National Library of Energy BETA

Sample records for montana code annotated

  1. Montana

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana

  2. Utah Code Annotated | Open Energy Information

    Open Energy Info (EERE)

    Code Ann. DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Utah Code Annotated Citation Utah Code Annotated (2014). Retrieved from...

  3. Montana Code 75-20 | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Montana Code 75-20 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana Code 75-20Legal...

  4. Montana Code 75-20-216 | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 75-20-216Legal Published NA Year Signed or Took Effect 2014 Legal Citation Montana Code...

  5. Montana Code 75-20-101 | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 75-20-101Legal Abstract Montana Major facility siting act Published NA Year Signed or Took...

  6. Montana Code 70-30-102 | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana Code 70-30-102Legal Published NA Year Signed or Took Effect 2014 Legal Citation Not...

  7. Montana Code 75-20-102 | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 75-20-102Legal Abstract A Certificate of Compliance is required for the development of...

  8. Montana Code 75-20-104 | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 75-20-104Legal Abstract Definition of facilities. Published NA Year Signed or Took Effect...

  9. Montana Code 75-20-211 | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 75-20-211Legal Abstract This section includes the requirements for the Certificate of...

  10. Montana Code 75-20-301 | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 75-20-301Legal Abstract Decision of department - findings necessary for certification...

  11. Montana Code 76-2-301 | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 76-2-301Legal Abstract This statute covers local government zoning ordinances and planning....

  12. Montana Code 76-2-201 | Open Energy Information

    Open Energy Info (EERE)

    201 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana Code 76-2-201Legal Abstract This statute covers county zoning...

  13. Montana Code 76-2-301 and 302 | Open Energy Information

    Open Energy Info (EERE)

    and 302 Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana Code 76-2-301 and 302Legal Abstract Land Resources and Use...

  14. Montana - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Montana

  15. Montana - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Montana

  16. Montana - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Montana

  17. Montana MCA Title 85, Water Use | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana MCA Title 85, Water UseLegal Abstract Water Use regulations under Montana Code...

  18. Big Horn County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Subtype B. Places in Big Horn County, Montana Busby, Montana Crow Agency, Montana Fort Smith, Montana Hardin, Montana Lodge Grass, Montana Muddy, Montana Pryor, Montana St....

  19. Madison County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 6 Climate Zone Subtype B. Places in Madison County, Montana Alder, Montana Big Sky, Montana Ennis, Montana Harrison, Montana Norris, Montana Sheridan, Montana Silver...

  20. Valley County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Fort Peck, Montana Frazer, Montana Glasgow, Montana Nashua, Montana Opheim, Montana St. Marie, Montana Retrieved from "http:en.openei.orgwindex.php?titleValleyCounty,Montana...

  1. Fergus County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Denton, Montana Grass Range, Montana Lewistown Heights, Montana Lewistown, Montana Moore, Montana Winifred, Montana Retrieved from "http:en.openei.orgw...

  2. Beaverhead County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 6 Climate Zone Subtype B. Places in Beaverhead County, Montana Dillon, Montana Jackson, Montana Lima, Montana Polaris, Montana Wisdom, Montana Retrieved from "http:...

  3. Carbon County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bearcreek, Montana Belfry, Montana Bridger, Montana Fromberg, Montana Joliet, Montana Red Lodge, Montana Retrieved from "http:en.openei.orgwindex.php?titleCarbonCounty,Mo...

  4. Powell County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    169-2006 Climate Zone Number 6 Climate Zone Subtype B. Places in Powell County, Montana Avon, Montana Deer Lodge, Montana Elliston, Montana Garrison, Montana Ovando, Montana...

  5. BLM Montana State Office | Open Energy Information

    Open Energy Info (EERE)

    Montana State Office Jump to: navigation, search Logo: BLM Montana State Office Name: BLM Montana State Office Abbreviation: Montana Address: 5001 Southgate Drive Place: Billings,...

  6. Montana Joint Application for Proposed Work in Montana's Streams...

    Open Energy Info (EERE)

    Notice Form Topic JOINT APPLICATION FOR PROPOSED WORK IN MONTANA'S STREAMS, WETLANDS, FLOODPLAINS, AND OTHER WATER BODIES Organization Montana Department of Natural...

  7. Dawson County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Dawson County is a county in Montana. Its FIPS County Code is 021. It is classified as ASHRAE...

  8. Park County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Park County is a county in Montana. Its FIPS County Code is 067. It is classified as ASHRAE...

  9. Lewis and Clark County, Montana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lewis and Clark County is a county in Montana. Its FIPS County Code is 049. It is classified...

  10. Montana Watershed Coordination Council | Open Energy Information

    Open Energy Info (EERE)

    Coordination Council Jump to: navigation, search Logo: Montana Watershed Coordination Council Name: Montana Watershed Coordination Council Place: Helena, Montana Zip: 59604-6873...

  11. Bozeman, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    congressional district.12 Registered Research Institutions in Bozeman, Montana Big Sky Carbon Sequestration Partnership Registered Energy Companies in Bozeman, Montana...

  12. Montana Construction Dewatering General Permit Application Information...

    Open Energy Info (EERE)

    overview of Construction Dewatering General Permit process. Author Montana Department of Environmental Quality - Water Protection Bureau Published Montana Department of...

  13. HERO Whitefish, Montana

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    side lodging at the Kandahar Lodge in Whitefish, Montana Prices start at 250 per person and include 2 nights lodging, 3 days skiing and daily breakfast (for 6 sharing a...

  14. Montana Understanding the Basics of Water Law In Montana Webpage...

    Open Energy Info (EERE)

    Understanding the Basics of Water Law In Montana Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Understanding the Basics of Water Law...

  15. Montana Natural Gas Plant Liquids Production Extracted in Montana (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Montana (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in Montana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,340 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-Montana

  16. Montana Natural Gas Processed in Montana (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Montana (Million Cubic Feet) Montana Natural Gas Processed in Montana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 11,185 11,206 12,493 12,507 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Montana-Montana

  17. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Montana

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Montana.

  18. Montana Environmental Quality Council | Open Energy Information

    Open Energy Info (EERE)

    Council Jump to: navigation, search Name: Montana Environmental Quality Council Address: Legislative Environmental Policy Office PO Box 201704 Place: Helena, Montana Zip:...

  19. Montana - Encroachment Permit Application | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Encroachment Permit Application Author Montana Department of Transportation...

  20. Anaconda, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Anaconda, Montana: Energy Resources Jump to: navigation, search Name Anaconda, Montana Equivalent URI DBpedia GeoNames ID 5637146 Coordinates 46.1285369, -112.9422641 Show Map...

  1. Montana Fish, Wildlife & Parks | Open Energy Information

    Open Energy Info (EERE)

    Fish, Wildlife & Parks Jump to: navigation, search Logo: Montana Fish, Wildlife & Parks Name: Montana Fish, Wildlife & Parks Address: 1420 East 6th Ave, PO Box 200701 Place:...

  2. Montana Stream Permitting Webpage | Open Energy Information

    Open Energy Info (EERE)

    Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Stream Permitting Webpage Abstract Provides access to Montana Stream Permitting guide....

  3. Montana Department of Natural Resources & Conservation | Open...

    Open Energy Info (EERE)

    Natural Resources & Conservation Jump to: navigation, search Logo: Montana Department of Natural Resources& Conservation Name: Montana Department of Natural Resources& Conservation...

  4. Montana Cultural Records Webpage | Open Energy Information

    Open Energy Info (EERE)

    LibraryAdd to library Web Site: Montana Cultural Records Webpage Abstract Provides access to the Montana Antiquities Database and provides information about the structure and...

  5. Montana Produced Water General Permit - Example Authorization...

    Open Energy Info (EERE)

    General Permit. Author Montana Department of Environmental Quality - Water Protection Bureau Published State of Montana, 052010 DOI Not Provided Check for DOI availability:...

  6. Montana Construction Dewatering General Permit - Example Authorization...

    Open Energy Info (EERE)

    General Permit. Author Montana Department of Environmental Quality - Water Protection Bureau Published State of montana, 92010 DOI Not Provided Check for DOI availability: http:...

  7. Montana Suction Dredge General Permit Application Information...

    Open Energy Info (EERE)

    process. Author Montana Department of Environmental Quality - Water Protection Bureau Published State of Montana, 082012 DOI Not Provided Check for DOI availability:...

  8. Montana Watershed Protection Section Contacts Webpage | Open...

    Open Energy Info (EERE)

    contact information for the Watershed Protection Section of the Water Quality Planning Bureau. Author Montana Water Quality Planning Bureau Published State of Montana, Date Not...

  9. Montana Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Transportation Name: Montana Department of Transportation Address: 2701 Prospect Avenue P.O. Box 201001 Place: Helena, Montana Zip: 59620 Website: www.mdt.mt.gov Coordinates:...

  10. Montana Bureau of Mines and Geology Website | Open Energy Information

    Open Energy Info (EERE)

    Web Site: Montana Bureau of Mines and Geology Website Abstract Provides access to digital information on Montana's geology. Author Montana Bureau of Mines and Geology...

  11. Montana s Green Electricity Buying Cooperation GEBCO | Open Energy...

    Open Energy Info (EERE)

    Electricity Buying Cooperation GEBCO Jump to: navigation, search Name: Montana's Green Electricity Buying Cooperation (GEBCO) Place: Montana Product: A montana based cooperative to...

  12. PP-305 Montana Alberta Tie Ltd | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Montana Alberta Tie Ltd PP-305 Montana Alberta Tie Ltd Presidential permit authorizing Montana Alberta Tie Ltd to construct, operate, and maintain electric transmission...

  13. Judith Basin County, Montana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    6 Climate Zone Subtype B. Places in Judith Basin County, Montana Hobson, Montana Stanford, Montana Retrieved from "http:en.openei.orgwindex.php?titleJudithBasinCounty,...

  14. RAPID/Overview/Geothermal/Exploration/Montana | Open Energy Informatio...

    Open Energy Info (EERE)

    Montana < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationMontana) Redirect page Jump to: navigation, search REDIRECT...

  15. Montana Electric Cooperatives- Net Metering

    Broader source: Energy.gov [DOE]

    The Montana Electric Cooperatives' Association (MECA) adopted model interconnection guidelines in 2001 and a revised net-metering policy in September 2008. Net metering is available in whole or...

  16. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Butte is a city in Silver Bow County, Montana. It falls under Montana's At-large congressional district.12 Registered Energy...

  17. Billings, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    a stub. You can help OpenEI by expanding it. Billings is a city in Yellowstone County, Montana. It falls under Montana's At-large congressional district.12 References US...

  18. Bozeman, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a stub. You can help OpenEI by expanding it. Bozeman is a city in Gallatin County, Montana. It falls under Montana's At-large congressional district.12 Registered Research...

  19. Montana Geographic Information Library | Open Energy Information

    Open Energy Info (EERE)

    Montana Geographic Information Library Jump to: navigation, search OpenEI Reference LibraryAdd to library Map: Montana Geographic Information LibraryInfo GraphicMapChart Abstract...

  20. Montana State Land Board | Open Energy Information

    Open Energy Info (EERE)

    Land Board Jump to: navigation, search Name: Montana State Land Board Place: Helena, Montana Website: dnrc.mt.govLandBoardStaff.as References: Webpage1 This article is a stub....

  1. Montana 310 Permit Database | Open Energy Information

    Open Energy Info (EERE)

    0 Permit Database Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana 310 Permit Database Abstract Provides access to Montana's 310 permit mapping...

  2. Helena, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Helena is a city in Lewis and Clark County, Montana. It falls under Montana's At-large congressional...

  3. Protein Sequence Annotation Tool (PSAT): A centralized web-based meta-server for high-throughput sequence annotations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leung, Elo; Huang, Amy; Cadag, Eithon; Montana, Aldrin; Soliman, Jan Lorenz; Zhou, Carol L. Ecale

    2016-01-20

    In this study, we introduce the Protein Sequence Annotation Tool (PSAT), a web-based, sequence annotation meta-server for performing integrated, high-throughput, genome-wide sequence analyses. Our goals in building PSAT were to (1) create an extensible platform for integration of multiple sequence-based bioinformatics tools, (2) enable functional annotations and enzyme predictions over large input protein fasta data sets, and (3) provide a web interface for convenient execution of the tools. In this paper, we demonstrate the utility of PSAT by annotating the predicted peptide gene products of Herbaspirillum sp. strain RV1423, importing the results of PSAT into EC2KEGG, and using the resultingmore » functional comparisons to identify a putative catabolic pathway, thereby distinguishing RV1423 from a well annotated Herbaspirillum species. This analysis demonstrates that high-throughput enzyme predictions, provided by PSAT processing, can be used to identify metabolic potential in an otherwise poorly annotated genome. Lastly, PSAT is a meta server that combines the results from several sequence-based annotation and function prediction codes, and is available at http://psat.llnl.gov/psat/. PSAT stands apart from other sequencebased genome annotation systems in providing a high-throughput platform for rapid de novo enzyme predictions and sequence annotations over large input protein sequence data sets in FASTA. PSAT is most appropriately applied in annotation of large protein FASTA sets that may or may not be associated with a single genome.« less

  4. Montana/Transmission | Open Energy Information

    Open Energy Info (EERE)

    Montana Electric Power Cooperative, Western Area Power Administration, Bonneville Power Administration, Western Area Power Administration, Columbia Grid, Northern Tier...

  5. Montana Delegation Visit January 9, 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MONTANA DELEGATION VISIT January 9, 2008 On January 9 Montana Governor Schweitzer and First Lady, Nancy Schweitzer visited the INL. The delegation included Montana First Lady Nancy Schweitzer, Gov. Brian Schweitzer, DOE-ID Manager Beth Sellers, INL Lab Director John Grossenbacher, and Associate Lab Director Bill Rogers stand in front of an INL mission display. Click on image to enlarge four of the Governor's staff: Jan Lombardi, Montana State Education Policy Advisor; Tom Kasierski, Program

  6. Categorical Exclusion Determinations: Montana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Montana Categorical Exclusion Determinations: Montana Location Categorical Exclusion Determinations issued for actions in Montana. DOCUMENTS AVAILABLE FOR DOWNLOAD August 27, 2014 CX-012438: Categorical Exclusion Determination Geomechanical Monitoring for CO2 Hub Storage: Production and Injection at Kevin Dome CX(s) Applied: A1, A9 Date: 41878 Location(s): Montana Offices(s): National Energy Technology Laboratory August 27, 2014 CX-012441: Categorical Exclusion Determination Kevin Dome Carbon

  7. MONTANA PALLADIUM RESEARCH INITIATIVE

    SciTech Connect (OSTI)

    Peters, John McCloskey, Jay Douglas, Trevor Young, Mark Snyder, Stuart Gurney, Brian

    2012-05-09

    Project Objective: The overarching objective of the Montana Palladium Research Initiative is to perform scientific research on the properties and uses of palladium in the context of the U.S. Department of Energy'????????????????s Hydrogen, Fuel Cells and Infrastructure Technologies Program. The purpose of the research will be to explore possible palladium as an alternative to platinum in hydrogen-economy applications. To achieve this objective, the Initiatives activities will focus on several cutting-edge research approaches across a range of disciplines, including metallurgy, biomimetics, instrumentation development, and systems analysis. Background: Platinum-group elements (PGEs) play significant roles in processing hydrogen, an element that shows high potential to address this need in the U.S. and the world for inexpensive, reliable, clean energy. Platinum, however, is a very expensive component of current and planned systems, so less-expensive alternatives that have similar physical properties are being sought. To this end, several tasks have been defined under the rubric of the Montana Palladium Research Iniative. This broad swath of activities will allow progress on several fronts. The membrane-related activities of Task 1 employs state-of-the-art and leading-edge technologies to develop new, ceramic-substrate metallic membranes for the production of high-purity hydrogen, and develop techniques for the production of thin, defect-free platinum group element catalytic membranes for energy production and pollution control. The biomimetic work in Task 2 explores the use of substrate-attached hydrogen-producing enzymes and the encapsulation of palladium in virion-based protein coats to determine their utility for distributed hydrogen production. Task 3 work involves developing laser-induced breakdown spectroscopy (LIBS) as a real-time, in situ diagnostic technique to characterize PGEs nanoparticles for process monitoring and control. The systems engineering work in task 4 will determine how fuel cells ????????????????taken as systems behave over periods of time that should show how their reformers and other subsystems deteriorate with time.

