National Library of Energy BETA

Sample records for mont ser rat

  1. Monte Carlo Benchmark

    Energy Science and Technology Software Center (OSTI)

    2010-10-20

    The "Monte Carlo Benchmark" (MCB) is intended to model the computatiional performance of Monte Carlo algorithms on parallel architectures. It models the solution of a simple heuristic transport equation using a Monte Carlo technique. The MCB employs typical features of Monte Carlo algorithms such as particle creation, particle tracking, tallying particle information, and particle destruction. Particles are also traded among processors using MPI calls.

  2. Monte Carlo Example Programs

    Energy Science and Technology Software Center (OSTI)

    2006-05-09

    The Monte Carlo example programs VARHATOM and DMCATOM are two small, simple FORTRAN programs that illustrate the use of the Monte Carlo Mathematical technique for calculating the ground state energy of the hydrogen atom.

  3. Eolica Montes de Cierzo | Open Energy Information

    Open Energy Info (EERE)

    Montes de Cierzo Jump to: navigation, search Name: Eolica Montes de Cierzo Place: Navarra, Spain Sector: Wind energy Product: Spanish wind farm developer in the region of Navarra....

  4. SERS diagnostic platforms, methods and systems microarrays, biosensors and biochips

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    2007-09-11

    A Raman integrated sensor system for the detection of targets including biotargets includes at least one sampling platform, at least one receptor probe disposed on the sampling platform, and an integrated circuit detector system communicably connected to the receptor. The sampling platform is preferably a Raman active surface-enhanced scattering (SERS) platform, wherein the Raman sensor is a SERS sensor. The receptors can include at least one protein receptor and at least one nucleic acid receptor.

  5. Isotropic Monte Carlo Grain Growth

    Energy Science and Technology Software Center (OSTI)

    2013-04-25

    IMCGG performs Monte Carlo simulations of normal grain growth in metals on a hexagonal grid in two dimensions with periodic boundary conditions. This may be performed with either an isotropic or a misorientation - and incliantion-dependent grain boundary energy.

  6. PATCHY SILICA-COATED SILVER NANOWIRES AS SERS SUBSTRATES

    SciTech Connect (OSTI)

    Murph, S.; Murphy, C.

    2013-03-29

    We report a class of core-shell nanomaterials that can be used as efficient surface-enhancement Raman scattering (SERS) substrates. The core consists of silver nanowires, prepared through a chemical reduction process, that are used to capture 4- mercaptobenzoic acid (4-MBA), a model analyte. The shell was prepared through a modified Stöber method and consists of patchy or full silica coats. The formation of silica coats was monitored via transmission electron microscopy, UV-visible spectroscopy and phase-analysis light scattering for measuring effective surface charge. Surprisingly, the patchy silica coated silver nanowires are better SERS substrate than silver nanowires; nanomolar concentration of 4-MBA can be detected. In addition, “nano-matryoshka” configurations were used to quantitate/explore the effect of the electromagnetic field at the tips of the nanowire (“hot spots”) in the Raman scattering experiment.

  7. Mont Vista Capital LLC | Open Energy Information

    Open Energy Info (EERE)

    Vista Capital LLC Jump to: navigation, search Name: Mont Vista Capital LLC Place: New York, New York Zip: 10167 Sector: Services Product: Mont Vista Capital is a leading global...

  8. Energy Monte Carlo (EMCEE) | Open Energy Information

    Open Energy Info (EERE)

    with a specific set of distributions. Both programs run as spreadsheet workbooks in Microsoft Excel. EMCEE and Emc2 require Crystal Ball, a commercially available Monte Carlo...

  9. Generalizing the self-healing diffusion Monte Carlo approach...

    Office of Scientific and Technical Information (OSTI)

    Generalizing the self-healing diffusion Monte Carlo approach to finite temperature: A path ... Title: Generalizing the self-healing diffusion Monte Carlo approach to finite temperature: ...

  10. Quantum Monte Carlo by message passing

    SciTech Connect (OSTI)

    Bonca, J.; Gubernatis, J.E.

    1993-01-01

    We summarize results of quantum Monte Carlo simulations of the degenerate single-impurity Anderson model using the impurity algorithm of Hirsch and Fye. Using methods of Bayesian statistical inference, coupled with the principle of maximum entropy, we extracted the single-particle spectral density from the imaginary-time Green's function. The variations of resulting spectral densities with model parameters agree qualitatively with the spectral densities predicted by NCA calculations. All the simulations were performed on a cluster of 16 IBM R6000/560 workstations under the control of the message-passing software PVM. We described the trivial parallelization of our quantum Monte Carlo code both for the cluster and the CM-5 computer. Other issues for effective parallelization of the impurity algorithm are also discussed.

  11. Quantum Monte Carlo by message passing

    SciTech Connect (OSTI)

    Bonca, J.; Gubernatis, J.E.

    1993-05-01

    We summarize results of quantum Monte Carlo simulations of the degenerate single-impurity Anderson model using the impurity algorithm of Hirsch and Fye. Using methods of Bayesian statistical inference, coupled with the principle of maximum entropy, we extracted the single-particle spectral density from the imaginary-time Green`s function. The variations of resulting spectral densities with model parameters agree qualitatively with the spectral densities predicted by NCA calculations. All the simulations were performed on a cluster of 16 IBM R6000/560 workstations under the control of the message-passing software PVM. We described the trivial parallelization of our quantum Monte Carlo code both for the cluster and the CM-5 computer. Other issues for effective parallelization of the impurity algorithm are also discussed.

  12. Surface-Enhanced Raman Scattering (SERS) for Detection in Immunoassays: applications, fundamentals, and optimization

    SciTech Connect (OSTI)

    Jeremy Daniel Driskell

    2006-08-09

    Immunoassays have been utilized for the detection of biological analytes for several decades. Many formats and detection strategies have been explored, each having unique advantages and disadvantages. More recently, surface-enhanced Raman scattering (SERS) has been introduced as a readout method for immunoassays, and has shown great potential to meet many key analytical figures of merit. This technology is in its infancy and this dissertation explores the diversity of this method as well as the mechanism responsible for surface enhancement. Approaches to reduce assay times are also investigated. Implementing the knowledge gained from these studies will lead to a more sensitive immunoassay requiring less time than its predecessors. This dissertation is organized into six sections. The first section includes a literature review of the previous work that led to this dissertation. A general overview of the different approaches to immunoassays is given, outlining the strengths and weaknesses of each. Included is a detailed review of binding kinetics, which is central for decreasing assay times. Next, the theoretical underpinnings of SERS is reviewed at its current level of understanding. Past work has argued that surface plasmon resonance (SPR) of the enhancing substrate influences the SERS signal; therefore, the SPR of the extrinsic Raman labels (ERLs) utilized in our SERS-based immunoassay is discussed. Four original research chapters follow the Introduction, each presented as separate manuscripts. Chapter 2 modifies a SERS-based immunoassay previously developed in our group, extending it to the low-level detection of viral pathogens and demonstrating its versatility in terms of analyte type, Chapter 3 investigates the influence of ERL size, material composition, and separation distance between the ERLs and capture substrate on the SERS signal. This chapter links SPR with SERS enhancement factors and is consistent with many of the results from theoretical treatments of SPR and SERS. Chapter 4 introduces a novel method of reducing sample incubation time via capture substrate rotation. Moreover, this work led to a method of virus quantification without the use of standards. Chapter 5 extends the methodology developed in Chapter 4 to both the antigen and ERL labeling step to perform assays with improved analytical performance in less time than can be accomplished in diffusion controlled assays. This dissertation concludes with a general summary and speculates on the future of this exciting approach to carrying out immunoassays.

  13. Status of Monte-Carlo Event Generators

    SciTech Connect (OSTI)

    Hoeche, Stefan; /SLAC

    2011-08-11

    Recent progress on general-purpose Monte-Carlo event generators is reviewed with emphasis on the simulation of hard QCD processes and subsequent parton cascades. Describing full final states of high-energy particle collisions in contemporary experiments is an intricate task. Hundreds of particles are typically produced, and the reactions involve both large and small momentum transfer. The high-dimensional phase space makes an exact solution of the problem impossible. Instead, one typically resorts to regarding events as factorized into different steps, ordered descending in the mass scales or invariant momentum transfers which are involved. In this picture, a hard interaction, described through fixed-order perturbation theory, is followed by multiple Bremsstrahlung emissions off initial- and final-state and, finally, by the hadronization process, which binds QCD partons into color-neutral hadrons. Each of these steps can be treated independently, which is the basic concept inherent to general-purpose event generators. Their development is nowadays often focused on an improved description of radiative corrections to hard processes through perturbative QCD. In this context, the concept of jets is introduced, which allows to relate sprays of hadronic particles in detectors to the partons in perturbation theory. In this talk, we briefly review recent progress on perturbative QCD in event generation. The main focus lies on the general-purpose Monte-Carlo programs HERWIG, PYTHIA and SHERPA, which will be the workhorses for LHC phenomenology. A detailed description of the physics models included in these generators can be found in [8]. We also discuss matrix-element generators, which provide the parton-level input for general-purpose Monte Carlo.

  14. Monte Carlo simulation for the transport beamline

    SciTech Connect (OSTI)

    Romano, F.; Cuttone, G.; Jia, S. B.; Varisano, A.; Attili, A.; Marchetto, F.; Russo, G.; Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Carpinelli, M.

    2013-07-26

    In the framework of the ELIMED project, Monte Carlo (MC) simulations are widely used to study the physical transport of charged particles generated by laser-target interactions and to preliminarily evaluate fluence and dose distributions. An energy selection system and the experimental setup for the TARANIS laser facility in Belfast (UK) have been already simulated with the GEANT4 (GEometry ANd Tracking) MC toolkit. Preliminary results are reported here. Future developments are planned to implement a MC based 3D treatment planning in order to optimize shots number and dose delivery.

  15. A Monte Carlo algorithm for degenerate plasmas

    SciTech Connect (OSTI)

    Turrell, A.E. Sherlock, M.; Rose, S.J.

    2013-09-15

    A procedure for performing Monte Carlo calculations of plasmas with an arbitrary level of degeneracy is outlined. It has possible applications in inertial confinement fusion and astrophysics. Degenerate particles are initialised according to the Fermi–Dirac distribution function, and scattering is via a Pauli blocked binary collision approximation. The algorithm is tested against degenerate electron–ion equilibration, and the degenerate resistivity transport coefficient from unmagnetised first order transport theory. The code is applied to the cold fuel shell and alpha particle equilibration problem of inertial confinement fusion.

  16. Correlated electron dynamics with time-dependent quantum Monte Carlo:

    Office of Scientific and Technical Information (OSTI)

    Three-dimensional helium (Journal Article) | SciTech Connect Correlated electron dynamics with time-dependent quantum Monte Carlo: Three-dimensional helium Citation Details In-Document Search Title: Correlated electron dynamics with time-dependent quantum Monte Carlo: Three-dimensional helium Here the recently proposed time-dependent quantum Monte Carlo method is applied to three dimensional para- and ortho-helium atoms subjected to an external electromagnetic field with amplitude sufficient

  17. A Fast Monte Carlo Simulation for the International Linear Collider

    Office of Scientific and Technical Information (OSTI)

    Detector (Technical Report) | SciTech Connect A Fast Monte Carlo Simulation for the International Linear Collider Detector Citation Details In-Document Search Title: A Fast Monte Carlo Simulation for the International Linear Collider Detector The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included

  18. Tests of Monte Carlo Independent Column Approximation in the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meteorological Institute Jarvinen, Heikki Finnish Meteorological Institute Category: Modeling The Monte Carlo Independent Column Approximation (McICA) was recently introduced...

  19. Mont Vernon, New Hampshire: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mont Vernon, New Hampshire: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8945294, -71.6742393 Show Map Loading map......

  20. HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid Architectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fidelity simulation of a diverse range of kinetic systems. Available for thumbnail of Feynman Center (505) 665-9090 Email HILO: Quasi Diffusion Accelerated Monte Carlo on Hybrid...

  1. Evaluation of Monte Carlo Electron-Transport Algorithms in the...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Monte Carlo Electron-Transport Algorithms in the Integrated Tiger Series Codes for Stochastic-Media Simulations. Citation Details In-Document Search Title: Evaluation...

  2. South El Monte, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    El Monte, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0519548, -118.0467339 Show Map Loading map... "minzoom":false,"mapping...

  3. North El Monte, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    El Monte, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1027861, -118.0242333 Show Map Loading map... "minzoom":false,"mapping...

  4. Cluster expansion modeling and Monte Carlo simulation of alnico...

    Office of Scientific and Technical Information (OSTI)

    Accepted Manuscript: Cluster expansion modeling and Monte Carlo simulation of alnico 5-7 permanent magnets This content will become publicly available on March 5, 2016 Prev Next...

  5. DOE Science Showcase - Monte Carlo Methods | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Learn about the ways these methods are used in DOE's research endeavors today in "Monte Carlo Methods" by Dr. William Watson, Physicist, OSTI staff. Image credit: Sandia National ...

  6. Multilevel Monte Carlo simulation of Coulomb collisions

    SciTech Connect (OSTI)

    Rosin, M.S.; Ricketson, L.F.; Dimits, A.M.; Caflisch, R.E.; Cohen, B.I.

    2014-10-01

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ?, the computational cost of the method is O(?{sup ?2}) or O(?{sup ?2}(ln?){sup 2}), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(?{sup ?3}) for direct simulation Monte Carlo or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ?=10{sup ?5}. We discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.

  7. Quantum Monte Carlo methods for nuclear physics

    SciTech Connect (OSTI)

    Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

    2015-09-09

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  8. Quantum Monte Carlo methods for nuclear physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-bodymore » interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  9. Quantum Monte Carlo methods for nuclear physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlson, J.; Gandolfi, S.; Pederiva, F.; Pieper, Steven C.; Schiavilla, R.; Schmidt, K. E.; Wiringa, R. B.

    2015-09-09

    Quantum Monte Carlo methods have proved valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments, and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. The nuclear interactions and currents are reviewed along with a description of the continuum quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit,more » and three-body interactions. A variety of results are presented, including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. Low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars are also described. Furthermore, a coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.« less

  10. Quantum Monte Carlo methods for nuclear physics

    SciTech Connect (OSTI)

    Carlson, Joseph A.; Gandolfi, Stefano; Pederiva, Francesco; Pieper, Steven C.; Schiavilla, Rocco; Schmidt, K. E,; Wiringa, Robert B.

    2014-10-19

    Quantum Monte Carlo methods have proved very valuable to study the structure and reactions of light nuclei and nucleonic matter starting from realistic nuclear interactions and currents. These ab-initio calculations reproduce many low-lying states, moments and transitions in light nuclei, and simultaneously predict many properties of light nuclei and neutron matter over a rather wide range of energy and momenta. We review the nuclear interactions and currents, and describe the continuum Quantum Monte Carlo methods used in nuclear physics. These methods are similar to those used in condensed matter and electronic structure but naturally include spin-isospin, tensor, spin-orbit, and three-body interactions. We present a variety of results including the low-lying spectra of light nuclei, nuclear form factors, and transition matrix elements. We also describe low-energy scattering techniques, studies of the electroweak response of nuclei relevant in electron and neutrino scattering, and the properties of dense nucleonic matter as found in neutron stars. A coherent picture of nuclear structure and dynamics emerges based upon rather simple but realistic interactions and currents.

  11. Exploring theory space with Monte Carlo reweighting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun

    2014-10-13

    Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists andmore » experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less

  12. Exploring theory space with Monte Carlo reweighting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun

    2014-10-13

    Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. In particular, we suggest procedures that allow more efficient collaboration between theoristsmore »and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.« less

  13. Exploring theory space with Monte Carlo reweighting

    SciTech Connect (OSTI)

    Gainer, James S.; Lykken, Joseph; Matchev, Konstantin T.; Mrenna, Stephen; Park, Myeonghun

    2014-10-13

    Theories of new physics often involve a large number of unknown parameters which need to be scanned. Additionally, a putative signal in a particular channel may be due to a variety of distinct models of new physics. This makes experimental attempts to constrain the parameter space of motivated new physics models with a high degree of generality quite challenging. We describe how the reweighting of events may allow this challenge to be met, as fully simulated Monte Carlo samples generated for arbitrary benchmark models can be effectively re-used. Specifically, we suggest procedures that allow more efficient collaboration between theorists and experimentalists in exploring large theory parameter spaces in a rigorous way at the LHC.

  14. Detection of protease and protease activity using a single nanoscrescent SERS probe

    DOE Patents [OSTI]

    Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank

    2013-01-29

    This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.

  15. Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recycle or Not? | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not? Previous Next List Jihan Kim, Jocelyn M. Rodgers, Manuel Athènes, and Berend Smit, J. Chem. Theory Comput., 2011, 7 (10), pp 3208-3222 DOI: 10.1021/ct200474j Figure Abstract: In the waste recycling Monte Carlo (WRMC) algorithm, multiple trial states may be simultaneously generated and utilized during Monte Carlo

  16. Duo at Santa Fe's Monte del Sol Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th New Mexico Supercomputing Challenge April 21, 2015 Using nanotechnology robots to kill cancer cells LOS...

  17. Monte Carlo Hybrid Applied to Binary Stochastic Mixtures

    Energy Science and Technology Software Center (OSTI)

    2008-08-11

    The purpose of this set of codes isto use an inexpensive, approximate deterministic flux distribution to generate weight windows, wihich will then be used to bound particle weights for the Monte Carlo code run. The process is not automated; the user must run the deterministic code and use the output file as a command-line argument for the Monte Carlo code. Two sets of text input files are included as test problems/templates.

  18. Multiscale Monte Carlo equilibration: Pure Yang-Mills theory

    SciTech Connect (OSTI)

    Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; Detmold, William; Pochinsky, Andrew V.

    2015-12-29

    In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.

  19. Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials Citation Details In-Document Search Title: Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials Authors: Lynn, J. E. ; Carlson, J. ; Epelbaum, E. ; Gandolfi, S. ; Gezerlis, A. ; Schwenk, A. Publication Date: 2014-11-04 OSTI Identifier: 1181024 Grant/Contract Number: AC02-05CH11231 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters

  20. Fast Monte Carlo for radiation therapy: the PEREGRINE Project (Conference)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | SciTech Connect Search Results Conference: Fast Monte Carlo for radiation therapy: the PEREGRINE Project Citation Details In-Document Search Title: Fast Monte Carlo for radiation therapy: the PEREGRINE Project × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science

  1. Jefferson Lab finds its man Mont (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https://www.jlab.org/news/articles/jefferson-lab-finds-its-man-mont-inside-business Jefferson Lab finds its man Mont Hugh Montgomery Hugh Montgomery, a British nuclear physicist selected from more than 50 candidates, takes over as lab director Sept. 2. By Michael Schwartz, Inside Business April 14, 2008 Replacing the head of a world-renowned nuclear physics facility is no easy feat. When Christoph Leemann announced his desire to retire in 2007 as director of the Department of Energy's Thomas

  2. Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials Previous Next List J. Kim and B. Smit, J. Chem. Theory Comput. 8 (7), 2336 (2012) DOI: 10.1021/ct3003699 Abstract: Monte Carlo (MC) simulations are commonly used to obtain adsorption properties of gas molecules inside porous materials. In this work, we discuss various optimization strategies that lead to faster MC simulations with CO2

  3. Duo at Santa Fe's Monte del Sol Charter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th New Mexico Supercomputing Challenge April 21, 2015 Using nanotechnology robots to kill cancer cells LOS ALAMOS, N.M., April 21, 2015-Meghan Hill and Katelynn James of Santa Fe's Monte del Sol Charter Sol took the top prize in the 25 th New Mexico Supercomputing Challenge Tuesday at Los Alamos National Laboratory for their research project, "Using Concentrated Heat Systems to Shock the P53 Protein to Direct Cancer into

  4. Minibeam radiation therapy for the management of osteosarcomas: A Monte Carlo study

    SciTech Connect (OSTI)

    Martínez-Rovira, I.; Prezado, Y.

    2014-06-15

    Purpose: Minibeam radiation therapy (MBRT) exploits the well-established tissue-sparing effect provided by the combination of submillimetric field sizes and a spatial fractionation of the dose. The aim of this work is to evaluate the feasibility and potential therapeutic gain of MBRT, in comparison with conventional radiotherapy, for osteosarcoma treatments. Methods: Monte Carlo simulations (PENELOPE/PENEASY code) were used as a method to study the dose distributions resulting from MBRT irradiations of a rat femur and a realistic human femur phantoms. As a figure of merit, peak and valley doses and peak-to-valley dose ratios (PVDR) were assessed. Conversion of absorbed dose to normalized total dose (NTD) was performed in the human case. Several field sizes and irradiation geometries were evaluated. Results: It is feasible to deliver a uniform dose distribution in the target while the healthy tissue benefits from a spatial fractionation of the dose. Very high PVDR values (?20) were achieved in the entrance beam path in the rat case. PVDR values ranged from 2 to 9 in the human phantom. NTD{sub 2.0} of 87 Gy might be reached in the tumor in the human femur while the healthy tissues might receive valley NTD{sub 2.0} lower than 20 Gy. The doses in the tumor and healthy tissues might be significantly higher and lower than the ones commonly delivered used in conventional radiotherapy. Conclusions: The obtained dose distributions indicate that a gain in normal tissue sparing might be expected. This would allow the use of higher (and potentially curative) doses in the tumor. Biological experiments are warranted.

  5. Monte Carlo event generators for hadron-hadron collisions

    SciTech Connect (OSTI)

    Knowles, I.G.; Protopopescu, S.D.

    1993-06-01

    A brief review of Monte Carlo event generators for simulating hadron-hadron collisions is presented. Particular emphasis is placed on comparisons of the approaches used to describe physics elements and identifying their relative merits and weaknesses. This review summarizes a more detailed report.

  6. Soci t d exploitation du parc olien de Mont d H z cques SARL...

    Open Energy Info (EERE)

    Soci t d exploitation du parc olien de Mont d H z cques SARL Jump to: navigation, search Name: Socit d'exploitation du parc olien de Mont d'Hzcques SARL Place:...

  7. Calculations of pair production by Monte Carlo methods

    SciTech Connect (OSTI)

    Bottcher, C.; Strayer, M.R.

    1991-01-01

    We describe some of the technical design issues associated with the production of particle-antiparticle pairs in very large accelerators. To answer these questions requires extensive calculation of Feynman diagrams, in effect multi-dimensional integrals, which we evaluate by Monte Carlo methods on a variety of supercomputers. We present some portable algorithms for generating random numbers on vector and parallel architecture machines. 12 refs., 14 figs.

  8. Coupled Monte Carlo neutronics and thermal hydraulics for power reactors

    SciTech Connect (OSTI)

    Bernnat, W.; Buck, M.; Mattes, M.; Zwermann, W.; Pasichnyk, I.; Velkov, K.

    2012-07-01

    The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code or memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)

  9. Properties of reactive oxygen species by quantum Monte Carlo

    SciTech Connect (OSTI)

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-07

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} ? N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  10. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    SciTech Connect (OSTI)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos; Alfè, Dario; Lilienfeld, O. Anatole von

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of ?84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  11. A Post-Monte-Carlo Sensitivity Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2000-04-04

    SATOOL (Sensitivity Analysis TOOL) is a code for sensitivity analysis, following an uncertainity analysis with Monte Carlo simulations. Sensitivity analysis identifies those input variables, whose variance contributes dominatly to the variance in the output. This analysis can be used to reduce the variance in the output variables by redefining the "sensitive" variables with greater precision, i.e. with lower variance. The code identifies a group of sensitive variables, ranks them in the order of importance andmore » also quantifies the relative importance among the sensitive variables.« less

  12. Element Agglomeration Algebraic Multilevel Monte-Carlo Library

    Energy Science and Technology Software Center (OSTI)

    2015-02-19

    ElagMC is a parallel C++ library for Multilevel Monte Carlo simulations with algebraically constructed coarse spaces. ElagMC enables Multilevel variance reduction techniques in the context of general unstructured meshes by using the specialized element-based agglomeration techniques implemented in ELAG (the Element-Agglomeration Algebraic Multigrid and Upscaling Library developed by U. Villa and P. Vassilevski and currently under review for public release). The ElabMC library can support different type of deterministic problems, including mixed finite element discretizationsmore » of subsurface flow problems.« less

  13. ARM - Publications: Science Team Meeting Documents: Evaluation of the Monte

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carlo Independent Column Approximation (McICA) implementation in the GEOS-5 Single Column Model Evaluation of the Monte Carlo Independent Column Approximation (McICA) implementation in the GEOS-5 Single Column Model Oreopoulos, Lazaros JCET/UMBC and NASA/GSFC Bacmeister, Julio GEST/UMBC and NASA/GSFC Cahalan, Robert NASA/Goddard Space Flight Ctr/913 Barker, Howard Meteorological Service of Canada The McICA method ( Barker et al., 2002; Pincus et al., 2003) has been recently implemented in

  14. Unlted States Environmental Protection Agency Enwronmental Mont!orlng

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Protection Agency Enwronmental Mont!orlng Systems Laboratory P.O. Box 93478 Las Veaa.s NV 89193-5478 EPA/ 600 '4-88j.021 DOE/DPXIO539/060 June 1988 GEPA Research and Development Off-Site Environmental Monitoring Report Radiation Monitoring Around United States p /-I &--L--J :"/> Nuclear Test Areas _ -1 1987 prepared for the '1 " United States Department of Energy / under Interagency Agreement Number DE-AI08-86NV10622 EPA-600/4-88-021 DOE/DP/0053?-060 May 1988

  15. Quantum Monte Carlo Simulation of Overpressurized Liquid {sup 4}He

    SciTech Connect (OSTI)

    Vranjes, L.; Boronat, J.; Casulleras, J.; Cazorla, C.

    2005-09-30

    A diffusion Monte Carlo simulation of superfluid {sup 4}He at zero temperature and pressures up to 275 bar is presented. Increasing the pressure beyond freezing ({approx}25 bar), the liquid enters the overpressurized phase in a metastable state. In this regime, we report results of the equation of state and the pressure dependence of the static structure factor, the condensate fraction, and the excited-state energy corresponding to the roton. Along this large pressure range, both the condensate fraction and the roton energy decrease but do not become zero. The roton energies obtained are compared with recent experimental data in the overpressurized regime.

  16. Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics Citation Details In-Document Search Title: Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator Physics FLUKA is a general purpose Monte Carlo code capable of handling all radiation components from thermal energies (for neutrons) or 1 keV (for all other particles) to cosmic ray energies and can be applied in many different fields. Presently the code is maintained on

  17. Hybrid Deterministic/Monte Carlo Solutions to the Neutron Transport k-Eigenvalue Problem with a Comparison to Pure Monte Carlo Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Deterministic/Monte Carlo Solutions to the Neutron Transport k-Eigenvalue Problem with a Comparison to Pure Monte Carlo Solutions Jeffrey A. Willert Los Alamos National Laboratory September 16, 2013 Joint work with: Dana Knoll (LANL), Ryosuke Park (LANL), and C. T. Kelley (NCSU) Jeffrey A. Willert Hybrid k-Eigenvalue Methods September 16, 2013 1 / 25 CASL-U-2013-0309-000 1 Introduction 2 Nonlinear Diffusion Acceleration for k-Eigenvalue Problems 3 Hybrid Methods 4 Classic Monte Carlo

  18. Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data

    SciTech Connect (OSTI)

    Zourari, K.; Peppa, V.; Papagiannis, P.; Ballester, Facundo; Siebert, Frank-André

    2014-04-15

    Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 20–1090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (20–1090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [“Diagnostic x-ray shielding design based on an empirical model of photon attenuation,” Health Phys. 44, 507–517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [“Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities,” Med. Phys. 34, 1398–1404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions: The data of this work allow for the accurate calculation of structural shielding thickness, taking into account the spectral variation with shield thickness, and broad beam conditions, in a realistic geometry. The simplicity of calculations also obviates the need for the use of crude transmission data estimates such as the half and tenth value layer indices. Although this study was primarily designed for brachytherapy, results might also be useful for radiology and nuclear medicine facility design, provided broad beam conditions apply.

  19. Monte Carlo Simulation Tool Installation and Operation Guide

    SciTech Connect (OSTI)

    Aguayo Navarrete, Estanislao; Ankney, Austin S.; Berguson, Timothy J.; Kouzes, Richard T.; Orrell, John L.; Troy, Meredith D.; Wiseman, Clinton G.

    2013-09-02

    This document provides information on software and procedures for Monte Carlo simulations based on the Geant4 toolkit, the ROOT data analysis software and the CRY cosmic ray library. These tools have been chosen for its application to shield design and activation studies as part of the simulation task for the Majorana Collaboration. This document includes instructions for installation, operation and modification of the simulation code in a high cyber-security computing environment, such as the Pacific Northwest National Laboratory network. It is intended as a living document, and will be periodically updated. It is a starting point for information collection by an experimenter, and is not the definitive source. Users should consult with one of the authors for guidance on how to find the most current information for their needs.

  20. Improved version of the PHOBOS Glauber Monte Carlo

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Loizides, C.; Nagle, J.; Steinberg, P.

    2015-09-01

    “Glauber” models are used to calculate geometric quantities in the initial state of heavy ion collisions, such as impact parameter, number of participating nucleons and initial eccentricity. Experimental heavy-ion collaborations, in particular at RHIC and LHC, use Glauber Model calculations for various geometric observables for determination of the collision centrality. In this document, we describe the assumptions inherent to the approach, and provide an updated implementation (v2) of the Monte Carlo based Glauber Model calculation, which originally was used by the PHOBOS collaboration. The main improvement w.r.t. the earlier version (v1) (Alver et al. 2008) is the inclusion of Tritium,more »Helium-3, and Uranium, as well as the treatment of deformed nuclei and Glauber–Gribov fluctuations of the proton in p +A collisions. A users’ guide (updated to reflect changes in v2) is provided for running various calculations.« less

  1. Quantum Monte Carlo simulation of spin-polarized H

    SciTech Connect (OSTI)

    Markic, L. Vranjes; Boronat, J.; Casulleras, J.

    2007-02-01

    The ground-state properties of spin polarized hydrogen H{down_arrow} are obtained by means of diffusion Monte Carlo calculations. Using the most accurate to date ab initio H{down_arrow}-H{down_arrow} interatomic potential we have studied its gas phase, from the very dilute regime until densities above its freezing point. At very small densities, the equation of state of the gas is very well described in terms of the gas parameter {rho}a{sup 3}, with a the s-wave scattering length. The solid phase has also been studied up to high pressures. The gas-solid phase transition occurs at a pressure of 173 bar, a much higher value than suggested by previous approximate descriptions.

  2. Modeling granular phosphor screens by Monte Carlo methods

    SciTech Connect (OSTI)

    Liaparinos, Panagiotis F.; Kandarakis, Ioannis S.; Cavouras, Dionisis A.; Delis, Harry B.; Panayiotakis, George S.

    2006-12-15

    The intrinsic phosphor properties are of significant importance for the performance of phosphor screens used in medical imaging systems. In previous analytical-theoretical and Monte Carlo studies on granular phosphor materials, values of optical properties, and light interaction cross sections were found by fitting to experimental data. These values were then employed for the assessment of phosphor screen imaging performance. However, it was found that, depending on the experimental technique and fitting methodology, the optical parameters of a specific phosphor material varied within a wide range of values, i.e., variations of light scattering with respect to light absorption coefficients were often observed for the same phosphor material. In this study, x-ray and light transport within granular phosphor materials was studied by developing a computational model using Monte Carlo methods. The model was based on the intrinsic physical characteristics of the phosphor. Input values required to feed the model can be easily obtained from tabulated data. The complex refractive index was introduced and microscopic probabilities for light interactions were produced, using Mie scattering theory. Model validation was carried out by comparing model results on x-ray and light parameters (x-ray absorption, statistical fluctuations in the x-ray to light conversion process, number of emitted light photons, output light spatial distribution) with previous published experimental data on Gd{sub 2}O{sub 2}S:Tb phosphor material (Kodak Min-R screen). Results showed the dependence of the modulation transfer function (MTF) on phosphor grain size and material packing density. It was predicted that granular Gd{sub 2}O{sub 2}S:Tb screens of high packing density and small grain size may exhibit considerably better resolution and light emission properties than the conventional Gd{sub 2}O{sub 2}S:Tb screens, under similar conditions (x-ray incident energy, screen thickness)

  3. SU-E-T-188: Film Dosimetry Verification of Monte Carlo Generated Electron Treatment Plans

    SciTech Connect (OSTI)

    Enright, S; Asprinio, A; Lu, L

    2014-06-01

    Purpose: The purpose of this study was to compare dose distributions from film measurements to Monte Carlo generated electron treatment plans. Irradiation with electrons offers the advantages of dose uniformity in the target volume and of minimizing the dose to deeper healthy tissue. Using the Monte Carlo algorithm will improve dose accuracy in regions with heterogeneities and irregular surfaces. Methods: Dose distributions from GafChromic{sup ™} EBT3 films were compared to dose distributions from the Electron Monte Carlo algorithm in the Eclipse{sup ™} radiotherapy treatment planning system. These measurements were obtained for 6MeV, 9MeV and 12MeV electrons at two depths. All phantoms studied were imported into Eclipse by CT scan. A 1 cm thick solid water template with holes for bonelike and lung-like plugs was used. Different configurations were used with the different plugs inserted into the holes. Configurations with solid-water plugs stacked on top of one another were also used to create an irregular surface. Results: The dose distributions measured from the film agreed with those from the Electron Monte Carlo treatment plan. Accuracy of Electron Monte Carlo algorithm was also compared to that of Pencil Beam. Dose distributions from Monte Carlo had much higher pass rates than distributions from Pencil Beam when compared to the film. The pass rate for Monte Carlo was in the 80%–99% range, where the pass rate for Pencil Beam was as low as 10.76%. Conclusion: The dose distribution from Monte Carlo agreed with the measured dose from the film. When compared to the Pencil Beam algorithm, pass rates for Monte Carlo were much higher. Monte Carlo should be used over Pencil Beam for regions with heterogeneities and irregular surfaces.

  4. Quantum Monte Carlo for electronic structure: Recent developments and applications

    SciTech Connect (OSTI)

    Rodriquez, M. M.S.

    1995-04-01

    Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function`s nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C{sub 2}H and C{sub 2}H{sub 2}. The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included.

  5. Complete Monte Carlo Simulation of Neutron Scattering Experiments

    SciTech Connect (OSTI)

    Drosg, M.

    2011-12-13

    In the far past, it was not possible to accurately correct for the finite geometry and the finite sample size of a neutron scattering set-up. The limited calculation power of the ancient computers as well as the lack of powerful Monte Carlo codes and the limitation in the data base available then prevented a complete simulation of the actual experiment. Using e.g. the Monte Carlo neutron transport code MCNPX [1], neutron scattering experiments can be simulated almost completely with a high degree of precision using a modern PC, which has a computing power that is ten thousand times that of a super computer of the early 1970s. Thus, (better) corrections can also be obtained easily for previous published data provided that these experiments are sufficiently well documented. Better knowledge of reference data (e.g. atomic mass, relativistic correction, and monitor cross sections) further contributes to data improvement. Elastic neutron scattering experiments from liquid samples of the helium isotopes performed around 1970 at LANL happen to be very well documented. Considering that the cryogenic targets are expensive and complicated, it is certainly worthwhile to improve these data by correcting them using this comparatively straightforward method. As two thirds of all differential scattering cross section data of {sup 3}He(n,n){sup 3}He are connected to the LANL data, it became necessary to correct the dependent data measured in Karlsruhe, Germany, as well. A thorough simulation of both the LANL experiments and the Karlsruhe experiment is presented, starting from the neutron production, followed by the interaction in the air, the interaction with the cryostat structure, and finally the scattering medium itself. In addition, scattering from the hydrogen reference sample was simulated. For the LANL data, the multiple scattering corrections are smaller by a factor of five at least, making this work relevant. Even more important are the corrections to the Karlsruhe data due to the inclusion of the missing outgoing self-attenuation that amounts to up to 15%.

  6. Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Supercomputing Challenge 5th New Mexico Supercomputing Challenge Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th New Mexico Supercomputing Challenge Meghan Hill and Katelynn James took the top prize for their research project April 21, 2015 Katelynn James, left, and Meghan Hill of Monte del Sol Charter School in Santa Fe. Katelynn James, left, and Meghan Hill of Monte del Sol Charter School in Santa Fe. Contact Los Alamos National Laboratory Steve Sandoval

  7. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte

    Office of Scientific and Technical Information (OSTI)

    Carlo study (Journal Article) | SciTech Connect Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study Citation Details In-Document Search Title: Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived

  8. MARKOV CHAIN MONTE CARLO POSTERIOR SAMPLING WITH THE HAMILTONIAN METHOD

    SciTech Connect (OSTI)

    K. HANSON

    2001-02-01

    The Markov Chain Monte Carlo technique provides a means for drawing random samples from a target probability density function (pdf). MCMC allows one to assess the uncertainties in a Bayesian analysis described by a numerically calculated posterior distribution. This paper describes the Hamiltonian MCMC technique in which a momentum variable is introduced for each parameter of the target pdf. In analogy to a physical system, a Hamiltonian H is defined as a kinetic energy involving the momenta plus a potential energy {var_phi}, where {var_phi} is minus the logarithm of the target pdf. Hamiltonian dynamics allows one to move along trajectories of constant H, taking large jumps in the parameter space with relatively few evaluations of {var_phi} and its gradient. The Hamiltonian algorithm alternates between picking a new momentum vector and following such trajectories. The efficiency of the Hamiltonian method for multidimensional isotropic Gaussian pdfs is shown to remain constant at around 7% for up to several hundred dimensions. The Hamiltonian method handles correlations among the variables much better than the standard Metropolis algorithm. A new test, based on the gradient of {var_phi}, is proposed to measure the convergence of the MCMC sequence.

  9. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect (OSTI)

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  10. High order Chin actions in path integral Monte Carlo

    SciTech Connect (OSTI)

    Sakkos, K.; Casulleras, J.; Boronat, J.

    2009-05-28

    High order actions proposed by Chin have been used for the first time in path integral Monte Carlo simulations. Contrary to the Takahashi-Imada action, which is accurate to the fourth order only for the trace, the Chin action is fully fourth order, with the additional advantage that the leading fourth-order error coefficients are finely tunable. By optimizing two free parameters entering in the new action, we show that the time step error dependence achieved is best fitted with a sixth order law. The computational effort per bead is increased but the total number of beads is greatly reduced and the efficiency improvement with respect to the primitive approximation is approximately a factor of 10. The Chin action is tested in a one-dimensional harmonic oscillator, a H{sub 2} drop, and bulk liquid {sup 4}He. In all cases a sixth-order law is obtained with values of the number of beads that compare well with the pair action approximation in the stringent test of superfluid {sup 4}He.

  11. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

  12. Ensemble bayesian model averaging using markov chain Monte Carlo sampling

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Diks, Cees G H; Clark, Martyn P

    2008-01-01

    Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery etal. Mon Weather Rev 133: 1155-1174, 2(05)) has recommended the Expectation-Maximization (EM) algorithm for BMA model training, even though global convergence of this algorithm cannot be guaranteed. In this paper, we compare the performance of the EM algorithm and the recently developed Differential Evolution Adaptive Metropolis (DREAM) Markov Chain Monte Carlo (MCMC) algorithm for estimating the BMA weights and variances. Simulation experiments using 48-hour ensemble data of surface temperature and multi-model stream-flow forecasts show that both methods produce similar results, and that their performance is unaffected by the length of the training data set. However, MCMC simulation with DREAM is capable of efficiently handling a wide variety of BMA predictive distributions, and provides useful information about the uncertainty associated with the estimated BMA weights and variances.

  13. On-the-fly nuclear data processing methods for Monte Carlo simulations of fast spectrum systems

    SciTech Connect (OSTI)

    Walsh, Jon

    2015-08-31

    The presentation summarizes work performed over summer 2015 related to Monte Carlo simulations. A flexible probability table interpolation scheme has been implemented and tested with results comparing favorably to the continuous phase-space on-the-fly approach.

  14. Duo at Santa Fe's Monte del Sol Charter School takes top award...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5th New Mexico Supercomputing Challenge Duo at Santa Fe's Monte del Sol Charter School takes top award in 25th New Mexico Supercomputing Challenge Meghan Hill and Katelynn James...

  15. Multiscale Monte Carlo equilibration: Pure Yang-Mills theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; Detmold, William; Pochinsky, Andrew V.

    2015-12-29

    In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.

  16. Monte Carlo Modeling of High-Energy Film Radiography (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Monte Carlo Modeling of High-Energy Film Radiography Citation Details In-Document Search Title: Monte Carlo Modeling of High-Energy Film Radiography High-energy film radiography methods, adapted in the past to performing specific tasks, must now meet increasing demands to identify defects and perform critical measurements in a wide variety of manufacturing processes. Although film provides unequaled resolution for most components and assemblies, image quality must be enhanced

  17. Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y Citation Details In-Document Search Title: Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair

  18. Monte-Carlo particle dynamics in a variable specific impulse magnetoplasma

    Office of Scientific and Technical Information (OSTI)

    rocket (Journal Article) | SciTech Connect Monte-Carlo particle dynamics in a variable specific impulse magnetoplasma rocket Citation Details In-Document Search Title: Monte-Carlo particle dynamics in a variable specific impulse magnetoplasma rocket The self-consistent mathematical model in a Variable Specific Impulse Magnetoplasma Rocket (VASIMR) is examined. Of particular importance is the effect of a magnetic nozzle in enhancing the axial momentum of the exhaust. Also, different

  19. Monte-Carlo simulation of noise in hard X-ray Transmission Crystal

    Office of Scientific and Technical Information (OSTI)

    Spectrometers: Identification of contributors to the background noise and shielding optimization (Journal Article) | SciTech Connect Monte-Carlo simulation of noise in hard X-ray Transmission Crystal Spectrometers: Identification of contributors to the background noise and shielding optimization Citation Details In-Document Search Title: Monte-Carlo simulation of noise in hard X-ray Transmission Crystal Spectrometers: Identification of contributors to the background noise and shielding

  20. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    SciTech Connect (OSTI)

    Iandola, F N; O'Brien, M J; Procassini, R J

    2010-11-29

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.

  1. Quantum Monte Carlo methods and lithium cluster properties. [Atomic clusters

    SciTech Connect (OSTI)

    Owen, R.K.

    1990-12-01

    Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) (0.1981), 0.1895(9) (0.1874(4)), 0.1530(34) (0.1599(73)), 0.1664(37) (0.1724(110)), 0.1613(43) (0.1675(110)) Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) (0.0203(12)), 0.0188(10) (0.0220(21)), 0.0247(8) (0.0310(12)), 0.0253(8) (0.0351(8)) Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.

  2. Quantum Monte Carlo methods and lithium cluster properties

    SciTech Connect (OSTI)

    Owen, R.K.

    1990-12-01

    Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) [0.1981], 0.1895(9) [0.1874(4)], 0.1530(34) [0.1599(73)], 0.1664(37) [0.1724(110)], 0.1613(43) [0.1675(110)] Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) [0.0203(12)], 0.0188(10) [0.0220(21)], 0.0247(8) [0.0310(12)], 0.0253(8) [0.0351(8)] Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape of the electronic charge density also bears a remarkable similarity with the anisotropic harmonic oscillator model shape for the given number of valence electrons.

  3. MONTE CARLO SIMULATION OF METASTABLE OXYGEN PHOTOCHEMISTRY IN COMETARY ATMOSPHERES

    SciTech Connect (OSTI)

    Bisikalo, D. V.; Shematovich, V. I. [Institute of Astronomy of the Russian Academy of Sciences, Moscow (Russian Federation); Gérard, J.-C.; Hubert, B. [Laboratory for Planetary and Atmospheric Physics (LPAP), University of Liège, Liège (Belgium); Jehin, E.; Decock, A. [Origines Cosmologiques et Astrophysiques (ORCA), University of Liège (Belgium); Hutsemékers, D. [Extragalactic Astrophysics and Space Observations (EASO), University of Liège (Belgium); Manfroid, J., E-mail: B.Hubert@ulg.ac.be [High Energy Astrophysics Group (GAPHE), University of Liège (Belgium)

    2015-01-01

    Cometary atmospheres are produced by the outgassing of material, mainly H{sub 2}O, CO, and CO{sub 2} from the nucleus of the comet under the energy input from the Sun. Subsequent photochemical processes lead to the production of other species generally absent from the nucleus, such as OH. Although all comets are different, they all have a highly rarefied atmosphere, which is an ideal environment for nonthermal photochemical processes to take place and influence the detailed state of the atmosphere. We develop a Monte Carlo model of the coma photochemistry. We compute the energy distribution functions (EDF) of the metastable O({sup 1}D) and O({sup 1}S) species and obtain the red (630 nm) and green (557.7 nm) spectral line shapes of the full coma, consistent with the computed EDFs and the expansion velocity. We show that both species have a severely non-Maxwellian EDF, that results in broad spectral lines and the suprathermal broadening dominates due to the expansion motion. We apply our model to the atmosphere of comet C/1996 B2 (Hyakutake) and 103P/Hartley 2. The computed width of the green line, expressed in terms of speed, is lower than that of the red line. This result is comparable to previous theoretical analyses, but in disagreement with observations. We explain that the spectral line shape does not only depend on the exothermicity of the photochemical production mechanisms, but also on thermalization, due to elastic collisions, reducing the width of the emission line coming from the O({sup 1}D) level, which has a longer lifetime.

  4. Fission matrix-based Monte Carlo criticality analysis of fuel storage pools

    SciTech Connect (OSTI)

    Farlotti, M.; Larsen, E. W.

    2013-07-01

    Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simple problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)

  5. Accuracy of Monte Carlo simulations compared to in-vivo MDCT dosimetry

    SciTech Connect (OSTI)

    Bostani, Maryam McMillan, Kyle; Cagnon, Chris H.; McNitt-Gray, Michael F.; Mueller, Jonathon W.; Cody, Dianna D.; DeMarco, John J.

    2015-02-15

    Purpose: The purpose of this study was to assess the accuracy of a Monte Carlo simulation-based method for estimating radiation dose from multidetector computed tomography (MDCT) by comparing simulated doses in ten patients to in-vivo dose measurements. Methods: MD Anderson Cancer Center Institutional Review Board approved the acquisition of in-vivo rectal dose measurements in a pilot study of ten patients undergoing virtual colonoscopy. The dose measurements were obtained by affixing TLD capsules to the inner lumen of rectal catheters. Voxelized patient models were generated from the MDCT images of the ten patients, and the dose to the TLD for all exposures was estimated using Monte Carlo based simulations. The Monte Carlo simulation results were compared to the in-vivo dose measurements to determine accuracy. Results: The calculated mean percent difference between TLD measurements and Monte Carlo simulations was ?4.9% with standard deviation of 8.7% and a range of ?22.7% to 5.7%. Conclusions: The results of this study demonstrate very good agreement between simulated and measured doses in-vivo. Taken together with previous validation efforts, this work demonstrates that the Monte Carlo simulation methods can provide accurate estimates of radiation dose in patients undergoing CT examinations.

  6. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOE Patents [OSTI]

    Chandler, William P. (Tracy, CA); Hartmann-Siantar, Christine L. (San Ramon, CA); Rathkopf, James A. (Livermore, CA)

    1999-01-01

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media.

  7. Crossing the mesoscale no-mans land via parallel kinetic Monte Carlo.

    SciTech Connect (OSTI)

    Garcia Cardona, Cristina (San Diego State University); Webb, Edmund Blackburn, III; Wagner, Gregory John; Tikare, Veena; Holm, Elizabeth Ann; Plimpton, Steven James; Thompson, Aidan Patrick; Slepoy, Alexander (U. S. Department of Energy, NNSA); Zhou, Xiao Wang; Battaile, Corbett Chandler; Chandross, Michael Evan

    2009-10-01

    The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.

  8. Calculation of radiation therapy dose using all particle Monte Carlo transport

    DOE Patents [OSTI]

    Chandler, W.P.; Hartmann-Siantar, C.L.; Rathkopf, J.A.

    1999-02-09

    The actual radiation dose absorbed in the body is calculated using three-dimensional Monte Carlo transport. Neutrons, protons, deuterons, tritons, helium-3, alpha particles, photons, electrons, and positrons are transported in a completely coupled manner, using this Monte Carlo All-Particle Method (MCAPM). The major elements of the invention include: computer hardware, user description of the patient, description of the radiation source, physical databases, Monte Carlo transport, and output of dose distributions. This facilitated the estimation of dose distributions on a Cartesian grid for neutrons, photons, electrons, positrons, and heavy charged-particles incident on any biological target, with resolutions ranging from microns to centimeters. Calculations can be extended to estimate dose distributions on general-geometry (non-Cartesian) grids for biological and/or non-biological media. 57 figs.

  9. A Proposal for a Standard Interface Between Monte Carlo Tools And One-Loop Programs

    SciTech Connect (OSTI)

    Binoth, T.; Boudjema, F.; Dissertori, G.; Lazopoulos, A.; Denner, A.; Dittmaier, S.; Frederix, R.; Greiner, N.; Hoeche, Stefan; Giele, W.; Skands, P.; Winter, J.; Gleisberg, T.; Archibald, J.; Heinrich, G.; Krauss, F.; Maitre, D.; Huber, M.; Huston, J.; Kauer, N.; Maltoni, F.; /Louvain U., CP3 /Milan Bicocca U. /INFN, Turin /Turin U. /Granada U., Theor. Phys. Astrophys. /CERN /NIKHEF, Amsterdam /Heidelberg U. /Oxford U., Theor. Phys.

    2011-11-11

    Many highly developed Monte Carlo tools for the evaluation of cross sections based on tree matrix elements exist and are used by experimental collaborations in high energy physics. As the evaluation of one-loop matrix elements has recently been undergoing enormous progress, the combination of one-loop matrix elements with existing Monte Carlo tools is on the horizon. This would lead to phenomenological predictions at the next-to-leading order level. This note summarises the discussion of the next-to-leading order multi-leg (NLM) working group on this issue which has been taking place during the workshop on Physics at TeV Colliders at Les Houches, France, in June 2009. The result is a proposal for a standard interface between Monte Carlo tools and one-loop matrix element programs.

  10. Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions With

    Office of Scientific and Technical Information (OSTI)

    Material At Finite Temperature (Technical Report) | SciTech Connect Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions With Material At Finite Temperature Citation Details In-Document Search Title: Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions With Material At Finite Temperature Authors: Quaglioni, S ; Beck, B R Publication Date: 2011-06-03 OSTI Identifier: 1113914 Report Number(s): LLNL-TR-488174 DOE Contract Number: W-7405-ENG-48 Resource Type:

  11. Effects of self-seeding and crystal post-selection on the quality of Monte

    Office of Scientific and Technical Information (OSTI)

    Carlo-integrated SFX data (Journal Article) | SciTech Connect Journal Article: Effects of self-seeding and crystal post-selection on the quality of Monte Carlo-integrated SFX data Citation Details In-Document Search Title: Effects of self-seeding and crystal post-selection on the quality of Monte Carlo-integrated SFX data Abstract is not provided Authors: Barends, Thomas ; White, Thomas A. ; Barty, Anton ; Foucar, Lutz ; Messerschmidt, Marc ; Alonso-Mori, Roberto [1] ; Botha, Sabine ;

  12. A Geant4 Implementation of a Novel Single-Event Monte Carlo Method for

    Office of Scientific and Technical Information (OSTI)

    Electron Dose Calculations. (Conference) | SciTech Connect A Geant4 Implementation of a Novel Single-Event Monte Carlo Method for Electron Dose Calculations. Citation Details In-Document Search Title: A Geant4 Implementation of a Novel Single-Event Monte Carlo Method for Electron Dose Calculations. Abstract not provided. Authors: Franke, Brian Claude ; Dixon, David A. ; Prinja, Anil K. Publication Date: 2013-11-01 OSTI Identifier: 1118160 Report Number(s): SAND2013-9631C 481400 DOE Contract

  13. CASL-U-2015-0170-000 SHIFT: A Massively Parallel Monte Carlo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SHIFT: A Massively Parallel Monte Carlo Radiation Transport Package Tara M. Pandya, Seth R. Johnson, Gregory G. Davidson, Thomas M. Evans, and Steven P. Hamilton Oak Ridge National Laboratory April 19, 2015 CASL-U-2015-0170-000 ANS MC2015 - Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method * Nashville, Tennessee * April 19-23, 2015, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2015)

  14. Modification to the Monte Carlo N-Particle (MCNP) Visual Editor (MCNPVised)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Read in Computer Aided Design (CAD) Files (Technical Report) | SciTech Connect Modification to the Monte Carlo N-Particle (MCNP) Visual Editor (MCNPVised) to Read in Computer Aided Design (CAD) Files Citation Details In-Document Search Title: Modification to the Monte Carlo N-Particle (MCNP) Visual Editor (MCNPVised) to Read in Computer Aided Design (CAD) Files × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of

  15. Zori 1.0: A Parallel Quantum Monte Carlo Electronic StructurePackage

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Zori 1.0: A Parallel Quantum Monte Carlo Electronic StructurePackage Citation Details In-Document Search Title: Zori 1.0: A Parallel Quantum Monte Carlo Electronic StructurePackage No abstract prepared. Authors: Aspuru-Guzik, Alan ; Salomon-Ferrer, Romelia ; Austin, Brian ; Perusquia-Flores, Raul ; Griffin, Mary A. ; Oliva, Ricardo A. ; Skinner,David ; Dominik,Domin ; Lester Jr., William A. Publication Date:

  16. First collision source method for coupling Monte Carlo and discrete ordinates for localized source problems

    SciTech Connect (OSTI)

    Alcouffe, R.E.

