938,0,0,-33,0,0,313,0,0,5443,0,0,9001,0,0,13335,0,0,6313,0,0,2545,6,52053,"WAT","HY" 21,36,1,1,,105,25,"NIAGARA MOHAWK POWER CORP","BLACK RIVER",0,,13573,"0M",1294,,190,95,3477,0,0,2422,0,0,3823,0,0,3907,0,0,2562,0,0,1270,0,0,1501,0,0,948,0,0,1559,0,0,3563,0,0,4456,0,0,3477,0,0,2546,6,52053,"WAT","HY" 21,36,1,1,,105,30,"NIAGARA MOHAWK POWER CORP","BLAKE",0,,13573,"0M",1294,,190,95,6604,0,0,6486,0,0,5072,0,0,2962,0,0,3721,0,0,3715,0,0,672,0,0,2828,0,0,1682,0,0,3534,0,0,9144,0,0,6300,0,0,2547,6,52053,"WAT","HY" 21,36,1,1,,105,35,"NIAGARA MOHAWK POWER CORP","BROWNS FLS",0,,13573,"0M",1294,,190,95,6785,0,0,3738,0,0,4510,0,0,1724,0,0,1746,0,0,1866,0,0,545,0,0,2901,0,0,1160,0,0,4896,0,0,7492,0,0,3767,0,0,2548,6,52053,"WAT","HY" 21,36,1,1,,105,40,"NIAGARA MOHAWK POWER CORP","CHASM",0,,13573,"0M",1294,,190,95,1902,0,0,1138,0,0,1426,0,0,1777,0,0,1751,0,0,1323,0,0,994,0,0,1236,0,0,1014,0,0,1752,0,0,1795,0,0,1489,0,0,2550,6,52053,"WAT","HY" 21,36,1,1,,105,45,"NIAGARA MOHAWK POWER CORP","COLTON",0,,13573,"0M",1294,,190,95,20600,0,0,18761,0,0,20043,0,0,13701,0,0,15937,0,0,15548,0,0,9456,0,0,14510,0,0,7469,0,0,15049,0,0,2073,0,0,19935,0,0,2551,6,52053,"WAT","HY" 21,36,1,1,,105,50,"NIAGARA MOHAWK POWER CORP","DEFERIET",0,,13573,"0M",1294,,190,95,4478,0,0,3495,0,0,5869,0,0,5234,0,0,3642,0,0,1740,0,0,1638,0,0,1204,0,0,1248,0,0,5355,0,0,7027,0,0,4656,0,0,2552,6,52053,"WAT","HY" 21,36,1,1,,105,65,"NIAGARA MOHAWK POWER CORP","EAGLE",0,,13573,"0M",1294,,190,95,2653,0,0,2021,0,0,2505,0,0,1200,0,0,1421,0,0,1737,0,0,2331,0,0,1979,0,0,2045,0,0,1398,0,0,3203,0,0,3777,0,0,2555,6,52053,"WAT","HY" 21,36,1,1,,105,70,"NIAGARA MOHAWK POWER CORP","EEL WEIR",0,,13573,"0M",1294,,190,95,866,0,0,622,0,0,964,0,0,803,0,0,524,0,0,203,0,0,115,0,0,125,0,0,7,0,0,655,0,0,1332,0,0,994,0,0,2556,6,52053,"WAT","HY" 21,36,1,1,,105,75,"NIAGARA MOHAWK POWER CORP","EFFLEY",0,,13573,"0M",1294,,190,95,1093,0,0,986,0,0,1153,0,0,580,0,0,694,0,0,845,0,0,905,0,0,982,0,0,900,0,0,740,0,0,1558,0,0,1767,0,0,2557,6,52053,"WAT","HY" 21,36,1,1,,105,80,"NIAGARA MOHAWK POWER CORP","ELMER",0,,13573,"0M",1294,,190,95,812,0,0,575,0,0,796,0,0,380,0,0,439,0,0,552,0,0,441,0,0,640,0,0,593,0,0,496,0,0,1010,0,0,1135,0,0,2559,6,52053,"WAT","HY" 21,36,1,1,,105,85,"NIAGARA MOHAWK POWER CORP","ET NORFOLK",0,,13573,"0M",1294,,190,95,2479,0,0,1995,0,0,2559,0,0,1703,0,0,1975,0,0,1859,0,0,1059,0,0,1731,0,0,851,0,0,1883,0,0,2471,0,0,2519,0,0,2561,6,52053,"WAT","HY" 21,36,1,1,,105,90,"NIAGARA MOHAWK POWER CORP","FIVE FALLS",0,,13573,"0M",1294,,190,95,10795,0,0,10405,0,0,8347,0,0,4782,0,0,5926,0,0,5896,0,0,3396,0,0,5619,0,0,2631,0,0,5807,0,0,14654,0,0,10198,0,0,2562,6,52053,"WAT","HY" 21,36,1,1,,105,95,"NIAGARA MOHAWK POWER CORP","FLAT ROCK",0,,13573,"0M",1294,,190,95,1503,0,0,871,0,0,1489,0,0,592,0,0,450,0,0,401,0,0,136,0,0,528,0,0,169,0,0,1414,0,0,1912,0,0,876,0,0,2563,6,52053,"WAT","HY" 21,36,1,1,,105,98,"NIAGARA MOHAWK POWER CORP","FRANKLIN F",0,,13573,"0M",1294,,190,95,775,0,0,767,0,0,1052,0,0,613,0,0,385,0,0,496,0,0,336,0,0,352,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,0,2564,6,52053,"WAT","HY" 21,36,1,1,,105,100,"NIAGARA MOHAWK POWER CORP","FULTON",0,,13573,"0M",1294,,190,95,464,0,0,333,0,0,608,0,0,437,0,0,459,0,0,300,0,0,406,0,0,363,0,0,304,0,0,474,0,0,653,0,0,625,0,0,2566,6,52053,"WAT","HY" 21,36,1,1,,105,105,"NIAGARA MOHAWK POWER CORP","GRANBY",0,,13573,"0M",1294,,190,95,5845,0,0,3502,0,0,6558,0,0,1324,0,0,640,0,0,477,0,0,-38,0,0,491,0,0,-42,0,0,3025,0,0,5404,0,0,5157,0,0,2569,6,52053,"WAT","HY" 21,36,1,1,,105,110,"NIAGARA MOHAWK POWER CORP","HANNAWA",0,,13573,"0M",1294,,190,95,5253,0,0,4772,0,0,5248,0,0,3332,0,0,4051,0,0,3941,0,0,2329,0,0,3797,0,0,1747,0,0,1086,0,0,2696,0,0,5321,0,0,2571,6,52053,"WAT","HY" 21,36,1,1,,105,115,"NIAGARA MOHAWK POWER CORP","HERRINGS",0,,13573,"0M",1294,,190,95,1980,0,0,1586,0,0,2151,0,0,2116,0,0,1509,0,0,629,0,0,705,0,0,371,0,0,337,0,0,1747,0,0,2341,0,0,2187,0,0,2572,6,52053,"WAT","HY" 21,36,1,1,,105,120,"NIAGARA MOHAWK POWER CORP","HEUVELTON",0,,13573,"0M",1294,,190,95,458,0,0,468,0,0,484,0,0,556,0,0,455,0,0,254,0,0,195,0,0,277,0,0,149,0,0,433,0,0,506,0,0,588,0,0,2573,6,52053,"WAT","HY" 21,36,1,1,,105,125,"NIAGARA MOHAWK POWER CORP","HIGH DAM 6",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,1863,0,0,2023,0,0,1494,0,0,922,0,0,725,0,0,989,0,0,179,0,0,2024,0,0,2607,0,0,3766,0,0,2574,6,52053,"WAT","HY" 21,36,1,1,,105,126,"NIAGARA MOHAWK POWER CORP","HIGH FALLS",0,,13573,"0M",1294,,190,95,2622,0,0,1900,0,0,2648,0,0,1268,0,0,1439,0,0,1814,0,0,2106,0,0,1998,0,0,1847,0,0,1571,0,0,3045,0,0,3527,0,0,2575,6,52053,"WAT","HY" 21,36,1,1,,105,130,"NIAGARA MOHAWK POWER CORP","HIGLEY",0,,13573,"0M",1294,,190,95,3414,0,0,2999,0,0,3075,0,0,1774,0,0,2177,0,0,2037,0,0,1416,0,0,2086,0,0,1120,0,0,2315,0,0,3556,0,0,3242,0,0,2576,6,52053,"WAT","HY" 21,36,1,1,,105,135,"NIAGARA MOHAWK POWER CORP","HOGANSBURG",0,,13573,"0M",1294,,190,95,98,0,0,143,0,0,192,0,0,192,0,0,148,0,0,129,0,0,87,0,0,146,0,0,79,0,0,113,0,0,186,0,0,218,0,0,2577,6,52053,"WAT","HY" 21,36,1,1,,105,140,"NIAGARA MOHAWK POWER CORP","KAMARGO",0,,13573,"0M",1294,,190,95,2374,0,0,1857,0,0,2750,0,0,2638,0,0,1924,0,0,960,0,0,1034,0,0,398,0,0,612,0,0,2497,0,0,3433,0,0,1788,0,0,2581,6,52053,"WAT","HY" 21,36,1,1,,105,145,"NIAGARA MOHAWK POWER CORP","LIGHTHOUSE",0,,13573,"0M",1294,,190,95,2431,0,0,1342,0,0,2514,0,0,1178,0,0,925,0,0,399,0,0,-14,0,0,-14,0,0,1080,0,0,1999,0,0,3282,0,0,1507,0,0,2582,6,52053,"WAT","HY" 21,36,1,1,,105,155,"NIAGARA MOHAWK POWER CORP","MACOMB",0,,13573,"0M",1294,,190,95,434,0,0,398,0,0,641,0,0,569,0,0,481,0,0,319,0,0,-4,0,0,-4,0,0,132,0,0,534,0,0,627,0,0,520,0,0,2583,6,52053,"WAT","HY" 21,36,1,1,,105,160,"NIAGARA MOHAWK POWER CORP","MINETTO",0,,13573,"0M",1294,,190,95,3847,0,0,2604,0,0,4467,0,0,2022,0,0,1607,0,0,940,0,0,602,0,0,800,0,0,427,0,0,1690,0,0,4151,0,0,4554,0,0,2586,6,52053,"WAT","HY" 21,36,1,1,,105,165,"NIAGARA MOHAWK POWER CORP","MOSHIER",0,,13573,"0M",1294,,190,95,2698,0,0,2561,0,0,2447,0,0,1064,0,0,1751,0,0,2554,0,0,2993,0,0,2896,0,0,2791,0,0,736,0,0,3994,0,0,5506,0,0,2588,6,52053,"WAT","HY" 21,36,1,1,,105,170,"NIAGARA MOHAWK POWER CORP","NORFOLK",0,,13573,"0M",1294,,190,95,2391,0,0,2156,0,0,2979,0,0,1872,0,0,2207,0,0,2139,0,0,1223,0,0,2018,0,0,958,0,0,2054,0,0,3088,0,0,2630,0,0,2590,6,52053,"WAT","HY" 21,36,1,1,,105,175,"NIAGARA MOHAWK POWER CORP","NORWOOD",0,,13573,"0M",1294,,190,95,1536,0,0,1408,0,0,1536,0,0,938,0,0,1146,0,0,1136,0,0,605,0,0,1104,0,0,480,0,0,1072,0,0,1232,0,0,1488,0,0,2591,6,52053,"WAT","HY" 21,36,1,1,,105,180,"NIAGARA MOHAWK POWER CORP","OSWEGATCHIE",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2593,6,52053,"WAT","HY" 21,36,1,1,,105,182,"NIAGARA MOHAWK POWER CORP","OSWEGO FL E",0,,13573,"0M",1294,,190,95,2890,0,0,2449,0,0,2510,0,0,1688,0,0,1604,0,0,996,0,0,637,0,0,679,0,0,550,0,0,1991,0,0,2836,0,0,2816,0,0,2595,6,52053,"WAT","HY" 21,36,1,1,,105,183,"NIAGARA MOHAWK POWER CORP","OSWEGO FL W",0,,13573,"0M",1294,,190,95,1223,0,0,423,0,0,1212,0,0,176,0,0,-1,0,0,28,0,0,-2,0,0,47,0,0,14,0,0,385,0,0,730,0,0,1172,0,0,2596,6,52053,"WAT","HY" 21,36,1,1,,105,185,"NIAGARA MOHAWK POWER CORP","PARISHVILLE",0,,13573,"0M",1294,,190,95,0,0,0,690,0,0,1562,0,0,1603,0,0,1516,0,0,848,0,0,849,0,0,763,0,0,749,0,0,1395,0,0,1488,0,0,1298,0,0,2597,6,52053,"WAT","HY" 21,36,1,1,,105,187,"NIAGARA MOHAWK POWER CORP","PIERCEFIELD",0,,13573,"0M",1294,,190,95,1488,0,0,1283,0,0,1529,0,0,1482,0,0,1341,0,0,627,0,0,429,0,0,881,0,0,370,0,0,1195,0,0,1783,0,0,1527,0,0,2598,6,52053,"WAT","HY" 21,36,1,1,,105,192,"NIAGARA MOHAWK POWER CORP","PROSPECT",0,,13573,"0M",1294,,190,95,1704,0,0,0,0,0,4257,0,0,5788,0,0,3672,0,0,2881,0,0,2386,0,0,1689,0,0,184,0,0,6691,0,0,11309,0,0,6904,0,0,2599,6,52053,"WAT","HY" 21,36,1,1,,105,195,"NIAGARA MOHAWK POWER CORP","RAINBOW",0,,13573,"0M",1294,,190,95,10771,0,0,10270,0,0,8298,0,0,4779,0,0,5959,0,0,5843,0,0,3452,0,0,5583,0,0,2641,0,0,5774,0,0,14120,0,0,9950,0,0,2600,6,52053,"WAT","HY" 21,36,1,1,,105,200,"NIAGARA MOHAWK POWER CORP","RAYMONDVLE",0,,13573,"0M",1294,,190,95,932,0,0,816,0,0,1452,0,0,926,0,0,670,0,0,1102,0,0,674,0,0,1036,0,0,530,0,0,1056,0,0,1404,0,0,1120,0,0,2601,6,52053,"WAT","HY" 21,36,1,1,,105,210,"NIAGARA MOHAWK POWER CORP","S EDWARDS",0,,13573,"0M",1294,,190,95,1404,0,0,1076,0,0,1387,0,0,973,0,0,1018,0,0,736,0,0,427,0,0,1020,0,0,558,0,0,1359,0,0,1919,0,0,1392,0,0,2604,6,52053,"WAT","HY" 21,36,1,1,,105,215,"NIAGARA MOHAWK POWER CORP","SEWALLS",0,,13573,"0M",1294,,190,95,1372,0,0,889,0,0,1518,0,0,1486,0,0,1205,0,0,544,0,0,246,0,0,320,0,0,319,0,0,1211,0,0,1489,0,0,1514,0,0,2608,6,52053,"WAT","HY" 21,36,1,1,,105,220,"NIAGARA MOHAWK POWER CORP","SOFT MAPLE",0,,13573,"0M",1294,,190,95,2633,0,0,1616,0,0,2359,0,0,882,0,0,1236,0,0,1714,0,0,2341,0,0,1918,0,0,1850,0,0,1760,0,0,3432,0,0,4125,0,0,2610,6,52053,"WAT","HY" 21,36,1,1,,105,225,"NIAGARA MOHAWK POWER CORP","SOTH COLTON",0,,13573,"0M",1294,,190,95,8860,0,0,8292,0,0,6906,0,0,3510,0,0,4607,0,0,4842,0,0,2861,0,0,4595,0,0,2211,0,0,4731,0,0,12247,0,0,8305,0,0,2611,6,52053,"WAT","HY" 21,36,1,1,,105,230,"NIAGARA MOHAWK POWER CORP","STARK",0,,13573,"0M",1294,,190,95,10035,0,0,10162,0,0,7531,0,0,4401,0,0,5629,0,0,5788,0,0,3281,0,0,5363,0,0,2475,0,0,5187,0,0,14852,0,0,9960,0,0,2613,6,52053,"WAT","HY" 21,36,1,1,,105,235,"NIAGARA MOHAWK POWER CORP","SUGAR IS",0,,13573,"0M",1294,,190,95,2908,0,0,2519,0,0,2995,0,0,2818,0,0,2884,0,0,2757,0,0,1893,0,0,2754,0,0,1376,0,0,2667,0,0,2781,0,0,2983,0,0,2616,6,52053,"WAT","HY" 21,36,1,1,,105,240,"NIAGARA MOHAWK POWER CORP","TAYLORVILLE",0,,13573,"0M",1294,,190,95,2219,0,0,1663,0,0,2176,0,0,1051,0,0,1247,0,0,1560,0,0,1566,0,0,1692,0,0,1630,0,0,1392,0,0,2700,0,0,3109,0,0,2617,6,52053,"WAT","HY" 21,36,1,1,,105,250,"NIAGARA MOHAWK POWER CORP","TRENTON",0,,13573,"0M",1294,,190,95,12363,0,0,10763,0,0,12685,0,0,10309,0,0,6711,0,0,6004,0,0,5262,0,0,4565,0,0,3995,0,0,8295,0,0,14603,0,0,11617,0,0,2619,6,52053,"WAT","HY" 21,36,1,1,,105,255,"NIAGARA MOHAWK POWER CORP","VARICK",0,,13573,"0M",1294,,190,95,3510,0,0,2348,0,0,3552,0,0,1467,0,0,836,0,0,546,0,0,363,0,0,629,0,0,211,0,0,2344,0,0,3490,0,0,3553,0,0,2621,6,52053,"WAT","HY" 21,36,1,1,,105,265,"NIAGARA MOHAWK POWER CORP","YALEVILLE",0,,13573,"0M",1294,,190,95,293,0,0,255,0,0,406,0,0,320,0,0,373,0,0,341,0,0,243,0,0,407,0,0,242,0,0,346,0,0,275,0,0,248,0,0,2624,6,52053,"WAT","HY" 21,36,1,3,2,105,270,"NIAGARA MOHAWK POWER CORP","NINE MILE P",0,"LIGHT OIL",13573,"0M",1294,,190,95,6,136,4435,3,121,4470,11,87,4380,0,100,4256,13,323,4316,10,36,4349,6,164,4288,7,218,4320,6,11,535,6,12,573,6,13,557,6,12,543,2589,6,52053,"FO2","IC" 21,36,1,2,3,105,275,"NIAGARA MOHAWK POWER CORP","OSWEGO",0,"HEAVY OIL",13573,"0M",1294,,190,95,0,0,632933,120407,215553,417380,0,0,417380,26504,46741,370639,0,0,370639,1371,4130,366508,44092,30232,330715,13690,33269,298197,9883,21973,276183,0,0,276183,0,0,542213,0,0,542213,2594,6,52053,"FO6","ST" 21,36,1,2,9,105,275,"NIAGARA MOHAWK POWER CORP","OSWEGO",0,"NAT GAS",13573,"0M",1294,,190,95,999,22854,0,10635,117884,0,0,0,0,0,0,0,0,0,0,0,0,0,108,461,0,38513,570000,0,15497,213000,0,0,0,0,0,0,0,0,0,0,2594,6,52053,"NG","ST" 21,36,1,3,2,105,275,"NIAGARA MOHAWK POWER CORP","OSWEGO",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,4,11,2138,0,0,2138,0,0,2138,0,0,2138,2594,6,52053,"FO2","IC" 21,36,1,1,,105,285,"NIAGARA MOHAWK POWER CORP","BEARDSLEE F",0,,13573,"0M",1294,,190,95,5266,0,0,1946,0,0,6556,0,0,4417,0,0,2463,0,0,1946,0,0,895,0,0,759,0,0,741,0,0,5400,0,0,6369,0,0,2631,0,0,2543,6,52053,"WAT","HY" 21,36,1,1,,105,290,"NIAGARA MOHAWK POWER CORP","BAKER FALLS",0,,13573,"0M",1294,"R",190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2541,6,52053,"WAT","HY" 21,36,1,1,,105,300,"NIAGARA MOHAWK POWER CORP","EL J WEST",0,,13573,"0M",1294,,190,95,5989,0,0,5250,0,0,1580,0,0,972,0,0,1241,0,0,3218,0,0,3059,0,0,2326,0,0,4257,0,0,1425,0,0,10684,0,0,8834,0,0,6527,6,52053,"WAT","HY" 21,36,1,1,,105,305,"NIAGARA MOHAWK POWER CORP","EPHRATAH",0,,13573,"0M",1294,,190,95,2045,0,0,902,0,0,1493,0,0,780,0,0,337,0,0,463,0,0,97,0,0,147,0,0,127,0,0,1599,0,0,1298,0,0,1198,0,0,2560,6,52053,"WAT","HY" 21,36,1,1,,105,315,"NIAGARA MOHAWK POWER CORP","GLEN FALLS",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2567,6,52053,"WAT","HY" 21,36,1,1,,105,317,"NIAGARA MOHAWK POWER CORP","GREEN ISL",0,,13573,"0M",1294,,190,95,3672,0,0,3067,0,0,3470,0,0,3478,0,0,2678,0,0,2110,0,0,1303,0,0,1440,0,0,1476,0,0,2837,0,0,2513,0,0,3722,0,0,6528,6,52053,"WAT","HY" 21,36,1,1,,105,320,"NIAGARA MOHAWK POWER CORP","INGHAMS",0,,13573,"0M",1294,,190,95,2951,0,0,1446,0,0,3570,0,0,3006,0,0,1806,0,0,1403,0,0,605,0,0,518,0,0,480,0,0,2716,0,0,3695,0,0,1829,0,0,2579,6,52053,"WAT","HY" 21,36,1,1,,105,325,"NIAGARA MOHAWK POWER CORP","JOHNSONVLE",0,,13573,"0M",1294,,190,95,783,0,0,709,0,0,698,0,0,730,0,0,706,0,0,415,0,0,84,0,0,196,0,0,71,0,0,754,0,0,1347,0,0,777,0,0,2580,6,52053,"WAT","HY" 21,36,1,1,,105,340,"NIAGARA MOHAWK POWER CORP","MOREAU",0,,13573,"0M",1294,"R",190,95,0,0,0,2501,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2587,6,52053,"WAT","HY" 21,36,1,1,,105,350,"NIAGARA MOHAWK POWER CORP","SCH ST COHS",0,,13573,"0M",1294,,190,95,17365,0,0,13801,0,0,18549,0,0,16246,0,0,8330,0,0,6836,0,0,4087,0,0,3410,0,0,3303,0,0,14028,0,0,23804,0,0,15352,0,0,2605,6,52053,"WAT","HY" 21,36,1,1,,105,355,"NIAGARA MOHAWK POWER CORP","SCHAGHTICKE",0,,13573,"0M",1294,,190,95,6959,0,0,4628,0,0,1779,0,0,7008,0,0,3998,0,0,2703,0,0,925,0,0,1694,0,0,513,0,0,4157,0,0,7065,0,0,4122,0,0,2606,6,52053,"WAT","HY" 21,36,1,1,,105,360,"NIAGARA MOHAWK POWER CORP","SCHUYLERVLE",0,,13573,"0M",1294,,190,95,766,0,0,454,0,0,951,0,0,408,0,0,291,0,0,185,0,0,26,0,0,77,0,0,-5,0,0,527,0,0,1089,0,0,771,0,0,2607,6,52053,"WAT","HY" 21,36,1,1,,105,365,"NIAGARA MOHAWK POWER CORP","SHERMAN",0,,13573,"0M",1294,,190,95,14937,0,0,11480,0,0,11483,0,0,9158,0,0,6495,0,0,5892,0,0,5453,0,0,6179,0,0,6999,0,0,9121,0,0,7996,0,0,9198,0,0,2609,6,52053,"WAT","HY" 21,36,1,1,,105,370,"NIAGARA MOHAWK POWER CORP","SPIER FALLS",0,,13573,"0M",1294,,190,95,22054,0,0,16130,0,0,18521,0,0,13202,0,0,8844,0,0,7373,0,0,6467,0,0,7246,0,0,8844,0,0,15741,0,0,12177,0,0,20353,0,0,2612,6,52053,"WAT","HY" 21,36,1,1,,105,380,"NIAGARA MOHAWK POWER CORP","STEWARTS BR",0,,13573,"0M",1294,,190,95,10770,0,0,11203,0,0,3959,0,0,1818,0,0,5172,0,0,2348,0,0,5366,0,0,4271,0,0,7737,0,0,2666,0,0,19084,0,0,17328,0,0,2614,6,52053,"WAT","HY" 21,36,1,1,,105,385,"NIAGARA MOHAWK POWER CORP","STUYVESANT",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2615,6,52053,"WAT","HY" 21,36,1,2,2,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,220,0,0,220,0,0,220,0,0,220,0,0,220,0,0,220,0,0,201,0,0,201,0,0,195,0,0,192,0,0,189,0,0,185,2539,6,52053,"FO2","ST" 21,36,1,2,3,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"HEAVY OIL",13573,"0M",1294,,190,95,58267,97691,332532,62750,94595,237938,5641,8097,184840,0,0,184840,0,0,184840,1711,4230,180610,0,0,180610,0,0,180610,0,0,180610,0,0,180610,18591,30657,149952,25930,42050,107902,2539,6,52053,"FO6","ST" 21,36,1,2,9,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"NAT GAS",13573,"0M",1294,,190,95,57789,665226,0,58253,669709,0,144263,1550322,0,53054,571524,0,31237,333909,0,47841,524896,0,130139,1434248,0,147338,1604315,0,50979,541649,0,49257,521886,0,6001,121469,0,5994,104410,0,2539,6,52053,"NG","ST" 21,36,1,3,2,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2539,6,52053,"FO2","IC" 21,36,1,4,2,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2539,6,52053,"FO2","GT" 21,36,1,4,9,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"NAT GAS",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2539,6,52053,"NG","GT" 21,36,1,1,,105,420,"NIAGARA MOHAWK POWER CORP","GLENWOOD",0,,13573,"0M",1294,,190,95,584,0,0,584,0,0,712,0,0,35,0,0,602,0,0,501,0,0,510,0,0,499,0,0,459,0,0,493,0,0,412,0,0,213,0,0,2568,6,52053,"WAT","HY" 21,36,1,1,,105,425,"NIAGARA MOHAWK POWER CORP","HYDRAULIC R",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,247,0,0,1980,0,0,1737,0,0,1757,0,0,1761,0,0,1655,0,0,1715,0,0,209,0,0,0,0,0,2578,6,52053,"WAT","HY" 21,36,1,1,,105,440,"NIAGARA MOHAWK POWER CORP","WATERPORT",0,,13573,"0M",1294,,190,95,1372,0,0,1372,0,0,1447,0,0,69,0,0,924,0,0,779,0,0,723,0,0,727,0,0,684,0,0,922,0,0,936,0,0,428,0,0,2623,6,52053,"WAT","HY" 21,36,1,2,2,105,445,"NIAGARA MOHAWK POWER CORP","DUNKIRK",0,"LIGHT OIL",13573,"0M",1294,,190,95,1601,2790,0,653,1081,0,675,1178,0,599,1017,0,1403,2417,0,539,896,0,638,1090,0,1031,1725,0,723,1216,0,997,1731,0,914,1625,0,396,651,0,2554,6,52053,"FO2","ST" 21,36,1,2,6,105,445,"NIAGARA MOHAWK POWER CORP","DUNKIRK",0,"BIT COAL",13573,"0M",1294,,190,95,254022,99455,112963,311173,114689,97723,298538,114582,80138,317020,119632,52831,259603,99967,52456,255038,95545,74556,311521,120965,80149,307244,117398,77577,307482,116339,76599,257442,99939,138351,253614,100750,153571,354614,131876,151153,2554,6,52053,"BIT","ST" 21,36,1,3,2,105,445,"NIAGARA MOHAWK POWER CORP","DUNKIRK",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,1079,0,0,1334,0,0,1300,0,0,1323,0,0,635,0,0,1174,0,0,1343,0,0,1234,0,0,1317,0,0,1090,0,0,1325,0,0,1484,2554,6,52053,"FO2","IC" 21,36,1,2,2,105,450,"NIAGARA MOHAWK POWER CORP","C R HUNTLEY",0,"LIGHT OIL",13573,"0M",1294,,190,95,681,1256,1160,349,688,1247,690,1294,1076,1705,3207,1221,704,1326,1175,1004,1818,1727,1072,1981,1452,554,1037,1301,324,570,1193,1215,2237,1180,832,1567,1213,253,461,1135,2549,6,52053,"FO2","ST" 21,36,1,2,6,105,450,"NIAGARA MOHAWK POWER CORP","C R HUNTLEY",0,"BIT COAL",13573,"0M",1294,,190,95,272246,110975,103175,276497,121255,106086,220640,91915,179212,270614,112094,162277,265384,109603,157439,267756,107734,190733,286378,118727,131748,337035,139658,120591,316597,122391,136393,245260,100618,129570,236599,99435,197282,339259,137453,168549,2549,6,52053,"BIT","ST" 21,36,1,3,2,105,450,"NIAGARA MOHAWK POWER CORP","C R HUNTLEY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2549,6,52053,"FO2","IC" 21,36,1,1,,105,460,"NIAGARA MOHAWK POWER CORP","OAK ORCHARD",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,178,0,0,186,0,0,185,0,0,187,0,0,174,0,0,176,0,0,46,0,0,0,0,0,2592,6,52053,"WAT","HY" 21,36,1,1,,105,465,"NIAGARA MOHAWK POWER CORP","BEEBEE IS",0,,13573,"0M",1294,,190,95,3633,0,0,2768,0,0,5208,0,0,4383,0,0,3010,0,0,1959,0,0,2292,0,0,1754,0,0,2115,0,0,4754,0,0,5881,0,0,3959,0,0,6434,6,52053,"WAT","HY" 21,36,1,1,,105,470,"NIAGARA MOHAWK POWER CORP","FEEDER DAM",0,,13573,"0M",1294,,190,95,3058,0,0,0,0,0,2491,0,0,1680,0,0,1085,0,0,869,0,0,595,0,0,648,0,0,1046,0,0,1795,0,0,3058,0,0,2885,0,0,2666,6,52053,"WAT","HY" 21,36,1,1,,115,3,"ORANGE & ROCKLAND UTL INC","GRAHAMSVILE",0,,14154,"0M",1294,,,95,7995,0,0,10213,0,0,10828,0,0,5471,0,0,3765,0,0,6843,0,0,11715,0,0,11385,0,0,6049,0,0,6915,0,0,5017,0,0,7158,0,0,2627,6,52181,"WAT","HY" 21,36,1,1,,115,5,"ORANGE & ROCKLAND UTL INC","MONGAUP FLS",0,,14154,"0M",1294,,,95,1849,0,0,830,0,0,1994,0,0,1152,0,0,218,0,0,502,0,0,749,0,0,605,0,0,91,0,0,475,0,0,1859,0,0,1637,0,0,2630,6,52181,"WAT","HY" 21,36,1,1,,115,10,"ORANGE & ROCKLAND UTL INC","RIO",0,,14154,"0M",1294,,,95,4380,0,0,1792,0,0,4911,0,0,2578,0,0,759,0,0,986,0,0,1125,0,0,978,0,0,116,0,0,1041,0,0,4467,0,0,3352,0,0,2631,6,52181,"WAT","HY" 21,36,1,1,,115,15,"ORANGE & ROCKLAND UTL INC","SWING BR 1",0,,14154,"0M",1294,,,95,1041,0,0,442,0,0,1445,0,0,608,0,0,266,0,0,374,0,0,391,0,0,409,0,0,76,0,0,299,0,0,1316,0,0,873,0,0,2633,6,52181,"WAT","HY" 21,36,1,1,,115,20,"ORANGE & ROCKLAND UTL INC","SWING BR 2",0,,14154,"0M",1294,,,95,687,0,0,340,0,0,661,0,0,428,0,0,16,0,0,-84,0,0,164,0,0,42,0,0,-68,0,0,68,0,0,889,0,0,593,0,0,2634,6,52181,"WAT","HY" 21,36,1,2,3,115,25,"ORANGE & ROCKLAND UTL INC","BOWLINE PT",0,"HEAVY OIL",14154,"0M",1294,,,95,43906,73730,656595,138605,222519,509921,36874,60431,690856,47123,77864,612992,171664,281797,399693,132603,218077,395393,121658,204130,412273,93622,159538,457749,16475,28676,564249,22772,39554,562775,23802,41159,590697,87447,145316,516559,2625,6,52181,"FO6","ST" 21,36,1,2,9,115,25,"ORANGE & ROCKLAND UTL INC","BOWLINE PT",0,"NAT GAS",14154,"0M",1294,,,95,168974,1723560,0,82272,1239913,0,246716,2463200,0,218627,2199380,0,99656,966090,0,197607,1984380,0,277722,2939140,0,259468,2692570,0,188365,2000250,0,195838,2071510,0,142378,1499610,0,41983,424600,0,2625,6,52181,"NG","ST" 