  8. Algal functional annotation tool

    Energy Science and Technology Software Center (OSTI)

    2012-07-12

    Abstract BACKGROUND: Progress in genome sequencing is proceeding at an exponential pace, and several new algal genomes are becoming available every year. One of the challenges facing the community is the association of protein sequences encoded in the genomes with biological function. While most genome assembly projects generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from a limited number of databases. Another challenge is the use of annotations tomore » interpret large lists of 'interesting' genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene lists. While several such databases have been constructed for animals, none is currently available for the study of algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal genome sequences, a significant need has arisen for such a database to process the growing compendiums of algal genomic data. DESCRIPTION: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating annotation data from several pathway, ontology, and protein family databases. The current version provides annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment. Additionally, expression data for several experimental conditions were compiled and analyzed to provide an expression-based enrichment search. A tool to search for functionally-related genes based on gene expression across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway maps and batch gene identifier conversion. CONCLUSIONS: The Algal Functional Annotation Tool aims to provide an integrated data-mining environment for algal genomics by combining data from multiple annotation databases into a centralized tool. This site is designed to expedite the process of functional annotation and the interpretation of gene lists, such as those derived from high-throughput RNA-seq experiments. The tool is publicly available at http://pathways.mcdb.ucla.edu.« less

  9. AWEA State Wind Energy Forum--Montana | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to 5:00PM MDT Montana State University Bozeman, Montana The American Wind Energy Association will host this forum for a broad array of Montana wind stakeholders, including...

  10. Montana - Land Use License Application | Open Energy Information

    Open Energy Info (EERE)

    Land Use License Application Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Land Use License Application Author Montana Department of Natural...

  11. Montana State Historic Preservation Office | Open Energy Information

    Open Energy Info (EERE)

    recognize and protect the heritage sites of Montana, preserving our rich cultural landscape for generations to come. References "Montana SHPO Website" State Historic...

  12. Montana's At-large congressional district: Energy Resources ...

    Open Energy Info (EERE)

    Registered Research Institutions in Montana's At-large congressional district Big Sky Carbon Sequestration Partnership Registered Energy Companies in Montana's At-large...

  13. Montana-Dakota Utilities Co (Wyoming) | Open Energy Information

    Open Energy Info (EERE)

    Montana-Dakota Utilities Co (Wyoming) (Redirected from MDU Resources Group Inc (Wyoming)) Jump to: navigation, search Name: Montana-Dakota Utilities Co Place: Wyoming Phone Number:...

  14. Montana - Right-of-Way Checklist | Open Energy Information

    Open Energy Info (EERE)

    Checklist Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Right-of-Way Checklist Author Montana Department of Transportation Published...

  15. Montana Pending Water Right Application Status Webpage | Open...

    Open Energy Info (EERE)

    rights application status system. Author Montana Department of Natural Resources and Conservation - Water Resources Division Published State of Montana, Date Not Provided DOI...

  16. Montana Surface Water Application for Beneficial Use (DNRC Form...

    Open Energy Info (EERE)

    for Beneficial Use (DNRC Form 600 GW) Citation Montana Department of Natural Resources & Conservation. Form: Montana Surface Water Application for Beneficial Use (DNRC Form 600...

  17. Montana Surface Water Application for Beneficial Use (DNRC Form...

    Open Energy Info (EERE)

    Beneficial Use (DNRC Form 600 SW) Citation Montana Department of Natural Resources and Conservation. Form: Montana Surface Water Application for Beneficial Use (DNRC Form 600...

  18. Montana Building with Wildlife Guide | Open Energy Information

    Open Energy Info (EERE)

    Provides guidance on conservation oriented development. Authors State of Montana Fish and Wildlife & Parks Organizations State of Montana Fish and Wildlife & Parks Published...

  19. Montana Stream Protection Act Webpage | Open Energy Information

    Open Energy Info (EERE)

    Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Stream Protection Act Webpage Abstract Provides overview of Montana...

  20. Montana Board of Oil and Gas Conservation | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Conservation Jump to: navigation, search Name: Montana Board of Oil and Gas Conservation Address: 2535 St. Johns Avenue Place: Montana Zip: 59102 Website:...

  1. Montana Domestic Sewage Treatment Lagoons General Permit Information...

    Open Energy Info (EERE)

    Lagoons General Permit Information Citation Montana Department of Environmental Quality - Water Protection Bureau. 72012. Montana Domestic Sewage Treatment Lagoons General Permit...

  2. Montana Domestic Sewage Treatment Lagoons General Permit Fact...

    Open Energy Info (EERE)

    Lagoons General Permit Fact Sheet Citation Montana Department of Environmental Quality - Water Protection Bureau. 82012. Montana Domestic Sewage Treatment Lagoons General Permit...

  3. Montana 2012 Report on Selected Heritage Properties | Open Energy...

    Open Energy Info (EERE)

    and Conservation complies with the Montana State Antiquities Act. Author Patrick J. Rennie Organization Montana Department of Natural Resources and Conservation Published...

  4. Montana - Access Road Easement Policy | Open Energy Information

    Open Energy Info (EERE)

    Access Road Easement Policy Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Access Road Easement Policy Author Montana Department of...

  5. Montana Portable Suction Dredging General Permit - Example Authorizati...

    Open Energy Info (EERE)

    Dredging. Author Montana Department of Environmental Quality - Water Protection Bureau Published State of Montana, 082010 DOI Not Provided Check for DOI availability:...

  6. Application for presidential permit OE Docket No. PP-305 Montana...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scope Change 1 Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Scope Change 1 Application from Montana Alberta Tie Ltd to construct, operate,...

  7. Application for presidential permit OE Docket No. PP-305 Montana...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ltd Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd Application from Montana Alberta Tie Ltd to construct, operate, and maintain electric...

  8. Application for presidential permit OE Docket No. PP-305 Montana...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Update Application from Montana Alberta Tie Ltd to construct, operate, and maintain...

  9. Montana Tribal Energy Forum | Department of Energy

    Office of Environmental Management (EM)

    Montana Tribal Energy Forum Montana Tribal Energy Forum Here you will find the presentations from the Montana Tribal Energy Forum presented on August 19-20, 2014. PDF icon Keynote Presentation: USDA's Energy Resources and Promise Zones - Leslie Wheelock, Office of Tribal Relations, Office of the Secretary. U.S. Department of Agriculture PDF icon DOE's Tribal Energy Program - Lizana Pierce, Tribal Energy Program, U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy PDF

  10. Montana Association of Conservation Districts Webpage | Open...

    Open Energy Info (EERE)

    Districts Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Association of Conservation Districts Webpage Abstract Homepage of...

  11. Montana Natural Resources Conservation Service Webpage | Open...

    Open Energy Info (EERE)

    Service Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Natural Resources Conservation Service Webpage Abstract USDA's webpage...

  12. Missoula, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Missoula, Montana: Energy Resources (Redirected from Missoula, MT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.872146, -113.9939982 Show Map Loading...

  13. Custer, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Custer, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1291529, -107.5550754 Show Map Loading map... "minzoom":false,"mappingservi...

  14. Broadview, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.0977314, -108.8770972 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  15. Lockwood, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lockwood, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.8191203, -108.414855 Show Map Loading map... "minzoom":false,"mappingserv...

  16. Huntley, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.899401, -108.3015173 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  17. Carter, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carter, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.7810776, -110.9563375 Show Map Loading map... "minzoom":false,"mappingservi...

  18. Shepherd, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Shepherd, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.943568, -108.3423516 Show Map Loading map... "minzoom":false,"mappingserv...

  19. Manhattan, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.8563173, -111.3307931 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  20. Belgrade, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.7760403, -111.1768973 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  1. Ballantine, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Ballantine, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.9488511, -108.1451196 Show Map Loading map... "minzoom":false,"mappings...

  2. Whitefish, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Whitefish, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.4110757, -114.3376334 Show Map Loading map... "minzoom":false,"mappingse...

  3. Absarokee, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Absarokee, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5204982, -109.4429444 Show Map Loading map... "minzoom":false,"mappingse...

  4. Laurel, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.6691159, -108.7715328 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  5. Agency, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.3279854, -114.2934517 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  6. Butte, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Butte, Montana: Energy Resources (Redirected from Butte, MT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.003917, -112.534446 Show Map Loading map......

  7. Worden, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Worden, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.959962, -108.1609536 Show Map Loading map... "minzoom":false,"mappingservic...

  8. Loma, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Loma, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9369164, -110.5035455 Show Map Loading map... "minzoom":false,"mappingservice...

  9. Montana State Antiquities Database | Open Energy Information

    Open Energy Info (EERE)

    Antiquities Database Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana State Antiquities Database Abstract Database contains cultural resource...

  10. Montana Groundwater Information Center Webpage | Open Energy...

    Open Energy Info (EERE)

    Center Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Groundwater Information Center Webpage Abstract Provides access to...

  11. Montana/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Montana...

  12. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  13. Montana/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Grant Program No Black Hills Power - Commercial Energy Efficiency Programs (Montana) Utility Rebate Program Yes Black Hills Power - Residential Customer Rebate Program...

  14. Montana Pollutant Discharge Elimination System (MPDES) Webpage...

    Open Energy Info (EERE)

    System (MPDES) Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Pollutant Discharge Elimination System (MPDES) Webpage Abstract Provides...

  15. Montana Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

  16. Montana Alternative Energy Revolving Loan Program

    Broader source: Energy.gov [DOE]

    Presentation by Montana Alternative Energy Revolving Loan Program Kathi Montgomery from the Montana Department of Environmental Quality at the August 26, 2009 TAP Webcast for the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program (WIP) Technical Assistance Project for state and local officials.

  17. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    SciTech Connect (OSTI)

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  18. Alternative Fuels Data Center: Montana Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Montana Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Montana Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Montana Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Montana Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center: Montana

  19. Northern Lights, Inc (Montana) | Open Energy Information

    Open Energy Info (EERE)

    Lights, Inc Place: Montana Phone Number: (800) 326-9594 Website: www.nli.coop Facebook: https:www.facebook.comNLIcooperative Outage Hotline: (1-866-665-4837) Outage Map:...

  20. Montana Rule 17.20.2 Geothermal Investigation Reports | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana Rule 17.20.2 Geothermal Investigation ReportsLegal Abstract Montana regulation...

  1. Central Montana E Pwr Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    E Pwr Coop Inc Jump to: navigation, search Name: Central Montana E Pwr Coop Inc Place: Montana Phone Number: 406-268-1211 Website: www.cmepc.org Outage Hotline: 406-268-1211...

  2. Montana Water Rights Form Webpage | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Water Rights Form Webpage Abstract Provides access to water rights forms. Author Montana...

  3. EIS-0106: Great Falls-Conrad Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The Western Area Power Administration prepared this EIS to evaluate the environmental impacts of the construction and operation of a 230-kilovolt transmission line from Great Falls, Montana, to Conrad, Montana.

  4. West Yellowstone, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Yellowstone is a town in Gallatin County, Montana. It falls under Montana's At-large...

  5. ,"Montana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:59 AM" "Back to Contents","Data 1: Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MT3" "Date","Montana...

  6. ,"Montana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:58 AM" "Back to Contents","Data 1: Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MT3" "Date","Montana...

  7. Secretary Chu Highlights Clean Energy Opportunities in Montana...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    be used. One of the projects that has benefited from these investments is the Montana Alberta Tie Limited, a 230-kV transmission line that will connect Montana with the...

  8. Montana Domestic Sewage Treatment Lagoons General Permit | Open...

    Open Energy Info (EERE)

    GuidanceSupplemental Material Abstract Example authorization of Domestic Sewage Treatment Lagoons General Permit. Author Montana Department of Environmental Quality -...

  9. Montana Notice of Intent: Domestic Sewage Treatment Lagoons General...

    Open Energy Info (EERE)

    Abstract Provides instructions for submitting an NOI for Domestic Sewage Treatment Lagoons General Permit. Author Montana Department of Environmental Quality -...

  10. Montana Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Montana Recovery Act State Memo Montana Recovery Act State Memo Montana has substantial natural resources, including coal, oil, natural gas, hydroelectric, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Montana are supporting abroad range of clean energy projects, from energy efficiency and the smart grid to wind and geothermal. Through these investments,

  11. EIS-0393: Montanore Project; Montana | Department of Energy

    Office of Environmental Management (EM)

    EIS-0393: Montanore Project; Montana EIS-0393: Montanore Project; Montana Summary The USDA Forest Service (Kootenai National Forest) and the Montana Department of Environmental Quality prepared an EIS that evaluates the potential environmental impacts of a proposed copper and silver underground mine about 18 miles south of Libby, Montana. DOE's Bonneville Power Administration, a cooperating agency, has jurisdiction over the construction of a transmission line and two substations needed for

  12. Montana Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Montana Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 12 13 14 12 2010's 10 6 3 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Montana Coalbed Methane Proved Reserves, Reserves Changes, and

  13. Montana Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Montana Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 13 7 2010's 13 13 16 19 42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Montana Shale Gas Proved Reserves, Reserves Changes, and Production Shale

  14. Montana Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Montana Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 140 125 137 2010's 186 192 216 229 482 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Montana Shale Gas Proved Reserves, Reserves

  15. Montana Code 75-20-201 | Open Energy Information

    Open Energy Info (EERE)

    Abstract Certificate required -- operation in conformance -- certificate for nuclear facility -- applicability to federal facilities Published NA Year Signed or Took...

  16. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  17. Sustainable Energy Resources for Consumers (SERC) Success Story: Montana |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Success Story: Montana Sustainable Energy Resources for Consumers (SERC) Success Story: Montana This document contains information on how Montana SERC Program Delivers Strong Changes through Targeted Low-Income Weatherization Efforts. PDF icon serc_mt_highlight.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water Sustainable Energy Resources for Consumers (SERC) - Solar Hot Water

  18. EA-2022: Sleeping Giant Hydropower Project; Helena, Montana | Department of

    Office of Environmental Management (EM)

    Energy 2: Sleeping Giant Hydropower Project; Helena, Montana EA-2022: Sleeping Giant Hydropower Project; Helena, Montana Summary The Bureau of Reclamation (Montana Area Office), with DOE's Western Area Power Administration (Upper Great Plains Region) as a cooperating agency, is preparing an EA that will assess the potential environmental impacts of a proposal to develop a 9.4 megawatt hydroelectric project at the existing Helena Valley Pumping Plant site at Canyon Ferry Dam on the Missouri

  19. Montana 401 Water Quality Certification Webpage | Open Energy...

    Open Energy Info (EERE)

    Certification Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana 401 Water Quality Certification Webpage Abstract Contains information on...

  20. Montana Streamside Management Zone Law Webpage | Open Energy...

    Open Energy Info (EERE)

    Zone Law Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Streamside Management Zone Law Webpage Abstract Provides information on...

  1. Gallatin County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Subtype B. Registered Research Institutions in Gallatin County, Montana Big Sky Carbon Sequestration Partnership Registered Energy Companies in Gallatin County,...

  2. Big Sky, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sky, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2846507, -111.368292 Show Map Loading map... "minzoom":false,"mappingservice":...

  3. Montana Underground Storage Tanks Webpage | Open Energy Information

    Open Energy Info (EERE)

    Underground Storage Tanks Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Underground Storage Tanks Webpage Abstract Provides overview...

  4. Flathead County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Flathead County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.424152, -114.15315 Show Map Loading map... "minzoom":false,"mappin...

  5. Prairie County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.7980893, -105.4045354 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  6. Broadwater County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.2693726, -111.4519716 Show Map Loading map... "minzoom":false,"mappingservi...

  7. Wibaux County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wibaux County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.7836649, -104.3183897 Show Map Loading map... "minzoom":false,"mappi...

  8. Lincoln County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.5880903, -115.6596529 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  9. Montana Working Natural Gas Underground Storage Capacity (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  10. Lake County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.671374, -114.1339242 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  11. Montana - Instructions for Application for Utilities Across State...

    Open Energy Info (EERE)

    Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Instructions for Application for Utilities Across State Trust Lands Abstract This...

  12. Big Sandy, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sandy, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.1788692, -110.1135412 Show Map Loading map... "minzoom":false,"mappingservic...

  13. Garfield County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.2662361, -107.1263146 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  14. Treasure County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Treasure County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.2106667, -107.2586097 Show Map Loading map... "minzoom":false,"map...

  15. Pondera County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Pondera County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.2321517, -112.2886317 Show Map Loading map... "minzoom":false,"mapp...

  16. Montana Total Maximum Daily Load Development Projects Wiki |...

    Open Energy Info (EERE)

    Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Total Maximum Daily Load Development Projects Wiki Abstract Provides information on...

  17. Fallon County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Fallon County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.3762402, -104.4280327 Show Map Loading map... "minzoom":false,"mappi...

  18. Granite County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Granite County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.3374643, -113.4647823 Show Map Loading map... "minzoom":false,"mapp...

  19. Wheatland County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wheatland County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.4922893, -109.8418592 Show Map Loading map......

  20. Blaine County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.6065395, -108.9462246 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  1. Jefferson County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.1450553, -112.0752952 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  2. Montana - Application for Right of Way Easement for Utilities...

    Open Energy Info (EERE)

    Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library General: Montana - Application for Right of Way Easement for Utilities Through State Lands Abstract...

  3. Chouteau County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Chouteau County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.0033098, -110.4737958 Show Map Loading map... "minzoom":false,"map...