    1985-01-01

    A difficult class of problems for the discrete-ordinates neutral particle transport method is to accurately compute the flux due to a spatially localized source. Because the transport equation is solved for discrete directions, the so-called ray effect causes the flux at space points far from the source to be inaccurate. Thus, in general, discrete ordinates would not be the method of choice to solve such problems. It is better suited for calculating problems with significant scattering. The Monte Carlo method is suited to localized source problems, particularly if the amount of collisional interactions in minimal. However, if there are many scattering collisions and the flux at all space points is desired, then the Monte Carlo method becomes expensive. To take advantage of the attributes of both approaches, we have devised a first collision source method to combine the Monte Carlo and discrete-ordinates solutions. That is, particles are tracked from the source to their first scattering collision and tallied to produce a source for the discrete-ordinates calculation. A scattered flux is then computed by discrete ordinates, and the total flux is the sum of the Monte Carlo and discrete ordinates calculated fluxes. In this paper, we present calculational results using the MCNP and TWODANT codes for selected two-dimensional problems that show the effectiveness of this method.

  17. 3D Direct Simulation Monte Carlo Code Which Solves for Geometrics

    Energy Science and Technology Software Center (OSTI)

    1998-01-13

    Pegasus is a 3D Direct Simulation Monte Carlo Code which solves for geometries which can be represented by bodies of revolution. Included are all the surface chemistry enhancements in the 2D code Icarus as well as a real vacuum pump model. The code includes multiple species transport.

  18. Use of single scatter electron monte carlo transport for medical radiation sciences

    DOE Patents [OSTI]

    Svatos, Michelle M. (Oakland, CA)

    2001-01-01

    The single scatter Monte Carlo code CREEP models precise microscopic interactions of electrons with matter to enhance physical understanding of radiation sciences. It is designed to simulate electrons in any medium, including materials important for biological studies. It simulates each interaction individually by sampling from a library which contains accurate information over a broad range of energies.

  19. MUSiC - An Automated Scan for Deviations between Data and Monte Carlo Simulation

    SciTech Connect (OSTI)

    Meyer, Arnd

    2010-02-10

    A model independent analysis approach is presented, systematically scanning the data for deviations from the standard model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of event generators. The approach is sensitive to a variety of models of new physics, including those not yet thought of.

  20. Green's function Monte Carlo calculation for the ground state of helium trimers

    SciTech Connect (OSTI)

    Cabral, F.; Kalos, M.H.

    1981-02-01

    The ground state energy of weakly bound boson trimers interacting via Lennard-Jones (12,6) pair potentials is calculated using a Monte Carlo Green's Function Method. Threshold coupling constants for self binding are obtained by extrapolation to zero binding.

  1. The effects of mapping CT images to Monte Carlo materials on GEANT4 proton simulation accuracy

    SciTech Connect (OSTI)

    Barnes, Samuel; McAuley, Grant; Slater, James; Wroe, Andrew

    2013-04-15

    Purpose: Monte Carlo simulations of radiation therapy require conversion from Hounsfield units (HU) in CT images to an exact tissue composition and density. The number of discrete densities (or density bins) used in this mapping affects the simulation accuracy, execution time, and memory usage in GEANT4 and other Monte Carlo code. The relationship between the number of density bins and CT noise was examined in general for all simulations that use HU conversion to density. Additionally, the effect of this on simulation accuracy was examined for proton radiation. Methods: Relative uncertainty from CT noise was compared with uncertainty from density binning to determine an upper limit on the number of density bins required in the presence of CT noise. Error propagation analysis was also performed on continuously slowing down approximation range calculations to determine the proton range uncertainty caused by density binning. These results were verified with Monte Carlo simulations. Results: In the presence of even modest CT noise (5 HU or 0.5%) 450 density bins were found to only cause a 5% increase in the density uncertainty (i.e., 95% of density uncertainty from CT noise, 5% from binning). Larger numbers of density bins are not required as CT noise will prevent increased density accuracy; this applies across all types of Monte Carlo simulations. Examining uncertainty in proton range, only 127 density bins are required for a proton range error of <0.1 mm in most tissue and <0.5 mm in low density tissue (e.g., lung). Conclusions: By considering CT noise and actual range uncertainty, the number of required density bins can be restricted to a very modest 127 depending on the application. Reducing the number of density bins provides large memory and execution time savings in GEANT4 and other Monte Carlo packages.

  2. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics.

    SciTech Connect (OSTI)

    Seker, V.; Thomas, J. W.; Downar, T. J.; Purdue Univ.

    2007-01-01

    A computational code system based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR'. McSTAR is written in FORTRAN90 programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STARCD for every region. Three different methods were investigated and implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. Preliminary testing of the code was performed using a 3x3 PWR pin-cell problem. The preliminary results are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code DeCART. Good agreement in the k{sub eff} and the power profile was observed. Increased computational capabilities and improvements in computational methods have accelerated interest in high fidelity modeling of nuclear reactor cores during the last several years. High-fidelity has been achieved by utilizing full core neutron transport solutions for the neutronics calculation and computational fluid dynamics solutions for the thermal-hydraulics calculation. Previous researchers have reported the coupling of 3D deterministic neutron transport method to CFD and their application to practical reactor analysis problems. One of the principal motivations of the work here was to utilize Monte Carlo methods to validate the coupled deterministic neutron transport and CFD solutions. Previous researchers have successfully performed Monte Carlo calculations with limited thermal feedback. In fact, much of the validation of the deterministic neutronics transport code DeCART in was performed using the Monte Carlo code McCARD which employs a limited thermal feedback model. However, for a broader range of temperature/fluid applications it was desirable to couple Monte Carlo to a more sophisticated temperature fluid solution such as CFD. This paper focuses on the methods used to couple Monte Carlo to CFD and their application to a series of simple test problems.

  3. “Full Model” Nuclear Data and Covariance Evaluation Process Using TALYS, Total Monte Carlo and Backward-forward Monte Carlo

    SciTech Connect (OSTI)

    Bauge, E.

    2015-01-15

    The “Full model” evaluation process, that is used in CEA DAM DIF to evaluate nuclear data in the continuum region, makes extended use of nuclear models implemented in the TALYS code to account for experimental data (both differential and integral) by varying the parameters of these models until a satisfactory description of these experimental data is reached. For the evaluation of the covariance data associated with this evaluated data, the Backward-forward Monte Carlo (BFMC) method was devised in such a way that it mirrors the process of the “Full model” evaluation method. When coupled with the Total Monte Carlo method via the T6 system developed by NRG Petten, the BFMC method allows to make use of integral experiments to constrain the distribution of model parameters, and hence the distribution of derived observables and their covariance matrix. Together, TALYS, TMC, BFMC, and T6, constitute a powerful integrated tool for nuclear data evaluation, that allows for evaluation of nuclear data and the associated covariance matrix, all at once, making good use of all the available experimental information to drive the distribution of the model parameters and the derived observables.

  4. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2015-12-21

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000® problems. These benchmark and scaling studies show promising results.« less

  5. Molecular dynamics and Monte Carlo simulations resolve apparent diffusion rate differences for proteins confined in nanochannels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tringe, J. W.; Ileri, N.; Levie, H. W.; Stroeve, P.; Ustach, V.; Faller, R.; Renaud, P.

    2015-08-01

    We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage.more » Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.« less

  6. Numerical thermalization in particle-in-cell simulations with Monte-Carlo collisions

    SciTech Connect (OSTI)

    Lai, P. Y.; Lin, T. Y.; Lin-Liu, Y. R.; Chen, S. H.

    2014-12-15

    Numerical thermalization in collisional one-dimensional (1D) electrostatic (ES) particle-in-cell (PIC) simulations was investigated. Two collision models, the pitch-angle scattering of electrons by the stationary ion background and large-angle collisions between the electrons and the neutral background, were included in the PIC simulation using Monte-Carlo methods. The numerical results show that the thermalization times in both models were considerably reduced by the additional Monte-Carlo collisions as demonstrated by comparisons with Turner's previous simulation results based on a head-on collision model [M. M. Turner, Phys. Plasmas 13, 033506 (2006)]. However, the breakdown of Dawson's scaling law in the collisional 1D ES PIC simulation is more complicated than that was observed by Turner, and the revised scaling law of the numerical thermalization time with numerical parameters are derived on the basis of the simulation results obtained in this study.

  7. Capabilities, Implementation, and Benchmarking of Shift, a Massively Parallel Monte Carlo Radiation Transport Code

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pandya, Tara M; Johnson, Seth R; Evans, Thomas M; Davidson, Gregory G; Hamilton, Steven P; Godfrey, Andrew T

    2016-01-01

    This work discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore »specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 R problems. These benchmark and scaling studies show promising results.« less

  8. Rotational fluctuation of molecules in quantum clusters. I. Path integral hybrid Monte Carlo algorithm

    SciTech Connect (OSTI)

    Miura, Shinichi [Institute for Molecular Science, 38 Myodaiji, Okazaki 444-8585 (Japan)

    2007-03-21

    In this paper, we present a path integral hybrid Monte Carlo (PIHMC) method for rotating molecules in quantum fluids. This is an extension of our PIHMC for correlated Bose fluids [S. Miura and J. Tanaka, J. Chem. Phys. 120, 2160 (2004)] to handle the molecular rotation quantum mechanically. A novel technique referred to be an effective potential of quantum rotation is introduced to incorporate the rotational degree of freedom in the path integral molecular dynamics or hybrid Monte Carlo algorithm. For a permutation move to satisfy Bose statistics, we devise a multilevel Metropolis method combined with a configurational-bias technique for efficiently sampling the permutation and the associated atomic coordinates. Then, we have applied the PIHMC to a helium-4 cluster doped with a carbonyl sulfide molecule. The effects of the quantum rotation on the solvation structure and energetics were examined. Translational and rotational fluctuations of the dopant in the superfluid cluster were also analyzed.

  9. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.

    2015-06-30

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as muchmore » geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.« less

  10. Fully Differential Monte-Carlo Generator Dedicated to TMDs and Bessel-Weighted Asymmetries

    SciTech Connect (OSTI)

    Aghasyan, Mher M.; Avakian, Harut A.

    2013-10-01

    We present studies of double longitudinal spin asymmetries in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator, which includes quark intrinsic transverse momentum within the generalized parton model based on the fully differential cross section for the process. Additionally, we apply Bessel-weighting to the simulated events to extract transverse momentum dependent parton distribution functions and also discuss possible uncertainties due to kinematic correlation effects.

  11. Posters Monte Carlo Simulation of Longwave Fluxes Through Broken Scattering Cloud Fields

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Posters Monte Carlo Simulation of Longwave Fluxes Through Broken Scattering Cloud Fields E. E. Takara and R. G. Ellingson University of Maryland College Park, Maryland To simplify the analysis, we made several assumptions: the clouds were cuboidal; they were all identically sized and shaped; and they had constant optical properties. Results and Discussion The model was run for a set of cloud fields with clouds of varying optical thickness and scattering albedo. The predicted effective cloud

  12. Particle-In-Cell/Monte Carlo Simulation of Ion Back Bombardment in Photoinjectors

    SciTech Connect (OSTI)

    Qiang, Ji; Corlett, John; Staples, John

    2009-03-02

    In this paper, we report on studies of ion back bombardment in high average current dc and rf photoinjectors using a particle-in-cell/Monte Carlo method. Using H{sub 2} ion as an example, we observed that the ion density and energy deposition on the photocathode in rf guns are order of magnitude lower than that in a dc gun. A higher rf frequency helps mitigate the ion back bombardment of the cathode in rf guns.

  13. Monte Carlo and analytical model predictions of leakage neutron exposures from passively scattered proton therapy

    SciTech Connect (OSTI)

    Pérez-Andújar, Angélica [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)] [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Zhang, Rui; Newhauser, Wayne [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)] [Department of Radiation Physics, Unit 1202, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, 6767 Bertner Avenue, Houston, Texas 77030 (United States)

    2013-12-15

    Purpose: Stray neutron radiation is of concern after radiation therapy, especially in children, because of the high risk it might carry for secondary cancers. Several previous studies predicted the stray neutron exposure from proton therapy, mostly using Monte Carlo simulations. Promising attempts to develop analytical models have also been reported, but these were limited to only a few proton beam energies. The purpose of this study was to develop an analytical model to predict leakage neutron equivalent dose from passively scattered proton beams in the 100-250-MeV interval.Methods: To develop and validate the analytical model, the authors used values of equivalent dose per therapeutic absorbed dose (H/D) predicted with Monte Carlo simulations. The authors also characterized the behavior of the mean neutron radiation-weighting factor, w{sub R}, as a function of depth in a water phantom and distance from the beam central axis.Results: The simulated and analytical predictions agreed well. On average, the percentage difference between the analytical model and the Monte Carlo simulations was 10% for the energies and positions studied. The authors found that w{sub R} was highest at the shallowest depth and decreased with depth until around 10 cm, where it started to increase slowly with depth. This was consistent among all energies.Conclusion: Simple analytical methods are promising alternatives to complex and slow Monte Carlo simulations to predict H/D values. The authors' results also provide improved understanding of the behavior of w{sub R} which strongly depends on depth, but is nearly independent of lateral distance from the beam central axis.

  14. Automatic mesh adaptivity for hybrid Monte Carlo/deterministic neutronics modeling of difficult shielding problems

    SciTech Connect (OSTI)

    Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.

    2015-06-30

    The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer.

  15. PROBLEM DEPENDENT DOPPLER BROADENING OF CONTINUOUS ENERGY CROSS SECTIONS IN THE KENO MONTE CARLO COMPUTER CODE

    SciTech Connect (OSTI)

    Hart, S. W. D.; Maldonado, G. Ivan; Celik, Cihangir; Leal, Luiz C

    2014-01-01

    For many Monte Carlo codes cross sections are generally only created at a set of predetermined temperatures. This causes an increase in error as one moves further and further away from these temperatures in the Monte Carlo model. This paper discusses recent progress in the Scale Monte Carlo module KENO to create problem dependent, Doppler broadened, cross sections. Currently only broadening the 1D cross sections and probability tables is addressed. The approach uses a finite difference method to calculate the temperature dependent cross-sections for the 1D data, and a simple linear-logarithmic interpolation in the square root of temperature for the probability tables. Work is also ongoing to address broadening theS (alpha , beta) tables. With the current approach the temperature dependent cross sections are Doppler broadened before transport starts, and, for all but a few isotopes, the impact on cross section loading is negligible. Results can be compared with those obtained by using multigroup libraries, as KENO currently does interpolation on the multigroup cross sections to determine temperature dependent cross-sections. Current results compare favorably with these expected results.

  16. Nonequilibrium candidate Monte Carlo: A new tool for efficient equilibrium simulation

    SciTech Connect (OSTI)

    Nilmeier, Jerome P.; Crooks, Gavin E.; Minh, David D. L.; Chodera, John D.

    2011-11-08

    Metropolis Monte Carlo simulation is a powerful tool for studying the equilibrium properties of matter. In complex condensed-phase systems, however, it is difficult to design Monte Carlo moves with high acceptance probabilities that also rapidly sample uncorrelated configurations. Here, we introduce a new class of moves based on nonequilibrium dynamics: candidate configurations are generated through a finite-time process in which a system is actively driven out of equilibrium, and accepted with criteria that preserve the equilibrium distribution. The acceptance rule is similar to the Metropolis acceptance probability, but related to the nonequilibrium work rather than the instantaneous energy difference. Our method is applicable to sampling from both a single thermodynamic state or a mixture of thermodynamic states, and allows both coordinates and thermodynamic parameters to be driven in nonequilibrium proposals. While generating finite-time switching trajectories incurs an additional cost, driving some degrees of freedom while allowing others to evolve naturally can lead to large enhancements in acceptance probabilities, greatly reducing structural correlation times. Using nonequilibrium driven processes vastly expands the repertoire of useful Monte Carlo proposals in simulations of dense solvated systems.

  17. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields.

    SciTech Connect (OSTI)

    Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.

    2015-07-27

    A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.

  18. Microsoft Word - S07817_SER

    Office of Legacy Management (LM)

    10 August 2011 LMS/WEL/S07817 LMS/WEL/S07817 ENERGY Legacy Management U.S. DEPARTMENT OF U.S. Department of Energy Office of Legacy Management This page intentionally left blank LMS/WEL/S07817 U.S. Department of Energy Office of Legacy Management Weldon Spring Site Environmental Report for Calendar Year 2010 August 2011 This page intentionally left blank U.S. Department of Energy Weldon Spring Site Environmental Report for Calendar Year 2010 August 2011 Doc. No. S07817 Page i Contents

  19. Radiation doses in cone-beam breast computed tomography: A Monte Carlo simulation study

    SciTech Connect (OSTI)

    Yi Ying; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Shen Youtao; Liu Xinming; Ge Shuaiping; You Zhicheng; Wang Tianpeng; Shaw, Chris C.

    2011-02-15

    Purpose: In this article, we describe a method to estimate the spatial dose variation, average dose and mean glandular dose (MGD) for a real breast using Monte Carlo simulation based on cone beam breast computed tomography (CBBCT) images. We present and discuss the dose estimation results for 19 mastectomy breast specimens, 4 homogeneous breast models, 6 ellipsoidal phantoms, and 6 cylindrical phantoms. Methods: To validate the Monte Carlo method for dose estimation in CBBCT, we compared the Monte Carlo dose estimates with the thermoluminescent dosimeter measurements at various radial positions in two polycarbonate cylinders (11- and 15-cm in diameter). Cone-beam computed tomography (CBCT) images of 19 mastectomy breast specimens, obtained with a bench-top experimental scanner, were segmented and used to construct 19 structured breast models. Monte Carlo simulation of CBBCT with these models was performed and used to estimate the point doses, average doses, and mean glandular doses for unit open air exposure at the iso-center. Mass based glandularity values were computed and used to investigate their effects on the average doses as well as the mean glandular doses. Average doses for 4 homogeneous breast models were estimated and compared to those of the corresponding structured breast models to investigate the effect of tissue structures. Average doses for ellipsoidal and cylindrical digital phantoms of identical diameter and height were also estimated for various glandularity values and compared with those for the structured breast models. Results: The absorbed dose maps for structured breast models show that doses in the glandular tissue were higher than those in the nearby adipose tissue. Estimated average doses for the homogeneous breast models were almost identical to those for the structured breast models (p=1). Normalized average doses estimated for the ellipsoidal phantoms were similar to those for the structured breast models (root mean square (rms) percentage difference=1.7%; p=0.01), whereas those for the cylindrical phantoms were significantly lower (rms percentage difference=7.7%; p<0.01). Normalized MGDs were found to decrease with increasing glandularity. Conclusions: Our results indicate that it is sufficient to use homogeneous breast models derived from CBCT generated structured breast models to estimate the average dose. This investigation also shows that ellipsoidal digital phantoms of similar dimensions (diameter and height) and glandularity to actual breasts may be used to represent a real breast to estimate the average breast dose with Monte Carlo simulation. We have also successfully demonstrated the use of structured breast models to estimate the true MGDs and shown that the normalized MGDs decreased with the glandularity as previously reported by other researchers for CBBCT or mammography.

  20. W/Z + b bbar/Jets at NLO Using the Monte Carlo MCFM

    SciTech Connect (OSTI)

    John M. Campbell

    2001-05-29

    We summarize recent progress in next-to-leading QCD calculations made using the Monte Carlo MCFM. In particular, we focus on the calculations of p{bar p} {r_arrow} Wb{bar b}, Zb{bar b} and highlight the significant corrections to background estimates for Higgs searches in the channels WH and ZH at the Tevatron. We also report on the current progress of, and strategies for, the calculation of the process p{bar p} {r_arrow} W/Z + 2 jets.

  1. Monte Carlo and renormalization group local effective potentials in scalar field theories at finite temperature

    SciTech Connect (OSTI)

    Shafer, J.D.; Shepard, J.R.

    1997-04-01

    We derive an approximate renormalization group (RG) flow equation for the local effective potential of single-component {phi}{sup 4} field theory at finite temperature. Previous zero-temperature RG equations are recovered in the low- and high-temperature limits, in the latter case, via the phenomenon of dimensional reduction. We numerically solve our RG equations to obtain local effective potentials at finite temperature. These are found to be in excellent agreement with Monte Carlo results, especially when lattice artifacts are accounted for in the RG treatment. {copyright} {ital 1997} {ital The American Physical Society}

  2. Simulation of atomic diffusion in the Fcc NiAl system: A kinetic Monte Carlo study

    SciTech Connect (OSTI)

    Alfonso, Dominic R.; Tafen, De Nyago

    2015-04-28

    The atomic diffusion in fcc NiAl binary alloys was studied by kinetic Monte Carlo simulation. The environment dependent hopping barriers were computed using a pair interaction model whose parameters were fitted to relevant data derived from electronic structure calculations. Long time diffusivities were calculated and the effect of composition change on the tracer diffusion coefficients was analyzed. These results indicate that this variation has noticeable impact on the atomic diffusivities. A reduction in the mobility of both Ni and Al is demonstrated with increasing Al content. As a result, examination of the pair interaction between atoms was carried out for the purpose of understanding the predicted trends.

  3. Monte Carlo simulations of channeling spectra recorded for samples containing complex defects

    SciTech Connect (OSTI)

    Jagielski, Jacek; Turos, Prof. Andrzej; Nowicki, Lech; Jozwik, P.; Shutthanandan, Vaithiyalingam; Zhang, Yanwen; Sathish, N.; Thome, Lionel; Stonert, A.; Jozwik-Biala, Iwona

    2012-01-01

    The aim of the present paper is to describe the current status of the development of McChasy, a Monte Carlo simulation code, to make it suitable for the analysis of dislocations and dislocation loops in crystals. Such factors like the shape of the bent channel and geometrical distortions of the crystalline structure in the vicinity of dislocation has been discussed. The results obtained demonstrate that the new procedure applied to the spectra recorded on crystals containing dislocation yields damage profiles which are independent of the energy of the analyzing beam.

  4. Monte Carlo simulations of channeling spectra recorded for samples containing complex defects

    SciTech Connect (OSTI)

    Jagielski, Jacek K.; Turos, Andrzej W.; Nowicki, L.; Jozwik, Przemyslaw A.; Shutthanandan, V.; Zhang, Yanwen; Sathish, N.; Thome, Lionel; Stonert, A.; Jozwik Biala, Iwona

    2012-02-15

    The main aim of the present paper is to describe the current status of the development of McChasy, a Monte Carlo simulation code, to make it suitable for the analysis of dislocations and dislocation loops in crystals. Such factors like the shape of the bent channel and geometrical distortions of the crystalline structure in the vicinity of dislocation has been discussed. Several examples of the analysis performed at different energies of analyzing ions are presented. The results obtained demonstrate that the new procedure applied to the spectra recorded on crystals containing dislocation yields damage profiles which are independent of the energy of the analyzing beam.

  5. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    SciTech Connect (OSTI)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, a finding in stark contrast to DAC data.

  6. Monte Carlo generators for studies of the 3D structure of the nucleon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Avakian, Harut; D'Alesio, U.; Murgia, F.

    2015-01-23

    In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.

  7. Study of DCX reaction on medium nuclei with Monte-Carlo Shell Model

    SciTech Connect (OSTI)

    Wu, H. C.; Gibbs, W. R.

    2010-08-04

    In this work a method is introduced to calculate the DCX reaction in the framework of Monte-Carlo Shell Model (MCSM). To facilitate the use of Zero-temperature formalism of MCSM, the Double-Isobaric-Analog State (DIAS) is derived from the ground state by using isospin shifting operator. The validity of this method is tested by comparing the MCSM results to those of the SU(3) symmetry case. Application of this method to DCX on {sup 56}Fe and {sup 93}Nb is discussed.

  8. Quantized vortices in {sup 4}He droplets: A quantum Monte Carlo study

    SciTech Connect (OSTI)

    Sola, E.; Casulleras, J.; Boronat, J.

    2007-08-01

    We present a diffusion Monte Carlo study of a vortex line excitation attached to the center of a {sup 4}He droplet at zero temperature. The vortex energy is estimated for droplets of increasing number of atoms, from N=70 up to 300, showing a monotonous increase with N. The evolution of the core radius and its associated energy, the core energy, is also studied as a function of N. The core radius is {approx}1 A in the center and increases when approaching the droplet surface; the core energy per unit volume stabilizes at a value 2.8 K{sigma}{sup -3} ({sigma}=2.556 A) for N{>=}200.

  9. Quantum Monte Carlo simulation of a two-dimensional Bose gas

    SciTech Connect (OSTI)

    Pilati, S.; Boronat, J.; Casulleras, J.; Giorgini, S.

    2005-02-01

    The equation of state of a homogeneous two-dimensional Bose gas is calculated using quantum Monte Carlo methods. The low-density universal behavior is investigated using different interatomic model potentials, both finite ranged and strictly repulsive and zero ranged, supporting a bound state. The condensate fraction and the pair distribution function are calculated as a function of the gas parameter, ranging from the dilute to the strongly correlated regime. In the case of the zero-range pseudopotential we discuss the stability of the gaslike state for large values of the two-dimensional scattering length, and we calculate the critical density where the system becomes unstable against cluster formation.

  10. Replica-exchange Wang Landau sampling: pushing the limits of Monte Carlo simulations in materials sciences

    SciTech Connect (OSTI)

    Perera, Meewanage Dilina N; Li, Ying Wai; Eisenbach, Markus; Vogel, Thomas; Landau, David P

    2015-01-01

    We describe the study of thermodynamics of materials using replica-exchange Wang Landau (REWL) sampling, a generic framework for massively parallel implementations of the Wang Landau Monte Carlo method. To evaluate the performance and scalability of the method, we investigate the magnetic phase transition in body-centered cubic (bcc) iron using the classical Heisenberg model parameterized with first principles calculations. We demonstrate that our framework leads to a significant speedup without compromising the accuracy and precision and facilitates the study of much larger systems than is possible with its serial counterpart.

  11. Coupled Hybrid Monte Carlo: Deterministic Analysis of VHTR Configurations with Advanced Actinide Fuels

    SciTech Connect (OSTI)

    Tsvetkov, Pavel V.; Ames II, David E.; Alajo, Ayodeji B.; Pritchard, Megan L.

    2006-07-01

    Partitioning and transmutation of minor actinides are expected to have a positive impact on the future of nuclear technology. Their deployment would lead to incineration of hazardous nuclides and could potentially provide additional fuel supply. The U.S. DOE NERI Project assesses the possibility, advantages and limitations of involving minor actinides as a fuel component. The analysis takes into consideration and compares capabilities of actinide-fueled VHTRs with pebble-bed and prismatic cores to approach a reactor lifetime long operation without intermediate refueling. A hybrid Monte Carlo-deterministic methodology has been adopted for coupled neutronics-thermal hydraulics design studies of VHTRs. Within the computational scheme, the key technical issues are being addressed and resolved by implementing efficient automated modeling procedures and sequences, combining Monte Carlo and deterministic approaches, developing and applying realistic 3D coupled neutronics-thermal-hydraulics models with multi-heterogeneity treatments, developing and performing experimental/computational benchmarks for model verification and validation, analyzing uncertainty effects and error propagation. This paper introduces the suggested modeling approach, discusses benchmark results and the preliminary analysis of actinide-fueled VHTRs. The presented up-to-date results are in agreement with the available experimental data. Studies of VHTRs with minor actinides suggest promising performance. (authors)

  12. A Coupled Neutron-Photon 3-D Combinatorial Geometry Monte Carlo Transport Code

    Energy Science and Technology Software Center (OSTI)

    1998-06-12

    TART97 is a coupled neutron-photon, 3 dimensional, combinatorial geometry, time dependent Monte Carlo transport code. This code can run on any modern computer. It is a complete system to assist you with input preparation, running Monte Carlo calculations, and analysis of output results. TART97 is also incredibly fast: if you have used similar codes, you will be amazed at how fast this code is compared to other similar codes. Use of the entire system canmore » save you a great deal of time and energy. TART 97 is distributed on CD. This CD contains on-line documentation for all codes included in the system, the codes configured to run on a variety of computers, and many example problems that you can use to familiarize yourself with the system. TART97 completely supersedes all older versions of TART, and it is strongly recommended that users only use the most recent version of TART97 and ist data files.« less

  13. Monte Carlo analysis of neutron slowing-down-time spectrometer for fast reactor spent fuel assay

    SciTech Connect (OSTI)

    Chen, Jianwei; Lineberry, Michael

    2007-07-01

    Using the neutron slowing-down-time method as a nondestructive assay tool to improve input material accountancy for fast reactor spent fuel reprocessing is under investigation at Idaho State University. Monte Carlo analyses were performed to simulate the neutron slowing down process in different slowing down spectrometers, namely, lead and graphite, and determine their main parameters. {sup 238}U threshold fission chamber response was simulated in the Monte Carlo model to represent the spent fuel assay signals, the signature (fission/time) signals of {sup 235}U, {sup 239}Pu, and {sup 241}Pu were simulated as a convolution of fission cross sections and neutron flux inside the spent fuel. {sup 238}U detector signals were analyzed using linear regression model based on the signatures of fissile materials in the spent fuel to determine weight fractions of fissile materials in the Advanced Burner Test Reactor spent fuel. The preliminary results show even though lead spectrometer showed a better assay performance than graphite, graphite spectrometer could accurately determine weight fractions of {sup 239}Pu and {sup 241}Pu given proper assay energy range were chosen. (authors)

  14. MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry L.; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent

    2015-11-28

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less

  15. Speciation model selection by Monte Carlo analysis of optical absorption spectra: Plutonium(IV) nitrate complexes

    SciTech Connect (OSTI)

    Berg, John M.; Veirs, D. Kirk; Vaughn, Randolph B.; Cisneros, Michael R.; Smith, Coleman A.

    2000-06-01

    Standard modeling approaches can produce the most likely values of the formation constants of metal-ligand complexes if a particular set of species containing the metal ion is known or assumed to exist in solution equilibrium with complexing ligands. Identifying the most likely set of species when more than one set is plausible is a more difficult problem to address quantitatively. A Monte Carlo method of data analysis is described that measures the relative abilities of different speciation models to fit optical spectra of open-shell actinide ions. The best model(s) can be identified from among a larger group of models initially judged to be plausible. The method is demonstrated by analyzing the absorption spectra of aqueous Pu(IV) titrated with nitrate ion at constant 2 molal ionic strength in aqueous perchloric acid. The best speciation model supported by the data is shown to include three Pu(IV) species with nitrate coordination numbers 0, 1, and 2. Formation constants are {beta}{sub 1}=3.2{+-}0.5 and {beta}{sub 2}=11.2{+-}1.2, where the uncertainties are 95% confidence limits estimated by propagating raw data uncertainties using Monte Carlo methods. Principal component analysis independently indicates three Pu(IV) complexes in equilibrium. (c) 2000 Society for Applied Spectroscopy.

  16. GPU Acceleration of Mean Free Path Based Kernel Density Estimators for Monte Carlo Neutronics Simulations

    SciTech Connect (OSTI)

    Burke, TImothy P.; Kiedrowski, Brian C.; Martin, William R.; Brown, Forrest B.

    2015-11-19

    Kernel Density Estimators (KDEs) are a non-parametric density estimation technique that has recently been applied to Monte Carlo radiation transport simulations. Kernel density estimators are an alternative to histogram tallies for obtaining global solutions in Monte Carlo tallies. With KDEs, a single event, either a collision or particle track, can contribute to the score at multiple tally points with the uncertainty at those points being independent of the desired resolution of the solution. Thus, KDEs show potential for obtaining estimates of a global solution with reduced variance when compared to a histogram. Previously, KDEs have been applied to neutronics for one-group reactor physics problems and fixed source shielding applications. However, little work was done to obtain reaction rates using KDEs. This paper introduces a new form of the MFP KDE that is capable of handling general geometries. Furthermore, extending the MFP KDE to 2-D problems in continuous energy introduces inaccuracies to the solution. An ad-hoc solution to these inaccuracies is introduced that produces errors smaller than 4% at material interfaces.

  17. Energy density matrix formalism for interacting quantum systems: a quantum Monte Carlo study

    SciTech Connect (OSTI)

    Krogel, Jaron T; Kim, Jeongnim; Reboredo, Fernando A

    2014-01-01

    We develop an energy density matrix that parallels the one-body reduced density matrix (1RDM) for many-body quantum systems. Just as the density matrix gives access to the number density and occupation numbers, the energy density matrix yields the energy density and orbital occupation energies. The eigenvectors of the matrix provide a natural orbital partitioning of the energy density while the eigenvalues comprise a single particle energy spectrum obeying a total energy sum rule. For mean-field systems the energy density matrix recovers the exact spectrum. When correlation becomes important, the occupation energies resemble quasiparticle energies in some respects. We explore the occupation energy spectrum for the finite 3D homogeneous electron gas in the metallic regime and an isolated oxygen atom with ground state quantum Monte Carlo techniques imple- mented in the QMCPACK simulation code. The occupation energy spectrum for the homogeneous electron gas can be described by an effective mass below the Fermi level. Above the Fermi level evanescent behavior in the occupation energies is observed in similar fashion to the occupation numbers of the 1RDM. A direct comparison with total energy differences demonstrates a quantita- tive connection between the occupation energies and electron addition and removal energies for the electron gas. For the oxygen atom, the association between the ground state occupation energies and particle addition and removal energies becomes only qualitative. The energy density matrix provides a new avenue for describing energetics with quantum Monte Carlo methods which have traditionally been limited to total energies.

  18. Particle Communication and Domain Neighbor Coupling: Scalable Domain Decomposed Algorithms for Monte Carlo Particle Transport

    SciTech Connect (OSTI)

    O'Brien, M J; Brantley, P S

    2015-01-20

    In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain’s replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.

  19. Massively parallel Monte Carlo for many-particle simulations on GPUs

    SciTech Connect (OSTI)

    Anderson, Joshua A.; Jankowski, Eric [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)] [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Grubb, Thomas L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Engel, Michael [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)] [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Glotzer, Sharon C., E-mail: sglotzer@umich.edu [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2013-12-01

    Current trends in parallel processors call for the design of efficient massively parallel algorithms for scientific computing. Parallel algorithms for Monte Carlo simulations of thermodynamic ensembles of particles have received little attention because of the inherent serial nature of the statistical sampling. In this paper, we present a massively parallel method that obeys detailed balance and implement it for a system of hard disks on the GPU. We reproduce results of serial high-precision Monte Carlo runs to verify the method. This is a good test case because the hard disk equation of state over the range where the liquid transforms into the solid is particularly sensitive to small deviations away from the balance conditions. On a Tesla K20, our GPU implementation executes over one billion trial moves per second, which is 148 times faster than on a single Intel Xeon E5540 CPU core, enables 27 times better performance per dollar, and cuts energy usage by a factor of 13. With this improved performance we are able to calculate the equation of state for systems of up to one million hard disks. These large system sizes are required in order to probe the nature of the melting transition, which has been debated for the last forty years. In this paper we present the details of our computational method, and discuss the thermodynamics of hard disks separately in a companion paper.

  20. Surface Structures of Cubo-octahedral Pt-Mo Catalyst Nanoparticles from Monte Carlo Simulations

    SciTech Connect (OSTI)

    Wang, Guofeng; Van Hove, M.A.; Ross, P.N.; Baskes, M.I.

    2005-03-31

    The surface structures of cubo-octahedral Pt-Mo nanoparticles have been investigated using the Monte Carlo method and modified embedded atom method potentials that we developed for Pt-Mo alloys. The cubo-octahedral Pt-Mo nanoparticles are constructed with disordered fcc configurations, with sizes from 2.5 to 5.0 nm, and with Pt concentrations from 60 to 90 at. percent. The equilibrium Pt-Mo nanoparticle configurations were generated through Monte Carlo simulations allowing both atomic displacements and element exchanges at 600 K. We predict that the Pt atoms weakly segregate to the surfaces of such nanoparticles. The Pt concentrations in the surface are calculated to be 5 to 14 at. percent higher than the Pt concentrations of the nanoparticles. Moreover, the Pt atoms preferentially segregate to the facet sites of the surface, while the Pt and Mo atoms tend to alternate along the edges and vertices of these nanoparticles. We found that decreasing the size or increasing the Pt concentration leads to higher Pt concentrations but fewer Pt-Mo pairs in the Pt-Mo nanoparticle surfaces.

  1. Automatic Mesh Adaptivity for Hybrid Monte Carlo/Deterministic Neutronics Modeling of Fusion Energy Systems

    SciTech Connect (OSTI)

    Ibrahim, Ahmad M; Wilson, P.; Sawan, M.; Mosher, Scott W; Peplow, Douglas E.; Grove, Robert E

    2013-01-01

    Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer.

  2. Equation of state of an interacting Bose gas at finite temperature: A path-integral Monte Carlo study

    SciTech Connect (OSTI)

    Pilati, S.; Giorgini, S.; Sakkos, K.; Boronat, J.; Casulleras, J.

    2006-10-15

    By using exact path-integral Monte Carlo methods we calculate the equation of state of an interacting Bose gas as a function of temperature both below and above the superfluid transition. The universal character of the equation of state for dilute systems and low temperatures is investigated by modeling the interatomic interactions using different repulsive potentials corresponding to the same s-wave scattering length. The results obtained for the energy and the pressure are compared to the virial expansion for temperatures larger than the critical temperature. At very low temperatures we find agreement with the ground-state energy calculated using the diffusion Monte Carlo method.

  3. Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mayers, Matthew Z.; Berkelbach, Timothy C.; Hybertsen, Mark S.; Reichman, David R.

    2015-10-09

    Ground-state diffusion Monte Carlo is used to investigate the binding energies and intercarrier radial probability distributions of excitons, trions, and biexcitons in a variety of two-dimensional transition-metal dichalcogenide materials. We compare these results to approximate variational calculations, as well as to analogous Monte Carlo calculations performed with simplified carrier interaction potentials. Our results highlight the successes and failures of approximate approaches as well as the physical features that determine the stability of small carrier complexes in monolayer transition-metal dichalcogenide materials. In conclusion, we discuss points of agreement and disagreement with recent experiments.

  4. Study on in situ calibration for neutron flux monitor in the Large Helical Device based on Monte Carlo calculations

    SciTech Connect (OSTI)

    Nakano, Y. Yamazaki, A.; Watanabe, K.; Uritani, A.; Ogawa, K.; Isobe, M.

    2014-11-15

    Neutron monitoring is important to manage safety of fusion experiment facilities because neutrons are generated in fusion reactions. Monte Carlo simulations play an important role in evaluating the influence of neutron scattering from various structures and correcting differences between deuterium plasma experiments and in situ calibration experiments. We evaluated these influences based on differences between the both experiments at Large Helical Device using Monte Carlo simulation code MCNP5. A difference between the both experiments in absolute detection efficiency of the fission chamber between O-ports is estimated to be the biggest of all monitors. We additionally evaluated correction coefficients for some neutron monitors.

  5. Silica separation from reinjection brines at Monte Amiata geothermal plants, Italy

    SciTech Connect (OSTI)

    Vitolo, S.; Cialdella, M.L. . Dipartimento di Ingegneria Chimica)

    1994-06-01

    A process for the separation of silica from geothermal reinjection brines is reported, in which the phases of coagulation, sedimentation and filtration of silica are involved. The effectiveness of lime and calcium chloride as coagulating agents has been investigated and the separating operations have been set out. Attention has been focused on Monte Amiata reinjection geothermal brines, whose scaling effect causes serious problems in the operation and maintenance of reinjection facilities. The study has been conducted using different amounts of added coagulants and at different temperatures, to determine optimal operating conditions. Though calcium chloride was revealed to be effective as a coagulant of the polymeric silica fraction, lime has also proved capable of removing monomeric dissolved silica at high dosages. Investigation on the behavior of coagulated brine has revealed the feasibility of separating the coagulated silica by sedimentation and filtration.

  6. Benchmarking exchange-correlation functionals for hydrogen at high pressures using quantum Monte Carlo

    SciTech Connect (OSTI)

    Clay, Raymond C.; Mcminis, Jeremy; McMahon, Jeffrey M.; Pierleoni, Carlo; Ceperley, David M.; Morales, Miguel A.

    2014-05-01

    The ab initio phase diagram of dense hydrogen is very sensitive to errors in the treatment of electronic correlation. Recently, it has been shown that the choice of the density functional has a large effect on the predicted location of both the liquid-liquid phase transition and the solid insulator-to-metal transition in dense hydrogen. To identify the most accurate functional for dense hydrogen applications, we systematically benchmark some of the most commonly used functionals using quantum Monte Carlo. By considering several measures of functional accuracy, we conclude that the van der Waals and hybrid functionals significantly outperform local density approximation and Perdew-Burke-Ernzerhof. We support these conclusions by analyzing the impact of functional choice on structural optimization in the molecular solid, and on the location of the liquid-liquid phase transition.

  7. Size and habit evolution of PETN crystals - a lattice Monte Carlo study

    SciTech Connect (OSTI)

    Zepeda-Ruiz, L A; Maiti, A; Gee, R; Gilmer, G H; Weeks, B

    2006-02-28

    Starting from an accurate inter-atomic potential we develop a simple scheme of generating an ''on-lattice'' molecular potential of short range, which is then incorporated into a lattice Monte Carlo code for simulating size and shape evolution of nanocrystallites. As a specific example, we test such a procedure on the morphological evolution of a molecular crystal of interest to us, e.g., Pentaerythritol Tetranitrate, or PETN, and obtain realistic facetted structures in excellent agreement with experimental morphologies. We investigate several interesting effects including, the evolution of the initial shape of a ''seed'' to an equilibrium configuration, and the variation of growth morphology as a function of the rate of particle addition relative to diffusion.

  8. Density-functional Monte-Carlo simulation of CuZn order-disorder transition

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khan, Suffian N.; Eisenbach, Markus

    2016-01-25

    We perform a Wang-Landau Monte Carlo simulation of a Cu0.5Zn0.5 order-disorder transition using 250 atoms and pairwise atom swaps inside a 5 x 5 x 5 BCC supercell. Each time step uses energies calculated from density functional theory (DFT) via the all-electron Korringa-Kohn- Rostoker method and self-consistent potentials. Here we find CuZn undergoes a transition from a disordered A2 to an ordered B2 structure, as observed in experiment. Our calculated transition temperature is near 870 K, comparing favorably to the known experimental peak at 750 K. We also plot the entropy, temperature, specific-heat, and short-range order as a function ofmore » internal energy.« less

  9. Markov Chain Monte Carlo Sampling Methods for 1D Seismic and EM Data Inversion

    Energy Science and Technology Software Center (OSTI)

    2008-09-22

    This software provides several Markov chain Monte Carlo sampling methods for the Bayesian model developed for inverting 1D marine seismic and controlled source electromagnetic (CSEM) data. The current software can be used for individual inversion of seismic AVO and CSEM data and for joint inversion of both seismic and EM data sets. The structure of the software is very general and flexible, and it allows users to incorporate their own forward simulation codes and rockmore » physics model codes easily into this software. Although the softwae was developed using C and C++ computer languages, the user-supplied codes can be written in C, C++, or various versions of Fortran languages. The software provides clear interfaces for users to plug in their own codes. The output of this software is in the format that the R free software CODA can directly read to build MCMC objects.« less

  10. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Koehler, Timothy P.; Torczynski, John R.; Plimpton, Steven J.

    2015-08-14

    The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. The DSMC simulations indicate that there is a universal behavior, consistent with previous work in this field that RMI growth follows.

  11. Excitonic effects in two-dimensional semiconductors: Path integral Monte Carlo approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Velizhanin, Kirill A.; Saxena, Avadh

    2015-11-11

    The most striking features of novel two-dimensional semiconductors (e.g., transition metal dichalcogenide monolayers or phosphorene) is a strong Coulomb interaction between charge carriers resulting in large excitonic effects. In particular, this leads to the formation of multicarrier bound states upon photoexcitation (e.g., excitons, trions, and biexcitons), which could remain stable at near-room temperatures and contribute significantly to the optical properties of such materials. In our work we have used the path integral Monte Carlo methodology to numerically study properties of multicarrier bound states in two-dimensional semiconductors. Specifically, we have accurately investigated and tabulated the dependence of single-exciton, trion, and biexcitonmore » binding energies on the strength of dielectric screening, including the limiting cases of very strong and very weak screening. Our results of this work are potentially useful in the analysis of experimental data and benchmarking of theoretical and computational models.« less

  12. Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems

    SciTech Connect (OSTI)

    Martinez, E.; Monasterio, P.R.; Marian, J.

    2011-02-20

    An extension of the synchronous parallel kinetic Monte Carlo (spkMC) algorithm developed by Martinez et al. [J. Comp. Phys. 227 (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors' time clocks current in a global sense. Boundary conflicts are resolved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of serial calculations, which confirms the statistical validity of our algorithm. We have analyzed the parallel efficiency of spkMC and find that it scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations.

  13. Theory of melting at high pressures: Amending density functional theory with quantum Monte Carlo

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shulenburger, L.; Desjarlais, M. P.; Mattsson, T. R.

    2014-10-01

    We present an improved first-principles description of melting under pressure based on thermodynamic integration comparing Density Functional Theory (DFT) and quantum Monte Carlo (QMC) treatments of the system. The method is applied to address the longstanding discrepancy between density functional theory (DFT) calculations and diamond anvil cell (DAC) experiments on the melting curve of xenon, a noble gas solid where van der Waals binding is challenging for traditional DFT methods. The calculations show excellent agreement with data below 20 GPa and that the high-pressure melt curve is well described by a Lindemann behavior up to at least 80 GPa, amore » finding in stark contrast to DAC data.« less

  14. Direct simulation Monte Carlo investigation of the Richtmyer-Meshkov instability.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gallis, Michail A.; Koehler, Timothy P.; Torczynski, John R.; Plimpton, Steven J.

    2015-08-14

    The Richtmyer-Meshkov instability (RMI) is investigated using the Direct Simulation Monte Carlo (DSMC) method of molecular gas dynamics. Due to the inherent statistical noise and the significant computational requirements, DSMC is hardly ever applied to hydrodynamic flows. Here, DSMC RMI simulations are performed to quantify the shock-driven growth of a single-mode perturbation on the interface between two atmospheric-pressure monatomic gases prior to re-shocking as a function of the Atwood and Mach numbers. The DSMC results qualitatively reproduce all features of the RMI and are in reasonable quantitative agreement with existing theoretical and empirical models. The DSMC simulations indicate that theremore » is a universal behavior, consistent with previous work in this field that RMI growth follows.« less

  15. Report on International Collaboration Involving the FE Heater and HG-A Tests at Mont Terri

    SciTech Connect (OSTI)

    Houseworth, Jim; Rutqvist, Jonny; Asahina, Daisuke; Chen, Fei; Vilarrasa, Victor; Liu, Hui-Hai; Birkholzer, Jens

    2013-11-06

    Nuclear waste programs outside of the US have focused on different host rock types for geological disposal of high-level radioactive waste. Several countries, including France, Switzerland, Belgium, and Japan are exploring the possibility of waste disposal in shale and other clay-rich rock that fall within the general classification of argillaceous rock. This rock type is also of interest for the US program because the US has extensive sedimentary basins containing large deposits of argillaceous rock. LBNL, as part of the DOE-NE Used Fuel Disposition Campaign, is collaborating on some of the underground research laboratory (URL) activities at the Mont Terri URL near Saint-Ursanne, Switzerland. The Mont Terri project, which began in 1995, has developed a URL at a depth of about 300 m in a stiff clay formation called the Opalinus Clay. Our current collaboration efforts include two test modeling activities for the FE heater test and the HG-A leak-off test. This report documents results concerning our current modeling of these field tests. The overall objectives of these activities include an improved understanding of and advanced relevant modeling capabilities for EDZ evolution in clay repositories and the associated coupled processes, and to develop a technical basis for the maximum allowable temperature for a clay repository. The R&D activities documented in this report are part of the work package of natural system evaluation and tool development that directly supports the following Used Fuel Disposition Campaign (UFDC) objectives: ? Develop a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear-fuel-cycle alternatives through theory, simulation, testing, and experimentation. ? Develop a computational modeling capability for the performance of storage and disposal options for a range of fuel-cycle alternatives, evolving from generic models to more robust models of performance assessment. For the purpose of validating modeling capabilities for thermal-hydro-mechanical (THM) processes, we developed a suite of simulation models for the planned full-scale FE Experiment to be conducted in the Mont Terri URL, including a full three-dimensional model that will be used for direct comparison to experimental data once available. We performed for the first time a THM analysis involving the Barcelona Basic Model (BBM) in a full three-dimensional field setting for modeling the geomechanical behavior of the buffer material and its interaction with the argillaceous host rock. We have simulated a well defined benchmark that will be used for codeto- code verification against modeling results from other international modeling teams. The analysis highlights the complex coupled geomechanical behavior in the buffer and its interaction with the surrounding rock and the importance of a well characterized buffer material in terms of THM properties. A new geomechanical fracture-damage model, TOUGH-RBSN, was applied to investigate damage behavior in the ongoing HG-A test at Mont Terri URL. Two model modifications have been implemented so that the Rigid-Body-Spring-Network (RBSN) model can be used for analysis of fracturing around the HG-A microtunnel. These modifications are (1) a methodology to compute fracture generation under compressive stress conditions and (2) a method to represent anisotropic elastic and strength properties. The method for computing fracture generation under compressive load produces results that roughly follow trends expected for homogeneous and layered systems. Anisotropic properties for the bulk rock were represented in the RBSN model using layered heterogeneity and gave bulk material responses in line with expectations. These model improvements were implemented for an initial model of fracture damage at the HG-A test. While the HG-A test model results show some similarities with the test observations, differences between the model results and observations remain.

  16. penORNL: a parallel monte carlo photon and electron transport package using PENELOPE

    SciTech Connect (OSTI)

    Bekar, Kursat B.; Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.

    2015-01-01

    The parallel Monte Carlo photon and electron transport code package penORNL was developed at Oak Ridge National Laboratory to enable advanced scanning electron microscope (SEM) simulations on high performance computing systems. This paper discusses the implementations, capabilities and parallel performance of the new code package. penORNL uses PENELOPE for its physics calculations and provides all available PENELOPE features to the users, as well as some new features including source definitions specifically developed for SEM simulations, a pulse-height tally capability for detailed simulations of gamma and x-ray detectors, and a modified interaction forcing mechanism to enable accurate energy deposition calculations. The parallel performance of penORNL was extensively tested with several model problems, and very good linear parallel scaling was observed with up to 512 processors. penORNL, along with its new features, will be available for SEM simulations upon completion of the new pulse-height tally implementation.

  17. A bottom collider vertex detector design, Monte-Carlo simulation and analysis package

    SciTech Connect (OSTI)

    Lebrun, P.