21,36,1,2,3,115,30,"ORANGE & ROCKLAND UTL INC","LOVETT",0,"HEAVY OIL",14154,"0M",1294,,,95,8,15,100319,1955,3363,96956,1,1,96927,0,0,96968,162,289,96714,7,13,96701,10,18,96682,5,10,96706,6,11,96717,0,0,96732,0,0,96732,5,10,96723,2629,6,52181,"FO6","ST" 21,36,1,2,6,115,30,"ORANGE & ROCKLAND UTL INC","LOVETT",0,"BIT COAL",14154,"0M",1294,,,95,111799,49067,63359,155251,65603,75519,116513,50062,70545,69873,29960,67950,67316,29174,75567,80224,36666,84715,138923,58882,82515,118307,52178,76055,140703,61690,59229,113469,49704,60388,125569,51656,62679,132749,58514,56774,2629,6,52181,"BIT","ST" 21,36,1,2,9,115,30,"ORANGE & ROCKLAND UTL INC","LOVETT",0,"NAT GAS",14154,"0M",1294,,,95,29773,323525,0,26698,280445,0,15824,169812,0,33214,357965,0,35392,384353,0,65900,754578,0,47901,513697,0,42001,470557,0,20369,222754,0,24743,268834,0,21096,220661,0,31665,346005,0,2629,6,52181,"NG","ST" 21,36,1,4,2,115,35,"ORANGE & ROCKLAND UTL INC","HILLBURN",0,"LIGHT OIL",14154,"0M",1294,,,95,0,0,4238,0,0,4238,0,0,4238,0,0,4238,0,9,4229,0,0,4229,52,164,4065,108,334,3731,0,0,3731,0,0,3731,0,0,3731,0,0,3731,2628,6,52181,"FO2","GT" 21,36,1,4,9,115,35,"ORANGE & ROCKLAND UTL INC","HILLBURN",0,"NATURAL G",14154,"0M",1294,,,95,44,1217,0,0,0,0,37,1143,0,565,8996,0,-13,1208,0,256,5250,0,276,4745,0,945,15862,0,444,6906,0,-18,82,0,-27,456,0,24,430,0,2628,6,52181,"NG","GT" 21,36,1,4,2,115,40,"ORANGE & ROCKLAND UTL INC","SHOEMAKER",0,"LIGHT OIL",14154,"0M",1294,,,95,0,0,4599,73,30,4569,29,103,4466,-1,30,4485,1,2,4463,45,124,4068,0,0,4068,1,3,4065,0,0,4065,22,81,3984,84,247,3738,0,0,3738,2632,6,52181,"FO2","GT" 21,36,1,4,9,115,40,"ORANGE & ROCKLAND UTL INC","SHOEMAKER",0,"NAT GAS",14154,"0M",1294,,,95,217,4023,0,342,7789,0,599,11559,0,-31,207,0,1856,30143,0,3256,49008,0,4402,75566,0,4597,74746,0,2492,42150,0,713,14586,0,45,456,0,53,1654,0,2632,6,52181,"NG","GT" 21,36,1,2,1,135,1,"ROCHESTER GAS & ELEC CORP","GINNA",0,"NUCLEAR",16183,"0M",1294,,,95,351805,0,0,321771,0,0,293087,0,0,-2750,0,0,299117,0,0,334397,0,0,342637,0,0,305248,0,0,336763,0,0,353447,0,0,342871,0,0,354889,0,0,6122,6,52501,"UR","ST" 21,36,1,1,,135,5,"ROCHESTER GAS & ELEC CORP","MILLS M 172",0,,16183,"0M",1294,,,95,68,0,0,0,0,0,79,0,0,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2636,6,52501,"WAT","HY" 21,36,1,1,,135,10,"ROCHESTER GAS & ELEC CORP","MT MORR 160",0,,16183,"0M",1294,,,95,0,0,0,75,0,0,0,0,0,0,0,0,49,0,0,121,0,0,87,0,0,44,0,0,16,0,0,124,0,0,132,0,0,67,0,0,2637,6,52501,"WAT","HY" 21,36,1,1,,135,15,"ROCHESTER GAS & ELEC CORP","ROCHESTER 2",0,,16183,"0M",1294,,,95,3983,0,0,3890,0,0,4861,0,0,4119,0,0,4073,0,0,2681,0,0,1898,0,0,1483,0,0,708,0,0,3228,0,0,4230,0,0,3509,0,0,2639,6,52501,"WAT","HY" 21,36,1,1,,135,25,"ROCHESTER GAS & ELEC CORP","ROCHESTER 5",0,,16183,"0M",1294,,,95,18727,0,0,8869,0,0,21670,0,0,13445,0,0,7303,0,0,4173,0,0,5885,0,0,2422,0,0,1347,0,0,9730,0,0,15462,0,0,12738,0,0,2641,6,52501,"WAT","HY" 21,36,1,1,,135,28,"ROCHESTER GAS & ELEC CORP","RCHESTER 26",0,,16183,"0M",1294,,,95,596,0,0,1040,0,0,1215,0,0,1302,0,0,1083,0,0,420,0,0,405,0,0,282,0,0,135,0,0,726,0,0,1174,0,0,1054,0,0,2638,6,52501,"WAT","HY" 21,36,1,1,,135,35,"ROCHESTER GAS & ELEC CORP","WISCOY 170",0,,16183,"0M",1294,,,95,517,0,0,408,0,0,590,0,0,391,0,0,204,0,0,97,0,0,121,0,0,83,0,0,55,0,0,240,0,0,470,0,0,462,0,0,2646,6,52501,"WAT","HY" 21,36,1,2,2,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"LIGHT OIL",16183,"0M",394,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,102,143,2305,77,143,2008,122,214,1718,91,167,1882,68,119,1700,27,58,1645,2640,6,52501,"FO2","ST" 21,36,1,2,3,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"HEAVY OIL",16183,"0M",1294,"R",,95,27,48,2860,14,24,2809,14,24,2745,14,24,2703,0,0,2703,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2640,6,52501,"FO6","ST" 21,36,1,2,6,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"BIT COAL",16183,"0M",1294,,,95,36334,13900,770,42264,15300,1458,40715,15300,1556,45572,16900,817,17481,6500,1591,36715,14100,1438,41179,15700,936,37637,15017,1800,37010,13802,1800,27740,10832,1630,33466,12558,1431,34731,13210,1105,2640,6,52501,"BIT","ST" 21,36,1,4,2,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"LIGHT OIL",16183,"0M",1294,,,95,26,81,0,4,27,0,13,41,0,3,18,0,0,0,0,6,34,0,4,6,0,46,154,0,25,76,0,8,26,0,13,63,0,1,7,0,2640,6,52501,"FO2","GT" 21,36,1,2,2,135,50,"ROCHESTER GAS & ELEC CORP","ROCHESTER 7",0,"LIGHT OIL",16183,"0M",1294,,,95,299,571,1111,90,167,1127,375,690,1162,173,310,1211,249,452,1299,566,1071,1121,331,643,1190,434,833,1065,37,71,1065,373,738,1065,345,643,958,311,571,1102,2642,6,52501,"FO2","ST" 21,36,1,2,6,135,50,"ROCHESTER GAS & ELEC CORP","ROCHESTER 7",0,"BIT COAL",16183,"0M",1294,,,95,66357,27700,114902,86515,35300,90431,90609,36600,83204,137634,53400,75835,121093,47500,85250,104898,43000,113923,112687,47700,112973,116634,48507,127749,110993,45157,153399,77990,33362,173353,81051,33064,173047,90029,35948,150667,2642,6,52501,"BIT","ST" 21,36,1,4,2,135,60,"ROCHESTER GAS & ELEC CORP","ROCHESTER 9",0,"LIGHT OIL",16183,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2644,6,52501,"FO2","GT" 21,36,1,4,9,135,60,"ROCHESTER GAS & ELEC CORP","ROCHESTER 9",0,"NAT GAS",16183,"0M",1294,,,95,26,383,0,2,74,0,14,216,0,4,174,0,0,0,0,8,290,0,17,280,0,3,89,0,24,381,0,0,0,0,3,98,0,8,143,0,2644,6,52501,"NG","GT" 21,36,5,3,2,578,5,"FREEPORT (VILLAGE OF)","PLANT NO 2",0,"LIGHT OIL",6775,"0M",1294,,,95,1463,3067,3172,1434,3271,2622,413,1557,2551,-162,121,3525,-118,217,5782,984,2264,6164,3712,7100,3595,3729,7301,5720,584,1625,6684,895,1423,5789,787,2037,3752,1869,3903,3213,2679,6,51057,"FO2","IC" 21,36,5,4,2,578,5,"FREEPORT (VILLAGE OF)","PLANT NO 2",0,"LIGHT OIL",6775,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,12,0,13,58,0,18,95,0,0,0,0,0,0,0,0,0,0,0,0,0,2679,6,51057,"FO2","GT" 21,36,5,3,2,578,10,"FREEPORT (VILLAGE OF)","PLANT NO 1",0,"LIGHT OIL",6775,"0M",1294,,,95,182,658,1479,376,1032,1630,468,1254,1391,320,920,1697,251,803,1542,452,1093,1119,571,1281,1220,740,1757,1321,639,1551,1424,175,575,1295,402,1078,1704,465,1231,1436,2678,6,51057,"FO2","IC" 21,36,5,1,,586,1,"GOUVERNEUR (CITY OF)","GOUVERNEUR",0,,7422,"0A",1294,,,95,46,0,0,92,0,0,47,0,0,50,0,0,50,0,0,38,0,0,13,0,0,45,0,0,29,0,0,20,0,0,26,0,0,41,0,0,2680,6,51137,"WAT","HY" 21,36,5,3,2,599,1,"GREENPORT (CITY OF)","GREENPORT",0,"LIGHT OIL",7630,"0A",1294,,,95,-32,0,183,-32,0,183,-27,0,183,0,2,181,0,0,0,0,1,180,-20,0,180,-4,28,152,-10,14,182,-19,0,182,0,0,182,-1,26,181,2681,6,51177,"FO2","IC" 21,36,5,2,2,624,1,"JAMESTOWN (CITY OF)","S A CARLSON",0,"LIGHT OIL",9645,"0M",1294,,,95,105,273,377,41,102,275,21,59,394,24,59,335,20,54,281,26,64,394,57,144,250,59,144,281,26,66,215,26,69,323,44,114,209,51,136,250,2682,6,51437,"FO2","ST" 21,36,5,2,6,624,1,"JAMESTOWN (CITY OF)","S A CARLSON",0,"BIT COAL",9645,"0M",1294,,,95,17974,10638,3526,17648,10013,3826,11794,7305,3597,9844,5439,3428,9879,6006,2629,11487,6255,2811,13511,7717,2530,13208,7291,3578,9538,5398,3370,10505,6096,2827,12704,7245,3946,16956,10165,3924,2682,6,51437,"BIT","ST" 21,36,5,3,2,675,1,"ROCKVILLE CTR(VILLAGE OF)","ROCKVILLE C",0,"LIGHT OIL",16217,"0M",1294,,,95,105,294,2332,321,741,2091,43,283,1808,-60,82,1726,-18,114,2338,244,637,2368,957,2138,1919,2160,4073,1884,560,1129,2277,20,216,2061,38,213,2151,101,381,1770,2695,6,52509,"FO2","IC" 21,36,5,3,9,675,1,"ROCKVILLE CTR(VILLAGE OF)","ROCKVILLE C",0,"NAT GAS",16217,"0M",1294,,,95,642,7257,0,510,5912,0,15,471,0,0,325,0,-11,282,0,1931,20033,0,4455,46010,0,2523,26516,0,352,4031,0,47,1369,0,46,1025,0,450,5750,0,2695,6,52509,"NG","IC" 21,36,5,3,2,700,5,"SKANEATELES VILLAGE OF","SKANEATELES",0,"LIGHT OIL",17280,"0A",1294,"R",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2697,6,52670,"FO2","IC" 21,36,5,1,,712,1,"SPRINGVILLE (CITY OF)","SPRINGVILLE",0,,17846,"0A",1294,,,95,145,0,0,118,0,0,104,0,0,166,0,0,172,0,0,129,0,0,84,0,0,63,0,0,12,0,0,39,0,0,110,0,0,124,0,0,2698,6,52772,"WAT","HY" 21,36,5,1,,725,1,"WATERTOWN (CITY OF)","WATERTOWN",0,,20188,"0A",1294,,,95,2508,0,0,1826,0,0,2861,0,0,2520,0,0,2042,0,0,715,0,0,684,0,0,252,0,0,458,0,0,1925,0,0,2671,0,0,2141,0,0,2700,6,53199,"WAT","HY" 21,36,9,1,,668,1,"POWER AUTHY OF ST OF N Y","LEWISTON PG",0,"C-PUMPSTG",15296,"0M",1294,,,95,-23392,48481,0,-16321,48107,0,-18062,52914,0,-34170,75041,0,-32754,81523,0,-35246,84639,0,-35971,80543,0,-31970,78905,0,-33926,76500,0,-34404,82531,0,-25619,66689,0,-26848,63831,0,2692,6,52375,"WAT","HY" 21,36,9,2,1,668,1,"POWER AUTHY OF ST OF N Y","FITZPATRICK",0,"NUCLEAR",15296,"0M",1294,,,95,0,0,0,0,0,0,34055,0,0,544665,0,0,562170,0,0,384520,0,0,579310,0,0,577530,0,0,402855,0,0,590100,0,0,572680,0,0,580835,0,0,6110,6,52375,"UR","ST" 21,36,9,1,,668,3,"POWER AUTHY OF ST OF N Y","MOSES NIAG",0,,15296,"0M",1294,,,95,1463973,0,0,1230590,0,0,1418230,0,0,1163933,0,0,1279083,0,0,1132981,0,0,1197133,0,0,1148436,0,0,1021706,0,0,1145560,0,0,1382957,0,0,1354956,0,0,2693,6,52375,"WAT","HY" 21,36,9,2,1,668,3,"POWER AUTHY OF ST OF N Y","INDIAN PT 3",0,"NUCLEAR",15296,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,0,0,434533,0,0,716433,0,0,320544,0,0,0,0,0,0,0,0,-2,0,0,8907,6,52375,"UR","ST" 21,36,9,1,,668,5,"POWER AUTHY OF ST OF N Y","MOSES PR DM",0,,15296,"0M",1294,,,95,524759,0,0,481624,0,0,585412,0,0,549618,0,0,532348,0,0,526743,0,0,545520,0,0,559232,0,0,538635,0,0,554432,0,0,576778,0,0,569302,0,0,2694,6,52375,"WAT","HY" 21,36,9,1,,668,8,"POWER AUTHY OF ST OF N Y","BLENHEIM G",0,"P-PUMPSTG",15296,"0M",1294,,,95,-80117,223900,0,-66116,187582,0,-64757,198518,0,-71547,180530,0,-58305,185571,0,-61293,196731,0,-78558,215353,0,-75753,237341,0,-63547,183628,0,-66325,194141,0,-57795,177791,0,-70135,192222,0,2691,6,52375,"WAT","HY" 21,36,9,2,3,668,15,"POWER AUTHY OF ST OF N Y","POLETTI",0,"HEAVY OIL",15296,"0M",1294,,,95,33400,61649,303226,126069,209523,203682,20403,35475,168236,17269,37577,130679,19806,35708,94972,47803,62254,32718,36004,60668,68293,14149,23707,150452,35247,61190,430389,17481,30727,459549,62862,110242,349307,252627,421942,245156,2491,6,52375,"FO6","ST" 21,36,9,2,9,668,15,"POWER AUTHY OF ST OF N Y","POLETTI",0,"NAT GAS",15296,"0M",1294,,,95,99454,1128061,0,99940,1020449,0,202945,2167293,0,211435,2738075,0,258894,2862705,0,324525,2604689,0,262599,2721610,0,310920,3222176,0,205757,2168448,0,224611,2374781,0,128580,1368464,0,2466,25078,0,2491,6,52375,"NG","ST" 21,36,9,1,,668,20,"POWER AUTHY OF ST OF N Y","ASHOKAN",0,,15296,"0M",1294,,,95,1615,0,0,587,0,0,1045,0,0,2214,0,0,2450,0,0,2277,0,0,2117,0,0,2126,0,0,1756,0,0,1286,0,0,1083,0,0,1303,0,0,88,6,52375,"WAT","HY" 21,36,9,1,,668,25,"POWER AUTHY OF ST OF N Y","KENSICO",0,,15296,"0M",1294,,,95,802,0,0,73,0,0,0,0,0,1521,0,0,150,0,0,271,0,0,1411,0,0,1244,0,0,1418,0,0,1191,0,0,880,0,0,0,0,0,650,6,52375,"WAT","HY" 21,36,9,1,,668,30,"POWER AUTHY OF ST OF N Y","JARVIS",0,,15296,"0M",1294,,,95,4048,0,0,2165,0,0,2416,0,0,2485,0,0,1720,0,0,1501,0,0,1162,0,0,1003,0,0,575,0,0,2833,0,0,5091,0,0,2476,0,0,808,6,52375,"WAT","HY" 21,36,9,1,,668,35,"POWER AUTHY OF ST OF N Y","CRESCENT",0,,15296,"0M",1294,,,95,6303,0,0,4034,0,0,7316,0,0,4624,0,0,3019,0,0,2031,0,0,104,0,0,713,0,0,703,0,0,3132,0,0,6120,0,0,4690,0,0,2685,6,52375,"WAT","HY" 21,36,9,1,,668,40,"POWER AUTHY OF ST OF N Y","VISCHER FER",0,,15296,"0M",1294,,,95,5945,0,0,3714,0,0,6024,0,0,4504,0,0,2789,0,0,1833,0,0,986,0,0,123,0,0,654,0,0,2259,0,0,5980,0,0,4591,0,0,2686,6,52375,"WAT","HY" 21,36,9,5,9,668,45,"POWER AUTHY OF ST OF N Y","FLYNN",0,"WASTE HT",15296,"0M",1294,,,95,24819,192100,0,17369,134483,0,27383,211172,0,18948,146928,0,26056,199854,0,24430,188777,0,23492,184084,0,25126,194127,0,24424,188668,0,23749,183457,0,20261,158951,0,19720,154115,0,7314,6,52375,"WH","CC" 21,36,9,6,2,668,45,"POWER AUTHY OF ST OF N Y","FLYNN",0,"LIGHT OIL",15296,"0M",1294,,,95,7722,10369,101959,21462,28859,72145,0,0,72242,14,20,72083,0,0,72104,0,0,72094,0,0,72044,0,0,72052,0,0,72062,157,211,71873,9447,12866,58992,27271,36998,78070,7314,6,52375,"FO2","CT" 21,36,9,6,9,668,45,"POWER AUTHY OF ST OF N Y","FLYNN",0,"NAT GAS",15296,"0M",1294,,,95,74458,576302,0,52111,403450,0,82153,633518,0,56849,440785,0,78170,599562,0,73293,566331,0,71470,552251,0,75381,582382,0,73276,566005,0,71251,550371,0,60784,476853,0,59162,462344,0,7314,6,52375,"NG","CT" 22,34,1,2,2,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,123,81,130,93,0,0,131,0,0,138,14,28,165,67,129,202,80,160,147,5,10,137,40,91,189,0,29,160,0,29,131,4,8,123,2384,3,56513,"FO2","ST" 22,34,1,2,3,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"HEAVY OIL",963,"0M",1294,,181,95,1345,2425,95467,4563,6516,88951,0,0,88951,0,0,88261,0,0,88261,1177,2026,86235,3361,5958,80277,5273,9351,70926,5555,8624,62302,0,0,62302,0,0,62302,0,0,62302,2384,3,56513,"FO6","ST" 22,34,1,2,6,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"BIT COAL",963,"0M",1294,,181,95,29945,12519,39313,35838,15203,23710,8276,3561,20149,0,0,34389,5810,3059,52665,34469,14723,52014,42129,18253,40567,44451,19515,27979,11926,4625,44084,33654,13941,51248,53859,21346,70836,57721,22974,63900,2384,3,56513,"BIT","ST" 22,34,1,2,9,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"NAT GAS",963,"0M",1294,,181,95,1491,16310,0,0,0,0,944,9940,0,1878,22040,0,11307,122240,0,11062,117040,0,27862,302860,0,29442,321050,0,12534,120040,0,807,8090,0,1552,15370,0,0,0,0,2384,3,56513,"NG","ST" 22,34,1,4,2,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"LIGHT OIL",963,"0M",1294,,181,95,-8,0,770,27,44,729,14,39,690,20,103,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,0,2384,3,56513,"FO2","GT" 22,34,1,4,9,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"NAT GAS",963,"0M",1294,,181,95,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,629,6657,0,3831,41649,0,3649,39793,0,1027,14649,0,628,9167,0,1061,10505,0,694,6875,0,2384,3,56513,"NG","GT" 22,34,1,4,2,24,2,"ATLANTIC CITY ELEC CO","MISSOURI AV",0,"LIGHT OIL",963,"0M",1294,,181,95,-4,100,9869,278,791,9635,3,53,9582,-21,5,9576,-17,8,9568,177,455,9113,2101,5546,7361,1882,5382,8451,605,2439,10201,-18,16,10185,-16,19,10167,2,70,10097,2383,3,56513,"FO2","GT" 22,34,1,2,2,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"LIGHT OIL",963,"0M",1294,,181,95,510,999,1734,317,596,1818,213,395,1756,107,200,1734,125,224,1843,424,778,1734,424,814,1508,552,1027,1647,500,1086,1588,450,958,1654,643,1122,1377,242,442,1435,2378,3,56513,"FO2","ST" 22,34,1,2,3,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"HEAVY OIL",963,"0M",1294,,181,95,4583,8307,99579,7833,13643,103560,0,0,103560,0,0,103560,0,0,103560,8731,14731,88829,37756,66914,51324,29729,50813,69931,850,2842,113855,18800,33751,80103,0,0,80103,15770,26499,87607,2378,3,56513,"FO6","ST" 22,34,1,2,6,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"BIT COAL",963,"0M",1294,,181,95,68381,30282,165387,127521,54088,125492,123787,53379,95025,85963,36061,88754,176115,72435,61413,155554,64926,62658,185411,80134,49009,173888,73305,41509,130330,53650,71904,83030,32962,118367,145947,62033,109160,196038,81549,81843,2378,3,56513,"BIT","ST" 22,34,1,3,2,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,0,5,11,0,0,0,0,0,0,0,0,0,0,12,23,0,133,257,0,321,597,0,5,10,0,0,0,0,0,0,0,0,0,0,2378,3,56513,"FO2","IC" 22,34,1,4,2,24,20,"ATLANTIC CITY ELEC CO","MIDDLE STA",0,"LIGHT OIL",963,"0M",1294,,181,95,-834,144,15410,-227,1590,15128,-1342,459,14669,-815,159,14510,-333,16,14494,-558,315,9113,2009,5421,12193,2243,7786,14637,-670,677,15327,-729,232,15284,-745,423,15069,-730,254,14814,2382,3,56513,"FO2","GT" 22,34,1,4,2,24,25,"ATLANTIC CITY ELEC CO","CEDAR STA",0,"LIGHT OIL",963,"0M",1294,,181,95,-474,179,21675,-321,918,21875,-42,70,21804,-546,56,21748,-110,38,21710,62,61,21650,3843,9672,14702,3756,10444,18151,-253,1075,20407,-631,431,21246,-535,219,21027,-679,322,20705,2380,3,56513,"FO2","GT" 22,34,1,4,2,24,30,"ATLANTIC CITY ELEC CO","CARLL CORNR",0,"LIGHT OIL",963,"0M",1294,,181,95,-28,8,13554,78,379,13175,-43,0,13175,-20,0,13175,-965,8,13167,-121,166,13002,1394,2899,10102,1615,4499,9171,-32,0,13713,-16,0,14849,-44,0,14849,49,332,14517,2379,3,56513,"FO2","GT" 22,34,1,4,9,24,30,"ATLANTIC CITY ELEC CO","CARLL CORNR",0,"NAT GAS",963,"0M",1294,,181,95,35,1120,0,452,8170,0,-76,50,0,-19,1010,0,73,2450,0,835,15970,0,6072,93380,0,5324,82370,0,-117,28460,0,861,14250,0,-44,7170,0,172,150,0,2379,3,56513,"NG","GT" 22,34,1,4,2,24,32,"ATLANTIC CITY ELEC CO","MICKETON ST",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8008,3,56513,"FO2","GT" 22,34,1,4,9,24,32,"ATLANTIC CITY ELEC CO","MICKETON ST",0,"NAT GAS",963,"0M",1294,,181,95,665,11020,0,1084,16250,0,714,11030,0,1017,15170,0,334,6070,0,2355,35610,0,9801,143090,0,8665,129480,0,2856,42750,0,30,1480,0,2277,33340,0,276,5380,0,8008,3,56513,"NG","GT" 22,34,1,4,2,24,33,"ATLANTIC CITY ELEC CO","CUMBERLAND",0,"LIGHT OIL",963,"0M",1294,,181,95,-76,0,18141,-10,0,18141,-38,0,18141,-31,0,18141,-30,0,18141,0,0,18141,5894,12888,17367,7323,16647,12470,3,249,14661,0,0,17077,-158,198,17249,60,412,16838,5083,3,56513,"FO2","GT" 22,34,1,4,9,24,33,"ATLANTIC CITY ELEC CO","CUMBERLAND",0,"NAT GAS",963,"0M",1294,,181,95,-76,0,0,-10,0,0,-38,0,0,-31,0,0,0,0,0,-27,130,0,342,4020,0,16,200,0,1,380,0,-93,0,0,0,0,0,101,3810,0,5083,3,56513,"NG","GT" 22,34,1,4,2,24,35,"ATLANTIC CITY ELEC CO","MANTU DEPOT",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,53843,0,0,50861,0,0,80853,0,0,80853,0,0,80853,0,0,80853,0,0,58245,0,0,12871,0,0,12871,0,0,52645,0,0,52645,0,0,82122,8803,3,56513,"FO2","GT" 22,34,1,4,3,24,40,"ATLANTIC CITY ELEC CO","MANTU DEPOT",0,"HEAVY OIL",963,"0M",1294,,181,95,0,0,128847,0,0,111223,0,0,111223,0,0,111223,0,0,111223,0,0,111223,0,0,81814,0,0,111865,0,0,111865,0,0,115694,0,0,115694,0,0,131074,8804,3,56513,"FO6","GT" 22,34,1,4,2,24,45,"ATLANTIC CITY ELEC CO","SHERMAN AVE",0,"LIGHT OIL",963,"0M",1294,,181,95,70,186,14708,-45,0,14708,-30,0,14708,0,0,14708,-11,0,14708,0,0,14708,0,0,14708,-190,0,14708,0,0,14708,0,0,14708,76,193,14515,232,590,14513,7288,3,56513,"FO2","GT" 22,34,1,4,9,24,45,"ATLANTIC CITY ELEC CO","SHERMAN AVE",0,"NAT GAS",963,"0M",1294,,181,95,1386,19950,0,-45,0,0,-30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-190,0,0,0,0,0,0,0,0,1704,23780,0,2984,41500,0,7288,3,56513,"NG","GT" 22,34,1,2,1,50,1,"GPU NUCLEAR CORP","OYSTER CRK",0,"NUCLEAR",7423,"0M",1294,,,95,471880,0,0,400185,0,0,466040,0,0,457427,0,0,440064,0,0,447364,0,0,438119,0,0,420825,0,0,447572,0,0,468215,0,0,428423,0,0,307964,0,0,2388,3,58850,"UR","ST" 22,34,1,1,,78,5,"JERSEY CENTRAL PWR & LGT","YARDS CR JO",0,"P-PUMPSTG",9726,"0M",1294,,,95,-9476,31075,0,-6121,19602,0,-8606,30644,0,-9596,30043,0,-9800,36086,0,-15417,52655,0,-13938,46076,0,-11848,42668,0,-7525,27636,0,0,0,0,0,0,0,-2205,5358,0,6522,3,56512,"WAT","HY" 22,34,1,4,2,78,7,"JERSEY CENTRAL PWR & LGT","GLEN GARDNR",0,"LIGHT OIL",9726,"0M",1294,,,95,357,1074,17830,457,1242,16588,29,247,16340,30,141,16199,0,0,16199,360,1062,15138,0,0,15138,0,0,15138,149,445,14693,21,60,14633,69,223,14409,10,63,16838,8227,3,56512,"FO2","GT" 22,34,1,4,9,78,7,"JERSEY CENTRAL PWR & LGT","GLEN GARDNR",0,"NAT GAS",9726,"0M",1294,,,95,1,10,0,31,485,0,2,90,0,0,0,0,0,0,0,698,11690,0,15562,248730,0,18982,309960,0,4246,71580,0,3046,50662,0,1111,20594,0,10,377,0,8227,3,56512,"NG","GT" 22,34,1,2,3,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"HEAVY OIL",9726,"0M",1294,,,95,268,611,153901,2150,4403,149484,0,0,149488,0,0,149544,0,0,149379,0,0,150080,0,0,150051,0,0,149974,0,0,150075,0,0,149949,0,0,149926,8990,12417,137518,2393,3,56512,"FO6","ST" 22,34,1,2,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"NAT GAS",9726,"0M",1294,,,95,1658,32084,0,198,3865,0,-452,0,0,-364,0,0,-363,0,0,6011,80854,0,28213,364986,0,24888,306021,0,915,14545,0,340,8670,0,825,13717,0,331,2840,0,2393,3,56512,"NG","ST" 22,34,1,4,2,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"LIGHT OIL",9726,"0M",1294,,,95,150,431,0,803,2747,0,39,127,0,0,0,0,0,0,0,1,8,0,1,3,0,791,2604,0,31,88,0,0,0,0,0,0,0,0,0,0,2393,3,56512,"FO2","GT" 22,34,1,4,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"NAT GAS",9726,"0M",1294,,,95,1,16,0,0,0,0,1,15,0,0,0,0,0,0,0,3,79,0,2862,50800,0,6493,121452,0,911,15880,0,4,174,0,979,364,0,29,249,0,2393,3,56512,"NG","GT" 