  4. Carter County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4522431, -104.3707837 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  5. Sheridan County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.701151, -104.4278092 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  6. Willow Creek, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.99794, -109.727303 Show Map Loading map... "minzoom":false,"mappingservice":"google...

  7. Ravalli County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.0174639, -114.1817424 Show Map Loading map... "minzoom":false,"mappingservi...

  8. Daniels County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Daniels County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.7744137, -105.7248763 Show Map Loading map... "minzoom":false,"mapp...

  9. Roosevelt County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.2850231, -105.1099231 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  10. Petroleum County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.1565346, -108.3203282 Show Map Loading map... "minzoom":false,"mappingservi...

  11. Yellowstone County, Montana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.7856577, -108.4343805 Show Map Loading map... "minzoom":false,"mappingservi...

  12. Stillwater County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Stillwater County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.7001096, -109.3922403 Show Map Loading map......

  13. Custer County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.2160876, -105.6225 Show Map Loading map... "minzoom":false,"mappingservice":"google...

  14. Montana Disinfected Water and Hydrostatic Testing General Permit...

    Open Energy Info (EERE)

    Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Disinfected Water and Hydrostatic Testing General Permit Form Type Other Form Topic...

  15. Richland County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9200496, -104.8017491 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  16. Toole County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Toole County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.6974247, -111.6408212 Show Map Loading map... "minzoom":false,"mappin...

  17. Hill County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.7488096, -110.0350874 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  18. Rosebud County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rosebud County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.3904836, -106.5944313 Show Map Loading map... "minzoom":false,"mapp...

  19. Meagher County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Meagher County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.620195, -110.8848271 Show Map Loading map... "minzoom":false,"mappi...

  20. Musselshell County, Montana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Musselshell County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.4218783, -108.4064758 Show Map Loading map......

  1. Glacier County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.5217475, -112.9196649 Show Map Loading map... "minzoom":false,"mappingservi...

  2. Mineral County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.1497031, -114.9626904 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  3. Cascade County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cascade County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4688355, -111.5453228 Show Map Loading map... "minzoom":false,"mapp...

  4. Teton County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.9019946, -112.2717561 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  5. Liberty County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 48.4917189, -110.9704148 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  6. Missoula County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.0240503, -113.6869923 Show Map Loading map... "minzoom":false,"mappingservi...

  7. RAPID/Geothermal/Exploration/Montana | Open Energy Information

    Open Energy Info (EERE)

    construction will require the MEPA review. Local Exploration Process not available Policies & Regulations MCA 82-1-1 Geophysical Exploration Montana Rule 17.20.2 Geothermal...

  8. Vista Montana, Watsonville, California: Moving Toward Zero Energy Homes

    SciTech Connect (OSTI)

    2003-12-01

    Fact sheet describes the energy efficient and solar energy features of the Vista Montana Zero Energy Home, participant in the Zero Energy Homes initiative.

  9. Montana Restricted Use Permit Application | Open Energy Information

    Open Energy Info (EERE)

    Use Permit Application Abstract Application for conducting commercial use with Montana Fish, Wildlife & Parks jurisdiction. Form Type ApplicationNotice Form Topic Restricted Use...

  10. Montana Information for 310 Applicant | Open Energy Information

    Open Energy Info (EERE)

    for 310 Applicant Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Information for 310 Applicant Abstract Provides overview of joint...

  11. Montana Watershed Restoration Plans Wiki | Open Energy Information

    Open Energy Info (EERE)

    Plans Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Watershed Restoration Plans Wiki Abstract Provides an overview of...

  12. Montana Hazardous Waste Program Webpage | Open Energy Information

    Open Energy Info (EERE)

    Waste Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Hazardous Waste Program Webpage Abstract Provides overview of permitting...

  13. Montana Nonpoint Source FAQs Webpage | Open Energy Information

    Open Energy Info (EERE)

    Source FAQs Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Nonpoint Source FAQs Webpage Abstract Provides answers to common...

  14. EA-2022: Sleeping Giant Hydropower Project; Helena, Montana ...

    Broader source: Energy.gov (indexed) [DOE]

    Plant site at Canyon Ferry Dam on the Missouri River near Helena, Montana. The new hydropower generator would interconnect to Western's transmission system at an existing...

  15. RAPID/Geothermal/Water Use/Montana | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseMontana < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  16. Montana Water Rights Bureau New Appropriations Rule | Open Energy...

    Open Energy Info (EERE)

    LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Montana Water Rights Bureau New Appropriations RulePermittingRegulatory GuidanceGuideHandbook...

  17. Montana 319 Projects (Nonpoint Source Programs) Wiki | Open Energy...

    Open Energy Info (EERE)

    Source Programs) Wiki Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana 319 Projects (Nonpoint Source Programs) Wiki Abstract Provides...

  18. Montana Sand and Gravel Operations General Permit - Example Authorizat...

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Supplemental Material: Montana Sand and Gravel Operations General Permit - Example AuthorizationPermitting...

  19. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian...

  20. Amsterdam-Churchill, Montana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Amsterdam-Churchill, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.744628, -111.319624 Show Map Loading map......

  1. Montana Administrative Rules 17-20-924 | Open Energy Information

    Open Energy Info (EERE)

    Montana Administrative Rules 17-20-924Legal Abstract Electric Transmission Lines, Economy Considerations Published NA Year Signed or Took Effect 2013 Legal Citation Not...

  2. Montana Ground Water Pollution Control System Permit Application...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Permit Application Forms Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution...

  3. Montana Ground Water Pollution Control System Information Webpage...

    Open Energy Info (EERE)

    Ground Water Pollution Control System Information Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Ground Water Pollution Control System...

  4. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana...

  5. MCA 22-3-430 - Montana Antiquities Avoidance and Mitigation ...

    Open Energy Info (EERE)

    MCA 22-3-430 - Montana Antiquities Avoidance and MitigationLegal Abstract Sets forth a principle of preferred avoidance of heritage properties or paleontological remains,...

  6. EIS-0393: Montanore Project, Montana | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    prepared an EIS that evaluates the potential environmental impacts of a proposed copper and silver underground mine about 18 miles south of Libby, Montana. DOE's Bonneville...

  7. Montana Environmental Policy Act Guide | Open Energy Information

    Open Energy Info (EERE)

    Environmental Policy Act Guide Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Montana Environmental Policy Act...

  8. Montana Board of Water Well Contractors Handbook | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Montana Board of Water Well Contractors HandbookPermittingRegulatory...

  9. Montana Department of Environmental Quality | Open Energy Information

    Open Energy Info (EERE)

    Quality is an organization based in Helena, Montana. References "Webpage" Air Quality Permitting Contact Contacts.png Dave Klemp (406) 404.0286 http:...

  10. Montana Notice of Intent: Domestic Sewage Treatment Lagoons General...

    Open Energy Info (EERE)

    Reference LibraryAdd to library Form: Montana Notice of Intent: Domestic Sewage Treatment Lagoons General Permit (MDEQ Form NOI) Abstract Form to be completed by owner or...

  11. ,"Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  12. ,"Montana Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  13. Montana-Dakota Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers several residential rebates on energy efficient equipment for natural gas and electric customers. Natural gas customers are eligible for rebates on furnaces...

  14. Montana-Dakota Utilities- Commercial Energy Efficiency Incentive Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers a variety of rebates to commercial customers for the purchase and installation of energy efficient lighting measures, air conditioning equipment, variable...

  15. Appendix A Annotated Executive Summary

    Office of Legacy Management (LM)

    Annotated Executive Summary from the 1998 Final Remedial Investigation for Operable Unit I11 of the Monticello Mill Tailings Site This page intentionally left blank Document Number Q0003300 Executive Summary Executive Summary mare to'Volume I ol Introduction 1 on 1.1 { onl. . of Ulc Investigation, pg 1-1 ) This report presents results of the remedial investigation (RI) conducted for Operable Unit (OU) III of the Monticello Mill Tailings Site (MMTS). The purpose of the RI was to collect

  16. Montana State Historic Preservation Programmatic Agreement | Department of

    Energy Savers [EERE]

    Energy Montana State Historic Preservation Programmatic Agreement Montana State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. PDF icon state_historic_preservation_programmatic_agreement_mt.pdf More Documents & Publications Delaware State Historic Preservation Programmatic Agreement Florida State Historic Preservation Programmatic Agreement Louisiana State Historic Preservation

  17. Decontamination of metals by melt refining/slagging. An annotated bibliography: Update on stainless steel and steel

    SciTech Connect (OSTI)

    Worchester, S.A.; Twidwell, L.G.; Paolini, D.J.; Weldon, T.A.; Mizia, R.E.

    1995-01-01

    The following presentation is an update to a previous annotation, i.e., WINCO-1138. The literature search and annotated review covers all metals used in the nuclear industries but the emphasis of this update is directed toward work performed on mild steels. As the number of nuclear installations undergoing decontamination and decommissioning (D&D) increases, current radioactive waste storage space is consumed and establishment of new waste storage areas becomes increasingly difficult, the problem of handling and storing radioactive scrap metal (RSM) gains increasing importance in the DOE Environmental Restoration and Waste Management Program. To alleviate present and future waste problems, Lockheed Idaho Technologies Co (LITCO) is managing a program for the recycling of RSM for beneficial use within the DOE complex. As part of that effort, Montana Tech has been awarded a contract to help optimize melting and refining technology for the recycling of stainless steel RSM. The scope of the Montana Tech program includes a literature survey, a decontaminating slag design study, small wide melting studies to determine optimum slag compositions for removal of radioactive contaminant surrogates, analysis of preferred melting techniques, and coordination of large scale melting demonstrations (100--2,000 lbs) to be conducted at selected facilities. The program will support recycling and decontaminating stainless steel RSM for use in waste canisters for Idaho Waste Immobilization Facility densified high level waste and Pit 9/RWMC boxes. This report is the result of the literature search conducted to establish a basis for experimental melt/slag program development. The program plan will be jointly developed by Montana Tech and LITCO.

  18. Making web annotations persistent over time

    SciTech Connect (OSTI)

    Sanderson, Robert; Van De Sompel, Herbert

    2010-01-01

    As Digital Libraries (DL) become more aligned with the web architecture, their functional components need to be fundamentally rethought in terms of URIs and HTTP. Annotation, a core scholarly activity enabled by many DL solutions, exhibits a clearly unacceptable characteristic when existing models are applied to the web: due to the representations of web resources changing over time, an annotation made about a web resource today may no longer be relevant to the representation that is served from that same resource tomorrow. We assume the existence of archived versions of resources, and combine the temporal features of the emerging Open Annotation data model with the capability offered by the Memento framework that allows seamless navigation from the URI of a resource to archived versions of that resource, and arrive at a solution that provides guarantees regarding the persistence of web annotations over time. More specifically, we provide theoretical solutions and proof-of-concept experimental evaluations for two problems: reconstructing an existing annotation so that the correct archived version is displayed for all resources involved in the annotation, and retrieving all annotations that involve a given archived version of a web resource.

  19. Montana Natural Streambed and Land Preservation Act Webpage ...

    Open Energy Info (EERE)

    Streambed and Land Preservation Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Natural Streambed and Land Preservation Act Webpage...

  20. McCone County, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    McCone County, Montana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 47.4500913, -105.8810733 Show Map Loading map... "minzoom":false,"mappi...

  1. Montana Natural Gas Gross Withdrawals (Million Cubic Feet per...

    Gasoline and Diesel Fuel Update (EIA)

    Gross Withdrawals (Million Cubic Feet per Day) Montana Natural Gas Gross Withdrawals (Million Cubic Feet per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 317 313...

  2. Montana Facilities Which Do Not Discharge Process Wastewater...

    Open Energy Info (EERE)

    Form 2E) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Facilities Which Do Not Discharge Process Wastewater (MDEQ Form 2E) Abstract Form...

  3. Montana 2012 Final Water Quality Integrated Report: Appendix...

    Open Energy Info (EERE)

    Appendix A Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Montana 2012 Final Water Quality Integrated Report: Appendix A Abstract Index for impaired...

  4. Montana MCA 77-4-102, Geothermal Resource Definitions | Open...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana MCA 77-4-102, Geothermal Resource DefinitionsLegal Abstract Definitions for...

  5. Montana Notice of Intent: Sand and Gravel General Permit (MDEQ...

    Open Energy Info (EERE)

    Form NOI) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Notice of Intent: Sand and Gravel General Permit (MDEQ Form NOI) Abstract Form to be...

  6. Montana MPDES General Information Form (MDEQ Form 1) | Open Energy...

    Open Energy Info (EERE)

    (MDEQ Form 1) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana MPDES General Information Form (MDEQ Form 1) Abstract Completion of form allows...

  7. Montana 2012 Final Water Quality Integrated Report | Open Energy...

    Open Energy Info (EERE)

    Report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Montana 2012 Final Water Quality Integrated Report Abstract Provides an overview of sources of...

  8. Montana Public Water Supply Law and Rules Webpage | Open Energy...

    Open Energy Info (EERE)

    Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Public Water Supply Law and Rules Webpage Abstract Provides overview of statutes and...

  9. Montana Stream Permitting Guide Webpage | Open Energy Information

    Open Energy Info (EERE)

    Guide Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Stream Permitting Guide Webpage Abstract Provides a guide to required stream...

  10. Montana Board of Water Well Contractors Webpage | Open Energy...

    Open Energy Info (EERE)

    Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Board of Water Well Contractors Webpage Abstract Provides information on water well...

  11. Montana Water Rights Bureau Webpage | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Water Rights Bureau Webpage Abstract Provides overview of administration of water rights by...

  12. MCA 22-3-421 - Montana Antiquities Definitions | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 22-3-421 - Montana Antiquities DefinitionsLegal Abstract This is the definitions section for...

  13. MCA 22-3-429 - Montana Antiquities Consultation, Notice, Appeal...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 22-3-429 - Montana Antiquities Consultation, Notice, AppealLegal Abstract Provides for...

  14. Montana Joint Application for Proposed Work in Streams, Lakes...

    Open Energy Info (EERE)

    Streams, Lakes and Wetlands Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Joint Application for Proposed Work in Streams, Lakes and...

  15. Montana Air Quality Program Laws & Rules Webpage | Open Energy...

    Open Energy Info (EERE)

    Air Quality Program Laws & Rules Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Air Quality Program Laws & Rules Webpage Abstract...

  16. Application for presidential permit OE Docket No. PP-305 Montana...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    210 - Nov. 1, 2005 Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Federal Register Notice Volume 70, No. 210 - Nov. 1, 2005 Application from...

  17. Box Elder, Montana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Box Elder is a census-designated place in Chouteau County and Hill County, Montana. It...

  18. Montana Guide to the Streamside Management Zone Law & Rules Webpage...

    Open Energy Info (EERE)

    Guide to the Streamside Management Zone Law & Rules Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Guide to the Streamside Management...

  19. Automated Knowledge Annotation for Dynamic Collaborative Environments

    SciTech Connect (OSTI)

    Cowell, Andrew J.; Gregory, Michelle L.; Marshall, Eric J.; McGrath, Liam R.

    2009-05-19

    This paper describes the Knowledge Encapsulation Framework (KEF), a suite of tools to enable automated knowledge annotation for modeling and simulation projects. This framework can be used to capture evidence (e.g., facts extracted from journal articles and government reports), discover new evidence (from similar peer-reviewed material as well as social media), enable discussions surrounding domain-specific topics and provide automatically generated semantic annotations for improved corpus investigation. The current KEF implementation is presented within a wiki environment, providing a simple but powerful collaborative space for team members to review, annotate, discuss and align evidence with their modeling frameworks.

  20. Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Cubic Feet) Wyoming (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 27 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-Wyoming

  1. EA-1940: Proposed Federal Loan Guarantee for Montana Advanced Biofuels

    Broader source: Energy.gov [DOE]

    Montana Advanced Biofuels (MAB) submitted an application to DOE for a Federal loan guarantee to support construction of a multi-feedstock biorefinery that would produce approximately 115 million gallons per year of ethanol in Great Falls, Montana. The biorefinery would utilize renewable biomass in the form of barley and wheat to produce ethanol and other by-products, including wheat gluten, barley bran, and barley meal. NOTE: The EA is cancelled because the applicant withdrew from the program.