    1990-10-01

    A detailed simulation of the BCD vertex detector is underway. Specifications and global design issues are briefly reviewed. The BCD design based on double sided strip detector is described in more detail. The GEANT3-based Monte-Carlo program and the analysis package used to estimate detector performance are discussed in detail. The current status of the expected resolution and signal to noise ratio for the golden'' CP violating mode B{sub d} {yields} {pi}{sup +}{pi}{sup {minus}} is presented. These calculations have been done at FNAL energy ({radical}s = 2.0 TeV). Emphasis is placed on design issues, analysis techniques and related software rather than physics potentials. 20 refs., 46 figs.

  18. Cluster expansion modeling and Monte Carlo simulation of alnico 5–7 permanent magnets

    SciTech Connect (OSTI)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai -Zhuang; Ho, Kai -Ming

    2015-03-05

    The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5–7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5–7 at atomistic and nano scales. The alnico 5–7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at low temperature. The boundary between these two phases is quite sharp (~2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on ?-site and Ni and Co on ?-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. In addition, a small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5–7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. Furthermore, the results from our Monte Carlo simulations are consistent with available experimental results.

  19. Sci—Thur AM: YIS - 04: Gold Nanoparticle Enhanced Arc Radiotherapy: A Monte Carlo Feasibility Study

    SciTech Connect (OSTI)

    Koger, B; Kirkby, C

    2014-08-15

    Introduction: The use of gold nanoparticles (GNPs) in radiotherapy has shown promise for therapeutic enhancement. In this study, we explore the feasibility of enhancing radiotherapy with GNPs in an arc-therapy context. We use Monte Carlo simulations to quantify the macroscopic dose-enhancement ratio (DER) and tumour to normal tissue ratio (TNTR) as functions of photon energy over various tumour and body geometries. Methods: GNP-enhanced arc radiotherapy (GEART) was simulated using the PENELOPE Monte Carlo code and penEasy main program. We simulated 360° arc-therapy with monoenergetic photon energies 50 – 1000 keV and several clinical spectra used to treat a spherical tumour containing uniformly distributed GNPs in a cylindrical tissue phantom. Various geometries were used to simulate different tumour sizes and depths. Voxel dose was used to calculate DERs and TNTRs. Inhomogeneity effects were examined through skull dose in brain tumour treatment simulations. Results: Below 100 keV, DERs greater than 2.0 were observed. Compared to 6 MV, tumour dose at low energies was more conformai, with lower normal tissue dose and higher TNTRs. Both the DER and TNTR increased with increasing cylinder radius and decreasing tumour radius. The inclusion of bone showed excellent tumour conformality at low energies, though with an increase in skull dose (40% of tumour dose with 100 keV compared to 25% with 6 MV). Conclusions: Even in the presence of inhomogeneities, our results show promise for the treatment of deep-seated tumours with low-energy GEART, with greater tumour dose conformality and lower normal tissue dose than 6 MV.

  20. Cluster expansion modeling and Monte Carlo simulation of alnico 5–7 permanent magnets

    SciTech Connect (OSTI)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai -Zhuang; Ho, Kai -Ming

    2015-03-05

    The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5–7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5–7 at atomistic and nano scales. The alnico 5–7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at low temperature. The boundary between these two phases is quite sharp (~2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. In addition, a small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5–7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. Furthermore, the results from our Monte Carlo simulations are consistent with available experimental results.

  1. SU-E-T-578: MCEBRT, A Monte Carlo Code for External Beam Treatment Plan Verifications

    SciTech Connect (OSTI)

    Chibani, O; Ma, C; Eldib, A

    2014-06-01

    Purpose: Present a new Monte Carlo code (MCEBRT) for patient-specific dose calculations in external beam radiotherapy. The code MLC model is benchmarked and real patient plans are re-calculated using MCEBRT and compared with commercial TPS. Methods: MCEBRT is based on the GEPTS system (Med. Phys. 29 (2002) 835–846). Phase space data generated for Varian linac photon beams (6 – 15 MV) are used as source term. MCEBRT uses a realistic MLC model (tongue and groove, rounded ends). Patient CT and DICOM RT files are used to generate a 3D patient phantom and simulate the treatment configuration (gantry, collimator and couch angles; jaw positions; MLC sequences; MUs). MCEBRT dose distributions and DVHs are compared with those from TPS in absolute way (Gy). Results: Calculations based on the developed MLC model closely matches transmission measurements (pin-point ionization chamber at selected positions and film for lateral dose profile). See Fig.1. Dose calculations for two clinical cases (whole brain irradiation with opposed beams and lung case with eight fields) are carried out and outcomes are compared with the Eclipse AAA algorithm. Good agreement is observed for the brain case (Figs 2-3) except at the surface where MCEBRT dose can be higher by 20%. This is due to better modeling of electron contamination by MCEBRT. For the lung case an overall good agreement (91% gamma index passing rate with 3%/3mm DTA criterion) is observed (Fig.4) but dose in lung can be over-estimated by up to 10% by AAA (Fig.5). CTV and PTV DVHs from TPS and MCEBRT are nevertheless close (Fig.6). Conclusion: A new Monte Carlo code is developed for plan verification. Contrary to phantombased QA measurements, MCEBRT simulate the exact patient geometry and tissue composition. MCEBRT can be used as extra verification layer for plans where surface dose and tissue heterogeneity are an issue.

  2. On-the-fly generation of differential resonance scattering probability distribution functions for Monte Carlo codes

    SciTech Connect (OSTI)

    Sunny, E. E.; Martin, W. R. [University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor MI 48109 (United States)

    2013-07-01

    Current Monte Carlo codes use one of three models to model neutron scattering in the epithermal energy range: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S({alpha},{beta}) model, depending on the neutron energy and the specific Monte Carlo code. The free gas scattering model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not for heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that using the free gas scattering model in the vicinity of the resonances in the lower epithermal range can under-predict resonance absorption due to the up-scattering phenomenon. Existing methods all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame. In this paper, we will present a new sampling methodology that (1) accounts for the energy-dependent scattering cross sections in the collision analysis and (2) acts in the laboratory frame, avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials to approximate the scattering cross section in Blackshaw's equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during the random walk of the neutron. Results for criticality studies on fuel pin and fuel assembly calculations using these methods showed very close comparison to results using the reference Doppler-broadened rejection correction (DBRC) scheme. (authors)

  3. SU-E-T-277: Raystation Electron Monte Carlo Commissioning and Clinical Implementation

    SciTech Connect (OSTI)

    Allen, C; Sansourekidou, P; Pavord, D

    2014-06-01

    Purpose: To evaluate the Raystation v4.0 Electron Monte Carlo algorithm for an Elekta Infinity linear accelerator and commission for clinical use. Methods: A total of 199 tests were performed (75 Export and Documentation, 20 PDD, 30 Profiles, 4 Obliquity, 10 Inhomogeneity, 55 MU Accuracy, and 5 Grid and Particle History). Export and documentation tests were performed with respect to MOSAIQ (Elekta AB) and RadCalc (Lifeline Software Inc). Mechanical jaw parameters and cutout magnifications were verified. PDD and profiles for open cones and cutouts were extracted and compared with water tank measurements. Obliquity and inhomogeneity for bone and air calculations were compared to film dosimetry. MU calculations for open cones and cutouts were performed and compared to both RadCalc and simple hand calculations. Grid size and particle histories were evaluated per energy for statistical uncertainty performance. Acceptability was categorized as follows: performs as expected, negligible impact on workflow, marginal impact, critical impact or safety concern, and catastrophic impact of safety concern. Results: Overall results are: 88.8% perform as expected, 10.2% negligible, 2.0% marginal, 0% critical and 0% catastrophic. Results per test category are as follows: Export and Documentation: 100% perform as expected, PDD: 100% perform as expected, Profiles: 66.7% perform as expected, 33.3% negligible, Obliquity: 100% marginal, Inhomogeneity 50% perform as expected, 50% negligible, MU Accuracy: 100% perform as expected, Grid and particle histories: 100% negligible. To achieve distributions with satisfactory smoothness level, 5,000,000 particle histories were used. Calculation time was approximately 1 hour. Conclusion: Raystation electron Monte Carlo is acceptable for clinical use. All of the issues encountered have acceptable workarounds. Known issues were reported to Raysearch and will be resolved in upcoming releases.

  4. SU-E-T-239: Monte Carlo Modelling of SMC Proton Nozzles Using TOPAS

    SciTech Connect (OSTI)

    Chung, K; Kim, J; Shin, J; Han, Y; Ju, S; Hong, C; Kim, D; Kim, H; Shin, E; Ahn, S; Chung, S; Choi, D

    2014-06-01

    Purpose: To expedite and cross-check the commissioning of the proton therapy nozzles at Samsung Medical Center using TOPAS. Methods: We have two different types of nozzles at Samsung Medical Center (SMC), a multi-purpose nozzle and a pencil beam scanning dedicated nozzle. Both nozzles have been modelled in Monte Carlo simulation by using TOPAS based on the vendor-provided geometry. The multi-purpose nozzle is mainly composed of wobbling magnets, scatterers, ridge filters and multi-leaf collimators (MLC). Including patient specific apertures and compensators, all the parts of the nozzle have been implemented in TOPAS following the geometry information from the vendor.The dedicated scanning nozzle has a simpler structure than the multi-purpose nozzle with a vacuum pipe at the down stream of the nozzle.A simple water tank volume has been implemented to measure the dosimetric characteristics of proton beams from the nozzles. Results: We have simulated the two proton beam nozzles at SMC. Two different ridge filters have been tested for the spread-out Bragg peak (SOBP) generation of wobbling mode in the multi-purpose nozzle. The spot sizes and lateral penumbra in two nozzles have been simulated and analyzed using a double Gaussian model. Using parallel geometry, both the depth dose curve and dose profile have been measured simultaneously. Conclusion: The proton therapy nozzles at SMC have been successfully modelled in Monte Carlo simulation using TOPAS. We will perform a validation with measured base data and then use the MC simulation to interpolate/extrapolate the measured data. We believe it will expedite the commissioning process of the proton therapy nozzles at SMC.

  5. Neutrinos from WIMP annihilations obtained using a full three-flavor Monte Carlo approach

    SciTech Connect (OSTI)

    Blennow, Mattias; Ohlsson, Tommy; Edsjoe, Joakim E-mail: edsjo@physto.se

    2008-01-15

    Weakly interacting massive particles (WIMPs) are one of the main candidates for making up the dark matter in the Universe. If these particles make up the dark matter, then they can be captured by the Sun or the Earth, sink to the respective cores, annihilate, and produce neutrinos. Thus, these neutrinos can be a striking dark matter signature at neutrino telescopes looking towards the Sun and/or the Earth. Here, we improve previous analyses on computing the neutrino yields from WIMP annihilations in several respects. We include neutrino oscillations in a full three-flavor framework as well as all effects from neutrino interactions on the way through the Sun (absorption, energy loss, and regeneration from tau decays). In addition, we study the effects of non-zero values of the mixing angle {theta}{sub 13} as well as the normal and inverted neutrino mass hierarchies. Our study is performed in an event-based setting which makes these results very useful both for theoretical analyses and for building a neutrino telescope Monte Carlo code. All our results for the neutrino yields, as well as our Monte Carlo code, are publicly available. We find that the yield of muon-type neutrinos from WIMP annihilations in the Sun is enhanced or suppressed, depending on the dominant WIMP annihilation channel. This effect is due to an effective flavor mixing caused by neutrino oscillations. For WIMP annihilations inside the Earth, the distance from source to detector is too small to allow for any significant amount of oscillations at the neutrino energies relevant for neutrino telescopes.

  6. Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations

    SciTech Connect (OSTI)

    Arampatzis, Georgios; Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003 ; Katsoulakis, Markos A.

    2014-03-28

    In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-“coupled”- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that the new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz–Kalos–Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary MATLAB source code.

  7. Cluster expansion modeling and Monte Carlo simulation of alnico 5–7 permanent magnets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai -Zhuang; Ho, Kai -Ming

    2015-03-05

    The concerns about the supply and resource of rare earth (RE) metals have generated a lot of interests in searching for high performance RE-free permanent magnets. Alnico alloys are traditional non-RE permanent magnets and have received much attention recently due their good performance at high temperature. In this paper, we develop an accurate and efficient cluster expansion energy model for alnico 5–7. Monte Carlo simulations using the cluster expansion method are performed to investigate the structure of alnico 5–7 at atomistic and nano scales. The alnico 5–7 master alloy is found to decompose into FeCo-rich and NiAl-rich phases at lowmore » temperature. The boundary between these two phases is quite sharp (~2 nm) for a wide range of temperature. The compositions of the main constituents in these two phases become higher when the temperature gets lower. Both FeCo-rich and NiAl-rich phases are in B2 ordering with Fe and Al on α-site and Ni and Co on β-site. The degree of order of the NiAl-rich phase is much higher than that of the FeCo-rich phase. In addition, a small magnetic moment is also observed in NiAl-rich phase but the moment reduces as the temperature is lowered, implying that the magnetic properties of alnico 5–7 could be improved by lowering annealing temperature to diminish the magnetism in NiAl-rich phase. Furthermore, the results from our Monte Carlo simulations are consistent with available experimental results.« less

  8. MO-G-BRF-09: Investigating Magnetic Field Dose Effects in Mice: A Monte Carlo Study

    SciTech Connect (OSTI)

    Rubinstein, A; Guindani, M; Followill, D; Melancon, A; Hazle, J; Court, L

    2014-06-15

    Purpose: In MRI-linac treatments, radiation dose distributions are affected by magnetic fields, especially at high-density/low-density interfaces. Radiobiological consequences of magnetic field dose effects are presently unknown; therefore, preclinical studies are needed to ensure the safe clinical use of MRI-linacs. This study investigates the optimal combination of beam energy and magnetic field strength needed for preclinical murine studies. Methods: The Monte Carlo code MCNP6 was used to simulate the effects of a magnetic field when irradiating a mouse-sized lung phantom with a 1.0cmx1.0cm photon beam. Magnetic field effects were examined using various beam energies (225kVp, 662keV[Cs-137], and 1.25MeV[Co-60]) and magnetic field strengths (0.75T, 1.5T, and 3T). The resulting dose distributions were compared to Monte Carlo results for humans with various field sizes and patient geometries using a 6MV/1.5T MRI-linac. Results: In human simulations, the addition of a 1.5T magnetic field caused an average dose increase of 49% (range:36%–60%) to lung at the soft tissue-to-lung interface and an average dose decrease of 30% (range:25%–36%) at the lung-to-soft tissue interface. In mouse simulations, the magnetic fields had no effect on the 225kVp dose distribution. The dose increases for the Cs-137 beam were 12%, 33%, and 49% for 0.75T, 1.5T, and 3.0T magnetic fields, respectively while the dose decreases were 7%, 23%, and 33%. For the Co-60 beam, the dose increases were 14%, 45%, and 41%, and the dose decreases were 18%, 35%, and 35%. Conclusion: The magnetic field dose effects observed in mouse phantoms using a Co-60 beam with 1.5T or 3T fields and a Cs-137 beam with a 3T field compare well with those seen in simulated human treatments with an MRI-linac. These irradiator/magnet combinations are suitable for preclinical studies investigating potential biological effects of delivering radiation therapy in the presence of a magnetic field. Partially funded by Elekta.

  9. Monte Carlo simulation based study of a proposed multileaf collimator for a telecobalt machine

    SciTech Connect (OSTI)

    Sahani, G.; Dash Sharma, P. K.; Hussain, S. A.; Dutt Sharma, Sunil; Sharma, D. N.

    2013-02-15

    Purpose: The objective of the present work was to propose a design of a secondary multileaf collimator (MLC) for a telecobalt machine and optimize its design features through Monte Carlo simulation. Methods: The proposed MLC design consists of 72 leaves (36 leaf pairs) with additional jaws perpendicular to leaf motion having the capability of shaping a maximum square field size of 35 Multiplication-Sign 35 cm{sup 2}. The projected widths at isocenter of each of the central 34 leaf pairs and 2 peripheral leaf pairs are 10 and 5 mm, respectively. The ends of the leaves and the x-jaws were optimized to obtain acceptable values of dosimetric and leakage parameters. Monte Carlo N-Particle code was used for generating beam profiles and depth dose curves and estimating the leakage radiation through the MLC. A water phantom of dimension 50 Multiplication-Sign 50 Multiplication-Sign 40 cm{sup 3} with an array of voxels (4 Multiplication-Sign 0.3 Multiplication-Sign 0.6 cm{sup 3}= 0.72 cm{sup 3}) was used for the study of dosimetric and leakage characteristics of the MLC. Output files generated for beam profiles were exported to the PTW radiation field analyzer software through locally developed software for analysis of beam profiles in order to evaluate radiation field width, beam flatness, symmetry, and beam penumbra. Results: The optimized version of the MLC can define radiation fields of up to 35 Multiplication-Sign 35 cm{sup 2} within the prescribed tolerance values of 2 mm. The flatness and symmetry were found to be well within the acceptable tolerance value of 3%. The penumbra for a 10 Multiplication-Sign 10 cm{sup 2} field size is 10.7 mm which is less than the generally acceptable value of 12 mm for a telecobalt machine. The maximum and average radiation leakage through the MLC were found to be 0.74% and 0.41% which are well below the International Electrotechnical Commission recommended tolerance values of 2% and 0.75%, respectively. The maximum leakage through the leaf ends in closed condition was observed to be 8.6% which is less than the values reported for other MLCs designed for medical linear accelerators. Conclusions: It is concluded that dosimetric parameters and the leakage radiation of the optimized secondary MLC design are well below their recommended tolerance values. The optimized design of the proposed MLC can be integrated into a telecobalt machine by replacing the existing adjustable secondary collimator for conformal radiotherapy treatment of cancer patients.

  10. Hybrid and Parallel Domain-Decomposition Methods Development to Enable Monte Carlo for Reactor Analyses

    SciTech Connect (OSTI)

    Wagner, John C; Mosher, Scott W; Evans, Thomas M; Peplow, Douglas E.; Turner, John A

    2011-01-01

    This paper describes code and methods development at the Oak Ridge National Laboratory focused on enabling high-fidelity, large-scale reactor analyses with Monte Carlo (MC). Current state-of-the-art tools and methods used to perform real commercial reactor analyses have several undesirable features, the most significant of which is the non-rigorous spatial decomposition scheme. Monte Carlo methods, which allow detailed and accurate modeling of the full geometry and are considered the gold standard for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the deterministic, multi-level spatial decomposition methodology in current practice. However, the prohibitive computational requirements associated with obtaining fully converged, system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. The goal of this research is to change this paradigm by enabling direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome are the slow, non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, our research has focused on the development and implementation of (1) a novel hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition (DD) algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The hybrid method development is based on an extension of the FW-CADIS method, which attempts to achieve uniform statistical uncertainty throughout a designated problem space. The MC DD development is being implemented in conjunction with the Denovo deterministic radiation transport package to have direct access to the 3-D, massively parallel discrete-ordinates solver (to support the hybrid method) and the associated parallel routines and structure. This paper describes the hybrid method, its implementation, and initial testing results for a realistic 2-D quarter core pressurized-water reactor model and also describes the MC DD algorithm and its implementation.

  11. Hybrid and Parallel Domain-Decomposition Methods Development to Enable Monte Carlo for Reactor Analyses

    SciTech Connect (OSTI)

    Wagner, John C; Mosher, Scott W; Evans, Thomas M; Peplow, Douglas E.; Turner, John A

    2010-01-01

    This paper describes code and methods development at the Oak Ridge National Laboratory focused on enabling high-fidelity, large-scale reactor analyses with Monte Carlo (MC). Current state-of-the-art tools and methods used to perform ''real'' commercial reactor analyses have several undesirable features, the most significant of which is the non-rigorous spatial decomposition scheme. Monte Carlo methods, which allow detailed and accurate modeling of the full geometry and are considered the ''gold standard'' for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the deterministic, multi-level spatial decomposition methodology in current practice. However, the prohibitive computational requirements associated with obtaining fully converged, system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. The goal of this research is to change this paradigm by enabling direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome are the slow, non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, our research has focused on the development and implementation of (1) a novel hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition (DD) algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The hybrid method development is based on an extension of the FW-CADIS method, which attempts to achieve uniform statistical uncertainty throughout a designated problem space. The MC DD development is being implemented in conjunction with the Denovo deterministic radiation transport package to have direct access to the 3-D, massively parallel discrete-ordinates solver (to support the hybrid method) and the associated parallel routines and structure. This paper describes the hybrid method, its implementation, and initial testing results for a realistic 2-D quarter core pressurized-water reactor model and also describes the MC DD algorithm and its implementation.

  12. Directed nanoscale self-assembly of molecular wires interconnecting nodal points using Monte Carlo simulations

    SciTech Connect (OSTI)

    Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; Pereyra, V. D.; Boscoboinik, J. A.

    2015-09-10

    The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)n organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochastic methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.

  13. Cascade annealing simulations of bcc iron using object kinetic Monte Carlo

    SciTech Connect (OSTI)

    Xu, Haixuan; Osetskiy, Yury N; Stoller, Roger E

    2012-01-01

    Simulations of displacement cascade annealing were carried out using object kinetic Monte Carlo based on an extensive MD database including various primary knock-on atom energies and directions. The sensitivity of the results to a broad range of material and model parameters was examined. The diffusion mechanism of interstitial clusters has been identified to have the most significant impact on the fraction of stable interstitials that escape the cascade region. The maximum level of recombination was observed for the limiting case in which all interstitial clusters exhibit 3D random walk diffusion. The OKMC model was parameterized using two alternative sets of defect migration and binding energies, one from ab initio calculations and the second from an empirical potential. The two sets of data predict essentially the same fraction of surviving defects but different times associated with the defect escape processes. This study provides a comprehensive picture of the first phase of long-term defect evolution in bcc iron and generates information that can be used as input data for mean field rate theory (MFRT) to predict the microstructure evolution of materials under irradiation. In addition, the limitations of the current OKMC model are discussed and a potential way to overcome these limitations is outlined.

  14. MONTE CARLO SIMULATIONS OF PERIODIC PULSED REACTOR WITH MOVING GEOMETRY PARTS

    SciTech Connect (OSTI)

    Cao, Yan; Gohar, Yousry

    2015-11-01

    In a periodic pulsed reactor, the reactor state varies periodically from slightly subcritical to slightly prompt supercritical for producing periodic power pulses. Such periodic state change is accomplished by a periodic movement of specific reactor parts, such as control rods or reflector sections. The analysis of such reactor is difficult to perform with the current reactor physics computer programs. Based on past experience, the utilization of the point kinetics approximations gives considerable errors in predicting the magnitude and the shape of the power pulse if the reactor has significantly different neutron life times in different zones. To accurately simulate the dynamics of this type of reactor, a Monte Carlo procedure using the transfer function TRCL/TR of the MCNP/MCNPX computer programs is utilized to model the movable reactor parts. In this paper, two algorithms simulating the geometry part movements during a neutron history tracking have been developed. Several test cases have been developed to evaluate these procedures. The numerical test cases have shown that the developed algorithms can be utilized to simulate the reactor dynamics with movable geometry parts.

  15. Development of Subspace-based Hybrid Monte Carlo-Deterministric Algorithms for Reactor Physics Calculations

    SciTech Connect (OSTI)

    Abdel-Khalik, Hany S.; Zhang, Qiong

    2014-05-20

    The development of hybrid Monte-Carlo-Deterministic (MC-DT) approaches, taking place over the past few decades, have primarily focused on shielding and detection applications where the analysis requires a small number of responses, i.e. at the detector locations(s). This work further develops a recently introduced global variance reduction approach, denoted by the SUBSPACE approach is designed to allow the use of MC simulation, currently limited to benchmarking calculations, for routine engineering calculations. By way of demonstration, the SUBSPACE approach is applied to assembly level calculations used to generate the few-group homogenized cross-sections. These models are typically expensive and need to be executed in the order of 103 - 105 times to properly characterize the few-group cross-sections for downstream core-wide calculations. Applicability to k-eigenvalue core-wide models is also demonstrated in this work. Given the favorable results obtained in this work, we believe the applicability of the MC method for reactor analysis calculations could be realized in the near future.

  16. Predicting image blur in proton radiography: comparisons between measurements and Monte Carlo simulations

    SciTech Connect (OSTI)

    von Wittenau, A; Aufderheide, M B; Henderson, G L

    2010-05-07

    Given the cost and lead-times involved in high-energy proton radiography, it is prudent to model proposed radiographic experiments to see if the images predicted would return useful information. We recently modified our raytracing transmission radiography modeling code HADES to perform simplified Monte Carlo simulations of the transport of protons in a proton radiography beamline. Beamline objects include the initial diffuser, vacuum magnetic fields, windows, angle-selecting collimators, and objects described as distorted 2D (planar or cylindrical) meshes or as distorted 3D hexahedral meshes. We present an overview of the algorithms used for the modeling and code timings for simulations through typical 2D and 3D meshes. We next calculate expected changes in image blur as scattering materials are placed upstream and downstream of a resolution test object (a 3 mm thick sheet of tantalum, into which 0.4 mm wide slits have been cut), and as the current supplied to the focusing magnets is varied. We compare and contrast the resulting simulations with the results of measurements obtained at the 800 MeV Los Alamos LANSCE Line-C proton radiography facility.

  17. Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation

    SciTech Connect (OSTI)

    Moucka, Filip; Bratko, Dusan Luzar, Alenka

    2015-03-28

    Using a newly developed grand canonical Monte Carlo approach based on fractional exchanges of dissolved ions and water molecules, we studied equilibrium partitioning of both components between laterally extended apolar confinements and surrounding electrolyte solution. Accurate calculations of the Hamiltonian and tensorial pressure components at anisotropic conditions in the pore required the development of a novel algorithm for a self-consistent correction of nonelectrostatic cut-off effects. At pore widths above the kinetic threshold to capillary evaporation, the molality of the salt inside the confinement grows in parallel with that of the bulk phase, but presents a nonuniform width-dependence, being depleted at some and elevated at other separations. The presence of the salt enhances the layered structure in the slit and lengthens the range of inter-wall pressure exerted by the metastable liquid. Solvation pressure becomes increasingly repulsive with growing salt molality in the surrounding bath. Depending on the sign of the excess molality in the pore, the wetting free energy of pore walls is either increased or decreased by the presence of the salt. Because of simultaneous rise in the solution surface tension, which increases the free-energy cost of vapor nucleation, the rise in the apparent hydrophobicity of the walls has not been shown to enhance the volatility of the metastable liquid in the pores.

  18. Centrality measures highlight proton traps and access points to proton highways in kinetic Monte Carlo trajectories

    SciTech Connect (OSTI)

    Krueger, Rachel A.; Haibach, Frederick G.; Fry, Dana L.; Gomez, Maria A.

    2015-04-21

    A centrality measure based on the time of first returns rather than the number of steps is developed and applied to finding proton traps and access points to proton highways in the doped perovskite oxides: AZr{sub 0.875}D{sub 0.125}O{sub 3}, where A is Ba or Sr and the dopant D is Y or Al. The high centrality region near the dopant is wider in the SrZrO{sub 3} systems than the BaZrO{sub 3} systems. In the aluminum-doped systems, a region of intermediate centrality (secondary region) is found in a plane away from the dopant. Kinetic Monte Carlo (kMC) trajectories show that this secondary region is an entry to fast conduction planes in the aluminum-doped systems in contrast to the highest centrality area near the dopant trap. The yttrium-doped systems do not show this secondary region because the fast conduction routes are in the same plane as the dopant and hence already in the high centrality trapped area. This centrality measure complements kMC by highlighting key areas in trajectories. The limiting activation barriers found via kMC are in very good agreement with experiments and related to the barriers to escape dopant traps.

  19. Monte Carlo Simulation of the Irradiation of Alanine Coated Film Dosimeters with Accelerated Electrons

    SciTech Connect (OSTI)

    Uribe, R. M.; Salvat, F.; Cleland, M. R.; Berejka, A.

    2009-03-10

    The Monte Carlo code PENELOPE was used to simulate the irradiation of alanine coated film dosimeters with electron beams of energies from 1 to 5 MeV being produced by a high-current industrial electron accelerator. This code includes a geometry package that defines complex quadratic geometries, such as those of the irradiation of products in an irradiation processing facility. In the present case the energy deposited on a water film at the surface of a wood parallelepiped was calculated using the program PENMAIN, which is a generic main program included in the PENELOPE distribution package. The results from the simulation were then compared with measurements performed by irradiating alanine film dosimeters with electrons using a 150 kW Dynamitron electron accelerator. The alanine films were placed on top of a set of wooden planks using the same geometrical arrangement as the one used for the simulation. The way the results from the simulation can be correlated with the actual measurements, taking into account the irradiation parameters, is described. An estimation of the percentage difference between measurements and calculations is also presented.

  20. The hydrophobic effect in a simple isotropic water-like model: Monte Carlo study

    SciTech Connect (OSTI)

    Huš, Matej; Urbic, Tomaz

    2014-04-14

    Using Monte Carlo computer simulations, we show that a simple isotropic water-like model with two characteristic lengths can reproduce the hydrophobic effect and the solvation properties of small and large non-polar solutes. Influence of temperature, pressure, and solute size on the thermodynamic properties of apolar solute solvation in a water model was systematically studied, showing two different solvation regimes. Small particles can fit into the cavities around the solvent particles, inducing additional order in the system and lowering the overall entropy. Large particles force the solvent to disrupt their network, increasing the entropy of the system. At low temperatures, the ordering effect of small solutes is very pronounced. Above the cross-over temperature, which strongly depends on the solute size, the entropy change becomes strictly positive. Pressure dependence was also investigated, showing a “cross-over pressure” where the entropy and enthalpy of solvation are the lowest. These results suggest two fundamentally different solvation mechanisms, as observed experimentally in water and computationally in various water-like models.

  1. A Monte Carlo study of reflection electron energy loss spectroscopy spectrum of a carbon contaminated surface

    SciTech Connect (OSTI)

    Da, B.; Li, Z. Y.; Chang, H. C.; Ding, Z. J.; Mao, S. F.

    2014-09-28

    It has been experimentally found that the carbon surface contamination influences strongly the spectrum signals in reflection electron energy loss spectroscopy (REELS) especially at low primary electron energy. However, there is still little theoretical work dealing with the carbon contamination effect in REELS. Such a work is required to predict REELS spectrum for layered structural sample, providing an understanding of the experimental phenomena observed. In this study, we present a numerical calculation result on the spatially varying differential inelastic mean free path for a sample made of a carbon contamination layer of varied thickness on a SrTiO{sub 3} substrate. A Monte Carlo simulation model for electron interaction with a layered structural sample is built by combining this inelastic scattering cross-section with the Mott's cross-section for electron elastic scattering. The simulation results have clearly shown that the contribution of the electron energy loss from carbon surface contamination increases with decreasing primary energy due to increased individual scattering processes along trajectory parts carbon contamination layer. Comparison of the simulated spectra for different thicknesses of the carbon contamination layer and for different primary electron energies with experimental spectra clearly identifies that the carbon contamination in the measured sample was in the form of discontinuous islands other than the uniform film.

  2. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography

    SciTech Connect (OSTI)

    Saha, Krishnendu; Straus, Kenneth J.; Glick, Stephen J.; Chen, Yu.

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  3. Feasibility of a Monte Carlo-deterministic hybrid method for fast reactor analysis

    SciTech Connect (OSTI)

    Heo, W.; Kim, W.; Kim, Y.; Yun, S.

    2013-07-01

    A Monte Carlo and deterministic hybrid method is investigated for the analysis of fast reactors in this paper. Effective multi-group cross sections data are generated using a collision estimator in the MCNP5. A high order Legendre scattering cross section data generation module was added into the MCNP5 code. Both cross section data generated from MCNP5 and TRANSX/TWODANT using the homogeneous core model were compared, and were applied to DIF3D code for fast reactor core analysis of a 300 MWe SFR TRU burner core. For this analysis, 9 groups macroscopic-wise data was used. In this paper, a hybrid calculation MCNP5/DIF3D was used to analyze the core model. The cross section data was generated using MCNP5. The k{sub eff} and core power distribution were calculated using the 54 triangle FDM code DIF3D. A whole core calculation of the heterogeneous core model using the MCNP5 was selected as a reference. In terms of the k{sub eff}, 9-group MCNP5/DIF3D has a discrepancy of -154 pcm from the reference solution, 9-group TRANSX/TWODANT/DIF3D analysis gives -1070 pcm discrepancy. (authors)

  4. Monte Carlo modeling of neutron and gamma-ray imaging systems

    SciTech Connect (OSTI)

    Hall, J.

    1996-04-01

    Detailed numerical prototypes are essential to design of efficient and cost-effective neutron and gamma-ray imaging systems. We have exploited the unique capabilities of an LLNL-developed radiation transport code (COG) to develop code modules capable of simulating the performance of neutron and gamma-ray imaging systems over a wide range of source energies. COG allows us to simulate complex, energy-, angle-, and time-dependent radiation sources, model 3-dimensional system geometries with ``real world`` complexity, specify detailed elemental and isotopic distributions and predict the responses of various types of imaging detectors with full Monte Carlo accuray. COG references detailed, evaluated nuclear interaction databases allowingusers to account for multiple scattering, energy straggling, and secondary particle production phenomena which may significantly effect the performance of an imaging system by may be difficult or even impossible to estimate using simple analytical models. This work presents examples illustrating the use of these routines in the analysis of industrial radiographic systems for thick target inspection, nonintrusive luggage and cargoscanning systems, and international treaty verification.

  5. Collapse transitions in thermosensitive multi-block copolymers: A Monte Carlo study

    SciTech Connect (OSTI)

    Rissanou, Anastassia N.; Tzeli, Despoina S.; Anastasiadis, Spiros H.; Bitsanis, Ioannis A.

    2014-05-28

    Monte Carlo simulations are performed on a simple cubic lattice to investigate the behavior of a single linear multiblock copolymer chain of various lengths N. The chain of type (A{sub n}B{sub n}){sub m} consists of alternating A and B blocks, where A are solvophilic and B are solvophobic and N = 2nm. The conformations are classified in five cases of globule formation by the solvophobic blocks of the chain. The dependence of globule characteristics on the molecular weight and on the number of blocks, which participate in their formation, is examined. The focus is on relative high molecular weight blocks (i.e., N in the range of 500–5000 units) and very differing energetic conditions for the two blocks (very good—almost athermal solvent for A and bad solvent for B). A rich phase behavior is observed as a result of the alternating architecture of the multiblock copolymer chain. We trust that thermodynamic equilibrium has been reached for chains of N up to 2000 units; however, for longer chains kinetic entrapments are observed. The comparison among equivalent globules consisting of different number of B-blocks shows that the more the solvophobic blocks constituting the globule the bigger its radius of gyration and the looser its structure. Comparisons between globules formed by the solvophobic blocks of the multiblock copolymer chain and their homopolymer analogs highlight the important role of the solvophilic A-blocks.

  6. Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams

    SciTech Connect (OSTI)

    Vandervoort, Eric J. Cygler, Joanna E.; The Faculty of Medicine, The University of Ottawa, Ottawa, Ontario K1H 8M5; Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 ; Tchistiakova, Ekaterina; Department of Medical Biophysics, University of Toronto, Ontario M5G 2M9; Heart and Stroke Foundation Centre for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Ontario M4N 3M5 ; La Russa, Daniel J.; The Faculty of Medicine, The University of Ottawa, Ottawa, Ontario K1H 8M5

    2014-02-15

    Purpose: In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Methods: Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Results: Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 × 5 cm{sup 2}. Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm ?-criteria) provided that the steep dose gradient in the depth direction is considered. Conclusions: Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.

  7. Kinetic Monte Carlo Simulations and Molecular Conductance Measurements of the Bacterial Decaheme Cytochrome MtrF

    SciTech Connect (OSTI)

    Byun, H. S.; Pirbadian, S.; Nakano, Aiichiro; Shi, Liang; El-Naggar, Mohamed Y.

    2014-09-05

    Microorganisms overcome the considerable hurdle of respiring extracellular solid substrates by deploying large multiheme cytochrome complexes that form 20 nanometer conduits to traffic electrons through the periplasm and across the cellular outer membrane. Here we report the first kinetic Monte Carlo simulations and single-molecule scanning tunneling microscopy (STM) measurements of the Shewanella oneidensis MR-1 outer membrane decaheme cytochrome MtrF, which can perform the final electron transfer step from cells to minerals and microbial fuel cell anodes. We find that the calculated electron transport rate through MtrF is consistent with previously reported in vitro measurements of the Shewanella Mtr complex, as well as in vivo respiration rates on electrode surfaces assuming a reasonable (experimentally verified) coverage of cytochromes on the cell surface. The simulations also reveal a rich phase diagram in the overall electron occupation density of the hemes as a function of electron injection and ejection rates. Single molecule tunneling spectroscopy confirms MtrF's ability to mediate electron transport between an STM tip and an underlying Au(111) surface, but at rates higher than expected from previously calculated heme-heme electron transfer rates for solvated molecules.

  8. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Hyman, James M; Robinson, Bruce A; Higdon, Dave; Ter Braak, Cajo J F; Diks, Cees G H

    2008-01-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled DiffeRential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to complex, multi-modal search problems.

  9. Analysis of Radiation Effects in Silicon using Kinetic Monte Carlo Methods

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hehr, Brian Douglas

    2014-11-25

    The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Normally, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials.more » The code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos Neutron Science Center (LANSCE) “Blue Room” facility. Our results reveal that KMC calculations agree well with these experiments once adjustments are made, within the appropriate uncertainty bounds, to some of the sensitive defect parameters.« less

  10. Benchmarking density functionals for hydrogen-helium mixtures with quantum Monte Carlo: Energetics, pressures, and forces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Clay, Raymond C.; Holzmann, Markus; Ceperley, David M.; Morales, Maguel A.

    2016-01-19

    An accurate understanding of the phase diagram of dense hydrogen and helium mixtures is a crucial component in the construction of accurate models of Jupiter, Saturn, and Jovian extrasolar planets. Though DFT based rst principles methods have the potential to provide the accuracy and computational e ciency required for this task, recent benchmarking in hydrogen has shown that achieving this accuracy requires a judicious choice of functional, and a quanti cation of the errors introduced. In this work, we present a quantum Monte Carlo based benchmarking study of a wide range of density functionals for use in hydrogen-helium mixtures atmore » thermodynamic conditions relevant for Jovian planets. Not only do we continue our program of benchmarking energetics and pressures, but we deploy QMC based force estimators and use them to gain insights into how well the local liquid structure is captured by di erent density functionals. We nd that TPSS, BLYP and vdW-DF are the most accurate functionals by most metrics, and that the enthalpy, energy, and pressure errors are very well behaved as a function of helium concentration. Beyond this, we highlight and analyze the major error trends and relative di erences exhibited by the major classes of functionals, and estimate the magnitudes of these e ects when possible.« less

  11. Directed nanoscale self-assembly of molecular wires interconnecting nodal points using Monte Carlo simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; Pereyra, V. D.; Boscoboinik, J. A.

    2015-09-10

    The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)n organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochasticmore » methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.« less

  12. Evaluation of vectorized Monte Carlo algorithms on GPUs for a neutron Eigenvalue problem

    SciTech Connect (OSTI)

    Du, X.; Liu, T.; Ji, W.; Xu, X. G.; Brown, F. B.

    2013-07-01

    Conventional Monte Carlo (MC) methods for radiation transport computations are 'history-based', which means that one particle history at a time is tracked. Simulations based on such methods suffer from thread divergence on the graphics processing unit (GPU), which severely affects the performance of GPUs. To circumvent this limitation, event-based vectorized MC algorithms can be utilized. A versatile software test-bed, called ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - was used for this study. ARCHER facilitates the development and testing of a MC code based on the vectorized MC algorithm implemented on GPUs by using NVIDIA's Compute Unified Device Architecture (CUDA). The ARCHER{sub GPU} code was designed to solve a neutron eigenvalue problem and was tested on a NVIDIA Tesla M2090 Fermi card. We found that although the vectorized MC method significantly reduces the occurrence of divergent branching and enhances the warp execution efficiency, the overall simulation speed is ten times slower than the conventional history-based MC method on GPUs. By analyzing detailed GPU profiling information from ARCHER, we discovered that the main reason was the large amount of global memory transactions, causing severe memory access latency. Several possible solutions to alleviate the memory latency issue are discussed. (authors)

  13. Monte Carlo modeling of transport in PbSe nanocrystal films

    SciTech Connect (OSTI)

    Carbone, I. Carter, S. A.; Zimanyi, G. T.

    2013-11-21

    A Monte Carlo hopping model was developed to simulate electron and hole transport in nanocrystalline PbSe films. Transport is carried out as a series of thermally activated hopping events between neighboring sites on a cubic lattice. Each site, representing an individual nanocrystal, is assigned a size-dependent electronic structure, and the effects of particle size, charging, interparticle coupling, and energetic disorder on electron and hole mobilities were investigated. Results of simulated field-effect measurements confirm that electron mobilities and conductivities at constant carrier densities increase with particle diameter by an order of magnitude up to 5?nm and begin to decrease above 6?nm. We find that as particle size increases, fewer hops are required to traverse the same distance and that site energy disorder significantly inhibits transport in films composed of smaller nanoparticles. The dip in mobilities and conductivities at larger particle sizes can be explained by a decrease in tunneling amplitudes and by charging penalties that are incurred more frequently when carriers are confined to fewer, larger nanoparticles. Using a nearly identical set of parameter values as the electron simulations, hole mobility simulations confirm measurements that increase monotonically with particle size over two orders of magnitude.

  14. A Monte Carlo Analysis of Gas Centrifuge Enrichment Plant Process Load Cell Data

    SciTech Connect (OSTI)

    Garner, James R; Whitaker, J Michael

    2013-01-01

    As uranium enrichment plants increase in number, capacity, and types of separative technology deployed (e.g., gas centrifuge, laser, etc.), more automated safeguards measures are needed to enable the IAEA to maintain safeguards effectiveness in a fiscally constrained environment. Monitoring load cell data can significantly increase the IAEA s ability to efficiently achieve the fundamental safeguards objective of confirming operations as declared (i.e., no undeclared activities), but care must be taken to fully protect the operator s proprietary and classified information related to operations. Staff at ORNL, LANL, JRC/ISPRA, and University of Glasgow are investigating monitoring the process load cells at feed and withdrawal (F/W) stations to improve international safeguards at enrichment plants. A key question that must be resolved is what is the necessary frequency of recording data from the process F/W stations? Several studies have analyzed data collected at a fixed frequency. This paper contributes to load cell process monitoring research by presenting an analysis of Monte Carlo simulations to determine the expected errors caused by low frequency sampling and its impact on material balance calculations.

  15. Analysis of Radiation Effects in Silicon using Kinetic Monte Carlo Methods

    SciTech Connect (OSTI)

    Hehr, Brian Douglas

    2014-11-25

    The transient degradation of semiconductor device performance under irradiation has long been an issue of concern. Neutron irradiation can instigate the formation of quasi-stable defect structures, thereby introducing new energy levels into the bandgap that alter carrier lifetimes and give rise to such phenomena as gain degradation in bipolar junction transistors. Normally, the initial defect formation phase is followed by a recovery phase in which defect-defect or defect-dopant interactions modify the characteristics of the damaged structure. A kinetic Monte Carlo (KMC) code has been developed to model both thermal and carrier injection annealing of initial defect structures in semiconductor materials. The code is employed to investigate annealing in electron-irradiated, p-type silicon as well as the recovery of base current in silicon transistors bombarded with neutrons at the Los Alamos Neutron Science Center (LANSCE) “Blue Room” facility. Our results reveal that KMC calculations agree well with these experiments once adjustments are made, within the appropriate uncertainty bounds, to some of the sensitive defect parameters.

  16. Multilevel Monte Carlo for two phase flow and Buckley–Leverett transport in random heterogeneous porous media

    SciTech Connect (OSTI)

    Müller, Florian Jenny, Patrick Meyer, Daniel W.

    2013-10-01

    Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and Buckley–Leverett transport in random heterogeneous porous media. The performance of MLMC is compared to MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.

  17. Experimental and Monte Carlo evaluation of Eclipse treatment planning system for effects on dose distribution of the hip prostheses

    SciTech Connect (OSTI)

    Çatl?, Serap; Tan?r, Güne?

    2013-10-01

    The present study aimed to investigate the effects of titanium, titanium alloy, and stainless steel hip prostheses on dose distribution based on the Monte Carlo simulation method, as well as the accuracy of the Eclipse treatment planning system (TPS) at 6 and 18 MV photon energies. In the present study the pencil beam convolution (PBC) method implemented in the Eclipse TPS was compared to the Monte Carlo method and ionization chamber measurements. The present findings show that if high-Z material is used in prosthesis, large dose changes can occur due to scattering. The variance in dose observed in the present study was dependent on material type, density, and atomic number, as well as photon energy; as photon energy increased back scattering decreased. The dose perturbation effect of hip prostheses was significant and could not be predicted accurately by the PBC method for hip prostheses. The findings show that for accurate dose calculation the Monte Carlo-based TPS should be used in patients with hip prostheses.

  18. Forward treatment planning for modulated electron radiotherapy (MERT) employing Monte Carlo methods

    SciTech Connect (OSTI)

    Henzen, D. Manser, P.; Frei, D.; Volken, W.; Born, E. J.; Lössl, K.; Aebersold, D. M.; Fix, M. K.; Neuenschwander, H.; Stampanoni, M. F. M.

    2014-03-15

    Purpose: This paper describes the development of a forward planning process for modulated electron radiotherapy (MERT). The approach is based on a previously developed electron beam model used to calculate dose distributions of electron beams shaped by a photon multi leaf collimator (pMLC). Methods: As the electron beam model has already been implemented into the Swiss Monte Carlo Plan environment, the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA) can be included in the planning process for MERT. In a first step, CT data are imported into Eclipse and a pMLC shaped electron beam is set up. This initial electron beam is then divided into segments, with the electron energy in each segment chosen according to the distal depth of the planning target volume (PTV) in beam direction. In order to improve the homogeneity of the dose distribution in the PTV, a feathering process (Gaussian edge feathering) is launched, which results in a number of feathered segments. For each of these segments a dose calculation is performed employing the in-house developed electron beam model along with the macro Monte Carlo dose calculation algorithm. Finally, an automated weight optimization of all segments is carried out and the total dose distribution is read back into Eclipse for display and evaluation. One academic and two clinical situations are investigated for possible benefits of MERT treatment compared to standard treatments performed in our clinics and treatment with a bolus electron conformal (BolusECT) method. Results: The MERT treatment plan of the academic case was superior to the standard single segment electron treatment plan in terms of organs at risk (OAR) sparing. Further, a comparison between an unfeathered and a feathered MERT plan showed better PTV coverage and homogeneity for the feathered plan, with V{sub 95%} increased from 90% to 96% and V{sub 107%} decreased from 8% to nearly 0%. For a clinical breast boost irradiation, the MERT plan led to a similar homogeneity in the PTV compared to the standard treatment plan while the mean body dose was lower for the MERT plan. Regarding the second clinical case, a whole breast treatment, MERT resulted in a reduction of the lung volume receiving more than 45% of the prescribed dose when compared to the standard plan. On the other hand, the MERT plan leads to a larger low-dose lung volume and a degraded dose homogeneity in the PTV. For the clinical cases evaluated in this work, treatment plans using the BolusECT technique resulted in a more homogenous PTV and CTV coverage but higher doses to the OARs than the MERT plans. Conclusions: MERT treatments were successfully planned for phantom and clinical cases, applying a newly developed intuitive and efficient forward planning strategy that employs a MC based electron beam model for pMLC shaped electron beams. It is shown that MERT can lead to a dose reduction in OARs compared to other methods. The process of feathering MERT segments results in an improvement of the dose homogeneity in the PTV.

  19. Correction for FDG PET dose extravasations: Monte Carlo validation and quantitative evaluation of patient studies

    SciTech Connect (OSTI)

    Silva-Rodríguez, Jesús Aguiar, Pablo; Servicio de Medicina Nuclear, Complexo Hospitalario Universidade de Santiago de Compostela , 15782, Galicia; Grupo de Imaxe Molecular, Instituto de Investigación Sanitarias , Santiago de Compostela, 15706, Galicia ; Sánchez, Manuel; Mosquera, Javier; Luna-Vega, Víctor; Cortés, Julia; Garrido, Miguel; Pombar, Miguel; Ruibal, Álvaro; Grupo de Imaxe Molecular, Instituto de Investigación Sanitarias , Santiago de Compostela, 15706, Galicia; Fundación Tejerina, 28003, Madrid

    2014-05-15

    Purpose: Current procedure guidelines for whole body [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) state that studies with visible dose extravasations should be rejected for quantification protocols. Our work is focused on the development and validation of methods for estimating extravasated doses in order to correct standard uptake value (SUV) values for this effect in clinical routine. Methods: One thousand three hundred sixty-seven consecutive whole body FDG-PET studies were visually inspected looking for extravasation cases. Two methods for estimating the extravasated dose were proposed and validated in different scenarios using Monte Carlo simulations. All visible extravasations were retrospectively evaluated using a manual ROI based method. In addition, the 50 patients with higher extravasated doses were also evaluated using a threshold-based method. Results: Simulation studies showed that the proposed methods for estimating extravasated doses allow us to compensate the impact of extravasations on SUV values with an error below 5%. The quantitative evaluation of patient studies revealed that paravenous injection is a relatively frequent effect (18%) with a small fraction of patients presenting considerable extravasations ranging from 1% to a maximum of 22% of the injected dose. A criterion based on the extravasated volume and maximum concentration was established in order to identify this fraction of patients that might be corrected for paravenous injection effect. Conclusions: The authors propose the use of a manual ROI based method for estimating the effectively administered FDG dose and then correct SUV quantification in those patients fulfilling the proposed criterion.

  20. SU-E-T-238: Monte Carlo Estimation of Cerenkov Dose for Photo-Dynamic Radiotherapy

    SciTech Connect (OSTI)

    Chibani, O; Price, R; Ma, C; Eldib, A; Mora, G

    2014-06-01

    Purpose: Estimation of Cerenkov dose from high-energy megavoltage photon and electron beams in tissue and its impact on the radiosensitization using Protoporphyrine IX (PpIX) for tumor targeting enhancement in radiotherapy. Methods: The GEPTS Monte Carlo code is used to generate dose distributions from 18MV Varian photon beam and generic high-energy (45-MV) photon and (45-MeV) electron beams in a voxel-based tissueequivalent phantom. In addition to calculating the ionization dose, the code scores Cerenkov energy released in the wavelength range 375–425 nm corresponding to the pick of the PpIX absorption spectrum (Fig. 1) using the Frank-Tamm formula. Results: The simulations shows that the produced Cerenkov dose suitable for activating PpIX is 4000 to 5500 times lower than the overall radiation dose for all considered beams (18MV, 45 MV and 45 MeV). These results were contradictory to the recent experimental studies by Axelsson et al. (Med. Phys. 38 (2011) p 4127), where Cerenkov dose was reported to be only two orders of magnitude lower than the radiation dose. Note that our simulation results can be corroborated by a simple model where the Frank and Tamm formula is applied for electrons with 2 MeV/cm stopping power generating Cerenkov photons in the 375–425 nm range and assuming these photons have less than 1mm penetration in tissue. Conclusion: The Cerenkov dose generated by high-energy photon and electron beams may produce minimal clinical effect in comparison with the photon fluence (or dose) commonly used for photo-dynamic therapy. At the present time, it is unclear whether Cerenkov radiation is a significant contributor to the recently observed tumor regression for patients receiving radiotherapy and PpIX versus patients receiving radiotherapy only. The ongoing study will include animal experimentation and investigation of dose rate effects on PpIX response.