22,34,1,5,2,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"LIGHT OIL",9726,"0M",1294,,,95,728,0,0,3136,0,0,1259,0,0,1612,0,0,-587,0,0,5741,0,0,26058,0,0,28272,0,0,20554,0,0,8047,0,0,19296,0,0,18926,0,0,2393,3,56512,"FO2","CC" 22,34,1,5,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"WASTE HT",9726,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2393,3,56512,"NG","CC" 22,34,1,6,2,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"LIGHT OIL",9726,"0M",1294,,,95,1147,2566,252704,5572,11989,236313,1136,2545,232067,367,826,230086,0,0,229824,2660,6112,221348,82,189,219853,2038,4709,211204,942,1977,207539,163,373,205587,83,183,203671,5739,8660,193069,2393,3,56512,"FO2","CT" 22,34,1,6,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"NAT GAS",9726,"0M",1294,,,95,5385,68331,0,8729,106467,0,6306,80671,0,7352,94029,0,-100,0,0,15594,203104,0,61026,877903,0,70864,931070,0,54572,701754,0,24094,329931,0,60664,796524,0,81101,693848,0,2393,3,56512,"NG","CT" 22,34,1,2,3,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"HEAVY OIL",9726,"0M",1294,,,95,4224,7914,90214,19448,37587,72103,7,16,72200,0,0,72163,792,1710,90373,6448,15362,75189,42812,86857,27305,24793,50118,55888,1650,3646,52242,0,0,71301,7,18,90540,10844,23847,66865,2390,3,56512,"FO6","ST" 22,34,1,2,9,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"NAT GAS",9726,"0M",1294,,,95,20137,245800,0,2651,32100,0,6917,89800,0,-727,100,0,-407,2800,0,141,2100,0,224,4900,0,16338,199000,0,1429,25400,0,-704,0,0,2904,47900,0,306,4100,0,2390,3,56512,"NG","ST" 22,34,1,4,2,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"LIGHT OIL",9726,"0M",1294,,,95,93,224,31996,752,2238,29758,0,0,29758,0,0,29758,139,640,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,2390,3,56512,"FO2","GT" 22,34,1,4,9,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"NAT GAS",9726,"0M",1294,,,95,1500,19800,0,1294,21300,0,831,12100,0,898,13300,0,187,4800,0,2507,37100,0,16534,266200,0,24165,379300,0,3245,51100,0,2451,37300,0,265,3800,0,22,300,0,2390,3,56512,"NG","GT" 22,34,1,2,3,78,15,"JERSEY CENTRAL PWR & LGT","WERNER",0,"HEAVY OIL",9726,"0M",1294,,,95,259,628,28845,5405,11437,18060,1926,4703,13792,-265,311,13764,-275,69,13780,1352,3366,28845,10346,20351,28459,7922,15595,12784,55,70,13159,-271,197,32022,-298,546,32144,3509,7954,24818,2385,3,56512,"FO6","ST" 22,34,1,4,2,78,15,"JERSEY CENTRAL PWR & LGT","WERNER",0,"LIGHT OIL",9726,"0M",1294,,,95,44,115,40240,398,1664,37864,88,236,37615,0,0,37379,13,702,36473,348,618,35855,2640,8238,27453,4764,13326,33888,215,290,33598,10,269,33202,0,25,42792,3,278,41910,2385,3,56512,"FO2","GT" 22,34,1,4,2,78,20,"JERSEY CENTRAL PWR & LGT","FORKED RVR",0,"LIGHT OIL",9726,"0M",1294,,,95,0,0,16388,1066,2219,17602,713,1618,15984,0,0,15971,0,0,15989,0,0,15969,0,0,15974,0,0,15980,0,0,15980,5,12,15970,0,0,15994,221,489,15505,7138,3,56512,"FO2","GT" 22,34,1,4,9,78,20,"JERSEY CENTRAL PWR & LGT","FORKED RVR",0,"NAT GAS",9726,"0M",1294,,,95,364,4569,0,160,1908,0,1306,15609,0,1647,20147,0,1120,14174,0,2225,28309,0,12875,162923,0,11844,149957,0,4227,53220,0,1880,23454,0,1759,25611,0,749,9475,0,7138,3,56512,"NG","GT" 22,34,1,2,1,131,1,"PUBLIC SERV ELEC & GAS CO","SALEM",0,"NUCLEAR",15477,"0M",1294,,,95,818199,0,0,47631,0,0,687443,0,0,753981,0,0,247176,0,0,-8310,0,0,-7985,0,0,-5500,0,0,-3133,0,0,-2112,0,0,-2002,0,0,-2639,0,0,2410,3,52414,"UR","ST" 22,34,1,2,1,131,1,"PUBLIC SERV ELEC & GAS CO","HOPE CREEK",0,"NUCLEAR",15477,"0M",1294,,,95,778188,0,0,711976,0,0,566874,0,0,750262,0,0,767051,0,0,742345,0,0,309223,0,0,760021,0,0,742281,0,0,733449,0,0,210606,0,0,-8357,0,0,6118,3,52414,"UR","ST" 22,34,1,2,1,131,2,"PUBLIC SERV ELEC & GAS CO","SALEM",0,"NUCLEAR",15477,"0M",1294,,,95,-17867,0,0,12090,0,0,369001,0,0,767911,0,0,765246,0,0,157494,0,0,-5523,0,0,-7400,0,0,-4042,0,0,-4499,0,0,-4002,0,0,-3638,0,0,2410,3,52414,"UR","ST" 22,34,1,4,2,131,2,"PUBLIC SERV ELEC & GAS CO","BAYONNE 1",0,"LIGHT OIL",15477,"0M",1294,,,95,-19,40,3837,74,282,453,-9,0,453,-44,0,1097,-18,0,3930,-2,0,3930,252,805,3125,134,585,2744,-24,0,3373,-42,0,3744,0,26,3744,-33,25,3898,2397,3,52414,"FO2","GT" 22,34,1,2,9,131,3,"PUBLIC SERV ELEC & GAS CO","BERGEN",0,"NAT GAS",15477,"0M",1294,,,95,-2112,0,0,-2514,3702,0,8759,159907,0,3706,93882,0,82739,754972,0,167861,1271630,0,281448,2131152,0,334990,2488678,0,184434,1379778,0,154884,1248547,0,151551,1232638,0,151368,1176288,0,2398,3,52414,"NG","ST" 22,34,1,4,2,131,3,"PUBLIC SERV ELEC & GAS CO","BERGEN",0,"LIGHT OIL",15477,"0M",1294,,,95,0,0,0,0,0,21622,0,0,21622,0,0,38592,0,0,38592,0,0,61623,2310,3197,102565,0,0,118429,0,0,118396,3765,5367,113029,4832,7091,116664,465,652,117805,2398,3,52414,"FO2","GT" 22,34,1,4,9,131,3,"PUBLIC SERV ELEC & GAS CO","BERGEN",0,"NAT GAS",15477,"0M",1294,,,95,-13,0,0,0,0,0,-6,664,0,-6,644,0,-9,0,0,0,0,0,347,35845,0,505,5090,0,0,0,0,-7,0,0,-7,0,0,-8,0,0,2398,3,52414,"NG","GT" 22,34,1,2,2,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"LIGHT OIL",15477,"0M",1294,,,95,922,1740,0,1014,1683,0,707,1131,0,668,1366,0,0,0,0,911,1528,0,1631,2761,0,200,501,0,0,0,0,0,0,0,0,0,0,0,0,0,2399,3,52414,"FO2","ST" 22,34,1,2,3,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"HEAVY OIL",15477,"0M",1294,,,95,9046,15688,55522,11250,17153,88452,0,0,88452,0,0,88452,-534,0,88437,2949,4515,83916,25958,40320,43596,1803,5025,88868,-545,0,88868,-541,0,88868,-541,0,88868,-573,0,88868,2399,3,52414,"FO6","ST" 22,34,1,4,2,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"LIGHT OIL",15477,"0M",1294,,,95,1176,2221,83444,10436,17314,64340,158,253,93381,55,114,91811,-75,14,91811,57,96,90581,102,173,81026,4040,11276,88868,-82,16,87601,-75,58,86367,29,348,84382,4578,8912,83631,2399,3,52414,"FO2","GT" 22,34,1,4,9,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"NAT GAS",15477,"0M",1294,,,95,60222,642634,0,62039,580691,0,60695,548854,0,9404,108237,0,42361,363894,0,31693,299006,0,63357,605299,0,60174,537745,0,21155,187254,0,17575,158420,0,24156,217635,0,18363,172905,0,2399,3,52414,"NG","GT" 22,34,1,6,2,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"LIGHT OIL",15477,"0M",894,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,144,235,0,0,0,0,0,0,0,0,0,0,0,0,0,2399,3,52414,"FO2","CT" 22,34,1,4,2,131,7,"PUBLIC SERV ELEC & GAS CO","EDISON",0,"LIGHT OIL",15477,"0M",1294,,,95,152,366,106308,281,513,105795,252,403,105392,7,135,105257,0,0,105257,88,644,104610,675,1783,102827,687,1976,100851,0,0,110803,0,0,110803,126,444,110359,742,2206,108153,2400,3,52414,"FO2","GT" 22,34,1,4,9,131,7,"PUBLIC SERV ELEC & GAS CO","EDISON",0,"NAT GAS",15477,"0M",1294,,,95,-33,582,0,70,992,0,-80,345,0,0,0,0,-162,750,0,0,0,0,3046,44211,0,2441,36716,0,-100,537,0,120,3310,0,89,2079,0,28,428,0,2400,3,52414,"NG","GT" 22,34,1,4,2,131,8,"PUBLIC SERV ELEC & GAS CO","ESSEX",0,"LIGHT OIL",15477,"0M",1294,,,95,0,0,112211,4598,10660,104446,0,0,104446,0,0,103802,0,0,96326,4,10,91990,0,0,91990,0,0,91990,0,0,112914,2,185,112914,234,400,112327,894,2118,110210,2401,3,52414,"FO2","GT" 22,34,1,4,9,131,8,"PUBLIC SERV ELEC & GAS CO","ESSEX",0,"NAT GAS",15477,"0M",1294,,,95,20171,250330,0,38746,466002,0,28312,330527,0,6195,75506,0,7086,87770,0,17745,236062,0,65291,864255,0,62756,803138,0,18682,243317,0,3599,40505,0,3163,40505,0,1420,2118,0,2401,3,52414,"NG","GT" 22,34,1,2,2,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"LIGHT OIL",15477,"0M",1294,,,95,119,251,0,0,0,0,0,0,0,0,0,0,0,0,0,3,6,0,4,9,0,4,9,0,0,0,0,0,0,0,0,0,0,0,0,0,2403,3,52414,"FO2","ST" 22,34,1,2,3,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"HEAVY OIL",15477,"0M",1294,,,95,11188,21576,147242,40039,87268,59974,0,0,59974,158,379,13064,0,0,13064,0,0,13064,0,0,13064,0,0,0,0,0,0,0,0,0,0,0,0,-2401,3164,109182,2403,3,52414,"FO6","ST" 22,34,1,2,6,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"BIT COAL",15477,"0M",1294,,,95,0,0,239403,0,0,239403,46093,19713,219690,82549,35226,208484,158939,68702,225010,141427,62425,162585,235608,99546,193639,263396,110928,173063,10310,4383,258904,0,0,349753,57703,21908,369380,339660,132744,293504,2403,3,52414,"BIT","ST" 22,34,1,2,9,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"NAT GAS",15477,"0M",1294,,,95,30599,362930,0,7194,97478,0,122788,1378604,0,43966,500739,0,16188,203737,0,20750,232325,0,137870,1458255,0,96187,1102638,0,1254,45160,0,-3375,2793,0,356,3383,0,1493,16683,0,2403,3,52414,"NG","ST" 22,34,1,4,2,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"LIGHT OIL",15477,"0M",1294,,,95,119,251,352215,256,609,34606,-63,0,34606,-54,0,34597,-48,0,34597,0,0,34597,1239,2320,32262,396,2283,29962,-50,0,29962,-46,0,29962,-55,0,29962,-71,0,29959,2403,3,52414,"FO2","GT" 22,34,1,4,9,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"NAT GAS",15477,"0M",1294,,,95,0,0,0,7,103,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,38,0,0,0,0,0,0,0,0,0,0,0,0,0,2403,3,52414,"NG","GT" 22,34,1,2,2,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"LIGHT OIL",15477,"0M",1294,,,95,0,0,0,47,160,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2404,3,52414,"FO2","ST" 22,34,1,2,3,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"HEAVY OIL",15477,"0M",1294,,,95,-1419,0,47358,3162,9747,46218,-1264,0,46218,-811,0,43218,-763,0,46218,2322,7151,47602,25660,53229,45133,22324,46979,41775,-837,0,41775,-758,0,41755,-1135,0,41775,-1308,0,46698,2404,3,52414,"FO6","ST" 22,34,1,4,2,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"LIGHT OIL",15477,"0M",1294,,,95,375,941,65441,656,2205,61502,0,175,60444,-48,459,59831,-54,459,66419,-11,40,64109,2241,5425,58552,1592,6227,53502,-37,0,73227,-117,0,73054,-84,226,71810,-19,331,69761,2404,3,52414,"FO2","GT" 22,34,1,4,9,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"NAT GAS",15477,"0M",1294,,,95,778,10891,0,531,10070,0,-183,586,0,-132,928,0,-131,324,0,1324,24641,0,4064,67350,0,6293,99804,0,-119,0,0,-6,0,0,-8,139,0,-23,0,0,2404,3,52414,"NG","GT" 22,34,1,2,3,131,18,"PUBLIC SERV ELEC & GAS CO","LINDEN",0,"HEAVY OIL",15477,"0M",1294,,,95,-2975,0,169370,18699,47791,121579,1724,8149,41900,-1941,0,88431,-2550,0,88431,1771,15138,11078,59268,130643,95281,51534,115049,125814,-2711,0,128815,-1641,0,126134,-2551,10434,115700,-1747,0,115700,2406,3,52414,"FO6","ST" 22,34,1,4,2,131,18,"PUBLIC SERV ELEC & GAS CO","LINDEN",0,"LIGHT OIL",15477,"0M",1294,,,95,26,253,53370,313,1361,52009,448,1157,50882,3498,6627,44255,6478,14170,30085,0,0,30085,0,0,30085,564,1160,28925,0,0,49924,-37,195,49604,202,372,49037,451,1756,51571,2406,3,52414,"FO2","GT" 22,34,1,4,9,131,18,"PUBLIC SERV ELEC & GAS CO","LINDEN",0,"NAT GAS",15477,"0M",1294,,,95,-96,0,0,43,2616,0,3961,49847,0,1854,18696,0,15141,180135,0,13553,160573,0,33255,393680,0,32192,409006,0,8666,121819,0,8374,103539,0,3980,41596,0,1468,15561,0,2406,3,52414,"NG","GT" 22,34,1,2,6,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"BIT COAL",15477,"0M",1294,,,95,260338,90961,263541,283481,98338,252219,105820,38401,312566,69927,25278,364038,58034,23857,399943,121372,47152,419711,144178,55677,392291,111773,44297,360087,169493,64917,301841,40666,17201,334307,135703,47712,346850,209008,71876,359245,2408,3,52414,"BIT","ST" 22,34,1,2,9,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"NAT GAS",15477,"0M",1294,,,95,15072,160572,0,10698,100608,0,12860,134613,0,17393,171693,0,23606,242604,0,33578,373796,0,130882,1357300,0,110572,1186167,0,12727,142016,0,7184,77196,0,1387,12188,0,362,30224,0,2408,3,52414,"NG","ST" 22,34,1,4,2,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"LIGHT OIL",15477,"0M",1294,,,95,58,452,0,99,166,0,-80,45,0,-80,22,0,-90,0,0,-84,0,0,174,1003,0,1250,2375,0,-74,0,0,-89,0,0,-86,0,0,65,504,0,2408,3,52414,"FO2","GT" 22,34,1,4,9,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"NAT GAS",15477,"0M",1294,,,95,0,0,0,11,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,252,0,0,0,0,0,0,0,0,0,0,0,0,0,2408,3,52414,"NG","GT" 22,34,1,4,2,131,24,"PUBLIC SERV ELEC & GAS CO","NATIONAL PK",0,"LIGHT OIL",15477,"0M",1294,,,95,-7,0,2850,-5,0,2850,-6,0,168,-6,0,167,-7,0,1390,-6,0,3548,-6,0,3548,33,67,3481,-6,0,3481,3,25,3456,2,22,3434,-6,0,3434,2409,3,52414,"FO2","GT" 22,34,1,2,3,131,25,"PUBLIC SERV ELEC & GAS CO","SEWAREN",0,"HEAVY OIL",15477,"0M",1294,,,95,915,2021,98313,16425,33366,104241,341,778,103613,0,0,103613,1016,2372,101241,0,0,101241,128,279,100962,2211,4787,96175,4969,9343,86832,2764,7861,78971,2025,6536,72435,11423,30324,105394,2411,3,52414,"FO6","ST" 22,34,1,2,9,131,25,"PUBLIC SERV ELEC & GAS CO","SEWAREN",0,"NAT GAS",15477,"0M",1294,,,95,30968,435199,0,63113,771440,0,13222,183529,0,3478,58360,0,10032,124996,0,30077,426413,0,86401,1129748,0,69754,958979,0,7865,101861,0,-868,15021,0,1354,26896,0,943,15389,0,2411,3,52414,"NG","ST" 22,34,1,4,2,131,25,"PUBLIC SERV ELEC & GAS CO","SEWAREN",0,"LIGHT OIL",15477,"0M",1294,,,95,51,704,34543,121,263,34280,-71,0,34280,-133,0,34280,-130,0,34280,-22,30,38575,438,1523,37052,831,2943,34109,-123,0,34109,-124,0,34109,23,82,34027,80,208,33819,2411,3,52414,"FO2","GT" 22,34,1,4,9,131,25,"PUBLIC SERV ELEC & GAS CO","SEWAREN",0,"NAT GAS",15477,"0M",1294,,,95,0,0,0,2,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,2411,3,52414,"NG","GT" 22,34,1,4,2,131,27,"PUBLIC SERV ELEC & GAS CO","SALEM JO",0,"LIGHT OIL",15477,"0M",1294,,,95,-18,3,16640,85,264,16528,-5,49,16528,-14,28,17721,-15,0,17581,0,0,17581,398,125,32262,152,455,31807,-6,0,16295,2764,7861,78971,-14,0,14970,54,170,12261,2410,3,52414,"FO2","GT" 22,34,5,2,3,645,1,"VINELAND (CITY OF)","HOWARD DOWN",0,"HEAVY OIL",19856,"0M",1294,,,95,0,0,24261,803,2139,23900,486,1664,22238,294,1029,21209,2656,6649,16338,890,2102,21318,4629,11673,9645,3246,7549,10200,0,0,10347,0,0,10397,0,0,10320,2429,6628,6595,2434,3,53140,"FO6","ST" 22,34,5,2,6,645,1,"VINELAND (CITY OF)","HOWARD DOWN",0,"BIT COAL",19856,"0M",1294,,,95,7844,4284,7953,7472,4143,6788,3415,1988,9938,0,0,9849,2186,1111,8737,7260,3928,6843,6950,3861,9709,3584,3042,7673,388,209,9251,1581,798,8709,5259,2954,5755,3724,2035,5931,2434,3,53140,"BIT","ST" 22,34,5,4,2,645,10,"VINELAND (CITY OF)","WEST",0,"LIGHT OIL",19856,"0M",1294,,,95,74,199,9430,353,887,8543,45,128,8417,0,0,8417,0,0,8417,315,901,7389,2079,6227,5808,2543,5808,3568,151,900,3206,36,73,3061,6,80,2981,129,339,2818,6776,3,53140,"FO2","GT" 23,42,1,2,1,52,1,"DUQUESNE LGT CO","B VALLEY",0,"NUCLEAR",5487,"0M",1294,,,95,17240,0,0,-6300,0,0,367420,0,0,596300,0,0,615700,0,0,589500,0,0,604900,0,0,561482,0,0,591490,0,0,614130,0,0,582150,0,0,452460,0,0,6040,1,50827,"UR","ST" 23,42,1,2,1,52,2,"DUQUESNE LGT CO","B VALLEY",0,"NUCLEAR",5487,"0M",1294,,,95,610052,0,0,558397,0,0,377306,0,0,-2502,0,0,358108,0,0,592883,0,0,609130,0,0,296500,0,0,598381,0,0,622939,0,0,557126,0,0,601216,0,0,6040,1,50827,"UR","ST" 23,42,1,2,6,52,5,"DUQUESNE LGT CO","CHESWICK",0,"BIT COAL",5487,"0M",1294,,,95,355392,137291,317861,331090,126419,307477,249582,96410,291500,17430,8507,318494,299247,119774,288017,339756,132948,261655,256633,102182,276100,296500,118467,263069,297357,118900,201464,311698,126308,186349,351416,139379,173501,306740,121467,188856,8226,1,50827,"BIT","ST" 23,42,1,2,9,52,5,"DUQUESNE LGT CO","CHESWICK",0,"NAT GAS",5487,"0M",1294,,,95,1427,13928,0,331,3531,0,1002,9220,0,1172,14418,0,1806,18532,0,1364,13508,0,1549,14158,0,2639,26716,0,2701,26104,0,1881,19412,0,1411,14459,0,1232,12044,0,8226,1,50827,"NG","ST" 23,42,1,2,2,52,13,"DUQUESNE LGT CO","ELRAMA",0,"LIGHT OIL",5487,"0M",1294,,,95,1941,3768,1508,1330,2779,1204,1589,3262,979,1253,2681,1633,1006,2112,1445,803,1634,1382,1389,3062,1487,1368,2719,1591,1136,2443,1644,986,1991,1570,898,1981,1539,1195,2526,782,3098,1,50827,"FO2","ST" 23,42,1,2,6,52,13,"DUQUESNE LGT CO","ELRAMA",0,"BIT COAL",5487,"0M",1294,,,95,240736,111790,172599,220356,101044,171860,197080,90684,191628,207597,94541,190808,200161,89633,171686,159939,73949,169611,197010,95313,150545,226664,107371,139013,188236,90982,151708,97661,45101,189092,223530,101521,181601,237771,106889,154459,3098,1,50827,"BIT","ST" 23,42,1,2,2,52,15,"DUQUESNE LGT CO","F PHILLIPS",0,"LIGHT OIL",5487,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3099,1,50827,"FO2","ST" 23,42,1,2,6,52,15,"DUQUESNE LGT CO","F PHILLIPS",0,"BIT COAL",5487,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3099,1,50827,"BIT","ST" 23,42,1,4,2,52,27,"DUQUESNE LGT CO","BRUNOT ILND",0,"LIGHT OIL",5487,"0M",1294,,,95,-733,567,24237,-801,692,23545,-848,9,23536,-662,220,23316,-662,0,23316,-579,460,22856,1005,4706,18150,5198,15710,17539,-587,0,19993,-604,0,19993,-808,0,19993,-777,582,20583,3096,1,50827,"FO2","GT" 23,42,1,5,2,52,27,"DUQUESNE LGT CO","BRUNOT ILND",0,"LIGHT OIL",5487,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3096,1,50827,"FO2","CC" 23,42,1,6,2,52,27,"DUQUESNE LGT CO","BRUNOT ILND",0,"LIGHT OIL",5487,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3096,1,50827,"FO2","CT" 23,42,1,2,1,100,1,"GPU NUCLEAR CORP","3 MI ISLAND",0,"NUCLEAR",7423,"0M",1294,,,95,611412,0,0,552321,0,0,609022,0,0,586279,0,0,599986,0,0,573186,0,0,584601,0,0,586748,0,0,144888,0,0,338797,0,0,590553,0,0,610193,0,0,8011,3,58850,"UR","ST" 23,42,1,1,,114,15,"METROPOLITAN EDISON CO","YORK HAVEN",0,,12390,"0M",1294,,,95,8890,0,0,9724,0,0,12867,0,0,10005,0,0,12383,0,0,12781,0,0,10950,0,0,1654,0,0,3141,0,0,8336,0,0,12409,0,0,9435,0,0,3117,3,54020,"WAT","HY" 23,42,1,4,2,114,24,"METROPOLITAN EDISON CO","HAMILTON",0,"LIGHT OIL",12390,"0M",1294,,,95,0,44,4643,342,858,4499,38,102,4397,28,68,4330,-2,0,4330,0,0,4330,432,1398,2932,1179,2884,2369,143,356,3085,0,0,3085,47,129,3491,190,511,4606,3109,3,54020,"FO2","GT" 23,42,1,4,2,114,25,"METROPOLITAN EDISON CO","HUNTERSTOWN",0,"LIGHT OIL",12390,"0M",1294,,,95,44,117,8244,904,2365,9808,139,361,9448,53,150,8583,0,1,8583,0,0,8582,1,3,8579,16,42,8895,2,7,9067,19,50,9017,7,22,8995,281,706,8304,3110,3,54020,"FO2","GT" 23,42,1,4,9,114,25,"METROPOLITAN EDISON CO","HUNTERSTOWN",0,"NAT GAS",12390,"0M",1294,,,95,1133,17680,0,1048,17830,0,7,180,0,729,13320,0,504,8500,0,1339,19320,0,3546,41940,0,6556,84500,0,3434,53290,0,1503,23470,0,1262,20430,0,1780,27282,0,3110,3,54020,"NG","GT" 23,42,1,4,2,114,27,"METROPOLITAN EDISON CO","MOUNTAIN",0,"LIGHT OIL",12390,"0M",1294,,,95,71,188,6429,964,2523,5157,48,126,5031,4,12,5912,0,0,5912,0,1,5911,0,2,5910,0,0,5910,36,175,5913,0,0,6270,0,2,6804,367,1234,6575,3111,3,54020,"FO2","GT" 23,42,1,4,9,114,27,"METROPOLITAN EDISON CO","MOUNTAIN",0,"NATURAL G",12390,"0M",1294,,,95,297,5940,0,476,8360,0,443,6390,0,469,7770,0,208,3710,0,328,5630,0,1743,26610,0,3541,53620,0,894,14500,0,170,2840,0,572,8810,0,1301,18260,0,3111,3,54020,"NG","GT" 23,42,1,4,2,114,31,"METROPOLITAN EDISON CO","ORRTANNA",0,"LIGHT OIL",12390,"0M",1294,,,95,48,116,4401,346,875,4418,88,218,4200,26,66,4135,0,0,4135,0,0,4135,593,1575,2917,1316,3402,1824,159,409,2667,26,65,3674,0,7,5453,229,581,4898,3112,3,54020,"FO2","GT" 23,42,1,2,2,114,32,"METROPOLITAN EDISON CO","PORTLAND",0,"LIGHT OIL",12390,"0M",1294,,,95,1210,2219,56721,612,1085,51313,671,1307,49944,1587,3013,45429,432,812,42830,190,349,41500,955,1701,39591,434,783,37499,499,951,35882,161,335,60358,2066,4127,57233,222,397,56872,3113,3,54020,"FO2","ST" 23,42,1,2,6,114,32,"METROPOLITAN EDISON CO","PORTLAND",0,"BIT COAL",12390,"0M",1294,,,95,132808,53399,109521,182821,71489,66961,66747,28478,108572,54477,22914,130642,57698,23989,150827,144768,58703,134821,179344,71804,85267,178789,70856,51093,83228,35019,46481,11852,5425,93489,58689,25583,120272,183470,71507,85462,3113,3,54020,"BIT","ST" 23,42,1,4,2,114,32,"METROPOLITAN EDISON CO","PORTLAND",0,"LIGHT OIL",12390,"0M",1294,,,95,77,142,2671,1704,3020,3973,50,98,3938,790,1501,3938,951,1787,3938,662,1215,3705,281,501,3412,727,1310,3410,2125,4049,3409,1,3,3407,122,245,3406,1839,3288,3291,3113,3,54020,"FO2","GT" 23,42,1,4,9,114,32,"METROPOLITAN EDISON CO","PORTLAND",0,"NAT GAS",12390,"0M",1294,,,95,7,72,0,1596,15661,0,2973,32178,0,2051,22130,0,3978,42351,0,12035,125176,0,33248,336088,0,28922,295790,0,5224,56353,0,750,8818,0,2029,22553,0,597,5955,0,3113,3,54020,"NG","GT" 23,42,1,4,2,114,34,"METROPOLITAN EDISON CO","SHAWNEE",0,"LIGHT OIL",12390,"0M",1294,,,95,73,171,6099,265,687,6483,16,27,6472,20,60,6412,44,112,6301,35,90,6211,135,371,5839,869,2245,3594,68,177,3417,0,0,4845,68,117,5622,0,0,5679,3114,3,54020,"FO2","GT" 23,42,1,2,2,114,35,"METROPOLITAN EDISON CO","TITUS",0,"LIGHT