  2. Montana Natural Gas Processed in Wyoming (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wyoming (Million Cubic Feet) Montana Natural Gas Processed in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 785 656 622 631 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Montana-Wyoming

  3. Final Report - Montana State University - Microbial Activity and

    Office of Scientific and Technical Information (OSTI)

    Precipitation at Solution-Solution Mixing Zones in Porous Media (Technical Report) | SciTech Connect Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media Citation Details In-Document Search Title: Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media Background. The use of biological and chemical processes that degrade or immobilize

  4. Final Report - Montana State University - Microbial Activity and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Precipitation at Solution-Solution Mixing Zones in Porous Media (Technical Report) | SciTech Connect Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media Citation Details In-Document Search Title: Final Report - Montana State University - Microbial Activity and Precipitation at Solution-Solution Mixing Zones in Porous Media Background. The use of biological and chemical processes that degrade or immobilize

  5. Montana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Montana Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us High School Regionals Montana Regions Print Text Size: A

  6. Montana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Montana Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us Middle School Regionals Montana Regions Print

  7. Energy Secretary Chu Announces Montana Schools Win National Student

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficiency Competition | Department of Energy Announces Montana Schools Win National Student Efficiency Competition Energy Secretary Chu Announces Montana Schools Win National Student Efficiency Competition May 2, 2012 - 3:05pm Addthis WASHINGTON, D.C. - Secretary of Energy Steven Chu today announced the winners of the America's Home Energy Education Challenge, a national student competition designed to encourage students and their families to take action to start saving money by saving

  8. EIS-0399: Montana Alberta Tie Ltd. (MATL) 230-KV Transmission Line

    Broader source: Energy.gov [DOE]

    DOE, jointly with the Montana Department of Environmental Quality (MDEQ), prepared an EIS that evaluated the potential environmental impacts of a proposed international transmission line that would cross the U.S.-Canada border in northwest Montana.

  9. M.C.A. 75-1-101 - Montana Environmental Policy Act | Open Energy...

    Open Energy Info (EERE)

    M.C.A. 75-1-101 - Montana Environmental Policy Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: M.C.A. 75-1-101 - Montana...

  10. MCA 87-5-501 et seq. - Montana Stream Protection | Open Energy...

    Open Energy Info (EERE)

    7-5-501 et seq. - Montana Stream Protection Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 87-5-501 et seq. - Montana Stream...

  11. nGASP - the nematode genome annotation assessment project

    SciTech Connect (OSTI)

    Coghlan, A; Fiedler, T J; McKay, S J; Flicek, P; Harris, T W; Blasiar, D; Allen, J; Stein, L D

    2008-12-19

    While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders. While the C. elegans genome is extensively annotated, relatively little information is available for other Caenorhabditis species. The nematode genome annotation assessment project (nGASP) was launched to objectively assess the accuracy of protein-coding gene prediction software in C. elegans, and to apply this knowledge to the annotation of the genomes of four additional Caenorhabditis species and other nematodes. Seventeen groups worldwide participated in nGASP, and submitted 47 prediction sets for 10 Mb of the C. elegans genome. Predictions were compared to reference gene sets consisting of confirmed or manually curated gene models from WormBase. The most accurate gene-finders were 'combiner' algorithms, which made use of transcript- and protein-alignments and multi-genome alignments, as well as gene predictions from other gene-finders. Gene-finders that used alignments of ESTs, mRNAs and proteins came in second place. There was a tie for third place between gene-finders that used multi-genome alignments and ab initio gene-finders. The median gene level sensitivity of combiners was 78% and their specificity was 42%, which is nearly the same accuracy as reported for combiners in the human genome. C. elegans genes with exons of unusual hexamer content, as well as those with many exons, short exons, long introns, a weak translation start signal, weak splice sites, or poorly conserved orthologs were the most challenging for gene-finders.

  12. Application for presidential permit OE Docket No. PP-305 Montana Alberta

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tie Ltd | Department of Energy Ltd Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd Application from Montana Alberta Tie Ltd to construct, operate, and maintain electric transmission facilities at the U.S-Canada border. PDF icon Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd More Documents & Publications Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Update Application for presidential

  13. Montana Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Montana Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 60,500 59,058 57,793 1970's 59,193 57,105 61,757 56,960 146,907 156,203 0 0 0 1980's 11,825 13,169 15,093 16,349 19,793 16,212 14,177 15,230 15,475 1990's 14,629 14,864 12,697 11,010 10,418 9,413 10,141 8,859 8,715 5,211 2000's 5,495 5,691 6,030 6,263 6,720 10,057 12,685 13,646 13,137 12,415 2010's 12,391 11,185 12,727 14,575 14,751

  14. Genomic Data and Annotation from the SEED

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Fonstein, Michael; Kogan, Yakov; Osterman, Andrei; Overbeek, Ross; Vonstein, Veronika The Fellowship for Interpretation of Genomes (FIG)

    The SEED Project has been extended to support metagenomic samples and concomitant analytical tools. Moreover, the number of genomes being introduced into SEED is growing very rapidly. Building a framework to support this growth while providing highly accurate annotations is centrally important to SEED. The project’s subsystem-based annotation strategy has become the technological foundation for addressing these challenges.(copied from Appendix 7 of Systems Biology Knowledgebase for a New Era in Biology, A Genomics:GTL Report from the May 2008 Workshop, DOE/SC-0113, Grequrick, S; Fredrickson, J.K.; Stevens, R., Pub March 1, 2009.)

  15. Genomic Data and Annotation from the SEED

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Fonstein, Michael; Kogan, Yakov; Osterman, Andrei; Overbeek, Ross; Vonstein, Veronika The Fellowship for Interpretation of Genomes (FIG)

    The SEED Project has been extended to support metagenomic samples and concomitant analytical tools. Moreover, the number of genomes being introduced into SEED is growing very rapidly. Building a framework to support this growth while providing highly accurate annotations is centrally important to SEED. The projects subsystem-based annotation strategy has become the technological foundation for addressing these challenges.(copied from Appendix 7 of Systems Biology Knowledgebase for a New Era in Biology, A Genomics:GTL Report from the May 2008 Workshop, DOE/SC-0113, Grequrick, S; Fredrickson, J.K.; Stevens, R., Pub March 1, 2009.)

  16. Montana Natural Gas Plant Liquids Production Extracted in North Dakota

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    (Million Cubic Feet) North Dakota (Million Cubic Feet) Montana Natural Gas Plant Liquids Production Extracted in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 303 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Montana-North Dakota

  17. Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Montana Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 73 77 66 75 37 2010's 64 25 11 16 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Montana Coalbed Methane Proved

  18. Montana Natural Gas Processed in North Dakota (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    North Dakota (Million Cubic Feet) Montana Natural Gas Processed in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 176 865 1,460 1,613 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Montana-North Dakota

  19. High-pressure gasification of Montana subbituminous coal

    SciTech Connect (OSTI)

    Goyal, A.; Bryan, B.; Rehmat, A.

    1991-01-01

    A data base for the fluidized-bed gasification of different coals at elevated pressures has been developed at the Institute of Gas Technology (IGT) with different ranks of coal at pressures up to 450 psig and at temperatures dictated by the individual coals. Adequate data have been obtained to characterize the effect of pressure on the gasification of Montana Rosebud subbituminous coal and North Dakota lignite. The results obtained with Montana Rosebud subbituminous coal are presented here. This program was funded by the Gas Research Institute. 9 refs., 10 figs., 3 tabs.

  20. Montana Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Montana Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 12 59 6 326 3 9 17 39 95 3 2010's 30 44 4 4 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Montana Dry Natural Gas Proved

  1. Montana Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Montana Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 9 57 10 225 3 6 20 41 90 3 2010's 40 44 30 72 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Montana Dry Natural Gas Proved Reserves Dry Natural

  2. MEETING: Chlamydomonas Annotation Jamboree - October 2003

    SciTech Connect (OSTI)

    Grossman, Arthur R

    2007-04-13

    Shotgun sequencing of the nuclear genome of Chlamydomonas reinhardtii (Chlamydomonas throughout) was performed at an approximate 10X coverage by JGI. Roughly half of the genome is now contained on 26 scaffolds, all of which are at least 1.6 Mb, and the coverage of the genome is ~95%. There are now over 200,000 cDNA sequence reads that we have generated as part of the Chlamydomonas genome project (Grossman, 2003; Shrager et al., 2003; Grossman et al. 2007; Merchant et al., 2007); other sequences have also been generated by the Kasuza sequence group (Asamizu et al., 1999; Asamizu et al., 2000) or individual laboratories that have focused on specific genes. Shrager et al. (2003) placed the reads into distinct contigs (an assemblage of reads with overlapping nucleotide sequences), and contigs that group together as part of the same genes have been designated ACEs (assembly of contigs generated from EST information). All of the reads have also been mapped to the Chlamydomonas nuclear genome and the cDNAs and their corresponding genomic sequences have been reassembled, and the resulting assemblage is called an ACEG (an Assembly of contiguous EST sequences supported by genomic sequence) (Jain et al., 2007). Most of the unique genes or ACEGs are also represented by gene models that have been generated by the Joint Genome Institute (JGI, Walnut Creek, CA). These gene models have been placed onto the DNA scaffolds and are presented as a track on the Chlamydomonas genome browser associated with the genome portal (http://genome.jgi-psf.org/Chlre3/Chlre3.home.html). Ultimately, the meeting grant awarded by DOE has helped enormously in the development of an annotation pipeline (a set of guidelines used in the annotation of genes) and resulted in high quality annotation of over 4,000 genes; the annotators were from both Europe and the USA. Some of the people who led the annotation initiative were Arthur Grossman, Olivier Vallon, and Sabeeha Merchant (with many individual annotators from Europe and the USA). Olivier Vallon has been most active in continued input of annotation information.

  3. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes

    SciTech Connect (OSTI)

    Brettin, Thomas; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; Shukla, Maulik; Thomason, III, James A.; Stevens, Rick; Vonstein, Veronika; Wattam, Alice R.; Xia, Fangfang

    2015-02-10

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offers a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.

  4. Slide 1 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Montana

  5. EIS-0124: Conrad-Shelby Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Western Area Power Administration developed this statement to assess the environmental impact of adding a 230 kV transmission line between Conrad and Shelby, Montana and a new substation near Shelby to update the stressed electrical transmission system.

  6. EIS-0090: Fort Peck-Havre Transmission Line Project, Montana

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energys Western Area Power Administration prepared this statement to assess the potential environmental and socioeconomic implications of its proposed action to construct and operate a 230kV transmission line from Fort Peck to Havre, Montana, with three intermediate interconnecting substations.

  7. Analysis and Annotation of Nucleic Acid Sequence

    SciTech Connect (OSTI)

    States, David J.

    2004-07-28

    The aims of this project were to develop improved methods for computational genome annotation and to apply these methods to improve the annotation of genomic sequence data with a specific focus on human genome sequencing. The project resulted in a substantial body of published work. Notable contributions of this project were the identification of basecalling and lane tracking as error processes in genome sequencing and contributions to improved methods for these steps in genome sequencing. This technology improved the accuracy and throughput of genome sequence analysis. Probabilistic methods for physical map construction were developed. Improved methods for sequence alignment, alternative splicing analysis, promoter identification and NF kappa B response gene prediction were also developed.

  8. Montana Rule 36.2.10 General State Land Rules | Open Energy Informatio...

    Open Energy Info (EERE)

    State Land RulesLegal Abstract Montana regulation governing general rules for the administration of state lands. Published NA Year Signed or Took Effect 2014 Legal Citation...

  9. Montana Rule 36.25.4 Geothermal Rules and Regulations | Open...

    Open Energy Info (EERE)

    Geothermal Rules and RegulationsLegal Abstract Montana regulation governing administration of geothermal resources in the state. Published NA Year Signed or Took Effect...

  10. A.R.M. 36.2.521 - Administrative Procedures for Montana Environmental...

    Open Energy Info (EERE)

    M. 36.2.521 - Administrative Procedures for Montana Environmental Policy Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  11. Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Update

    Broader source: Energy.gov [DOE]

    Application from Montana Alberta Tie Ltd to construct, operate, and maintain electric transmission facilities at the U.S-Canada border.

  12. Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Scope Change #1

    Broader source: Energy.gov [DOE]

    Application from Montana Alberta Tie Ltd to construct, operate, and maintain electric transmission facilities at the U.S-Canada border. Scope Change #1

  13. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wrappers will automatically provide the necessary MPI include files and libraries. For Fortran source code use mpif90: % mpif90 -o example.x example.f90 For C source code use...

  14. Montana Natural Gas Underground Storage Volume (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Montana Natural Gas Underground Storage Volume (Million Cubic Feet) Montana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 293,785 290,491 289,197 288,193 293,815 288,808 290,947 293,015 295,663 296,921 295,421 290,602 1991 289,270 287,858 286,548 286,491 287,718 288,959 290,667 292,107 292,226 290,844 288,112 284,559 1992 281,148 279,325 278,909 279,042 280,038 280,751 281,777 282,543 282,117 280,760 277,412 271,811 1993

  15. Montana Rivers Information System : Edit/Entry Program User's Manual.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Montana Department of Fish, Wildlife and Parks

    1992-07-01

    The Montana Rivers Information System (MRIS) was initiated to assess the state`s fish, wildlife, and recreation value; and natural cultural, and geologic features. The MRIS is now a set of data bases containing part of the information in the Natural Heritage Program natural features and threatened and endangered species data bases and comprises of the Montana Interagency Stream Fisheries Database; the MDFWP Recreation Database; and the MDFWP Wildlife Geographic Information System. The purpose of this User`s Manual is to describe to the user how to maintain the MRIS database of their choice by updating, changing, deleting, and adding records using the edit/entry programs; and to provide to the user all information and instructions necessary to complete data entry into the MRIS databases.

  16. EA-1978: Sand Creek Winds, McCone County, Montana

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of the proposed Sand Creek Winds Project, a 75-MW wind farm between the towns of Circle and Wolf Point in McCone County, Montana. The proposed wind farm would interconnect to Western’s existing Wolf Point to Circle 115-kV transmission line approximately 18 miles north of Wolf Point.

  17. Annotations in Refseq (GSC8 Meeting)

    ScienceCinema (OSTI)

    Tatusova, Tatiana

    2011-04-28

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. Tatiana Tatusova of NCBI discusses "Annotations in Refseq" at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 10, 2009.

  18. Towards a Library of Standard Operating Procedures (SOPs) for (meta)genomic annotation

    SciTech Connect (OSTI)

    Kyrpides, Nikos; Angiuoli, Samuel V.; Cochrane, Guy; Field, Dawn; Garrity, George; Gussman, Aaron; Kodira, Chinnappa D.; Klimke, William; Kyrpides, Nikos; Madupu, Ramana; Markowitz, Victor; Tatusova, Tatiana; Thomson, Nick; White, Owen

    2008-04-01

    Genome annotations describe the features of genomes and accompany sequences in genome databases. The methodologies used to generate genome annotation are diverse and typically vary amongst groups. Descriptions of the annotation procedure are helpful in interpreting genome annotation data. Standard Operating Procedures (SOPs) for genome annotation describe the processes that generate genome annotations. Some groups are currently documenting procedures but standards are lacking for structure and content of annotation SOPs. In addition, there is no central repository to store and disseminate procedures and protocols for genome annotation. We highlight the importance of SOPs for genome annotation and endorse a central online repository of SOPs.

  19. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brettin, Thomas; Davis, James J.; Disz, Terry; Edwards, Robert A.; Gerdes, Svetlana; Olsen, Gary J.; Olson, Robert; Overbeek, Ross; Parrello, Bruce; Pusch, Gordon D.; et al

    2015-02-10

    The RAST (Rapid Annotation using Subsystem Technology) annotation engine was built in 2008 to annotate bacterial and archaeal genomes. It works by offering a standard software pipeline for identifying genomic features (i.e., protein-encoding genes and RNA) and annotating their functions. Recently, in order to make RAST a more useful research tool and to keep pace with advancements in bioinformatics, it has become desirable to build a version of RAST that is both customizable and extensible. In this paper, we describe the RAST tool kit (RASTtk), a modular version of RAST that enables researchers to build custom annotation pipelines. RASTtk offersmore » a choice of software for identifying and annotating genomic features as well as the ability to add custom features to an annotation job. RASTtk also accommodates the batch submission of genomes and the ability to customize annotation protocols for batch submissions. This is the first major software restructuring of RAST since its inception.« less

  20. Avian use of Norris Hill Wind Resource Area, Montana

    SciTech Connect (OSTI)

    Harmata, A.; Podruzny, K.; Zelenak, J.

    1998-07-01

    This document presents results of a study of avian use and mortality in and near a proposed wind resource area in southwestern Montana. Data collected in autumn 1995 through summer 1996 represented preconstruction condition; it was compiled, analyzed, and presented in a format such that comparison with post-construction data would be possible. The primary emphasis of the study was recording avian migration in and near the wind resource area using state-of-the-art marine surveillance radar. Avian use and mortality were investigated during the breeding season by employing traditional avian sampling methods, radiotelemetry, radar, and direct visual observation. 61 figs., 34 tabs.