  1. BENCHMARK TESTS FOR MARKOV CHAIN MONTE CARLO FITTING OF EXOPLANET ECLIPSE OBSERVATIONS

    SciTech Connect (OSTI)

    Rogers, Justin; Lopez-Morales, Mercedes; Apai, Daniel; Adams, Elisabeth

    2013-04-10

    Ground-based observations of exoplanet eclipses provide important clues to the planets' atmospheric physics, yet systematics in light curve analyses are not fully understood. It is unknown if measurements suggesting near-infrared flux densities brighter than models predict are real, or artifacts of the analysis processes. We created a large suite of model light curves, using both synthetic and real noise, and tested the common process of light curve modeling and parameter optimization with a Markov Chain Monte Carlo algorithm. With synthetic white noise models, we find that input eclipse signals are generally recovered within 10% accuracy for eclipse depths greater than the noise amplitude, and to smaller depths for higher sampling rates and longer baselines. Red noise models see greater discrepancies between input and measured eclipse signals, often biased in one direction. Finally, we find that in real data, systematic biases result even with a complex model to account for trends, and significant false eclipse signals may appear in a non-Gaussian distribution. To quantify the bias and validate an eclipse measurement, we compare both the planet-hosting star and several of its neighbors to a separately chosen control sample of field stars. Re-examining the Rogers et al. Ks-band measurement of CoRoT-1b finds an eclipse 3190{sup +370}{sub -440} ppm deep centered at {phi}{sub me} = 0.50418{sup +0.00197}{sub -0.00203}. Finally, we provide and recommend the use of selected data sets we generated as a benchmark test for eclipse modeling and analysis routines, and propose criteria to verify eclipse detections.

  2. Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Santana Palacio, Juan A; Krogel, Jaron T; Kim, Jeongnim; Kent, Paul R; Reboredo, Fernando A

    2015-01-01

    We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy asmore » a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.« less

  3. SU-E-I-28: Evaluating the Organ Dose From Computed Tomography Using Monte Carlo Calculations

    SciTech Connect (OSTI)

    Ono, T; Araki, F

    2014-06-01

    Purpose: To evaluate organ doses from computed tomography (CT) using Monte Carlo (MC) calculations. Methods: A Philips Brilliance CT scanner (64 slice) was simulated using the GMctdospp (IMPS, Germany) based on the EGSnrc user code. The X-ray spectra and a bowtie filter for MC simulations were determined to coincide with measurements of half-value layer (HVL) and off-center ratio (OCR) profile in air. The MC dose was calibrated from absorbed dose measurements using a Farmer chamber and a cylindrical water phantom. The dose distribution from CT was calculated using patient CT images and organ doses were evaluated from dose volume histograms. Results: The HVLs of Al at 80, 100, and 120 kV were 6.3, 7.7, and 8.7 mm, respectively. The calculated HVLs agreed with measurements within 0.3%. The calculated and measured OCR profiles agreed within 3%. For adult head scans (CTDIvol) =51.4 mGy), mean doses for brain stem, eye, and eye lens were 23.2, 34.2, and 37.6 mGy, respectively. For pediatric head scans (CTDIvol =35.6 mGy), mean doses for brain stem, eye, and eye lens were 19.3, 24.5, and 26.8 mGy, respectively. For adult chest scans (CTDIvol=19.0 mGy), mean doses for lung, heart, and spinal cord were 21.1, 22.0, and 15.5 mGy, respectively. For adult abdominal scans (CTDIvol=14.4 mGy), the mean doses for kidney, liver, pancreas, spleen, and spinal cord were 17.4, 16.5, 16.8, 16.8, and 13.1 mGy, respectively. For pediatric abdominal scans (CTDIvol=6.76 mGy), mean doses for kidney, liver, pancreas, spleen, and spinal cord were 8.24, 8.90, 8.17, 8.31, and 6.73 mGy, respectively. In head scan, organ doses were considerably different from CTDIvol values. Conclusion: MC dose distributions calculated by using patient CT images are useful to evaluate organ doses absorbed to individual patients.

  4. Monte Carlo based beam model using a photon MLC for modulated electron radiotherapy

    SciTech Connect (OSTI)

    Henzen, D. Manser, P.; Frei, D.; Volken, W.; Born, E. J.; Vetterli, D.; Chatelain, C.; Fix, M. K.; Neuenschwander, H.; Stampanoni, M. F. M.

    2014-02-15

    Purpose: Modulated electron radiotherapy (MERT) promises sparing of organs at risk for certain tumor sites. Any implementation of MERT treatment planning requires an accurate beam model. The aim of this work is the development of a beam model which reconstructs electron fields shaped using the Millennium photon multileaf collimator (MLC) (Varian Medical Systems, Inc., Palo Alto, CA) for a Varian linear accelerator (linac). Methods: This beam model is divided into an analytical part (two photon and two electron sources) and a Monte Carlo (MC) transport through the MLC. For dose calculation purposes the beam model has been coupled with a macro MC dose calculation algorithm. The commissioning process requires a set of measurements and precalculated MC input. The beam model has been commissioned at a source to surface distance of 70 cm for a Clinac 23EX (Varian Medical Systems, Inc., Palo Alto, CA) and a TrueBeam linac (Varian Medical Systems, Inc., Palo Alto, CA). For validation purposes, measured and calculated depth dose curves and dose profiles are compared for four different MLC shaped electron fields and all available energies. Furthermore, a measured two-dimensional dose distribution for patched segments consisting of three 18 MeV segments, three 12 MeV segments, and a 9 MeV segment is compared with corresponding dose calculations. Finally, measured and calculated two-dimensional dose distributions are compared for a circular segment encompassed with a C-shaped segment. Results: For 15 × 34, 5 × 5, and 2 × 2 cm{sup 2} fields differences between water phantom measurements and calculations using the beam model coupled with the macro MC dose calculation algorithm are generally within 2% of the maximal dose value or 2 mm distance to agreement (DTA) for all electron beam energies. For a more complex MLC pattern, differences between measurements and calculations are generally within 3% of the maximal dose value or 3 mm DTA for all electron beam energies. For the two-dimensional dose comparisons, the differences between calculations and measurements are generally within 2% of the maximal dose value or 2 mm DTA. Conclusions : The results of the dose comparisons suggest that the developed beam model is suitable to accurately reconstruct photon MLC shaped electron beams for a Clinac 23EX and a TrueBeam linac. Hence, in future work the beam model will be utilized to investigate the possibilities of MERT using the photon MLC to shape electron beams.

  5. Monte Carlo semi-empirical model for Si(Li) x-ray detector: Differences between nominal and fitted parameters

    SciTech Connect (OSTI)

    Lopez-Pino, N.; Padilla-Cabal, F.; Garcia-Alvarez, J. A.; Vazquez, L.; D'Alessandro, K.; Correa-Alfonso, C. M.; Godoy, W.; Maidana, N. L.; Vanin, V. R.

    2013-05-06

    A detailed characterization of a X-ray Si(Li) detector was performed to obtain the energy dependence of efficiency in the photon energy range of 6.4 - 59.5 keV, which was measured and reproduced by Monte Carlo (MC) simulations. Significant discrepancies between MC and experimental values were found when the manufacturer parameters of the detector were used in the simulation. A complete Computerized Tomography (CT) detector scan allowed to find the correct crystal dimensions and position inside the capsule. The computed efficiencies with the resulting detector model differed with the measured values no more than 10% in most of the energy range.

  6. Calculating infinite-medium α-eigenvalue spectra with Monte Carlo using a transition rate matrix method

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Betzler, Benjamin R.; Kiedrowski, Brian C.; Brown, Forrest B.; Martin, William R.

    2015-08-28

    The time-dependent behavior of the energy spectrum in neutron transport was investigated with a formulation, based on continuous-time Markov processes, for computing α eigenvalues and eigenvectors in an infinite medium. In this study, a research Monte Carlo code called “TORTE” (To Obtain Real Time Eigenvalues) was created and used to estimate elements of a transition rate matrix. TORTE is capable of using both multigroup and continuous-energy nuclear data, and verification was performed. Eigenvalue spectra for infinite homogeneous mixtures were obtained, and an eigenfunction expansion was used to investigate transient behavior of the neutron energy spectrum.

  7. Integrated Cost and Schedule using Monte Carlo Simulation of a CPM Model - 12419

    SciTech Connect (OSTI)

    Hulett, David T.; Nosbisch, Michael R.

    2012-07-01

    This discussion of the recommended practice (RP) 57R-09 of AACE International defines the integrated analysis of schedule and cost risk to estimate the appropriate level of cost and schedule contingency reserve on projects. The main contribution of this RP is to include the impact of schedule risk on cost risk and hence on the need for cost contingency reserves. Additional benefits include the prioritizing of the risks to cost, some of which are risks to schedule, so that risk mitigation may be conducted in a cost-effective way, scatter diagrams of time-cost pairs for developing joint targets of time and cost, and probabilistic cash flow which shows cash flow at different levels of certainty. Integrating cost and schedule risk into one analysis based on the project schedule loaded with costed resources from the cost estimate provides both: (1) more accurate cost estimates than if the schedule risk were ignored or incorporated only partially, and (2) illustrates the importance of schedule risk to cost risk when the durations of activities using labor-type (time-dependent) resources are risky. Many activities such as detailed engineering, construction or software development are mainly conducted by people who need to be paid even if their work takes longer than scheduled. Level-of-effort resources, such as the project management team, are extreme examples of time-dependent resources, since if the project duration exceeds its planned duration the cost of these resources will increase over their budgeted amount. The integrated cost-schedule risk analysis is based on: - A high quality CPM schedule with logic tight enough so that it will provide the correct dates and critical paths during simulation automatically without manual intervention. - A contingency-free estimate of project costs that is loaded on the activities of the schedule. - Resolves inconsistencies between cost estimate and schedule that often creep into those documents as project execution proceeds. - Good-quality risk data that are usually collected in risk interviews of the project team, management and others knowledgeable in the risk of the project. The risks from the risk register are used as the basis of the risk data in the risk driver method. The risk driver method is based in the fundamental principle that identifiable risks drive overall cost and schedule risk. - A Monte Carlo simulation software program that can simulate schedule risk, burn WM2012 rate risk and time-independent resource risk. The results include the standard histograms and cumulative distributions of possible cost and time results for the project. However, by simulating both cost and time simultaneously we can collect the cost-time pairs of results and hence show the scatter diagram ('football chart') that indicates the joint probability of finishing on time and on budget. Also, we can derive the probabilistic cash flow for comparison with the time-phased project budget. Finally the risks to schedule completion and to cost can be prioritized, say at the P-80 level of confidence, to help focus the risk mitigation efforts. If the cost and schedule estimates including contingency reserves are not acceptable to the project stakeholders the project team should conduct risk mitigation workshops and studies, deciding which risk mitigation actions to take, and re-run the Monte Carlo simulation to determine the possible improvement to the project's objectives. Finally, it is recommended that the contingency reserves of cost and of time, calculated at a level that represents an acceptable degree of certainty and uncertainty for the project stakeholders, be added as a resource-loaded activity to the project schedule for strategic planning purposes. The risk analysis described in this paper is correct only for the current plan, represented by the schedule. The project contingency reserve of time and cost that are the main results of this analysis apply if that plan is to be followed. Of course project managers have the option of re-planning and re-scheduling in the face of new facts, in part by m

  8. Study the sensitivity of dose calculation in prism treatment planning system using Monte Carlo simulation of 6 MeV electron beam

    SciTech Connect (OSTI)

    Hardiansyah, D.; Haryanto, F.; Male, S.

    2014-09-30

    Prism is a non-commercial Radiotherapy Treatment Planning System (RTPS) develop by Ira J. Kalet from Washington University. Inhomogeneity factor is included in Prism TPS dose calculation. The aim of this study is to investigate the sensitivity of dose calculation on Prism using Monte Carlo simulation. Phase space source from head linear accelerator (LINAC) for Monte Carlo simulation is implemented. To achieve this aim, Prism dose calculation is compared with EGSnrc Monte Carlo simulation. Percentage depth dose (PDD) and R50 from both calculations are observed. BEAMnrc is simulated electron transport in LINAC head and produced phase space file. This file is used as DOSXYZnrc input to simulated electron transport in phantom. This study is started with commissioning process in water phantom. Commissioning process is adjusted Monte Carlo simulation with Prism RTPS. Commissioning result is used for study of inhomogeneity phantom. Physical parameters of inhomogeneity phantom that varied in this study are: density, location and thickness of tissue. Commissioning result is shown that optimum energy of Monte Carlo simulation for 6 MeV electron beam is 6.8 MeV. This commissioning is used R50 and PDD with Practical length (R{sub p}) as references. From inhomogeneity study, the average deviation for all case on interest region is below 5 %. Based on ICRU recommendations, Prism has good ability to calculate the radiation dose in inhomogeneity tissue.

  9. ACCELERATING FUSION REACTOR NEUTRONICS MODELING BY AUTOMATIC COUPLING OF HYBRID MONTE CARLO/DETERMINISTIC TRANSPORT ON CAD GEOMETRY

    SciTech Connect (OSTI)

    Biondo, Elliott D; Ibrahim, Ahmad M; Mosher, Scott W; Grove, Robert E

    2015-01-01

    Detailed radiation transport calculations are necessary for many aspects of the design of fusion energy systems (FES) such as ensuring occupational safety, assessing the activation of system components for waste disposal, and maintaining cryogenic temperatures within superconducting magnets. Hybrid Monte Carlo (MC)/deterministic techniques are necessary for this analysis because FES are large, heavily shielded, and contain streaming paths that can only be resolved with MC. The tremendous complexity of FES necessitates the use of CAD geometry for design and analysis. Previous ITER analysis has required the translation of CAD geometry to MCNP5 form in order to use the AutomateD VAriaNce reducTion Generator (ADVANTG) for hybrid MC/deterministic transport. In this work, ADVANTG was modified to support CAD geometry, allowing hybrid (MC)/deterministic transport to be done automatically and eliminating the need for this translation step. This was done by adding a new ray tracing routine to ADVANTG for CAD geometries using the Direct Accelerated Geometry Monte Carlo (DAGMC) software library. This new capability is demonstrated with a prompt dose rate calculation for an ITER computational benchmark problem using both the Consistent Adjoint Driven Importance Sampling (CADIS) method an the Forward Weighted (FW)-CADIS method. The variance reduction parameters produced by ADVANTG are shown to be the same using CAD geometry and standard MCNP5 geometry. Significant speedups were observed for both neutrons (as high as a factor of 7.1) and photons (as high as a factor of 59.6).

  10. Quantum Monte Carlo estimation of complex-time correlations for the study of the ground-state dynamic structure function

    SciTech Connect (OSTI)

    Rota, R.; Casulleras, J.; Mazzanti, F.; Boronat, J.

    2015-03-21

    We present a method based on the path integral Monte Carlo formalism for the calculation of ground-state time correlation functions in quantum systems. The key point of the method is the consideration of time as a complex variable whose phase δ acts as an adjustable parameter. By using high-order approximations for the quantum propagator, it is possible to obtain Monte Carlo data all the way from purely imaginary time to δ values near the limit of real time. As a consequence, it is possible to infer accurately the spectral functions using simple inversion algorithms. We test this approach in the calculation of the dynamic structure function S(q, ω) of two one-dimensional model systems, harmonic and quartic oscillators, for which S(q, ω) can be exactly calculated. We notice a clear improvement in the calculation of the dynamic response with respect to the common approach based on the inverse Laplace transform of the imaginary-time correlation function.

  11. Monte Carlo determination of the low-energy constants of a spin-(1/2) Heisenberg model with spatial anisotropy

    SciTech Connect (OSTI)

    Jiang, F.-J.; Nyfeler, M.; Kaempfer, F.

    2009-07-15

    Motivated by the possible mechanism for the pinning of the electronic liquid crystal direction in YBa{sub 2}Cu{sub 3}O{sub 6.45} as proposed by Pardini et al. [Phys. Rev. B 78, 024439 (2008)], we use the first-principles Monte Carlo method to study the spin-(1/2) Heisenberg model with antiferromagnetic couplings J{sub 1} and J{sub 2} on the square lattice. In particular, the low-energy constants spin stiffness {rho}{sub s}, staggered magnetization M{sub s}, and spin wave velocity c are determined by fitting the Monte Carlo data to the predictions of magnon chiral perturbation theory. Further, the spin stiffnesses {rho}{sub s1} and {rho}{sub s2} as a function of the ratio J{sub 2}/J{sub 1} of the couplings are investigated in detail. Although we find a good agreement between our results with those obtained by the series expansion method in the weakly anisotropic regime, for strong anisotropy we observe discrepancies.

  12. Statistical Exploration of Electronic Structure of Molecules from Quantum Monte-Carlo Simulations

    SciTech Connect (OSTI)

    Prabhat, Mr; Zubarev, Dmitry; Lester, Jr., William A.

    2010-12-22

    In this report, we present results from analysis of Quantum Monte Carlo (QMC) simulation data with the goal of determining internal structure of a 3N-dimensional phase space of an N-electron molecule. We are interested in mining the simulation data for patterns that might be indicative of the bond rearrangement as molecules change electronic states. We examined simulation output that tracks the positions of two coupled electrons in the singlet and triplet states of an H2 molecule. The electrons trace out a trajectory, which was analyzed with a number of statistical techniques. This project was intended to address the following scientific questions: (1) Do high-dimensional phase spaces characterizing electronic structure of molecules tend to cluster in any natural way? Do we see a change in clustering patterns as we explore different electronic states of the same molecule? (2) Since it is hard to understand the high-dimensional space of trajectories, can we project these trajectories to a lower dimensional subspace to gain a better understanding of patterns? (3) Do trajectories inherently lie in a lower-dimensional manifold? Can we recover that manifold? After extensive statistical analysis, we are now in a better position to respond to these questions. (1) We definitely see clustering patterns, and differences between the H2 and H2tri datasets. These are revealed by the pamk method in a fairly reliable manner and can potentially be used to distinguish bonded and non-bonded systems and get insight into the nature of bonding. (2) Projecting to a lower dimensional subspace ({approx}4-5) using PCA or Kernel PCA reveals interesting patterns in the distribution of scalar values, which can be related to the existing descriptors of electronic structure of molecules. Also, these results can be immediately used to develop robust tools for analysis of noisy data obtained during QMC simulations (3) All dimensionality reduction and estimation techniques that we tried seem to indicate that one needs 4 or 5 components to account for most of the variance in the data, hence this 5D dataset does not necessarily lie on a well-defined, low dimensional manifold. In terms of specific clustering techniques, K-means was generally useful in exploring the dataset. The partition around medoids (pam) technique produced the most definitive results for our data showing distinctive patterns for both a sample of the complete data and time-series. The gap statistic with tibshirani criteria did not provide any distinction across the 2 dataset. The gap statistic w/DandF criteria, Model based clustering and hierarchical modeling simply failed to run on our datasets. Thankfully, the vanilla PCA technique was successful in handling our entire dataset. PCA revealed some interesting patterns for the scalar value distribution. Kernel PCA techniques (vanilladot, RBF, Polynomial) and MDS failed to run on the entire dataset, or even a significant fraction of the dataset, and we resorted to creating an explicit feature map followed by conventional PCA. Clustering using K-means and PAM in the new basis set seems to produce promising results. Understanding the new basis set in the scientific context of the problem is challenging, and we are currently working to further examine and interpret the results.

  13. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types

    SciTech Connect (OSTI)

    Muir, B. R.; Rogers, D. W. O.

    2014-11-01

    Purpose: To provide a comprehensive investigation of electron beam reference dosimetry using Monte Carlo simulations of the response of 10 plane-parallel and 18 cylindrical ion chamber types. Specific emphasis is placed on the determination of the optimal shift of the chambers’ effective point of measurement (EPOM) and beam quality conversion factors. Methods: The EGSnrc system is used for calculations of the absorbed dose to gas in ion chamber models and the absorbed dose to water as a function of depth in a water phantom on which cobalt-60 and several electron beam source models are incident. The optimal EPOM shifts of the ion chambers are determined by comparing calculations of R{sub 50} converted from I{sub 50} (calculated using ion chamber simulations in phantom) to R{sub 50} calculated using simulations of the absorbed dose to water vs depth in water. Beam quality conversion factors are determined as the calculated ratio of the absorbed dose to water to the absorbed dose to air in the ion chamber at the reference depth in a cobalt-60 beam to that in electron beams. Results: For most plane-parallel chambers, the optimal EPOM shift is inside of the active cavity but different from the shift determined with water-equivalent scaling of the front window of the chamber. These optimal shifts for plane-parallel chambers also reduce the scatter of beam quality conversion factors, k{sub Q}, as a function of R{sub 50}. The optimal shift of cylindrical chambers is found to be less than the 0.5 r{sub cav} recommended by current dosimetry protocols. In most cases, the values of the optimal shift are close to 0.3 r{sub cav}. Values of k{sub ecal} are calculated and compared to those from the TG-51 protocol and differences are explained using accurate individual correction factors for a subset of ion chambers investigated. High-precision fits to beam quality conversion factors normalized to unity in a beam with R{sub 50} = 7.5 cm (k{sub Q}{sup ?}) are provided. These factors avoid the use of gradient correction factors as used in the TG-51 protocol although a chamber dependent optimal shift in the EPOM is required when using plane-parallel chambers while no shift is needed with cylindrical chambers. The sensitivity of these results to parameters used to model the ion chambers is discussed and the uncertainty related to the practical use of these results is evaluated. Conclusions: These results will prove useful as electron beam reference dosimetry protocols are being updated. The analysis of this work indicates that cylindrical ion chambers may be appropriate for use in low-energy electron beams but measurements are required to characterize their use in these beams.

  14. Microsoft Word - S06713_SER.doc

    Office of Legacy Management (LM)

    09 August 2010 LMS/WEL/S06713 LMS/WEL/S06713 ENERGY Legacy Management U.S. DEPARTMENT OF U.S. Department of Energy Office of Legacy Management This page intentionally left blank LMS/WEL/S06713 U.S. Department of Energy Office of Legacy Management Weldon Spring Site Environmental Report for Calendar Year 2009 August 2010 This page intentionally left blank U.S. Department of Energy Weldon Spring Site Environmental Report for Calendar Year 2009 August 2010 Doc. No. S06713 Page i Contents

  15. SU-D-19A-03: Monte Carlo Investigation of the Mobetron to Perform Modulated Electron Beam Therapy

    SciTech Connect (OSTI)

    Emam, I; Eldib, A; Hosini, M; AlSaeed, E; Ma, C

    2014-06-01

    Purpose: Modulated electron radiotherapy (MERT) has been proposed as a mean of delivering conformal dose to shallow tumors while sparing distal structures and surrounding tissues. In intraoperative radiotherapy (IORT) utilizing Mobetron, an applicator is placed as closely as possible to the suspected cancerous tissues to be treated. In this study we investigate the characteristics of Mobetron electron beams collimated by an in-house prospective electron multileaf collimator (eMLC) and its feasibility for MERT. Methods: IntraOp Mobetron™ dedicated to perform radiotherapy during surgery was used in the study. It provides several energies (6, 9 and 12 MeV). Dosimetry measurements were performed to obtain percentage depth dose curves (PDD) and profiles for a 10-cm diameter applicator using the PTW MP3/XS 3D-scanning system and the semiflex ion chamber. MCBEAM/MCSIM Monte Carlo codes were used for the treatment head simulation and phantom dose calculation. The design of an electron beam collimation by an eMLC attached to the Mobetron head was also investigated using Monte Carlo simulations. Isodose distributions resulting from eMLC collimated beams were compared to that collimated using cutouts. The design for our Mobetron eMLC is based on our previous experiences with eMLCs designed for clinical linear accelerators. For Mobetron the eMLC is attached to the end of a spacer-mounted rectangular applicator at 50 cm SSD. Steel will be used as the leaf material because other materials would be toxic and will not be suitable for intraoperative applications. Results: Good agreement (within 2%) was achieved between measured and calculated PDD curves and profiles for all available energies. Dose distributiosn provided by the eMLC showed reasonable agreement (?3%/1mm) with those obtained by conventional cutouts. Conclusion: Monte Carlo simulations are capable of modeling Mobetron electron beams with a reliable accuracy. An eMLC attached to the Mobteron treatment head will allow better treatment options with those machines.

  16. SU-E-T-110: Development of An Independent, Monte Carlo, Dose Calculation, Quality Assurance Tool for Clinical Trials

    SciTech Connect (OSTI)

    Faught, A; Davidson, S; Kry, S; Ibbott, G; Followill, D; Fontenot, J; Etzel, C

    2014-06-01

    Purpose: To develop a comprehensive end-to-end test for Varian's TrueBeam linear accelerator for head and neck IMRT using a custom phantom designed to utilize multiple dosimetry devices. Purpose: To commission a multiple-source Monte Carlo model of Elekta linear accelerator beams of nominal energies 6MV and 10MV. Methods: A three source, Monte Carlo model of Elekta 6 and 10MV therapeutic x-ray beams was developed. Energy spectra of two photon sources corresponding to primary photons created in the target and scattered photons originating in the linear accelerator head were determined by an optimization process that fit the relative fluence of 0.25 MeV energy bins to the product of Fatigue-Life and Fermi functions to match calculated percent depth dose (PDD) data with that measured in a water tank for a 10x10cm2 field. Off-axis effects were modeled by a 3rd degree polynomial used to describe the off-axis half-value layer as a function of off-axis angle and fitting the off-axis fluence to a piecewise linear function to match calculated dose profiles with measured dose profiles for a 40×40cm2 field. The model was validated by comparing calculated PDDs and dose profiles for field sizes ranging from 3×3cm2 to 30×30cm2 to those obtained from measurements. A benchmarking study compared calculated data to measurements for IMRT plans delivered to anthropomorphic phantoms. Results: Along the central axis of the beam 99.6% and 99.7% of all data passed the 2%/2mm gamma criterion for 6 and 10MV models, respectively. Dose profiles at depths of dmax, through 25cm agreed with measured data for 99.4% and 99.6% of data tested for 6 and 10MV models, respectively. A comparison of calculated dose to film measurement in a head and neck phantom showed an average of 85.3% and 90.5% of pixels passing a 3%/2mm gamma criterion for 6 and 10MV models respectively. Conclusion: A Monte Carlo multiple-source model for Elekta 6 and 10MV therapeutic x-ray beams has been developed as a quality assurance tool for clinical trials.

  17. Simulation of energy absorption spectrum in NaI crystal detector for multiple gamma energy using Monte Carlo method

    SciTech Connect (OSTI)

    Wirawan, Rahadi; Waris, Abdul; Djamal, Mitra; Handayani, Gunawan

    2015-04-16

    The spectrum of gamma energy absorption in the NaI crystal (scintillation detector) is the interaction result of gamma photon with NaI crystal, and it’s associated with the photon gamma energy incoming to the detector. Through a simulation approach, we can perform an early observation of gamma energy absorption spectrum in a scintillator crystal detector (NaI) before the experiment conducted. In this paper, we present a simulation model result of gamma energy absorption spectrum for energy 100-700 keV (i.e. 297 keV, 400 keV and 662 keV). This simulation developed based on the concept of photon beam point source distribution and photon cross section interaction with the Monte Carlo method. Our computational code has been successfully predicting the multiple energy peaks absorption spectrum, which derived from multiple photon energy sources.

  18. Benchmark of Atucha-2 PHWR RELAP5-3D control rod model by Monte Carlo MCNP5 core calculation

    SciTech Connect (OSTI)

    Pecchia, M.; D'Auria, F.; Mazzantini, O.

    2012-07-01

    Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and peculiarities require the adoption of advanced Monte Carlo codes for performing realistic neutronic simulations. Therefore core models of Atucha-2 PHWR were developed using MCNP5. In this work a methodology was set up to collect the flux in the hexagonal mesh by which the Atucha-2 core is represented. The scope of this activity is to evaluate the effect of obliquely inserted control rod on neutron flux in order to validate the RELAP5-3D{sup C}/NESTLE three dimensional neutron kinetic coupled thermal-hydraulic model, applied by GRNSPG/UNIPI for performing selected transients of Chapter 15 FSAR of Atucha-2. (authors)

  19. Looking for Auger signatures in III-nitride light emitters: A full-band Monte Carlo perspective

    SciTech Connect (OSTI)

    Bertazzi, Francesco Goano, Michele; Zhou, Xiangyu; Calciati, Marco; Ghione, Giovanni; Matsubara, Masahiko; Bellotti, Enrico

    2015-02-09

    Recent experiments of electron emission spectroscopy (EES) on III-nitride light-emitting diodes (LEDs) have shown a correlation between droop onset and hot electron emission at the cesiated surface of the LED p-cap. The observed hot electrons have been interpreted as a direct signature of Auger recombination in the LED active region, as highly energetic Auger-excited electrons would be collected in long-lived satellite valleys of the conduction band so that they would not decay on their journey to the surface across the highly doped p-contact layer. We discuss this interpretation by using a full-band Monte Carlo model based on first-principles electronic structure and lattice dynamics calculations. The results of our analysis suggest that Auger-excited electrons cannot be unambiguously detected in the LED structures used in the EES experiments. Additional experimental and simulative work are necessary to unravel the complex physics of GaN cesiated surfaces.

  20. Quantifying the number of color centers in single fluorescent nanodiamonds by photon correlation spectroscopy and Monte Carlo simulation

    SciTech Connect (OSTI)

    Hui, Y.Y.; Chang, Y.-R.; Lee, H.-Y.; Chang, H.-C.; Lim, T.-S.; Fann Wunshain

    2009-01-05

    The number of negatively charged nitrogen-vacancy centers (N-V){sup -} in fluorescent nanodiamond (FND) has been determined by photon correlation spectroscopy and Monte Carlo simulations at the single particle level. By taking account of the random dipole orientation of the multiple (N-V){sup -} fluorophores and simulating the probability distribution of their effective numbers (N{sub e}), we found that the actual number (N{sub a}) of the fluorophores is in linear correlation with N{sub e}, with correction factors of 1.8 and 1.2 in measurements using linearly and circularly polarized lights, respectively. We determined N{sub a}=8{+-}1 for 28 nm FND particles prepared by 3 MeV proton irradiation.

  1. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams

    SciTech Connect (OSTI)

    Zink, K.; Czarnecki, D.; Voigts-Rhetz, P. von; Looe, H. K.; Harder, D.

    2014-11-01

    Purpose: The electron fluence inside a parallel-plate ionization chamber positioned in a water phantom and exposed to a clinical electron beam deviates from the unperturbed fluence in water in absence of the chamber. One reason for the fluence perturbation is the well-known “inscattering effect,” whose physical cause is the lack of electron scattering in the gas-filled cavity. Correction factors determined to correct for this effect have long been recommended. However, more recent Monte Carlo calculations have led to some doubt about the range of validity of these corrections. Therefore, the aim of the present study is to reanalyze the development of the fluence perturbation with depth and to review the function of the guard rings. Methods: Spatially resolved Monte Carlo simulations of the dose profiles within gas-filled cavities with various radii in clinical electron beams have been performed in order to determine the radial variation of the fluence perturbation in a coin-shaped cavity, to study the influences of the radius of the collecting electrode and of the width of the guard ring upon the indicated value of the ionization chamber formed by the cavity, and to investigate the development of the perturbation as a function of the depth in an electron-irradiated phantom. The simulations were performed for a primary electron energy of 6 MeV. Results: The Monte Carlo simulations clearly demonstrated a surprisingly large in- and outward electron transport across the lateral cavity boundary. This results in a strong influence of the depth-dependent development of the electron field in the surrounding medium upon the chamber reading. In the buildup region of the depth-dose curve, the in–out balance of the electron fluence is positive and shows the well-known dose oscillation near the cavity/water boundary. At the depth of the dose maximum the in–out balance is equilibrated, and in the falling part of the depth-dose curve it is negative, as shown here the first time. The influences of both the collecting electrode radius and the width of the guard ring are reflecting the deep radial penetration of the electron transport processes into the gas-filled cavities and the need for appropriate corrections of the chamber reading. New values for these corrections have been established in two forms, one converting the indicated value into the absorbed dose to water in the front plane of the chamber, the other converting it into the absorbed dose to water at the depth of the effective point of measurement of the chamber. In the Appendix, the in–out imbalance of electron transport across the lateral cavity boundary is demonstrated in the approximation of classical small-angle multiple scattering theory. Conclusions: The in–out electron transport imbalance at the lateral boundaries of parallel-plate chambers in electron beams has been studied with Monte Carlo simulation over a range of depth in water, and new correction factors, covering all depths and implementing the effective point of measurement concept, have been developed.

  2. Quantum Monte Carlo Study of the Ground-State Properties of a Fermi Gas in the BCS-BEC Crossover

    SciTech Connect (OSTI)

    Giorgini, S.; Astrakharchik, G. E.; Boronat, J.; Casulleras, J.

    2006-11-07

    The ground-state properties of a two-component Fermi gas with attractive short-range interactions are calculated using the fixed-node diffusion Monte Carlo method. The interaction strength is varied over a wide range by tuning the value of the s-wave scattering length of the two-body potential. We calculate the ground-state energy per particle and we characterize the equation of state of the system. Off-diagonal long-range order is investigated through the asymptotic behavior of the two-body density matrix. The condensate fraction of pairs is calculated in the unitary limit and on both sides of the BCS-BEC crossover.

  3. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications

    SciTech Connect (OSTI)

    Sarrut, David; Université Lyon 1; Centre Léon Bérard ; Bardiès, Manuel; Marcatili, Sara; Mauxion, Thibault; Boussion, Nicolas; Freud, Nicolas; Létang, Jean-Michel; Jan, Sébastien; Maigne, Lydia; Perrot, Yann; Pietrzyk, Uwe; Robert, Charlotte; and others

    2014-06-15

    In this paper, the authors' review the applicability of the open-source GATE Monte Carlo simulation platform based on the GEANT4 toolkit for radiation therapy and dosimetry applications. The many applications of GATE for state-of-the-art radiotherapy simulations are described including external beam radiotherapy, brachytherapy, intraoperative radiotherapy, hadrontherapy, molecular radiotherapy, and in vivo dose monitoring. Investigations that have been performed using GEANT4 only are also mentioned to illustrate the potential of GATE. The very practical feature of GATE making it easy to model both a treatment and an imaging acquisition within the same frameworkis emphasized. The computational times associated with several applications are provided to illustrate the practical feasibility of the simulations using current computing facilities.

  4. Characterization of scatter in digital mammography from use of Monte Carlo simulations and comparison to physical measurements

    SciTech Connect (OSTI)

    Leon, Stephanie M. Wagner, Louis K.; Brateman, Libby F.

    2014-11-01

    Purpose: Monte Carlo simulations were performed with the goal of verifying previously published physical measurements characterizing scatter as a function of apparent thickness. A secondary goal was to provide a way of determining what effect tissue glandularity might have on the scatter characteristics of breast tissue. The overall reason for characterizing mammography scatter in this research is the application of these data to an image processing-based scatter-correction program. Methods: MCNPX was used to simulate scatter from an infinitesimal pencil beam using typical mammography geometries and techniques. The spreading of the pencil beam was characterized by two parameters: mean radial extent (MRE) and scatter fraction (SF). The SF and MRE were found as functions of target, filter, tube potential, phantom thickness, and the presence or absence of a grid. The SF was determined by separating scatter and primary by the angle of incidence on the detector, then finding the ratio of the measured scatter to the total number of detected events. The accuracy of the MRE was determined by placing ring-shaped tallies around the impulse and fitting those data to the point-spread function (PSF) equation using the value for MRE derived from the physical measurements. The goodness-of-fit was determined for each data set as a means of assessing the accuracy of the physical MRE data. The effect of breast glandularity on the SF, MRE, and apparent tissue thickness was also considered for a limited number of techniques. Results: The agreement between the physical measurements and the results of the Monte Carlo simulations was assessed. With a grid, the SFs ranged from 0.065 to 0.089, with absolute differences between the measured and simulated SFs averaging 0.02. Without a grid, the range was 0.28–0.51, with absolute differences averaging ?0.01. The goodness-of-fit values comparing the Monte Carlo data to the PSF from the physical measurements ranged from 0.96 to 1.00 with a grid and 0.65 to 0.86 without a grid. Analysis of the data suggested that the nongrid data could be better described by a biexponential function than the single exponential used here. The simulations assessing the effect of breast composition on SF and MRE showed only a slight impact on these quantities. When compared to a mix of 50% glandular/50% adipose tissue, the impact of substituting adipose or glandular breast compositions on the apparent thickness of the tissue was about 5%. Conclusions: The findings show agreement between the physical measurements published previously and the Monte Carlo simulations presented here; the resulting data can therefore be used more confidently for an application such as image processing-based scatter correction. The findings also suggest that breast composition does not have a major impact on the scatter characteristics of breast tissue. Application of the scatter data to the development of a scatter-correction software program can be simplified by ignoring the variations in density among breast tissues.

  5. TU-F-18A-03: Improving Tissue Segmentation for Monte Carlo Dose Calculation Using DECT Data

    SciTech Connect (OSTI)

    Di, Salvio A; Bedwani, S; Carrier, J

    2014-06-15

    Purpose: To develop a new segmentation technique using dual energy CT (DECT) to overcome limitations related to segmentation from a standard Hounsfield unit (HU) to electron density (ED) calibration curve. Both methods are compared with a Monte Carlo analysis of dose distribution. Methods: DECT allows a direct calculation of both ED and effective atomic number (EAN) within a given voxel. The EAN is here defined as a function of the total electron cross-section of a medium. These values can be effectively acquired using a calibrated method from scans at two different energies. A prior stoichiometric calibration on a Gammex RMI phantom allows us to find the parameters to calculate EAN and ED within a voxel. Scans from a Siemens SOMATOM Definition Flash dual source system provided the data for our study. A Monte Carlo analysis compares dose distribution simulated by dosxyz-nrc, considering a head phantom defined by both segmentation techniques. Results: Results from depth dose and dose profile calculations show that materials with different atomic compositions but similar EAN present differences of less than 1%. Therefore, it is possible to define a short list of basis materials from which density can be adapted to imitate interaction behavior of any tissue. Comparison of the dose distributions on both segmentations shows a difference of 50% in dose in areas surrounding bone at low energy. Conclusion: The presented segmentation technique allows a more accurate medium definition in each voxel, especially in areas of tissue transition. Since the behavior of human tissues is highly sensitive at low energies, this reduces the errors on calculated dose distribution. This method could be further developed to optimize the tissue characterization based on anatomic site.

  6. Extraction of diffuse correlation spectroscopy flow index by integration of Nth-order linear model with Monte Carlo simulation

    SciTech Connect (OSTI)

    Shang, Yu; Lin, Yu; Yu, Guoqiang; Li, Ting; Chen, Lei; Toborek, Michal

    2014-05-12

    Conventional semi-infinite solution for extracting blood flow index (BFI) from diffuse correlation spectroscopy (DCS) measurements may cause errors in estimation of BFI (αD{sub B}) in tissues with small volume and large curvature. We proposed an algorithm integrating Nth-order linear model of autocorrelation function with the Monte Carlo simulation of photon migrations in tissue for the extraction of αD{sub B}. The volume and geometry of the measured tissue were incorporated in the Monte Carlo simulation, which overcome the semi-infinite restrictions. The algorithm was tested using computer simulations on four tissue models with varied volumes/geometries and applied on an in vivo stroke model of mouse. Computer simulations shows that the high-order (N ≥ 5) linear algorithm was more accurate in extracting αD{sub B} (errors < ±2%) from the noise-free DCS data than the semi-infinite solution (errors: −5.3% to −18.0%) for different tissue models. Although adding random noises to DCS data resulted in αD{sub B} variations, the mean values of errors in extracting αD{sub B} were similar to those reconstructed from the noise-free DCS data. In addition, the errors in extracting the relative changes of αD{sub B} using both linear algorithm and semi-infinite solution were fairly small (errors < ±2.0%) and did not rely on the tissue volume/geometry. The experimental results from the in vivo stroke mice agreed with those in simulations, demonstrating the robustness of the linear algorithm. DCS with the high-order linear algorithm shows the potential for the inter-subject comparison and longitudinal monitoring of absolute BFI in a variety of tissues/organs with different volumes/geometries.

  7. Genetic maps of polymorphic DNA loci on rat chromosome 1

    SciTech Connect (OSTI)

    Ding, Yan-Ping; Remmers, E.F.; Longman, R.E.

    1996-09-01

    Genetic linkage maps of loci defined by polymorphic DNA markers on rat chromosome 1 were constructed by genotyping F2 progeny of F344/N x LEW/N, BN/SsN x LEW/N, and DA/Bkl x F344/Hsd inbred rat strains. In total, 43 markers were mapped, of which 3 were restriction fragment length polymorphisms and the others were simple sequence length polymorphisms. Nineteen of these markers were associated with genes. Six markers for five genes, {gamma}-aminobutyric acid receptor {beta}3 (Gabrb3), syntaxin 2 (Stx2), adrenergic receptor {beta}3 (Gabrb3), syntaxin 2 (Stx2), adrenergic receptor {beta}1 (Adrb1), carcinoembryonic antigen gene family member 1 (Cgm1), and lipogenic protein S14 (Lpgp), and 20 anonymous loci were not previously reported. Thirteen gene loci (Myl2, Aldoa, Tnt, Igf2, Prkcg, Cgm4, Calm3, Cgm3, Psbp1, Sa, Hbb, Ins1, and Tcp1) were previously mapped. Comparative mapping analysis indicated that the large portion of rat chromosome 1 is homologous to mouse chromosome 7, although the homologous to mouse chromosome 7, although the homologs of two rat genes are located on mouse chromosomes 17 and 19. Homologs of the rat chromosome 1 genes that we mapped are located on human chromosomes 6, 10, 11, 12, 15, 16, and 19. 38 refs., 1 fig., 3 tabs.

  8. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    SciTech Connect (OSTI)

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.

    1990-12-01

    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  9. Inhalation developmental toxicology studies: Acetonitrile in rats. Final report

    SciTech Connect (OSTI)

    Mast, T.J.; Weigel, R.J.; Westerberg, R.B.; Boyd, P.J.; Hayden, B.K.; Evanoff, J.J.; Rommereim, R.L.

    1994-02-01

    The potential for acetonitrile to cause developmental toxicity was assessed in Sprague-Dawley rats exposed to 0, 100, 400, or 1200 ppM acetonitrile, 6 hours/day, 7 days/week. Exposure of rats to these concentrations of acetonitrile resulted in mortality in the 1200 ppM group (2/33 pregnant females; 1/10 non-pregnant females). However, there were no treatment-related effects upon body weights or reproduction indices at any exposure level, nor was there a significant increase in the incidence of fetal malformations or variations. The only effect observed in the fetuses was a slight, but not statiscally significant, exposure-correlated increase in the incidence of supernumerary ribs. Determination of acetonitrile and cyanide concentrations in maternal rat blood showed that acetonitrile concentration in the blood increased with exposure concentration for all exposed maternal rats. Detectable amounts of cyanide in the blood were found only in the rats exposed to 1200 ppM acetonitrile ({approximately}2 {mu}g cyanide/g of blood).

  10. HDRMC, an accelerated Monte Carlo dose calculator for high dose rate brachytherapy with CT-compatible applicators

    SciTech Connect (OSTI)

    Chibani, Omar C-M Ma, Charlie

    2014-05-15

    Purpose: To present a new accelerated Monte Carlo code for CT-based dose calculations in high dose rate (HDR) brachytherapy. The new code (HDRMC) accounts for both tissue and nontissue heterogeneities (applicator and contrast medium). Methods: HDRMC uses a fast ray-tracing technique and detailed physics algorithms to transport photons through a 3D mesh of voxels representing the patient anatomy with applicator and contrast medium included. A precalculated phase space file for the{sup 192}Ir source is used as source term. HDRM is calibrated to calculated absolute dose for real plans. A postprocessing technique is used to include the exact density and composition of nontissue heterogeneities in the 3D phantom. Dwell positions and angular orientations of the source are reconstructed using data from the treatment planning system (TPS). Structure contours are also imported from the TPS to recalculate dose-volume histograms. Results: HDRMC was first benchmarked against the MCNP5 code for a single source in homogenous water and for a loaded gynecologic applicator in water. The accuracy of the voxel-based applicator model used in HDRMC was also verified by comparing 3D dose distributions and dose-volume parameters obtained using 1-mm{sup 3} versus 2-mm{sup 3} phantom resolutions. HDRMC can calculate the 3D dose distribution for a typical HDR cervix case with 2-mm resolution in 5 min on a single CPU. Examples of heterogeneity effects for two clinical cases (cervix and esophagus) were demonstrated using HDRMC. The neglect of tissue heterogeneity for the esophageal case leads to the overestimate of CTV D90, CTV D100, and spinal cord maximum dose by 3.2%, 3.9%, and 3.6%, respectively. Conclusions: A fast Monte Carlo code for CT-based dose calculations which does not require a prebuilt applicator model is developed for those HDR brachytherapy treatments that use CT-compatible applicators. Tissue and nontissue heterogeneities should be taken into account in modern HDR brachytherapy planning.

  11. Application of Distribution Transformer Thermal Life Models to Electrified Vehicle Charging Loads Using Monte-Carlo Method: Preprint

    SciTech Connect (OSTI)

    Kuss, M.; Markel, T.; Kramer, W.

    2011-01-01

    Concentrated purchasing patterns of plug-in vehicles may result in localized distribution transformer overload scenarios. Prolonged periods of transformer overloading causes service life decrements, and in worst-case scenarios, results in tripped thermal relays and residential service outages. This analysis will review distribution transformer load models developed in the IEC 60076 standard, and apply the model to a neighborhood with plug-in hybrids. Residential distribution transformers are sized such that night-time cooling provides thermal recovery from heavy load conditions during the daytime utility peak. It is expected that PHEVs will primarily be charged at night in a residential setting. If not managed properly, some distribution transformers could become overloaded, leading to a reduction in transformer life expectancy, thus increasing costs to utilities and consumers. A Monte-Carlo scheme simulated each day of the year, evaluating 100 load scenarios as it swept through the following variables: number of vehicle per transformer, transformer size, and charging rate. A general method for determining expected transformer aging rate will be developed, based on the energy needs of plug-in vehicles loading a residential transformer.

  12. Using Monte Carlo ray tracing simulations to model the quantum harmonic oscillator modes observed in uranium nitride

    SciTech Connect (OSTI)

    Lin, J. Y. Y. [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Aczel, Adam A [ORNL] [ORNL; Abernathy, Douglas L [ORNL] [ORNL; Nagler, Stephen E [ORNL] [ORNL; Buyers, W. J. L. [National Research Council of Canada] [National Research Council of Canada; Granroth, Garrett E [ORNL] [ORNL

    2014-01-01

    Recently an extended series of equally spaced vibrational modes was observed in uranium nitride (UN) by performing neutron spectroscopy measurements using the ARCS and SEQUOIA time-of- flight chopper spectrometers [A.A. Aczel et al, Nature Communications 3, 1124 (2012)]. These modes are well described by 3D isotropic quantum harmonic oscillator (QHO) behavior of the nitrogen atoms, but there are additional contributions to the scattering that complicate the measured response. In an effort to better characterize the observed neutron scattering spectrum of UN, we have performed Monte Carlo ray tracing simulations of the ARCS and SEQUOIA experiments with various sample kernels, accounting for the nitrogen QHO scattering, contributions that arise from the acoustic portion of the partial phonon density of states (PDOS), and multiple scattering. These simulations demonstrate that the U and N motions can be treated independently, and show that multiple scattering contributes an approximate Q-independent background to the spectrum at the oscillator mode positions. Temperature dependent studies of the lowest few oscillator modes have also been made with SEQUOIA, and our simulations indicate that the T-dependence of the scattering from these modes is strongly influenced by the uranium lattice.

  13. Monte-Carlo Code (MCNP) Modeling of the Advanced Test Reactor Applicable to the Mixed Oxide (MOX) Test Irradiation

    SciTech Connect (OSTI)

    G. S. Chang; R. C. Pederson

    2005-07-01

    Mixed oxide (MOX) test capsules prepared with weapons-derived plutonium have been irradiated to a burnup of 50 GWd/t. The MOX fuel was fabricated at Los Alamos National Laboratory by a master-mix process and has been irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Previous withdrawals of the same fuel have occurred at 9, 21, 30, and 40 GWd/t. Oak Ridge National Laboratory (ORNL) manages this test series for the Department of Energy’s Fissile Materials Disposition Program (FMDP). The fuel burnup analyses presented in this study were performed using MCWO, a welldeveloped tool that couples the Monte Carlo transport code MCNP with the isotope depletion and buildup code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations for the ATR small I-irradiation test position. The purpose of this report is to validate both the Weapons-Grade Mixed Oxide (WG-MOX) test assembly model and the new fuel burnup analysis methodology by comparing the computed results against the neutron monitor measurements.

  14. Coupled molecular dynamics-Monte Carlo model to study the role of chemical processes during laser ablation of polymeric materials

    SciTech Connect (OSTI)

    Prasad, Manish; Conforti, Patrick F.; Garrison, Barbara J.

    2007-08-28

    The coarse grained chemical reaction model is enhanced to build a molecular dynamics (MD) simulation framework with an embedded Monte Carlo (MC) based reaction scheme. The MC scheme utilizes predetermined reaction chemistry, energetics, and rate kinetics of materials to incorporate chemical reactions occurring in a substrate into the MD simulation. The kinetics information is utilized to set the probabilities for the types of reactions to perform based on radical survival times and reaction rates. Implementing a reaction involves changing the reactants species types which alters their interaction potentials and thus produces the required energy change. We discuss the application of this method to study the initiation of ultraviolet laser ablation in poly(methyl methacrylate). The use of this scheme enables the modeling of all possible photoexcitation pathways in the polymer. It also permits a direct study of the role of thermal, mechanical, and chemical processes that can set off ablation. We demonstrate that the role of laser induced heating, thermomechanical stresses, pressure wave formation and relaxation, and thermochemical decomposition of the polymer substrate can be investigated directly by suitably choosing the potential energy and chemical reaction energy landscape. The results highlight the usefulness of such a modeling approach by showing that various processes in polymer ablation are intricately linked leading to the transformation of the substrate and its ejection. The method, in principle, can be utilized to study systems where chemical reactions are expected to play a dominant role or interact strongly with other physical processes.

  15. Many-body ab-initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mitra, Chandrima; Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.

    2015-10-28

    We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To studymore »defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. These results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy.« less

  16. Reverse Monte Carlo simulation of Se{sub 80}Te{sub 20} and Se{sub 80}Te{sub 15}Sb{sub 5} glasses

    SciTech Connect (OSTI)

    Abdel-Baset, A. M.; Rashad, M.; Moharram, A. H.

    2013-12-16

    Two-dimensional Monte Carlo of the total pair distribution functions g(r) is determined for Se{sub 80}Te{sub 20} and Se{sub 80}Te{sub 15}Sb{sub 5} alloys, and then it used to assemble the three-dimensional atomic configurations using the reverse Monte Carlo simulation. The partial pair distribution functions g{sub ij}(r) indicate that the basic structure unit in the Se{sub 80}Te{sub 15}Sb{sub 5} glass is di-antimony tri-selenide units connected together through Se-Se and Se-Te chain. The structure of Se{sub 80}Te{sub 20} alloys is a chain of Se-Te and Se-Se in addition to some rings of Se atoms.

  17. Generalizing the self-healing diffusion Monte Carlo approach to finite temperature: a path for the optimization of low-energy many-body basis expansions

    SciTech Connect (OSTI)

    Kim, Jeongnim; Reboredo, Fernando A

    2014-01-01

    The self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo J. Chem. Phys. {\\bf 136}, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. {\\bf 89}, 6316 (1988)] are blended to obtain a method for the calculation of thermodynamic properties of many-body systems at low temperatures. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric trial wave functions. A statistical method is derived for the calculation of finite temperature properties of many-body systems near the ground state. In the process we also obtain a parallel algorithm that optimizes the many-body basis of a small subspace of the many-body Hilbert space. This small subspace is optimized to have maximum overlap with the one expanded by the lower energy eigenstates of a many-body Hamiltonian. We show in a model system that the Helmholtz free energy is minimized within this subspace as the iteration number increases. We show that the subspace expanded by the small basis systematically converges towards the subspace expanded by the lowest energy eigenstates. Possible applications of this method to calculate the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can be also used to accelerate the calculation of the ground or excited states with Quantum Monte Carlo.

  18. Implementing a newly proposed Monte Carlo based small field dosimetry formalism for a comprehensive set of diode detectors

    SciTech Connect (OSTI)

    Cranmer-Sargison, G.; Weston, S.; Evans, J. A.; Sidhu, N. P.; Thwaites, D. I.