OIL",12390,"0M",1294,,,95,102,198,885,73,138,926,387,772,869,487,933,1186,472,874,1205,168,334,1228,294,559,1026,220,409,617,291,530,803,369,699,998,321,614,560,227,431,880,3115,3,54020,"FO2","ST" 23,42,1,2,6,114,35,"METROPOLITAN EDISON CO","TITUS",0,"BIT COAL",12390,"0M",1294,,,95,73788,31030,99475,51570,21149,100003,47245,20126,101173,38103,15904,107895,66063,26455,103387,95872,40846,84743,118659,48529,57453,118052,46687,37871,105060,41177,26170,83805,34936,50826,103029,42373,57757,128752,52966,41217,3115,3,54020,"BIT","ST" 23,42,1,4,2,114,35,"METROPOLITAN EDISON CO","TITUS",0,"LIGHT OIL",12390,"0M",1294,,,95,58,114,4000,793,1492,4117,0,0,4117,1,2,4115,0,0,4115,4,8,4106,65,124,3983,133,248,3983,0,0,3983,131,248,3734,20,39,3695,0,0,3755,3115,3,54020,"FO2","GT" 23,42,1,4,9,114,35,"METROPOLITAN EDISON CO","TITUS",0,"NAT GAS",12390,"0M",1294,,,95,53,575,0,23,240,0,80,890,0,60,640,0,52,541,0,22,250,0,1587,16770,0,2936,30250,0,319,3230,0,110,1190,0,149,1590,0,5,60,0,3115,3,54020,"NG","GT" 23,42,1,4,2,114,38,"METROPOLITAN EDISON CO","TOLNA",0,"LIGHT OIL",12390,"0M",1294,,,95,68,175,6400,563,1516,6278,90,224,6054,0,1,6053,0,0,6053,0,0,6053,759,2033,4020,2323,6134,2677,164,447,5438,64,349,6339,62,101,6238,114,281,6229,3116,3,54020,"FO2","GT" 23,42,1,2,2,133,1,"PENNSYLVANIA ELEC CO","CONMAUGH JO",0,"LIGHT OIL",14711,"0M",1294,,250,95,514,827,5361,559,930,4122,454,736,6813,810,1319,5181,459,747,4344,78,121,4153,878,1456,2385,538,892,3017,74,121,5479,0,0,5356,3148,5217,7748,383,627,6559,3118,3,54025,"FO2","ST" 23,42,1,2,6,133,1,"PENNSYLVANIA ELEC CO","CONMAUGH JO",0,"BIT COAL",14711,"0M",1294,,250,95,1122156,419851,722958,925303,359096,640938,1076935,406220,574117,992331,375372,600365,1073542,404411,660222,1082614,409954,586984,1087889,419782,543363,1144736,439047,524854,727433,274855,587632,579871,221827,735222,799742,308937,733868,1107177,421853,608881,3118,3,54025,"BIT","ST" 23,42,1,2,9,133,1,"PENNSYLVANIA ELEC CO","CONMAUGH JO",0,"NAT GAS",14711,"0M",1294,,250,95,1516,13798,0,1026,9654,0,566,5184,0,1707,15719,0,1710,15719,0,264,2319,0,2347,22035,0,3446,32313,0,452,4120,0,258,2408,0,2434,22766,0,571,5283,0,3118,3,54025,"NG","ST" 23,42,1,3,2,133,1,"PENNSYLVANIA ELEC CO","CONMAUGH JO",0,"LIGHT OIL",14711,"0M",1294,,250,95,59,96,0,34,57,0,59,97,0,181,295,0,54,89,0,45,71,0,187,311,0,146,243,0,46,75,0,31,52,0,78,130,0,46,76,0,3118,3,54025,"FO2","IC" 23,42,1,1,,133,5,"PENNSYLVANIA ELEC CO","PINEY",0,,14711,"0M",1294,,250,95,7087,0,0,2980,0,0,8315,0,0,7025,0,0,7405,0,0,7866,0,0,1807,0,0,900,0,0,618,0,0,1506,0,0,5259,0,0,4760,0,0,3124,3,54025,"WAT","HY" 23,42,1,1,,133,13,"PENNSYLVANIA ELEC CO","SENECA JO",0,"C-PUMPSTG",14711,"0M",1294,,250,95,-18038,60718,0,-12762,44459,0,-13759,53339,0,-14476,46086,0,-10189,43886,0,-20535,71955,0,-32632,124316,0,-31819,130160,0,-23462,98242,0,-26851,110227,0,-17180,96885,0,-19235,101307,0,8225,3,54025,"WAT","HY" 23,42,1,4,9,133,17,"PENNSYLVANIA ELEC CO","BLOSSBURG",0,"NAT GAS",14711,"0M",1294,,250,95,-5,0,0,248,3769,0,-4,0,0,0,0,0,0,0,0,0,0,0,502,7485,0,846,9556,0,243,7354,0,-5,0,0,-4,0,0,-4,0,0,3120,3,54025,"NG","GT" 23,42,1,2,2,133,25,"PENNSYLVANIA ELEC CO","HOMER CTYJO",0,"LIGHT OIL",14711,"0M",1294,,250,95,724,1106,10724,239,368,10825,1397,2089,8613,678,1026,8717,2469,3709,5517,3227,5084,7324,1158,1765,5736,474,737,6933,1569,3909,7274,769,1187,8528,7523,12170,9104,4070,6343,6965,3122,3,54025,"FO2","ST" 23,42,1,2,6,133,25,"PENNSYLVANIA ELEC CO","HOMER CTYJO",0,"BIT COAL",14711,"0M",1294,,250,95,1185616,454082,568142,1188794,455176,479305,1210546,457862,391125,1087359,409749,340123,685495,258590,520058,1050104,414471,562956,1147586,445483,356766,1213094,474606,228657,448257,271599,331273,758425,290978,460056,823682,334855,431770,991225,388795,409243,3122,3,54025,"BIT","ST" 23,42,1,2,2,133,45,"PENNSYLVANIA ELEC CO","SEWARD",0,"LIGHT OIL",14711,"0M",1294,,250,95,662,1281,675,306,595,618,281,535,616,145,261,535,122,305,409,432,940,535,285,552,414,274,531,585,416,789,657,463,878,671,432,834,724,340,657,600,3130,3,54025,"FO2","ST" 23,42,1,2,6,133,45,"PENNSYLVANIA ELEC CO","SEWARD",0,"BIT COAL",14711,"0M",1294,,250,95,101596,46820,104963,110101,50567,86392,110470,50520,76721,54307,23628,78208,29270,17347,91227,52721,27510,83682,115539,53769,77789,119322,55517,67991,102723,46904,73094,107866,49063,74467,105367,48397,85472,116951,53923,61526,3130,3,54025,"BIT","ST" 23,42,1,2,2,133,48,"PENNSYLVANIA ELEC CO","SHAWVILLE",0,"LIGHT OIL",14711,"0M",1294,,250,95,1123,1920,8833,2602,4605,6882,3250,5700,8490,1312,2317,8459,872,1542,9545,917,1633,7965,912,1584,7411,1122,2141,8065,1665,3195,7890,1607,2973,8086,2444,4275,8035,3504,6399,6379,3131,3,54025,"FO2","ST" 23,42,1,2,6,133,48,"PENNSYLVANIA ELEC CO","SHAWVILLE",0,"BIT COAL",14711,"0M",1294,,250,95,269348,109338,102763,256827,107901,105884,326710,136132,96046,350160,145852,80632,328883,137262,84982,336010,141689,79617,350851,144610,79435,304942,138068,76369,248206,112475,83476,317261,138069,65107,346273,142913,61290,323453,141293,48123,3131,3,54025,"BIT","ST" 23,42,1,3,2,133,48,"PENNSYLVANIA ELEC CO","SHAWVILLE",0,"LIGHT OIL",14711,"0M",1294,,250,95,31,54,764,42,75,689,26,47,797,22,39,757,20,37,721,29,52,669,42,74,740,203,388,705,22,43,662,24,46,763,18,32,731,24,44,819,3131,3,54025,"FO2","IC" 23,42,1,2,2,133,60,"PENNSYLVANIA ELEC CO","WARREN",0,"LIGHT OIL",14711,"0M",1294,,250,95,101,246,375,38,94,281,58,147,313,65,158,336,29,123,391,38,93,297,45,104,725,30,76,657,8,20,637,47,126,511,41,109,402,38,97,482,3132,3,54025,"FO2","ST" 23,42,1,2,6,133,60,"PENNSYLVANIA ELEC CO","WARREN",0,"BIT COAL",14711,"0M",1294,,250,95,23223,13460,34201,30943,18008,26672,17000,10379,34033,20947,11998,35372,16865,16419,30837,28698,16502,23133,35556,19496,14235,32084,18799,17943,18322,10742,21117,17556,10786,25392,16779,10295,31120,32207,19202,23049,3132,3,54025,"BIT","ST" 23,42,1,4,2,133,60,"PENNSYLVANIA ELEC CO","WARREN",0,"LIGHT OIL",14711,"0M",1294,,250,95,2,7,9205,924,2260,9835,124,314,9521,0,1,9519,94,389,9130,154,374,8757,2078,4788,7154,3447,8693,6033,514,1272,7934,0,0,7934,105,276,7658,393,986,9466,3132,3,54025,"FO2","GT" 23,42,1,4,9,133,60,"PENNSYLVANIA ELEC CO","WARREN",0,"NAT GAS",14711,"0M",1294,,250,95,0,10,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3132,3,54025,"NG","GT" 23,42,1,3,2,133,75,"PENNSYLVANIA ELEC CO","BENTON",0,"LIGHT OIL",14711,"0M",1294,"R",250,95,-3,0,0,-2,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3119,3,54025,"FO2","IC" 23,42,1,4,2,133,87,"PENNSYLVANIA ELEC CO","WAYNE",0,"LIGHT OIL",14711,"0M",1294,,250,95,-99,18,20263,508,1505,18758,-92,0,18758,-86,0,18758,-70,1,18757,-54,0,18757,1349,3469,15288,3798,9355,11397,490,1027,13199,-52,0,13199,141,1098,14037,154,691,18031,3134,3,54025,"FO2","GT" 23,42,1,2,2,133,90,"PENNSYLVANIA ELEC CO","KEYSTONE JO",0,"LIGHT OIL",14711,"0M",1294,,250,95,2244,3690,6503,1272,2084,8137,0,0,8969,4533,7554,9207,714,1204,9434,965,1623,9346,2145,3684,9013,3083,5243,9005,923,1553,9324,753,1254,8496,1264,2066,8810,0,0,8724,3136,3,54025,"FO2","ST" 23,42,1,2,6,133,90,"PENNSYLVANIA ELEC CO","KEYSTONE JO",0,"BIT COAL",14711,"0M",1294,,250,95,1102214,423987,311858,582793,225211,453587,563417,222247,605342,809149,315890,648804,1078337,426399,648546,1084349,429852,601163,1034268,420581,454702,938657,378854,582342,1033031,410618,649687,1088547,426659,795799,1058746,408591,711979,1180880,456067,560683,3136,3,54025,"BIT","ST" 23,42,1,3,2,133,90,"PENNSYLVANIA ELEC CO","KEYSTONE JO",0,"LIGHT OIL",14711,"0M",1294,,250,95,349,575,0,349,573,0,34,59,0,204,341,0,100,170,0,35,60,0,207,356,0,870,1480,0,155,262,0,66,110,0,178,291,0,46,86,0,3136,3,54025,"FO2","IC" 23,42,1,2,2,135,1,"PENNSYLVANIA POWER CO","NEW CASTLE",0,"LIGHT OIL",14716,"0M",1294,,,95,157,295,104,61,118,158,276,532,107,184,352,158,327,657,138,250,493,138,176,344,140,152,297,106,171,327,131,192,372,116,117,218,145,156,288,161,3138,1,52289,"FO2","ST" 23,42,1,2,6,135,1,"PENNSYLVANIA POWER CO","NEW CASTLE",0,"BIT COAL",14716,"0M",1294,,,95,167856,72057,99647,154279,67443,98213,130534,58811,77871,125682,55847,86191,67772,31976,90113,98557,45757,95531,118202,53998,90022,140629,64008,74786,116270,52148,73949,88872,40250,91385,140709,61724,82726,150687,61716,63171,3138,1,52289,"BIT","ST" 23,42,1,3,2,135,1,"PENNSYLVANIA POWER CO","NEW CASTLE",0,"LIGHT OIL",14716,"0M",1294,,,95,22,56,1012,6,7,1012,7,22,863,1,3,991,4,9,875,1,7,1095,68,120,980,348,650,769,21,48,895,12,25,914,9,4,978,1,5,846,3138,1,52289,"FO2","IC" 23,42,1,2,2,135,12,"PENNSYLVANIA POWER CO","MANSFLD JO",0,"LIGHT OIL",14716,"0M",1294,,,95,1007,1692,29171,723,1155,27861,1506,2563,20232,2103,3540,37005,3377,5991,30895,1363,2382,49447,1396,2364,47084,1578,2757,44327,1128,2011,40209,852,1442,3868,625,1076,37528,5978,10675,26852,6094,1,52289,"FO2","ST" 23,42,1,2,6,135,12,"PENNSYLVANIA POWER CO","MANSFLD JO",0,"BIT COAL",14716,"0M",1294,,,95,1000025,404047,691181,900788,348267,715644,764097,314521,842427,1018498,413184,894368,1102944,466816,876286,1268001,530524,794307,1358940,556273,756092,1346419,567300,719388,816664,349651,802659,889136,365870,922037,897824,373667,888666,766127,330985,1035343,6094,1,52289,"BIT","ST" 23,42,1,2,1,137,1,"PENNSYLVANIA PWR & LGT CO","SUSQUEHANNA",0,"NUCLEAR",14715,"0M",1294,,,95,784581,0,0,707744,0,0,597267,0,0,-6623,0,0,455272,0,0,764570,0,0,800626,0,0,807866,0,0,781516,0,0,816456,0,0,256044,0,0,663200,0,0,6103,3,52288,"UR","ST" 23,42,1,2,1,137,2,"PENNSYLVANIA PWR & LGT CO","SUSQUEHANNA",0,"NUCLEAR",14715,"0M",1294,,,95,819260,0,0,744537,0,0,809836,0,0,572523,0,0,800757,0,0,763767,0,0,784244,0,0,790491,0,0,327567,0,0,158303,0,0,801099,0,0,820399,0,0,6103,3,52288,"UR","ST" 23,42,1,1,,137,8,"PENNSYLVANIA PWR & LGT CO","HOLTWOOD",0,,14715,"0M",1294,,,95,63368,0,0,44815,0,0,66767,0,0,61784,0,0,47914,0,0,44060,0,0,38745,0,0,15029,0,0,8892,0,0,3395,0,0,54454,0,0,52183,0,0,3145,3,52288,"WAT","HY" 23,42,1,2,2,137,8,"PENNSYLVANIA PWR & LGT CO","HOLTWOOD",0,"LIGHT OIL",14715,"0M",1294,,,95,2,293,307,92,564,453,76,299,502,6,12,486,9,103,375,64,316,412,48,185,402,32,69,513,156,340,542,105,324,374,44,96,457,71,158,639,3145,3,52288,"FO2","ST" 23,42,1,2,4,137,8,"PENNSYLVANIA PWR & LGT CO","HOLTWOOD",0,"ANTH COAL",14715,"0M",1294,,,95,16657,10967,92177,28295,20094,81874,38352,28374,83310,37995,26901,93553,28887,20504,97262,21957,15483,110941,27038,19535,107719,38254,26848,105902,36692,25935,106839,27783,20333,110563,38411,27438,93901,40473,29360,79473,3145,3,52288,"ANT","ST" 23,42,1,2,5,137,8,"PENNSYLVANIA PWR & LGT CO","HOLTWOOD",0,"COKE",14715,"0M",1294,,,95,5600,3687,7954,10386,7347,6463,12376,9136,6569,13390,9479,6750,10455,7419,8863,7778,5469,5689,9256,6676,3115,13170,9235,2168,11989,8438,3400,7495,5464,2289,8623,7102,1550,11704,5956,0,3145,3,52288,"PC","ST" 23,42,1,1,,137,14,"PENNSYLVANIA PWR & LGT CO","WALLENPAUPK",0,,14715,"0M",1294,,,95,12278,0,0,38773,0,0,4171,0,0,-24207,0,0,735,0,0,560,0,0,5204,0,0,2717,0,0,244,0,0,24,0,0,11908,0,0,11545,0,0,3153,3,52288,"WAT","HY" 23,42,1,4,2,137,15,"PENNSYLVANIA PWR & LGT CO","ALLENTOWN",0,"LIGHT OIL",14715,"0M",1294,,,95,64,195,4597,200,523,4444,0,0,4446,40,90,4355,0,0,4356,122,333,4024,199,561,4006,2797,7611,4017,44,168,4389,12,34,4355,0,0,4351,134,369,4531,3139,3,52288,"FO2","GT" 23,42,1,2,2,137,20,"PENNSYLVANIA PWR & LGT CO","BRUNNER ISL",0,"LIGHT OIL",14715,"0M",1294,,,95,5215,9667,5220,2811,6985,2945,2623,7457,4341,1006,3274,4688,1673,5855,4747,623,3511,4635,1145,3027,3800,192,491,4638,1850,4455,1752,956,1998,4421,1497,3195,3955,6348,15226,4765,3140,3,52288,"FO2","ST" 23,42,1,2,6,137,20,"PENNSYLVANIA PWR & LGT CO","BRUNNER ISL",0,"BIT COAL",14715,"0M",1294,,,95,726861,278333,624176,797416,299207,615563,638681,243796,659948,618218,235042,726562,483331,182515,843219,636052,246917,774595,729927,280541,565746,770922,293672,454478,661164,258193,418744,632910,240757,448356,500569,201629,451028,542332,211139,476821,3140,3,52288,"BIT","ST" 23,42,1,3,2,137,20,"PENNSYLVANIA PWR & LGT CO","BRUNNER ISL",0,"LIGHT OIL",14715,"0M",1294,,,95,43,75,0,27,35,0,29,50,0,11,33,0,29,50,0,27,47,0,38,66,0,41,123,0,30,52,0,27,47,0,21,37,0,28,47,0,3140,3,52288,"FO2","IC" 23,42,1,4,2,137,26,"PENNSYLVANIA PWR & LGT CO","FISHBACH",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,2203,37,115,2088,0,0,2076,11,33,2043,0,0,2039,16,52,1987,102,265,2080,1274,3289,1978,63,218,2105,0,0,2095,0,0,2105,13,33,2071,3142,3,52288,"FO2","GT" 23,42,1,4,2,137,28,"PENNSYLVANIA PWR & LGT CO","HARWOOD",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,2216,83,240,2157,0,0,2152,44,152,2171,0,0,2171,13,61,2272,289,883,2098,1064,3093,1958,134,415,2230,60,205,2217,0,0,2217,0,0,2208,3144,3,52288,"FO2","GT" 23,42,1,4,2,137,29,"PENNSYLVANIA PWR & LGT CO","HARRISBURG",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,4184,328,916,4530,0,0,4528,34,103,4425,7,31,4394,111,326,4426,221,659,4486,3286,9229,3610,329,960,4424,0,0,4424,8,0,4410,101,283,4486,3143,3,52288,"FO2","GT" 23,42,1,2,2,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"LIGHT OIL",14715,"0M",1294,,,95,1397,3966,1367,1654,3961,905,487,1818,1153,845,3118,1197,886,4111,1282,1222,4052,1400,1679,4825,803,2026,5349,775,303,753,1408,633,2680,1365,1511,3919,1485,2510,5735,1078,3148,3,52288,"FO2","ST" 23,42,1,2,3,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"HEAVY OIL",14715,"0M",1294,,,95,3313,20105,1792976,137098,246817,1537637,4594,16136,1518993,7837,26024,1486208,0,0,1482804,46574,94076,1387076,225007,410380,970823,241933,469387,1094662,32635,57250,1132457,11373,23775,1505839,59422,125764,1590347,265457,506756,1125474,3148,3,52288,"FO6","ST" 23,42,1,2,6,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"BIT COAL",14715,"0M",1294,,,95,77736,33553,94127,107453,45145,78631,33245,15373,94972,56476,25532,79013,56350,25210,63411,56558,24356,57931,77903,34985,45157,72539,34251,53601,19134,10553,62015,28384,12765,56271,68305,31511,46146,107135,53235,34362,3148,3,52288,"BIT","ST" 23,42,1,3,2,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"LIGHT OIL",14715,"0M",1294,,,95,19,33,0,53,92,0,70,124,0,63,90,0,15,57,0,18,30,0,7,12,0,39,74,0,10,20,0,7,13,0,4,7,0,20,9,0,3148,3,52288,"FO2","IC" 23,42,1,4,2,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,5154,253,713,4491,0,0,4487,23,66,4408,0,0,4408,97,271,4056,301,924,3141,2928,8451,3433,332,1023,4044,0,0,4797,34,92,6619,47,134,6156,3148,3,52288,"FO2","GT" 23,42,1,4,2,137,34,"PENNSYLVANIA PWR & LGT CO","JENKINS",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,2287,49,143,2325,0,0,2326,12,59,2267,0,0,2265,0,0,2261,285,831,1773,1377,3617,2093,62,169,2280,17,50,2230,0,0,2177,0,0,2170,3146,3,52288,"FO2","GT" 23,42,1,4,2,137,36,"PENNSYLVANIA PWR & LGT CO","LOCK HAVEN",0,"LIGHT OIL",14715,"0M",1294,,,95,2,17,2072,0,0,2072,0,0,2071,0,0,2072,0,0,2231,19,50,2181,47,187,2160,309,776,1940,29,62,2234,0,0,2233,0,0,2229,0,0,2223,3147,3,52288,"FO2","GT" 23,42,1,2,2,137,38,"PENNSYLVANIA PWR & LGT CO","MONTOUR",0,"LIGHT OIL",14715,"0M",1294,,,95,5284,3061,15269,1120,9829,7128,603,1538,7267,606,3951,8198,13,2000,6913,5227,30521,8337,1368,7253,4923,878,2071,5843,1573,7626,7055,7633,17598,7723,1969,8730,7062,7059,10859,7500,3149,3,52288,"FO2","ST" 23,42,1,2,6,137,38,"PENNSYLVANIA PWR & LGT CO","MONTOUR",0,"BIT COAL",14715,"0M",1294,,,95,847074,335924,519372,875346,340631,445625,780698,304571,380887,372505,141113,452083,435583,162563,503087,625764,248102,531404,836431,328954,481373,911902,352540,306054,690630,264412,407406,817637,314073,299288,838531,328858,291789,880367,352324,220532,3149,3,52288,"BIT","ST" 23,42,1,2,2,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"LIGHT OIL",14715,"0M",1294,,,95,120,1018,953,89,415,868,270,1417,1025,212,1169,913,362,1349,784,121,240,1084,94,305,938,95,427,967,167,1398,1038,316,896,961,315,1038,893,516,1056,864,3152,3,52288,"FO2","ST" 23,42,1,2,4,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"ANTH COAL",14715,"0M",1294,,,95,59791,48178,418732,52800,43904,407593,42379,34783,387855,56229,44534,380823,54876,44151,401119,43071,35250,457310,34960,27900,513983,38518,30044,586494,54062,41683,635399,58158,44699,652259,58144,45249,613424,56311,42856,591156,3152,3,52288,"ANT","ST" 23,42,1,2,5,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"COKE",14715,"0M",1294,,,95,32080,14266,18014,37875,17579,8930,34489,14591,2989,39190,17032,15602,35966,15206,24516,28052,11818,24368,21736,9175,21882,27009,11174,25559,37827,15339,20820,35544,14870,22116,40820,17176,11347,43815,18422,22426,3152,3,52288,"PC","ST" 23,42,1,2,6,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"BIT COAL",14715,"0M",1294,,,95,38602,20937,145827,50229,27422,136935,127350,62833,126363,110076,53702,131074,110470,54187,128876,117078,56381,126273,137002,67568,99984,129986,64144,93470,121920,58717,95585,117436,55949,93435,118781,56941,78649,145641,68789,57848,3152,3,52288,"BIT","ST" 23,42,1,3,2,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"LIGHT OIL",14715,"0M",1294,,,95,29,54,0,17,32,0,22,41,0,12,22,0,18,33,0,15,28,0,10,19,0,41,76,0,14,26,0,21,39,0,16,30,0,15,28,0,3152,3,52288,"FO2","IC" 23,42,1,4,2,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,4196,0,0,4357,0,0,4367,0,0,4367,0,0,4367,12,34,4284,56,161,4122,1269,3772,3896,136,375,4425,0,0,4425,0,0,4304,59,188,4116,3152,3,52288,"FO2","GT" 23,42,1,4,2,137,41,"PENNSYLVANIA PWR & LGT CO","WEST SHORE",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,1981,146,397,2124,0,0,2125,23,63,2063,0,0,2063,27,85,2157,93,275,2060,1581,3944,1664,97,247,1948,0,0,1948,0,0,1943,0,0,1936,3154,3,52288,"FO2","GT" 23,42,1,4,2,137,42,"PENNSYLVANIA PWR & LGT CO","WILLIAMPORT",0,"LIGHT OIL",14715,"0M",1294,,,95,11,25,2095,108,303,2299,33,89,2120,24,80,2130,0,0,1062,31,83,2085,166,469,2282,1685,4637,1796,229,615,2348,0,1,2347,0,0,2347,47,129,2218,3155,3,52288,"FO2","GT" 23,42,1,2,4,137,44,"PENNSYLVANIA PWR & LGT CO","COAL STORAG",0,"ANTH COAL",14715,"0M",1294,,,95,0,0,4326102,0,0,4287048,0,0,4250306,0,0,4192077,0,0,4116068,0,0,4024607,0,0,3949307,0,0,3858966,0,0,3770991,0,0,3712178,0,0,3655315,0,0,3627389,8805,3,52288,"ANT","ST" 23,42,1,2,1,144,1,"PECO ENERGY CO","LIMERICK",0,"NUCLEAR",14940,"0M",1294,,260,95,758738,0,0,649503,0,0,788638,0,0,741991,0,0,644273,0,0,749037,0,0,735331,0,0,472319,0,0,293869,0,0,781359,0,0,758883,0,0,774008,0,0,6105,3,52304,"UR","ST" 23,42,1,2,1,144,2,"PECO ENERGY CO","LIMERICK",0,"NUCLEAR",14940,"0M",1294,,260,95,305997,0,0,145495,0,0,841460,0,0,792169,0,0,828631,0,0,759339,0,0,812705,0,0,648469,0,0,793584,0,0,839715,0,0,794719,0,0,838665,0,0,6105,3,52304,"UR","ST" 23,42,1,2,1,144,2,"PECO ENERGY CO","PEACHBOTTOM",0,"NUCLEAR",14940,"0M",1294,,260,95,835865,0,0,758077,0,0,833805,0,0,783656,0,0,813085,0,0,767048,0,0,814131,0,0,781700,0,0,787889,0,0,812587,0,0,755502,0,0,620649,0,0,3166,3,52304,"UR","ST" 23,42,1,1,,144,3,"PECO ENERGY CO","MUDDY RUN",0,"P-PUMPSTG",14940,"0M",1294,,260,95,-58588,197635,0,-48050,161907,0,-57936,201052,0,-62063,184331,0,-54454,193555,0,-64502,219733,0,-77254,238571,0,-71435,248510,0,-71632,228867,0,-151911,225998,0,-140643,200522,0,-140747,207063,0,3164,3,52304,"WAT","HY" 23,42,1,2,1,144,3,"PECO ENERGY CO","PEACHBOTTOM",0,"NUCLEAR",14940,"0M",1294,,260,95,777483,0,0,711496,0,0,640321,0,0,740258,0,0,699846,0,0,588449,0,0,497410,0,0,423621,0,0,284823,0,0,314451,0,0,800042,0,0,695148,0,0,3166,3,52304,"UR","ST" 23,42,1,4,2,144,10,"PECO ENERGY CO","CHESTER",0,"LIGHT OIL",14940,"0M",1294,,260,95,40,143,6303,283,871,5973,4,13,5960,0,0,5960,0,0,5960,134,251,5709,1965,3097,5088,2547,9094,4622,135,622,5417,6,46,5371,9,117,5615,0,0,5615,3157,3,52304,"FO2","GT" 23,42,1,2,2,144,18,"PECO ENERGY CO","CROMBY",0,"LIGHT OIL",14940,"0M",1294,,260,95,552,1065,739,136,247,742,559,972,675,596,1108,639,800,1555,694,542,1023,717,107,204,786,442,846,656,532,1027,700,390,751,648,1349,2625,514,669,1263,679,3159,3,52304,"FO2","ST" 23,42,1,2,3,144,18,"PECO ENERGY CO","CROMBY",0,"HEAVY OIL",14940,"0M",1294,,260,95,2359,4204,37192,40300,66566,38230,6132,9753,28477,2439,4170,38531,1755,3147,35384,2326,3992,31392,2427,4219,27173,2684,4698,32767,5362,9562,23250,2962,5168,40075,2887,5164,35070,3164,5422,36172,3159,3,52304,"FO6","ST" 23,42,1,2,6,144,18,"PECO ENERGY CO","CROMBY",0,"BIT