  1. Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vehicle Fuel Consumption (Million Cubic Feet) Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 2 4 6 8 13 40 31 38 2000's 43 53 54 66 74 4 2 1 1 1 2010's 1 0 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to

  2. Montana Integrated Carbon to Liquids (ICTL) Demonstration Program

    SciTech Connect (OSTI)

    Fiato, Rocco; Sharma, Ramesh; Allen, Mark; Peyton, Brent; Macur, Richard; Cameron, Jemima

    2013-09-30

    Integrated carbon‐to‐liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO{sub 2} Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO{sub 2}, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526 targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub‐bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal‐Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat‐camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger‐scale process demonstration studies of the CHI process in combination with CCU to generate synthetic jet and diesel fuels from algae and algae fertilized crops. Site assessment and project prefeasibility studies are planned with a major EPC firm to determine the overall viability of ICTL technology commercialization with Crow coal resources in south central Montana.

  3. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 289 304 325 - = No Data

  4. Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 343 2010's 369 384 388 413 445 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  5. Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 6 83 2000's 36 43 65 79 104 88 91 90 50 42 2010's 74 59 95 104 155 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing

  6. Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 887 926 825 1980's 1,287 1,321 847 896 802 857 803 780 819 867 1990's 899 831 859 673 717 782 796 762 782 841 2000's 885 898 906 1,059 995 986 1,057 1,052 1,000 976 2010's 944 778 602 575 667 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  7. Montana Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Montana Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 1 0 0 0 0 0 0 2010's 0 0 2 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  8. Montana Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 16 11 18 19 18 21 16 16 11 16 1990's 15 14 12 8 8 8 7 5 5 8 2000's 3 5 6 7 6 9 10 11 11 12 2010's 11 10 10 11 14 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  9. Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Montana Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 1980's 16 11 18 19 18 21 16 16 11 16 1990's 15 14 12 8 8 8 7 5 5 8 2000's 4 5 6 8 6 9 10 11 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Natural Gas Liquids

  10. Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 786 1980's 1,186 1,247 789 813 748 793 725 704 733 821 1990's 834 782 814 631 672 739 755 727 737 784 2000's 822 822 820 956 872 837 874 848 817 681 2010's 657 522 327 286 361 - = No Data

  11. Montana Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Montana Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 -91 -74 1980's 573 30 -448 75 -74 56 -61 -25 83 -106 1990's 29 -27 58 -154 142 -4 16 33 -12 42 2000's 13 51 58 -28 -56 3 13 9 -3 135 2010's -19 -59 38 3 39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  12. Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Montana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 49 44 47 1980's 61 86 45 49 46 49 42 42 60 43 1990's 48 48 52 50 49 51 52 55 51 41 2000's 67 73 77 86 95 100 117 112 114 113 2010's 93 75 65 62 58 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  13. Montana Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Montana Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 31 71 47 1980's 45 60 33 31 38 3 7 2 1 126 1990's 40 17 16 0 1 0 2 22 6 15 2000's 57 36 96 146 131 130 144 81 75 32 2010's 86 14 37 36 77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  14. Montana Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Montana Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 25 21 86 1980's 189 83 95 79 77 40 31 16 33 25 1990's 32 33 21 11 76 14 12 133 43 55 2000's 133 90 109 26 124 122 78 74 56 210 2010's 100 97 191 49 54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  15. Montana Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Montana Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 112 120 45 1980's 72 102 72 58 54 65 60 57 48 91 1990's 34 20 22 29 26 133 59 99 119 98 2000's 130 82 40 46 73 63 65 92 41 132 2010's 103 43 31 113 89 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  16. Montana Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Montana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 435 435 428 1990's 457 452 459 462 453 463 466 462 454 397 2000's 71 73 439 412 593 716 711 693 693 396 2010's 384 381 372 372 369 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date:

  17. Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 439 457 542 437 449 474 519 1990's 557 518 423 295 206 168 168 188 208 235 2000's 218 396 249 512 606 697 820 816 788 771 2010's 800 604 612 645 657 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release

  18. Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 2 2 4 6 8 13 40 31 38 2000's 43 53 54 66 74 4 2 1 1 1 2010's 1 0 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Delivered to

  19. T-580: Apache Tomcat May Ignore @ServletSecurity Annotation Protections

    Broader source: Energy.gov [DOE]

    Apache Tomcat May Ignore @ServletSecurity Annotation Protections. A remote user may be able to bypass @ServletSecurity annotation protections.

  20. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview There are three compiler suites available on Carver: Portland Group (PGI), Intel, and GCC. The PGI compilers are the default, to provide compatibility with other NERSC platforms. Compiler bugs affecting NERSC users are listed at PGI compiler bugs. Because Carver uses Intel processors, many benchmarks have shown significantly better performance when compiled with the Intel compilers. Compiler bugs affecting NERSC users are listed at Intel bugs. The GCC

  1. Montana Tribes Realize Long-Held Vision of Acquiring Kerr Dam: Interview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Energy Keepers Inc. CEO Brian Lipscomb | Department of Energy Montana Tribes Realize Long-Held Vision of Acquiring Kerr Dam: Interview with Energy Keepers Inc. CEO Brian Lipscomb Montana Tribes Realize Long-Held Vision of Acquiring Kerr Dam: Interview with Energy Keepers Inc. CEO Brian Lipscomb September 16, 2015 - 11:21am Addthis The Se̓liÅ¡ Ksanka Ql̓ispe̓ Dam, located in Polson, Montana, is the first tribal owned hydroelectric facility. Photo by Jami Alley. The Se̓liš

  2. EA-1978: Sand Creek Winds, McCone County, Montana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    78: Sand Creek Winds, McCone County, Montana EA-1978: Sand Creek Winds, McCone County, Montana Summary Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of the proposed Sand Creek Winds Project, a 75-MW wind farm between the towns of Circle and Wolf Point in McCone County, Montana. The proposed wind farm would interconnect to Western's existing Wolf Point to Circle 115-kV transmission line approximately 18 miles north of Wolf Point.

  3. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

  4. Towards Experimental Annotation of Genes by High Throughput Sequencing

    SciTech Connect (OSTI)

    Bradbury, Andrew

    2010-06-03

    Andrew Bradbury of Los Alamos National Laboratory discusses turning annotation into a sequencing pipeline on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  5. Geothermal wetlands: an annotated bibliography of pertinent literature

    SciTech Connect (OSTI)

    Stanley, N.E.; Thurow, T.L.; Russell, B.F.; Sullivan, J.F.

    1980-05-01

    This annotated bibliography covers the following topics: algae, wetland ecosystems; institutional aspects; macrophytes - general, production rates, and mineral absorption; trace metal absorption; wetland soils; water quality; and other aspects of marsh ecosystems. (MHR)

  6. Compiling Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview Open Mpi is the the only MPI library available on Euclid. This implementation of MPI-2 is described at Open MPI: Open Source High Performance Computing. The default compiler suite is from the Portland Group which is loaded by default at login, along with the PGI compiled Open MPI environment. % module list Currently Loaded Modulefiles: 1) pgi/10.8 2) openmpi/1.4.2 Basic Example Open MPI provides a convenient set of wrapper commands which you should use in

  7. AmiGO: online access to ontology and annotation data

    SciTech Connect (OSTI)

    Carbon, Seth; Ireland, Amelia; Mungall, Christopher J.; Shu, ShengQiang; Marshall, Brad; Lewis, Suzanna

    2009-01-15

    AmiGO is a web application that allows users to query, browse, and visualize ontologies and related gene product annotation (association) data. AmiGO can be used online at the Gene Ontology (GO) website to access the data provided by the GO Consortium; it can also be downloaded and installed to browse local ontologies and annotations. AmiGO is free open source software developed and maintained by the GO Consortium.

  8. Genome sequence and annotation of Trichoderma parareesei, the ancestor of

    Office of Scientific and Technical Information (OSTI)

    the cellulase producer Trichoderma reesei (Journal Article) | DOE PAGES Genome sequence and annotation of Trichoderma parareesei, the ancestor of the cellulase producer Trichoderma reesei « Prev Next » Title: Genome sequence and annotation of Trichoderma parareesei, the ancestor of the cellulase producer Trichoderma reesei The filamentous fungus Trichoderma parareesei is the asexually reproducing ancestor of Trichoderma reesei, the holomorphic industrial producer of cellulase and

  9. Genome sequence and annotation of Trichoderma parareesei, the ancestor of

    Office of Scientific and Technical Information (OSTI)

    the cellulase producer Trichoderma reesei (Journal Article) | DOE PAGES Genome sequence and annotation of Trichoderma parareesei, the ancestor of the cellulase producer Trichoderma reesei « Prev Next » Title: Genome sequence and annotation of Trichoderma parareesei, the ancestor of the cellulase producer Trichoderma reesei × You are accessing a document from the Department of Energy's (DOE) Public Access Gateway for Energy & Science (PAGES). This site is a product of DOE's Office of

  10. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    SciTech Connect (OSTI)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  11. Montana - ARM 36.25 - State Land Leasing | Open Energy Information

    Open Energy Info (EERE)

    ARM 36.25 - State Land Leasing Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Montana - ARM 36.25 - State Land LeasingLegal Abstract...

  12. MCA 75-11-501 et seq. - Montana Underground Storage Tank Act...

    Open Energy Info (EERE)

    11-501 et seq. - Montana Underground Storage Tank Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 75-11-501 et seq. -...

  13. EIS-0353: South Fork Flathead Watershed/Westlope Cutthroat Trout Conservation Project, Montana

    Broader source: Energy.gov [DOE]

    In cooperation with Montana, Fish, Wildlife, and Parks, Bonneville Power Administration is proposing to implement a conservation program to preserve the genetic purity of the westslope cutthroat trout populations in the South Fork of the Flathead River drainage.

  14. Montana ARM 17.20.1606, Electric Transmission Lines, Need Standard...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana ARM 17.20.1606, Electric Transmission Lines, Need StandardLegal Abstract Need...

  15. Montana - ARM 17.20 - Major Facility Siting | Open Energy Information

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana - ARM 17.20 - Major Facility SitingLegal Abstract This section governs the rules and...

  16. Montana - MCA 75-20 - Major Facility Siting | Open Energy Information

    Open Energy Info (EERE)

    MCA 75-20 - Major Facility Siting Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Montana - MCA 75-20 - Major Facility...

  17. Montana Rule 36.25.1 Surface Management Rules | Open Energy Informatio...

    Open Energy Info (EERE)

    36.25.1 Surface Management RulesLegal Abstract Montana regulation governing the administration of state surface land Published NA Year Signed or Took Effect 2014 Legal Citation...

  18. MCA 22-3-421 et seq. - Montana State Antiquities Act | Open Energy...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: MCA 22-3-421 et seq. - Montana State Antiquities ActLegal Abstract Provides for protecting...

  19. Montana MCA 69-3-101, Definition for Public Utility | Open Energy...

    Open Energy Info (EERE)

    69-3-101, Definition for Public Utility Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Montana MCA 69-3-101, Definition...

  20. EA-1932: Bass Lake Native Fish Restoration, Eureka, Lincoln County, Montana

    Broader source: Energy.gov [DOE]

    This EA was initiated to evaluate the potential environmental impacts of a BPA proposal to fund Montana Fish, Wildlife and Parks to help restore native fish populations to the Tobacco River and Lake Koocanusa. The project has been cancelled.

  1. Metagenomic gene annotation by a homology-independent approach

    SciTech Connect (OSTI)

    Froula, Jeff; Zhang, Tao; Salmeen, Annette; Hess, Matthias; Kerfeld, Cheryl A.; Wang, Zhong; Du, Changbin

    2011-06-02

    Fully understanding the genetic potential of a microbial community requires functional annotation of all the genes it encodes. The recently developed deep metagenome sequencing approach has enabled rapid identification of millions of genes from a complex microbial community without cultivation. Current homology-based gene annotation fails to detect distantly-related or structural homologs. Furthermore, homology searches with millions of genes are very computational intensive. To overcome these limitations, we developed rhModeller, a homology-independent software pipeline to efficiently annotate genes from metagenomic sequencing projects. Using cellulases and carbonic anhydrases as two independent test cases, we demonstrated that rhModeller is much faster than HMMER but with comparable accuracy, at 94.5percent and 99.9percent accuracy, respectively. More importantly, rhModeller has the ability to detect novel proteins that do not share significant homology to any known protein families. As {approx}50percent of the 2 million genes derived from the cow rumen metagenome failed to be annotated based on sequence homology, we tested whether rhModeller could be used to annotate these genes. Preliminary results suggest that rhModeller is robust in the presence of missense and frameshift mutations, two common errors in metagenomic genes. Applying the pipeline to the cow rumen genes identified 4,990 novel cellulases candidates and 8,196 novel carbonic anhydrase candidates.In summary, we expect rhModeller to dramatically increase the speed and quality of metagnomic gene annotation.

  2. UCRL-JC-116524 PREPRINT The Beaverhead Impact Structure, SW Montana and Idaho:

    Office of Scientific and Technical Information (OSTI)

    6524 PREPRINT The Beaverhead Impact Structure, SW Montana and Idaho: Implications for the Regional Geology of the Western U.S. Peter S. Fiske and Robert B. Hargaves This document was prepared for submittal to The Belt Symposium III Whitefish, Montana August 14-21,1993 March 17.1994 I c e Thisisapreprintof apaperintended forpublicationina journalorproceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited o r

  3. EA-1551: Montana Alberta Tie Ltd. (MATL) 230-KV Transmission Line

    Broader source: Energy.gov [DOE]

    DOE started to prepare, jointly with the Montana Department of Environmental Quality (MDEQ), an EA that would also serve as a state EIS. The document would evaluate the potential environmental impacts of a proposed international transmission line that would cross the U.S.-Canada border in northwest Montana. Based on comments received on the DOE Draft EA/MDEQ Draft EIS, DOE cancelled preparation of the EA and announced preparation of DOE/EIS-0399 (of the same title).

  4. Written Statement of Peggy Montana, Shell Downstream Quadrennial Energy Review Task Force Meeting

    Broader source: Energy.gov (indexed) [DOE]

    Written Statement of Peggy Montana, Shell Downstream Quadrennial Energy Review Task Force Meeting Enhancing Energy Infrastructure Resiliency and Addressing Vulnerabilities April 11. 2014 Good Morning. I am Peggy Montana, Executive Vice President, Pipelines and Special Projects, for Shell Downstream Inc. My previous role was EVP Supply & Distribution for Shell, and overall I have 37 years of industry experience at both the national and global level. I am testifying today on behalf of the

  5. Montana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Montana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0.41 0.39 0.41 0.42 0.42 0.42 0.42 2000's 0.40 0.42 0.44 0.40 0.41 0.41 0.45 0.42 0.44 0.46 2010's 0.44 0.46 0.46 0.42 0.42 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  6. Montana Natural Gas Liquids Lease Condensate, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Montana Natural Gas Liquids Lease Condensate, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Lease

  7. Montana Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Montana Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 1 1 1 1 1 1 1 1 1 1 1990's 1 1 1 1 1 0 0 0 0 0 2000's 0 0 1 1 1 1 1 1 1 1 2010's 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  8. Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 837 1980's 1,308 1,336 870 921 825 884 823 801 834 889 1990's 920 848 875 684 727 792 806 769 789 851 2000's 892 907 914 1,068 1,002 998 1,069 1,067 1,014 993 2010's 959 792 616 590 686 - = No Data Reported; -- = Not Applicable; NA = Not

  9. Small Wind Electric Systems: A Montana Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  10. Small Wind Electric Systems: A Montana Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Montana Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Montana Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 59,851 59,840 62,129 2000's 67,955 65,051 69,532 68,473 66,829 68,355 73,879 73,822 76,422 75,802 2010's 72,025 78,217 73,399 79,670 78,010 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  12. Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas

  13. Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 184,212 180,918 178,620 181,242 179,235 181,374 183,442 187,348 185,848 181,029 1991 179,697 178,285 176,975 176,918 178,145 179,386 181,094 182,534 182,653 181,271 178,539 174,986 1992 111,256 109,433 109,017 109,150 110,146 110,859 111,885 112,651 112,225 110,868 107,520 101,919 1993 96,819 92,399 89,640 87,930

  14. Montana Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports (No Intransit Deliveries) (Million Cubic Feet) Montana Natural Gas Exports (No Intransit Deliveries) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 162 136 127 178 90 40 39 82 1990's 75 41 14 106 3,087 1,510 2000's 1,606 2,978 16,036 8,889 23,379 19,159 21,245 20,420 16,399 12,504 2010's 9,437 6,826 4,332 2,353 891 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  15. Montana Natural Gas Imports (No intransit Receipts) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports (No intransit Receipts) (Million Cubic Feet) Montana Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 70,647 136,508 137,661 155,377 95,958 178,262 318,618 323,538 1990's 343,716 393,463 467,036 511,294 535,855 570,396 576,511 572,977 580,548 807,124 2000's 800,026 662,662 787,652 719,011 757,642 728,851 684,278 779,129 666,251 502,435 2010's 706,201 679,848 754,058 719,176 541,135 - = No