    2011-12-15

    Purpose: The goal of this work was to implement a recently proposed small field dosimetry formalism [Alfonso et al., Med. Phys. 35(12), 5179-5186 (2008)] for a comprehensive set of diode detectors and provide the required Monte Carlo generated factors to correct measurement. Methods: Jaw collimated square small field sizes of side 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 3.0 cm normalized to a reference field of 5.0 cm x 5.0 cm were used throughout this study. Initial linac modeling was performed with electron source parameters at 6.0, 6.1, and 6.2 MeV with the Gaussian FWHM decreased in steps of 0.010 cm from 0.150 to 0.100 cm. DOSRZnrc was used to develop models of the IBA stereotactic field diode (SFD) as well as the PTW T60008, T60012, T60016, and T60017 field diodes. Simulations were run and isocentric, detector specific, output ratios (OR{sub det}) calculated at depths of 1.5, 5.0, and 10.0 cm. This was performed using the following source parameter subset: 6.1 and 6.2 MeV with a FWHM = 0.100, 0.110, and 0.120 cm. The source parameters were finalized by comparing experimental detector specific output ratios with simulation. Simulations were then run with the active volume and surrounding materials set to water and the replacement correction factors calculated according to the newly proposed formalism. Results: In all cases, the experimental field size widths (at the 50% level) were found to be smaller than the nominal, and therefore, the simulated field sizes were adjusted accordingly. At a FWHM = 0.150 cm simulation produced penumbral widths that were too broad. The fit improved as the FWHM was decreased, yet for all but the smallest field size worsened again at a FWHM = 0.100 cm. The simulated OR{sub det} were found to be greater than, equivalent to and less than experiment for spot size FWHM = 0.100, 0.110, and 0.120 cm, respectively. This is due to the change in source occlusion as a function of FWHM and field size. The corrections required for the 0.5 cm field size were 0.95 ({+-}1.0%) for the SFD, T60012 and T60017 diodes and 0.90 ({+-}1.0%) for the T60008 and T60016 diodes--indicating measured output ratios to be 5% and 10% high, respectively. Our results also revealed the correction factors to be the same within statistical variation at all depths considered. Conclusions: A number of general conclusions are evident: (1) small field OR{sub det} are very sensitive to the simulated source parameters, and therefore, rigorous Monte Carlo linac model commissioning, with respect to measurement, must be pursued prior to use, (2) backscattered dose to the monitor chamber should be included in simulated OR{sub det} calculations, (3) the corrections required for diode detectors are design dependent and therefore detailed detector modeling is required, and (4) the reported detector specific correction factors may be applied to experimental small field OR{sub det} consistent with those presented here.

  19. Monte Carlo modeling and analyses of YALINA booster subcritical assembly, Part III : low enriched uranium conversion analyses.

    SciTech Connect (OSTI)

    Talamo, A.; Gohar, Y. (Nuclear Engineering Division) [Nuclear Engineering Division

    2011-05-12

    This study investigates the performance of the YALINA Booster subcritical assembly, located in Belarus, during operation with high (90%), medium (36%), and low (21%) enriched uranium fuels in the assembly's fast zone. The YALINA Booster is a zero-power, subcritical assembly driven by a conventional neutron generator. It was constructed for the purpose of investigating the static and dynamic neutronics properties of accelerator driven subcritical systems, and to serve as a fast neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinides. The first part of this study analyzes the assembly's performance with several fuel types. The MCNPX and MONK Monte Carlo codes were used to determine effective and source neutron multiplication factors, effective delayed neutron fraction, prompt neutron lifetime, neutron flux profiles and spectra, and neutron reaction rates produced from the use of three neutron sources: californium, deuterium-deuterium, and deuterium-tritium. In the latter two cases, the external neutron source operates in pulsed mode. The results discussed in the first part of this report show that the use of low enriched fuel in the fast zone of the assembly diminishes neutron multiplication. Therefore, the discussion in the second part of the report focuses on finding alternative fuel loading configurations that enhance neutron multiplication while using low enriched uranium fuel. It was found that arranging the interface absorber between the fast and the thermal zones in a circular rather than a square array is an effective method of operating the YALINA Booster subcritical assembly without downgrading neutron multiplication relative to the original value obtained with the use of the high enriched uranium fuels in the fast zone.

  20. Interpretation of 3D void measurements with Tripoli4.6/JEFF3.1.1 Monte Carlo code

    SciTech Connect (OSTI)

    Blaise, P.; Colomba, A.

    2012-07-01

    The present work details the first analysis of the 3D void phase conducted during the EPICURE/UM17x17/7% mixed UOX/MOX configuration. This configuration is composed of a homogeneous central 17x17 MOX-7% assembly, surrounded by portions of 17x17 1102 assemblies with guide-tubes. The void bubble is modelled by a small waterproof 5x5 fuel pin parallelepiped box of 11 cm height, placed in the centre of the MOX assembly. This bubble, initially placed at the core mid-plane, is then moved in different axial positions to study the evolution in the core of the axial perturbation. Then, to simulate the growing of this bubble in order to understand the effects of increased void fraction along the fuel pin, 3 and 5 bubbles have been stacked axially, from the core mid-plane. The C/E comparison obtained with the Monte Carlo code Tripoli4 for both radial and axial fission rate distributions, and in particular the reproduction of the very important flux gradients at the void/water interfaces, changing as the bubble is displaced along the z-axis are very satisfactory. It demonstrates both the capability of the code and its library to reproduce this kind of situation, as the very good quality of the experimental results, confirming the UM-17x17 as an excellent experimental benchmark for 3D code validation. This work has been performed within the frame of the V and V program for the future APOLL03 deterministic code of CEA starting in 2012, and its V and V benchmarking database. (authors)

  1. Three-dimensional electromagnetic Monte Carlo particle-in-cell simulations of critical ionization velocity experiments in space

    SciTech Connect (OSTI)

    Wang, J.; Biasca, R.; Liewer, P.C.

    1996-01-01

    Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper the authors move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In their model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location. 32 refs., 8 figs., 2 tabs.

  2. A Monte Carlo neutron transport code for eigenvalue calculations on a dual-GPU system and CUDA environment

    SciTech Connect (OSTI)

    Liu, T.; Ding, A.; Ji, W.; Xu, X. G. [Nuclear Engineering and Engineering Physics, Rensselaer Polytechnic Inst., Troy, NY 12180 (United States); Carothers, C. D. [Dept. of Computer Science, Rensselaer Polytechnic Inst. RPI (United States); Brown, F. B. [Los Alamos National Laboratory (LANL) (United States)

    2012-07-01

    Monte Carlo (MC) method is able to accurately calculate eigenvalues in reactor analysis. Its lengthy computation time can be reduced by general-purpose computing on Graphics Processing Units (GPU), one of the latest parallel computing techniques under development. The method of porting a regular transport code to GPU is usually very straightforward due to the 'embarrassingly parallel' nature of MC code. However, the situation becomes different for eigenvalue calculation in that it will be performed on a generation-by-generation basis and the thread coordination should be explicitly taken care of. This paper presents our effort to develop such a GPU-based MC code in Compute Unified Device Architecture (CUDA) environment. The code is able to perform eigenvalue calculation under simple geometries on a multi-GPU system. The specifics of algorithm design, including thread organization and memory management were described in detail. The original CPU version of the code was tested on an Intel Xeon X5660 2.8 GHz CPU, and the adapted GPU version was tested on NVIDIA Tesla M2090 GPUs. Double-precision floating point format was used throughout the calculation. The result showed that a speedup of 7.0 and 33.3 were obtained for a bare spherical core and a binary slab system respectively. The speedup factor was further increased by a factor of {approx}2 on a dual GPU system. The upper limit of device-level parallelism was analyzed, and a possible method to enhance the thread-level parallelism was proposed. (authors)

  3. Monte Carlo electron-photon transport using GPUs as an accelerator: Results for a water-aluminum-water phantom

    SciTech Connect (OSTI)

    Su, L.; Du, X.; Liu, T.; Xu, X. G.

    2013-07-01

    An electron-photon coupled Monte Carlo code ARCHER - Accelerated Radiation-transport Computations in Heterogeneous Environments - is being developed at Rensselaer Polytechnic Institute as a software test bed for emerging heterogeneous high performance computers that utilize accelerators such as GPUs. In this paper, the preliminary results of code development and testing are presented. The electron transport in media was modeled using the class-II condensed history method. The electron energy considered ranges from a few hundred keV to 30 MeV. Moller scattering and bremsstrahlung processes above a preset energy were explicitly modeled. Energy loss below that threshold was accounted for using the Continuously Slowing Down Approximation (CSDA). Photon transport was dealt with using the delta tracking method. Photoelectric effect, Compton scattering and pair production were modeled. Voxelised geometry was supported. A serial ARHCHER-CPU was first written in C++. The code was then ported to the GPU platform using CUDA C. The hardware involved a desktop PC with an Intel Xeon X5660 CPU and six NVIDIA Tesla M2090 GPUs. ARHCHER was tested for a case of 20 MeV electron beam incident perpendicularly on a water-aluminum-water phantom. The depth and lateral dose profiles were found to agree with results obtained from well tested MC codes. Using six GPU cards, 6x10{sup 6} histories of electrons were simulated within 2 seconds. In comparison, the same case running the EGSnrc and MCNPX codes required 1645 seconds and 9213 seconds, respectively, on a CPU with a single core used. (authors)

  4. Web-based, GPU-accelerated, Monte Carlo simulation and visualization of indirect radiation imaging detector performance

    SciTech Connect (OSTI)

    Dong, Han; Sharma, Diksha; Badano, Aldo

    2014-12-15

    Purpose: Monte Carlo simulations play a vital role in the understanding of the fundamental limitations, design, and optimization of existing and emerging medical imaging systems. Efforts in this area have resulted in the development of a wide variety of open-source software packages. One such package, hybridMANTIS, uses a novel hybrid concept to model indirect scintillator detectors by balancing the computational load using dual CPU and graphics processing unit (GPU) processors, obtaining computational efficiency with reasonable accuracy. In this work, the authors describe two open-source visualization interfaces, webMANTIS and visualMANTIS to facilitate the setup of computational experiments via hybridMANTIS. Methods: The visualization tools visualMANTIS and webMANTIS enable the user to control simulation properties through a user interface. In the case of webMANTIS, control via a web browser allows access through mobile devices such as smartphones or tablets. webMANTIS acts as a server back-end and communicates with an NVIDIA GPU computing cluster that can support multiuser environments where users can execute different experiments in parallel. Results: The output consists of point response and pulse-height spectrum, and optical transport statistics generated by hybridMANTIS. The users can download the output images and statistics through a zip file for future reference. In addition, webMANTIS provides a visualization window that displays a few selected optical photon path as they get transported through the detector columns and allows the user to trace the history of the optical photons. Conclusions: The visualization tools visualMANTIS and webMANTIS provide features such as on the fly generation of pulse-height spectra and response functions for microcolumnar x-ray imagers while allowing users to save simulation parameters and results from prior experiments. The graphical interfaces simplify the simulation setup and allow the user to go directly from specifying input parameters to receiving visual feedback for the model predictions.

  5. Monte Carlo without chains

    SciTech Connect (OSTI)

    Chorin, Alexandre J.

    2007-12-12

    A sampling method for spin systems is presented. The spin lattice is written as the union of a nested sequence of sublattices, all but the last with conditionally independent spins, which are sampled in succession using their marginals. The marginals are computed concurrently by a fast algorithm; errors in the evaluation of the marginals are offset by weights. There are no Markov chains and each sample is independent of the previous ones; the cost of a sample is proportional to the number of spins (but the number of samples needed for good statistics may grow with array size). The examples include the Edwards-Anderson spin glass in three dimensions.

  6. Quantum Monte Carlo for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Avoids Born-Oppenheimer approximation Distinctive feature of QMC Theory is straightforward but needs good wave functions. Sidesteps variance problem associated with...

  7. ORSSAB Montly Meeting

    Broader source: Energy.gov [DOE]

    This meeting is open to the public, and the board will discuss the Oak Ridge Environmental Management program's FY 2016 budget and prioritization.

  8. TH-A-18C-04: Ultrafast Cone-Beam CT Scatter Correction with GPU-Based Monte Carlo Simulation

    SciTech Connect (OSTI)

    Xu, Y; Bai, T; Yan, H; Ouyang, L; Wang, J; Pompos, A; Jiang, S; Jia, X; Zhou, L

    2014-06-15

    Purpose: Scatter artifacts severely degrade image quality of cone-beam CT (CBCT). We present an ultrafast scatter correction framework by using GPU-based Monte Carlo (MC) simulation and prior patient CT image, aiming at automatically finish the whole process including both scatter correction and reconstructions within 30 seconds. Methods: The method consists of six steps: 1) FDK reconstruction using raw projection data; 2) Rigid Registration of planning CT to the FDK results; 3) MC scatter calculation at sparse view angles using the planning CT; 4) Interpolation of the calculated scatter signals to other angles; 5) Removal of scatter from the raw projections; 6) FDK reconstruction using the scatter-corrected projections. In addition to using GPU to accelerate MC photon simulations, we also use a small number of photons and a down-sampled CT image in simulation to further reduce computation time. A novel denoising algorithm is used to eliminate MC scatter noise caused by low photon numbers. The method is validated on head-and-neck cases with simulated and clinical data. Results: We have studied impacts of photo histories, volume down sampling factors on the accuracy of scatter estimation. The Fourier analysis was conducted to show that scatter images calculated at 31 angles are sufficient to restore those at all angles with <0.1% error. For the simulated case with a resolution of 512×512×100, we simulated 10M photons per angle. The total computation time is 23.77 seconds on a Nvidia GTX Titan GPU. The scatter-induced shading/cupping artifacts are substantially reduced, and the average HU error of a region-of-interest is reduced from 75.9 to 19.0 HU. Similar results were found for a real patient case. Conclusion: A practical ultrafast MC-based CBCT scatter correction scheme is developed. The whole process of scatter correction and reconstruction is accomplished within 30 seconds. This study is supported in part by NIH (1R01CA154747-01), The Core Technology Research in Strategic Emerging Industry, Guangdong, China (2011A081402003)

  9. MO-G-BRF-05: Determining Response to Anti-Angiogenic Therapies with Monte Carlo Tumor Modeling

    SciTech Connect (OSTI)

    Valentinuzzi, D; Simoncic, U; Jeraj, R; Titz, B

    2014-06-15

    Purpose: Patient response to anti-angiogenic therapies with vascular endothelial growth factor receptor - tyrosine kinase inhibitors (VEGFR TKIs) is heterogeneous. This study investigates key biological characteristics that drive differences in patient response via Monte Carlo computational modeling capable of simulating tumor response to therapy with VEGFR TKI. Methods: VEGFR TKIs potently block receptors, responsible for promoting angiogenesis in tumors. The model incorporates drug pharmacokinetic and pharmacodynamic properties, as well as patientspecific data of cellular proliferation derived from [18F]FLT-PET data. Sensitivity of tumor response was assessed for multiple parameters, including initial partial oxygen tension (pO{sub 2}), cell cycle time, daily vascular growth fraction, and daily vascular regression fraction. Results were benchmarked to clinical data (patient 2 weeks on VEGFR TKI, followed by 1-week drug holiday). The tumor pO{sub 2} was assumed to be uniform. Results: Among the investigated parameters, the simulated proliferation was most sensitive to the initial tumor pO{sub 2}. Initial change of 5 mmHg can already Result in significantly different levels of proliferation. The model reveals that hypoxic tumors (pO{sub 2} ? 20 mmHg) show the highest decrease of proliferation, experiencing mean FLT standardized uptake value (SUVmean) decrease for at least 50% at the end of the clinical trial (day 21). Oxygenated tumors (pO{sub 2} 20 mmHg) show a transient SUV decrease (30–50%) at the end of the treatment with VEGFR TKI (day 14) but experience a rapid SUV rebound close to the pre-treatment SUV levels (70–110%) at the time of a drug holiday (day 14–21) - the phenomenon known as a proliferative flare. Conclusion: Model's high sensitivity to initial pO{sub 2} clearly emphasizes the need for experimental assessment of the pretreatment tumor hypoxia status, as it might be predictive of response to antiangiogenic therapies and the occurrence of proliferative flare. Experimental assessment of other model parameters would further improve understanding of patient response.

  10. SU-E-T-314: The Application of Cloud Computing in Pencil Beam Scanning Proton Therapy Monte Carlo Simulation

    SciTech Connect (OSTI)

    Wang, Z; Gao, M

    2014-06-01

    Purpose: Monte Carlo simulation plays an important role for proton Pencil Beam Scanning (PBS) technique. However, MC simulation demands high computing power and is limited to few large proton centers that can afford a computer cluster. We study the feasibility of utilizing cloud computing in the MC simulation of PBS beams. Methods: A GATE/GEANT4 based MC simulation software was installed on a commercial cloud computing virtual machine (Linux 64-bits, Amazon EC2). Single spot Integral Depth Dose (IDD) curves and in-air transverse profiles were used to tune the source parameters to simulate an IBA machine. With the use of StarCluster software developed at MIT, a Linux cluster with 2–100 nodes can be conveniently launched in the cloud. A proton PBS plan was then exported to the cloud where the MC simulation was run. Results: The simulated PBS plan has a field size of 10×10cm{sup 2}, 20cm range, 10cm modulation, and contains over 10,000 beam spots. EC2 instance type m1.medium was selected considering the CPU/memory requirement and 40 instances were used to form a Linux cluster. To minimize cost, master node was created with on-demand instance and worker nodes were created with spot-instance. The hourly cost for the 40-node cluster was $0.63 and the projected cost for a 100-node cluster was $1.41. Ten million events were simulated to plot PDD and profile, with each job containing 500k events. The simulation completed within 1 hour and an overall statistical uncertainty of < 2% was achieved. Good agreement between MC simulation and measurement was observed. Conclusion: Cloud computing is a cost-effective and easy to maintain platform to run proton PBS MC simulation. When proton MC packages such as GATE and TOPAS are combined with cloud computing, it will greatly facilitate the pursuing of PBS MC studies, especially for newly established proton centers or individual researchers.

  11. SU-E-T-585: Commissioning of Electron Monte Carlo in Eclipse Treatment Planning System for TrueBeam

    SciTech Connect (OSTI)

    Yang, X; Lasio, G; Zhou, J; Lin, M; Yi, B; Guerrero, M

    2014-06-01

    Purpose: To commission electron Monte Carlo (eMC) algorithm in Eclipse Treatment Planning System (TPS) for TrueBeam Linacs, including the evaluation of dose calculation accuracy for small fields and oblique beams and comparison with the existing eMC model for Clinacs. Methods: Electron beam percent-depth-dose (PDDs) and profiles with and without applicators, as well as output factors, were measured from two Varian TrueBeam machines. Measured data were compared against the Varian TrueBeam Representative Beam Data (VTBRBD). The selected data set was transferred into Eclipse for beam configuration. Dose calculation accuracy from eMC was evaluated for open fields, small cut-out fields, and oblique beams at different incident angles. The TrueBeam data was compared to the existing Clinac data and eMC model to evaluate the differences among Linac types. Results: Our measured data indicated that electron beam PDDs from our TrueBeam machines are well matched to those from our Varian Clinac machines, but in-air profiles, cone factors and open-filed output factors are significantly different. The data from our two TrueBeam machines were well represented by the VTBRBD. Variations of TrueBeam PDDs and profiles were within the 2% /2mm criteria for all energies, and the output factors for fields with and without applicators all agree within 2%. Obliquity factor for two clinically relevant applicator sizes (10×10 and 15×15 cm{sup 2}) and three oblique angles (15, 30, and 45 degree) were measured for nominal R100, R90, and R80 of each electron beam energy. Comparisons of calculations using eMC of obliquity factors and cut-out factors versus measurements will be presented. Conclusion: eMC algorithm in Eclipse TPS can be configured using the VTBRBD. Significant differences between TrueBeam and Clinacs were found in in-air profiles and open field output factors. The accuracy of the eMC algorithm was evaluated for a wide range of cut-out factors and oblique incidence.

  12. Structure of AgI-doped Ge-In-S glasses: Experiment, reverse Monte Carlo modelling, and density functional calculations

    SciTech Connect (OSTI)

    Chrissanthopoulos, A.; Jovari, P.; Kaban, I.; Gruner, S.; Kavetskyy, T.; Borc, J.; Wang, W.; Ren, J.; Chen, G.; Yannopoulos, S.N.

    2012-08-15

    We report an investigation of the structure and vibrational modes of Ge-In-S-AgI bulk glasses using X-ray diffraction, EXAFS spectroscopy, Reverse Monte-Carlo (RMC) modelling, Raman spectroscopy, and density functional theoretical (DFT) calculations. The combination of these techniques made it possible to elucidate the short- and medium-range structural order of these glasses. Data interpretation revealed that the AgI-free glass structure is composed of a network where GeS{sub 4/2} tetrahedra are linked with trigonal InS{sub 3/2} units; S{sub 3/2}Ge-GeS{sub 3/2} ethane-like species linked with InS{sub 4/2}{sup -} tetrahedra form sub-structures which are dispersed in the network structure. The addition of AgI into the Ge-In-S glassy matrix causes appreciable structural changes, enriching the Indium species with Iodine terminal atoms. The existence of trigonal species InS{sub 2/2}I and tetrahedral units InS{sub 3/2}I{sup -} and InS{sub 2/2}I{sub 2}{sup -} is compatible with the EXAFS and RMC analysis. Their vibrational properties (harmonic frequencies and Raman activities) calculated by DFT are in very good agreement with the experimental values determined by Raman spectroscopy. - Graphical abstract: Experiment (XRD, EXAFS, RMC, Raman scattering) and density functional calculations are employed to study the structure of AgI-doped Ge-In-S glasses. The role of mixed structural units as illustrated in the figure is elucidated. Highlights: Black-Right-Pointing-Pointer Doping Ge-In-S glasses with AgI causes significant changes in glass structure. Black-Right-Pointing-Pointer Experiment and DFT are combined to elucidate short- and medium-range structural order. Black-Right-Pointing-Pointer Indium atoms form both (InS{sub 4/2}){sup -} tetrahedra and InS{sub 3/2} planar triangles. Black-Right-Pointing-Pointer (InS{sub 4/2}){sup -} tetrahedra bond to (S{sub 3/2}Ge-GeS{sub 3/2}){sup 2+} ethane-like units forming neutral sub-structures. Black-Right-Pointing-Pointer Mixed chalcohalide species (InS{sub 3/2}I){sup -} offer vulnerable sites for the uptake of Ag{sup +}.

  13. Monte Carlo calculations for reference dosimetry of electron beams with the PTW Roos and NE2571 ion chambers

    SciTech Connect (OSTI)

    Muir, B. R. Rogers, D. W. O.

    2013-12-15

    Purpose: To investigate recommendations for reference dosimetry of electron beams and gradient effects for the NE2571 chamber and to provide beam quality conversion factors using Monte Carlo simulations of the PTW Roos and NE2571 ion chambers. Methods: The EGSnrc code system is used to calculate the absorbed dose-to-water and the dose to the gas in fully modeled ion chambers as a function of depth in water. Electron beams are modeled using realistic accelerator simulations as well as beams modeled as collimated point sources from realistic electron beam spectra or monoenergetic electrons. Beam quality conversion factors are calculated with ratios of the doses to water and to the air in the ion chamber in electron beams and a cobalt-60 reference field. The overall ion chamber correction factor is studied using calculations of water-to-air stopping power ratios. Results: The use of an effective point of measurement shift of 1.55 mm from the front face of the PTW Roos chamber, which places the point of measurement inside the chamber cavity, minimizes the difference betweenR{sub 50}, the beam quality specifier, calculated from chamber simulations compared to that obtained using depth-dose calculations in water. A similar shift minimizes the variation of the overall ion chamber correction factor with depth to the practical range and reduces the root-mean-square deviation of a fit to calculated beam quality conversion factors at the reference depth as a function of R{sub 50}. Similarly, an upstream shift of 0.34 r{sub cav} allows a more accurate determination of R{sub 50} from NE2571 chamber calculations and reduces the variation of the overall ion chamber correction factor with depth. The determination of the gradient correction using a shift of 0.22 r{sub cav} optimizes the root-mean-square deviation of a fit to calculated beam quality conversion factors if all beams investigated are considered. However, if only clinical beams are considered, a good fit to results for beam quality conversion factors is obtained without explicitly correcting for gradient effects. The inadequacy of R{sub 50} to uniquely specify beam quality for the accurate selection of k{sub Q} factors is discussed. Systematic uncertainties in beam quality conversion factors are analyzed for the NE2571 chamber and amount to between 0.4% and 1.2% depending on assumptions used. Conclusions: The calculated beam quality conversion factors for the PTW Roos chamber obtained here are in good agreement with literature data. These results characterize the use of an NE2571 ion chamber for reference dosimetry of electron beams even in low-energy beams.

  14. SU-E-T-224: Is Monte Carlo Dose Calculation Method Necessary for Cyberknife Brain Treatment Planning?

    SciTech Connect (OSTI)

    Wang, L; Fourkal, E; Hayes, S; Jin, L; Ma, C

    2014-06-01

    Purpose: To study the dosimetric difference resulted in using the pencil beam algorithm instead of Monte Carlo (MC) methods for tumors adjacent to the skull. Methods: We retrospectively calculated the dosimetric differences between RT and MC algorithms for brain tumors treated with CyberKnife located adjacent to the skull for 18 patients (total of 27 tumors). The median tumor sizes was 0.53-cc (range 0.018-cc to 26.2-cc). The absolute mean distance from the tumor to the skull was 2.11 mm (range - 17.0 mm to 9.2 mm). The dosimetric variables examined include the mean, maximum, and minimum doses to the target, the target coverage (TC) and conformality index. The MC calculation used the same MUs as the RT dose calculation without further normalization and 1% statistical uncertainty. The differences were analyzed by tumor size and distance from the skull. Results: The TC was generally reduced with the MC calculation (24 out of 27 cases). The average difference in TC between RT and MC was 3.3% (range 0.0% to 23.5%). When the TC was deemed unacceptable, the plans were re-normalized in order to increase the TC to 99%. This resulted in a 6.9% maximum change in the prescription isodose line. The maximum changes in the mean, maximum, and minimum doses were 5.4 %, 7.7%, and 8.4%, respectively, before re-normalization. When the TC was analyzed with regards to target size, it was found that the worst coverage occurred with the smaller targets (0.018-cc). When the TC was analyzed with regards to the distance to the skull, there was no correlation between proximity to the skull and TC between the RT and MC plans. Conclusions: For smaller targets (< 4.0-cc), MC should be used to re-evaluate the dose coverage after RT is used for the initial dose calculation in order to ensure target coverage.

  15. TH-A-18C-09: Ultra-Fast Monte Carlo Simulation for Cone Beam CT Imaging of Brain Trauma

    SciTech Connect (OSTI)

    Sisniega, A; Zbijewski, W; Stayman, J; Yorkston, J; Aygun, N; Koliatsos, V; Siewerdsen, J

    2014-06-15

    Purpose: Application of cone-beam CT (CBCT) to low-contrast soft tissue imaging, such as in detection of traumatic brain injury, is challenged by high levels of scatter. A fast, accurate scatter correction method based on Monte Carlo (MC) estimation is developed for application in high-quality CBCT imaging of acute brain injury. Methods: The correction involves MC scatter estimation executed on an NVIDIA GTX 780 GPU (MC-GPU), with baseline simulation speed of ~1e7 photons/sec. MC-GPU is accelerated by a novel, GPU-optimized implementation of variance reduction (VR) techniques (forced detection and photon splitting). The number of simulated tracks and projections is reduced for additional speed-up. Residual noise is removed and the missing scatter projections are estimated via kernel smoothing (KS) in projection plane and across gantry angles. The method is assessed using CBCT images of a head phantom presenting a realistic simulation of fresh intracranial hemorrhage (100 kVp, 180 mAs, 720 projections, source-detector distance 700 mm, source-axis distance 480 mm). Results: For a fixed run-time of ~1 sec/projection, GPU-optimized VR reduces the noise in MC-GPU scatter estimates by a factor of 4. For scatter correction, MC-GPU with VR is executed with 4-fold angular downsampling and 1e5 photons/projection, yielding 3.5 minute run-time per scan, and de-noised with optimized KS. Corrected CBCT images demonstrate uniformity improvement of 18 HU and contrast improvement of 26 HU compared to no correction, and a 52% increase in contrast-tonoise ratio in simulated hemorrhage compared to “oracle” constant fraction correction. Conclusion: Acceleration of MC-GPU achieved through GPU-optimized variance reduction and kernel smoothing yields an efficient (<5 min/scan) and accurate scatter correction that does not rely on additional hardware or simplifying assumptions about the scatter distribution. The method is undergoing implementation in a novel CBCT dedicated to brain trauma imaging at the point of care in sports and military applications. Research grant from Carestream Health. JY is an employee of Carestream Health.

  16. PyRAT (python radiography analysis tool): overview

    SciTech Connect (OSTI)

    Armstrong, Jerawan C; Temple, Brian A; Buescher, Kevin L

    2011-01-14

    PyRAT was developed as a quantitative tool for robustly characterizing objects from radiographs to solve problems such as the hybrid nonlinear inverse problem. The optimization software library that was used is the nonsmooth optimization by MADS algorithm (NOMAD). Some of PyRAT's features are: (1) hybrid nonlinear inverse problem with calculated x-ray spectrum and detector response; (2) optimization based inversion approach with goal of identifying unknown object configurations - MVO problem; (3) using functionalities of Python libraries for radiographic image processing and analysis; (4) using the Tikhonov regularization method of linear inverse problem to recover partial information of object configurations; (5) using a priori knowledge of problem solutions to define feasible region and discrete neighbor for the MVO problem - initial data analysis + material library {yields} a priori knowledge; and (6) using the NOMAD (C++ version) software in the object.

  17. The impact of low-Z and high-Z metal implants in IMRT: A Monte Carlo study of dose inaccuracies in commercial dose algorithms

    SciTech Connect (OSTI)

    Spadea, Maria Francesca; Verburg, Joost Mathias; Seco, Joao; Baroni, Guido

    2014-01-15

    Purpose: The aim of the study was to evaluate the dosimetric impact of low-Z and high-Z metallic implants on IMRT plans. Methods: Computed tomography (CT) scans of three patients were analyzed to study effects due to the presence of Titanium (low-Z), Platinum and Gold (high-Z) inserts. To eliminate artifacts in CT images, a sinogram-based metal artifact reduction algorithm was applied. IMRT dose calculations were performed on both the uncorrected and corrected images using a commercial planning system (convolution/superposition algorithm) and an in-house Monte Carlo platform. Dose differences between uncorrected and corrected datasets were computed and analyzed using gamma index (P?{sub <1}) and setting 2 mm and 2% as distance to agreement and dose difference criteria, respectively. Beam specific depth dose profiles across the metal were also examined. Results: Dose discrepancies between corrected and uncorrected datasets were not significant for low-Z material. High-Z materials caused under-dosage of 20%–25% in the region surrounding the metal and over dosage of 10%–15% downstream of the hardware. Gamma index test yielded P?{sub <1}>99% for all low-Z cases; while for high-Z cases it returned 91% < P?{sub <1}< 99%. Analysis of the depth dose curve of a single beam for low-Z cases revealed that, although the dose attenuation is altered inside the metal, it does not differ downstream of the insert. However, for high-Z metal implants the dose is increased up to 10%–12% around the insert. In addition, Monte Carlo method was more sensitive to the presence of metal inserts than superposition/convolution algorithm. Conclusions: The reduction in terms of dose of metal artifacts in CT images is relevant for high-Z implants. In this case, dose distribution should be calculated using Monte Carlo algorithms, given their superior accuracy in dose modeling in and around the metal. In addition, the knowledge of the composition of metal inserts improves the accuracy of the Monte Carlo dose calculation significantly.

  18. Effect of burst and recombination models for Monte Carlo transport of interacting carriers in a-Se x-ray detectors on Swank noise

    SciTech Connect (OSTI)

    Fang, Yuan; Karim, Karim S.; Badano, Aldo

    2014-01-15

    Purpose: The authors describe the modification to a previously developed Monte Carlo model of semiconductor direct x-ray detector required for studying the effect of burst and recombination algorithms on detector performance. This work provides insight into the effect of different charge generation models for a-Se detectors on Swank noise and recombination fraction. Methods: The proposed burst and recombination models are implemented in the Monte Carlo simulation package, ARTEMIS, developed byFang et al. [“Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: Application to pulse-height spectroscopy in a-Se,” Med. Phys. 39(1), 308–319 (2012)]. The burst model generates a cloud of electron-hole pairs based on electron velocity, energy deposition, and material parameters distributed within a spherical uniform volume (SUV) or on a spherical surface area (SSA). A simple first-hit (FH) and a more detailed but computationally expensive nearest-neighbor (NN) recombination algorithms are also described and compared. Results: Simulated recombination fractions for a single electron-hole pair show good agreement with Onsager model for a wide range of electric field, thermalization distance, and temperature. The recombination fraction and Swank noise exhibit a dependence on the burst model for generation of many electron-hole pairs from a single x ray. The Swank noise decreased for the SSA compared to the SUV model at 4 V/?m, while the recombination fraction decreased for SSA compared to the SUV model at 30 V/?m. The NN and FH recombination results were comparable. Conclusions: Results obtained with the ARTEMIS Monte Carlo transport model incorporating drift and diffusion are validated with the Onsager model for a single electron-hole pair as a function of electric field, thermalization distance, and temperature. For x-ray interactions, the authors demonstrate that the choice of burst model can affect the simulation results for the generation of many electron-hole pairs. The SSA model is more sensitive to the effect of electric field compared to the SUV model and that the NN and FH recombination algorithms did not significantly affect simulation results.

  19. Sex difference in the principal cytochrome P-450 for tributyltin metabolism in rats

    SciTech Connect (OSTI)

    Ohhira, Shuji [Department of Hygiene, Dokkyo University School of Medicine, Mibu-machi, Tochigi 321-0293 (Japan)]. E-mail: s-ohhira@dokkyomed.ac.jp; Enomoto, Mitsunori [Department of Hygiene, Dokkyo University School of Medicine, Mibu-machi, Tochigi 321-0293 (Japan); Matsui, Hisao [Department of Hygiene, Dokkyo University School of Medicine, Mibu-machi, Tochigi 321-0293 (Japan)

    2006-01-15

    Tributyltin is metabolized by cytochrome P-450 (CYP) system enzymes, and its metabolic fate may contribute to the toxicity of the chemical. In the present study, it is examined whether sex differences in the metabolism of tributyltin exist in rats. In addition, the in vivo and in vitro metabolism of tributyltin was investigated using rat hepatic CYP systems to confirm the principal CYP involved. A significant sex difference in metabolism occurred both in vivo and in vitro, suggesting that one of the CYPs responsible for tributyltin metabolism in rats is male specific or predominant at least. Eight cDNA-expressed rat CYPs, including typical phenobarbital (PB)-inducible forms and members of the CYP2C subfamily, were tested to determine their capability for tributyltin metabolism. Among the enzymes studied, a statistically significant dealkylation of tributyltin was mediated by CYP2C6 and 2C11. Furthermore, the sex difference in metabolism disappeared in vitro after anti-rat CYP2C11 antibody pretreatment because CYP2C11 is a major male-specific form in rats. These results indicate that CYP2C6 is the principal CYP for tributyltin metabolism in female rats, whereas CYP2C11 as well as 2C6 is involved in tributyltin metabolism in male rats, and it is suggested that CYP2C11 is responsible for the significant sex difference in the metabolism of tributyltin observed in rats.

  20. PyRAT - python radiography analysis tool (u)

    SciTech Connect (OSTI)

    Temple, Brian A; Buescher, Kevin L; Armstrong, Jerawan C

    2011-01-14

    PyRAT is a radiography analysis tool used to reconstruction images of unknown 1-0 objects. The tool is written in Python and developed for use on LINUX and Windows platforms. The tool is capable of performing nonlinear inversions of the images with minimal manual interaction in the optimization process. The tool utilizes the NOMAD mixed variable optimization tool to perform the optimization.

  1. Monte Carlo study for designing a dedicated “D”-shaped collimator used in the external beam radiotherapy of retinoblastoma patients

    SciTech Connect (OSTI)

    Mayorga, P. A.; Departamento de Física Atómica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada ; Brualla, L.; Sauerwein, W.; Lallena, A. M.

    2014-01-15

    Purpose: Retinoblastoma is the most common intraocular malignancy in the early childhood. Patients treated with external beam radiotherapy respond very well to the treatment. However, owing to the genotype of children suffering hereditary retinoblastoma, the risk of secondary radio-induced malignancies is high. The University Hospital of Essen has successfully treated these patients on a daily basis during nearly 30 years using a dedicated “D”-shaped collimator. The use of this collimator that delivers a highly conformed small radiation field, gives very good results in the control of the primary tumor as well as in preserving visual function, while it avoids the devastating side effects of deformation of midface bones. The purpose of the present paper is to propose a modified version of the “D”-shaped collimator that reduces even further the irradiation field with the scope to reduce as well the risk of radio-induced secondary malignancies. Concurrently, the new dedicated “D”-shaped collimator must be easier to build and at the same time produces dose distributions that only differ on the field size with respect to the dose distributions obtained by the current collimator in use. The scope of the former requirement is to facilitate the employment of the authors' irradiation technique both at the authors' and at other hospitals. The fulfillment of the latter allows the authors to continue using the clinical experience gained in more than 30 years. Methods: The Monte Carlo codePENELOPE was used to study the effect that the different structural elements of the dedicated “D”-shaped collimator have on the absorbed dose distribution. To perform this study, the radiation transport through a Varian Clinac 2100 C/D operating at 6 MV was simulated in order to tally phase-space files which were then used as radiation sources to simulate the considered collimators and the subsequent dose distributions. With the knowledge gained in that study, a new, simpler, “D”-shaped collimator is proposed. Results: The proposed collimator delivers a dose distribution which is 2.4 cm wide along the inferior-superior direction of the eyeball. This width is 0.3 cm narrower than that of the dose distribution obtained with the collimator currently in clinical use. The other relevant characteristics of the dose distribution obtained with the new collimator, namely, depth doses at clinically relevant positions, penumbrae width, and shape of the lateral profiles, are statistically compatible with the results obtained for the collimator currently in use. Conclusions: The smaller field size delivered by the proposed collimator still fully covers the planning target volume with at least 95% of the maximum dose at a depth of 2 cm and provides a safety margin of 0.2 cm, so ensuring an adequate treatment while reducing the irradiated volume.

  2. Proteomic analysis of rat cerebral cortex following subchronic acrolein toxicity

    SciTech Connect (OSTI)

    Rashedinia, Marzieh; Lari, Parisa; Abnous, Khalil; Hosseinzadeh, Hossein

    2013-10-01

    Acrolein, a member of reactive ?,?-unsaturated aldehydes, is a major environmental pollutant. Acrolein is also produced endogenously as a toxic by-product of lipid peroxidation. Because of high reactivity, acrolein may mediate oxidative damages to cells and tissues. It has been shown to be involved in a wide variety of pathological states including pulmonary, atherosclerosis and neurodegenerative diseases. In this study we employed proteomics approach to investigate the effects of subchronic oral exposures to 3 mg/kg of acrolein on protein expression profile in the brain of rats. Moreover effects of acrolein on malondialdehyde (MDA) levels and reduced glutathione (GSH) content were investigated. Our results revealed that treatment with acrolein changed levels of several proteins in diverse physiological process including energy metabolism, cell communication and transport, response to stimulus and metabolic process. Interestingly, several differentially over-expressed proteins, including ?-synuclein, enolase and calcineurin, are known to be associated with human neurodegenerative diseases. Changes in the levels of some proteins were confirmed by Western blot. Moreover, acrolein increases the level of MDA, as a lipid peroxidation biomarker and decreased GSH concentrations, as a non-enzyme antioxidant in the brain of acrolein treated rats. These findings suggested that acrolein induces the oxidative stress and lipid peroxidation in the brain, and so that may contribute to the pathophysiology of neurological disorders. - Highlights: • Acrolein intoxication increased lipid peroxidation and deplete GSH in rat brain. • Effect of acrolein on protein levels of cerebral cortex was analyzed by 2DE-PAGE. • Levels of a number of proteins with different biological functions were increased.

  3. Effect of co-exposure and cadmium in rats

    SciTech Connect (OSTI)

    Tandon, S.K.; Tewari, P.C.

    1987-10-01

    Metabolism and toxicity of heavy metals may be influenced by certain factors such as protein malnutrition, essential element deficiency or alcoholism. Ethanol has been found to enhance the absorption of lead in body and alcoholics have been reported to be more susceptible to lead intoxication. As alcoholism may be common among industry workers and a significant section of population, who may be exposed to cadmium, it was considered of interest to investigate the influence of ethanol-cadmium co-exposure on cadmium sensitive hepatic, renal and serum enzymes, tissue accumulation of cadmium, essential trace element status and cadmium induced hepatic metallothione in synthesis in rats.

  4. RCPO1 - A Monte Carlo program for solving neutron and photon transport problems in three dimensional geometry with detailed energy description and depletion capability

    SciTech Connect (OSTI)

    Ondis, L.A., II; Tyburski, L.J.; Moskowitz, B.S.

    2000-03-01

    The RCP01 Monte Carlo program is used to analyze many geometries of interest in nuclear design and analysis of light water moderated reactors such as the core in its pressure vessel with complex piping arrangement, fuel storage arrays, shipping and container arrangements, and neutron detector configurations. Written in FORTRAN and in use on a variety of computers, it is capable of estimating steady state neutron or photon reaction rates and neutron multiplication factors. The energy range covered in neutron calculations is that relevant to the fission process and subsequent slowing-down and thermalization, i.e., 20 MeV to 0 eV. The same energy range is covered for photon calculations.

  5. Monte-Carlo simulation of noise in hard X-ray Transmission Crystal Spectrometers: Identification of contributors to the background noise and shielding optimization

    SciTech Connect (OSTI)

    Thfoin, I. Reverdin, C.; Duval, A.; Leboeuf, X.; Lecherbourg, L.; Rossé, B.; Hulin, S.; Batani, D.; Santos, J. J.; Vaisseau, X.; Fourment, C.; Giuffrida, L.; Szabo, C. I.; Bastiani-Ceccotti, S.; Brambrink, E.; Koenig, M.; Nakatsutsumi, M.; Morace, A.

    2014-11-15

    Transmission crystal spectrometers (TCS) are used on many laser facilities to record hard X-ray spectra. During experiments, signal recorded on imaging plates is often degraded by a background noise. Monte-Carlo simulations made with the code GEANT4 show that this background noise is mainly generated by diffusion of MeV electrons and very hard X-rays. An experiment, carried out at LULI2000, confirmed that the use of magnets in front of the diagnostic, that bent the electron trajectories, reduces significantly this background. The new spectrometer SPECTIX (Spectromètre PETAL à Cristal en TransmIssion X), built for the LMJ/PETAL facility, will include this optimized shielding.

  6. Temperature measurement of cold atoms using single-atom transits and Monte Carlo simulation in a strongly coupled atom-cavity system

    SciTech Connect (OSTI)

    Li, Wenfang; Du, Jinjin; Wen, Ruijuan; Yang, Pengfei; Li, Gang; Zhang, Tiancai; Liang, Junjun

    2014-03-17

    We investigate the transmission of single-atom transits based on a strongly coupled cavity quantum electrodynamics system. By superposing the transit transmissions of a considerable number of atoms, we obtain the absorption spectra of the cavity induced by single atoms and obtain the temperature of the cold atom. The number of atoms passing through the microcavity for each release is also counted, and this number changes exponentially along with the atom temperature. Monte Carlo simulations agree closely with the experimental results, and the initial temperature of the cold atom is determined. Compared with the conventional time-of-flight (TOF) method, this approach avoids some uncertainties in the standard TOF and sheds new light on determining temperature of cold atoms by counting atoms individually in a confined space.

  7. Particle-In-Cell/Monte Carlo Simulation of Ion Back BomBardment in a High Average Current RF Photo-Gun

    SciTech Connect (OSTI)

    Qiang, J.

    2009-10-17

    In this paper, we report on study of ion back bombardment in a high average current radio-frequency (RF) photo-gun using a particle-in-cell/Monte Carlo simulation method. Using this method, we systematically studied effects of gas pressure, RF frequency, RF initial phase, electric field profile, magnetic field, laser repetition rate, different ion species on ion particle line density distribution, kinetic energy spectrum, and ion power line density distribution back bombardment onto the photocathode. Those simulation results suggested that effects of ion back bombardment could increase linearly with the background gas pressure and laser repetition rate. The RF frequency has significantly affected the ion motion inside the gun so that the ion power deposition on the photocathode in an RF gun can be several orders of magnitude lower than that in a DC gun. The ion back bombardment can be minimized by appropriately choosing the electric field profile and the initial phase.

  8. Stark-tuned Foerster resonance and dipole blockade for two to five cold Rydberg atoms: Monte Carlo simulations for various spatial configurations

    SciTech Connect (OSTI)

    Ryabtsev, I. I.; Tretyakov, D. B.; Beterov, I. I.; Entin, V. M.; Yakshina, E. A.

    2010-11-15

    Results of numerical Monte Carlo simulations for the Stark-tuned Fo{center_dot}{center_dot}rster resonance and dipole blockade between two to five cold rubidium Rydberg atoms in various spatial configurations are presented. The effects of the atoms' spatial uncertainties on the resonance amplitude and spectra are investigated. The feasibility of observing coherent Rabi-like population oscillations at a Fo{center_dot}{center_dot}rster resonance between two cold Rydberg atoms is analyzed. Spectra and the fidelity of the Rydberg dipole blockade are calculated for various experimental conditions, including nonzero detuning from the Fo{center_dot}{center_dot}rster resonance and finite laser linewidth. The results are discussed in the context of quantum-information processing with Rydberg atoms.

  9. Equation of state of a weakly interacting two-dimensional Bose gas studied at zero temperature by means of quantum Monte Carlo methods

    SciTech Connect (OSTI)

    Astrakharchik, G. E.; Boronat, J.; Casulleras, J.; Kurbakov, I. L.; Lozovik, Yu. E.

    2009-05-15

    The equation of state of a weakly interacting two-dimensional Bose gas is studied at zero temperature by means of quantum Monte Carlo methods. Going down to as low densities as na{sup 2}{proportional_to}10{sup -100} permits us to obtain agreement on beyond mean-field level between predictions of perturbative methods and direct many-body numerical simulation, thus providing an answer to the fundamental question of the equation of state of a two-dimensional dilute Bose gas in the universal regime (i.e., entirely described by the gas parameter na{sup 2}). We also show that the measure of the frequency of a breathing collective oscillation in a trap at very low densities can be used to test the universal equation of state of a two-dimensional Bose gas.

  10. TH-A-19A-08: Intel Xeon Phi Implementation of a Fast Multi-Purpose Monte Carlo Simulation for Proton Therapy

    SciTech Connect (OSTI)

    Souris, K; Lee, J; Sterpin, E

    2014-06-15

    Purpose: Recent studies have demonstrated the capability of graphics processing units (GPUs) to compute dose distributions using Monte Carlo (MC) methods within clinical time constraints. However, GPUs have a rigid vectorial architecture that favors the implementation of simplified particle transport algorithms, adapted to specific tasks. Our new, fast, and multipurpose MC code, named MCsquare, runs on Intel Xeon Phi coprocessors. This technology offers 60 independent cores, and therefore more flexibility to implement fast and yet generic MC functionalities, such as prompt gamma simulations. Methods: MCsquare implements several models and hence allows users to make their own tradeoff between speed and accuracy. A 200 MeV proton beam is simulated in a heterogeneous phantom using Geant4 and two configurations of MCsquare. The first one is the most conservative and accurate. The method of fictitious interactions handles the interfaces and secondary charged particles emitted in nuclear interactions are fully simulated. The second, faster configuration simplifies interface crossings and simulates only secondary protons after nuclear interaction events. Integral depth-dose and transversal profiles are compared to those of Geant4. Moreover, the production profile of prompt gammas is compared to PENH results. Results: Integral depth dose and transversal profiles computed by MCsquare and Geant4 are within 3%. The production of secondaries from nuclear interactions is slightly inaccurate at interfaces for the fastest configuration of MCsquare but this is unlikely to have any clinical impact. The computation time varies between 90 seconds for the most conservative settings to merely 59 seconds in the fastest configuration. Finally prompt gamma profiles are also in very good agreement with PENH results. Conclusion: Our new, fast, and multi-purpose Monte Carlo code simulates prompt gammas and calculates dose distributions in less than a minute, which complies with clinical time constraints. It has been successfully validated with Geant4. This work has been financialy supported by InVivoIGT, a public/private partnership between UCL and IBA.

  11. Improving the efficiency of configurational-bias Monte Carlo: A density-guided method for generating bending angle trials for linear and branched molecules

    SciTech Connect (OSTI)

    Sepehri, Aliasghar; Loeffler, Troy D.; Chen, Bin

    2014-08-21

    A new method has been developed to generate bending angle trials to improve the acceptance rate and the speed of configurational-bias Monte Carlo. Whereas traditionally the trial geometries are generated from a uniform distribution, in this method we attempt to use the exact probability density function so that each geometry generated is likely to be accepted. In actual practice, due to the complexity of this probability density function, a numerical representation of this distribution function would be required. This numerical table can be generated a priori from the distribution function. This method has been tested on a united-atom model of alkanes including propane, 2-methylpropane, and 2,2-dimethylpropane, that are good representatives of both linear and branched molecules. It has been shown from these test cases that reasonable approximations can be made especially for the highly branched molecules to reduce drastically the dimensionality and correspondingly the amount of the tabulated data that is needed to be stored. Despite these approximations, the dependencies between the various geometrical variables can be still well considered, as evident from a nearly perfect acceptance rate achieved. For all cases, the bending angles were shown to be sampled correctly by this method with an acceptance rate of at least 96% for 2,2-dimethylpropane to more than 99% for propane. Since only one trial is required to be generated for each bending angle (instead of thousands of trials required by the conventional algorithm), this method can dramatically reduce the simulation time. The profiling results of our Monte Carlo simulation code show that trial generation, which used to be the most time consuming process, is no longer the time dominating component of the simulation.

  12. SU-E-T-58: Calculation of Dose Distribution of Accuboost Brachytherapy in Deformable Polyvinil Alcohol Breast Phantom Using Biomechanical Modeling and Monte Carlo Simulation

    SciTech Connect (OSTI)

    Mohammadyari, P; Faghihi, R; Shirazi, M Mosleh; Lotfi, M; Meigooni, A

    2014-06-01

    Purpose: the accuboost is the most modern method of breast brachytherapy that is a boost method in compressed tissue by a mammography unit. the dose distribution in uncompressed tissue, as compressed tissue is important that should be characterized. Methods: In this study, the mechanical behavior of breast in mammography loading, the displacement of breast tissue and the dose distribution in compressed and uncompressed tissue, are investigated. Dosimetry was performed by two dosimeter methods of Monte Carlo simulations using MCNP5 code and thermoluminescence dosimeters. For Monte Carlo simulations, the dose values in cubical lattice were calculated using tally F6. The displacement of the breast elements was simulated by Finite element model and calculated using ABAQUS software, from which the 3D dose distribution in uncompressed tissue was determined. The geometry of the model is constructed from MR images of 6 volunteers. Experimental dosimetery was performed by placing the thermoluminescence dosimeters into the polyvinyl alcohol breast equivalent phantom and on the proximal edge of compression plates to the chest. Results: The results indicate that using the cone applicators would deliver more than 95% of dose to the depth of 5 to 17mm, while round applicator will increase the skin dose. Nodal displacement, in presence of gravity and 60N forces, i.e. in mammography compression, was determined with 43% contraction in the loading direction and 37% expansion in orthogonal orientation. Finally, in comparison of the acquired from thermoluminescence dosimeters with MCNP5, they are consistent with each other in breast phantom and in chest's skin with average different percentage of 13.7±5.7 and 7.7±2.3, respectively. Conclusion: The major advantage of this kind of dosimetry is the ability of 3D dose calculation by FE Modeling. Finally, polyvinyl alcohol is a reliable material as a breast tissue equivalent dosimetric phantom that provides the ability of TLD dosimetry for validation.