COAL",14940,"0M",1294,,260,95,74489,31603,37801,84553,33984,30569,59404,28393,32942,68130,28446,39783,56042,24391,55616,62095,25757,51736,68743,28828,37015,81385,34554,29542,73288,31653,35675,82081,34906,31898,75734,32689,34891,88164,36436,31030,3159,3,52304,"BIT","ST" 23,42,1,2,9,144,18,"PECO ENERGY CO","CROMBY",0,"NAT GAS",14940,"0M",1294,,260,95,71643,785884,0,61834,634083,0,79727,785913,0,51172,541950,0,54177,597370,0,81502,865110,0,111181,1192120,0,110008,1192120,0,68568,752990,0,0,0,0,0,0,0,69,740,0,3159,3,52304,"NG","ST" 23,42,1,3,2,144,18,"PECO ENERGY CO","CROMBY",0,"LIGHT OIL",14940,"0M",1294,,260,95,0,0,425,2,5,382,1,2,380,1,3,377,0,0,377,0,1,376,6,13,363,0,0,363,2,5,358,0,0,358,3,6,352,0,0,352,3159,3,52304,"FO2","IC" 23,42,1,2,2,144,20,"PECO ENERGY CO","DELAWARE",0,"LIGHT OIL",14940,"0M",1294,,260,95,83,167,285,230,443,159,379,1037,262,0,1258,270,63,112,285,407,948,313,503,939,296,248,512,251,125,311,303,0,535,306,0,1886,292,1548,3097,274,3160,3,52304,"FO2","ST" 23,42,1,2,3,144,20,"PECO ENERGY CO","DELAWARE",0,"HEAVY OIL",14940,"0M",1294,,260,95,7566,13842,54536,40968,72617,57755,6149,15501,61363,-988,853,60510,1023,1674,58836,10372,22370,60784,73226,125872,59240,61586,116298,48551,3817,8670,64382,-880,0,64382,-848,109,64273,42071,77005,46160,3160,3,52304,"FO6","ST" 23,42,1,3,2,144,20,"PECO ENERGY CO","DELAWARE",0,"LIGHT OIL",14940,"0M",1294,,260,95,4,8,0,6,12,0,0,0,0,8,4,0,0,0,0,0,0,0,0,0,0,5,12,0,0,0,0,0,0,0,3,6,0,0,0,0,3160,3,52304,"FO2","IC" 23,42,1,4,2,144,20,"PECO ENERGY CO","DELAWARE",0,"LIGHT OIL",14940,"0M",1294,,260,95,14,29,4606,471,908,4510,16,46,5120,42,103,4834,0,0,5221,137,321,4998,1693,3157,5919,4022,8277,4823,175,434,5097,11,64,4495,0,0,4139,3,6,3960,3160,3,52304,"FO2","GT" 23,42,1,2,2,144,23,"PECO ENERGY CO","EDDYSTONE",0,"LIGHT OIL",14940,"0M",1294,,260,95,2860,5785,8309,7265,14150,6730,691,1392,5338,656,1353,6842,1090,2439,5446,1497,2992,3502,265,545,7647,1122,2234,5367,200,403,4943,1397,2645,5855,940,1740,11279,4634,8834,12016,3161,3,52304,"FO2","ST" 23,42,1,2,3,144,23,"PECO ENERGY CO","EDDYSTONE",0,"HEAVY OIL",14940,"0M",1294,,260,95,28189,52308,219884,149450,269038,232369,3289,6168,226201,212,405,225796,779,1602,224194,12605,22920,225716,34139,63954,190796,58828,107390,228949,6004,24353,228406,13370,23208,205198,25814,43623,161575,159697,281810,186014,3161,3,52304,"FO6","ST" 23,42,1,2,6,144,23,"PECO ENERGY CO","EDDYSTONE",0,"BIT COAL",14940,"0M",1294,,260,95,230611,102377,114701,145600,63304,115351,142036,63132,95986,141196,64796,114142,75987,37394,136129,72749,31969,156190,38241,17251,161746,115645,50809,196139,101095,70609,237844,255413,106924,214128,279475,114586,204428,343647,144382,154263,3161,3,52304,"BIT","ST" 23,42,1,2,9,144,23,"PECO ENERGY CO","EDDYSTONE",0,"NAT GAS",14940,"0M",1294,,260,95,44577,509816,0,75572,836629,0,64058,732536,0,42770,502085,0,37425,473140,0,199205,2238826,0,248894,2876189,0,290649,3273871,0,116178,2028607,0,136486,1466691,0,26917,282787,0,17773,193338,0,3161,3,52304,"NG","ST" 23,42,1,4,2,144,23,"PECO ENERGY CO","EDDYSTONE",0,"LIGHT OIL",14940,"0M",1294,,260,95,88,179,7824,301,588,7236,23,47,7189,0,0,7189,59,133,7056,38,77,6979,2082,4276,7703,5802,11553,9393,213,2838,8159,40,77,8082,74,138,7944,162,310,8951,3161,3,52304,"FO2","GT" 23,42,1,2,3,144,25,"PECO ENERGY CO","OIL STORAGE",0,"HEAVY OIL",14940,"0M",1294,,260,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8806,3,52304,"FO6","ST" 23,42,1,4,2,144,26,"PECO ENERGY CO","FALLS",0,"LIGHT OIL",14940,"0M",1294,,260,95,6,16,10772,174,460,10312,0,0,10312,0,0,10312,0,0,10312,323,626,9686,1716,2316,9307,2167,6952,8374,53,261,8289,8,112,8177,0,0,8503,0,0,8503,3162,3,52304,"FO2","GT" 23,42,1,4,2,144,27,"PECO ENERGY CO","MOSER",0,"LIGHT OIL",14940,"0M",1294,,260,95,62,154,10920,416,1304,10329,2,7,10322,0,0,10322,0,0,10322,174,159,10163,2401,3681,8582,3033,9617,8076,165,385,7691,0,0,7691,49,1948,8854,0,0,8854,3163,3,52304,"FO2","GT" 23,42,1,4,2,144,30,"PECO ENERGY CO","RICHMOND",0,"LIGHT OIL",14940,"0M",1294,,260,95,73,705,25225,1538,2518,24154,176,209,23945,0,0,23945,0,0,23945,546,1092,22853,7883,15050,19654,8358,22812,19604,1489,4282,16208,573,1391,19605,1780,4530,22192,2646,5558,20232,3168,3,52304,"FO2","GT" 23,42,1,2,2,144,35,"PECO ENERGY CO","SCHUYLKILL",0,"LIGHT OIL",14940,"0M",1294,,260,95,10,31,177,29,55,282,0,13,330,0,0,58,5,32,173,21,41,260,32,63,204,31,64,224,0,0,285,0,0,204,0,13,117,174,366,292,3169,3,52304,"FO2","ST" 23,42,1,2,3,144,35,"PECO ENERGY CO","SCHUYLKILL",0,"HEAVY OIL",14940,"0M",1294,,260,95,2569,7049,0,27433,47982,0,-514,221,0,-442,0,0,787,4441,0,7540,12988,0,45149,79435,0,40737,74952,0,2171,4408,0,-450,0,0,-487,0,0,33696,64594,0,3169,3,52304,"FO6","ST" 23,42,1,3,2,144,35,"PECO ENERGY CO","SCHUYLKILL",0,"LIGHT OIL",14940,"0M",1294,,260,95,0,0,0,11,21,0,1,6,0,0,0,0,0,0,0,0,0,0,0,0,0,4,9,0,2,8,0,0,0,0,0,0,0,0,0,0,3169,3,52304,"FO2","IC" 23,42,1,4,2,144,35,"PECO ENERGY CO","SCHUYLKILL",0,"LIGHT OIL",14940,"0M",1294,,260,95,0,0,4077,183,347,4272,0,0,4454,0,0,4454,16,102,4352,25,48,4304,1060,2033,4025,3086,6214,3655,57,113,3542,0,0,3542,0,0,4435,0,0,4435,3169,3,52304,"FO2","GT" 23,42,1,4,2,144,39,"PECO ENERGY CO","SOUTHWARK",0,"LIGHT OIL",14940,"0M",1294,,260,95,7,10,6164,245,786,6101,28,123,5978,0,0,5978,0,0,5978,21,33,5945,2299,3702,5765,2572,9427,4876,120,646,4593,9,18,4592,0,0,5461,12,32,5429,3170,3,52304,"FO2","GT" 23,42,1,4,2,144,62,"PECO ENERGY CO","CROYDON",0,"LIGHT OIL",14940,"0M",1294,,260,95,908,1378,96105,5368,13129,82976,1206,2774,80202,185,1674,78528,-30,449,78079,2904,7166,70913,28748,58359,102954,34047,90855,75978,5816,17011,58967,4006,14190,124677,9344,33758,90919,20108,59103,81811,8012,3,52304,"FO2","GT" 23,42,1,1,,166,1,"SAFE HARBOR WATERPOWER CO","SAFE HARBOR",0,,16537,"0M",1294,,,95,143384,0,0,59393,0,0,126476,0,0,89759,0,0,63828,0,0,55553,0,0,43077,0,0,14256,0,0,7655,0,0,60191,0,0,112079,0,0,82918,0,0,3175,3,52553,"WAT","HY" 23,42,1,2,2,182,5,"UNITED GAS IMP CO (THE)","HUNLOCK CRK",0,"LIGHT OIL",19390,"0M",1294,,,95,513,820,149,94,161,167,202,328,185,435,618,244,11,18,226,1,2,224,140,230,170,0,0,170,514,892,135,73,127,175,21,35,140,24,41,99,3176,3,52988,"FO2","ST" 23,42,1,2,4,182,5,"UNITED GAS IMP CO (THE)","HUNLOCK CRK",0,"ANTH COAL",19390,"0M",1294,,,95,22922,15408,12384,27213,18489,14764,29884,19399,26578,8930,5383,44202,31976,21379,41110,31087,20919,40663,28632,19193,37106,32217,21657,39145,28079,19274,38194,32138,21308,38517,32139,20464,33331,30924,20327,26649,3176,3,52988,"ANT","ST" 23,42,1,2,2,187,1,"WEST PENN POWER CO","ARMSTRONG",0,"LIGHT OIL",20387,"0M",1294,,71,95,1137,2044,435,250,438,461,208,349,465,208,340,516,357,602,494,249,434,577,87,154,405,77,134,448,175,297,469,719,1212,478,755,1324,33,100,171,531,3178,1,54030,"FO2","ST" 23,42,1,2,6,187,1,"WEST PENN POWER CO","ARMSTRONG",0,"BIT COAL",20387,"0M",1294,,71,95,116602,48997,133134,169087,69152,118235,94695,37329,143043,106738,41224,154005,90547,35992,160453,93589,37605,145126,109058,44341,133889,108429,43934,141795,50453,20094,155423,132983,52637,143306,163282,66595,118118,227115,90923,97838,3178,1,54030,"BIT","ST" 23,42,1,2,2,187,5,"WEST PENN POWER CO","HATFIELD",0,"LIGHT OIL",20387,"0M",1294,,71,95,431,715,4466,429,677,4860,16,26,4860,109,176,5175,295,498,4642,232,393,4202,112,193,4003,116,200,3858,440,729,3846,625,1001,3653,200,324,4266,345,551,4530,3179,1,54030,"FO2","ST" 23,42,1,2,6,187,5,"WEST PENN POWER CO","HATFIELD",0,"BIT COAL",20387,"0M",1294,,71,95,924993,349235,573422,796344,286253,580468,654622,239981,562743,652050,240234,569141,751057,287421,561772,807472,310567,503117,873489,338429,425399,814220,315517,429242,611272,228129,438816,665375,244419,472140,717809,264457,471668,976850,352523,470255,3179,1,54030,"BIT","ST" 23,42,1,2,2,187,15,"WEST PENN POWER CO","MITCHELL",0,"LIGHT OIL",20387,"0M",1294,,71,95,1099,1660,62781,14264,26130,36652,9573,16358,20294,0,0,95,0,0,20294,0,0,20294,2975,5533,14761,9534,17307,37248,0,0,37248,370,623,36693,0,0,102,0,0,36712,3181,1,54030,"FO2","ST" 23,42,1,2,6,187,15,"WEST PENN POWER CO","MITCHELL",0,"BIT COAL",20387,"0M",1294,,71,95,133543,54702,81824,96423,41467,82859,153555,62524,77796,125039,49503,90740,49588,20363,93045,53622,23986,82955,92131,39751,72392,131370,55646,87997,44218,20045,99480,112797,45127,97501,86006,35430,95483,91125,37261,96203,3181,1,54030,"BIT","ST" 23,42,1,2,9,187,15,"WEST PENN POWER CO","MITCHELL",0,"NAT GAS",20387,"0M",1294,,71,95,997,8782,0,512,5468,0,649,6574,0,362,3518,0,98,1012,0,493,5639,0,384,4175,0,352,3732,0,608,6884,0,229,2287,0,632,6538,0,411,4215,0,3181,1,54030,"NG","ST" 23,42,1,2,3,187,25,"WEST PENN POWER CO","SPRINGDALE",0,"HEAVY OIL",20387,"0M",1294,"S",71,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3182,1,54030,"FO6","ST" 23,42,8,1,,800,5,"ALLEGHENY ELECTRIC COOP","RAYSTOWN",0,,332,"0A",1294,,,95,10581,0,0,4872,0,0,10420,0,0,7145,0,0,9214,0,0,7292,0,0,7823,0,0,1871,0,0,1862,0,0,6232,0,0,13092,0,0,11263,0,0,7128,1,58500,"WAT","HY" 31,39,1,2,2,30,5,"CARDINAL OPERATING CO","CARDINAL",0,"LIGHT OIL",3006,"0M",1294,,365,95,1506,2512,16004,1987,3269,21891,793,1326,20561,810,1358,18998,750,1207,17783,5623,9537,7493,587,994,18460,1462,2531,15746,996,1682,14054,1293,2176,11850,586,984,10858,3751,6207,17605,2828,1,50359,"FO2","ST" 31,39,1,2,6,30,5,"CARDINAL OPERATING CO","CARDINAL",0,"BIT COAL",3006,"0M",1294,,365,95,964403,385031,651565,952635,371878,631820,970861,386058,589923,907026,357640,591393,523077,201759,670651,745173,300966,631446,1013299,410501,467099,1010121,415926,370224,984185,397240,345127,996339,400914,397108,987234,392815,487317,940659,377797,434608,2828,1,50359,"BIT","ST" 31,39,1,4,2,43,1,"CINCINNATI GAS ELEC CO","DICKS CREEK",0,"LIGHT OIL",3542,"0M",1294,,210,95,20,1175,6144,23,332,5811,9,35,5776,18,399,5377,0,0,5377,10,47,5330,233,987,4343,377,1342,3001,3,41,5373,8,49,5325,18,65,5260,1,7,5253,2831,1,50556,"FO2","GT" 31,39,1,4,9,43,1,"CINCINNATI GAS ELEC CO","DICKS CREEK",0,"NAT GAS",3542,"0M",1294,,210,95,74,4943,0,-217,0,0,17,13,0,-138,563,0,-109,0,0,227,871,0,3843,78877,0,4803,89226,0,-34,0,0,-101,1423,0,240,6693,0,672,17724,0,2831,1,50556,"NG","GT" 31,39,1,2,2,43,2,"CINCINNATI GAS ELEC CO","WC BECKJORD",0,"LIGHT OIL",3542,"0M",1294,,210,95,1063,1868,0,520,909,0,1246,2193,0,616,1040,0,909,1575,0,1694,2920,0,83,148,0,648,1175,0,673,1200,0,1185,2032,0,1335,2313,0,1124,2076,0,2830,1,50556,"FO2","ST" 31,39,1,2,6,43,2,"CINCINNATI GAS ELEC CO","WC BECKJORD",0,"BIT COAL",3542,"0M",1294,,210,95,376000,158991,137317,393834,167236,139827,297378,127194,171002,437582,181317,177440,274678,116442,192793,481664,200911,197721,528583,228082,195580,602321,260506,195850,213081,91113,206835,487454,202145,200676,427365,176777,196004,493746,218176,193234,2830,1,50556,"BIT","ST" 31,39,1,4,2,43,2,"CINCINNATI GAS ELEC CO","WC BECKJORD",0,"LIGHT OIL",3542,"0M",1294,,210,95,904,1589,30711,253,443,29179,30,54,26769,24,41,25499,30,53,23746,206,356,41971,10845,19305,22349,18056,32731,31385,523,933,29084,23,40,26796,38,67,23956,1551,2863,41821,2830,1,50556,"FO2","GT" 31,39,1,2,2,43,5,"CINCINNATI GAS ELEC CO","MIAMI FORT",0,"LIGHT OIL",3542,"0M",1294,,210,95,1008,1795,0,465,820,0,830,1457,0,436,757,0,862,1538,0,1665,3001,0,1804,3164,0,3368,6051,0,1292,2324,0,260,450,0,548,956,0,3202,5528,0,2832,1,50556,"FO2","ST" 31,39,1,2,6,43,5,"CINCINNATI GAS ELEC CO","MIAMI FORT",0,"BIT COAL",3542,"0M",1294,,210,95,637745,262491,294369,502865,207419,302760,559242,231277,318869,305741,124954,357678,414341,174583,369622,502174,211728,359534,599203,248510,325680,672906,285623,264937,557339,235511,249465,607306,250021,246891,553335,226505,248836,594845,241403,260437,2832,1,50556,"BIT","ST" 31,39,1,4,2,43,5,"CINCINNATI GAS ELEC CO","MIAMI FORT",0,"LIGHT OIL",3542,"0M",1294,,210,95,184,328,29994,104,184,28839,51,90,27190,104,182,26060,90,161,23971,260,470,20424,2604,4567,34307,5930,10654,29284,0,0,26912,56,98,26221,132,231,25022,4,7,19483,2832,1,50556,"FO2","GT" 31,39,1,2,2,43,10,"CINCINNATI GAS ELEC CO","W H ZIMMER",0,"LIGHT OIL",3542,"0M",1294,,210,95,387,627,43117,405,662,42455,266,437,42018,446,721,41297,544,908,40390,5437,9067,40610,3869,6259,34351,2406,3947,30404,654,1074,29331,0,0,28641,10375,17945,31644,228,326,31318,6019,1,50556,"FO2","ST" 31,39,1,2,6,43,10,"CINCINNATI GAS ELEC CO","W H ZIMMER",0,"BIT COAL",3542,"0M",1294,,210,95,945287,364436,470303,860575,334587,468422,931671,360276,429932,905494,345488,449089,895923,353208,433131,685071,269191,462164,813824,313887,471999,817013,315668,465279,858265,326707,439814,-6015,0,440306,643755,258809,446427,954218,369625,445092,6019,1,50556,"BIT","ST" 31,39,1,4,2,43,15,"CINCINNATI GAS ELEC CO","WOODSDALE",0,"PROPANE",3542,"0M",1294,,210,95,3264,17257,47281,251,6836,40445,206,1875,39359,655,3378,35981,0,2040,33941,765,1976,31965,599,1450,30515,128,307,30208,2,8,30200,22,122,30078,2291,8079,47000,9027,29590,47410,7158,1,50556,"FO2","GT" 31,39,1,4,9,43,15,"CINCINNATI GAS ELEC CO","WOODSDALE",0,"NAT GAS",3542,"0M",1294,,210,95,150,4500,0,6,900,0,329,16900,0,549,16100,0,-24,5400,0,8444,123700,0,78223,1073891,0,127374,1732000,0,11241,209600,0,798,24900,0,8079,161217,0,5288,98400,0,7158,1,50556,"NG","GT" 31,39,1,2,1,47,1,"CLEVELAND ELEC ILLUM CO","PERRY",0,"NUCLEAR",3755,"0M",1294,,,95,876776,0,0,768903,0,0,819283,0,0,488364,0,0,856246,0,0,825532,0,0,844484,0,0,836109,0,0,563058,0,0,867378,0,0,562127,0,0,802040,0,0,6020,1,50587,"UR","ST" 31,39,1,2,2,47,5,"CLEVELAND ELEC ILLUM CO","ASHTABULA",0,"LIGHT OIL",3755,"0M",1294,,,95,42,104,847,0,0,847,118,290,165,18,45,836,36,88,1105,993,2435,781,1126,2764,920,735,1805,1069,508,1246,1250,554,1359,961,372,912,1126,318,78,1063,2835,1,50587,"FO2","ST" 31,39,1,2,6,47,5,"CLEVELAND ELEC ILLUM CO","ASHTABULA",0,"BIT COAL",3755,"0M",1294,,,95,52796,31491,71024,49964,29829,71024,55761,34212,70589,75864,42918,70589,57256,34078,70589,75393,41494,70589,152351,73482,69602,185535,87655,62911,92554,48842,63273,134786,62671,50375,152108,70363,39853,183631,84228,39391,2835,1,50587,"BIT","ST" 31,39,1,2,2,47,10,"CLEVELAND ELEC ILLUM CO","AVON",0,"LIGHT OIL",3755,"0M",1294,,,95,545,1336,12357,217,533,11823,334,820,11003,71,175,13126,623,1529,11274,103,252,10337,204,501,9328,209,514,12564,219,537,11551,455,1117,10529,439,1076,9330,211,518,8657,2836,1,50587,"FO2","ST" 31,39,1,2,6,47,10,"CLEVELAND ELEC ILLUM CO","AVON",0,"BIT COAL",3755,"0M",1294,,,95,418792,166008,147432,412531,162705,122460,424163,169344,131476,363532,138488,180398,251231,98651,203325,203947,82859,218224,353614,137703,162497,424161,173437,95914,388690,173071,75855,373672,144052,89758,227150,92153,101135,197850,84233,81208,2836,1,50587,"BIT","ST" 31,39,1,4,2,47,10,"CLEVELAND ELEC ILLUM CO","AVON",0,"LIGHT OIL",3755,"0M",1294,,,95,-48,0,1833,46,308,1525,-44,0,1525,16,93,1432,-27,0,1432,51,171,1260,97,283,1453,726,2175,826,-20,0,1302,-23,0,1326,-40,0,1326,-55,0,1861,2836,1,50587,"FO2","GT" 31,39,1,2,2,47,15,"CLEVELAND ELEC ILLUM CO","EASTLAKE",0,"LIGHT OIL",3755,"0M",1294,,,95,1497,3674,9572,911,2234,8964,764,1874,9624,751,1842,8674,1166,2861,7850,1418,3479,8310,853,2092,5787,966,2369,13472,911,2234,13178,758,1860,11437,682,1673,13358,1121,2750,10965,2837,1,50587,"FO2","ST" 31,39,1,2,6,47,15,"CLEVELAND ELEC ILLUM CO","EASTLAKE",0,"BIT COAL",3755,"0M",1294,,,95,563066,214828,125324,531721,201833,127529,552063,214200,127558,603752,229103,113946,476696,183152,148312,528305,201681,134280,545020,211638,133115,580108,227637,126504,418750,164875,155538,237147,95621,161064,619540,234785,116588,554005,216330,121544,2837,1,50587,"BIT","ST" 31,39,1,4,2,47,15,"CLEVELAND ELEC ILLUM CO","EASTLAKE",0,"LIGHT OIL",3755,"0M",1294,,,95,-26,411,1392,-34,64,1328,-7,96,1232,-39,0,1232,-17,48,1184,80,272,913,110,487,2330,416,1227,1642,-21,0,1642,-29,0,1642,-48,0,1642,-62,0,1642,2837,1,50587,"FO2","GT" 31,39,1,2,2,47,20,"CLEVELAND ELEC ILLUM CO","LAKE SHORE",0,"LIGHT OIL",3755,"0M",1294,,,95,1807,4433,0,1095,2687,0,655,1878,10867,822,2016,9030,822,2016,9030,822,2016,9030,822,2016,9030,0,0,9030,0,0,9030,0,0,9030,0,0,9030,0,0,9030,2838,1,50587,"FO2","ST" 31,39,1,2,3,47,20,"CLEVELAND ELEC ILLUM CO","LAKE SHORE",0,"HEAVY OIL",3755,"0M",1294,,,95,-1345,0,0,-1121,0,0,-1101,0,0,-967,0,0,-1013,0,0,-1144,0,0,-1177,0,0,-1109,0,0,-1101,0,0,-886,0,0,-1113,0,0,-1190,0,0,2838,1,50587,"FO6","ST" 31,39,1,2,6,47,20,"CLEVELAND ELEC ILLUM CO","LAKE SHORE",0,"BIT COAL",3755,"0M",1294,,,95,-2869,0,0,-2051,0,0,-8655,0,0,-1765,0,0,-1630,0,0,-1592,0,0,-1511,0,0,-680,0,0,-664,0,0,-785,0,0,-839,0,0,-939,0,0,2838,1,50587,"BIT","ST" 31,39,1,3,2,47,20,"CLEVELAND ELEC ILLUM CO","LAKE SHORE",0,"LIGHT OIL",3755,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2838,1,50587,"FO2","IC" 31,39,1,2,2,50,5,"COLUMBUS SOUTHERN PWR CO","CONESVILLE",0,"LIGHT OIL",4062,"0M",1294,,369,95,781,1346,11167,848,1487,10088,1527,2569,9973,647,1108,10480,1150,1863,10818,808,1412,11137,1992,3195,10638,911,1520,12206,2980,5206,7444,848,1360,7419,1411,2362,6092,1247,2194,6515,2840,1,50633,"FO2","ST" 31,39,1,2,6,50,5,"COLUMBUS SOUTHERN PWR CO","CONESVILLE",0,"BIT COAL",4062,"0M",1294,,369,95,839897,361439,480236,776708,341510,409270,577474,241703,450938,516809,220156,545479,471259,188870,589930,540735,233443,590510,666114,292069,537443,960463,414977,380548,748475,319718,311923,775359,307972,333993,824448,339869,356943,594247,257598,411899,2840,1,50633,"BIT","ST" 31,39,1,2,2,50,15,"COLUMBUS SOUTHERN PWR CO","PICWAY",0,"LIGHT OIL",4062,"0M",1294,,369,95,77,157,318,80,151,162,0,0,158,0,0,163,0,0,150,271,581,410,67,164,258,153,329,279,86,168,293,52,109,355,102,206,330,71,149,354,2843,1,50633,"FO2","ST" 31,39,1,2,6,50,15,"COLUMBUS SOUTHERN PWR CO","PICWAY",0,"BIT COAL",4062,"0M",1294,,369,95,24098,12576,18902,17338,8355,10547,0,0,10547,0,0,10547,0,0,10547,12062,7059,8508,8499,5099,16411,33626,17892,7051,12493,6357,14305,11264,6148,20174,12256,6425,23762,14575,8110,25135,2843,1,50633,"BIT","ST" 31,39,1,3,2,56,15,"DAYTON PWR & LGT CO (THE)","FRANK TAIT",0,"LIGHT OIL",4922,"0M",1294,,,95,10,18,2118,30,55,1880,24,44,4879,67,123,5809,5,9,5601,0,0,8437,59,128,8308,638,1170,6968,8,15,6953,0,0,6953,4,31,12908,0,0,12704,2847,1,50752,"FO2","IC" 31,39,1,4,2,56,15,"DAYTON PWR & LGT CO (THE)","FRANK TAIT",0,"LIGHT OIL",4922,"0M",494,,,95,0,0,0,0,0,0,0,0,0,8,31,0,2615,5585,0,2094,4660,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,87,204,0,2847,1,50752,"FO2","GT" 31,39,1,4,9,56,15,"DAYTON PWR & LGT CO (THE)","FRANK TAIT",0,"NAT GAS",4922,"0M",494,,,95,0,0,0,0,0,0,0,0,0,206,4610,0,2453,30366,0,2250,29020,0,2757,33743,0,5899,80360,0,392,7740,0,65,1370,0,35,1210,0,1279,17010,0,2847,1,50752,"NG","GT" 31,39,1,2,6,56,20,"DAYTON PWR & LGT CO (THE)","HUTCHINGS",0,"BIT COAL",4922,"0M",1294,,,95,1189,1204,103680,11354,5882,97799,-864,0,97799,0,0,97799,-467,0,97799,38657,18515,85185,73119,34885,59277,140943,65371,20520,7427,3975,45638,4351,2521,84275,3553,2065,93826,62576,27616,66210,2848,1,50752,"BIT","ST" 31,39,1,2,9,56,20,"DAYTON PWR & LGT CO (THE)","HUTCHINGS",0,"NAT GAS",4922,"0M",1294,,,95,408,9899,0,595,6448,0,0,0,0,-804,48,0,4,164,0,1487,14801,0,2254,22264,0,5404,59821,0,688,9010,0,440,6133,0,353,5099,0,1464,15898,0,2848,1,50752,"NG","ST" 31,39,1,4,2,56,20,"DAYTON PWR & LGT CO (THE)","HUTCHINGS",0,"LIGHT OIL",4922,"0M",1294,,,95,71,303,1433,82,157,1275,0,1,1275,0,0,1275,0,0,1274,0,0,1274,0,0,1274,0,1,1274,0,0,1274,0,0,1274,58,147,1127,49,94,1395,2848,1,50752,"FO2","GT" 31,39,1,4,9,56,20,"DAYTON PWR & LGT CO (THE)","HUTCHINGS",0,"NAT GAS",4922,"0M",1294,,,95,0,10,0,0,0,0,5,1130,0,16,400,0,8,327,0,0,0,0,140,1384,0,423,4690,0,0,0,0,0,0,0,0,0,0,41,453,0,2848,1,50752,"NG","GT" 31,39,1,2,2,56,23,"DAYTON PWR & LGT CO (THE)","J M STUART",0,"LIGHT OIL",4922,"0M",1294,,,95,1332,2321,1749,646,1073,2134,623,1061,2140,1223,2081,1858,1631,2823,2062,975,1647,2197,223,358,2194,623,1047,2043,1054,1794,2183,2669,4498,2177,1035,1708,1924,2772,4191,2252,2850,1,50752,"FO2","ST" 31,39,1,2,6,56,23,"DAYTON PWR & LGT CO (THE)","J M STUART",0,"BIT COAL",4922,"0M",1294,,,95,1324209,556655,951299,1313535,540148,931841,981133,406226,1101726,963505,397393,1210633,1235488,518718,880851,1223521,506083,868835,1340550,537277,869585,1339861,554937,815555,984147,409972,981044,990034,409244,867049,1361690,549068,888832,1361213,508529,976472,2850,1,50752,"BIT","ST" 31,39,1,3,2,56,23,"DAYTON PWR & LGT CO (THE)","J M STUART",0,"LIGHT