  16. Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1.48 1990's 1.44 1.38 1.52 1.66 1.47 1.23 1.88 2.15 1.82 2.03 2000's 3.72 3.98 3.00 5.21 5.71 7.77 6.74 6.66 8.22 3.88 2010's 4.13 3.75 2.45 3.23 4.39 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  17. Montana Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Montana Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,531 1,612 1,596 1,371 1,639 1,520 1,247 1990's 1,705 1,162 1,448 2,084 2,037 2,070 2,233 2,089 1,792 798 2000's 2,360 2,644 3,113 3,543 3,933 4,502 4,864 4,327 4,067 3,371 2010's 3,265 2,613 3,845 3,845 1,793 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  18. Montana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Montana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 21,382 22,246 22,219 1990's 23,331 23,185 23,610 24,373 25,349 26,329 26,374 27,457 28,065 28,424 2000's 29,215 29,429 30,250 30,814 31,357 31,304 31,817 32,472 33,008 33,731 2010's 34,002 34,305 34,504 34,909 35,205 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Montana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Montana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 167,883 171,785 171,156 1990's 174,384 177,726 182,641 188,879 194,357 203,435 205,199 209,806 218,851 222,114 2000's 224,784 226,171 229,015 232,839 236,511 240,554 245,883 247,035 253,122 255,472 2010's 257,322 259,046 259,957 262,122 265,849 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,436 3,746 5,968 2000's 7,652 7,483 7,719 8,344 8,224 7,956 7,592 7,810 7,328 5,047 2010's 7,442 6,888 6,979 6,769 4,126 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural

  1. Montana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Montana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 744 744 705 1970's 3,032 750 839 918 857 831 761 630 503 776 1980's 890 818 940 1,049 1,069 1,189 1,086 1,058 1,072 1,095 1990's 1,091 1,055 907 741 631 597 576 409 410 435 2000's 272 470 575 615 634 1,149 1,422 1,576 1,622 1,853 2010's 1,367 1,252 1,491 1,645 1,670 - = No Data Reported; -- = Not Applicable;

  2. Montana Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Montana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 47,751 47,534 46,113 42,203 42,814 47,748 52,044 1990's 45,998 48,075 50,359 58,810 51,953 46,739 46,868 50,409 51,967 55,780 2000's 67,294 78,493 86,075 86,027 90,771 101,666 106,843 110,942 802,619 293,941 2010's

  3. Montana Natural Gas Deliveries to Electric Power Consumers (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Deliveries to Electric Power Consumers (Million Cubic Feet) Montana Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 2 1 5 2 9 20 62 48 5 3 2 2 2002 2 1 1 1 12 35 29 20 10 1 1 4 2003 7 20 21 2 11 37 26 63 11 15 11 34 2004 16 16 16 16 16 16 16 16 16 16 16 16 2005 13 11 14 14 13 24 32 32 19 14 12 15 2006 7 8 12 8 11 68 114 101 59 68 44 44 2007 73 60 49 58 83 99 119 118 102 87 73 79 2008 65 38 26 43 46 48 27

  4. Montana Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Consumption (Million Cubic Feet) Montana Natural Gas Residential Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,803 2,778 2,544 1,666 965 680 426 435 568 1,084 1,728 2,518 1990 2,625 2,421 1,900 1,459 1,104 701 389 392 450 1,040 1,694 2,673 1991 3,533 2,139 2,087 1,585 1,244 608 455 382 559 977 2,218 2,626 1992 2,529 2,180 1,620 1,371 837 541 485 421 727 1,106 1,792 3,065 1993 3,658 2,509 2,611 1,686 1,005 644 608 530 741 1,172 2,236

  5. Montana Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Underground Storage Net Withdrawals (Million Cubic Feet) Montana Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,955 3,294 1,294 1,004 378 -993 -2,139 -2,068 -2,648 -1,258 1,500 4,819 1991 4,869 1,410 1,308 79 -1,225 -1,235 -1,711 -1,438 -120 1,379 2,875 3,548 1992 3,412 2,207 484 -63 -1,517 -714 -1,026 -766 280 1,357 3,347 5,601 1993 5,100 4,420 2,759 1,710 1,157 685 -1,169 -302 -453 88 4,106 3,207 1994

  6. The Western Environmental Technology Office (WETO), Butte, Montana, technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This document has been prepared by the DOE Environmental Management (EM) Office of Technology Development (OTD) to highlight its research, development, demonstration, testing, and evaluation activities funded through the Western Environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. WETO`s environmental technology research and testing activities focus on the recovery of useable resources from waste. Environmental technology development and commercialization activities will focus on mine cleanup, waste treatment, resource recovery, and water resource management. Since the site has no record of radioactive material use and no history of environmental contamination/remediation activities, DOE-EM can concentrate on performing developmental and demonstration activities without the demands of regulatory requirements and schedules. Thus, WETO will serve as a national resource for the development of new and innovative environmental technologies.

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code.

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    Georgia's Department of Community Affairs periodically reviews, amends and/or updates the state minimum standard codes. Georgia has "mandatory" and "permissive" codes. Georgia State Energy Code...

  9. Towards a Consensus Annotation System (GSC8 Meeting)

    ScienceCinema (OSTI)

    White, Owen [University of Maryland

    2011-04-28

    The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding "Research Coordination Network" from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. "Comparing Annotations: Towards Consensus Annotation" at the Genomic Standards Consortium's 8th meeting at the DOE JGI in Walnut Creek, Calif. on Sept. 10, 2009

  10. Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.08 0.09 0.10 1970's 0.10 0.12 0.12 0.24 0.25 0.43 0.45 0.72 0.85 1.21 1980's 1.45 1.91 2.15 2.41 2.46 2.39 2.05 1.80 1.70 1.55 1990's 1.79 1.66 1.62 1.55 1.46 1.36 1.41 1.59 1.53 1.68 2000's 2.84 3.12 2.39 3.73 4.51 6.57 5.53 5.72 7.50 3.16 2010's 3.64 - = No Data Reported; -- = Not Applicable;

  11. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect (OSTI)

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  12. Montana Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.11 0.11 1970's 0.11 0.12 0.17 0.21 0.23 0.42 0.46 0.73 0.83 1.16 1980's 1.29 1.90 2.87 3.00 3.04 2.51 2.28 1.86 1.65 1.57 1990's 1.75 1.76 1.63 2.15 1.53 1.16 1.44 1.77 1.72 2.12 2000's 2.96 2.48 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  13. Montana Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Montana Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 5,317 4,533 4,861 4,866 4,600 3,543 3,583 4,173 4,023 4,479 4,241 4,783 1992 5,106 4,902 5,332 4,653 4,504 3,734 3,938 3,854 3,842 4,583 5,144 5,218 1993 5,335 4,826 5,124 4,790 4,693 4,058 3,995 3,454 4,095 5,064 4,920 5,163 1994 4,998 4,529 4,625 4,439 4,132 3,399 3,440 3,797 3,970 4,512 4,533 4,698 1995 4,965 4,316 4,752 4,417 4,186 3,459

  14. Montana Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Montana Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 2,448 2,226 2,224 1,871 1,230 1,230 1,497 1,337 1,241 1,558 2,089 1,972 2002 2,134 2,136 1,938 2,296 1,672 1,554 1,351 1,409 1,696 1,920 2,215 1,547 2003 2,105 1,990 1,859 1,842 1,310 1,413 1,122 1,086 1,234 1,701 2,238 2,294 2004 2,487 2,030 1,804 1,456 1,444 1,206 1,129 1,277 1,387 1,883 2,095 2,283 2005 2,438 1,968 2,138 1,678 1,466 1,274

  15. Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 4.63 5.95 4.89 4.79 4.96 5.90 6.07 6.56 6.56 5.79 4.84 4.68 2002 3.01 2.73 2.61 2.51 2.39 2.62 3.20 3.60 3.27 2.89 2.59 2.81 2003 3.67 3.75 3.93 3.60 3.90 4.05 5.23 6.50 6.66 6.39 5.85 5.80 2004 6.14 6.32 6.62 7.02 6.03 6.19 6.37 7.11 6.73 6.10 6.11 6.35 2005 7.94 7.34 7.19 6.84 7.31 7.48 7.76 8.94 9.06 9.83 10.08 10.24 2006

  16. Montana Price of Natural Gas Delivered to Residential Consumers (Dollars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    per Thousand Cubic Feet) Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Montana Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4.29 4.33 4.35 4.41 4.52 4.57 4.72 4.67 4.58 4.35 4.29 4.25 1990 4.26 4.27 4.36 4.48 4.65 4.97 5.79 5.95 5.75 5.15 4.69 4.50 1991 4.23 4.31 4.34 4.43 4.54 5.15 5.67 5.89 5.61 4.97 4.41 4.40 1992 4.47 4.53 4.66 4.73 5.06 5.57 5.78 6.02 5.45 5.14

  17. Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: On March 9, 2016, the State Fire Prevention and Building Code Council adopted major updates to the State Uniform Code and the State Energy Code. The State Energy Code has been updated to 2015...

  18. Energy Corps Takes Root in Montana, Seeks to Make America Greener

    Broader source: Energy.gov [DOE]

    For the last 17 years, AmeriCorps members have pledged to uphold their duties as public servants, vowing to "get things done for America—to make our people safer, smarter and healthier.” But a new type of volunteering in Montana is adding one more thing to that list: making America greener.

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    The State Building Code Council revised the Washington State Energy Code (WESC) in February 2013, effective July 1, 2013. The WESC is a state-developed code based upon ASHRAE 90.1-2010 and the...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    Tennessee is a "home rule" state which leaves adoption of codes up to the local codes jurisdictions. State energy codes are passed through the legislature, apply to all construction and must be...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Kentucky Building Code (KBC) is updated every three years on a cycle one year behind the publication year for the International Building Code. Any changes to the code by the state of Kentucky...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Mississippi's existing state code is based on the 1977 Model Code for Energy Conservation (MCEC). The existing law does not mandate enforcement by localities, and any revised code will probably...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Rhode Island Building Code Standards Committee adopts, promulgates and administers the state building code. Compliance is determined through the building permit and inspection process by local...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    The North Carolina State Building Code Council is responsible for developing all state codes. By statute, the Commissioner of Insurance has general supervision over the administration and...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. These codes may be voluntarily adopted at the local level. Local jurisdictions...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    Public Act 093-0936 (Illinois Energy Conservation Code for Commercial Buildings) was signed into law in August, 2004. The Illinois Energy Conservation Code for Commercial Buildings became...

  7. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana, Hettinger, North Dakota, and New Underwood, South Dakota, in Custer and Fallon Counties in Montana, Adams, Bowman, and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  8. IMG ER: A System for Microbial Genome Annotation Expert Review and Curation

    SciTech Connect (OSTI)

    Markowitz, Victor M.; Mavromatis, Konstantinos; Ivanova, Natalia N.; Chen, I-Min A.; Chu, Ken; Kyrpides, Nikos C.

    2009-05-25

    A rapidly increasing number of microbial genomes are sequenced by organizations worldwide and are eventually included into various public genome data resources. The quality of the annotations depends largely on the original dataset providers, with erroneous or incomplete annotations often carried over into the public resources and difficult to correct. We have developed an Expert Review (ER) version of the Integrated Microbial Genomes (IMG) system, with the goal of supporting systematic and efficient revision of microbial genome annotations. IMG ER provides tools for the review and curation of annotations of both new and publicly available microbial genomes within IMG's rich integrated genome framework. New genome datasets are included into IMG ER prior to their public release either with their native annotations or with annotations generated by IMG ER's annotation pipeline. IMG ER tools allow addressing annotation problems detected with IMG's comparative analysis tools, such as genes missed by gene prediction pipelines or genes without an associated function. Over the past year, IMG ER was used for improving the annotations of about 150 microbial genomes.

  9. Price of Montana Natural Gas Exports (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Natural Gas Exports (Dollars per Thousand Cubic Feet) Price of Montana Natural Gas Exports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1.45 1990's 1.69 1.72 1.66 1.93 1.43 -- 2000's 3.25 3.43 2.73 4.90 5.30 7.33 6.05 6.16 8.14 3.63 2010's 4.05 3.82 2.40 3.43 5.38 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  10. Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana

    Office of Environmental Management (EM)

    Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana Shawn Olson Acting Director Economic Development Office Fort Peck Assiniboine & Sioux Tribes DOE Tribal Energy Program Review March 24-27, 2014 US Department of Energy Tribal Energy Program Grant #DEEE0002511 Gradient Geophysics Inc. PO Box 18214 Missoula, MT 59808 406 360-3456 garryjcarlson@gmail.com www.gradientgeo.com Birkby Consulting LLC 238 East Sussex Avenue Missoula, MT 59801

  11. Annotated bibliography of coal in the Caribbean region. [Lignite

    SciTech Connect (OSTI)

    Orndorff, R.C.

    1985-01-01

    The purpose of preparing this annotated bibliography was to compile information on coal localities for the Caribbean region used for preparation of a coal map of the region. Also, it serves as a brief reference list of publications for future coal studies in the Caribbean region. It is in no way an exhaustive study or complete listing of coal literature for the Caribbean. All the material was gathered from published literature with the exception of information from Cuba which was supplied from a study by Gordon Wood of the US Geological Survey, Branch of Coal Resources. Following the classification system of the US Geological Survey (Wood and others, 1983), the term coal resources has been used in this report for reference to general estimates of coal quantities even though authors of the material being annotated may have used the term coal reserves in a similar denotation. The literature ranges from 1857 to 1981. The countries listed include Colombia, Mexico, Venezuela, Cuba, the Dominican Republic, Haiti, Jamaica, Puerto Rico, and the countries of Central America.

  12. Next Generation Models for Storage and Representation of Microbial Biological Annotation

    SciTech Connect (OSTI)

    Quest, Daniel J; Land, Miriam L; Brettin, Thomas S; Cottingham, Robert W

    2010-01-01

    Background Traditional genome annotation systems were developed in a very different computing era, one where the World Wide Web was just emerging. Consequently, these systems are built as centralized black boxes focused on generating high quality annotation submissions to GenBank/EMBL supported by expert manual curation. The exponential growth of sequence data drives a growing need for increasingly higher quality and automatically generated annotation. Typical annotation pipelines utilize traditional database technologies, clustered computing resources, Perl, C, and UNIX file systems to process raw sequence data, identify genes, and predict and categorize gene function. These technologies tightly couple the annotation software system to hardware and third party software (e.g. relational database systems and schemas). This makes annotation systems hard to reproduce, inflexible to modification over time, difficult to assess, difficult to partition across multiple geographic sites, and difficult to understand for those who are not domain experts. These systems are not readily open to scrutiny and therefore not scientifically tractable. The advent of Semantic Web standards such as Resource Description Framework (RDF) and OWL Web Ontology Language (OWL) enables us to construct systems that address these challenges in a new comprehensive way. Results Here, we develop a framework for linking traditional data to OWL-based ontologies in genome annotation. We show how data standards can decouple hardware and third party software tools from annotation pipelines, thereby making annotation pipelines easier to reproduce and assess. An illustrative example shows how TURTLE (Terse RDF Triple Language) can be used as a human readable, but also semantically-aware, equivalent to GenBank/EMBL files. Conclusions The power of this approach lies in its ability to assemble annotation data from multiple databases across multiple locations into a representation that is understandable to researchers. In this way, all researchers, experimental and computational, will more easily understand the informatics processes constructing genome annotation and ultimately be able to help improve the systems that produce them.

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    In November of 2015, the Commission adopted the 2015 International Building Code (IBC) with amendments. The Commission did not adopt the 2012 International Energy Conservation Code (IECC) as part...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Colorado is a home rule state, so no statewide energy code exists, although state government buildings do have specific requirements. Voluntary adoption of energy codes is encouraged and efforts...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Virginia Uniform Statewide Building Code (USBC) is a statewide minimum requirement that local jurisdictions cannot amend. The code is applicable to all new buildings in the commonwealth. The...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  17. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  18. Building Energy Code

    Broader source: Energy.gov [DOE]

    In September 2011 the Nebraska Building Energy Code was updated to the 2009 International Energy Conservation Code (IECC) standards. As with the previous 2003 IECC standards, which had been in...

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 1993 State Legislature updated the state energy code to the 1989 Model Energy Code (MEC) and established a procedure to update the standard. Then in 1995, following consultation with an...

  20. Building Energy Code

    Broader source: Energy.gov [DOE]

    Changes to the energy code are submitted to the Uniform Building Code Commission. The proposed change is reviewed by the Commission at a monthly meeting to decide if it warrants further considera...

  1. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more deta...

  2. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energy’s (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  3. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  4. Building Energy Code

    Broader source: Energy.gov [DOE]

    The New Jersey Uniform Construction Code Act provides that model codes and standards publications shall not be adopted more frequently than once every three years. However, a revision or amendment...