  13. SU-E-T-492: Implementing a Method for Brain Irradiation in Rats Utilizing a Commercially Available Radiosurgery Irradiator

    SciTech Connect (OSTI)

    Cates, J; Drzymala, R

    2014-06-01

    Purpose: The purpose of the study was to implement a method for accurate rat brain irradiation using the Gamma Knife Perfexion unit. The system needed to be repeatable, efficient, and dosimetrically and spatially accurate. Methods: A platform (“rat holder”) was made such that it is attachable to the Leskell Gamma Knife G Frame. The rat holder utilizes two ear bars contacting bony anatomy and a front tooth bar to secure the rat. The rat holder fits inside of the Leskell localizer box, which utilizes fiducial markers to register with the GammaPlan planning system. This method allows for accurate, repeatable setup.A cylindrical phantom was made so that film can be placed axially in the phantom. We then acquired CT image sets of the rat holder and localizer box with both a rat and the phantom. Three treatment plans were created: a plan on the rat CT dataset, a phantom plan with the same prescription dose as the rat plan, and a phantom plan with the same delivery time as the rat plan. Results: Film analysis from the phantom showed that our setup is spatially accurate and repeatable. It is also dosimetrically accurate, with an difference between predicted and measured dose of 2.9%. Film analysis with prescription dose equal between rat and phantom plans showed a difference of 3.8%, showing that our phantom is a good representation of the rat for dosimetry purposes, allowing for +/- 3mm diameter variation. Film analysis with treatment time equal showed an error of 2.6%, which means we can deliver a prescription dose within 3% accuracy. Conclusion: Our method for irradiation of rat brain has been shown to be repeatable, efficient, and accurate, both dosimetrically and spatially. We can treat a large number of rats efficiently while delivering prescription doses within 3% at millimeter level accuracy.

  14. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    SciTech Connect (OSTI)

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased ?{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone metabolic effects are only slightly exacerbated in geriatric rats.

  15. LANL12-RS-107J PYTHON Radiography Analysis Tool (PyRAT). Mid-Year

    Office of Scientific and Technical Information (OSTI)

    Deliverable Report for FY15 (Technical Report) | SciTech Connect LANL12-RS-107J PYTHON Radiography Analysis Tool (PyRAT). Mid-Year Deliverable Report for FY15 Citation Details In-Document Search Title: LANL12-RS-107J PYTHON Radiography Analysis Tool (PyRAT). Mid-Year Deliverable Report for FY15 This document is a mid-year report on a deliverable for the PYTHON Radiography Analysis Tool (PyRAT) for project LANL12-RS-107J in FY15. The deliverable is deliverable number 2 in the work package and

  16. Secondary structure of rat and human amylin across force fields

    SciTech Connect (OSTI)

    Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi -cheng; de Pablo, Juan J.; Paci, Emanuele

    2015-07-29

    The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable dynamic pathways that facilitate the formation of aggregates and, eventually, amyloid fibrils.

  17. Secondary structure of rat and human amylin across force fields

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoffmann, Kyle Quynn; McGovern, Michael; Chiu, Chi -cheng; de Pablo, Juan J.; Paci, Emanuele

    2015-07-29

    The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin wasmore » determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient states enable dynamic pathways that facilitate the formation of aggregates and, eventually, amyloid fibrils.« less

  18. LANL12-RS-107J PYTHON Radiography Analysis Tool (PyRAT). Mid...

    Office of Scientific and Technical Information (OSTI)

    LANL12-RS-107J PYTHON Radiography Analysis Tool (PyRAT). Mid-Year Deliverable Report for FY15 Citation Details In-Document Search Title: LANL12-RS-107J PYTHON Radiography Analysis ...

  19. LANL12-RS-107J PYTHON Radiography Analysis Tool (PyRAT). Mid...

    Office of Scientific and Technical Information (OSTI)

    project LANL12-RS-107J in FY15. The deliverable is deliverable number 2 in the work package and is titled "Add the ability to read in more types of image file formats in PyRAT"....

  20. Antimuscarinic effects of chloroquine in rat pancreatic acini

    SciTech Connect (OSTI)

    Habara, Y.; Williams, J.A.; Hootman, S.R.

    1986-06-13

    Chloroquine inhibited carbachol-induced amylase release in a dose-dependent fashion in rat pancreatic acini; cholecystokinin- and bombesin-induced secretory responses were almost unchanged by the antimalarial drug. The inhibition of carbachol-induced amylase release by chloroquine was competitive in nature with a K/sub i/ of 11.7 ..mu..M. Chloroquine also inhibited (/sup 3/H)N-methylscopolamine binding to acinar muscarinic receptors. The IC/sub 50/ for chloroquine inhibition of (/sup 3/H)N-methylscopolamine binding was lower than that for carbachol or the other antimalarial drugs, quinine and quinidine. These results demonstrate that chloroquine is a muscarinic receptor antagonist in the exocrine pancreas.

  1. Adverse testicular effects of Botox® in mature rats

    SciTech Connect (OSTI)

    Breikaa, Randa M.; Mosli, Hisham A.; Nagy, Ayman A.; Abdel-Naim, Ashraf B.

    2014-03-01

    Botox® injections are taking a consistently increasing place in urology. Intracremasteric injections, particularly, have been applied for cryptorchidism and painful testicular spasms. Studies outlining their safety for this use are, however, scanty. Thus, the present study aimed at evaluating possible testicular toxicity of Botox® injections and their effect on male fertility. Mature rats were given intracremasteric Botox® injections (10, 20 and 40 U/kg) three times in a two-week interval. Changes in body and testes weights were examined and gonadosomatic index compared to control group. Semen quality, sperm parameters, fructose, protein, cholesterol and triglycerides contents were assessed. Effects on normal testicular function were investigated by measuring testosterone levels and changes in enzyme activities (lactate dehydrogenase-X and acid phosphatase). To draw a complete picture, changes in oxidative and inflammatory states were examined, in addition to the extent of connective tissue deposition between seminiferous tubules. In an attempt to have more accurate information about possible spermatotoxic effects of Botox®, flowcytometric analysis and histopathological examination were carried out. Botox®-injected rats showed altered testicular physiology and function. Seminiferous tubules were separated by dense fibers, especially with the highest dose. Flowcytometric analysis showed a decrease in mature sperms and histopathology confirmed the findings. The oxidative state was, however, comparable to control group. This study is the first to show that intracremasteric injections of Botox® induce adverse testicular effects evidenced by inhibited spermatogenesis and initiation of histopathological changes. In conclusion, decreased fertility may be a serious problem Botox® injections could cause. - Highlights: • Botox® injections are the trend nowadays, for both medical and non-medical uses. • They were recently suggested for cryptorchidism and testicular spasms. • This study outlines possible testicular adverse effects of these injections. • Botox® affected normal testicular function and physiology. • Infertility is a serious problem that Botox® injections could cause.

  2. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    SciTech Connect (OSTI)

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.; Adamo, Martin L.

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  3. Linkage maps of rat chromosomes 15, 16, 17, 19, and X

    SciTech Connect (OSTI)

    Du, Ying; Remmers, E.F.; Goldmuntz, E.A.

    1996-02-15

    This article reports on novel linkage maps of rat chromosomes 15, 16, 17, 19, and X. Such a map is needed to further the usefulness of the rat as a biological model in hereditary diseases. The linkage map results produced polymorphic markers which were associated with eight known genes and fourteen anonymous loci. This was accomplished using PCR analysis of somatic cell hybrids or previously listed loci locations. 15 refs., 1 fig., 1 tab.

  4. Ten polymorphic DNA loci, including five in the rat MHC (RT1) region, form a single linkage group on rat chromosome 20

    SciTech Connect (OSTI)

    Remmers, E.F.; Du, Y.; Zha, H.; Goldmuntz, E.A.; Wilder, R.L.

    1995-03-01

    We have described ten markers for polymorphic loci on rat chromosome 20, including five in the rat MHC (RT1) region. These markers formed a single linkage group spanning a recombination distance of 0.40. The markers identified five expressed gene loci - RT1.N1 (thymus leukemia antigen 1), Tnfa (tumor necrosis factor {alpha}), Hspa1 (heat shock protein 70), Ggt1 ({gamma} glutamyl-transferase 1), and Prkacn2 (protein kinase C catalytic subunit binding inhibitor 2), two loci with sequences that are related to expressed genes - RT1.Aw2 (sequence related to a non-RT1A class I {alpha} chain) and Mt21 (sequence related to metallothionein 2), and three anonymous loci - D20Arb548, D20Arb234, and D20Arb249. These polymorphic markers should facilitate mapping studies and genetic monitoring of inbred rat strains. 18 refs., 2 figs., 3 tabs.

  5. Automated whole-genome multiple alignment of rat, mouse, and human

    SciTech Connect (OSTI)

    Brudno, Michael; Poliakov, Alexander; Salamov, Asaf; Cooper, Gregory M.; Sidow, Arend; Rubin, Edward M.; Solovyev, Victor; Batzoglou, Serafim; Dubchak, Inna

    2004-07-04

    We have built a whole genome multiple alignment of the three currently available mammalian genomes using a fully automated pipeline which combines the local/global approach of the Berkeley Genome Pipeline and the LAGAN program. The strategy is based on progressive alignment, and consists of two main steps: (1) alignment of the mouse and rat genomes; and (2) alignment of human to either the mouse-rat alignments from step 1, or the remaining unaligned mouse and rat sequences. The resulting alignments demonstrate high sensitivity, with 87% of all human gene-coding areas aligned in both mouse and rat. The specificity is also high: <7% of the rat contigs are aligned to multiple places in human and 97% of all alignments with human sequence > 100kb agree with a three-way synteny map built independently using predicted exons in the three genomes. At the nucleotide level <1% of the rat nucleotides are mapped to multiple places in the human sequence in the alignment; and 96.5% of human nucleotides within all alignments agree with the synteny map. The alignments are publicly available online, with visualization through the novel Multi-VISTA browser that we also present.

  6. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models

    SciTech Connect (OSTI)

    Saeed, Noha M.; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M.; Algandaby, Mardi M.; Al-Abbasi, Fahad A.; Abdel-Naim, Ashraf B.

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-? (TNF-?) and interleukin-6 (IL-6). MP and EP decreased NF-?B expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ? Efficacy of MP and EP in combating inflammation was displayed in several models. ? MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ? MP and EP decreased TNF-? and IL-6 levels in experimental endotoxemia. ? MP and EP reduced NF-?B expression and histological changes in rat liver and lung. ? MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.

  7. SU-E-T-71: Commissioning and Acceptance Testing of a Commercial Monte Carlo Electron Dose Calculation Model (eMC) for TrueBeam

    SciTech Connect (OSTI)

    Sheu, R; Tseng, T; Powers, A; Lo, Y

    2014-06-01

    Purpose: To provide commissioning and acceptance test data of the Varian Eclipse electron Monte Carlo model (eMC v.11) for TrueBeam linac. We also investigated the uncertainties in beam model parameters and dose calculation results for different geometric configurations. Methods: For beam commissioning, PTW CC13 thimble chamber and IBA Blue Phantom2 were used to collect PDD and dose profiles in air. Cone factors were measured with a parallel plate chamber (PTW N23342) in solid water. GafChromic EBT3 films were used for dose calculation verifications to compare with parallel plate chamber results in the following test geometries: oblique incident, extended distance, small cutouts, elongated cutouts, irregular surface, and heterogeneous layers. Results: Four electron energies (6e, 9e, 12e, and 15e) and five cones (6×6, 10×10, 15×15, 20×20, and 25×25) with standard cutouts were calculated for different grid sizes (1, 1.5,2, and 2.5 mm) and compared with chamber measurements. The results showed calculations performed with a coarse grid size underestimated the absolute dose. The underestimation decreased as energy increased. For 6e, the underestimation (max 3.3 %) was greater than the statistical uncertainty level (3%) and was systematically observed for all cone sizes. By using a 1mm grid size, all the calculation results agreed with measurements within 5% for all test configurations. The calculations took 21s and 46s for 6e and 15e (2.5mm grid size) respectively distributed on 4 calculation servants. Conclusion: In general, commissioning the eMC dose calculation model on TrueBeam is straightforward and thedose calculation is in good agreement with measurements for all test cases. Monte Carlo dose calculation provides more accurate results which improves treatment planning quality. However, the normal acceptable grid size (2.5mm) would cause systematic underestimation in absolute dose calculation for lower energies, such as 6e. Users need to be cautious in this situation.

  8. Fast transit portal dosimetry using density-scaled layer modeling of aSi-based electronic portal imaging device and Monte Carlo method

    SciTech Connect (OSTI)

    Jung, Jae Won; Kim, Jong Oh; Yeo, Inhwan Jason; Cho, Young-Bin; Kim, Sun Mo; DiBiase, Steven

    2012-12-15

    Purpose: Fast and accurate transit portal dosimetry was investigated by developing a density-scaled layer model of electronic portal imaging device (EPID) and applying it to a clinical environment. Methods: The model was developed for fast Monte Carlo dose calculation. The model was validated through comparison with measurements of dose on EPID using first open beams of varying field sizes under a 20-cm-thick flat phantom. After this basic validation, the model was further tested by applying it to transit dosimetry and dose reconstruction that employed our predetermined dose-response-based algorithm developed earlier. The application employed clinical intensity-modulated beams irradiated on a Rando phantom. The clinical beams were obtained through planning on pelvic regions of the Rando phantom simulating prostate and large pelvis intensity modulated radiation therapy. To enhance agreement between calculations and measurements of dose near penumbral regions, convolution conversion of acquired EPID images was alternatively used. In addition, thickness-dependent image-to-dose calibration factors were generated through measurements of image and calculations of dose in EPID through flat phantoms of various thicknesses. The factors were used to convert acquired images in EPID into dose. Results: For open beam measurements, the model showed agreement with measurements in dose difference better than 2% across open fields. For tests with a Rando phantom, the transit dosimetry measurements were compared with forwardly calculated doses in EPID showing gamma pass rates between 90.8% and 98.8% given 4.5 mm distance-to-agreement (DTA) and 3% dose difference (DD) for all individual beams tried in this study. The reconstructed dose in the phantom was compared with forwardly calculated doses showing pass rates between 93.3% and 100% in isocentric perpendicular planes to the beam direction given 3 mm DTA and 3% DD for all beams. On isocentric axial planes, the pass rates varied between 95.8% and 99.9% for all individual beams and they were 98.2% and 99.9% for the composite beams of the small and large pelvis cases, respectively. Three-dimensional gamma pass rates were 99.0% and 96.4% for the small and large pelvis cases, respectively. Conclusions: The layer model of EPID built for Monte Carlo calculations offered fast (less than 1 min) and accurate calculation for transit dosimety and dose reconstruction.

  9. Zinc content of selected tissues and taste perception in rats fed zinc deficient and zinc adequate rations

    SciTech Connect (OSTI)

    Boeckner, L.S.; Kies, C.

    1986-03-05

    The objective of the study was to determine the effects of feeding zinc sufficient and zinc deficient rations on taste sensitivity and zinc contents of selected organs in rats. The 36 Sprague-Dawley male weanling rats were divided into 2 groups and fed zinc deficient or zinc adequate rations. The animals were subjected to 4 trial periods in which a choice of deionized distilled water or a solution of quinine sulfate at 1.28 x 10/sup -6/ was given. A randomized schedule for rat sacrifice was used. No differences were found between zinc deficient and zinc adequate rats in taste preference aversion scores for quinine sulfate in the first three trial periods; however, in the last trial period rats in the zinc sufficient group drank somewhat less water containing quinine sulfate as a percentage of total water consumption than did rats fed the zinc deficient ration. Significantly higher zinc contents of kidney, brain and parotid salivary glands were seen in zinc adequate rats compared to zinc deficient rats at the end of the study. However, liver and tongue zinc levels were lower for both groups at the close of the study than were those of rats sacrificed at the beginning of the study.

  10. Particle-in-cell/Monte Carlo collision simulation of the ionization process of surface-wave plasma discharges resonantly excited by surface plasmon polaritons

    SciTech Connect (OSTI)

    Chen Zhaoquan [College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024 (China); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Ye Qiubo [College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); Communications Research Centre, 3701 Carling Ave., Ottawa K2H 8S2 (Canada); Xia Guangqing [State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116024 (China); Hong Lingli; Hu Yelin; Zheng Xiaoliang; Li Ping [College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); Zhou Qiyan [College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Hu Xiwei; Liu Minghai [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2013-03-15

    Although surface-wave plasma (SWP) sources have many industrial applications, the ionization process for SWP discharges is not yet well understood. The resonant excitation of surface plasmon polaritons (SPPs) has recently been proposed to produce SWP efficiently, and this work presents a numerical study of the mechanism to produce SWP sources. Specifically, SWP resonantly excited by SPPs at low pressure (0.25 Torr) are modeled using a two-dimensional in the working space and three-dimensional in the velocity space particle-in-cell with the Monte Carlo collision method. Simulation results are sampled at different time steps, in which the detailed information about the distribution of electrons and electromagnetic fields is obtained. Results show that the mode conversion between surface waves of SPPs and electron plasma waves (EPWs) occurs efficiently at the location where the plasma density is higher than 3.57 Multiplication-Sign 10{sup 17} m{sup -3}. Due to the effect of the locally enhanced electric field of SPPs, the mode conversion between the surface waves of SPPs and EPWs is very strong, which plays a significant role in efficiently heating SWP to the overdense state.

  11. Study of the effects of a transverse magnetic field on radio frequency argon discharges by two-dimensional particle-in-cell-Monte-Carlo collision simulations

    SciTech Connect (OSTI)

    Fan, Yu; Zou, Ying; Sun, Jizhong; Wang, Dezhen [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Stirner, Thomas [Department of Electronic Engineering, University of Applied Sciences Deggendorf, Edlmairstr. 6-8, D-94469 Deggendorf (Germany)] [Department of Electronic Engineering, University of Applied Sciences Deggendorf, Edlmairstr. 6-8, D-94469 Deggendorf (Germany)

    2013-10-15

    The influence of an applied magnetic field on plasma-related devices has a wide range of applications. Its effects on a plasma have been studied for years; however, there are still many issues that are not understood well. This paper reports a detailed kinetic study with the two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo collision method on the role of E×B drift in a capacitive argon discharge, similar to the experiment of You et al.[Thin Solid Films 519, 6981 (2011)]. The parameters chosen in the present study for the external magnetic field are in a range common to many applications. Two basic configurations of the magnetic field are analyzed in detail: the magnetic field direction parallel to the electrode with or without a gradient. With an extensive parametric study, we give detailed influences of the drift on the collective behaviors of the plasma along a two-dimensional domain, which cannot be represented by a 1 spatial and 3 velocity dimensions model. By analyzing the results of the simulations, the occurring collisionless heating mechanism is explained well.

  12. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    SciTech Connect (OSTI)

    Kadoura, Ahmad; Sun, Shuyu Salama, Amgad

    2014-08-01

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (?, ?) for single site models were proposed for methane, nitrogen and carbon monoxide.

  13. Benchmarking the performance of density functional theory and point charge force fields in their description of sI methane hydrate against diffusion Monte Carlo

    SciTech Connect (OSTI)

    Cox, Stephen J.; Michaelides, Angelos; Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ ; Towler, Michael D.; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE ; Alfè, Dario; Department of Earth Sciences, University College London Gower Street, London WC1E 6BT

    2014-05-07

    High quality reference data from diffusion Monte Carlo calculations are presented for bulk sI methane hydrate, a complex crystal exhibiting both hydrogen-bond and dispersion dominated interactions. The performance of some commonly used exchange-correlation functionals and all-atom point charge force fields is evaluated. Our results show that none of the exchange-correlation functionals tested are sufficient to describe both the energetics and the structure of methane hydrate accurately, while the point charge force fields perform badly in their description of the cohesive energy but fair well for the dissociation energetics. By comparing to ice I{sub h}, we show that a good prediction of the volume and cohesive energies for the hydrate relies primarily on an accurate description of the hydrogen bonded water framework, but that to correctly predict stability of the hydrate with respect to dissociation to ice I{sub h} and methane gas, accuracy in the water-methane interaction is also required. Our results highlight the difficulty that density functional theory faces in describing both the hydrogen bonded water framework and the dispersion bound methane.

  14. Monte Carlo study of electron-beam penetration and backscattering in multi-walled carbon nanotube materials: The effect of different scattering models

    SciTech Connect (OSTI)

    Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza; Moscovitch, Marko

    2013-02-28

    A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of the differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.

  15. Calculation of the Gibbs Free Energy of Solvation and Dissociation of HCl in Water via Monte Carlo Simulations and Continuum Solvation Models

    SciTech Connect (OSTI)

    McGrath, Matthew; Kuo, I-F W.; Ngouana, Brice F.; Ghogomu, Julius N.; Mundy, Christopher J.; Marenich, Aleksandr; Cramer, Christopher J.; Truhlar, Donald G.; Siepmann, Joern I.

    2013-08-28

    The free energy of solvation and dissociation of hydrogen chloride in water is calculated through a combined molecular simulation quantum chemical approach at four temperatures between T = 300 and 450 K. The free energy is first decomposed into the sum of two components: the Gibbs free energy of transfer of molecular HCl from the vapor to the aqueous liquid phase and the standard-state free energy of acid dissociation of HCl in aqueous solution. The former quantity is calculated using Gibbs ensemble Monte Carlo simulations using either Kohn-Sham density functional theory or a molecular mechanics force field to determine the system’s potential energy. The latter free energy contribution is computed using a continuum solvation model utilizing either experimental reference data or micro-solvated clusters. The predicted combined solvation and dissociation free energies agree very well with available experimental data. CJM was supported by the US Department of Energy,Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  16. Compositions, devices and methods for SERS and LSPR

    DOE Patents [OSTI]

    Van Duyne, Richard P; Zhang, Xiaoyu; Zhao, Jing; Whitney, Alyson V; Elam, Jeffrey W; Schatz, George C; Stair, Peter C; Zou, Shengli; Young, Matthew; Lyandres, Olga

    2014-01-14

    The present invention relates to compositions, devices and methods for detecting microorganisms (e.g., anthrax). In particular, the present invention provides portable, surface-enhanced Raman biosensors, and associated substrates, and methods of using the same, for use in rapidly detecting and identifying microorganisms (e.g., anthrax).

  17. A SERS Method for Handheld Portable Raman - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summary Sandia National Laboratories (SNL) has made an initial investment in the research and development of Surface Enhanced Raman hardware capable of being...

  18. SERS internship Fall 1992--Spring 1993: Abstract and research papers

    SciTech Connect (OSTI)

    Not Available

    1993-08-05

    This report contains the abstracts and research papers by students on a variety of topics in engineering, genetics, solid state physics, thermonuclear energy, astrophysics, and other science related topics.

  19. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1995-03-21

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.

  20. Surface-enhanced Raman scattering (SERS) dosimeter and probe

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1995-01-01

    A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.

  1. SERS internship spring 1996 abstracts and research papers

    SciTech Connect (OSTI)

    Williams, B.

    1996-07-01

    This is the student symposium for the Science & Engineering Research Semester, May 2-3, 1996. A variety of topics are covered.

  2. SciDAC Center for Simulation of Wave-Plasma Interactions - Iterated Finite-Orbit Monte Carlo Simulations with Full-Wave Fields for Modeling Tokamak ICRF Wave Heating Experiments - Final Report

    SciTech Connect (OSTI)

    Choi, Myunghee; Chan, Vincent S.

    2014-02-28

    This final report describes the work performed under U.S. Department of Energy Cooperative Agreement DE-FC02-08ER54954 for the period April 1, 2011 through March 31, 2013. The goal of this project was to perform iterated finite-orbit Monte Carlo simulations with full-wall fields for modeling tokamak ICRF wave heating experiments. In year 1, the finite-orbit Monte-Carlo code ORBIT-RF and its iteration algorithms with the full-wave code AORSA were improved to enable systematical study of the factors responsible for the discrepancy in the simulated and the measured fast-ion FIDA signals in the DIII-D and NSTX ICRF fast-wave (FW) experiments. In year 2, ORBIT-RF was coupled to the TORIC full-wave code for a comparative study of ORBIT-RF/TORIC and ORBIT-RF/AORSA results in FW experiments.

  3. In vitro dermal absorption of pyrethroid pesticides in human and rat skin

    SciTech Connect (OSTI)

    Hughes, Michael F.; Edwards, Brenda C.

    2010-07-15

    Dermal exposure to pyrethroid pesticides can occur during manufacture and application. This study examined the in vitro dermal absorption of pyrethroids using rat and human skin. Dermatomed skin from adult male Long Evans rats or human cadavers was mounted in flow-through diffusion cells, and radiolabeled bifenthrin, deltamethrin or cis-permethrin was applied in acetone to the skin. Fractions of receptor fluid were collected every 4 h. At 24 h, the skins were washed with soap and water to remove unabsorbed chemical. The skin was then solubilized. Two additional experiments were performed after washing the skin; the first was tape-stripping the skin and the second was the collection of receptor fluid for an additional 24 h. Receptor fluid, skin washes, tape strips and skin were analyzed for radioactivity. For rat skin, the wash removed 53-71% of the dose and 26-43% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid ranged from 1 to 5%. For human skin, the wash removed 71-83% of the dose and 14-25% remained in the skin. The cumulative percentage of the dose at 24 h in the receptor fluid was 1-2%. Tape-stripping removed 50-56% and 79-95% of the dose in rat and human skin, respectively, after the wash. From 24-48 h, 1-3% and about 1% of the dose diffused into the receptor fluid of rat and human skin, respectively. The pyrethroids bifenthrin, deltamethrin and cis-permethrin penetrated rat and human skin following dermal application in vitro. However, a skin wash removed 50% or more of the dose from rat and human skin. Rat skin was more permeable to the pyrethroids than human skin. Of the dose in skin, 50% or more was removed by tape-stripping, suggesting that permeation of pyrethroids into viable tissue could be impeded. The percentage of the dose absorbed into the receptor fluid was considerably less than the dose in rat and human skin. Therefore, consideration of the skin type used and fractions analyzed are important when using in vitro dermal absorption data for risk assessment.

  4. Hydrogenation of Acetylene-Ethylene Mixtures over Pd and Pd-Ag Alloys: First-Principles Based Kinetic Monte Carlo Simulations

    SciTech Connect (OSTI)

    Mei, Donghai; Neurock, Matthew; Smith, C Michael

    2009-10-22

    The kinetics for the selective hydrogenation of acetylene-ethylene mixtures over model Pd(111) and bimetallic Pd-Ag alloy surfaces were examined using first principles based kinetic Monte Carlo (KMC) simulations to elucidate the effects of alloying as well as process conditions (temperature and hydrogen partial pressure). The mechanisms that control the selective and unselective routes which included hydrogenation, dehydrogenation and C-?C bond breaking pathways were analyzed using first-principle density functional theory (DFT) calculations. The results were used to construct an intrinsic kinetic database that was used in a variable time step kinetic Monte Carlo simulation to follow the kinetics and the molecular transformations in the selective hydrogenation of acetylene-ethylene feeds over Pd and Pd-Ag surfaces. The lateral interactions between coadsorbates that occur through-surface and through-space were estimated using DFT-parameterized bond order conservation and van der Waal interaction models respectively. The simulation results show that the rate of acetylene hydrogenation as well as the ethylene selectivity increase with temperature over both the Pd(111) and the Pd-Ag/Pd(111) alloy surfaces. The selective hydrogenation of acetylene to ethylene proceeds via the formation of a vinyl intermediate. The unselective formation of ethane is the result of the over-hydrogenation of ethylene as well as over-hydrogenation of vinyl to form ethylidene. Ethylidene further hydrogenates to form ethane and dehydrogenates to form ethylidyne. While ethylidyne is not reactive, it can block adsorption sites which limit the availability of hydrogen on the surface and thus act to enhance the selectivity. Alloying Ag into the Pd surface decreases the overall rated but increases the ethylene selectivity significantly by promoting the selective hydrogenation of vinyl to ethylene and concomitantly suppressing the unselective path involving the hydrogenation of vinyl to ethylidene and the dehydrogenation ethylidene to ethylidyne. This is consistent with experimental results which suggest only the predominant hydrogenation path involving the sequential addition of hydrogen to form vinyl and ethylene exists over the Pd-Ag alloys. Ag enhances the desorption of ethylene and hydrogen from the surface thus limiting their ability to undergo subsequent reactions. The simulated apparent activation barriers were calculated to be 32-44 kJ/mol on Pd(111) and 26-31 kJ/mol on Pd-Ag/Pd(111) respectively. The reaction was found to be essentially first order in hydrogen over Pd(111) and Pd-Ag/Pd(111) surfaces. The results reveal that increases in the hydrogen partial pressure increase the activity but decrease ethylene selectivity over both Pd and Pd-Ag/Pd(111) surfaces. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  5. SU-E-T-595: Design of a Graphical User Interface for An In-House Monte Carlo Based Treatment Planning System: Planning and Contouring Tools

    SciTech Connect (OSTI)

    EMAM, M; Eldib, A; Lin, M; Li, J; Chibani, O; Ma, C

    2014-06-01

    Purpose: An in-house Monte Carlo based treatment planning system (MC TPS) has been developed for modulated electron radiation therapy (MERT). Our preliminary MERT planning experience called for a more user friendly graphical user interface. The current work aimed to design graphical windows and tools to facilitate the contouring and planning process. Methods: Our In-house GUI MC TPS is built on a set of EGS4 user codes namely MCPLAN and MCBEAM in addition to an in-house optimization code, which was named as MCOPTIM. Patient virtual phantom is constructed using the tomographic images in DICOM format exported from clinical treatment planning systems (TPS). Treatment target volumes and critical structures were usually contoured on clinical TPS and then sent as a structure set file. In our GUI program we developed a visualization tool to allow the planner to visualize the DICOM images and delineate the various structures. We implemented an option in our code for automatic contouring of the patient body and lungs. We also created an interface window displaying a three dimensional representation of the target and also showing a graphical representation of the treatment beams. Results: The new GUI features helped streamline the planning process. The implemented contouring option eliminated the need for performing this step on clinical TPS. The auto detection option for contouring the outer patient body and lungs was tested on patient CTs and it was shown to be accurate as compared to that of clinical TPS. The three dimensional representation of the target and the beams allows better selection of the gantry, collimator and couch angles. Conclusion: An in-house GUI program has been developed for more efficient MERT planning. The application of aiding tools implemented in the program is time saving and gives better control of the planning process.

  6. SU-E-T-242: Monte Carlo Simulations Used to Test the Perturbation of a Reference Ion Chamber Prototype Used for Small Fields

    SciTech Connect (OSTI)

    Vazquez Quino, L; Calvo, O; Huerta, C; DeWeese, M

    2014-06-01

    Purpose: To study the perturbation due to the use of a novel Reference Ion Chamber designed to measure small field dosimetry (KermaX Plus C by IBA). Methods: Using the Phase-space files for TrueBeam photon beams available by Varian in IAEA-compliant format for 6 and 15 MV. Monte Carlo simulations were performed using BEAMnrc and DOSXYZnrc to investigate the perturbation introduced by a reference chamber into the PDDs and profiles measured in water tank. Field sizes ranging from 1×1, 2×2,3×3, 5×5 cm2 were simulated for both energies with and without a 0.5 mm foil of Aluminum which is equivalent to the attenuation equivalent of the reference chamber specifications in a water phantom of 30×30×30 cm3 and a pixel resolution of 2 mm. The PDDs, profiles, and gamma analysis of the simulations were performed as well as a energy spectrum analysis of the phase-space files generated during the simulation. Results: Examination of the energy spectrum analysis performed shown a very small increment of the energy spectrum at the build-up region but no difference is appreciated after dmax. The PDD, profiles and gamma analysis had shown a very good agreement among the simulations with and without the Al foil, with a gamma analysis with a criterion of 2% and 2mm resulting in 99.9% of the points passing this criterion. Conclusion: This work indicates the potential benefits of using the KermaX Plus C as reference chamber in the measurement of PDD and Profiles for small fields since the perturbation due to in the presence of the chamber the perturbation is minimal and the chamber can be considered transparent to the photon beam.

  7. Spatiotemporal Monte Carlo transport methods in x-ray semiconductor detectors: Application to pulse-height spectroscopy in a-Se

    SciTech Connect (OSTI)

    Fang Yuan; Badal, Andreu; Allec, Nicholas; Karim, Karim S.; Badano, Aldo

    2012-01-15

    Purpose: The authors describe a detailed Monte Carlo (MC) method for the coupled transport of ionizing particles and charge carriers in amorphous selenium (a-Se) semiconductor x-ray detectors, and model the effect of statistical variations on the detected signal. Methods: A detailed transport code was developed for modeling the signal formation process in semiconductor x-ray detectors. The charge transport routines include three-dimensional spatial and temporal models of electron-hole pair transport taking into account recombination and trapping. Many electron-hole pairs are created simultaneously in bursts from energy deposition events. Carrier transport processes include drift due to external field and Coulombic interactions, and diffusion due to Brownian motion. Results: Pulse-height spectra (PHS) have been simulated with different transport conditions for a range of monoenergetic incident x-ray energies and mammography radiation beam qualities. Two methods for calculating Swank factors from simulated PHS are shown, one using the entire PHS distribution, and the other using the photopeak. The latter ignores contributions from Compton scattering and K-fluorescence. Comparisons differ by approximately 2% between experimental measurements and simulations. Conclusions: The a-Se x-ray detector PHS responses simulated in this work include three-dimensional spatial and temporal transport of electron-hole pairs. These PHS were used to calculate the Swank factor and compare it with experimental measurements. The Swank factor was shown to be a function of x-ray energy and applied electric field. Trapping and recombination models are all shown to affect the Swank factor.

  8. SU-E-T-591: Measurement and Monte Carlo Simulation of Stray Neutrons in Passive Scattering Proton Therapy: Needs and Challenges

    SciTech Connect (OSTI)

    Farah, J; Bonfrate, A; Donadille, L; Dubourg, N; Lacoste, V; Martinetti, F; Sayah, R; Trompier, F; Clairand, I [IRSN - Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-roses (France); Caresana, M [Politecnico di Milano, Milano (Italy); Delacroix, S; Nauraye, C [Institut Curie - Centre de Protontherapie d Orsay, Orsay (France); Herault, J [Centre Antoine Lacassagne, Nice (France); Piau, S; Vabre, I [Institut de Physique Nucleaire d Orsay, Orsay (France)

    2014-06-01

    Purpose: Measure stray radiation inside a passive scattering proton therapy facility, compare values to Monte Carlo (MC) simulations and identify the actual needs and challenges. Methods: Measurements and MC simulations were considered to acknowledge neutron exposure associated with 75 MeV ocular or 180 MeV intracranial passively scattered proton treatments. First, using a specifically-designed high sensitivity Bonner Sphere system, neutron spectra were measured at different positions inside the treatment rooms. Next, measurement-based mapping of neutron ambient dose equivalent was fulfilled using several TEPCs and rem-meters. Finally, photon and neutron organ doses were measured using TLDs, RPLs and PADCs set inside anthropomorphic phantoms (Rando, 1 and 5-years-old CIRS). All measurements were also simulated with MCNPX to investigate the efficiency of MC models in predicting stray neutrons considering different nuclear cross sections and models. Results: Knowledge of the neutron fluence and energy distribution inside a proton therapy room is critical for stray radiation dosimetry. However, as spectrometry unfolding is initiated using a MC guess spectrum and suffers from algorithmic limits a 20% spectrometry uncertainty is expected. H*(10) mapping with TEPCs and rem-meters showed a good agreement between the detectors. Differences within measurement uncertainty (10–15%) were observed and are inherent to the energy, fluence and directional response of each detector. For a typical ocular and intracranial treatment respectively, neutron doses outside the clinical target volume of 0.4 and 11 mGy were measured inside the Rando phantom. Photon doses were 2–10 times lower depending on organs position. High uncertainties (40%) are inherent to TLDs and PADCs measurements due to the need for neutron spectra at detector position. Finally, stray neutrons prediction with MC simulations proved to be extremely dependent on proton beam energy and the used nuclear models and cross sections. Conclusion: This work highlights measurement and simulation limits for ion therapy radiation protection applications.

  9. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz

    SciTech Connect (OSTI)

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco Casula, Michele; Sorella, Sandro

    2015-06-07

    We study the ionization energy, electron affinity, and the ? ? ?{sup ?} ({sup 1}L{sub a}) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO ? LUMO one, which underlies the {sup 1}L{sub a} excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in ?-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral {sup 1}L{sub a} excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.

  10. MO-E-17A-03: Monte Carlo CT Dose Calculation: A Comparison Between Experiment and Simulation Using ARCHER-CT

    SciTech Connect (OSTI)

    Liu, T; Du, X; Su, L; Gao, Y; Ji, W; Xu, X; Zhang, D; Shi, J; Liu, B; Kalra, M

    2014-06-15

    Purpose: To compare the CT doses derived from the experiments and GPU-based Monte Carlo (MC) simulations, using a human cadaver and ATOM phantom. Methods: The cadaver of an 88-year old male and the ATOM phantom were scanned by a GE LightSpeed Pro 16 MDCT. For the cadaver study, the Thimble chambers (Model 10×5?0.6CT and 10×6?0.6CT) were used to measure the absorbed dose in different deep and superficial organs. Whole-body scans were first performed to construct a complete image database for MC simulations. Abdomen/pelvis helical scans were then conducted using 120/100 kVps, 300 mAs and a pitch factor of 1.375:1. For the ATOM phantom study, the OSL dosimeters were used and helical scans were performed using 120 kVp and x, y, z tube current modulation (TCM). For the MC simulations, sufficient particles were run in both cases such that the statistical errors of the results by ARCHER-CT were limited to 1%. Results: For the human cadaver scan, the doses to the stomach, liver, colon, left kidney, pancreas and urinary bladder were compared. The difference between experiments and simulations was within 19% for the 120 kVp and 25% for the 100 kVp. For the ATOM phantom scan, the doses to the lung, thyroid, esophagus, heart, stomach, liver, spleen, kidneys and thymus were compared. The difference was 39.2% for the esophagus, and within 16% for all other organs. Conclusion: In this study the experimental and simulated CT doses were compared. Their difference is primarily attributed to the systematic errors of the MC simulations, including the accuracy of the bowtie filter modeling, and the algorithm to generate voxelized phantom from DICOM images. The experimental error is considered small and may arise from the dosimeters. R01 grant (R01EB015478) from National Institute of Biomedical Imaging and Bioengineering.

  11. Cadmium effect on microsomal drug-metabolizing enzyme activity in rat livers with respect to differences in age and sex

    SciTech Connect (OSTI)

    Ando, M.

    1982-04-01

    The effect of cadmium on the hepatic microsomal drug-metabolizing enzyme system was investigated. Cadmium chloride caused the conversion of cytochrome P-450 to P-420 in rat liver microsomes. The destruction of cytochrome P-450 by cadmium caused the reduction of microsomal drug-metabolizing enzyme activity and prolonged the pentobarbital sleeping time. There is a sex-related difference in the ability of cadmium to inhibit the hepatic drug metabolism in rats: male rats are more sensitive to cadmium than females. The effective period when cadmium prolonged their sleep depended upon the age of rats; older rats were more sensitive to cadmium than younger ones. The maximum increase of sleeping time depended upon the dose level of cadium, and the rate constant of the equations seems to depend upon the age of the animals.

  12. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    SciTech Connect (OSTI)

    Srivastava, Pranay; Yadav, Rajesh S.; Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S.; Dwivedi, Hari N.; Pant, Aditiya B.; Khanna, Vinay K.

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected by curcumin • Functional and structural changes in mitochondria by arsenic protected by curcumin.

  13. Age-dependent inhibition of pentobarbital sleeping time by ozone in mice and rats

    SciTech Connect (OSTI)

    Canada, A.T.; Calabrese, E.J.; Leonard, D.

    1986-09-01

    The effect of age on the metabolism of pentobarbital in mice and rats was investigated following exposure to 0.3 ppm of ozone for 3.75 hr. Young animals were 2.5 months of age and the mature were 18 months. The pentobarbital sleeping time was significantly prolonged following the ozone exposure in both the mice and rats when compared with an air control. No ozone effect on sleeping time was found in the young animals. The results indicate that there may be an age-related sensitivity to the occurrence of ozone-related inhibition of pentobarbital metabolism.

  14. SU-E-T-256: Optimizing the Combination of Targeted Radionuclide Therapy Agents Using a Multi-Scale Patient-Specific Monte Carlo Dosimetry Platform

    SciTech Connect (OSTI)

    Besemer, A; Bednarz, B; Titz, B; Grudzinski, J; Weichert, J; Hall, L

    2014-06-01

    Purpose: Combination targeted radionuclide therapy (TRT) is appealing because it can potentially exploit different mechanisms of action from multiple radionuclides as well as the variable dose rates due to the different radionuclide half-lives. The work describes the development of a multiobjective optimization algorithm to calculate the optimal ratio of radionuclide injection activities for delivery of combination TRT. Methods: The ‘diapeutic’ (diagnostic and therapeutic) agent, CLR1404, was used as a proof-of-principle compound in this work. Isosteric iodine substitution in CLR1404 creates a molecular imaging agent when labeled with I-124 or a targeted radiotherapeutic agent when labeled with I-125 or I-131. PET/CT images of high grade glioma patients were acquired at 4.5, 24, and 48 hours post injection of 124I-CLR1404. The therapeutic 131I-CLR1404 and 125ICLR1404 absorbed dose (AD) and biological effective dose (BED) were calculated for each patient using a patient-specific Monte Carlo dosimetry platform. The optimal ratio of injection activities for each radionuclide was calculated with a multi-objective optimization algorithm using the weighted sum method. Objective functions such as the tumor dose heterogeneity and the ratio of the normal tissue to tumor doses were minimized and the relative importance weights of each optimization function were varied. Results: For each optimization function, the program outputs a Pareto surface map representing all possible combinations of radionuclide injection activities so that values that minimize the objective function can be visualized. A Pareto surface map of the weighted sum given a set of user-specified importance weights is also displayed. Additionally, the ratio of optimal injection activities as a function of the all possible importance weights is generated so that the user can select the optimal ratio based on the desired weights. Conclusion: Multi-objective optimization of radionuclide injection activities can provide an invaluable tool for maximizing the dosimetric benefits in multi-radionuclide combination TRT. BT, JG, and JW are affiliated with Cellectar Biosciences which owns the licensing rights to CLR1404 and related compounds.

  15. Monte Carlo simulation of a quantum noise limited ?erenkov detector based on air-spaced light guiding taper for megavoltage x-ray imaging

    SciTech Connect (OSTI)

    Teymurazyan, A.; Rowlands, J. A.; Thunder Bay Regional Research Institute , Thunder Bay P7A 7T1; Department of Radiation Oncology, University of Toronto, Toronto M5S 3E2 ; Pang, G.

    2014-04-15

    Purpose: Electronic Portal Imaging Devices (EPIDs) have been widely used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Our aim is to develop a new high quantum efficiency (QE) ?erenkov Portal Imaging Device (CPID) that is quantum noise limited at dose levels corresponding to a single Linac pulse. Methods: Recently a new concept of CPID for MV x-ray imaging in radiation therapy was introduced. It relies on ?erenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibers aligned with the incident x-rays and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few ?erenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required in order to overcome the readout noise for portal imaging application. In this work the authors propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index (?1 versus 1.38 in a typical cladding layer), a much superior light collection efficiency is achieved. Results: A Monte Carlo simulation of the new design has been conducted to investigate its feasibility. Detector quantities such as quantum efficiency (QE), spatial resolution (MTF), and frequency dependent detective quantum efficiency (DQE) have been evaluated. The detector signal and the quantum noise have been compared to the readout noise. Conclusions: Our studies show that the modified new CPID has a QE and DQE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current low-QE flat-panel based EPIDs. Furthermore it was demonstrated that the new CPID does not require an avalanche gain in the AMFPI and is quantum noise limited at dose levels corresponding to a single Linac pulse.

  16. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    SciTech Connect (OSTI)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS configurations have a resolution of 7 microns or better. The 28 m LOS with a 7 x 7 array of 100-micron mini-penumbral apertures or 50-micron square pinholes meets the design requirements and is a very good design alternative.

  17. Stochastic Engine Final Report: Applying Markov Chain Monte Carlo Methods with Importance Sampling to Large-Scale Data-Driven Simulation

    SciTech Connect (OSTI)

    Glaser, R E; Johannesson, G; Sengupta, S; Kosovic, B; Carle, S; Franz, G A; Aines, R D; Nitao, J J; Hanley, W G; Ramirez, A L; Newmark, R L; Johnson, V M; Dyer, K M; Henderson, K A; Sugiyama, G A; Hickling, T L; Pasyanos, M E; Jones, D A; Grimm, R J; Levine, R A

    2004-03-11

    Accurate prediction of complex phenomena can be greatly enhanced through the use of data and observations to update simulations. The ability to create these data-driven simulations is limited by error and uncertainty in both the data and the simulation. The stochastic engine project addressed this problem through the development and application of a family of Markov Chain Monte Carlo methods utilizing importance sampling driven by forward simulators to minimize time spent search very large state spaces. The stochastic engine rapidly chooses among a very large number of hypothesized states and selects those that are consistent (within error) with all the information at hand. Predicted measurements from the simulator are used to estimate the likelihood of actual measurements, which in turn reduces the uncertainty in the original sample space via a conditional probability method called Bayesian inferencing. This highly efficient, staged Metropolis-type search algorithm allows us to address extremely complex problems and opens the door to solving many data-driven, nonlinear, multidimensional problems. A key challenge has been developing representation methods that integrate the local details of real data with the global physics of the simulations, enabling supercomputers to efficiently solve the problem. Development focused on large-scale problems, and on examining the mathematical robustness of the approach in diverse applications. Multiple data types were combined with large-scale simulations to evaluate systems with {approx}{sup 10}20,000 possible states (detecting underground leaks at the Hanford waste tanks). The probable uses of chemical process facilities were assessed using an evidence-tree representation and in-process updating. Other applications included contaminant flow paths at the Savannah River Site, locating structural flaws in buildings, improving models for seismic travel times systems used to monitor nuclear proliferation, characterizing the source of indistinct atmospheric plumes, and improving flash radiography. In the course of developing these applications, we also developed new methods to cluster and analyze the results of the state-space searches, as well as a number of algorithms to improve the search speed and efficiency. Our generalized solution contributes both a means to make more informed predictions of the behavior of very complex systems, and to improve those predictions as events unfold, using new data in real time.

  18. SU-E-T-587: Monte Carlo Versus Ray-Tracing for Treatment Planning Involving CNS Tumors On the MultiPlan System for CyberKnife Radiosurgery

    SciTech Connect (OSTI)

    Forbang, R Teboh

    2014-06-01

    Purpose: MultiPlan, the treatment planning system for the CyberKnife Robotic Radiosurgery system offers two approaches to dose computation, namely Ray-Tracing (RT), the default technique and Monte Carlo (MC), an option. RT is deterministic, however it accounts for primary heterogeneity only. MC on the other hand has an uncertainty associated with the calculation results. The advantage is that in addition, it accounts for heterogeneity effects on the scattered dose. Not all sites will benefit from MC. The goal of this work was to focus on central nervous system (CNS) tumors and compare dosimetrically, treatment plans computed with RT versus MC. Methods: Treatment plans were computed using both RT and MC for sites covering (a) the brain (b) C-spine (c) upper T-spine (d) lower T-spine (e) L-spine and (f) sacrum. RT was first used to compute clinically valid treatment plans. Then the same treatment parameters, monitor units, beam weights, etc., were used in the MC algorithm to compute the dose distribution. The plans were then compared for tumor coverage to illustrate the difference if any. All MC calculations were performed at a 1% uncertainty. Results: Using the RT technique, the tumor coverage for the brain, C-spine (C3–C7), upper T-spine (T4–T6), lower T-spine (T10), Lspine (L2) and sacrum were 96.8%, 93.1%, 97.2%, 87.3%, 91.1%, and 95.3%. The corresponding tumor coverage based on the MC approach was 98.2%, 95.3%, 87.55%, 88.2%, 92.5%, and 95.3%. It should be noted that the acceptable planning target coverage for our clinical practice is >95%. The coverage can be compromised for spine tumors to spare normal tissues such as the spinal cord. Conclusion: For treatment planning involving the CNS, RT and MC appear to be similar for most sites but for the T-spine area where most of the beams traverse lung tissue. In this case, MC is highly recommended.

  19. Inhalation developmental toxicology studies: Teratology study of tetrahydrofuran in mice and rats: Final report

    SciTech Connect (OSTI)

    Mast, T.J.; Evanoff, J.J.; Stoney, K.H.; Westerberg, R.B.; Rommereim, R.L.; Weigel, R.J.

    1988-08-01

    Tetrahydrofuran (THF), a four-carbon cyclic ether, is widely used as an industrial solvent. Although it has been used in large quantities for many years, few long-term toxicology studies, and no reproductive or developmental studies, have been conducted on THF. This study addresses the potential for THF to cause developmental toxicity in rodents by exposing Sprague-Dawley rats and Swiss (CD-1) mice to 0, 600, 1800, or 5000 ppm tetrahydrofuran (THF) vapors, 6 h/day, 7 dy/wk. Each treatment group consisted of 10 virgin females (for comparison), and approx.33 positively mated rats or mice. Positively mated mice were exposed on days 6--17 of gestation (dg), and rats on 6--19 dg. The day of plug or sperm detection was designated as O dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded and live fetuses were examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. 27 refs., 6 figs., 23 tabs.

  20. Inhalation developmental toxicology studies: Teratology study of acetone in mice and rats: Final report

    SciTech Connect (OSTI)

    Mast, T.J.; Evanoff, J.J.; Rommereim, R.L.; Stoney, K.H.; Weigel, R.J.; Westerberg, R.B.

    1988-11-01

    Acetone, an aliphatic ketone, is a ubiquitous industrial solvent and chemical intermediate; consequently, the opportunity for human exposure is high. The potential for acetone to cause developmental toxicity was assessed in Sprague-Dawley rats exposed to 0, 440, 2200, or 11000 ppm, and in Swiss (CD-1) mice exposed to 0, 440, 2200, and 6600 ppm acetone vapors, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and approx.32 positively mated rats or mice. Positively mated mice were exposed on days 6-17 of gestation (dg), and rats on 6-19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. 46 refs., 6 figs., 27 tabs.

  1. Inhalation developmental toxicology studies: Teratology study of isoprene in mice and rats: Final report

    SciTech Connect (OSTI)

    Mast, T.J.; Evanoff, J.J.; Stoney, K.H.; Westerberg, R.B.; Rommereim, R.L.; Weigel, R.J.

    1989-01-01

    Isoprene, a reactive, branched diene, is used in large quantities in the manufacture of polyisoprene and as a copolymer in the synthesis of butyl rubber. The potential for isoprene to cause developmental toxicity was assessed in rodents, by exposing four groups each of Sprague-Dawley rats and Swiss (CD-1) mice to 0, 280, 1400, or 7000 ppM isoprene vapors, 6 h/day, 7 day/wk. Each treatment group consisted of 10 virgin females (for comparison), and approx.30 positively mated rats or mice. Positively mated mice were exposed on days 6-17 of gestation (dg), and rats on 6-19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. 31 refs., 6 figs., 19 tabs.