OIL",4922,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2850,1,50752,"FO2","IC" 31,39,1,4,2,56,28,"DAYTON PWR & LGT CO (THE)","YANKEE ST",0,"LIGHT OIL",4922,"0M",1294,,,95,392,1042,6368,143,449,7390,1,3,5791,0,0,5791,0,1,5790,0,2,5788,0,0,5788,0,2,6395,2,7,6388,0,1,6388,60,192,6195,298,738,6316,2854,1,50752,"FO2","GT" 31,39,1,4,9,56,28,"DAYTON PWR & LGT CO (THE)","YANKEE ST",0,"NAT GAS",4922,"0M",1294,,,95,10,160,0,62,1100,0,162,1963,0,84,1410,0,82,1499,0,110,1913,0,390,6135,0,2583,45005,0,16,299,0,118,2067,0,15,279,0,1,15,0,2854,1,50752,"NG","GT" 31,39,1,3,2,56,34,"DAYTON PWR & LGT CO (THE)","MONUMENT",0,"LIGHT OIL",4922,"0M",1294,,,95,48,88,666,38,70,596,24,44,749,8,15,735,20,37,698,0,0,698,0,0,698,868,1591,510,12,22,679,8,15,664,3,6,658,23,73,586,2851,1,50752,"FO2","IC" 31,39,1,3,2,56,38,"DAYTON PWR & LGT CO (THE)","SIDNEY",0,"LIGHT OIL",4922,"0M",1294,,,95,36,66,654,39,72,582,19,35,547,12,22,525,27,50,476,38,70,594,200,367,418,928,1701,298,12,22,467,14,26,441,11,20,599,27,50,550,2852,1,50752,"FO2","IC" 31,39,1,2,2,56,40,"DAYTON PWR & LGT CO (THE)","KILLEN",0,"LIGHT OIL",4922,"0M",1294,,,95,1515,2654,38401,2032,3512,34941,568,957,33906,811,1364,32383,2303,3935,28369,2103,3623,24697,1150,1949,22638,3905,6750,39224,3140,5527,33621,140,241,33352,1226,2214,31022,7796,9042,43816,6031,1,50752,"FO2","ST" 31,39,1,2,6,56,40,"DAYTON PWR & LGT CO (THE)","KILLEN",0,"BIT COAL",4922,"0M",1294,,,95,396655,162048,146219,299969,123570,141430,380134,154283,172985,326056,132202,166969,335211,138111,191956,337194,139038,170239,357281,145509,178055,407089,168349,129255,293108,123208,110897,435673,179182,98466,52201,22774,186101,115941,32572,227624,6031,1,50752,"BIT","ST" 31,39,1,2,2,133,10,"OHIO EDISON CO","EDGEWATER",0,"LIGHT OIL",13998,"0M",1294,"A",,95,0,0,0,0,0,0,255,723,33,159,366,33,0,0,0,308,793,33,68,152,33,5,124,33,27,86,33,7,17,33,1286,2860,33,3,6,33,2857,1,52154,"FO2","ST" 31,39,1,2,9,133,10,"OHIO EDISON CO","EDGEWATER",0,"NAT GAS",13998,"0M",394,,,95,0,0,0,0,0,0,7097,98907,0,15050,194824,0,0,0,0,5911,86537,0,13656,173637,0,24053,289252,0,13182,151945,0,7495,97750,0,13698,169535,0,9290,104799,0,2857,1,52154,"NG","ST" 31,39,1,4,2,133,10,"OHIO EDISON CO","EDGEWATER",0,"LIGHT OIL",13998,"0M",1294,,,95,39,51,10875,58,329,9555,-8,73,8938,-14,44,9839,0,0,9464,200,693,10736,984,3224,10487,1718,5378,9687,120,437,8935,-17,0,8918,15,18,8748,20,140,9834,2857,1,52154,"FO2","GT" 31,39,1,2,2,133,15,"OHIO EDISON CO","GORGE STEAM",0,"LIGHT OIL",13998,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2858,1,52154,"FO2","ST" 31,39,1,2,6,133,15,"OHIO EDISON CO","GORGE STEAM",0,"BIT COAL",13998,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2858,1,52154,"BIT","ST" 31,39,1,4,2,133,30,"OHIO EDISON CO","MAD RIVER",0,"LIGHT OIL",13998,"0M",1294,,,95,-78,0,15547,-26,273,15273,-54,0,15273,-54,0,15273,363,2822,15479,99,426,15053,1080,3857,14177,3295,9983,13051,179,602,14577,62,386,15260,60,421,14839,73,357,15562,2860,1,52154,"FO2","GT" 31,39,1,2,2,133,43,"OHIO EDISON CO","NILES",0,"LIGHT OIL",13998,"0M",1294,,,95,5,9,253,86,166,190,142,266,280,33,64,216,17,38,406,275,522,253,67,130,224,50,97,303,45,88,221,63,123,320,28,54,266,27,53,213,2861,1,52154,"FO2","ST" 31,39,1,2,6,133,43,"OHIO EDISON CO","NILES",0,"BIT COAL",13998,"0M",1294,,,95,123871,55965,73387,98573,45856,68795,100911,45527,84171,102317,46469,88241,6938,3797,109930,76341,34497,104722,105408,49207,76769,73326,33732,70283,103996,47562,47231,111221,52359,33613,108872,49872,33134,113766,51273,29923,2861,1,52154,"BIT","ST" 31,39,1,4,2,133,43,"OHIO EDISON CO","NILES",0,"LIGHT OIL",13998,"0M",1294,,,95,55,295,7474,75,333,7682,-36,56,7626,-41,0,7626,-25,30,7596,100,416,7180,647,2274,6851,1403,4579,5630,65,256,6970,-7,118,6852,3,124,6728,61,335,7293,2861,1,52154,"FO2","GT" 31,39,1,2,2,133,45,"OHIO EDISON CO","R E BURGER",0,"LIGHT OIL",13998,"0M",1294,,,95,101,204,570,57,119,629,70,132,675,95,173,502,63,117,562,95,188,374,81,156,558,51,100,633,44,83,549,46,91,458,2,3,632,119,296,336,2864,1,52154,"FO2","ST" 31,39,1,2,6,133,45,"OHIO EDISON CO","R E BURGER",0,"BIT COAL",13998,"0M",1294,,,95,220103,104240,157034,164294,78521,184267,126512,54034,193327,150997,63973,186573,81596,35961,201217,96775,43949,193287,127163,56391,181386,166656,74197,142563,130934,57102,99030,67387,30839,87088,93946,40429,64542,82572,48775,54306,2864,1,52154,"BIT","ST" 31,39,1,3,2,133,45,"OHIO EDISON CO","R E BURGER",0,"LIGHT OIL",13998,"0M",1294,,,95,7,10,1284,23,46,1417,9,11,1407,0,0,1407,0,0,1407,34,84,1323,236,429,1243,566,1044,904,17,35,1224,23,43,1181,0,0,1181,30,77,1647,2864,1,52154,"FO2","IC" 31,39,1,2,2,133,57,"OHIO EDISON CO","W H SAMMIS",0,"LIGHT OIL",13998,"0M",1294,,,95,1482,2546,867,528,903,1046,558,954,844,550,932,638,695,1199,912,544,955,1493,706,1274,1304,451,1354,1217,1142,2017,1181,1316,2293,1036,94,160,983,2104,3601,973,2866,1,52154,"FO2","ST" 31,39,1,2,6,133,57,"OHIO EDISON CO","W H SAMMIS",0,"BIT COAL",13998,"0M",1294,,,95,1276095,514756,525945,1279324,511426,457910,1239563,502275,472374,1278563,515393,459047,1160892,479648,563045,1211972,504994,605054,1203599,510803,549162,1367687,590999,470321,991825,414819,354704,1017793,422778,445492,1052538,422578,399901,1094820,447068,288610,2866,1,52154,"BIT","ST" 31,39,1,3,2,133,57,"OHIO EDISON CO","W H SAMMIS",0,"LIGHT OIL",13998,"0M",1294,,,95,21,47,2208,62,132,2422,24,52,2506,21,51,2619,18,49,2690,84,169,2569,424,916,2504,994,1895,1445,56,115,2687,17,62,1885,61,120,2363,49,78,2264,2866,1,52154,"FO2","IC" 31,39,1,5,2,133,80,"OHIO EDISON CO","W LORAIN JO",0,"LIGHT OIL",13998,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2869,1,52154,"FO2","CC" 31,39,1,6,2,133,80,"OHIO EDISON CO","W LORAIN JO",0,"LIGHT OIL",13998,"0M",1294,"A",,95,0,0,0,0,0,0,18,114,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2869,1,52154,"FO2","CT" 31,39,1,2,2,141,28,"OHIO POWER CO","MUSKINGUM R",0,"LIGHT OIL",14006,"0M",1294,,364,95,3882,6525,18086,2171,3713,17991,1663,2732,19038,2100,3500,20732,2616,4271,21458,2357,4274,22882,1323,2298,23072,3025,5284,24028,1082,2039,25141,1349,2367,24554,1527,2671,21638,6433,9974,10617,2872,1,54028,"FO2","ST" 31,39,1,2,6,141,28,"OHIO POWER CO","MUSKINGUM R",0,"BIT COAL",14006,"0M",1294,,364,95,535201,215186,421884,537048,220375,419768,597967,235236,427281,521184,207858,375208,449068,175136,430680,464394,194776,458208,580017,239178,402984,570215,237224,362814,265479,117802,367772,240284,100504,368567,286463,120853,342833,504050,190482,323803,2872,1,54028,"BIT","ST" 31,39,1,2,2,141,30,"OHIO POWER CO","GAVIN",0,"LIGHT OIL",14006,"0M",1294,,364,95,3763,6775,47403,769,1320,46083,4239,7491,38592,399,722,37870,719,1203,36667,2089,3543,33123,1042,1767,31357,1100,2128,29229,787,1372,39659,1447,2509,37150,1827,3076,34074,190,326,33748,8102,1,54028,"FO2","ST" 31,39,1,2,6,141,30,"OHIO POWER CO","GAVIN",0,"BIT COAL",14006,"0M",1294,,364,95,64858,30038,1931820,651490,284413,2186971,988276,436625,1888556,1196488,552083,1872871,1419448,615414,1838157,1182854,513910,1760692,1417031,613808,1615051,1643009,713610,1363516,1514789,657244,1159863,1269184,559173,1152059,1395530,601427,1176037,1375641,605361,1157372,8102,1,54028,"BIT","ST" 31,39,1,1,,141,35,"OHIO POWER CO","RACINE",0,,14006,"0M",1294,,364,95,18331,0,0,19396,0,0,21002,0,0,26318,0,0,19638,0,0,23776,0,0,16330,0,0,12023,0,0,7551,0,0,14526,0,0,23751,0,0,24817,0,0,6006,1,54028,"WAT","HY" 31,39,1,2,6,141,40,"OHIO POWER CO","TIDD",0,"BIT COAL",14006,"0M",1294,"S",364,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2874,1,54028,"BIT","ST" 31,39,1,2,2,147,1,"OHIO VALLEY ELEC CORP","KYGER CREEK",0,"LIGHT OIL",14015,"0M",1294,,506,95,214,364,1335,346,582,1079,478,772,930,80,131,1631,298,520,1248,203,342,1489,97,168,1464,0,0,1642,55,92,1550,582,973,577,236,390,1258,83,146,1373,2876,1,52156,"FO2","ST" 31,39,1,2,6,147,1,"OHIO VALLEY ELEC CORP","KYGER CREEK",0,"BIT COAL",14015,"0M",1294,,506,95,702913,271965,605907,555922,215202,643003,623778,230327,685798,645615,237897,675827,712862,278407,639864,676683,252935,580389,702720,270228,524058,722985,274975,470824,637930,231881,406765,609383,225508,431319,645928,235364,421426,715380,277692,649924,2876,1,52156,"BIT","ST" 31,39,1,2,1,168,1,"TOLEDO EDISON CO (THE)","DAVIS-BESSE",0,"NUCLEAR",18997,"0M",1294,,,95,658580,0,0,596841,0,0,657111,0,0,620608,0,0,643953,0,0,629968,0,0,645923,0,0,643124,0,0,630210,0,0,652469,0,0,633467,0,0,645496,0,0,6149,1,52927,"UR","ST" 31,39,1,2,2,168,9,"TOLEDO EDISON CO (THE)","ACME",0,"PROPANE",18997,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2877,1,52927,"FO2","ST" 31,39,1,2,6,168,9,"TOLEDO EDISON CO (THE)","ACME",0,"BIT COAL",18997,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2877,1,52927,"BIT","ST" 31,39,1,2,9,168,9,"TOLEDO EDISON CO (THE)","ACME",0,"NAT GAS",18997,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2877,1,52927,"NG","ST" 31,39,1,2,2,168,11,"TOLEDO EDISON CO (THE)","BAY SHORE",0,"LIGHT OIL",18997,"0M",1294,,,95,136,448,525,273,439,445,156,255,550,380,622,464,160,607,393,170,407,521,159,530,700,226,457,598,155,367,588,238,402,364,76,315,588,112,197,572,2878,1,52927,"FO2","ST" 31,39,1,2,6,168,11,"TOLEDO EDISON CO (THE)","BAY SHORE",0,"BIT COAL",18997,"0M",1294,,,95,271495,103216,169716,328463,121979,150035,259418,97335,167411,220548,81660,204738,228937,86543,252579,283830,108691,226673,265296,101256,155041,323077,180415,73781,309205,109740,75119,176674,67648,106761,254611,97258,111939,278242,107020,82847,2878,1,52927,"BIT","ST" 31,39,1,4,2,168,11,"TOLEDO EDISON CO (THE)","BAY SHORE",0,"LIGHT OIL",18997,"0M",1294,,,95,14,64,566,36,59,688,0,0,782,14,24,758,0,0,758,17,30,1086,46,267,997,175,646,886,8,62,825,2,5,820,0,19,979,1,53,926,2878,1,52927,"FO2","GT" 31,39,1,4,2,168,18,"TOLEDO EDISON CO (THE)","RICHLAND",0,"LIGHT OIL",18997,"0M",1294,,,95,0,40,2793,0,0,2793,0,0,2793,0,25,2768,0,3,2764,27,124,2641,49,260,2380,192,729,1652,0,0,1652,0,44,1607,0,0,2325,0,0,2325,2880,1,52927,"FO2","GT" 31,39,1,4,9,168,18,"TOLEDO EDISON CO (THE)","RICHLAND",0,"NAT GAS",18997,"0M",1294,,,95,0,276,0,0,594,0,0,324,0,0,621,0,0,756,0,25,675,0,71,2079,0,345,7385,0,0,215,0,0,3046,0,0,92,0,2,392,0,2880,1,52927,"NG","GT" 31,39,1,4,2,168,19,"TOLEDO EDISON CO (THE)","STRYKER",0,"LIGHT OIL",18997,"0M",1294,,,95,10,159,1191,0,0,1191,0,0,1191,0,0,1191,0,0,1191,0,0,1191,0,0,1191,0,8,1183,0,0,1183,16,41,1142,0,0,92,0,29,1113,2881,1,52927,"FO2","GT" 31,39,5,3,2,522,1,"ARCANUM (CITY OF)","ARCANUM",0,"LIGHT OIL",768,"0A",1294,,,95,27,51,203,49,90,186,15,31,155,4,8,148,3,5,143,17,33,110,14,27,82,52,101,101,4,8,93,3,6,87,4,13,74,8,21,171,2902,1,50096,"FO2","IC" 31,39,5,3,2,552,1,"BRYAN (CITY OF)","BRYAN",0,"LIGHT OIL",2439,"0M",1294,,,95,14,23,355,14,25,329,0,0,329,178,304,378,39,68,310,12,21,289,145,250,215,87,158,235,29,50,179,16,27,153,37,63,268,9,32,237,2903,1,50356,"FO2","IC" 31,39,5,4,2,552,1,"BRYAN (CITY OF)","BRYAN",0,"LIGHT OIL",2439,"0M",1294,,,95,22,50,6950,0,0,6950,2,156,6795,0,0,6790,0,0,6790,0,0,6790,0,0,6790,0,0,6790,0,0,6760,0,0,6720,6,12,6690,1,5,6682,2903,1,50356,"FO2","GT" 31,39,5,4,9,552,1,"BRYAN (CITY OF)","BRYAN",0,"NAT GAS",2439,"0M",1294,,,95,22,566,0,82,2330,0,0,0,0,254,4926,0,3992,62915,0,6018,86797,0,4936,89292,0,8968,190437,0,6094,104355,0,104,2299,0,132,2762,0,420,8161,0,2903,1,50356,"NG","GT" 31,39,5,4,2,561,2,"CLEVELAND (CITY OF)","COLLINWOOD",0,"LIGHT OIL",3762,"0M",1294,,,95,0,1,1070,0,4,1066,83,263,803,0,0,803,4,238,565,0,0,922,0,0,922,50,256,1022,0,0,1022,0,0,1022,0,0,1022,0,0,1022,2906,1,50589,"FO2","GT" 31,39,5,4,9,561,2,"CLEVELAND (CITY OF)","COLLINWOOD",0,"NAT GAS",3762,"0M",1294,,,95,27,729,0,0,0,0,1,32,0,0,33,0,0,0,0,674,8563,0,274,8962,0,32,941,0,17,380,0,0,3,0,0,7,0,0,4,0,2906,1,50589,"NG","GT" 31,39,5,2,2,561,10,"CLEVELAND (CITY OF)","LAKE ROAD",0,"LIGHT OIL",3762,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2908,1,50589,"FO2","ST" 31,39,5,2,6,561,10,"CLEVELAND (CITY OF)","LAKE ROAD",0,"BIT COAL",3762,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2908,1,50589,"BIT","ST" 31,39,5,4,2,561,20,"CLEVELAND (CITY OF)","W 41ST ST",0,"LIGHT OIL",3762,"0M",1294,,,95,0,1,1995,0,0,1994,0,0,1994,0,0,1993,0,0,1993,0,0,1992,0,1,1992,0,1,1991,0,0,1990,0,0,1990,0,1,1989,0,0,1989,2909,1,50589,"FO2","GT" 31,39,5,4,9,561,20,"CLEVELAND (CITY OF)","W 41ST ST",0,"NAT GAS",3762,"0M",1294,,,95,477,14950,0,526,10745,0,431,12673,0,247,6523,0,221,6443,0,340,8176,0,1197,15109,0,4074,94135,0,593,26459,0,537,13366,0,668,16240,0,628,17345,0,2909,1,50589,"NG","GT" 31,39,5,2,6,579,1,"DOVER (CITY OF)","DOVER",0,"BIT COAL",5336,"0M",1294,,,95,7510,5164,474,5838,3935,612,7700,4900,592,6987,4742,130,0,7,150,0,0,623,5223,3579,213,7330,5046,506,6122,4199,218,2658,1764,200,6852,5320,346,7262,4963,413,2914,1,50806,"BIT","ST" 31,39,5,2,9,579,1,"DOVER (CITY OF)","DOVER",0,"NAT GAS",5336,"0M",794,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,403,0,884,12716,0,410,6737,0,110,1163,0,663,9798,0,637,9130,0,2914,1,50806,"NG","ST" 31,39,5,3,2,579,1,"DOVER (CITY OF)","DOVER",0,"LIGHT OIL",5336,"0M",1294,,,95,0,0,66,0,0,66,4,9,61,0,0,66,0,0,57,18,228,79,36,74,109,29,75,101,0,0,101,0,0,101,0,0,101,0,0,101,2914,1,50806,"FO2","IC" 31,39,5,4,9,579,5,"DOVER (CITY OF)","DOVER",0,"NAT GAS",5336,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,65,1022,0,0,0,0,0,0,0,0,0,0,48,698,0,0,0,0,0,0,0,0,0,0,0,0,0,2914,1,50806,"NG","GT" 31,39,5,2,2,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"LIGHT OIL",7977,"0M",1294,,,95,5,11,1751,1,3,1749,1,4,1747,1,5,1744,1,4,1743,4,10,1737,3,7,1734,4,9,1730,4,11,1724,1,4,1722,1,6,1719,7,16,1711,2917,1,51225,"FO2","ST" 31,39,5,2,6,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"BIT COAL",7977,"0M",1294,,,95,22703,11176,13737,252,146,15989,5474,3315,16142,8640,5428,12982,9803,5101,7881,11553,6584,1297,16363,9478,2000,22973,9375,5688,24478,13592,4621,4956,3752,6715,4870,4046,7024,23079,11772,7422,2917,1,51225,"BIT","ST" 31,39,5,2,9,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"NAT GAS",7977,"0M",1294,,,95,157,1874,0,13990,195116,0,5260,76784,0,483,7231,0,4563,57272,0,9310,123945,0,17338,207709,0,14384,141922,0,1816,24404,0,676,12116,0,270,5334,0,784,9339,0,2917,1,51225,"NG","ST" 31,39,5,4,2,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"LIGHT OIL",7977,"0M",1294,,,95,0,0,1751,0,0,1749,0,0,1748,0,0,1745,0,0,1742,0,0,1738,0,0,1735,0,0,1730,0,0,1725,0,0,1723,0,0,1719,0,0,1711,2917,1,51225,"FO2","GT" 31,39,5,4,9,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"NAT GAS",7977,"0M",1294,,,95,11,142,0,174,2439,0,83,1220,0,26,393,0,18,234,0,55,745,0,1064,12754,0,1170,28673,0,18,250,0,134,2411,0,10,207,0,18,217,0,2917,1,51225,"NG","GT" 31,39,5,1,,605,5,"HAMILTON (CITY OF)","HMLTN HYDRO",0,,7977,"0M",1294,"R",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7807,1,51225,"WAT","HY" 31,39,5,3,2,629,1,"LEBANON (CITY OF)","LEBANON",0,"LIGHT OIL",10830,"0M",1294,,,95,3,23,1067,0,0,1067,90,268,799,0,0,799,0,0,799,0,0,799,29,63,734,52,106,805,0,0,805,0,0,805,0,0,805,0,0,805,2921,1,51615,"FO2","IC" 31,39,5,4,2,629,1,"LEBANON (CITY OF)","LEBANON",0,"LIGHT OIL",10830,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2921,1,51615,"FO2","GT" 31,39,5,3,2,684,1,"OBERLIN (CITY OF)","OBERLIN",0,"LIGHT OIL",13949,"0A",1294,,,95,5,65,637,21,41,596,0,37,558,8,17,528,0,0,509,33,80,429,17,210,218,239,528,405,11,41,364,8,17,348,194,525,358,145,391,324,2933,1,52140,"FO2","IC" 31,39,5,3,9,684,1,"OBERLIN (CITY OF)","OBERLIN",0,"NAT GAS",13949,"0A",1294,,,95,275,2724,0,260,2802,0,5,1676,0,75,826,0,13,132,0,200,1734,0,339,3535,0,552,5958,0,39,487,0,82,884,0,969,9721,0,63,1533,0,2933,1,52140,"NG","IC" 31,39,5,2,6,689,1,"ORRVILLE (CITY OF)","ORRVILLE",0,"BIT COAL",14194,"0M",1294,,,95,30925,20332,2401,27128,23359,528,19190,7163,1721,22147,13962,524,29670,13038,1437,23583,15893,1741,24259,14697,2641,28372,19561,2485,22121,14691,1281,18235,13105,1557,28993,15643,959,24197,16177,783,2935,1,52192,"BIT","ST" 31,39,5,2,9,689,1,"ORRVILLE (CITY OF)","ORRVILLE",0,"NAT GAS",14194,"0M",1294,,,95,45,744,0,42,811,0,122,1020,0,127,1797,0,112,1116,0,51,780,0,63,856,0,72,1126,0,22,331,0,46,762,0,78,961,0,76,1181,0,2935,1,52192,"NG","ST" 31,39,5,2,2,691,1,"PAINESVILLE (CITY OF)","PAINESVILLE",0,"LIGHT OIL",14381,"0M",1294,,,95,0,0,1518,0,0,1518,0,0,1518,36,100,1776,5,13,1762,0,0,1048,0,0,1762,25,73,1689,25,73,1616,4,14,1602,17,53,1548,10,20,1528,2936,1,52227,"FO2","ST" 31,39,5,2,6,691,1,"PAINESVILLE (CITY OF)","PAINESVILLE",0,"BIT COAL",14381,"0M",1294,,,95,17099,10622,1607,15231,10037,2990,13188,8922,6467,12361,8060,7830,13138,7996,7962,15287,8544,8154,15901,9966,8093,12362,8310,8580,11176,7757,8780,11298,8213,9293,8336,6116,9293,7235,5099,7825,2936,1,52227,"BIT","ST" 31,39,5,2,9,691,1,"PAINESVILLE (CITY OF)","PAINESVILLE",0,"NAT GAS",14381,"0M",1294,,,95,16,258,0,29,464,0,152,2440,0,67,1072,0,27,394,0,18,254,0,42,658,0,113,1904,0,81,1386,0,46,839,0,100,1812,0,97,1715,0,2936,1,52227,"NG","ST" 31,39,5,2,2,700,10,"PIQUA (CITY OF)","PIQUA",0,"LIGHT OIL",15095,"0M",1294,,,95,0,1,33,1,9,24,0,0,35,1,7,27,0,0,32,0,1,31,0,1,30,0,0,30,0,0,30,0,4,26,0,3,23,1,6,36,2937,1,52334,"FO2","ST" 31,39,5,2,6,700,10,"PIQUA (CITY OF)","PIQUA",0,"BIT COAL",15095,"0M",1294,,,95,2963,3832,1560,2779,3526,1061,2427,2994,1038,1970,2648,582,2418,2789,195,1914,2556,734,1374,2211,15,1611,2421,41,1481,2312,382,2468,3140,627,2650,3515,1751,2688,3569,2090,2937,1,52334,"BIT","ST" 31,39,5,4,2,700,10,"PIQUA (CITY OF)","PIQUA",0,"LIGHT OIL",15095,"0M",1294,,,95,24,119,2949,51,239,3071,-37,127,2947,119,588,2896,109,897,3032,277,1359,2730,469,2758,2645,595,2956,2720,-11,101,2619,37,176,2979,59,288,3048,121,591,2992,2937,1,52334,"FO2","GT" 31,39,5,2,6,722,1,"SAINT MARYS (CITY OF)","ST MARYS",0,"BIT COAL",17891,"0M",1294,,,95,1250,698,645,3927,2565,332,4111,3269,140,0,0,150,0,0,150,1641,1050,490,5298,3368,489,222,149,638,1630,1068,419,4646,3274,449,4461,2807,449,4928,3119,495,2942,1,52789,"BIT","ST" 31,39,5,4,2,722,1,"SAINT MARYS (CITY OF)","ST MARYS",0,"LIGHT OIL",17891,"0M",1294,,,95,1,12,318,0,0,307,28,146,352,0,0,352,0,0,352,1,4,348,59,83,428,3,8,420,1,24,396,0,0,520,1,3,518,2,6,512,2942,1,52789,"FO2","GT" 31,39,5,2,6,726,1,"SHELBY (CITY OF)","SHELBY",0,"BIT COAL",17043,"0M",1294,,,95,8039,5710,300,7249,5098,300,7132,4852,300,6141,3985,300,6694,4389,300,8103,4859,300,6796,4831,300,7378,5266,0,6897,3944,300,6844,4580,300,7615,5188,300,8726,5206,300,2943,1,52637,"BIT","ST" 31,39,5,2,9,726,1,"SHELBY (CITY OF)","SHELBY",0,"NAT GAS",17043,"0M",1294,,,95,134,1996,0,47,686,0,36,517,0,9,134,0,0,0,0,30,381,0,96,1415,0,11,164,0,19,230,0,41,576,0,48,685,0,44,555,0,2943,1,52637,"NG","ST" 31,39,5,3,2,726,1,"SHELBY (CITY OF)","SHELBY",0,"LIGHT OIL",17043,"0M",1294,,,95,0,0,73,0,0,73,0,0,73,0,0,103,0,0,103,0,0,103,1,5,93,1,4,83,2,5,78,0,1,77,0,1,76,0,1,45,2943,1,52637,"FO2","IC" 31,39,5,3,9,726,1,"SHELBY (CITY OF)","SHELBY",0,"NAT GAS",17043,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2943,1,52637,"NG","IC" 31,39,5,3,2,774,1,"WOODSFIELD (CITY OF)","WOODSFIELD",0,"LIGHT OIL",20977,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2945,1,53350,"FO2","IC" 31,39,5,3,9,774,1,"WOODSFIELD (CITY OF)","WOODSFIELD",0,"NAT GAS",20977,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2945,1,53350,"NG","IC" 31,39,8,2,6,800,1,"AMER MUN POWER-OHIO INC","R GORSUCH",0,"BIT COAL",40577,"0M",1294,,,95,99037,64265,81413,104738,67228,84252,126378,79745,86718,63579,42733,100556,123281,76701,94920,115392,69307,101317,117333,72018,101225,121473,79176,86641,108722,66669,90892,126955,78956,87022,103717,67360,86260,126485,80616,78276,7286,1,58910,"BIT","ST" 31,39,8,2,9,800,1,"AMER MUN POWER-OHIO INC","R GORSUCH",0,"NAT GAS",40577,"0M",1294,,,95,1576,22702,0,1469,21157,0,638,9083,0,541,8226,0,767,10634,0,1094,14686,0,877,12191,0,505,7352,0,810,11188,0,528,7439,0,733,10544,0,821,11624,0,7286,1,58910,"NG","ST" 32,18,1,2,6,25,1,"COMMONWEALTH ED CO IND","STATE LINE",0,"BIT COAL",4111,"0M",1294,,101,95,111368,64033,111935,149730,82697,41943,169301,90886,94463,49952,30907,197006,107334,61118,203229,185763,102059,199201,147171,80912,167481,211732,117972,103696,93902,54629,131796,97942,56647,95060,141995,78255,74660,93050,52182,100094,981,4,54003,"BIT","ST" 32,18,1,2,9,25,1,"COMMONWEALTH ED CO