  5. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the state’s energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    The 2012 IECC is in effect for all residential and commercial buildings, Idaho schools, and Idaho jurisdictions that adopt and enforce building codes, unless a local code exists that is more...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2006 Iowa enacted H.F. 2361, requiring the State Building Commissioner to adopt energy conservation requirements based on a nationally recognized building energy code. The State Building Code...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Florida Building Commission (FBC) is directed to adopt, revise, update, and maintain the Florida Building Code in accordance with Chapter 120 of the state statutes. The code is mandatory...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Indiana Residential Building Code is based on the 2003 IRC with state amendments (eff. 9/11/05). This code applies to 1 and 2 family dwellings and townhouses. During the adoption process,...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    New Hampshire adopted a mandatory statewide building code in 2002 based on the 2000 IECC. S.B. 81 was enacted in July 2007, and it upgraded the New Hampshire Energy Code to the 2006 IECC. In Dece...

  11. Building Energy Code

    Office of Energy Efficiency and Renewable Energy (EERE)

    A mandatory energy code is not enforced at the state level. If a local energy code is adopted, it is enforced at the local level. Builders or sellers of new residential buildings (single-family or...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    Legislation passed in March 2010 authorized the Alabama Energy and Residential Code (AERC) Board to adopt mandatory residential and commercial energy codes for all jurisdictions. In 2015, the AER...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    In March 2006, SB 459 was enacted to promote renewable energy and update the state's building energy codes.

  16. Building Energy Codes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    David Cohan Program Manager Building Energy Codes April 22, 2014 Presentation Outline * Mission * Goals * Program Organization * Strategies/Roles * Near-Term Focus * Measuring Progress/Outcomes/Impacts * Priorities for FY15 and Beyond 2 Building Energy Codes - Mission Support the building energy code and standard development, adoption, implementation and enforcement processes to achieve the maximum practicable improvements in building energy efficiency 3 Building Energy Codes Program - Goals

  17. Generating code adapted for interlinking legacy scalar code and extended

    Office of Scientific and Technical Information (OSTI)

    vector code (Patent) | SciTech Connect Generating code adapted for interlinking legacy scalar code and extended vector code Citation Details In-Document Search Title: Generating code adapted for interlinking legacy scalar code and extended vector code Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled

  18. XSOR codes users manual

    SciTech Connect (OSTI)

    Jow, Hong-Nian; Murfin, W.B.; Johnson, J.D.

    1993-11-01

    This report describes the source term estimation codes, XSORs. The codes are written for three pressurized water reactors (Surry, Sequoyah, and Zion) and two boiling water reactors (Peach Bottom and Grand Gulf). The ensemble of codes has been named ``XSOR``. The purpose of XSOR codes is to estimate the source terms which would be released to the atmosphere in severe accidents. A source term includes the release fractions of several radionuclide groups, the timing and duration of releases, the rates of energy release, and the elevation of releases. The codes have been developed by Sandia National Laboratories for the US Nuclear Regulatory Commission (NRC) in support of the NUREG-1150 program. The XSOR codes are fast running parametric codes and are used as surrogates for detailed mechanistic codes. The XSOR codes also provide the capability to explore the phenomena and their uncertainty which are not currently modeled by the mechanistic codes. The uncertainty distributions of input parameters may be used by an. XSOR code to estimate the uncertainty of source terms.

  19. DLLExternalCode

    Energy Science and Technology Software Center (OSTI)

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read frommorefiles created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.less

  20. Generating code adapted for interlinking legacy scalar code and...

    Office of Scientific and Technical Information (OSTI)

    code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a...

  1. Generating code adapted for interlinking legacy scalar code and extended vector code

    DOE Patents [OSTI]

    Gschwind, Michael K

    2013-06-04

    Mechanisms for intermixing code are provided. Source code is received for compilation using an extended Application Binary Interface (ABI) that extends a legacy ABI and uses a different register configuration than the legacy ABI. First compiled code is generated based on the source code, the first compiled code comprising code for accommodating the difference in register configurations used by the extended ABI and the legacy ABI. The first compiled code and second compiled code are intermixed to generate intermixed code, the second compiled code being compiled code that uses the legacy ABI. The intermixed code comprises at least one call instruction that is one of a call from the first compiled code to the second compiled code or a call from the second compiled code to the first compiled code. The code for accommodating the difference in register configurations is associated with the at least one call instruction.

  2. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J.; Dalton, Larry J.; Plummer, David W.

    2002-01-01

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  3. Compiling Codes on Cori

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes on Cori Compiling Codes on Cori Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the Hopper compute node processors. NOTE: The

  4. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes on Hopper Overview Cray provides a convenient set of wrapper commands that should be used in almost all cases for compiling and linking parallel programs. Invoking the wrappers will automatically link codes with MPI libraries and other Cray system software. All MPI and Cray system include directories are also transparently imported. In addition the wrappers append the compiler's target processor arguments for the hopper compute node processors. NOTE: The intention

  5. Code of Conduct

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About » Leadership, Governance » Ethics, Accountability, Contract » Code of Conduct Code of Conduct Helping employees recognize and resolve the ethics and compliance issues that may arise in their daily work. Contact Ethics and Compliance Group (505) 667-7506 Email Code of Conduct LANL is committed to operating in accordance with the highest standards of ethics and compliance and with its core values of service to our nation, ethical conduct and personal accountability, excellence in our

  6. Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana

    SciTech Connect (OSTI)

    Carlson, Garry J.; Birkby, Jeff

    2015-05-12

    Tribal lands owned by Assiniboine and Sioux Tribes on the Fort Peck Indian Reservation, located in Northeastern Montana, overlie large volumes of deep, hot, saline water. Our study area included all the Fort Peck Reservation occupying roughly 1,456 sq miles. The geothermal water present in the Fort Peck Reservation is located in the western part of the Williston Basin in the Madison Group complex ranging in depths of 5500 to 7500 feet. Although no surface hot springs exist on the Reservation, water temperatures within oil wells that intercept these geothermal resources in the Madison Formation range from 150 to 278 degrees F.

  7. ,"Montana Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5030mt2m.xls"

  8. ,"Montana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals and Production",10,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  9. ,"Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  10. ,"Montana Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  11. ,"Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  12. ,"Montana Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290mt2m.xls"

  13. ,"Montana Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  14. ,"Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  15. ,"Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  16. ,"Montana Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  18. ,"Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  19. ,"Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  20. ,"Montana Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"Montana Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  2. ,"Montana Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  3. ,"Montana Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  4. The Montana Rivers Information System: Edit/entry program user`s manual

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    The Montana Rivers Information System (MRIS) was initiated to assess the state`s fish, wildlife, and recreation value; and natural cultural and geologic features. The MRIS is now a set of data bases containing part of the information in the Natural Heritage Program natural features and threatened and endangered species data bases. The purpose of this User`s Manual is to: (1) describe to the user how to maintain the MRIS database of their choice by updating, changing, deleting, and adding records using the edit/entry programs; and (2) provide to the user all information and instructions necessary to complete data entry into the MRIS databases.

  5. Tokamak Systems Code

    SciTech Connect (OSTI)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  6. Codes and Standards

    Broader source: Energy.gov [DOE]

    Currently, thirteen U.S. and two international standards development organizations (SDOs) are developing and publishing the majority of the voluntary domestic codes and standards. These...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Maryland Building Performance Standards (MBPS) are adopted by the Maryland Department of Housing and Community Development (DHCD) Codes Administration. As required by legislation passed in...

  8. Building Energy Code

    Broader source: Energy.gov [DOE]

    Kansas adopted the 2006 International Energy Conservation Code (IECC) as "the applicable state standard" for commercial and industrial buildings. Enforcement is provided by local jurisdictions; t...

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    Pennsylvania Department of Labor and Industry (DLI) has the authority to upgrade commercial and residential energy standards through the regulatory process. The current code, the 2009 UCC, became...

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Office of the State Fire Marshal is granted the authority to promulgate amendments, revisions, and alternative compliance methods for the code.

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Connecticut Office of the State Building Inspector establishes and enforces building, electrical, mechanical, plumbing and energy code requirements by reviewing, developing, adopting and...

  12. Top NAICS Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Related Products Manufacturing for Measuring, Displaying, Top Ten NAICS Codes Dollar Value 511210 Software Publishers 334516 Analytical Laboratory Instrument Manufacturing...

  13. Improving Code Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code Collaborative American Institute of ... Studios 3. Education, Health Care (outpatient), Public Order and Safety, ... elements to the Journal of the American ...

  14. Lichenase and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang (Athens, GA); Ljungdahl, Lars G. (Athens, GA); Chen, Huizhong (Lawrenceville, GA)

    2000-08-15

    The present invention provides a fungal lichenase, i.e., an endo-1,3-1,4-.beta.-D-glucanohydrolase, its coding sequence, recombinant DNA molecules comprising the lichenase coding sequences, recombinant host cells and methods for producing same. The present lichenase is from Orpinomyces PC-2.

  15. Building Energy Codes Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program U.S. Department of Energy Building Technologies Office Jeremy Williams, Project Manager Building Technologies Peer Review April 2014 Presentation Overview: * Introduction * Statutory Requirements * Program Structure * Recent accomplishments 2 Introduction: Background NATIONAL STATE LOCAL Building codes are developed through national industry consensus processes with input from industry representatives, trade organizations, government officials, and the general public Model energy codes

  16. Low-level radioactive waste technology: a selected, annotated bibliography

    SciTech Connect (OSTI)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinent references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.

  17. Annotation of Plant Genomes using RNA-seq Data (2010 JGI/ANL HPC Workshop)

    ScienceCinema (OSTI)

    Pellegrinni, Matteo [UCLA

    2011-06-08

    Matteo Pellegrini from University of California, Los Angeles gives a presentation on "Annotation of Plant Genomes using RNA-seq Data" at the JGI/Argonne HPC Workshop on January 25, 2010.

  18. Casting Annotation as an Optimization Problem (2010 JGI/ANL HPC Workshop)

    ScienceCinema (OSTI)

    Overbeek, Ross

    2011-06-08

    Ross Overbeek of the Fellowship for Interpretation of Genomes gives a presentation on "Casting Annotation as an Optimization Problem" at the JGI/Argonne HPC Workshop on January 25, 2010.

  19. Casting Annotation as an Optimization Problem (2010 JGI/ANL HPC Workshop)

    SciTech Connect (OSTI)

    Overbeek, Ross

    2010-01-25

    Ross Overbeek of the Fellowship for Interpretation of Genomes gives a presentation on "Casting Annotation as an Optimization Problem" at the JGI/Argonne HPC Workshop on January 25, 2010.

  20. Next-Gen Annotation Based on Transcriptomics (2010 JGI/ANL HPC Workshop)

    ScienceCinema (OSTI)

    Cottingham, Bob [ORNL

    2011-06-08

    Bob Cottingham of the Oak Ridge National Laboratory gives a presentation on "Next-Gen Annotation based on Transcriptomics" at the JGI/Argonne HPC Workshop on January 25, 2010.

  1. New local potential useful for genome annotation and 3D modeling (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect New local potential useful for genome annotation and 3D modeling Citation Details In-Document Search Title: New local potential useful for genome annotation and 3D modeling A new potential energy function representing the conformational preferences of sequentially local regions of a protein backbone is presented. This potential is derived from secondary structure probabilities such as those produced by neural network-based prediction methods. The potential is

  2. New local potential useful for genome annotation and 3D modeling (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: New local potential useful for genome annotation and 3D modeling Citation Details In-Document Search Title: New local potential useful for genome annotation and 3D modeling A new potential energy function representing the conformational preferences of sequentially local regions of a protein backbone is presented. This potential is derived from secondary structure probabilities such as those produced by neural network-based prediction methods. The

  3. The Cordilleran foreland thrust belt in northwestern Montana and northern Idaho from COCORP and industry seismic reflection data

    SciTech Connect (OSTI)

    Yoos, T.R.; Potter, C.J.; Thigpen, J.L.; Brown, L.D. (Cornell Univ., Ithaca, NY (United States))

    1991-06-01

    COCORP and petroleum industry seismic reflection profiles in northwestern Montana reveal the structure of the Cordilleran foreland thrust belt. The Front Ranges consist of thick thrust sheets containing Precambrian Belt Supergroup and Paleozoic miogeoclinal shelf rocks above a thin remnant of Paleozoic rocks and gently westward-dipping North American basement. Interpretation of the seismic data and results from a recent petroleum exploration well suggest that 15-22 km of Precambrian Belt Supergroup sedimentary rocks are present in several thrust plates beneath the eastern Purcell anticlinorium. Previous hypotheses of a large mass of Paleozoic miogeoclinal sedimentary rocks or slices of crystalline basement located beneath the eastern Purcell anticlinorium do not appear to be supported by the data. The easternmost occurrence of allochthonous basement is interpreted to be in the western part of the anticlinorium near the Montana-Idaho border. Comparison of the Cordilleran foreland thrust belt in northwestern Montana and southern Canada suggest that a change in the deep structure of the Purcell anticlinorium occurs along strike. The anticlinorium in southern Canada has been interpreted as a hanging-wall anticline that was thrust over the western edge of thick Proterozoic North American basement, whereas in northwestern Montana the anticlinorium appears to consist of a complex series of thrust sheets above highly attenuated North American basement.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Production Facility Property Tax Exemption Equipment used to produce ethanol from grain is exempt from state property taxes during construction of an ethanol manufacturing facility and for 10 years after ethanol production begins at the facility. (Reference Montana Code Annotated 15-6-220

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas (CNG) and Propane Tax Retail sales for CNG and liquefied petroleum gas (propane) used to operate vehicles are subject to a modified tax based on energy content. CNG is taxed per 120 cubic feet, measured at 14.73 pounds per square inch absolute base pressure. (Reference Montana Code Annotated 15-70-711

  6. EIS-0379- Rebuild of the Libby (FEC) to Troy Section of BPA’s 115-kilovolt Transmission Line in Libby, Lincoln County, Montana

    Broader source: Energy.gov [DOE]

    This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action on the proposed rebuilding, operation, and maintenance of a 17-mile-long portion of BPA’s Libby to Bonners Ferry 115-kilovolt (kV) Transmission Line in Lincoln County, Montana. The portion to be rebuilt would start at Flathead Electric Cooperative’s (FEC) Libby Substation, in the town of Libby, Montana, and proceed west along an existing right-of-way for about 17 miles, terminating at BPA’s Troy Substation just east of the town of Troy, Montana.

  7. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    SciTech Connect (OSTI)

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y.; Chen, Jin

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstrate that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.

  8. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Jiajie; Uygun, Sahra; Kim, Taehyong; Wang, Yadong; Rhee, Seung Y.; Chen, Jin

    2015-02-14

    Background: Gene Ontology (GO) has been used widely to study functional relationships between genes. The current semantic similarity measures rely only on GO annotations and GO structure. This limits the power of GO-based similarity because of the limited proportion of genes that are annotated to GO in most organisms. Results: We introduce a novel approach called NETSIM (network-based similarity measure) that incorporates information from gene co-function networks in addition to using the GO structure and annotations. Using metabolic reaction maps of yeast, Arabidopsis, and human, we demonstrate that NETSIM can improve the accuracy of GO term similarities. We also demonstratemore » that NETSIM works well even for genomes with sparser gene annotation data. We applied NETSIM on large Arabidopsis gene families such as cytochrome P450 monooxygenases to group the members functionally and show that this grouping could facilitate functional characterization of genes in these families. Conclusions: Using NETSIM as an example, we demonstrated that the performance of a semantic similarity measure could be significantly improved after incorporating genome-specific information. NETSIM incorporates both GO annotations and gene co-function network data as a priori knowledge in the model. Therefore, functional similarities of GO terms that are not explicitly encoded in GO but are relevant in a taxon-specific manner become measurable when GO annotations are limited.« less

  9. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  10. Building Energy Code

    Broader source: Energy.gov [DOE]

    Missouri does not have a statewide building or energy code for private residential and commercial buildings, and there currently is no state regulatory agency authorized to promulgate, adopt, or...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Massachusetts Board of Building Regulations and Standards has authority to promulgate the Massachusetts State Building Code (MSBC). The energy provisions in the MSBC were developed by the Boa...

  13. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Texas State Energy Conservation Office (SECO) by rule may choose to adopt the latest published editions of the energy efficiency provisions of the International Residential Code (IRC) or the...

  14. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    example.x example.c For C++ source code use CC % CC -fast -o example.x example.C All compilers on Hopper, PGI, Pathscale, Cray, GNU, and Intel, are provided via five programming...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Oregon Energy Code amendments were most recently updated for both residential and non-residential construction in 2014. In October 2010 Oregon also adopted the Oregon Solar Installation...

  16. Compiling Codes on Hopper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    % ftn -O0 -Kieee MyCode.F90 Documentation For the full list of compiler options type man pgf90, man pgf95,man pgcc or man pgCC. However, remember always to use the Cray...

  17. National Energy Codes Conference

    Broader source: Energy.gov [DOE]

    Join us in Nashville, TN March 23-26, 2015 for the National Energy Codes Conference! Additional details, including registration information, a preliminary agenda, the application for the Jeffrey A...