  2. Prenatal PCBs disrupt early neuroendocrine development of the rat hypothalamus

    SciTech Connect (OSTI)

    Dickerson, Sarah M.; Cunningham, Stephanie L. [Center for Molecular and Cellular Toxicology, Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712 (United States); Gore, Andrea C., E-mail: andrea.gore@mail.utexas.edu [Center for Molecular and Cellular Toxicology, Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712 (United States); Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712 (United States); Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712 (United States)

    2011-04-01

    Neonatal exposure to endocrine disrupting chemicals (EDCs) such as polychlorinated biphenyls (PCBs) can interfere with hormone-sensitive developmental processes, including brain sexual differentiation. We hypothesized that disruption of these processes by gestational PCB exposure would be detectable as early as the day after birth (postnatal day (P) 1) through alterations in hypothalamic gene and protein expression. Pregnant Sprague-Dawley rats were injected twice, once each on gestational days 16 and 18, with one of the following: DMSO vehicle; the industrial PCB mixture Aroclor 1221 (A1221); a reconstituted mixture of the three most prevalent congeners found in humans, PCB138, PCB153, and PCB180; or estradiol benzoate (EB). On P1, litter composition, anogenital distance (AGD), and body weight were assessed. Pups were euthanized for immunohistochemistry of estrogen receptor {alpha} (ER{alpha}) or TUNEL labeling of apoptotic cells or quantitative PCR of 48 selected genes in the preoptic area (POA). We found that treatment with EB or A1221 had a sex-specific effect on developmental apoptosis in the neonatal anteroventral periventricular nucleus (AVPV), a sexually dimorphic hypothalamic region involved in the regulation of reproductive neuroendocrine function. In this region, exposed females had increased numbers of apoptotic nuclei, whereas there was no effect of treatment in males. For ER{alpha}, EB treatment increased immunoreactive cell numbers and density in the medial preoptic nucleus (MPN) of both males and females, while A1221 and the PCB mixture had no effect. PCR analysis of gene expression in the POA identified nine genes that were significantly altered by prenatal EDC exposure, in a manner that varied by sex and treatment. These genes included brain-derived neurotrophic factor, GABA{sub B} receptors-1 and -2, IGF-1, kisspeptin receptor, NMDA receptor subunits NR2b and NR2c, prodynorphin, and TGF{alpha}. Collectively, these results suggest that the disrupted sexual differentiation of the POA by prenatal EDC exposures is already evident as early as the day after birth, effects that may change the trajectory of postnatal development and compromise adult reproductive function.

  3. Gamma Knife irradiation method based on dosimetric controls to target small areas in rat brains

    SciTech Connect (OSTI)

    Constanzo, Julie; Paquette, Benoit; Charest, Gabriel; Masson-Côté, Laurence; Guillot, Mathieu

    2015-05-15

    Purpose: Targeted and whole-brain irradiation in humans can result in significant side effects causing decreased patient quality of life. To adequately investigate structural and functional alterations after stereotactic radiosurgery, preclinical studies are needed. The purpose of this work is to establish a robust standardized method of targeted irradiation on small regions of the rat brain. Methods: Euthanized male Fischer rats were imaged in a stereotactic bed, by computed tomography (CT), to estimate positioning variations relative to the bregma skull reference point. Using a rat brain atlas and the stereotactic bregma coordinates obtained from CT images, different regions of the brain were delimited and a treatment plan was generated. A single isocenter treatment plan delivering ≥100 Gy in 100% of the target volume was produced by Leksell GammaPlan using the 4 mm diameter collimator of sectors 4, 5, 7, and 8 of the Gamma Knife unit. Impact of positioning deviations of the rat brain on dose deposition was simulated by GammaPlan and validated with dosimetric measurements. Results: The authors’ results showed that 90% of the target volume received 100 ± 8 Gy and the maximum of deposited dose was 125 ± 0.7 Gy, which corresponds to an excellent relative standard deviation of 0.6%. This dose deposition calculated with GammaPlan was validated with dosimetric films resulting in a dose-profile agreement within 5%, both in X- and Z-axes. Conclusions: The authors’ results demonstrate the feasibility of standardizing the irradiation procedure of a small volume in the rat brain using a Gamma Knife.

  4. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation

    SciTech Connect (OSTI)

    Cai, Zhongli; Chattopadhyay, Niladri; Kwon, Yongkyu Luke; Pignol, Jean-Philippe; Lechtman, Eli; Reilly, Raymond M.; Department of Medical Imaging, University of Toronto, Toronto, Ontario M5S 3E2; Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4

    2013-11-15

    Purpose: The authors’ aims were to model how various factors influence radiation dose enhancement by gold nanoparticles (AuNPs) and to propose a new modeling approach to the dose enhancement factor (DEF).Methods: The authors used Monte Carlo N-particle (MCNP 5) computer code to simulate photon and electron transport in cells. The authors modeled human breast cancer cells as a single cell, a monolayer, or a cluster of cells. Different numbers of 5, 30, or 50 nm AuNPs were placed in the extracellular space, on the cell surface, in the cytoplasm, or in the nucleus. Photon sources examined in the simulation included nine monoenergetic x-rays (10–100 keV), an x-ray beam (100 kVp), and {sup 125}I and {sup 103}Pd brachytherapy seeds. Both nuclear and cellular dose enhancement factors (NDEFs, CDEFs) were calculated. The ability of these metrics to predict the experimental DEF based on the clonogenic survival of MDA-MB-361 human breast cancer cells exposed to AuNPs and x-rays were compared.Results: NDEFs show a strong dependence on photon energies with peaks at 15, 30/40, and 90 keV. Cell model and subcellular location of AuNPs influence the peak position and value of NDEF. NDEFs decrease in the order of AuNPs in the nucleus, cytoplasm, cell membrane, and extracellular space. NDEFs also decrease in the order of AuNPs in a cell cluster, monolayer, and single cell if the photon energy is larger than 20 keV. NDEFs depend linearly on the number of AuNPs per cell. Similar trends were observed for CDEFs. NDEFs using the monolayer cell model were more predictive than either single cell or cluster cell models of the DEFs experimentally derived from the clonogenic survival of cells cultured as a monolayer. The amount of AuNPs required to double the prescribed dose in terms of mg Au/g tissue decreases as the size of AuNPs increases, especially when AuNPs are in the nucleus and the cytoplasm. For 40 keV x-rays and a cluster of cells, to double the prescribed x-ray dose (NDEF = 2) using 30 nm AuNPs, would require 5.1 ± 0.2, 9 ± 1, 10 ± 1, 10 ± 1 mg Au/g tissue in the nucleus, in the cytoplasm, on the cell surface, or in the extracellular space, respectively. Using 50 nm AuNPs, the required amount decreases to 3.1 ± 0.3, 8 ± 1, 9 ± 1, 9 ± 1 mg Au/g tissue, respectively.Conclusions: NDEF is a new metric that can predict the radiation enhancement of AuNPs for various experimental conditions. Cell model, the subcellular location and size of AuNPs, and the number of AuNPs per cell, as well as the x-ray photon energy all have effects on NDEFs. Larger AuNPs in the nucleus of cluster cells exposed to x-rays of 15 or 40 keV maximize NDEFs.

  5. Sex- and dose-dependency in the pharmacokinetics and pharmacodynamics of (+)-methamphetamine and its metabolite (+)-amphetamine in rats

    SciTech Connect (OSTI)

    Milesi-Halle, Alessandra [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham 611, Little Rock, AR 72205 (United States); Hendrickson, Howard P. [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham 611, Little Rock, AR 72205 (United States); Laurenzana, Elizabeth M. [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham 611, Little Rock, AR 72205 (United States); Gentry, W. Brooks [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham 611, Little Rock, AR 72205 (United States); Department of Anesthesiology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Owens, S. Michael [Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham 611, Little Rock, AR 72205 (United States)]. E-mail: mowens@uams.edu

    2005-12-15

    These studies investigated how (+)-methamphetamine (METH) dose and rat sex affect the pharmacological response to METH in Sprague-Dawley rats. The first set of experiments determined the pharmacokinetics of METH and its pharmacologically active metabolite (+)-amphetamine (AMP) in male and female Sprague-Dawley rats after 1.0 and 3.0 mg/kg METH doses. The results showed significant sex-dependent changes in METH pharmacokinetics, and females formed significantly lower amounts of AMP. While the area under the serum concentration-time curve in males increased proportionately with the METH dose, the females showed a disproportional increase. The sex differences in systemic clearance, renal clearance, volume of distribution, and percentage of unchanged METH eliminated in the urine suggested dose-dependent pharmacokinetics in female rats. The second set of studies sought to determine the behavioral implications of these pharmacokinetic differences by quantifying locomotor activity in male and female rats after saline, 1.0, and 3.0 mg/kg METH. The results showed sex- and dose-dependent differences in METH-induced locomotion, including profound differences in the temporal profile of effects at higher dose. These findings show that the pharmacokinetic and metabolic profile of METH (slower METH clearance and lower AMP metabolite formation) plays a significant role in the differential pharmacological response to METH in male and female rats.

  6. Nicotinic acid increases the lipid content of rat brain synaptosomes. [Ethanol effects

    SciTech Connect (OSTI)

    Basilio, C.; Flores, M.

    1989-02-09

    Chronic administration of nicotinic acid (NA) increase hepatic lipids and potentiates a similar effect induced by ethanol. The amethystic properties of NA promoted us to study its effects on the lipid content of brain synaptosomes of native and ethanol treated rats. Groups of 10 Sprague-Dawley female rats received i.p. either saline, ethanol (4g/kg), NA (50mg/kg), or a mixture of both compounds once a week during 3 weeks. The sleeping time (ST) of the animals receiving ethanol was recorded, brain synaptosomes of all groups were prepared and total lipids (TL) and cholesterol (Chol) content were determined. NA, ethanol and ethanol + NA markedly increased both TL and Chol of synaptosomes. Animals treated with ethanol or ethanol + NA developed tolerance. The group treated with ethanol-NA showed the highest Chol content and slept significantly less than the one treated with ethanol alone indicating that the changes induced by NA favored the appearance of tolerance.

  7. Lipidomic changes in rat liver after long-term exposure to ethanol

    SciTech Connect (OSTI)

    Fernando, Harshica; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Kaphalia, Bhupendra S.; Shakeel Ansari, G.A.

    2011-09-01

    Alcoholic liver disease (ALD) is a serious health problem with significant morbidity and mortality. In this study we examined the progression of ALD along with lipidomic changes in rats fed ethanol for 2 and 3 months to understand the mechanism, and identify possible biomarkers. Male Fischer 344 rats were fed 5% ethanol or caloric equivalent of maltose-dextrin in a Lieber-DeCarli diet. Animals were killed at the end of 2 and 3 months and plasma and livers were collected. Portions of the liver were fixed for histological and immunohistological studies. Plasma and the liver lipids were extracted and analyzed by nuclear magnetic resonance (NMR) spectroscopy. A time dependent fatty infiltration was observed in the livers of ethanol-fed rats. Mild inflammation and oxidative stress were observed in some ethanol-fed rats at 3 months. The multivariate and principal component analysis of proton and phosphorus NMR spectroscopy data of extracted lipids from the plasma and livers showed segregation of ethanol-fed groups from the pair-fed controls. Significant hepatic lipids that were increased by ethanol exposure included fatty acids and triglycerides, whereas phosphatidylcholine (PC) decreased. However, both free fatty acids and PC decreased in the plasma. In liver lipids unsaturation of fatty acyl chains increased, contrary to plasma, where it decreased. Our studies confirm that over-accumulation of lipids in ethanol-induced liver steatosis accompanied by mild inflammation on long duration of ethanol exposure. Identified metabolic profile using NMR lipidomics could be further explored to establish biomarker signatures representing the etiopathogenesis, progression and/or severity of ALD. - Highlights: > Long term exposure to ethanol was studied. > A nuclear magnetic resonance (NMR) spectroscopy based lipidomic approach was used. > We examined the clustering pattern of the NMR data with principal component analysis. > NMR data were compared with histology and immunohistochemistry data. > Biochemical parameters were compared with the observed NMR lipid data.

  8. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect (OSTI)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1?, IL-6, and TNF-?), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron increased the levels of IL-1?, IL-6 and TNF-? in lung tissues at high altitudes. • Trolox alleviated the iron-induced histological and biochemical changes to the lungs.

  9. Effects of Love Canal soil extracts on maternal health and fetal development in rats

    SciTech Connect (OSTI)

    Silkworth, J.B.; Tumasonis, C.; Briggs, R.G.; Narang, A.S.; Narang, R.S.; Rej, R.; Stein, V.; McMartin, D.N.; Kaminsky, L.S.

    1986-10-01

    The effects of a solvent extract of the surface soil of the Love Canal chemical dump site, Niagara Falls, New York, and of a natural extract, or leachate, which is drained from the canal for treatment, on the maternal health and fetal development were determined in rats. The solvent extract, which was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2, 3,7,8-TCDD) at 170 ppb and numerous other chlorinated organic compounds with the primary identified components being the isomers of benzenehexachloride (BHC), was dissolved in corn oil and administered by gavage to pregnant rats at 0,25,75, or 150 mg crude extract/kg/day on Days 6-15 of gestation. A 67% mortality was observed at the highest dose. The rats were sacrificed on Day 20. Dose-related increases in relative liver weight accompanied by hepatocyte hypertrophy were observed at all dose levels. Fetal birthweight was decreased at 75 and 150 mg extract/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. Based on literature values for BHC, all of the observed toxicity could be accounted for by the BHC contaminants of the extract. The crude organic phase of the leachate was administered to pregnant rats at 0,10,100, or 250 mg/kg/day as described above. Maternal weight gain decreased at 100 and 250 mg/kg/day, accompanied by 5 and 14% maternal mortality, and 1 and 3 dead fetuses, respectively. Early resorptions and the percentage of dead implants increased whereas fetal birthweights were decreased at 250 mg/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. The primary components of the complex leachate by mass were tetrachloroethanes; however, 2,3,7,8-TCDD, which was present at 3 ppm, probably accounted for all the observed toxicity.

  10. Thyroid organotypic rat and human cultures used to investigate drug effects on thyroid function, hormone synthesis and release pathways

    SciTech Connect (OSTI)

    Vickers, Alison E.M.; Heale, Jason; Sinclair, John R.; Morris, Stephen; Rowe, Josh M.; Fisher, Robyn L.

    2012-04-01

    Drug induced thyroid effects were evaluated in organotypic models utilizing either a rat thyroid lobe or human thyroid slices to compare rodent and human response. An inhibition of thyroid peroxidase (TPO) function led to a perturbation in the expression of key genes in thyroid hormone synthesis and release pathways. The clinically used thiourea drugs, methimazole (MMI) and 6-n-propyl-2-thioruacil (PTU), were used to evaluate thyroid drug response in these models. Inhibition of TPO occurred early as shown in rat thyroid lobes (2 h) and was sustained in both rat (24–48 h) and human (24 h) with ? 10 ?M MMI. Thyroid from rats treated with single doses of MMI (30–1000 mg/kg) exhibited sustained TPO inhibition at 48 h. The MMI in vivo thyroid concentrations were comparable to the culture concentrations (? 15–84 ?M), thus demonstrating a close correlation between in vivo and ex vivo thyroid effects. A compensatory response to TPO inhibition was demonstrated in the rat thyroid lobe with significant up-regulation of genes involved in the pathway of thyroid hormone synthesis (Tpo, Dio1, Slc5a5, Tg, Tshr) and the megalin release pathway (Lrp2) by 24 h with MMI (? 10 ?M) and PTU (100 ?M). Similarly, thyroid from the rat in vivo study exhibited an up-regulation of Dio1, Slc5a5, Lrp2, and Tshr. In human thyroid slices, there were few gene expression changes (Slc5a5, ? 2-fold) and only at higher MMI concentrations (? 1500 ?M, 24 h). Extended exposure (48 h) resulted in up-regulation of Tpo, Dio1 and Lrp2, along with Slc5a5 and Tshr. In summary, TPO was inhibited by similar MMI concentrations in rat and human tissue, however an increased sensitivity to drug treatment in rat is indicated by the up-regulation of thyroid hormone synthesis and release gene pathways at concentrations found not to affect human tissue. -- Highlights: ? Novel model of rat thyroid or human thyroid slices to evaluate pathways of injury. ? TPO inhibition by MMI or PTU altered hormone synthesis and release genes. ? Rat thyroid was more sensitive to the drug effects than human tissue.

  11. Association of brominated proteins and changes in protein expression in the rat kidney with subcarcinogenic to carcinogenic doses of bromate

    SciTech Connect (OSTI)

    Kolisetty, Narendrababu [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602 (United States); Bull, Richard J. [MoBull Consulting, Richland, WA 99352 (United States); Muralidhara, Srinivasa; Costyn, Leah J. [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602 (United States); Delker, Don A. [School of Medicine, University of Utah, Salt Lake City, UT 84132 (United States); Guo, Zhongxian [Water Quality Office, Public Utilities Board, 608576 (Singapore); Cotruvo, Joseph A. [Joseph Cotruvo and Associates, LLC, Washington, DC 20016 (United States); Fisher, Jeffrey W. [National Center for Toxicological Research, FDA, Jefferson, AR 72079 (United States); Cummings, Brian S., E-mail: bsc@rx.uga.edu [Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602 (United States)

    2013-10-15

    The water disinfection byproduct bromate (BrO{sub 3}{sup ?}) produces cytotoxic and carcinogenic effects in rat kidneys. Our previous studies demonstrated that BrO{sub 3}{sup ?} caused sex-dependent differences in renal gene and protein expression in rats and the elimination of brominated organic carbon in their urine. The present study examined changes in renal cell apoptosis and protein expression in male and female F344 rats treated with BrO{sub 3}{sup ?} and associated these changes with accumulation of 3-bromotyrosine (3-BT)-modified proteins. Rats were treated with 0, 11.5, 46 and 308 mg/L BrO{sub 3}{sup ?} in drinking water for 28 days and renal sections were prepared and examined for apoptosis (TUNEL-staining), 8-oxo-deoxyguanosine (8-oxoG), 3-BT, osteopontin, Kim-1, clusterin, and p-21 expression. TUNEL-staining in renal proximal tubules increased in a dose-related manner beginning at 11.5 mg BrO{sub 3}{sup ?}/L in female rats and 46 mg/L in males. Increased 8-oxoG staining was observed at doses as low as 46 mg/L. Osteopontin expression also increased in a dose-related manner after treatment with 46 mg/L, in males only. In contrast, Kim-1 expression increased in a dose-related manner in both sexes, although to a greater extent in females at the highest dose. Clusterin and p21 expression also increased in a dose-related manner in both sexes. The expression of 3-BT-modified proteins only increased in male rats, following a pattern previously reported for accumulation of ?-2{sub u}-globulin. Increases in apoptosis in renal proximal tubules of male and female rats at the lowest doses suggest a common mode of action for renal carcinogenesis for the two sexes that is independent of ?-2{sub u}-globulin nephropathy. - Highlights: • Bromate induced nephrotoxicity in both male and female rats by similar mechanisms. • Apoptosis was seen in both male and female rats at the lowest doses tested. • Bromate-induced apoptosis correlated to 8-oxo-deoxyguanosine formation. • Bromate increased the level of 3-bromotyrosine-modified proteins in male rats only. • These data identify possible novel mechanisms for bromate-induced nephrotoxicity.

  12. Physiological effects following administration of Citrus aurantium for 28 days in rats

    SciTech Connect (OSTI)

    Hansen, Deborah K.; Pellicore, Linda S.

    2012-06-15

    Background: Since ephedra-containing dietary supplements were banned from the US market, manufacturers changed their formulations by eliminating ephedra and replacing with other botanicals, including Citrus aurantium, or bitter orange. Bitter orange contains, among other compounds, synephrine, a chemical that is chemically similar to ephedrine. Since ephedrine may have cardiovascular effects, the goal of this study was to investigate the cardiovascular effects of various doses of bitter orange extract and pure synephrine in rats. Method: Female Sprague–Dawley rats were dosed daily by gavage for 28 days with synephrine from two different extracts. One extract contained 6% synephrine, and the other extract contained 95% synephrine. Doses were 10 or 50 mg synephrine/kg body weight from each extract. Additionally, caffeine was added to these doses, since many dietary supplements also contain caffeine. Telemetry was utilized to monitor heart rate, blood pressure, body temperature and QT interval in all rats. Results and conclusion: Synephrine, either as the bitter orange extract or as pure synephrine, increased heart rate and blood pressure. Animals treated with 95% synephrine showed minimal effects on heart rate and blood pressure; more significant effects were observed with the bitter orange extract suggesting that other components in the botanical can alter these physiological parameters. The increases in heart rate and blood pressure were more pronounced when caffeine was added. None of the treatments affected uncorrected QT interval in the absence of caffeine.

  13. Life-threatening interaction between the root extract of Pueraria lobata and methotrexate in rats

    SciTech Connect (OSTI)

    Chiang, H.-M.; Fang, S.-H.; Wen, K.-C.; Hsiu, S.-L.; Tsai, Shang-Yuan; Hou, Y.-C.; Chi, Y.-C.; Lee Chao, Pei-Dawn . E-mail: pdlee@mail.cmu.edu.tw

    2005-12-15

    Isoflavone supplements are nowadays widely used as alternative for hormone replacement therapy. However, the safety remains unanswered. This study attempted to investigate the effect of Pueraria lobata root decoction (PLRD), an isoflavone-rich herb, on the pharmacokinetics of methotrexate (MTX), a bicarboxylate antimetabolite with narrow therapeutic window. Rats were orally and intravenously given methotrexate alone and coadministered with PLRD. Blood samples were withdrawn via cardiopuncture at specific time points after drug administration. Serum methotrexate concentrations were assayed by specific monoclonal fluorescence polarization immunoassay method. Pharmacokinetic parameters were calculated using noncompartment model of WINNONLIN for both oral and intravenous data of MTX. Our results showed that coadministration of 4.0 g/kg and 2.0 g/kg of PLRD significantly increased the AUC{sub 0-t} by 207.8% and 127.9%, prolonged the mean residence time (MRT) by 237.8 and 155.2%, respectively, finally resulted in surprisingly high mortalities of 57.1% and 14.3% in rats. When MTX was given intravenously, the coadministration of PLRD at 4.0 g/kg significantly increased the half-life by 53.9% and decreased the clearance by 47.9%. In conclusion, the coadministration of PLRD significantly decreased the elimination and resulted in markedly increased exposure of MTX in rats.

  14. Application of metabonomics on an experimental model of fibrosis and cirrhosis induced by thioacetamide in rats

    SciTech Connect (OSTI)

    Constantinou, Maria A.; Theocharis, Stamatios E.; Mikros, Emmanuel . E-mail: mikros@pharm.uoa.gr

    2007-01-01

    Metabonomics has already been used to discriminate different pathological states in biological fields. The metabolic profiles of chronic experimental fibrosis and cirrhosis induction in rats were investigated using {sup 1}H NMR spectroscopy of liver extracts and serum combined with pattern recognition techniques. Rats were continuously administered with thioacetamide (TAA) in the drinking water (300 mg TAA/L), and sacrificed on 1st, 2nd, and 3rd month of treatment. {sup 1}H NMR spectra of aqueous and lipid liver extracts, together with serum were subjected to Principal Component Analysis (PCA). Liver portions were also subjected to histopathological examination and biochemical determination of malondialdehyde (MDA). Liver fibrosis and cirrhosis were progressively induced in TAA-treated rats, verified by the histopathological examination and the alterations of MDA levels. TAA administration revealed a number of changes in the {sup 1}H NMR spectra compared to control samples. The performance of PCA in liver extracts and serum, discriminated the control samples from the fibrotic and cirrhotic ones. Metabolic alterations revealed in NMR spectra during experimental liver fibrosis and cirrhosis induction, characterize the stage of fibrosis and could be illustrated by subsequent PCA of the spectra. Additionally, the PCA plots of the serum samples presented marked clustering during fibrosis progression and could be extended in clinical diagnosis for the management of cirrhotic patients.

  15. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    SciTech Connect (OSTI)

    Fubiani, G.; Boeuf, J. P. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France) [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France)

    2013-11-15

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)

  16. A STUDY OF FISCHER 344 RATS EXPOSED TO SILICA DUST FOR SIX MONTHS AT CONCENTRATIONS OF 0, 2, 10 OR 20 MG / M3.

    SciTech Connect (OSTI)

    KUTZMAN,R.S.

    1984-02-01

    The major objective of this study was to relate the results of a series of functional tests to the compositional and structural alterations in the rat lung induced by subchronic exposure to silica dust. Fischer-344 rats were exposed for 6 hours/day, 5 days/week for 6 months to either 0, 2, 10, or 20 mg SiO{sub 2}/m{sup 3}. The general appearance of the exposed rats was not different from that of the controls. Interestingly, female rats exposed to silica dust, at all tested concentrations, gained more weight than the controls. The lung weight and the lung-to-body weight ratio was greater in the male rats exposed to the highest concentration of silica dust.

  17. Estrous cycle affects the neurochemical and neurobehavioral profile of carvacrol-treated female rats

    SciTech Connect (OSTI)

    Trabace, L.; Zotti, M.; Morgese, M.G.; Tucci, P.; Colaianna, M.; Schiavone, S.; Avato, P.; Cuomo, V.

    2011-09-01

    Carvacrol is the major constituent of essential oils from aromatic plants. It showed antimicrobial, anticancer and antioxidant properties. Although it was approved for food use and included in the chemical flavorings list, no indication on its safety has been estimated. Since the use of plant extracts is relatively high among women, aim of this study was to evaluate carvacrol effects on female physiology and endocrine profiles by using female rats in proestrus and diestrus phases. Serotonin and metabolite tissue content in prefrontal cortex and nucleus accumbens, after carvacrol administration (0.15 and 0.45 g/kg p.o.), was measured. Drug effects in behavioral tests for alterations in motor activity, depression, anxiety-related behaviors and endocrine alterations were also investigated. While in proestrus carvacrol reduced serotonin and metabolite levels in both brain areas, no effects were observed in diestrus phase. Only in proestrus phase, carvacrol induced a depressive-like behavior in forced swimming test, without accompanying changes in ambulation. The improvement of performance in FST after subchronic treatment with fluoxetine (20 mg/kg) suggested a specific involvement of serotonergic system. No differences were found across the groups with regard to self-grooming behavior. Moreover, in proestrus phase, carvacrol reduced only estradiol levels without binding hypothalamic estradiol receptors. Our study showed an estrous-stage specific effect of carvacrol on depressive behaviors and endocrine parameters, involving serotonergic system. Given the wide carvacrol use not only as feed additive, but also as cosmetic essence and herbal remedy, our results suggest that an accurate investigation on the effects of its chronic exposure is warranted. - Highlights: > Carvacrol induced a depressive-like phenotype in rats, depending on ovarian cyclicity. > Carvacrol selectively reduced serotonin content in female rats in proestrus phase. > Carvacrol reduced serotonin levels in areas belonging to the emotional circuit. > Carvacrol reduced plasma estradiol levels only during the proestrus phase.

  18. RatBot: anti-enumeration peer-to-peer botnets

    SciTech Connect (OSTI)

    Yan, Guanhua; Eidenbenz, Stephan; Chen, Songqing

    2010-01-01

    Botnets have emerged as one of the most severe cyber threats in recent years. To obtain high resilience against a single point of failure, the new generation of botnets have adopted the peer-to-peer (P2P) structure. One critical question regarding these P2P botnets is: how big are they indeed? To address this question, researchers have proposed both actively crawling and passively monitoring methods to enumerate existing P2P botnets. In this work, we go further to explore the potential strategies that botnets may have to obfuscate their true sizes. Towards this end, this paper introduces RatBot, a P2P botnet that applies some statistical techniques to defeat existing P2P botnet enumeration methods. The key ideas of RatBot are two-fold: (1) there exist a fraction of bots that are indistinguishable from their fake identities, which are spoofing IP addresses they use to hide themselves; (2) we use a heavy-tailed distribution to generate the number of fake identities for each of these bots so that the sum of observed fake identities converges only slowly and thus has high variation. We use large-scale high-fidelity simulation to quantify the estimation errors under diverse settings, and the results show that a naive enumeration technique can overestimate the sizes of P2P botnets by one order of magnitude. We believe that our work reveals new challenges of accurately estimating the sizes of P2P botnets, and hope that it will raise the awareness of security practitioners with these challenges. We further suggest a few countermeasures that can potentially defeat RatBot's anti-enumeration scheme.

  19. Daily treatment with {alpha}-naphthoflavone enhances follicular growth and ovulation rate in the rat

    SciTech Connect (OSTI)

    Barreiro, Karina A.; Di Yorio, Maria P.; Artillo-Guida, Romina D.; Paz, Dante A.; Faletti, Alicia G.

    2011-04-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and the first protein involved in a variety of physiological and toxicological processes, including those of xenobiotic metabolizing enzymes. AhR has been found in the ovary of many species and seems to mediate the ovarian toxicity of many environmental contaminants, which are AhR ligands. However, the role of AhR in the ovarian function is unknown. Therefore, the aim of this work was to study the action of {alpha}-naphthoflavone ({alpha}NF), known to be an AhR antagonist, on both follicular growth and ovulation. Immature Sprague-Dawley rats were daily injected intraperitoneally with {alpha}NF (0.1-80 mg/kg) or vehicle for 12 days, and primed with gonadotrophins (eCG/hCG) to induce follicular growth and ovulation. Ovaries were obtained 20 h after hCG administration. By means of immunohistochemistry, we found that the numbers of primordial, primary and antral follicles were increased in rats treated with 80 mg/kg {alpha}NF and that there were no differences with other doses. Likewise, the ovarian weight and the ovulation rate, measured by both number of oocytes within oviducts and corpora lutea in ovarian sections, were increased when the rats received either 1 or 10 mg/kg daily. Although further studies are necessary to know the mechanism of action of {alpha}NF, it is possible that the different ovarian processes can be differentially responsive to the presence of different levels of {alpha}NF, and that the same or different endogenous AhR ligands can be involved in these ovarian processes in a cell type-dependent manner.

  20. Subacute effects of hexabromocyclododecane (HBCD) on hepatic gene expression profiles in rats

    SciTech Connect (OSTI)

    Canton, Rocio F. [Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht (Netherlands)], E-mail: rfcanton@gmail.com; Peijnenburg, Ad A.C.M.; Hoogenboom, Ron L.A.P. [RIKILT Institute of Food Safety, Wageningen University and Research Center, P.O. Box 230, 6700 AE Wageningen (Netherlands); Piersma, Aldert H.; Ven, Leo T.M. van der [National Institute of Public Health and the Environment (RIVM), Laboratory for Heath Protection Research, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Berg, Martin van den [Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.177, NL-3508 TD, Utrecht (Netherlands); Heneweer, Marjoke [RIKILT Institute of Food Safety, Wageningen University and Research Center, P.O. Box 230, 6700 AE Wageningen (Netherlands)

    2008-09-01

    Hexabromoyclododecane (HBCD), used as flame retardant (FR) mainly in textile industry and in polystyrene foam manufacture, has been identified as a contaminant at levels comparable to other brominated FRs (BFRs). HBCD levels in biota are increasing slowly and seem to reflect the local market demand. The toxicological database of HBCD is too limited to perform at present a solid risk assessment, combining data from exposure and effect studies. In order to fill in some gaps, a 28-day HBCD repeated dose study (OECD407) was done in Wistar rats. In the present work liver tissues from these animals were used for gene expression profile analysis. Results show clear gender specificity with females having a higher number of regulated genes and therefore being more sensitive to HBCD than males. Several specific pathways were found to be affected by HBCD exposure, like PPAR-mediated regulation of lipid metabolism, triacylglycerol metabolism, cholesterol biosynthesis, and phase I and II pathways. These results were corroborated with quantitative RT-PCR analysis. Cholesterol biosynthesis and lipid metabolism were especially down-regulated in females. Genes involved in phase I and II metabolism were up-regulated predominantly in males, which could explain the observed lower HBCD hepatic disposition in male rats in this 28-day study. These sex-specific differences in gene expression profiles could also underlie sex-specific differences in toxicity (e.g. decreased thyroid hormone or increased serum cholesterol levels). To our knowledge, this is the fist study that describes the changes in rat hepatic gene profiles caused by this commonly used flame retardant.

  1. Effect of intranasal manganese administration on neurotransmission and spatial learning in rats

    SciTech Connect (OSTI)

    Blecharz-Klin, Kamilla; Piechal, Agnieszka; Joniec-Maciejak, Ilona; Pyrzanowska, Justyna; Widy-Tyszkiewicz, Ewa

    2012-11-15

    The effect of intranasal manganese chloride (MnCl{sub 2}·4H{sub 2}O) exposure on spatial learning, memory and motor activity was estimated in Morris water maze task in adult rats. Three-month-old male Wistar rats received for 2 weeks MnCl{sub 2}·4H{sub 2}O at two doses the following: 0.2 mg/kg b.w. (Mn0.2) or 0.8 mg/kg b.w. (Mn0.8) per day. Control (Con) and manganese-exposed groups were observed for behavioral performance and learning in water maze. ANOVA for repeated measurements did not show any significant differences in acquisition in the water maze between the groups. However, the results of the probe trial on day 5, exhibited spatial memory deficits following manganese treatment. After completion of the behavioral experiment, the regional brain concentrations of neurotransmitters and their metabolites were determined via HPLC in selected brain regions, i.e. prefrontal cortex, hippocampus and striatum. ANOVA demonstrated significant differences in the content of monoamines and metabolites between the treatment groups compared to the controls. Negative correlations between platform crossings on the previous platform position in Southeast (SE) quadrant during the probe trial and neurotransmitter turnover suggest that impairment of spatial memory and cognitive performance after manganese (Mn) treatment is associated with modulation of the serotonergic, noradrenergic and dopaminergic neurotransmission in the brain. These findings show that intranasally applied Mn can impair spatial memory with significant changes in the tissue level and metabolism of monoamines in several brain regions. -- Highlights: ? Intranasal exposure to manganese in rats impairs spatial memory in the water maze. ? Regional changes in levels of neurotransmitters in the brain have been identified. ? Cognitive disorder correlates with modulation of 5-HT, NA and DA neurotransmission.

  2. Response of rat brain protein synthesis to ethanol and sodium barbital

    SciTech Connect (OSTI)

    Tewari, S.; Greenberg, S.A.; Do, K.; Grey, P.A.

    1987-01-01

    Central nervous system (CNS) depressants such as ethanol and barbiturates under acute or chronic conditions can induce changes in rat brain protein synthesis. While these data demonstrate the individual effects of drugs on protein synthesis, the response of brain protein synthesis to alcohol-drug interactions is not known. The goal of the present study was to determine the individual and combined effects of ethanol and sodium barbital on brain protein synthesis and gain an understanding of the mechanisms by which these alterations in protein synthesis are produced. Specifically, the in vivo and in vitro effects of sodium barbital (one class of barbiturates which is not metabolized by the hepatic tissue) were examined on brain protein synthesis in rats made physically dependent upon ethanol. Using cell free brain polysomal systems isolated from Control, Ethanol and 24 h Ethanol Withdrawn rats, data show that sodium barbital, when intubated intragastrically, inhibited the time dependent incorporation of /sup 14/C) leucine into protein by all three groups of ribosomes. Under these conditions, the Ethanol Withdrawn group displayed the largest inhibition of the /sup 14/C) leucine incorporation into protein when compared to the Control and Ethanol groups. In addition, sodium barbital when added at various concentrations in vitro to the incubation medium inhibited the incorporation of /sup 14/C) leucine into protein by Control and Ethanol polysomes. The inhibitory effects were also obtained following preincubation of ribosomes in the presence of barbital but not cycloheximide. Data suggest that brain protein synthesis, specifically brain polysomes, through interaction with ethanol or barbital are involved in the functional development of tolerance. These interactions may occur through proteins or polypeptide chains or alterations in messenger RNA components associated with the ribosomal units.

  3. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    SciTech Connect (OSTI)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  4. COMPARATIVE COMPUTATIONAL MODELING OF AIRFLOWS AND VAPOR DOSIMETY IN THE RESPIRATORY TRACTS OF RAT, MONKEY, AND HUMAN

    SciTech Connect (OSTI)

    Corley, Richard A.; Kabilan, Senthil; Kuprat, Andrew P.; Carson, James P.; Minard, Kevin R.; Jacob, Rick E.; Timchalk, Charles; Glenny, Robb W.; Pipavath, Sudhaker; Cox, Timothy C.; Wallis, Chris; Larson, Richard; Fanucchi, M.; Postlewait, Ed; Einstein, Daniel R.

    2012-07-01

    Coupling computational fluid dynamics (CFD) with physiologically based pharmacokinetic (PBPK) models is useful for predicting site-specific dosimetry of airborne materials in the respiratory tract and elucidating the importance of species differences in anatomy, physiology, and breathing patterns. Historically, these models were limited to discrete regions of the respiratory system. CFD/PBPK models have now been developed for the rat, monkey, and human that encompass airways from the nose or mouth to the lung. A PBPK model previously developed to describe acrolein uptake in nasal tissues was adapted to the extended airway models as an example application. Model parameters for each anatomic region were obtained from the literature, measured directly, or estimated from published data. Airflow and site-specific acrolein uptake patterns were determined under steadystate inhalation conditions to provide direct comparisons with prior data and nasalonly simulations. Results confirmed that regional uptake was dependent upon airflow rates and acrolein concentrations with nasal extraction efficiencies predicted to be greatest in the rat, followed by the monkey, then the human. For human oral-breathing simulations, acrolein uptake rates in oropharyngeal and laryngeal tissues were comparable to nasal tissues following nasal breathing under the same exposure conditions. For both breathing modes, higher uptake rates were predicted for lower tracheo-bronchial tissues of humans than either the rat or monkey. These extended airway models provide a unique foundation for comparing dosimetry across a significantly more extensive range of conducting airways in the rat, monkey, and human than prior CFD models.

  5. Validation of columnar CsI x-ray detector responses obtained with hybridMANTIS, a CPU-GPU Monte Carlo code for coupled x-ray, electron, and optical transport

    SciTech Connect (OSTI)

    Sharma, Diksha; Badano, Aldo

    2013-03-15

    Purpose: hybridMANTIS is a Monte Carlo package for modeling indirect x-ray imagers using columnar geometry based on a hybrid concept that maximizes the utilization of available CPU and graphics processing unit processors in a workstation. Methods: The authors compare hybridMANTIS x-ray response simulations to previously published MANTIS and experimental data for four cesium iodide scintillator screens. These screens have a variety of reflective and absorptive surfaces with different thicknesses. The authors analyze hybridMANTIS results in terms of modulation transfer function and calculate the root mean square difference and Swank factors from simulated and experimental results. Results: The comparison suggests that hybridMANTIS better matches the experimental data as compared to MANTIS, especially at high spatial frequencies and for the thicker screens. hybridMANTIS simulations are much faster than MANTIS with speed-ups up to 5260. Conclusions: hybridMANTIS is a useful tool for improved description and optimization of image acquisition stages in medical imaging systems and for modeling the forward problem in iterative reconstruction algorithms.

  6. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats

    SciTech Connect (OSTI)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Cho, J. Kim, R.; Michaelides, M.; Primeaux, S.; Bray, G.; Wang, G.-J.; Volkow, N.D.

    2010-10-27

    Dopamine (DA) and DAD{sub 2} receptors (D2R) have been implicated in obesity and are thought to be involved in the rewarding properties of food. Osborne-Mendel (OM) rats are susceptible to diet induced obesity (DIO) while S5B/P (S5B) rats are resistant when given a high-fat diet. Here we hypothesized that the two strains would differ in high-fat food self-administration (FSA) and that the D2R agonist bromocriptine (BC) would differently affect their behavior. Ad-libitum fed OM and S5B/P rats were tested in a FSA operant chamber and were trained to lever press for high-fat food pellets under a fixed-ratio (FR1) and a progressive ratio (PR) schedule. After sixteen days of PR sessions, rats were treated with three different doses of BC (1, 10 and 20 mg/kg). No significant differences were found between the two strains in the number of active lever presses. BC treatment (10 mg/kg and 20 mg/kg) increased the number of active lever presses (10 mg/kg having the strongest effect) whereas it decreased rat chow intake in the home cage with equivalent effects in both strains. These effects were not observed on the day of BC administration but on the day following its administration. Our results suggest that these two strains have similar motivation for procuring high fat food using this paradigm. BC increased operant responding for high-fat pellets but decreased chow intake in both strains, suggesting that D2R stimulation may have enhanced the motivational drive to procure the fatty food while correspondingly decreasing the intake of regular food. These findings suggest that susceptibility to dietary obesity (prior to the onset of obesity) may not affect operant motivation for a palatable high fat food and that differential susceptibility to obesity may be related to differential sensitivity to D2R stimulation.

  7. Application of computational fluid dynamics to regional dosimetry of inhaled chemicals in the upper respiratory tract of the rat

    SciTech Connect (OSTI)

    Kimbell, J.S.; Gross, E.A.; Joyner, D.R.; Godo, M.N.; Morgan, K.T. (Chemical Industry Institute of Toxicology, Research Triangle Park, NC (United States))

    1993-08-01

    For certain inhaled air pollutants, such as reactive, water soluble gases, the distribution of nasal lesions observed in F344 rats may be closely related to regional gas uptake patterns in the nose. These uptake patterns can be influenced by the currents of air flowing through the upper respiratory tract during the breathing cycle. Since data on respiratory tract lesions in F344 rats are extrapolated to humans to make predictions of risk to human health, a better understanding of the factors affecting these responses is needed. To assess potential effects of nasal airflow on lesion location and severity, a methodology was developed for creation of computer simulations of steady-state airflow and gas transport using a three-dimensional finite element grid reconstructed from serial step-sections of the nasal passages of a male F344 rat. Simulations on a supercomputer used the computational fluid dynamics package FIDAP (FDI, Evanston, IL). Distinct streams of bulk flow evident in the simulations matched inspiratory streams reported for the F344 rat. Moreover, simulated regional flow velocities matched measured velocities in concurrent laboratory experiments with a hollow nasal mold. Computer-predicted flows were used in simulations of gas transport to nasal passage walls, with formaldehyde as a test case. Results from the uptake simulations were compared with the reported distribution of formaldehyde-induced nasal lesions observed in the F344 rat, and indicated that airflow-driven uptake patterns probably play an important role in determining the location of certain nasal lesions induced by formaldehyde. This work demonstrated the feasibility of applying computational fluid dynamics to airflow-driven dosimetry of inhaled chemicals in the upper respiratory tract.

  8. Fluoride-elicited developmental testicular toxicity in rats: Roles of endoplasmic reticulum stress and inflammatory response

    SciTech Connect (OSTI)

    Zhang, Shun; Jiang, Chunyang; Liu, Hongliang; Guan, Zhizhong; Zeng, Qiang; Zhang, Cheng; Lei, Rongrong; Xia, Tao; Gao, Hui; Yang, Lu; Chen, Yihu; Wu, Xue; Zhang, Xiaofei; Cui, Yushan; Yu, Linyu; Wang, Zhenglun; Wang, Aiguo

    2013-09-01

    Long-term excessive fluoride intake is known to be toxic and can damage a variety of organs and tissues in the human body. However, the molecular mechanisms underlying fluoride-induced male reproductive toxicity are not well understood. In this study, we used a rat model to simulate the situations of human exposure and aimed to evaluate the roles of endoplasmic reticulum (ER) stress and inflammatory response in fluoride-induced testicular injury. Sprague–Dawley rats were administered with sodium fluoride (NaF) at 25, 50 and 100 mg/L via drinking water from pre-pregnancy to gestation, birth and finally to post-puberty. And then the testes of male offspring were studied at 8 weeks of age. Our results demonstrated that fluoride treatment increased MDA accumulation, decreased SOD activity, and enhanced germ cell apoptosis. In addition, fluoride elevated mRNA and protein levels of glucose-regulated protein 78 (GRP78), inositol requiring ER-to-nucleus signal kinase 1 (IRE1), and C/EBP homologous protein (CHOP), indicating activation of ER stress signaling. Furthermore, fluoride also induced testicular inflammation, as manifested by gene up-regulation of tumor necrosis factor-? (TNF-?), interleukin-1? (IL-1?), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in a nuclear factor-?B (NF-?B)-dependent manner. These were associated with marked histopathological lesions including injury of spermatogonia, decrease of spermatocytes and absence of elongated spermatids, as well as severe ultrastructural abnormalities in testes. Taken together, our results provide compelling evidence that ER stress and inflammation would be novel and significant mechanisms responsible for fluoride-induced disturbance of spermatogenesis and germ cell loss in addition to oxidative stress. - Highlights: • We used a rat model to simulate the situations of human fluoride (F) exposure. • Developmental F exposure induces testicular damage related with oxidative stress. • Endoplasmic reticulum stress is involved in testis disorder and germ cell apoptosis. • Inflammatory response is implicated in impaired spermatogenesis and germ cell loss.

  9. In Situ Casting and Imaging of the Rat Airway Tree for Accurate 3D Reconstruction

    SciTech Connect (OSTI)

    Jacob, Rick E.; Colby, Sean M.; Kabilan, Senthil; Einstein, Daniel R.; Carson, James P.

    2013-08-01

    The use of anatomically accurate, animal-specific airway geometries is important for understanding and modeling the physiology of the respiratory system. One approach for acquiring detailed airway architecture is to create a bronchial cast of the conducting airways. However, typical casting procedures either do not faithfully preserve the in vivo branching angles, or produce rigid casts that when removed for imaging are fragile and thus easily damaged. We address these problems by creating an in situ bronchial cast of the conducting airways in rats that can be subsequently imaged in situ using 3D micro-CT imaging. We also demonstrate that deformations in airway branch angles resulting from the casting procedure are small, and that these angle deformations can be reversed through an interactive adjustment of the segmented cast geometry. Animal work was approved by the Institutional Animal Care and Use Committee of Pacific Northwest National Laboratory.

  10. Laser speckle-imaging of blood microcirculation in the brain cortex of laboratory rats in stress

    SciTech Connect (OSTI)

    Vilensky, M A; Semyachkina-Glushkovskaya, Oxana V; Timoshina, P A; Kuznetsova, Jana V; Semyachkin-Glushkovskii, I A; Agafonov, Dmitry N; Tuchin, Valerii V

    2012-06-30

    The results of experimental approbation of the method of laser full-field speckle-imaging for monitoring the changes in blood microcirculation state of the brain cortex of laboratory rats under the conditions of developing stroke and administration of vasodilating and vasoconstrictive agents are presented. The studies aimed at the choice of the optimal conditions of speckle-image formation and recording were performed and the software implementing an adaptive algorithm for processing the data of measurements was created. The transfer of laser radiation to the probed region of the biotissue was implemented by means of a silica-polymer optical fibre. The problems and prospects of speckle-imaging of cerebral microcirculation of blood in laboratory and clinical conditions are discussed.

  11. CPEB1 modulates lipopolysaccharide-mediated iNOS induction in rat primary astrocytes

    SciTech Connect (OSTI)

    Kim, Ki Chan; Hyun Joo, So; Shin, Chan Young

    2011-06-17

    Highlights: {yields} Expression and phosphorylation of CPEB1 is increased by LPS stimulation in rat primary astrocytes. {yields} JNK regulates expression and phosphorylation of CPEB1 in reactive astrocytes. {yields} Down-regulation of CPEB1 using siRNA inhibits oxidative stress and iNOS induction by LPS stimulation. {yields} CPEB1 may play an important role in regulating inflammatory responses in reactive astrocytes induced by LPS. -- Abstract: Upon CNS damage, astrocytes undergo a series of biological changes including increased proliferation, production of inflammatory mediators and morphological changes, in a response collectively called reactive gliosis. This process is an essential part of the brains response to injury, yet much is unknown about the molecular mechanism(s) that induce these changes. In this study, we investigated the role of cytoplasmic polyadenylation element binding protein 1 (CPEB1) in the regulation of inflammatory responses in a model of reactive gliosis, lipopolysaccharide-stimulated astrocytes. CPEB1 is an mRNA-binding protein recently shown to be expressed in astrocytes that may play a role in astrocytes migration. After LPS stimulation, the expression and phosphorylation of CPEB1 was increased in rat primary astrocytes in a JNK-dependent process. siRNA-induced knockdown of CPEB1 expression inhibited the LPS-induced up-regulation of iNOS as well as NO and ROS production, a hallmark of immunological activation of astrocytes. The results from the study suggest that CPEB1 is actively involved in the regulation of inflammatory responses in astrocytes, which might provide new insights into the regulatory mechanism after brain injury.

  12. Evaluation of the pharmacokinetics and cardiotoxicity of doxorubicin in rat receiving nilotinib

    SciTech Connect (OSTI)

    Zhou, Zhi-yong; Wan, Li-li; Yang, Quan-jun; Han, Yong-long; Li, Yan; Yu, Qi; Guo, Cheng; Li, Xiao

    2013-10-01

    Doxorubicin (DOX) is a potent chemotherapy drug with a narrow therapeutic window. Nilotinib, a small-molecule Bcr-Abl tyrosine kinase inhibitor, was reported to reverse multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) transmembrane transporters. The present study aimed to investigate nilotinib's affection on the steady-state pharmacokinetics, disposition and cardiotoxicity of DOX. A total of 24 male Sprague–Dawley rats were randomized into four groups (6 in each) and received the following regimens: saline, intravenous DOX (5 mg/kg) alone, and DOX co-administrated with either 20 or 40 mg/kg nilotinib. Blood was withdrawn at 12 time points till 72 h after DOX injection and the concentrations of DOX and its metabolite doxorubicinol (DOXol) in serum and cardiac tissue were assayed by LC–MS–MS method. To determine the cardiotoxicity, the following parameters were investigated: creatine kinase, lactate dehydrogenase, malondialdehyde, and superoxide dismutase. Histopathological examination of heart section was carried out to evaluate the extent of cardiotoxicity after treatments. The results showed that pretreatment of 40 mg/kg nilotinib increased the AUC{sub 0–t} and C{sub max} of DOX and DOXol. However, their accumulation in cardiac tissue was significantly decreased when compared with the group that received DOX alone. In addition, biochemical and histopathological results showed that 40 mg/kg nilotinib reduced the cardiotoxicity induced by DOX administration. In conclusion, co-administration of nilotinib increased serum exposure, but significantly decreased the accumulation of DOX in cardiac tissue. Consistent with in vitro profile, oral dose of 40 mg/kg nilotinib significantly decreased the cardiotoxicity of DOX in rat by enhancing P-gp activity in the heart.

  13. SU-E-T-289: Scintillating Fiber Based In-Vivo Dose Monitoring System to the Rectum in Proton Therapy of Prostate Cancer: A Geant4 Monte Carlo Simulation

    SciTech Connect (OSTI)

    Tesfamicael, B; Gueye, P; Lyons, D; Mahesh, M; Avery, S

    2014-06-01

    Purpose: To construct a dose monitoring system based on an endorectal balloon coupled to thin scintillating fibers to study the dose delivered to the rectum during prostate cancer proton therapy Methods: The Geant4 Monte Carlo toolkit version 9.6p02 was used to simulate prostate cancer proton therapy treatments of an endorectal balloon (for immobilization of a 2.9 cm diameter prostate gland) and a set of 34 scintillating fibers symmetrically placed around the balloon and perpendicular to the proton beam direction (for dosimetry measurements) Results: A linear response of the fibers to the dose delivered was observed within <2%, a property that makes them good candidates for real time dosimetry. Results obtained show that the closest fiber recorded about 1/3 of the dose to the target with a 1/r{sup 2} decrease in the dose distribution as one goes toward the frontal and distal top fibers. Very low dose was recorded by the bottom fibers (about 45 times comparatively), which is a clear indication that the overall volume of the rectal wall that is exposed to a higher dose is relatively minimized. Further analysis indicated a simple scaling relationship between the dose to the prostate and the dose to the top fibers (a linear fit gave a slope of ?0.07±0.07 MeV per treatment Gy) Conclusion: Thin (1 mm × 1 mm × 100 cm) long scintillating fibers were found to be ideal for real time in-vivo dose measurement to the rectum for prostate cancer proton therapy. The linear response of the fibers to the dose delivered makes them good candidates of dosimeters. With thorough calibration and the ability to define a good correlation between the dose to the target and the dose to the fibers, such dosimeters can be used for real time dose verification to the target.

  14. Stereotactic, Single-Dose Irradiation of Lung Tumors: A Comparison of Absolute Dose and Dose Distribution Between Pencil Beam and Monte Carlo Algorithms Based on Actual Patient CT Scans

    SciTech Connect (OSTI)

    Chen Huixiao; Lohr, Frank; Fritz, Peter; Wenz, Frederik; Dobler, Barbara; Lorenz, Friedlieb; Muehlnickel, Werner

    2010-11-01

    Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions. Methods and Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY). Both measured and calculated (PB and XVMC) dose distributions were compared regarding profiles and isodoses. Then, 35 lung plans originally created for clinical treatment by PB calculation with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) were recalculated by XVMC (investigational implementation in PrecisePLAN [Elekta AB, Stockholm, Sweden]). Clinically relevant dose-volume parameters for target and lung tissue were compared and analyzed statistically. Results: The XVMC calculation agreed well with film measurements (<1% difference in lateral profile), whereas the deviation between PB calculation and film measurements was up to +15%. On analysis of 35 clinical cases, the mean dose, minimal dose and coverage dose value for 95% volume of gross tumor volume were 1.14 {+-} 1.72 Gy, 1.68 {+-} 1.47 Gy, and 1.24 {+-} 1.04 Gy lower by XVMC compared with PB, respectively (prescription dose, 30 Gy). The volume covered by the 9 Gy isodose of lung was 2.73% {+-} 3.12% higher when calculated by XVMC compared with PB. The largest differences were observed for small lesions circumferentially encompassed by lung tissue. Conclusions: Pencil beam dose calculation overestimates dose to the tumor and underestimates lung volumes exposed to a given dose consistently for 15-MV photons. The degree of difference between XVMC and PB is tumor size and location dependent. Therefore XVMC calculation is helpful to further optimize treatment planning.