IND","STATE LINE",0,"NAT GAS",4111,"0M",1294,,101,95,6077,64670,0,5326,53012,0,4895,48146,0,1349,14775,0,4538,48258,0,4988,51500,0,4470,45645,0,4498,45907,0,2972,32243,0,3706,39699,0,5098,51893,0,3793,39849,0,981,4,54003,"NG","ST" 32,18,1,2,2,45,1,"INDIANA-KENTUCKY EL CORP","CLIFTY CRK",0,"LIGHT OIL",9269,"0M",1294,,505,95,186,351,3905,152,276,3630,241,444,3700,377,692,3522,263,551,3142,200,360,3468,175,320,4005,93,171,4177,112,189,3988,183,330,3658,234,419,3925,187,321,3947,983,1,54010,"FO2","ST" 32,18,1,2,6,45,1,"INDIANA-KENTUCKY EL CORP","CLIFTY CRK",0,"BIT COAL",9269,"0M",1294,,505,95,680000,340288,711560,681685,332462,794224,771872,377298,719124,715568,349771,768331,774831,394798,790608,706890,347717,739042,846234,432529,698423,836401,439085,664104,841295,424266,608234,755940,378632,751924,859900,416889,759244,867253,423226,804472,983,1,54010,"BIT","ST" 32,18,1,1,,57,5,"INDIANA MICHIGAN POWER CO","ELKHART",0,,9324,"0M",1294,,363,95,1650,0,0,1194,0,0,1755,0,0,1250,0,0,1341,0,0,1179,0,0,1157,0,0,1230,0,0,728,0,0,610,0,0,606,0,0,1138,0,0,986,1,57745,"WAT","HY" 32,18,1,1,,57,15,"INDIANA MICHIGAN POWER CO","TWIN BRANCH",0,,9324,"0M",1294,,363,95,2749,0,0,2559,0,0,3177,0,0,3035,0,0,3169,0,0,2570,0,0,2394,0,0,2550,0,0,1769,0,0,1707,0,0,2868,0,0,2542,0,0,989,1,57745,"WAT","HY" 32,18,1,2,2,57,40,"INDIANA MICHIGAN POWER CO","TANNERS CRK",0,"LIGHT OIL",9324,"0M",1294,,363,95,1203,1922,5959,701,1134,5915,1180,2025,6714,1059,1682,6177,1112,1829,5848,1144,1978,6336,1259,2060,7095,1078,1912,5713,665,1191,4522,206,409,5361,886,1592,4308,1326,2011,4418,988,1,57745,"FO2","ST" 32,18,1,2,6,57,40,"INDIANA MICHIGAN POWER CO","TANNERS CRK",0,"BIT COAL",9324,"0M",1294,,363,95,432338,162155,420217,485332,183170,404434,427268,171172,375261,371083,146417,383926,364601,144830,374644,383224,158993,372917,442272,183537,275408,494886,200826,195877,151186,61682,248353,10073,4559,312659,189477,75997,327350,330050,118848,262047,988,1,57745,"BIT","ST" 32,18,1,4,2,57,55,"INDIANA MICHIGAN POWER CO","FOURTH ST",0,"LIGHT OIL",9324,"0M",1294,,363,95,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,1025,1,57745,"FO2","GT" 32,18,1,2,2,57,60,"INDIANA MICHIGAN POWER CO","ROCKPORT",0,"LIGHT OIL",9324,"0M",1294,,363,95,1253,2167,36532,1335,2320,34384,3886,6841,48740,4321,7609,41131,3580,6420,34711,5662,10180,45654,3887,6888,38767,4216,7569,31198,1478,2587,28611,1002,1634,26976,690,1194,25782,1723,4126,33355,6166,1,57745,"FO2","ST" 32,18,1,2,6,57,60,"INDIANA MICHIGAN POWER CO","ROCKPORT",0,"BIT COAL",9324,"0M",1294,,363,95,1749008,1032186,1725862,1579775,933220,1565332,1339465,797497,1717887,1321428,787392,1749794,910898,553161,1861348,1507665,916281,1691338,1420244,862282,1685879,1514621,918947,1761783,1599963,954251,1694782,1691163,933949,1738612,1640828,959611,1762887,1464158,854236,1918162,6166,1,57745,"BIT","ST" 32,18,1,2,2,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"LIGHT OIL",9273,"0M",1294,,,95,566,1401,20541,856,1914,17945,116,609,17337,446,1143,15565,419,1038,14023,233,762,13073,334,805,11083,970,3484,18728,223,679,18049,471,1101,16948,1380,2012,14910,618,1456,13138,990,1,51394,"FO2","ST" 32,18,1,2,6,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"BIT COAL",9273,"0M",1294,,,95,194584,90056,252587,180919,84581,279836,140480,66420,317709,160947,73882,318796,235268,109052,299888,217930,103073,287645,259644,122601,267666,349367,162431,221093,272895,126479,196285,244308,112170,197708,270443,125748,220391,253279,116842,274191,990,1,51394,"BIT","ST" 32,18,1,3,2,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"LIGHT OIL",9273,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,990,1,51394,"FO2","IC" 32,18,1,4,2,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"LIGHT OIL",9273,"0M",1294,,,95,1107,4856,0,-42,681,0,-50,0,0,112,628,0,182,504,0,-7,189,0,293,1179,0,349,1894,0,-35,0,0,-43,0,0,-50,26,0,-11,317,0,990,1,51394,"FO2","GT" 32,18,1,4,9,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"NAT GAS",9273,"0M",1294,,,95,1286,11256,0,10,1339,0,-53,1880,0,93,2875,0,1102,18630,0,448,8470,0,4489,66365,0,11695,166046,0,-64,3722,0,-37,1618,0,3205,49273,0,3710,54428,0,990,1,51394,"NG","GT" 32,18,1,2,2,63,15,"INDIANAPOLIS PWR & LGT CO","PERRY K",0,"LIGHT OIL",9273,"0M",1294,,,95,0,0,4682,0,0,4553,0,0,4331,0,0,4301,0,0,4287,0,0,3841,0,0,3636,0,0,5062,0,0,5057,0,0,5051,0,0,5042,0,0,4762,992,1,51394,"FO2","ST" 32,18,1,2,6,63,15,"INDIANAPOLIS PWR & LGT CO","PERRY K",0,"BIT COAL",9273,"0M",1294,,,95,0,0,79574,-1610,0,80083,0,0,75101,0,0,73147,0,0,75348,0,0,76456,766,826,73924,340,352,74885,1152,1362,75776,0,0,74934,0,0,77090,0,0,71176,992,1,51394,"BIT","ST" 32,18,1,2,9,63,15,"INDIANAPOLIS PWR & LGT CO","PERRY K",0,"NAT GAS",9273,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,437,0,7,193,0,32,957,0,0,0,0,0,0,0,0,0,0,992,1,51394,"NG","ST" 32,18,1,5,9,63,15,"INDIANAPOLIS PWR & LGT CO","PERRY K",0,"WASTE HT",9273,"0M",1294,,,95,-782,0,0,0,0,0,1330,0,0,1056,0,0,2878,0,0,887,0,0,1971,0,0,1192,0,0,1301,0,0,1055,0,0,-372,0,0,-854,0,0,992,1,51394,"WT","CC" 32,18,1,2,2,63,20,"INDIANAPOLIS PWR & LGT CO","PERRY W",0,"LIGHT OIL",9273,"0M",1294,,,95,-49,0,697,-71,0,697,-71,0,697,-67,0,697,-59,0,697,-46,0,697,-51,0,697,-47,0,697,-42,0,697,-44,0,697,-59,0,697,-65,0,697,993,1,51394,"FO2","ST" 32,18,1,2,9,63,20,"INDIANAPOLIS PWR & LGT CO","PERRY W",0,"NAT GAS",9273,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,993,1,51394,"NG","ST" 32,18,1,5,9,63,20,"INDIANAPOLIS PWR & LGT CO","PERRY W",0,"WASTE HT",9273,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,993,1,51394,"WH","CC" 32,18,1,2,2,63,23,"INDIANAPOLIS PWR & LGT CO","PETERSBURG",0,"LIGHT OIL",9273,"0M",1294,,,95,610,1111,6386,445,819,5517,317,533,4940,401,748,8963,2218,4082,4553,637,1151,5787,377,687,4945,1822,3221,6367,801,1483,4763,545,999,3635,1447,2637,5880,1975,3581,4564,994,1,51394,"FO2","ST" 32,18,1,2,6,63,23,"INDIANAPOLIS PWR & LGT CO","PETERSBURG",0,"BIT COAL",9273,"0M",1294,,,95,1040025,481608,951198,910590,421941,973809,942914,432679,1023657,783657,368727,1096578,667135,315158,1184238,973163,448245,1179213,992610,460767,1051137,936517,439379,945966,722162,339012,925268,812107,376653,886087,794558,370468,820716,931266,431118,719090,994,1,51394,"BIT","ST" 32,18,1,3,2,63,23,"INDIANAPOLIS PWR & LGT CO","PETERSBURG",0,"LIGHT OIL",9273,"0M",1294,,,95,2,5,0,0,0,0,25,44,0,102,178,0,189,328,0,45,76,0,52,90,0,74,131,0,46,80,0,67,116,0,39,43,0,31,78,0,994,1,51394,"FO2","IC" 32,18,1,2,2,63,25,"INDIANAPOLIS PWR & LGT CO","H T PRTCHRD",0,"LIGHT OIL",9273,"0M",1294,,,95,318,680,5661,350,656,4975,104,195,4685,436,902,7879,417,829,7014,283,586,6386,443,914,5445,1802,3787,7417,307,627,7108,203,431,6547,316,654,5835,499,993,4785,991,1,51394,"FO2","ST" 32,18,1,2,6,63,25,"INDIANAPOLIS PWR & LGT CO","H T PRTCHRD",0,"BIT COAL",9273,"0M",1294,,,95,39918,21829,172846,38399,18739,164110,25730,13890,166007,31554,16614,192907,62657,32105,189004,38978,20477,189810,89346,46785,168301,129720,68988,123731,61410,31642,119624,29705,15920,161259,67519,35572,171574,68221,34547,157787,991,1,51394,"BIT","ST" 32,18,1,3,2,63,25,"INDIANAPOLIS PWR & LGT CO","H T PRTCHRD",0,"LIGHT OIL",9273,"0M",1294,,,95,10,18,0,10,18,0,11,19,0,10,19,0,10,19,0,10,18,0,9,18,0,10,18,0,9,18,0,3,5,0,10,11,0,10,16,0,991,1,51394,"FO2","IC" 32,18,1,1,,97,25,"NORTHERN IND PUB SERV CO","NORWAY",0,,13756,"0M",1294,,,95,2951,0,0,1754,0,0,3112,0,0,3813,0,0,3505,0,0,2903,0,0,2206,0,0,1230,0,0,509,0,0,-5,0,0,935,0,0,741,0,0,998,1,52101,"WAT","HY" 32,18,1,1,,97,30,"NORTHERN IND PUB SERV CO","OAKDALE",0,,13756,"0M",1294,,,95,4302,0,0,2658,0,0,4495,0,0,5358,0,0,4552,0,0,4225,0,0,3387,0,0,1840,0,0,1214,0,0,492,0,0,1566,0,0,1435,0,0,999,1,52101,"WAT","HY" 32,18,1,2,5,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"COKE",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,995,1,52101,"PC","ST" 32,18,1,2,6,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"BIT COAL",13756,"0M",1294,,,95,255092,122559,79738,278804,133215,33213,188964,93227,81145,300874,140721,83750,249838,120767,64124,246937,117749,44162,235477,114020,45186,281196,134308,37119,206770,100042,54350,171878,84048,49037,248313,118863,34340,215434,105042,32995,995,1,52101,"BIT","ST" 32,18,1,2,9,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"NAT GAS",13756,"0M",1294,,,95,2509,26046,0,1617,16709,0,6960,74244,0,364,3631,0,132,1380,0,473,4895,0,3976,41921,0,11155,116087,0,295,3099,0,9000,94567,0,731,7651,0,10008,106430,0,995,1,52101,"NG","ST" 32,18,1,4,2,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"LIGHT OIL",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,995,1,52101,"FO2","GT" 32,18,1,4,9,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"NAT GAS",13756,"0M",1294,,,95,260,4325,0,239,4585,0,197,4652,0,73,729,0,0,0,0,128,2648,0,1309,27718,0,1556,27641,0,86,2797,0,94,990,0,0,0,0,0,0,0,995,1,52101,"NG","GT" 32,18,1,2,6,97,50,"NORTHERN IND PUB SERV CO","MICH CITY",0,"BIT COAL",13756,"0M",1294,,,95,236420,123317,103301,234123,120234,148075,251278,135807,162546,205743,116541,177892,112253,67389,170049,124057,76284,129959,232893,135633,114125,231506,135299,93596,234187,129907,86183,254454,138881,100596,227408,129965,87044,241351,131616,87326,997,1,52101,"BIT","ST" 32,18,1,2,9,97,50,"NORTHERN IND PUB SERV CO","MICH CITY",0,"NAT GAS",13756,"0M",1294,,,95,22888,245981,0,12315,127428,0,7313,77250,0,2223,23885,0,17374,195664,0,14491,167133,0,33790,372448,0,46983,516773,0,57,601,0,277,2894,0,14761,158089,0,7779,81844,0,997,1,52101,"NG","ST" 32,18,1,2,6,97,54,"NORTHERN IND PUB SERV CO","D MITCHELL",0,"BIT COAL",13756,"0M",1294,,,95,145857,82802,116751,116897,65893,113729,119863,69185,152487,141199,84936,154502,149654,87531,159194,148998,85732,121077,153374,92272,109798,153611,89672,90907,105137,61906,133520,134131,77926,126283,118138,72811,149593,119904,77033,120350,996,1,52101,"BIT","ST" 32,18,1,2,9,97,54,"NORTHERN IND PUB SERV CO","D MITCHELL",0,"NAT GAS",13756,"0M",1294,,,95,9050,99836,0,19988,219179,0,4693,51173,0,2044,22775,0,681,7679,0,15253,169699,0,31855,357533,0,49912,561059,0,1836,21192,0,688,7733,0,17585,198980,0,12007,137527,0,996,1,52101,"NG","ST" 32,18,1,4,2,97,54,"NORTHERN IND PUB SERV CO","D MITCHELL",0,"LIGHT OIL",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,996,1,52101,"FO2","GT" 32,18,1,4,9,97,54,"NORTHERN IND PUB SERV CO","D MITCHELL",0,"NAT GAS",13756,"0M",1294,,,95,0,0,0,62,1005,0,19,314,0,61,972,0,59,947,0,23,381,0,1109,18451,0,787,13562,0,0,0,0,17,200,0,19,316,0,40,614,0,996,1,52101,"NG","GT" 32,18,1,2,2,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"LIGHT OIL",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6085,1,52101,"FO2","ST" 32,18,1,2,5,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"COKE",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5680,2361,3668,16726,6787,383,17831,7291,7,6085,1,52101,"PC","ST" 32,18,1,2,6,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"BIT COAL",13756,"0M",1294,,,95,535261,312105,335057,389163,229937,440028,546548,302317,415959,448635,246990,395514,597050,350998,454670,756850,452731,337454,682007,398333,335076,754511,435319,290970,649742,383628,258615,683709,390480,291948,637992,357548,247219,681946,380639,238033,6085,1,52101,"BIT","ST" 32,18,1,2,9,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"NAT GAS",13756,"0M",1294,,,95,3899,42407,0,6373,71396,0,4950,53485,0,5022,55321,0,9160,101163,0,8473,94946,0,11416,127138,0,11318,127241,0,6765,76948,0,5330,59832,0,10465,114654,0,16610,183389,0,6085,1,52101,"NG","ST" 32,18,1,4,2,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"LIGHT OIL",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6085,1,52101,"FO2","GT" 32,18,1,4,9,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"NAT GAS",13756,"0M",1294,,,95,723,10302,0,782,11325,0,1650,23018,0,308,4700,0,805,15657,0,1994,32783,0,15126,225451,0,13726,215839,0,142,2242,0,733,10618,0,280,4262,0,601,10905,0,6085,1,52101,"NG","GT" 32,18,1,1,,115,10,"PSI ENERGY, INC","MARKLAND",0,,15470,"0M",1294,,,95,25874,0,0,30535,0,0,30427,0,0,34190,0,0,21420,0,0,33483,0,0,37429,0,0,31238,0,0,21329,0,0,31723,0,0,32028,0,0,33480,0,0,1005,1,52410,"WAT","HY" 32,18,1,2,2,115,20,"PSI ENERGY, INC","CAYUGA",0,"LIGHT OIL",15470,"0M",1294,,,95,132,235,5513,571,1037,4367,530,968,3231,360,648,6046,1268,2286,3656,1673,3058,5188,191,340,4690,456,897,3714,450,808,2757,116,203,4365,648,1159,3695,1043,1890,4595,1001,1,52410,"FO2","ST" 32,18,1,2,6,115,20,"PSI ENERGY, INC","CAYUGA",0,"BIT COAL",15470,"0M",1294,,,95,560086,260374,595374,436002,205588,619769,507290,241920,579748,458167,216960,558238,273942,132145,579528,461324,222630,594519,529339,250671,586438,553167,264792,531310,481498,229472,498542,556861,260068,435186,538773,254635,379746,560196,264529,360124,1001,1,52410,"BIT","ST" 32,18,1,3,2,115,20,"PSI ENERGY, INC","CAYUGA",0,"LIGHT OIL",15470,"0M",1294,,,95,52,94,835,80,146,689,46,85,604,32,59,546,48,87,793,40,74,719,187,332,719,345,632,893,44,79,814,57,100,714,46,83,810,52,95,715,1001,1,52410,"FO2","IC" 32,18,1,4,2,115,20,"PSI ENERGY, INC","CAYUGA",0,"LIGHT OIL",15470,"0M",1294,,,95,94,169,5321,0,0,5313,0,0,5287,0,0,5295,9,17,5278,0,0,5274,0,0,5261,0,0,5256,0,0,5278,0,0,5291,0,0,5304,0,0,5321,1001,1,52410,"FO2","GT" 32,18,1,4,9,115,20,"PSI ENERGY, INC","CAYUGA",0,"NAT GAS",15470,"0M",1294,,,95,2346,23310,0,1913,19353,0,1506,15557,0,1635,16714,0,1240,12674,0,4044,41468,0,15842,159433,0,18202,212550,0,0,0,0,0,0,0,2097,21202,0,3527,35908,0,1001,1,52410,"NG","GT" 32,18,1,2,2,115,30,"PSI ENERGY, INC","EDWARDSPORT",0,"LIGHT OIL",15470,"0M",1294,,,95,209,496,4820,64,150,4672,155,373,4297,0,0,4295,0,0,4292,97,238,4052,689,1571,2481,2502,5818,2869,342,868,2002,0,0,2002,0,0,1997,147,370,1625,1004,1,52410,"FO2","ST" 32,18,1,2,6,115,30,"PSI ENERGY, INC","EDWARDSPORT",0,"BIT COAL",15470,"0M",1294,,,95,17730,11048,72080,19934,11948,70647,12688,8051,74559,-527,0,75232,-535,0,75232,15454,10259,64973,35050,21901,43072,52741,33340,15650,4173,2912,38766,-602,0,62015,-609,0,63195,16335,10947,52274,1004,1,52410,"BIT","ST" 32,18,1,2,2,115,32,"PSI ENERGY, INC","R GALLAGHER",0,"LIGHT OIL",15470,"0M",1294,,,95,2035,3891,1605,1454,2810,1394,1851,3297,1699,1757,3179,1643,2068,3708,1567,1765,3297,1717,1740,3339,1643,1698,3478,1699,628,1171,1662,1918,3473,1772,1054,1957,1432,2452,4557,1662,1008,1,52410,"FO2","ST" 32,18,1,2,6,115,32,"PSI ENERGY, INC","R GALLAGHER",0,"BIT COAL",15470,"0M",1294,,,95,228795,101724,280677,208492,94433,264483,157312,68908,321856,177541,78622,327010,219815,95103,325222,282888,123689,301473,287606,128632,273012,307948,143686,219622,142108,60394,233330,173570,72509,241738,224846,92953,254240,214410,90070,255848,1008,1,52410,"BIT","ST" 32,18,1,2,2,115,35,"PSI ENERGY, INC","NOBLESVILLE",0,"LIGHT OIL",15470,"0M",1294,,,95,51,112,562,83,160,505,48,112,674,66,152,531,0,0,490,110,229,643,81,169,664,55,117,548,22,64,674,58,167,474,0,43,548,34,71,476,1007,1,52410,"FO2","ST" 32,18,1,2,6,115,35,"PSI ENERGY, INC","NOBLESVILLE",0,"BIT COAL",15470,"0M",1294,,,95,11044,6031,55495,9455,4868,50627,3897,2460,49399,4036,2484,49078,-19,344,48734,11688,6456,42278,26318,14879,27399,34289,19561,18825,965,758,32438,3085,2324,49315,-104,155,61612,12274,6417,55744,1007,1,52410,"BIT","ST" 32,18,1,2,2,115,38,"PSI ENERGY, INC","WABASH RIVR",0,"LIGHT OIL",15470,"0M",1294,,,95,2430,4476,2106,1459,2739,2128,1389,2692,1967,1849,3579,2218,1434,2758,1631,681,1290,2176,1683,3263,2148,2465,4797,2269,945,1807,2338,1000,1900,2380,729,1435,2430,2010,3862,1720,1010,1,52410,"FO2","ST" 32,18,1,2,6,115,38,"PSI ENERGY, INC","WABASH RIVR",0,"BIT COAL",15470,"0M",1294,,,95,269453,126688,229629,237554,115161,230254,111825,56100,288778,84991,42415,325474,75621,37146,348471,305101,147377,290801,239625,122121,244288,280979,141633,160506,165651,82144,169356,117517,58071,210036,143505,72409,218547,185588,91761,206945,1010,1,52410,"BIT","ST" 32,18,1,3,2,115,38,"PSI ENERGY, INC","WABASH RIVR",0,"LIGHT OIL",15470,"0M",1294,,,95,22,41,295,6,12,283,29,57,226,36,71,155,22,43,283,17,33,250,46,91,336,25,50,286,1,2,283,16,31,37,14,29,343,5,10,333,1010,1,52410,"FO2","IC" 32,18,1,3,2,115,40,"PSI ENERGY, INC","MIAMI WBASH",0,"LIGHT OIL",15470,"0M",1294,,,95,-10,953,9190,166,743,8447,-197,894,7552,-39,60,7493,16,281,7212,81,612,6600,891,3627,5277,1034,3669,3913,-3,92,3821,-25,12,3809,-92,165,3644,-114,427,3217,1006,1,52410,"FO2","IC" 32,18,1,4,2,115,43,"PSI ENERGY, INC","CONNERSVILE",0,"LIGHT OIL",15470,"0M",1294,,,95,598,1430,6151,267,338,5812,185,528,5284,-1,88,5196,74,91,5105,363,946,4160,1734,3950,0,1728,5143,7132,123,299,6833,35,74,6797,36,197,6601,68,309,6291,1002,1,52410,"FO2","GT" 32,18,1,2,2,115,47,"PSI ENERGY, INC","GIBSON STA",0,"LIGHT OIL",15470,"0M",1294,,,95,3573,6225,8026,3627,6211,8525,2908,4962,6089,2299,3933,7385,2638,4537,9046,4608,8201,6236,1193,2069,8692,1020,1752,9495,2262,3909,8491,2394,4067,6679,1306,2237,7725,1788,3105,5067,6113,1,52410,"FO2","ST" 32,18,1,2,6,115,47,"PSI ENERGY, INC","GIBSON STA",0,"BIT COAL",15470,"0M",1294,,,95,1411040,662768,2861774,1615449,737476,2742578,1641475,746285,2737505,1326993,600387,2789580,1389674,630387,2844473,1353290,632853,2819275,1781130,810634,2543921,1880261,844888,2374175,1610199,724136,2280260,1401722,620957,2297336,1703790,761235,2101523,1647889,748548,1888232,6113,1,52410,"BIT","ST" 32,18,1,4,2,127,1,"SOUTHERN INDIANA G & E CO","BROADWAY",0,"LIGHT OIL",17633,"0M",1294,,,95,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,1011,1,52727,"FO2","GT" 32,18,1,4,9,127,1,"SOUTHERN INDIANA G & E CO","BROADWAY",0,"NAT GAS",17633,"0M",1294,,,95,108,1488,0,31,496,0,72,936,0,66,992,0,675,9932,0,358,9922,0,3822,54621,0,11701,173627,0,131,4946,0,181,9912,0,586,4959,0,0,0,0,1011,1,52727,"NG","GT" 32,18,1,2,2,127,3,"SOUTHERN INDIANA G & E CO","CULLEY",0,"LIGHT OIL",17633,"0M",1294,,,95,0,0,350,0,0,350,0,0,350,0,0,350,0,0,350,0,0,250,0,0,250,0,0,250,0,0,250,0,0,250,0,0,250,0,0,250,1012,1,52727,"FO2","ST" 32,18,1,2,6,127,3,"SOUTHERN INDIANA G & E CO","CULLEY",0,"BIT COAL",17633,"0M",1294,,,95,122067,60600,138140,167988,82419,159735,169634,79436,181228,114459,53639,191704,165848,81055,168418,184693,87570,154235,207611,100070,138520,218589,105190,134359,160446,77417,139667,174664,86907,135057,217251,106316,124021,205575,102713,115674,1012,1,52727,"BIT","ST" 32,18,1,2,9,127,3,"SOUTHERN INDIANA G & E CO","CULLEY",0,"NAT GAS",17633,"0M",1294,,,95,285,3090,0,126,1344,0,136,1410,0,300,3116,0,121,1311,0,107,1123,0,101,1082,0,285,3040,0,412,4406,0,312,3443,0,180,1935,0,153,1681,0,1012,1,52727,"NG","ST" 32,18,1,4,9,127,9,"SOUTHERN INDIANA G & E CO","NORTHEAST",0,"NAT GAS",17633,"0M",1294,,,95,24,992,0,48,5399,0,0,0,0,0,0,0,0,0,0,22,2492,0,0,0,0,562,10295,0,0,0,0,0,0,0,23,3023,0,26,4467,0,1013,1,52727,"NG","GT" 32,18,1,2,6,127,20,"SOUTHERN INDIANA G & E CO","WARRICK",0,"BIT COAL",17633,"0M",1294,,,95,95617,41510,100212,86572,39259,87257,96250,42312,89684,93020,40228,97629,96270,44344,83127,82739,38242,69870,89329,39892,44260,100497,44406,41656,97103,42826,35874,28941,12332,66823,92060,41077,55982,99718,45727,57793,6705,1,52727,"BIT","ST" 32,18,1,2,9,127,20,"SOUTHERN INDIANA G & E CO","WARRICK",0,"NAT GAS",17633,"0M",1294,,,95,27,261,0,112,1120,0,11,112,0,29,276,0,5,50,0,0,0,0,136,1318,0,83,796,0,0,0,0,295,2822,0,57,575,0,62,639,0,6705,1,52727,"NG","ST" 32,18,1,2,2,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"LIGHT OIL",17633,"0M",1294,,,95,0,0,1712,0,0,1437,0,0,2186,0,0,2151,0,0,1998,0,0,1988,0,0,2336,0,0,2336,0,0,2336,0,0,2336,0,0,2175,0,0,2175,6137,1,52727,"FO2","ST" 32,18,1,2,6,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"BIT COAL",17633,"0M",1294,,,95,217766,95613,450544,147685,72927,476200,218223,106171,479883,196964,85661,485255,182235,86959,499237,216954,101195,498135,247301,113099,429991,275892,131703,360852,177911,84026,286413,238026,112468,229493,139223,67172,246596,170321,82481,189492,6137,1,52727,"BIT","ST" 32,18,1,2,9,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"NAT GAS",17633,"0M",1294,,,95,728,7231,0,709,7962,0,465,5154,0,1271,12486,0,681,7404,0,869,9196,0,829,8558,0,910,9792,0,91,976,0,1005,9912,0,462,4959,0,1013,10609,0,6137,1,52727,"NG","ST" 32,18,1,4,2,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"LIGHT