  18. Compressible Astrophysics Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2007-07-18

    This is an astrophysics simulation code involving a radiation diffusion module developed at LLNL coupled to compressible hydrodynamics and adaptive mesh infrastructure developed at LBNL. One intended application is to neutrino diffusion in core collapse supernovae.

  19. Building Energy Code

    Broader source: Energy.gov [DOE]

    On May 2014, Delaware updated its energy code to 2012 IECC with amendments for residential sector and ASHRAE 90.1-2010 with amendments for the commercial sector. The Delaware specific amendments to...

  20. Application for presidential permit OE Docket No. PP-305 Montana Alberta Tie Ltd: Federal Register Notice Volume 70, No. 210- Nov. 1, 2005

    Broader source: Energy.gov [DOE]

    Application from Montana Alberta Tie Ltd to construct, operate, and maintain electric transmission facilities at the U.S-Canada border.  Federal Register Notice Vol 70 No 210.

  1. Case Study of The ARRA-Funded GSHP Demonstration at the Natural Sources Building, Montana Tech

    SciTech Connect (OSTI)

    Malhotra, Mini; Liu, Xiaobing

    2015-04-01

    Under the American Recovery and Reinvestment Act (ARRA), 26 ground source heat pump (GSHP) projects were competitively selected in 2009 to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. One of the selected demonstration projects was proposed by Montana Tech of the University of Montana for a 56,000 sq ft, newly constructed, on-campus research facility the Natural Resources Building (NRB) located in Butte, Montana. This demonstrated GSHP system consists of a 50 ton water-to-water heat pump and a closed-loop ground heat exchanger with two redundant 7.5 hp constant-speed pumps to use water in the nearby flooded mines as a heat source or heat sink. It works in conjunction with the originally installed steam HX and an aircooled chiller to provide space heating and cooling. It is coupled with the existing hot water and chilled water piping in the building and operates in the heating or cooling mode based on the outdoor air temperature. The ground loop pumps operate in conjunction with the existing pumps in the building hot and chilled water loops for the operation of the heat pump unit. The goal of this demonstration project is to validate the technical and economic feasibility of the demonstrated commercial-scale GSHP system in the region, and illustrate the feasibility of using mine waters as the heat sink and source for GSHP systems. Should the demonstration prove satisfactory and feasible, it will encourage similar GSHP applications using mine water, thus help save energy and reduce carbon emissions. The actual performance of the system is analyzed with available measured data for January through July 2014. The annual energy performance is predicted and compared with a baseline scenario, with the heating and cooling provided by the originally designed systems. The comparison is made in terms of energy savings, operating cost savings, cost-effectiveness, and environmental benefits. Finally, limitations in conducting the analysis are identified and recommendations for improvement in the control and operation of such systems are made.

  2. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    Legislation signed in 2009 changed the process of adopting building codes in the state. Previously, the statewide code would only apply to local governments that had not already adopted a code,...

  3. Hydroelectric facility in Montana. Introduced in the Senate of the United States, One Hundred Fourth Congress, First Session, July 11, 1995

    SciTech Connect (OSTI)

    1995-12-31

    The report addresses S. 552 a bill to allow the refurbishent and continued operation of a small hydroelectric power plant in central Montana by adjusting the amount of charges to be paid to the United States under the Federal Power Act. The Flint Creek Project, Federal Energy Regulatory Commission (FERC) project number 1473, was completed in 1900. In 1988, Montana Power allowed its original license to expire due to the licensing costs and the cost to refurbish the facilities.

  4. Montana Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Montana Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 41 13 242 1990's 261 327 533 939 1,070 1,131 1,247 1,181 2,957 2,436 2000's 3,582 3,166 3,657 4,714 3,212 2,974 3,045 2,843 2,932 11,972 2010's 9,281 10,426 9,055 9,785 10,021 - = No Data Reported; -- =

  5. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary (Revised)

    SciTech Connect (OSTI)

    1996-03-01

    This document has been prepared by the US Department of Energy`s (DOE`s) Office of Environmental Management (EM) Office of Science and Technology (OST) to highlight its research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Western environmental Technology Office (WETO) in Butte, Montana. Technologies and processes described in this document have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information presented in this document has been assembled from recently produced OST documents that highlight technology development activities within each of the OST program elements and Focus Areas. This document presents one in a series for each of DOE`s Operations Office and Energy Technology Centers.

  6. Montana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 109,573 109,573 109,573 109,573 112,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 1991 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 109,573 1992 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 169,892 1993 169,892 169,892 169,892 169,892

  7. Montana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Montana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7 0 9 1980's 1 5 6 7 9 18 9 1 0 4 1990's 9 3 5 0 0 1 1 0 0 0 2000's 41 4 0 0 6 14 28 1 0 0 2010's 1 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. Montana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Billion Cubic Feet) Montana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4 4 5 1980's 21 6 3 6 2 2 4 0 0 1 1990's 0 0 0 0 0 0 0 0 1 0 2000's 0 1 4 0 1 0 19 0 0 0 2010's 0 7 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring

  9. Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Montana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 5,904 5,188 6,183 1970's 5,091 6,148 5,924 4,281 3,683 2,315 2,754 2,972 2,792 4,796 1980's 3,425 1,832 2,012 1,970 2,069 2,138 1,808 2,088 1,994 1,766 1990's 2,262 1,680 1,871 2,379 2,243 2,238 2,401 2,277 2,000 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  10. Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Montana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,700 1990's 2,607 2,802 2,890 3,075 2,940 2,918 2,990 3,071 3,423 3,634 2000's 3,321 4,331 4,544 4,539 4,971 5,751 6,578 6,925 7,095 7,031 2010's 6,059 6,477 6,240 5,754 5,754 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  11. Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 4.59 4.50 4.51 5.17 4.34 4.61 3.93 3.83 4.18 3.79 2000's 6.45 6.71 4.73 7.63 9.28 10.19 10.02 7.64 11.50 9.08 2010's 9.60 8.20 6.48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  12. Montana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 705 2,167 1,643 1,813 -2,403 355 272 -26 131 59 561 542 1991 -4,514 -2,633 -2,648 -1,702 -3,097 151 -280 -908 -3,437 -6,076 -7,308 -6,042 1992 -68,442 -68,852 -67,958 -67,769 -67,999 -68,527 -69,209 -69,883 -70,428 -70,404 -71,019 -73,067 1993 -14,437

  13. Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,044 1,040 1,032 1,034 1,034 1,044 1,048 1,043 1,047 1,041 1,032 1,031 2014 1,034 1,030 1,030 1,027 1,032 1,030 1,038 1,036 1,040 1,031 1,026 1,030 2015 1,028 1,029 1,028 1,021 1,019 1,030 1,031 1,033 1,032 1,032 1,034 1,034 - = No Data Reported; -- = Not Applicable; NA = Not

  14. Geothermal : A Regulatory Guide to Leasing, Permitting, and Licensing in Idaho, Montana, Oregon, and Washington.

    SciTech Connect (OSTI)

    Bloomquist, R.Gordon

    1991-10-01

    The actual geothermal exploration and development may appear to be a simple and straightforward process in comparison to the legal and institutional maze which the developer must navigate in order to obtain all of the federal, state, and local leases, permits, licenses, and approvals necessary at each step in the process. Finally, and often most difficult, is obtaining a contract for the sale of thermal energy, brine, steam, or electricity. This guide is designed to help developers interested in developing geothermal resource sites in the Bonneville Power Administration Service Territory in the state of Idaho, Montana, Oregon, and Washington better understand the federal, state, and local institutional process, the roles and responsibilities of each agency, and how and when to make contact in order to obtain the necessary documents.

  15. FAA Smoke Transport Code

    Energy Science and Technology Software Center (OSTI)

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a codemore » obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.« less

  16. 11. CONTRACT ID CODE

    National Nuclear Security Administration (NNSA)

    1 PAGE 1 OF2 AMENDMENT OF SOLICITATION/MODIFICATION OF CONTRACT PAGES 2. AMENDMENT/MODIFICATION NO. I 3. EFFECTIVE DATE M191 See Block 16C 4. REQUISITION/PURCHASE I 5. PROJECT NO. (If applicable) REQ. NO. 6.ISSUED BY CODE U.S. Department of Energy National Nuclear Security Administration Service Center Property and M&O Contract Support Department P.O. Box 5400 Albuquerque, NM 87185-5400 7. ADMINISTERED BY (If other than Item 6) CODE U.S. Department of Energy National Nuclear Security

  17. T ID CODE I

    National Nuclear Security Administration (NNSA)

    T ID CODE I DE- , I AC52- AMENDMENT OF SOLICITATION/MODIFICATlON OF CONTRACT I. CONTRAC I 06NA25396 I Los Alamos National Security, LLC 4200 West Jernez Road Suite 400 Los Alamos, NM 87544 PAGE 1 OF 1 PAGES 2. AMENDMENTIMODIFICATION NO. A029 U.S. Department of Energy National Nuclear Security Administration Manager, Los Alamos Site Office 528 3sth Street Los Alamos, NM 87544 I 9B. DATED (SEE ITEM 11) 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 10A. MODIFICATION OF

  18. Building Energy Codes: State and Local Code Implementation Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mark Lessans Fellow Building Energy Codes: State and Local Code Implementation Overview April 22, 2014 Building Energy Codes Program - Structure Building Energy Codes Program Development Regulatory Technical Assistance Rulemaking (Determinations vs. all others) Adoption Compliance Statutory Requirements 2 Relevant Statutory Guidance Residential Adoption (42 U.S.C. 6833(a)(5)(B)) Each State is required to certify that it has compared its residential building code regarding energy efficiency to

  19. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  20. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore »of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less

  1. Confocal coded aperture imaging

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  2. Coding Archives - Nercenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coding What Certificates Should My Microsoft Exchange Server Have? Much like any other network application, in order to secure the functionality and safety of Microsoft Exchange Servers, it's essential to adopt specific certificates. Due to the literally thousands, if not millions, of security threats bombarding your Exchange Server every day, these certificates ensure users have a safe messaging experience while simultaneously safeguarding your data and sensitive information from being

  3. THREAT OF MALICIOUS CODE

    Energy Savers [EERE]

    THREAT OF MALICIOUS CODE The Department of Energy (DOE) is strongly committed to the protection of all DOE assets from cyber attack and malicious exploitation. This includes information, networks, hardware, software, and mobile devices. DOE's continued diligence in this arena is critical in today's constantly-evolving cyber threat landscape. A recently cited incident involved senior officials receiving unsolicited free phone chargers. Luckily, the source was legitimate and did not result in a

  4. GENII Code Guidance

    National Nuclear Security Administration (NNSA)

    EH-4.2.1.4-Interim-GENII Rev. 1 GENII Computer Code Application Guidance for Documented Safety Analysis Interim Report U.S. Department of Energy Office of Environment, Safety and Health 1000 Independence Ave., S.W. Washington, DC 20585-2040 September 2003 GENII Guidance Report September 2003 Interim Report for Review INTENTIONALLY BLANK GENII Guidance Report September 2003 Interim Report for Review FOREWORD This document provides guidance to Department of Energy (DOE) facility analysts in the

  5. Bar coded retroreflective target

    DOE Patents [OSTI]

    Vann, Charles S. (Fremont, CA)

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  6. NAICS Codes @ Headquarters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NAICS Codes @ Headquarters NAICS Codes @ Headquarters A listing of NAICS codes used at Headquarters Procurement Services PDF icon NAICS Codes @ Headquarters.pdf More Documents & Publications Product Service Codes @ Headquarters Historical Procurement Information Historical Procurement Information - by Location

  7. Idaho Code | Open Energy Information

    Open Energy Info (EERE)

    Not provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Idaho Code Citation Idaho Code (2014). Retrieved from "http:en.openei.org...

  8. Montana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Montana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -2.5 -1.5 -1.5 -1.0 -1.7 0.1 -0.2 -0.5 -1.8 -3.2 -3.9 -3.3 1992 -38.1 -38.6 -38.4 -38.3 -38.2 -38.2 -38.2 -38.3 -38.6 -38.8 -39.8 -41.8 1993 -13.0 -15.6 -17.8 -19.4 -21.2 -22.4 -22.0 -22.3 -21.6 -20.7 -20.8 -19.6 1994 -19.3 -21.6 -20.5 -19.8 -17.7 -14.9 -14.5 -13.6 -12.0 -10.7 -9.8 -9.5

  9. Montana Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Montana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W 4.69 4.82 W W W W W W 3.84 5.21 6.12 2003 5.60 6.12 5.71 W W W W W 6.41 W W 8.96 2004 W W W W W W W W 8.14 6.87 11.65 10.69 2005 9.68 W W 9.50 8.70 W W W W 11.90 12.94 W 2006 14.19 W W W 8.24 W W W 7.74 W W 9.70 2007 W W W W W W W W W W W W 2008 W W

  10. Montana Price of Natural Gas Sold to Commercial Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Montana Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4.39 4.40 4.37 4.41 4.43 4.45 4.46 4.36 4.36 4.28 4.31 4.26 1990 4.46 4.50 4.50 4.60 4.64 4.88 4.91 5.03 5.06 4.87 4.76 4.66 1991 4.25 4.28 4.24 4.30 4.33 4.59 4.73 4.68 4.66 4.40 4.35 4.38 1992 4.32 4.31 4.36 4.43 4.58 4.86 4.93 4.98 4.76 4.58 4.46 4.39 1993

  11. Wilderness study area, mineral resources of the Sleeping Giant, Lewis and Clark County, Montana

    SciTech Connect (OSTI)

    Tysdal, G.; Reynold, M.W.; Carlson, R.R.; Kleinkopf, M.D.; Rowan, L.C. ); Peters, T.J. )

    1991-01-01

    A Mineral resource survey was conducted in 1987 by the U.S. Geological Survey and the U.S. Bureau of Mines to evaluate mineral resources (known) and mineral resource potential (undiscovered) of the Sleeping Giant Wilderness Study Area (MT-075-111) in Lewis and Clark County, Montana. The only economic resource in the study area is an inferred 1.35-million-ton reserve of decorative stone (slate); a small gold placer resource is subeconomic. A high resource potential for decorative slate exists directly adjacent to the area of identified slate resource and in the northeastern part of the study area. The rest of the study area has a low potential for decorative slate. The westernmost part of the study area has a moderate resource potential for copper and associated silver in state-bound deposits in green beds and limestone; potential is low in the rest of the study are. The study area has a low resource potential for sapphires in placer deposits, gold in placer deposits (exclusive of subeconomic resource mentioned above), phosphate in the Spokane Formation, diatomite in lake deposits, uranium, oil, gas, geothermal energy, and no resource potential for phosphate in the Phosphoria Formation.

  12. Finite Element Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore »a single database which makes it easier to postprocess the results data.« less

  13. JOY computer code

    SciTech Connect (OSTI)

    Couch, R.G.; Albright, E.L.; Alexander, N.B.

    1983-01-01

    JOY is a 3-dimensional multifluid Eulerian hydrocode in Cartesian coordinates. It contains an elastic-plastic treatment and a shock-initiation model for high explosives (HE). Development of JOY was funded by the Ballistic Missile Defense Advanced Technology Center (BMDATC). The intended use of the code was for the study of hypervelocity impacts. The ultimate goal was to perform a structural analysis of objects subject to such impacts. JOY was designed to treat the early-impact phases where material motion is complicated, and then transfer information to DYNA3D for the longer-timescale analysis.

  14. Tribal Green Building Codes

    Energy Savers [EERE]

    with even amount of white space between photos and header Tribal Green Building Codes Chelsea Chee November 1 3, 2012 SAND# 2012---9858C Photos placed in horizontal position with even amount of white space between photos and header Source: http://www.galavantier.com/sites/default/files/imagecache/exp-itinerary-main/Pink Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia %20Jeep%20Tours%20-%20Grand%20Canyon%20-Hualapai%20Indian%20Village-High-Res---

  15. Cal. Wat. Code 13376 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13376Legal Abstract Cal. Wat. Code 13376, current through August 14, 2014. Published NA Year Signed or Took Effect 2014 Legal Citation Cal. Wat. Code...

  16. Cal. Wat. Code 13320 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13320Legal Abstract Cal. Wat. Code 13320, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  17. Cal. Wat. Code 13369 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13369Legal Abstract Cal. Wat. Code 13369, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  18. Cal. Wat. Code 13373 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13373Legal Abstract Cal. Wat. Code 13373, current through August 14, 2014. Published NA Year Signed or Took Effect 1987 Legal Citation Cal. Wat. Code...

  19. Cal. Wat. Code 13160 | Open Energy Information

    Open Energy Info (EERE)

    Cal. Wat. Code 13160Legal Abstract Cal. Wat. Code 13160, current through August 13, 2014. Published NA Year Signed or Took Effect 1969 Legal Citation Cal. Wat. Code...

  20. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013 ...