OIL",17633,"0M",1294,,,95,0,0,0,139,275,0,10,21,0,20,35,0,75,144,0,155,289,0,4,9,0,0,0,0,0,0,0,0,0,0,84,161,0,0,0,0,6137,1,52727,"FO2","GT" 32,18,1,4,9,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"NAT GAS",17633,"0M",1294,,,95,371,3684,0,237,2668,0,72,799,0,244,2399,0,872,9478,0,725,7671,0,3499,36107,0,8313,89423,0,835,8917,0,0,0,0,0,0,0,115,1208,0,6137,1,52727,"NG","GT" 32,18,5,3,2,529,15,"BLUFFTON (CITY OF)","BLUFFTON",0,"LIGHT OIL",1896,"0A",1294,,,95,1,60,1391,2,67,1322,61,54,1600,8,70,1533,12,90,1444,17,90,1361,5,46,0,16,58,1746,9,46,1693,5,45,1674,1,9,1658,1,20,1637,1023,1,54077,"FO2","IC" 32,18,5,3,9,529,15,"BLUFFTON (CITY OF)","BLUFFTON",0,"NAT GAS",1896,"0A",1294,,,95,252,951,0,283,1047,0,187,936,0,252,888,0,327,1129,0,322,1124,0,21,749,0,165,1201,0,79,956,0,14,141,0,8,282,0,62,1131,0,1023,1,54077,"NG","IC" 32,18,5,2,6,552,1,"CRAWFORDSVILLE (CITY OF)","CRAWFRDVIL",0,"BIT COAL",4508,"M",1294,,,95,2633,2217,2514,2446,2032,2094,1890,1637,1012,0,12,1693,0,9,2211,497,408,1961,0,0,1961,1383,1034,1775,0,0,2801,0,0,2783,0,0,2783,2446,2070,2457,1024,1,50698,"BIT","ST" 32,18,5,2,9,552,1,"CTAWFORDSVILLE (CITY OF)","CRAWFRDVIL",0,"NAT GAS",4508,"M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,198,0,0,9,0,25,397,0,0,0,0,0,0,0,0,0,0,0,0,0,1024,1,50698,"NG","ST" 32,18,5,3,2,552,1,"CRAWFORDSVILLE (CITY OF)","CRAWFRDVIL",0,"LIGHT OIL",4508,"M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1024,1,50698,"FO2","IC" 32,18,5,2,6,601,1,"JASPER (CITY OF)","JASPER",0,"BIT COAL",9667,"0A",1294,,,95,5717,4616,631,5399,3895,631,5890,4398,631,2952,2186,631,3065,2373,631,5988,4375,631,5621,4191,631,2798,2138,631,0,0,1075,5001,3514,1051,5782,4146,1096,5466,4050,1096,6225,1,51443,"BIT","ST" 32,18,5,2,9,601,1,"JASPER (CITY OF)","JASPER",0,"NAT GAS",9667,"0A",1294,,,95,20,339,0,0,0,0,0,0,0,0,0,0,16,267,0,0,0,0,0,0,0,0,0,0,0,0,0,14,206,0,0,0,0,0,0,0,6225,1,51443,"NG","ST" 32,18,5,2,6,622,1,"LOGANSPORT (CITY OF)","LOGANSPORT",0,"BIT COAL",11142,"0M",1294,,,95,16294,10401,3093,15182,9658,2825,130,68,5257,0,0,7057,2842,2773,7049,15721,9566,3565,18496,9015,1600,18517,10895,1421,17032,9835,4095,8771,5557,5126,12606,7370,5733,23315,13078,934,1032,1,51681,"BIT","ST" 32,18,5,4,2,622,1,"LOGANSPORT (CITY OF)","LOGANSPORT",0,"LIGHT OIL",11142,"0M",1294,,,95,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,1032,1,51681,"FO2","GT" 32,18,5,4,9,622,1,"LOGANSPORT (CITY OF)","LOGANSPORT",0,"NAT GAS",11142,"0M",1294,,,95,127,2771,0,0,0,0,0,0,0,0,0,0,0,0,0,75,2842,0,0,0,0,217,5351,0,0,0,0,0,0,0,0,0,0,0,0,0,1032,1,51681,"NG","GT" 32,18,5,2,2,658,1,"PERU UTILITIES","PERU",0,"LIGHT OIL",14839,"0M",1294,,,95,2,7,60,0,0,40,0,0,29,0,0,45,0,0,42,0,0,89,0,0,89,28,62,123,2,6,104,0,0,104,0,0,64,0,0,58,1037,1,52298,"FO2","ST" 32,18,5,2,6,658,1,"PERU UTILITIES","PERU",0,"BIT COAL",14839,"0M",1294,,,95,597,409,462,0,0,462,0,0,462,0,0,462,0,0,462,0,0,664,0,0,664,4138,2475,1193,1602,1122,71,0,0,71,0,0,71,0,0,71,1037,1,52298,"BIT","ST" 32,18,5,3,2,666,1,"RENSSELAER (CITY OF)","RENSSELAER",0,"LIGHT OIL",15860,"0A",1294,,,95,0,5,507,0,4,492,0,0,385,0,0,376,42,89,635,0,0,624,11,22,610,10,24,577,13,25,557,13,33,523,18,34,485,12,25,448,1038,1,52461,"FO2","IC" 32,18,5,3,9,666,1,"RENSSELAER (CITY OF)","RENSSELAER",0,"NAT GAS",15860,"0A",1294,,,95,12,2242,0,5,609,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1038,1,52461,"NG","IC" 32,18,5,2,2,669,10,"RICHMOND (CITY OF)","WHITEWATER",0,"LIGHT OIL",15989,"0M",1294,,,95,66,135,651,4,9,642,11,23,618,36,75,544,43,89,455,36,75,380,33,65,315,24,51,800,38,79,721,40,84,637,125,241,754,33,67,866,1040,1,52479,"FO2","ST" 32,18,5,2,6,669,10,"RICHMOND (CITY OF)","WHITEWATER",0,"BIT COAL",15989,"0M",1294,,,95,52567,26931,66546,54464,27521,59857,50869,26046,61570,37981,19323,61813,34761,18221,70185,50812,25880,63189,54367,27836,58351,55464,28592,56536,47367,24058,57432,31433,16236,61431,49216,24827,57518,55122,27935,65411,1040,1,52479,"BIT","ST" 32,18,8,2,2,849,5,"HOOSIER ENERGY RURAL","RATTS",0,"LIGHT OIL",9267,"0M",1294,,,95,36,63,331,24,42,427,57,99,328,82,143,185,157,271,264,220,383,175,69,123,225,64,116,273,67,119,314,72,130,300,169,298,360,213,374,345,1043,1,51339,"FO2","ST" 32,18,8,2,6,849,5,"HOOSIER ENERGY RURAL","RATTS",0,"BIT COAL",9267,"0M",1294,,,95,152672,68804,12521,138850,61631,20613,120820,54271,33350,149240,67046,34059,138601,62960,37387,104185,47642,37604,152193,70371,29049,149047,69157,33970,133611,61143,30823,84154,38731,32856,131727,59094,30160,146986,66592,32432,1043,1,51339,"BIT","ST" 32,18,8,2,2,849,10,"HOOSIER ENERGY RURAL","MEROM",0,"LIGHT OIL",9267,"0M",1294,,,95,195,354,6014,19,38,10415,677,1227,9188,41,76,9112,1799,3447,5664,1764,3378,7059,771,1387,5672,508,946,4725,1207,2219,7281,584,1062,6218,468,838,10208,592,1063,9145,6213,1,51339,"FO2","ST" 32,18,8,2,6,849,10,"HOOSIER ENERGY RURAL","MEROM",0,"BIT COAL",9267,"0M",1294,,,95,462676,222254,448322,417644,215416,460946,384780,184640,471566,246060,116767,519358,230592,116155,570294,429927,213604,544280,462605,221660,492415,499492,244053,429843,353022,171326,433018,376476,178855,429945,480027,227666,396833,503880,236844,364841,6213,1,51339,"BIT","ST" 32,18,9,4,2,900,5,"INDIANA MUN POWER AGENCY","ANDERSON",0,"LIGHT OIL",9234,"0M",1294,,,95,19,44,5010,33,68,4942,40,82,4860,14,24,4835,7,12,4824,25,62,4762,0,1,4761,1,4,4757,0,0,4757,14,27,4730,3,9,4721,10,13,4708,7336,1,19234,"FO2","GT" 32,18,9,4,9,900,5,"INDIANA MUN POWER AGENCY","ANDERSON",0,"NAT GAS",9234,"0M",1294,,,95,53,772,0,54,717,0,199,2578,0,66,914,0,31,416,0,481,7593,0,2482,36348,0,6354,89340,0,94,1557,0,64,1343,0,36,450,0,47,750,0,7336,1,19234,"NG","GT" 33,17,1,2,2,29,5,"CENTRAL ILLINOIS LIGHT CO","E D EDWARDS",0,"LIGHT OIL",3252,"0M",1294,,,95,580,979,551,369,645,642,581,1050,511,539,979,621,777,1362,571,696,1201,688,793,1392,574,425,792,507,571,980,634,610,991,501,329,558,506,455,759,491,856,4,50485,"FO2","ST" 33,17,1,2,6,29,5,"CENTRAL ILLINOIS LIGHT CO","E D EDWARDS",0,"BIT COAL",3252,"0M",1294,,,95,278723,111505,170727,240983,94522,156151,283715,115017,142278,219332,90164,180893,314512,130292,145461,303524,124741,120263,294912,127410,143742,416665,181855,115286,215994,93604,136103,343831,139588,97044,284797,118784,138306,257830,101322,144327,856,4,50485,"BIT","ST" 33,17,1,4,9,29,12,"CENTRAL ILLINOIS LIGHT CO","STERLING AV",0,"NAT GAS",3252,"0M",1294,,,95,91,1361,0,30,486,0,29,443,0,29,495,0,28,483,0,114,1973,0,236,4614,0,495,8477,0,62,1057,0,60,926,0,32,555,0,79,1259,0,860,4,50485,"NG","GT" 33,17,1,2,2,29,20,"CENTRAL ILLINOIS LIGHT CO","DUCK CREEK",0,"LIGHT OIL",3252,"0M",1294,,,95,464,794,607,155,264,573,38,67,506,39,69,437,368,658,640,47,83,557,76,135,598,252,429,597,203,353,523,461,865,374,191,334,581,221,383,548,6016,4,50485,"FO2","ST" 33,17,1,2,6,29,20,"CENTRAL ILLINOIS LIGHT CO","DUCK CREEK",0,"BIT COAL",3252,"0M",1294,,,95,186107,88236,146013,184996,85972,174445,212342,99989,207941,178133,85191,199728,101736,49494,191824,209741,99840,163763,218825,104416,121412,182815,87426,161492,205874,98086,126656,49432,25199,182072,221479,104789,147984,208001,98018,120664,6016,4,50485,"BIT","ST" 33,17,1,2,9,29,25,"CENTRAL ILLINOIS LIGHT CO","MIDWEST GRN",0,"NAT GAS",3252,"0M",694,"A",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1987,12379,0,4809,36302,0,4873,33446,0,2693,19047,0,0,0,0,3046,22292,0,4051,25863,0,7384,4,50485,"NG","ST" 33,17,1,2,2,32,2,"CENTRAL ILL PUBLIC SER CO","COFFEEN",0,"LIGHT OIL",3253,"0M",1294,,,95,281,528,4129,159,291,4010,394,749,4105,523,1002,3949,771,1637,3876,506,903,4329,271,491,4241,39,71,3944,249,436,4034,521,930,3986,417,729,4572,962,1745,3927,861,4,50486,"FO2","ST" 33,17,1,2,6,32,2,"CENTRAL ILL PUBLIC SER CO","COFFEEN",0,"BIT COAL",3253,"0M",1294,,,95,365821,196265,250663,291393,151752,268915,248792,134522,254062,79012,43562,287270,49602,29698,377234,331239,171527,392358,397070,207104,345747,370867,195382,346249,139189,69530,387149,251535,126615,387760,291764,143554,406398,266300,137380,362886,861,4,50486,"BIT","ST" 33,17,1,2,2,32,5,"CENTRAL ILL PUBLIC SER CO","GRAND TOWER",0,"LIGHT OIL",3253,"0M",1294,,,95,146,294,559,222,423,494,139,267,578,60,171,742,-59,75,667,310,600,753,324,626,481,405,753,769,154,287,834,78,162,672,389,761,607,217,428,533,862,4,50486,"FO2","ST" 33,17,1,2,6,32,5,"CENTRAL ILL PUBLIC SER CO","GRAND TOWER",0,"BIT COAL",3253,"0M",1294,,,95,19817,10029,48685,18173,8634,59296,12650,6089,70908,3933,2772,73473,-503,161,78207,17238,8399,74696,44644,21400,58784,77238,35607,26412,11609,5363,31994,11150,5893,34133,57466,27803,19044,47800,23991,32368,862,4,50486,"BIT","ST" 33,17,1,2,2,32,10,"CENTRAL ILL PUBLIC SER CO","HUTSONVILLE",0,"LIGHT OIL",3253,"0M",1294,,,95,72,148,1592,254,501,1092,252,532,1126,117,284,1556,421,883,1560,398,781,1662,440,832,1760,236,429,1331,196,323,1008,158,382,1338,346,655,1437,140,264,1173,863,4,50486,"FO2","ST" 33,17,1,2,6,32,10,"CENTRAL ILL PUBLIC SER CO","HUTSONVILLE",0,"BIT COAL",3253,"0M",1294,,,95,17493,9580,55605,13103,6803,61393,11330,6319,65444,3457,2220,70186,6929,4012,73260,18641,9997,71065,43752,22295,48771,75386,37255,19363,5801,2524,33120,7107,4480,39773,44924,22754,26665,48938,24435,23714,863,4,50486,"BIT","ST" 33,17,1,3,2,32,10,"CENTRAL ILL PUBLIC SER CO","HUTSONVILLE",0,"LIGHT OIL",3253,"0M",1294,,,95,5,10,124,0,0,126,0,0,130,5,9,121,5,9,106,0,0,106,15,30,72,10,21,233,0,0,229,0,0,228,5,9,225,0,0,227,863,4,50486,"FO2","IC" 33,17,1,2,2,32,15,"CENTRAL ILL PUBLIC SER CO","MEREDOSIA",0,"LIGHT OIL",3253,"0M",1294,,,95,276,524,1245,240,455,1295,109,257,1541,576,1050,1518,264,464,1396,272,471,1722,478,864,1170,665,1188,1390,137,250,1672,104,202,1469,-609,0,1671,636,1140,1388,864,4,50486,"FO2","ST" 33,17,1,2,3,32,15,"CENTRAL ILL PUBLIC SER CO","MEREDOSIA",0,"HEAVY OIL",3253,"0M",1294,,,95,-878,0,41246,-869,0,41246,-953,0,41246,-789,0,41246,-6,0,41246,1105,5986,35342,1753,6017,29342,6547,17169,22153,-808,333,23977,-646,0,42084,996,1890,42084,-711,0,42084,864,4,50486,"FO6","ST" 33,17,1,2,6,32,15,"CENTRAL ILL PUBLIC SER CO","MEREDOSIA",0,"BIT COAL",3253,"0M",1294,,,95,66774,32586,105182,41839,21008,131939,15303,9402,148998,70146,32222,148546,91295,40883,144840,111244,50699,134953,137571,64325,109649,184516,85228,55561,77698,37291,62196,86881,43240,73623,78143,41045,82454,97009,48373,93368,864,4,50486,"BIT","ST" 33,17,1,2,2,32,20,"CENTRAL ILL PUBLIC SER CO","NEWTON",0,"LIGHT OIL",3253,"0M",1294,,,95,844,1577,4500,512,956,5160,1182,2043,4716,553,984,5869,379,679,5723,681,1231,5199,190,328,5578,942,1748,4784,746,1331,5217,282,508,5420,60,105,5315,649,3661,4337,6017,4,50486,"FO2","ST" 33,17,1,2,6,32,20,"CENTRAL ILL PUBLIC SER CO","NEWTON",0,"BIT COAL",3253,"0M",1294,,,95,556271,262272,366063,518547,246265,373901,546762,245831,417351,503402,237591,446819,516641,244361,536330,468640,219703,623301,560024,252360,476964,466441,225593,612105,491641,228921,632582,454181,204761,666122,359030,160358,746315,378431,180592,722338,6017,4,50486,"BIT","ST" 33,17,1,1,,41,1,"COMMONWEALTH EDISON CO","DIXON",0,,4110,"0M",1294,,100,95,1217,0,0,1001,0,0,1400,0,0,1473,0,0,1443,0,0,1109,0,0,1264,0,0,1341,0,0,1211,0,0,1365,0,0,1603,0,0,1067,0,0,868,4,50643,"WAT","HY" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","QUAD CITIES",0,"NUCLEAR",4110,"0M",1294,,100,95,265985,0,0,516483,0,0,563772,0,0,556271,0,0,570166,0,0,541658,0,0,537742,0,0,552522,0,0,533277,0,0,383182,0,0,293985,0,0,571167,0,0,880,4,50643,"UR","ST" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","BRAIDWOOD",0,"NUCLEAR",4110,"0M",1294,,100,95,845089,0,0,487988,0,0,443133,0,0,527594,0,0,838888,0,0,802928,0,0,825056,0,0,825520,0,0,701927,0,0,-9715,0,0,-10027,0,0,307159,0,0,6022,4,50643,"UR","ST" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","BYRON",0,"NUCLEAR",4110,"0M",1294,,100,95,766116,0,0,735235,0,0,817602,0,0,779568,0,0,804172,0,0,742334,0,0,790248,0,0,800198,0,0,786058,0,0,542611,0,0,-9310,0,0,142399,0,0,6023,4,50643,"UR","ST" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","LASALLE CTY",0,"NUCLEAR",4110,"0M",1294,,100,95,813809,0,0,531418,0,0,813835,0,0,788528,0,0,782478,0,0,561931,0,0,750639,0,0,609485,0,0,617973,0,0,773354,0,0,684375,0,0,641459,0,0,6026,4,50643,"UR","ST" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","ZION",0,"NUCLEAR",4110,"0M",1294,,100,95,777628,0,0,706122,0,0,778794,0,0,744367,0,0,679639,0,0,751346,0,0,778214,0,0,771971,0,0,190946,0,0,-8633,0,0,-8349,0,0,290089,0,0,885,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","ZION",0,"NUCLEAR",4110,"0M",1294,,100,95,62829,0,0,-7517,0,0,-8823,0,0,214602,0,0,763695,0,0,707962,0,0,768388,0,0,745403,0,0,742149,0,0,737928,0,0,708434,0,0,471011,0,0,885,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","LASALLE CTY",0,"NUCLEAR",4110,"0M",1294,,100,95,805795,0,0,433271,0,0,-8184,0,0,-8016,0,0,-8927,0,0,375943,0,0,773928,0,0,744199,0,0,446327,0,0,816638,0,0,792434,0,0,804502,0,0,6026,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","BYRON",0,"NUCLEAR",4110,"0M",1294,,100,95,753651,0,0,166639,0,0,50362,0,0,767250,0,0,824285,0,0,786866,0,0,797334,0,0,811901,0,0,764206,0,0,832898,0,0,804540,0,0,823838,0,0,6023,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","BRAIDWOOD",0,"NUCLEAR",4110,"0M",1294,,100,95,839335,0,0,759006,0,0,840028,0,0,777131,0,0,635751,0,0,794146,0,0,802182,0,0,795885,0,0,801537,0,0,846700,0,0,810185,0,0,831152,0,0,6022,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","QUAD CITIES",0,"NUCLEAR",4110,"0M",1294,,100,95,501116,0,0,453211,0,0,58157,0,0,-5752,0,0,-5952,0,0,-5994,0,0,-6618,0,0,93771,0,0,422180,0,0,318808,0,0,77988,0,0,571746,0,0,880,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","DRESDEN",0,"NUCLEAR",4110,"0M",1294,,100,95,535595,0,0,493244,0,0,81638,0,0,302574,0,0,449851,0,0,27639,0,0,-3615,0,0,-4287,0,0,-5566,0,0,-5704,0,0,-5672,0,0,-5963,0,0,869,4,50643,"UR","ST" 33,17,1,2,1,41,3,"COMMONWEALTH EDISON CO","DRESDEN",0,"NUCLEAR",4110,"0M",1294,,100,95,420814,0,0,506779,0,0,533907,0,0,467390,0,0,432429,0,0,-5060,0,0,-3401,0,0,-3807,0,0,41448,0,0,138092,0,0,358426,0,0,577978,0,0,869,4,50643,"UR","ST" 33,17,1,4,2,41,4,"COMMONWEALTH EDISON CO","BLOOM",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,15589,0,0,15589,69,87,15502,0,0,15495,0,0,15495,0,0,15475,146,497,14951,792,2784,12167,0,0,15755,0,0,15755,0,0,15755,1,3,15739,865,4,50643,"FO2","GT" 33,17,1,4,2,41,6,"COMMONWEALTH EDISON CO","CALUMET",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,16437,0,0,16437,0,0,16437,145,127,16310,0,0,16310,0,0,16310,593,2028,14281,508,1365,12917,0,0,15298,0,0,15298,0,0,15298,0,0,15298,866,4,50643,"FO2","GT" 33,17,1,4,9,41,6,"COMMONWEALTH EDISON CO","CALUMET",0,"NAT GAS",4110,"0M",1294,,100,95,0,0,0,68,1045,0,0,8,0,0,0,0,62,540,0,0,0,0,2902,56071,0,3743,56299,0,1,46,0,106,1474,0,29,760,0,0,0,0,866,4,50643,"NG","GT" 33,17,1,2,6,41,10,"COMMONWEALTH EDISON CO","CRAWFORD",0,"BIT COAL",4110,"0M",1294,,100,95,79127,52566,254284,56492,34236,247898,154770,96060,204338,157819,95401,178999,77964,50034,154295,195593,125311,78949,167051,106642,75986,220876,140947,52693,111791,74002,178401,100936,63677,173394,171688,108863,144620,107184,68961,169485,867,4,50643,"BIT","ST" 33,17,1,2,9,41,10,"COMMONWEALTH EDISON CO","CRAWFORD",0,"NAT GAS",4110,"0M",1294,,100,95,4191,46278,0,3822,41541,0,6151,66002,0,6881,74296,0,3205,34575,0,3676,39819,0,4307,47007,0,11765,128609,0,2943,33297,0,3202,34374,0,2534,27690,0,3684,42386,0,867,4,50643,"NG","ST" 33,17,1,4,2,41,10,"COMMONWEALTH EDISON CO","CRAWFORD",0,"LIGHT OIL",4110,"0M",1294,,100,95,39,239,11718,31,208,15427,7,85,15342,60,196,15146,0,0,15146,145,654,14492,207,1709,12783,90,287,12496,0,0,12495,0,0,12495,5,41,12453,0,0,12451,867,4,50643,"FO2","GT" 33,17,1,4,9,41,10,"COMMONWEALTH EDISON CO","CRAWFORD",0,"NAT GAS",4110,"0M",1294,,100,95,99,3367,0,462,10721,0,90,6128,0,496,8920,0,41,832,0,2338,60078,0,1956,92769,0,6353,117178,0,232,23469,0,130,22477,0,606,26280,0,716,38106,0,867,4,50643,"NG","GT" 33,17,1,2,2,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,874,4,50643,"FO2","ST" 33,17,1,2,6,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"BIT COAL",4110,"0M",1294,,100,95,122495,69041,120326,93234,54624,109729,118689,69742,107396,119799,68307,78398,7077,4459,86216,111744,65001,89393,128830,75618,81101,97034,56642,114450,105402,58755,119892,105052,56846,73967,38927,23143,87158,80786,46625,136310,874,4,50643,"BIT","ST" 33,17,1,2,9,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"NAT GAS",4110,"0M",1294,,100,95,2191,22095,0,1467,15220,0,2310,24340,0,2244,23500,0,166,1970,0,2208,24000,0,2239,22730,0,1106,11930,0,1732,18230,0,1439,14430,0,1402,15430,0,1598,17620,0,874,4,50643,"NG","ST" 33,17,1,3,2,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"LIGHT OIL",4110,"0M",1294,,100,95,28,24,0,19,36,0,26,24,0,38,121,0,42,65,0,45,88,0,191,342,0,177,323,0,43,60,8,25,36,0,50,114,0,33,48,0,874,4,50643,"FO2","IC" 33,17,1,4,2,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,12982,0,0,12946,0,0,13461,0,0,13339,0,0,11260,0,0,11071,56,101,11058,0,0,11182,0,0,11123,0,0,11087,0,0,11349,0,0,11301,874,4,50643,"FO2","GT" 33,17,1,4,9,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"NAT GAS",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1395,27871,0,8945,90787,0,8183,223338,0,866,13196,0,229,3746,0,131,5138,0,234,3377,0,874,4,50643,"NG","GT" 33,17,1,2,2,41,17,"COMMONWEALTH EDISON CO","JOLIET 7&8",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,384,4,50643,"FO2","ST" 33,17,1,2,6,41,17,"COMMONWEALTH EDISON CO","JOLIET 7&8",0,"BIT COAL",4110,"0M",1294,,100,95,520241,284540,251012,441016,243169,314690,475210,271066,278538,286729,169187,274394,417122,253105,368822,380291,234398,349806,434794,265270,338716,502962,304953,251022,375036,226403,245187,274949,166801,229512,204177,119561,295972,195022,118007,392005,384,4,50643,"BIT","ST" 33,17,1,2,9,41,17,"COMMONWEALTH EDISON CO","JOLIET 7&8",0,"NAT GAS",4110,"0M",1294,,100,95,11103,108953,0,8750,87209,0,12754,127880,0,12398,126498,0,15389,159604,0,14468,153070,0,34003,358096,0,38820,399592,0,12449,130392,0,5845,61103,0,9664,99401,0,15109,163833,0,384,4,50643,"NG","ST" 33,17,1,2,2,41,18,"COMMONWEALTH EDISON CO","KINCAID",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,876,4,50643,"FO2","ST" 33,17,1,2,6,41,18,"COMMONWEALTH EDISON CO","KINCAID",0,"BIT COAL",4110,"0M",1294,,100,95,55770,32758,306574,225554,110119,355485,177700,87847,323621,111716,54633,362527,59730,40786,398523,326434,167542,321546,302831,139901,261736,370353,171207,168914,152028,76179,217203,146493,75067,252142,105685,62572,325669,303394,153078,287687,876,4,50643,"BIT","ST" 33,17,1,2,9,41,18,"COMMONWEALTH EDISON CO","KINCAID",0,"NAT GAS",4110,"0M",1294,,100,95,1202,16174,0,747,8607,0,913,10721,0,996,11458,0,1078,14934,0,450,5024,0,586,6470,0,981,10590,0,742,8548,0,1541,18276,0,2200,30312,0,917,10402,0,876,4,50643,"NG","ST" 33,17,1,4,2,41,19,"COMMONWEALTH EDISON CO","LOMBARD",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,16204,0,0,16203,0,2,15828,0,0,15828,0,0,15471,0,0,15471,0,0,15471,0,0,15471,0,0,15471,0,0,15471,0,0,15471,0,0,15471,877,4,50643,"FO2","GT" 33,17,1,4,9,41,19,"COMMONWEALTH EDISON CO","LOMBARD",0,"NAT GAS",4110,"0M",1294,,100,95,0,0,0,0,0,0,216,9440,0,28,3677,0,45,1042,0,1545,52076,0,2695,90228,0,4011,66015,0,277,4570,0,110,2620,0,70,1556,0,6,1352,0,877,4,50643,"NG","GT" 33,17,1,4,2,41,22,"COMMONWEALTH EDISON CO","EL JUNCTION",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,870,4,50643,"FO2","GT" 33,17,1,4,9,41,22,"COMMONWEALTH EDISON CO","EL JUNCTION",0,"NAT GAS",4110,"0M",1294,,100,95,45,1465,0,255,9385,0,433,17490,0,266,17646,0,201,1306,0,3974,165292,0,3141,117346,0,6577,120875,0,317,6236,0,0,0,0,0,0,0,0,0,0,870,4,50643,"NG","GT" 33,17,1,2,2,41,25,"COMMONWEALTH EDISON CO","POWERTON",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,879,4,50643,"FO2","ST" 33,17,1,2,6,41,25,"COMMONWEALTH EDISON CO","POWERTON",0,"BIT COAL",4110,"0M",1294,,100,95,295687,209649,423935,447158,294017,440451,348046,239570,435308,212232,137447,636432,150582,105273,808681,358461,251527,710182,600064,381559,542202,449473,321219,483261,473891,314575,379942,711307,426764,426047,347462,223314,654319,369211,237119,790527,879,4,50643,"BIT","ST" 33,17,1,2,9,41,25,&quo