  15. Transgenic rats overexpressing the human MrgX3 gene show cataracts and an abnormal skin phenotype

    SciTech Connect (OSTI)

    Kaisho, Yoshihiko . E-mail: Kaisho_Yoshihiko@takeda.co.jp; Watanabe, Takuya; Nakata, Mitsugu; Yano, Takashi; Yasuhara, Yoshitaka; Shimakawa, Kozo; Mori, Ikuo; Sakura, Yasufumi; Terao, Yasuko; Matsui, Hideki; Taketomi, Shigehisa

    2005-05-13

    The human MrgX3 gene, belonging to the mrgs/SNSRs (mass related genes/sensory neuron specific receptors) family, was overexpressed in transgenic rats using the actin promoter. Two animal lines showed cataracts with liquification/degeneration and swelling of the lens fiber cells. The transient epidermal desquamation was observed in line with higher gene expression. Histopathology of the transgenic rats showed acanthosis and focal parakeratosis. In the epidermis, there was an increase in cellular keratin 14, keratin 10, and loricrin, as well as PGP 9.5 in innervating nerve fibers. These phenotypes accompanied an increase in the number of proliferating cells. These results suggest that overexpression of the human MrgX3 gene causes a disturbance of the normal cell-differentiation process.

  16. Atrazine-induced reproductive tract alterations after transplacental and/or lactational exposure in male Long-Evans rats

    SciTech Connect (OSTI)

    Rayner, Jennifer L.; Enoch, Rolondo R.; Wolf, Douglas C.; Fenton, Suzanne E. . E-mail: fenton.suzanne@epa.gov

    2007-02-01

    Studies showed that early postnatal exposure to the herbicide atrazine (ATR) delayed preputial separation (PPS) and increased incidence of prostate inflammation in adult Wistar rats. A cross-fostering paradigm was used in this study to determine if gestational exposure to ATR would also result in altered puberty and reproductive tissue effects in the male rat. Timed-pregnant Long-Evans (LE) rats were dosed by gavage on gestational days (GD) 15-19 with 100 mg ATR/kg body weight (BW) or 1% methylcellulose (controls, C). On postnatal day (PND)1, half litters were cross-fostered, creating 4 treatment groups; C-C, ATR-C, C-ATR, and ATR-ATR (transplacental-milk as source, respectively). On PND4, male offspring in the ATR-ATR group weighed significantly less than the C-C males. ATR-ATR male pups had significantly delayed preputial separation (PPS). BWs at PPS for C-ATR and ATR-ATR males were reduced by 6% and 9%, respectively, from that of C-C. On PND120, lateral prostate weights of males in the ATR-ATR group were significantly increased over C-C. Histological examination of lateral and ventral prostates identified an increased distribution of inflammation in the lateral prostates of C-ATR males. By PND220, lateral prostate weights were significantly increased for ATR-C and ATR-ATR, but there were no significant changes in inflammation in either the lateral or ventral prostate. These results suggest that in LE rats, gestational ATR exposure delays PPS when male offspring suckle an ATR dam, but leads to increased lateral prostate weight via transplacental exposure alone. Inflammation present at PND120 does not increase in severity with time.

  17. Inter-strain heterogeneity in rat hepatic transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    SciTech Connect (OSTI)

    Yao, Cindy Q.; Prokopec, Stephenie D.; Watson, John D.; Pang, Renee; P'ng, Christine; Chong, Lauren C.; Harding, Nicholas J. [Informatics and Biocomputing Platform, Ontario Institute for Cancer Research, Toronto (Canada)] [Informatics and Biocomputing Platform, Ontario Institute for Cancer Research, Toronto (Canada); Pohjanvirta, Raimo [Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio (Finland) [Laboratory of Toxicology, National Institute for Health and Welfare, Kuopio (Finland); Department of Food Hygiene and Environmental Health, University of Helsinki (Finland); Okey, Allan B. [Department of Pharmacology and Toxicology, University of Toronto, Toronto (Canada)] [Department of Pharmacology and Toxicology, University of Toronto, Toronto (Canada); Boutros, Paul C., E-mail: Paul.Boutros@oicr.on.ca [Informatics and Biocomputing Platform, Ontario Institute for Cancer Research, Toronto (Canada); Department of Medical Biophysics, University of Toronto, Toronto (Canada)

    2012-04-15

    The biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) have been the subject of intense study for decades. It is now clear that essentially all TCDD-induced toxicities are mediated by DNA–protein interactions involving the Aryl Hydrocarbon Receptor (AHR). Nevertheless, it remains unknown which AHR target genes cause TCDD toxicities. Several groups, including our own, have developed rodent model systems to probe these questions. mRNA expression profiling of these model systems has revealed significant inter-species heterogeneity in rodent hepatic responses to TCDD. It has remained unclear if this variability also exists within a species, amongst rodent strains. To resolve this question, we profiled the hepatic transcriptomic response to TCDD of diverse rat strains (L-E, H/W, F344 and Wistar rats) and two lines derived from L-E × H/W crosses, at consistent age, sex, and dosing (100 ?g/kg TCDD for 19 h). Using this uniquely consistent dataset, we show that the majority of TCDD-induced alterations in mRNA abundance are strain/line-specific: only 11 genes were affected by TCDD across all strains, including well-known dioxin-responsive genes such as Cyp1a1 and Nqo1. Our analysis identified two novel universally dioxin-responsive genes as well as 4 genes induced by TCDD in dioxin-sensitive rats only. These 6 genes are strong candidates to explain TCDD-related toxicities, so we validated them using 152 animals in time-course (0 to 384 h) and dose–response (0 to 3000 ?g/kg) experiments. This study reveals that different rat strains exhibit dramatic transcriptional heterogeneity in their hepatic responses to TCDD and that inter-strain comparisons can help identify candidate toxicity-related genes.

  18. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    SciTech Connect (OSTI)

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  19. TCDD dysregulation of 13 AHR-target genes in rat liver

    SciTech Connect (OSTI)

    Watson, John D.; Prokopec, Stephenie D.; Smith, Ashley B.; Okey, Allan B.; Pohjanvirta, Raimo; Boutros, Paul C.

    2014-02-01

    Despite several decades of research, the complete mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other xenobiotic agonists of the aryl hydrocarbon receptor (AHR) cause toxicity remains unclear. While it has been shown that the AHR is required for all major manifestations of toxicity, the specific downstream changes involved in the development of toxic phenotypes remain unknown. Here we examine a panel of 13 genes that are AHR-regulated in many species and tissues. We profiled their hepatic mRNA abundances in two rat strains with very different sensitivities to TCDD: the TCDD-sensitive Long–Evans (Turku/AB; L–E) and the TCDD-resistant Han/Wistar (Kuopio; H/W). We evaluated doses ranging from 0 to 3000 ?g/kg at 19 h after TCDD exposure and time points ranging from 1.5 to 384 h after exposure to 100 ?g/kg TCDD. Twelve of 13 genes responded to TCDD in at least one strain, and seven of these showed statistically significant inter-strain differences in the time course analysis (Aldh3a1, Cyp1a2, Cyp1b1, Cyp2a1, Fmo1, Nfe2l2 and Nqo1). Cyp2s1 did not respond to TCDD in either rat strain. Five genes exhibited biphasic responses to TCDD insult (Ahrr, Aldh3a1, Cyp1b1, Nfe2l2 and Nqo1), suggesting a secondary event, such as association with additional transcriptional modulators. Of the 12 genes that responded to TCDD during the dose–response analysis, none had an ED{sub 50} equivalent to that of Cyp1a1, the most sensitive gene in this study, while nine genes responded to doses at least 10–100 fold higher, in at least one strain (Ahrr (L–E), Aldh3a1 (both), Cyp1a2 (both), Cyp1b1 (both), Cyp2a1 (L–E), Inmt (both), Nfe2l2 (L–E), Nqo1 (L–E) and Tiparp (both)). These data shed new light on the association of the AHR target genes with TCDD toxicity, and in particular the seven genes exhibiting strain-specific differences represent strong candidate mediators of Type-II toxicities. - Highlights: • NanoString measured hepatic mRNA molecules following TCDD treatment. • TCDD-sensitive Long–Evans and TCDD-resistant Han/Wistar rats were compared. • Time courses and dose responses were analyzed for AHR-core gene changes. • 7 genes displayed inter-strain mRNA differences at times after TCDD exposure. • 2 of the AHR-core genes had significant inter-strain differences in their TCDD ED{sub 50}.

  20. Distributed Monte Carlo production for D0

    SciTech Connect (OSTI)

    Snow, Joel; /Langston U.

    2010-01-01

    The D0 collaboration uses a variety of resources on four continents to pursue a strategy of flexibility and automation in the generation of simulation data. This strategy provides a resilient and opportunistic system which ensures an adequate and timely supply of simulation data to support D0's physics analyses. A mixture of facilities, dedicated and opportunistic, specialized and generic, large and small, grid job enabled and not, are used to provide a production system that has adapted to newly developing technologies. This strategy has increased the event production rate by a factor of seven and the data production rate by a factor of ten in the last three years despite diminishing manpower. Common to all production facilities is the SAM (Sequential Access to Metadata) data-grid. Job submission to the grid uses SAMGrid middleware which may forward jobs to the OSG, the WLCG, or native SAMGrid sites. The distributed computing and data handling system used by D0 will be described and the results of MC production since the deployment of grid technologies will be presented.

  1. Linac Coherent Light Source Monte Carlo Simulation

    Energy Science and Technology Software Center (OSTI)

    2006-03-15

    This suite consists of codes to generate an initial x-ray photon distribution and to propagate the photons through various objects. The suite is designed specifically for simulating the Linac Coherent Light Source, and x-ray free electron laser (XFEL) being built at the Stanford Linear Accelerator Center. The purpose is to provide sufficiently detailed characteristics of the laser to engineers who are designing the laser diagnostics.

  2. Mont Alto Borough | Open Energy Information

    Open Energy Info (EERE)

    Place: Pennsylvania Phone Number: (717)-749-5808 Website: www.montaltoborough.comweb Outage Hotline: (717)-749-5808 References: EIA Form EIA-861 Final Data File for 2010 -...

  3. Quantum Process Matrix Computation by Monte Carlo

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    The software package, processMC, is a python script that allows for the rapid modeling of small , noisy quantum systems and the computation of the averaged quantum evolution map.

  4. Statistical assessment of Monte Carlo distributional tallies

    SciTech Connect (OSTI)

    Kiedrowski, Brian C; Solomon, Clell J

    2010-12-09

    Four tests are developed to assess the statistical reliability of distributional or mesh tallies. To this end, the relative variance density function is developed and its moments are studied using simplified, non-transport models. The statistical tests are performed upon the results of MCNP calculations of three different transport test problems and appear to show that the tests are appropriate indicators of global statistical quality.

  5. O:\GRAPHICS\Factsheets\NEW\mont

    Office of Legacy Management (LM)

    9 United States Department of Energy Grand Junction Office Background The original Monticello mill was built in 1942 to provide an additional supply of vanadium during World War II. The mill was modified in the early 1950s to process uranium ore. Milling continued intermittently until the early 1960s, when the mill was dismantled. Tailings are the sandlike material that remains after processing of ore. Uranium tailings contain naturally occurring materials that radioactively decay to radium and

  6. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    SciTech Connect (OSTI)

    Cárdenas-González, Mariana C.; Del Razo, Luz M.; Barrera-Chimal, Jonatan; Jacobo-Estrada, Tania; López-Bayghen, Esther; and others

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end of the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary ?-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression levels. • Fluoride increased kidney injury biomarkers at stages where eGFR was unaltered.

  7. SU-E-T-481: Dosimetric Comparison of Acuros XB and Anisotropic Analytic Algorithm with Commercial Monte Carlo Based Dose Calculation Algorithm for Stereotactic Body Radiation Therapy of Lung Cancer

    SciTech Connect (OSTI)

    Cao, M; Tenn, S; Lee, C; Yang, Y; Lamb, J; Agazaryan, N; Lee, P; Low, D

    2014-06-01

    Purpose: To evaluate performance of three commercially available treatment planning systems for stereotactic body radiation therapy (SBRT) of lung cancer using the following algorithms: Boltzmann transport equation based algorithm (AcurosXB AXB), convolution based algorithm Anisotropic Analytic Algorithm (AAA); and Monte Carlo based algorithm (XVMC). Methods: A total of 10 patients with early stage non-small cell peripheral lung cancer were included. The initial clinical plans were generated using the XVMC based treatment planning system with a prescription of 54Gy in 3 fractions following RTOG0613 protocol. The plans were recalculated with the same beam parameters and monitor units using AAA and AXB algorithms. A calculation grid size of 2mm was used for all algorithms. The dose distribution, conformity, and dosimetric parameters for the targets and organs at risk (OAR) are compared between the algorithms. Results: The average PTV volume was 19.6mL (range 4.2–47.2mL). The volume of PTV covered by the prescribed dose (PTV-V100) were 93.97±2.00%, 95.07±2.07% and 95.10±2.97% for XVMC, AXB and AAA algorithms, respectively. There was no significant difference in high dose conformity index; however, XVMC predicted slightly higher values (p=0.04) for the ratio of 50% prescription isodose volume to PTV (R50%). The percentage volume of total lungs receiving dose >20Gy (LungV20Gy) were 4.03±2.26%, 3.86±2.22% and 3.85±2.21% for XVMC, AXB and AAA algorithms. Examination of dose volume histograms (DVH) revealed small differences in targets and OARs for most patients. However, the AAA algorithm was found to predict considerable higher PTV coverage compared with AXB and XVMC algorithms in two cases. The dose difference was found to be primarily located at the periphery region of the target. Conclusion: For clinical SBRT lung treatment planning, the dosimetric differences between three commercially available algorithms are generally small except at target periphery. XVMC and AXB algorithms are recommended for accurate dose estimation at tissue boundaries.

  8. Dissolution and clearance of titanium tritide particles in the lungs of F344/Crl rats

    SciTech Connect (OSTI)

    Cheng, Yung-Sung; Snipes, M.B.; Wang, Yansheng

    1995-12-01

    Metal tritides are compounds in which the radioactive isotope tritium, following adsorption onto the metal, forms a stable chemical compound with the metal. When particles of tritiated metals become airborne, they can be inhaled by workers. Because the particles may be retained in the lung for extended periods, the resulting dose will be greater than doses following exposure to tritium gas or tritium oxide (HTO). Particles of triated metals may be dispersed into the air during routine handling, disruption of contaminated metals, or as a result of spontaneous radioactive decay processes. Unlike metal hydrides and deuterides, tritides are radioactive, and the decay of the tritium atoms affects the metal. Because helium is a product of the decay, helium bubbles form within the metal tritide matrix. The pressure from these bubbles leads to respirable particles breaking off from the tritide surface. Our results show that a substantial amount of titanium tritide remains in the rat lung 10 d after intratracheal instillation, confirming results previously obtain in an in vitro dissolution study.

  9. In vivo measurement of total body magnesium and manganese in rats

    SciTech Connect (OSTI)

    Zhang, R.Q.; Ellis, K.J. )

    1989-11-01

    Mg and Mn are essential minerals in many biological processes. Thus knowledge of their absolute amounts and how those amounts may be altered is important. In the past the in vivo measurement of Mg in animals was limited by both the poor geometry of the counting system and the requirement for multiple counts of the animal over several hours. We have developed a neutron activation technique for the direct in vivo measurement of total body Mg and Mn in the rat. The counting system adapted for the technique has a response that is relatively invariant (+/- 2.5%) to differences in body size. A least-squares curve fitting technique was developed that requires only a single 5-min count of the animal. Our in vivo values for body Mg and Mn were in excellent agreement (+/- 2.0%) with the results of total carcass analysis using atomic absorption. Longitudinal changes in total body Mg and Mn were examined in vivo in two groups of animals maintained on test diets that contained different amounts of Mg.

  10. Ethanol-induced cell damage in cultured rat antral mucosa assessed by chromium-51 release

    SciTech Connect (OSTI)

    Sewell, R.B.; Ling, T.S.; Yeomans, N.D.

    1986-08-01

    We have developed an in vitro method for studying ethanol-induced injury to gastric mucosa using organ culture of rat antrum. Cell damage was assessed by measurement of the release of (/sup 51/Cr)sodium chromate from preloaded cells, a method adapted from a standard immunologic technique. This system provided rapid and highly reproducible quantitation of tissue injury as assessed by /sup 51/Cr release into the culture medium. The threshold concentration for ethanol-induced damage was between 10 and 15% v/v, similar to in vivo thresholds observed by others. /sup 51/Cr release could also be induced by very short exposure to ethanol (5-15 min), and then continued despite ethanol removal. Interestingly, after continuous ethanol exposure, a plateau of maximum /sup 51/Cr release was reached 60 min after exposure to ethanol over the concentration range 20-50%, suggesting tissue adaptation to ethanol damage. This organ culture system, which allows precise control of experimental conditions, may be useful for studying mechanisms of gastric mucosal injury and protection.

  11. Effect of. cap alpha. -ketobutyrate on the metabolism of pyruvate and palmitate in isolated rat hepatocytes

    SciTech Connect (OSTI)

    Brass, E.P.

    1986-05-01

    Alpha-ketobutyrate (..cap alpha..KB), an intermediate in the catabolism of threonine and methionine, is decarboxylated to propionyl-CoA. The authors have reported that propionate (PROP) inhibits oxidative metabolism in rate hepatocytes. Based on these observations, the present study examined the effects of ..cap alpha..KB on pyruvate and palmitate metabolism in hepatocytes isolated from fed rats. Similar to PROP, ..cap alpha..KB (10mM) inhibited palmitate oxidation and this inhibition was diminished when 10mM carnitine (CN) was added (35 +/- 6% inhibition without CN, 22 +/- 8% with CN). ..cap alpha..KB inhibited the conversion of 3-/sup 14/C-pyruvate to glucose and CO/sub 2/. Inhibition of pyruvate metabolism by ..cap alpha..KB was concentration-dependent. At equal concentrations, ..cap alpha..KB inhibited pyruvate metabolism to a greater extent than PROP. Addition of CN partially reversed the effects of PROP on pyruvate metabolism, but not those of ..cap alpha..KB despite the generation of propionylcarnitine when ..cap alpha..KB and CN were included in the incubation. These results demonstrate that accumulation of ..cap alpha..KB can impair normal hepatocyte metabolism. While some of the effects of ..cap alpha..KB can be explained on the basis of propionyl-CoA formation, ..cap alpha..KB has effects on pyruvate metabolism not explainable by this mechanism.

  12. Influence of copper and iron on subacute cadmium intoxication in protein-malnourished rats

    SciTech Connect (OSTI)

    Tewari, P.C.; Kachru, D.N.; Tandon, S.K.

    1986-10-01

    Male albino rats maintained on low-protein (9%) diets were dosed intraperitoneally with 0.75 mg Cd/kg, as cadmium chloride, for 20 days. Groups of these animals were provided with diets supplemented with 40 ppm Cu, 400 ppm Fe or a combination of both during the exposure period. Hepatic and renal distribution of Cd, Zn, Cu, and Fe along with activity of acid and alkaline phosphatases and ribonuclease and glutathione content were studied. Uptake of Cd both in liver and in kidney was significant and was accompanied by increased Zn and depletion of Fe concentration. The Cu level remained unaltered. Dietary supplementation of Cu or Fe interacted effectively and influenced the metal distribution. Acid and alkaline phosphatases in both liver and kidney were inhibited by Cd exposure. However, Cu and/or Fe supplements could to a varying degree offset the Cd-induced inhibition. Cadmium exposure did not, however, elicit any effect on hepatic and renal ribonuclease activity of low-protein-fed animals. The glutathione concentration registered profound increase on Cd exposure, possibly to act as a defense mechanism.

  13. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  14. Measuring the top anti-t Production Cross-Section in the Electron + Jets Channel in Proton - Anti-proton Collisions at s**(1/2) = 1.96-TeV with the D0 Detector at the Tevatron: A Monte Carlo Study

    SciTech Connect (OSTI)

    Park, Su-Jung; /Bonn U.

    2004-02-01

    The measurement of the t{bar t} production cross section at {radical}s = 1.96 TeV using the final state with an electron and jets is studied with Monte Carlo event samples. All methods used in the real data analysis to measure efficiencies and to estimate the background contributions are examined. The studies focus on measuring the electron reconstruction efficiencies as well as on improving the electron identification and background suppression. With a generated input cross section of 7 pb the following result is obtained: {sigma}{sub t{bar t}} = (7 {+-} 1.63(stat){sub -1.14}{sup +0.94} (syst)) pb.

  15. Rapid detection and identification of energetic materials with surface enhanced raman spectrometry (SERS)

    DOE Patents [OSTI]

    Han, Thomas Yong-Jin; Valdez, Carlos A; Olson, Tammy Y; Kim, Sung Ho; Satcher, Jr., Joe H

    2015-04-21

    In one embodiment, a system includes a plurality of metal nanoparticles functionalized with a plurality of organic molecules tethered thereto, wherein the plurality of organic molecules preferentially interact with one or more analytes when placed in proximity therewith. According to another embodiment, a method for detecting analytes includes contacting a fluid having one or more analytes of interest therein with a plurality of metal nanoparticles, each metal nanoparticle having a plurality of organic molecules tethered thereto, and detecting Raman scattering from an analyte of interest from the fluid, the analyte interacting with one or more of the plurality of organic molecules. In another embodiment, a method includes chemically modifying a plurality of cyclodextrin molecules at a primary hydroxyl moiety to create a chemical handle, and tethering the plurality of cyclodextrin molecules to a metal nanoparticle using the chemical handle. Other systems and methods for detecting analytes are also described.

  16. Large area substrate for surface enhanced Raman spectroscopy (SERS) using glass-drawing technique

    DOE Patents [OSTI]

    Ivanov, Ilia N.; Simpson, John T.

    2012-06-26

    A method of making a large area substrate comprises drawing a plurality of tubes to form a plurality of drawn tubes, and cutting the plurality of drawn tubes into cut drawn tubes. Each cut drawn tube has a first end and a second end along the longitudinal direction of the respective cut drawn tube. The cut drawn tubes collectively have a predetermined periodicity. The method of making a large area substrate also comprises forming a metal layer on the first ends of the cut drawn tubes to provide a large area substrate.

  17. Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF ? mediators

    SciTech Connect (OSTI)

    Orona, N.S.; Tasat, D.R.

    2012-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5–200 ?M). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO{sub 3} 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO{sub 3}. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O{sub 2}{sup ?}). At high doses it provokes the secretion of TNF? and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O{sub 2}{sup ?} may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O{sub 2}{sup ?} may be blocked, prevailing damage to DNA by the TNF? route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium?related diseases. -- Highlights: ? Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ? At low doses uranyl nitrate induces generation of superoxide anion. ? At high doses uranyl nitrate provokes secretion of TNF?. ? Uranyl nitrate induces apoptosis through all the range of doses tested.

  18. Anti-inflammatory and anti-oxidant activities of olmesartan medoxomil ameliorate experimental colitis in rats

    SciTech Connect (OSTI)

    Nagib, Marwa M.; Tadros, Mariane G.; ELSayed, Moushira I.; Khalifa, Amani E.

    2013-08-15

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) driven through altered immune responses with production of proinflammatory cytokines. Many therapies are used, but side effects and loss of response limit long-term effectiveness. New therapeutic strategies are thus needed for patients who don't respond to current treatments. Recently, there is suggested involvement of the proinflammatory hormone angiotensin II in inflammatory bowel disease. The aim of this study was to investigate the possible role of olmesartan medoxomil (OLM-M), an angiotensin II receptor blocker in ameliorating ulcerative colitis. Colitis was induced in male Wistar rats by administration of 5% dextran sodium sulphate (DSS) in drinking water for 5 days. OLM-M (1, 3 and 10 mg/kg) was administered orally during 21 days prior to the induction of colitis, and for 5 days after. Sulfasalazine (500 mg/kg) was used as reference drug. All animals were tested for changes in colon length, disease activity index (DAI) and microscopic damage. Colon tissue concentration/activity of tumor necrosis alpha (TNF-?), myeloperoxidase (MPO), prostaglandin E2 (PGE2), reduced glutathione (GSH) and malondialdehyde (MDA) were assessed. Results showed that the OLM-M dose-dependently ameliorated the colonic histopathological and biochemical injuries, an effect that is comparable or even better than that of the standard sulfasalazine. These results suggest that olmesartan medoxomil may be effective in the treatment of UC through its anti-inflammatory and antioxidant effects. - Highlights: • Olmesartan medoximil reduced dextran sodium sulphate- induced colitis. • Mechanism involved anti-inflammatory and antioxidant effects dose- dependently. • It suppressed malondialdehyde and restored reduced glutathione levels. • It reduced inflammatory markers levels and histological changes.

  19. Interdisciplinary neurotoxicity inhalation studies: Carbon disulfide and carbonyl sulfide research in F344 rats

    SciTech Connect (OSTI)

    Sills, Robert C. [Laboratory of Experimental Pathology, National Institute of Environmental Health Sciences, 111 Alexander Drive, South Campus, MD B3-08, PO Box 12233, Research Triangle Park, NC 27709 (United States)]. E-mail: sills@niehs.nih.gov; Harry, G. Jean [Laboratory of Neurobiology, National Institute of Environmental Health Sciences, 111 Alexander Drive, South Campus, PO Box 12233, Research Triangle Park, NC 27709 (United States); Valentine, William M. [Department of Pathology and Center in Molecular Toxicology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Morgan, Daniel L. [Laboratory of Molecular Toxicology, NIEHS, Research Triangle Park, NC 27709 (United States)

    2005-09-01

    Inhalation studies were conducted on the hazardous air pollutants, carbon disulfide, which targets the central nervous system (spinal cord) and peripheral nervous system (distal portions of long myelinated axons), and carbonyl sulfide, which targets the central nervous system (brain). The objectives were to investigate the neurotoxicity of these compounds by a comprehensive evaluation of function, structure, and mechanisms of disease. Through interdisciplinary research, the major finding in the carbon disulfide inhalation studies was that carbon disulfide produced intra- and intermolecular protein cross-linking in vivo. The observation of dose-dependent covalent cross-linking in neurofilament proteins prior to the onset of lesions is consistent with this process contributing to the development of the neurofilamentous axonal swellings characteristic of carbon disulfide neurotoxicity. Of significance is that valine-lysine thiourea cross-linking on rat globin and lysine-lysine thiourea cross-linking on erythrocyte spectrin reflect cross-linking events occurring within the axon and could potentially serve as biomarkers of carbon disulfide exposure and effect. In the carbonyl sulfide studies, using magnetic resonance microscopy (MRM), we determined that carbonyl sulfide targets the auditory pathway in the brain. MRM allowed the examination of 200 brain slices and made it possible to identify the most vulnerable sites of neurotoxicity, which would have been missed in our traditional neuropathology evaluations. Electrophysiological studies were focused on the auditory system and demonstrated decreases in auditory brain stem evoked responses. Similarly, mechanistic studies focused on evaluating cytochrome oxidase activity in the posterior colliculus and parietal cortex. A decrease in cytochrome oxidase activity was considered to be a contributing factor to the pathogenesis of carbonyl sulfide neurotoxicity.

  20. Intervention of D-glucose ameliorates the toxicity of streptozotocin in accessory sex organs of rat

    SciTech Connect (OSTI)

    Vikram, A.; Tripathi, D.N.; Ramarao, P. [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062 (India); Jena, G.B. [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab-160062 (India)], E-mail: gbjena@gmail.com

    2008-01-01

    Streptozotocin (STZ) is a naturally occurring compound isolated from Streptomyces achromogens. It is used extensively for inducing diabetes in experimental animals. Diabetes mellitus is known to have proven adverse effects on male sexual organs and their reproductive functions. The atrophy of prostate gland and other organs of the genitourinary tract were observed in experimental diabetic animals. STZ exhibits a structural resemblance to D-glucose due to the presence of sugar moiety in its structure. Pancreatic {beta}-cells mainly contain GLUT1 and GLUT2 glucose transporters. Possibly due to structural resemblance, STZ and D-glucose, share a common recognition site for entry into the {beta}-cells. The objective of the present study is to evaluate the effect of D-glucose on STZ-induced toxicity in accessory sex organs of male rats. Animals were kept on overnight fasting. One group received vehicle and served as negative control, while all other groups were given STZ (45 mg/kg). Animals that received only STZ served as positive control. The effect of D-glucose was studied on STZ treated animals with different dosage of D-glucose (250, 500, 1000 and 2000 mg/kg). Restoration of body weight, plasma glucose and plasma insulin was evident only at 1000 and 2000 mg/kg of D-glucose. The protective effect of D-glucose is evident only when it is administered simultaneously with STZ. In the present investigation, we report that simultaneous administration of D-glucose along with STZ ameliorates STZ-induced toxicity. This is evident from the restoration of accessory sex organ's weight, cellular morphology as well as insulin level.

  1. Maternal exposure to cadmium during gestation perturbs the vascular system of the adult rat offspring

    SciTech Connect (OSTI)

    Ronco, Ana Maria, E-mail: amronco@inta.cl [Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Casilla 138-11, Santiago (Chile); Montenegro, Marcela; Castillo, Paula; Urrutia, Manuel [Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Casilla 138-11, Santiago (Chile); Saez, Daniel [Faculty of Veterinary Medicine, University of Chile, Casilla 138-11, Santiago (Chile); Hirsch, Sandra [Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Casilla 138-11, Santiago (Chile); Zepeda, Ramiro [Faculty of Medicine, University of Chile, Casilla 138-11, Santiago (Chile); Llanos, Miguel N. [Laboratory of Nutrition and Metabolic Regulation, Institute of Nutrition and Food Technology (INTA), University of Chile, Casilla 138-11, Santiago (Chile)

    2011-03-01

    Several cardiovascular diseases (CVD) observed in adulthood have been associated with environmental influences during fetal growth. Here, we show that maternal exposure to cadmium, a ubiquitously distributed heavy metal and main component of cigarette smoke is able to induce cardiovascular morpho-functional changes in the offspring at adult age. Heart morphology and vascular reactivity were evaluated in the adult offspring of rats exposed to 30 ppm of cadmium during pregnancy. Echocardiographic examination shows altered heart morphology characterized by a concentric left ventricular hypertrophy. Also, we observed a reduced endothelium-dependent reactivity in isolated aortic rings of adult offspring, while endothelium-independent reactivity remained unaltered. These effects were associated with an increase of hem-oxygenase 1 (HO-1) expression in the aortas of adult offspring. The expression of HO-1 was higher in females than males, a finding likely related to the sex-dependent expression of the vascular cell adhesion molecule 1 (VCAM-1), which was lower in the adult female. All these long-term consequences were observed along with normal birth weights and absence of detectable levels of cadmium in fetal and adult tissues of the offspring. In placental tissues however, cadmium levels were detected and correlated with increased NF-{kappa}B expression - a transcription factor sensitive to inflammation and oxidative stress - suggesting a placentary mechanism that affect genes related to the development of the cardiovascular system. Our results provide, for the first time, direct experimental evidence supporting that exposure to cadmium during pregnancy reprograms cardiovascular development of the offspring which in turn may conduce to a long term increased risk of CVD.

  2. Toxicokinetics of ?-thujone following intravenous and gavage administration of ?-thujone or ?- and ?-thujone mixture in male and female F344/N rats and B6C3F1 mice

    SciTech Connect (OSTI)

    Waidyanatha, Suramya; Johnson, Jerry D.; Hong, S. Peter; Robinson, Veronica Godfrey; Gibbs, Seth; Graves, Steven W.; Hooth, Michelle J.; Smith, Cynthia S.

    2013-09-01

    Plants containing thujone have widespread use and hence have significant human exposure. ?-Thujone caused seizures in rodents following gavage administration. We investigated the toxicokinetics of ?-thujone in male and female F344/N rats and B6C3F1 mice following intravenous and gavage administration of ?-thujone or a mixture of ?- and ?-thujone (which will be referred to as ?,?-thujone). Absorption of ?-thujone following gavage administration was rapid without any dose-, species-, sex- or test article-related effect. Absolute bioavailability of ?-thujone following administration of ?-thujone or ?,?-thujone was generally higher in rats than in mice. In rats, females had higher bioavailability than males following administration of either test article although a sex difference was not observed in mice. C{sub max} and AUC{sub ?} increased greater than proportional to the dose in female rats following administration of ?-thujone and in male and female mice following administration of ?,?-thujone suggesting possible saturation of elimination kinetics with increasing dose. Dose-adjusted AUC{sub ?} for male and female rats was 5- to 15-fold and 3- to 24-fold higher than mice counterparts following administration of ?-thujone and ?,?-thujone, respectively (p-value < 0.0001 for all comparisons). Following both intravenous and gavage administration, ?-thujone was distributed to the brains of rats and mice with females, in general, having higher brain:plasma ratios than males. These data are in support of the observed toxicity of ?-thujone and ?,?-thujone where females were more sensitive than males of both species to ?-thujone-induced neurotoxicity. In general there was no difference in toxicokinetics between test articles when normalized to ?-thujone concentration. - Highlights: • Absorption of ?-thujone following gavage administration was rapid in rats and mice. • Rats undergo higher exposure to ?-thujone than mice. • ?-Thujone brain:plasma ratios were greater than 1 in both rats and mice. • Brain:plasma ratio in females was higher than in males. • These data are in support of the observed neurotoxicity of ?-thujone.

  3. Strain-guided mineralization in the bone–PDL–cementum complex of a rat periodontium

    SciTech Connect (OSTI)

    Grandfield, Kathryn; Herber, Ralf -Peter; Chen, Ling; Djomehri, Sabra; Tam, Caleb; Lee, Ji -Hyun; Brown, Evan; Woolwine III, Wood R.; Curtis, Don; Ryder, Mark; Schuck, Jim; Webb, Samuel; Landis, William; Ho, Sunita P.

    2015-04-18

    Objective: The objective of this study was to investigate the effect of mechanical strain by mapping physicochemical properties at periodontal ligament (PDL)–bone and PDL–cementum attachment sites and within the tissues per se. Design: Accentuated mechanical strain was induced by applying a unidirectional force of 0.06 N for 14 days on molars in a rat model. The associated changes in functional space between the tooth and bone, mineral forming and resorbing events at the PDL–bone and PDL–cementum attachment sites were identified by using micro-X-ray computed tomography (micro-XCT), atomic force microscopy (AFM), dynamic histomorphometry, Raman microspectroscopy, and AFM-based nanoindentation technique. Results from these analytical techniques were correlated with histochemical strains specific to low and high molecular weight GAGs, including biglycan, and osteoclast distribution through tartrate resistant acid phosphatase (TRAP) staining. Results: Unique chemical and mechanical qualities including heterogeneous bony fingers with hygroscopic Sharpey's fibers contributing to a higher organic (amide III — 1240 cm⁻¹) to inorganic (phosphate — 960 cm⁻¹) ratio, with lower average elastic modulus of 8 GPa versus 12 GPa in unadapted regions were identified. Furthermore, an increased presence of elemental Zn in cement lines and mineralizing fronts of PDL–bone was observed. Adapted regions containing bony fingers exhibited woven bone-like architecture and these regions rich in biglycan (BGN) and bone sialoprotein (BSP) also contained high-molecular weight polysaccharides predominantly at the site of polarized bone growth. Conclusions: From a fundamental science perspective the shift in local properties due to strain amplification at the soft–hard tissue attachment sites is governed by semiautonomous cellular events at the PDL–bone and PDL–cementum sites. Over time, these strain-mediated events can alter the physicochemical properties of tissues per se, and consequently the overall biomechanics of the bone–PDL–tooth complex. From a clinical perspective, the shifts in magnitude and duration of forces on the periodontal ligament can prompt a shift in physiologic mineral apposition in cementum and alveolar bone albeit of an adapted quality owing to the rapid mechanical translation of the tooth.

  4. Strain-guided mineralization in the bone–PDL–cementum complex of a rat periodontium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grandfield, Kathryn; Herber, Ralf -Peter; Chen, Ling; Djomehri, Sabra; Tam, Caleb; Lee, Ji -Hyun; Brown, Evan; Woolwine III, Wood R.; Curtis, Don; Ryder, Mark; et al

    2015-04-18

    Objective: The objective of this study was to investigate the effect of mechanical strain by mapping physicochemical properties at periodontal ligament (PDL)–bone and PDL–cementum attachment sites and within the tissues per se. Design: Accentuated mechanical strain was induced by applying a unidirectional force of 0.06 N for 14 days on molars in a rat model. The associated changes in functional space between the tooth and bone, mineral forming and resorbing events at the PDL–bone and PDL–cementum attachment sites were identified by using micro-X-ray computed tomography (micro-XCT), atomic force microscopy (AFM), dynamic histomorphometry, Raman microspectroscopy, and AFM-based nanoindentation technique. Results frommore » these analytical techniques were correlated with histochemical strains specific to low and high molecular weight GAGs, including biglycan, and osteoclast distribution through tartrate resistant acid phosphatase (TRAP) staining. Results: Unique chemical and mechanical qualities including heterogeneous bony fingers with hygroscopic Sharpey's fibers contributing to a higher organic (amide III — 1240 cm⁻¹) to inorganic (phosphate — 960 cm⁻¹) ratio, with lower average elastic modulus of 8 GPa versus 12 GPa in unadapted regions were identified. Furthermore, an increased presence of elemental Zn in cement lines and mineralizing fronts of PDL–bone was observed. Adapted regions containing bony fingers exhibited woven bone-like architecture and these regions rich in biglycan (BGN) and bone sialoprotein (BSP) also contained high-molecular weight polysaccharides predominantly at the site of polarized bone growth. Conclusions: From a fundamental science perspective the shift in local properties due to strain amplification at the soft–hard tissue attachment sites is governed by semiautonomous cellular events at the PDL–bone and PDL–cementum sites. Over time, these strain-mediated events can alter the physicochemical properties of tissues per se, and consequently the overall biomechanics of the bone–PDL–tooth complex. From a clinical perspective, the shifts in magnitude and duration of forces on the periodontal ligament can prompt a shift in physiologic mineral apposition in cementum and alveolar bone albeit of an adapted quality owing to the rapid mechanical translation of the tooth.« less

  5. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    SciTech Connect (OSTI)

    Yu, Yunli; Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 ; Wang, Xinting; Liu, Can; Yao, Dan; Shanghai Institute of Materia Medica, Shanghai 201203 ; Hu, Mengyue; Li, Jia; Hu, Nan; Liu, Li; Liu, Xiaodong

    2013-02-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ? Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ? Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ? Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ? GLP-1 over-secretion may be involved in gatifloxacin-induced hyperglycemia.

  6. Urine acidification has no effect on peroxisome proliferator-activated receptor (PPAR) signaling or epidermal growth factor (EGF) expression in rat urinary bladder urothelium

    SciTech Connect (OSTI)

    Achanzar, William E. Moyer, Carolyn F.; Marthaler, Laura T.; Gullo, Russell; Chen, Shen-Jue; French, Michele H.; Watson, Linda M.; Rhodes, James W.; Kozlosky, John C.; White, Melvin R.; Foster, William R.; Burgun, James J.; Car, Bruce D.; Cosma, Gregory N.; Dominick, Mark A.

    2007-09-15

    We previously reported prevention of urolithiasis and associated rat urinary bladder tumors by urine acidification (via diet acidification) in male rats treated with the dual peroxisome proliferator-activated receptor (PPAR){alpha}/{gamma} agonist muraglitazar. Because urine acidification could potentially alter PPAR signaling and/or cellular proliferation in urothelium, we evaluated urothelial cell PPAR{alpha}, PPAR{delta}, PPAR{gamma}, and epidermal growth factor receptor (EGFR) expression, PPAR signaling, and urothelial cell proliferation in rats fed either a normal or an acidified diet for 5, 18, or 33 days. A subset of rats in the 18-day study also received 63 mg/kg of the PPAR{gamma} agonist pioglitazone daily for the final 3 days to directly assess the effects of diet acidification on responsiveness to PPAR{gamma} agonism. Urothelial cell PPAR{alpha} and {gamma} expression and signaling were evaluated in the 18- and 33-day studies by immunohistochemical assessment of PPAR protein (33-day study only) and quantitative real-time polymerase chain reaction (qRT-PCR) measurement of PPAR-regulated gene expression. In the 5-day study, EGFR expression and phosphorylation status were evaluated by immunohistochemical staining and egfr and akt2 mRNA levels were assessed by qRT-PCR. Diet acidification did not alter PPAR{alpha}, {delta}, or {gamma} mRNA or protein expression, PPAR{alpha}- or {gamma}-regulated gene expression, total or phosphorylated EGFR protein, egfr or akt2 gene expression, or proliferation in urothelium. Moreover, diet acidification had no effect on pioglitazone-induced changes in urothelial PPAR{gamma}-regulated gene expression. These results support the contention that urine acidification does not prevent PPAR{gamma} agonist-induced bladder tumors by altering PPAR{alpha}, {gamma}, or EGFR expression or PPAR signaling in rat bladder urothelium.

  7. Exposure to As, Cd and Pb-mixture impairs myelin and axon development in rat brain, optic nerve and retina

    SciTech Connect (OSTI)

    Rai, Nagendra Kumar; Ashok, Anushruti; Rai, Asit; Tripathi, Sachin; Nagar, Geet Kumar; Mitra, Kalyan; Bandyopadhyay, Sanghamitra

    2013-12-01

    Arsenic (As), lead (Pb) and cadmium (Cd) are the major metal contaminants of ground water in India. We have reported the toxic effect of their mixture (metal mixture, MM), at human relevant doses, on developing rat astrocytes. Astrocyte damage has been shown to be associated with myelin disintegration in CNS. We, therefore, hypothesized that the MM would perturb myelinating white matter in cerebral cortex, optic nerve (O.N.) and retina. We observed modulation in the levels of myelin and axon proteins, such as myelin basic protein (MBP), proteolipid protein, 2?-, 3?-cyclic-nucleotide-3?-phosphodiesterase, myelin-associated glycoprotein and neurofilament (NF) in the brain of developing rats. Dose and time-dependent synergistic toxic effect was noted. The MBP- and NF-immunolabeling, as well as luxol-fast blue (LFB) staining demonstrated a reduction in the area of intact myelin-fiber, and an increase in vacuolated axons, especially in the corpus-callosum. Transmission electron microscopy (TEM) of O.N. revealed a reduction in myelin thickness and axon-density. The immunolabeling with MBP, NF, and LFB staining in O.N. supported the TEM data. The hematoxylin and eosin staining of retina displayed a decrease in the thickness of nerve-fiber, plexiform-layer, and retinal ganglion cell (RGC) count. Investigating the mechanism revealed a loss in glutamine synthetase activity in the cerebral cortex and O.N., and a fall in the brain derived neurotrophic factor in retina. An enhanced apoptosis in MBP, NF and Brn3b-containing cells justified the diminution in myelinating axons in CNS. Our findings for the first time indicate white matter damage by MM, which may have significance in neurodevelopmental-pediatrics, neurotoxicology and retinal-cell biology. - Highlights: • As, Cd and Pb-mixture, at human relevant dose, demyelinate developing rat CNS. • The attenuation in myelin and axon is synergistic. • The optic nerve and brain demonstrate reduced glutamine synthetase. • The retina exhibits diminished neurotrophin levels and cellular differentiation. • The toxic effect is apoptotic.

  8. Early life ethanol exposure causes long-lasting disturbances in rat mesenchymal stem cells via epigenetic modifications

    SciTech Connect (OSTI)

    Leu, Yu-Wei; Chu, Pei-Yi; Chen, Chien-Min; Yeh, Kun-Tu; Liu, Yu Ming; Lee, Yen-Hui; Kuo, Shan-Tsu; Hsiao, Shu-Huei

    2014-10-24

    Highlights: • Ethanol exposure alters proliferation and differentiation of MSCs. • Ethanol exposure suppresses osteogenesis and adipogenesis of MSCs. • H3K27me3-associated genes/pathways are affected in ethanol-exposed MSCs. • Expression of lineage-specific genes is dysregulated in ethanol-exposed MSCs. - Abstract: Fetal alcohol syndrome (FAS) is a birth defect due to maternal alcohol consumption during pregnancy. Because mesenchymal stem cells (MSCs) are the main somatic stem cells in adults and may contribute to tissue homeostasis and repair in adulthood, we investigated whether early life ethanol exposure affects MSCs and contributes to the propensity for disease onset in later life. Using a rodent model of FAS, we found that ethanol exposure (5.25 g/kg/day) from postnatal days 4 to 9 in rat pups (mimic of human third trimester) caused long-term anomalies in bone marrow-derived MSCs. MSCs isolated from ethanol-exposed animals were prone to neural induction but resistant to osteogenic and adipogenic inductions compared to their age-matched controls. The altered differentiation may contribute to the severe trabecular bone loss seen in ethanol-exposed animals at 3 months of age as well as overt growth retardation. Expression of alkaline phosphatase, osteocalcin, aP2, and PPAR? were substantially inhibited, but BDNF was up-regulated in MSCs isolated from ethanol-exposed 3 month-old animals. Several signaling pathways were distorted in ethanol-exposed MSCs via altered trimethylation at histone 3 lysine 27. These results demonstrate that early life ethanol exposure can have long-term impacts in rat MSCs by both genetic and epigenetic mechanisms.

  9. Prenatal ethanol exposure programs an increased susceptibility of non-alcoholic fatty liver disease in female adult offspring rats

    SciTech Connect (OSTI)

    Shen, Lang; Liu, Zhongfen; Gong, Jun; Zhang, Li; Wang, Linlong; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2014-01-15

    Prenatal ethanol exposure (PEE) induces dyslipidemia and hyperglycemia in fetus and adult offspring. However, whether PEE increases the susceptibility to non-alcoholic fatty liver disease (NAFLD) in offspring and its underlying mechanism remain unknown. This study aimed to demonstrate an increased susceptibility to high-fat diet (HFD)-induced NAFLD and its intrauterine programming mechanisms in female rat offspring with PEE. Rat model of intrauterine growth retardation (IUGR) was established by PEE, the female fetus and adult offspring that fed normal diet (ND) or HFD were sacrificed. The results showed that, in PEE + ND group, serum corticosterone (CORT) slightly decreased and insulin-like growth factor-1 (IGF-1) and glucose increased with partial catch-up growth; In PEE + HFD group, serum CORT decreased, while serum IGF-1, glucose and triglyceride (TG) increased, with notable catch-up growth, higher metabolic status and NAFLD formation. Enhanced liver expression of the IGF-1 pathway, gluconeogenesis, and lipid synthesis as well as reduced expression of lipid output were accompanied in PEE + HFD group. In PEE fetus, serum CORT increased while IGF-1 decreased, with low body weight, hyperglycemia, and hepatocyte ultrastructural changes. Hepatic IGF-1 expression as well as lipid output was down-regulated, while lipid synthesis significantly increased. Based on these findings, we propose a “two-programming” hypothesis for an increased susceptibility to HFD-induced NAFLD in female offspring of PEE. That is, the intrauterine programming of liver glucose and lipid metabolic function is “the first programming”, and postnatal adaptive catch-up growth triggered by intrauterine programming of GC-IGF1 axis acts as “the second programming”. - Highlights: • Prenatal ethanol exposure increase the susceptibility of NAFLD in female offspring. • Prenatal ethanol exposure reprograms fetal liver’s glucose and lipid metabolism . • Prenatal ethanol exposure cause the adaptive change of glucocorticoid-IGF1 axis.

  10. Differential regulation of apoptosis in slow and fast twitch muscles of aged female F344BN rats

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rice, Kevin M.; Manne, Nandini D. P. K.; Gadde, Murali K.; Paturi, Satyanarayana; Arvapalli, Ravikumar; Blough, Eric

    2015-03-28

    Age-related muscle atrophy is characterized by decreases in muscle mass and is thought be mediated, at least in part, by increases in myocyte apoptosis. Recent data has demonstrated that the degree of muscle loss with aging may differ between males and females while other work has suggested that apoptosis as indicated by DNA fragmentation may be regulated differently in fast- and slow-twitch muscles. Herein, we investigate how aging affects the regulation of muscle apoptosis in the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of young (6-month), aged (26-month), and very aged (30-month) female Fischer 344/NNiaHSD × Brown Norway/BiNiamore » (F344BN) rats. Tissue sections were stained with hydroethidium for ROS and protein extract was subjected to immunoblotting for assessing apoptotic markers. Our data suggest that decreases in muscle mass were associated with increased DNA fragmentation (TUNEL positive) and increases in reactive oxygen species (ROS) as determined by hydroethidium staining in both the EDL and soleus. Similar to our previous work using aged male animals, we observed that the time course and magnitude of changes in Bax, Bcl-2, caspase-3, caspase-9, and cleavage of α-fodrin protein were regulated differently between muscles. As a result, These data suggest that aging in the female F344BN rat is associated with decreases in muscle mass, elevations in ROS level, increased muscle cell DNA fragmentation, and alterations in cell membrane integrity and that apoptotic mechanisms may differ between fiber types.« less

  11. Site-directed mutagenesis and molecular modelling studies show the role of Asp82 and cysteines in rat acylase 1, a member of the M20 family

    SciTech Connect (OSTI)

    Herga, Sameh; Brutus, Alexandre; Vitale, Rosa Maria; Miche, Helene; Perrier, Josette; Puigserver, Antoine; Scaloni, Andrea; Giardina, Thierry . E-mail: thierry.giardina@univ.u-3mrs.fr

    2005-05-06

    Acylase 1 from rat kidney catalyzes the hydrolysis of acyl-amino acids. Sequence alignment has shown that this enzyme belongs to the metalloprotein family M20. Site-directed mutagenesis experiments led to the identification of one functionally important amino acid residue located near one of the zinc coordinating residues, which play a critical role in the enzymatic activity. The D82N- and D82E-substituted forms showed no significant activity and very low activity, respectively, along with a loss of zinc coordination. Molecular modelling investigations indicated a putative role of D82 in ensuring a proper protonation of catalytic histidine. In addition, none of the five cysteine residues present in the rat kidney acylase 1 sequence seemed involved in the catalytic process: the loss of activity induced by the C294A substitution was probably due to a conformational change in the 3D structure.

  12. Effect of acute treatment with cadmium on ethanol anesthesia, body termperature, and synaptosomal Na/sup +/-K/sup +/-ATPase of rat brain

    SciTech Connect (OSTI)

    Magour, S.; Kristof, V.; Baumann, M.; Assmann, G.

    1981-12-01

    The effect of a single intraperitoneal dose of 0.56, 1.12, and 1.68 mg cadmium/kg on the duration of ethanol-induced sleep was investigated in male rats. Cadmium potentiated ethanol sleeping time in a dose dependent manner up to 300% over controls. No significant difference in the elimination rate of ethanol from blood and brain and observed between control and cadmium-pretreated rats. Cadmium slightly inhibited the hepatic alcohol dehydrogenase in vivo and also potentiated ethanol hypothermia but these changes did not play a significant role in the observed prolongation of ethanol sleeping time. However, cadmium and ethanol additively inhibited brain synaptosomal Na/sup +/-K/sup +/-ATPase in a noncompetitive manner. The results so far indicate that cadmium may increase brain responsiveness toward ethanol partly through inhibition of snaptosomal Na/sup +/-K/sup +/-ATPase.

  13. Changes in expression of renal Oat1, Oat3 and Mrp2 in cisplatin-induced acute renal failure after treatment of JBP485 in rats

    SciTech Connect (OSTI)

    Liu, Tao, E-mail: liutaomedical@qq.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China)] [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Meng, Qiang, E-mail: mengq531@yahoo.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China) [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); Wang, Changyuan, E-mail: wangcyuan@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China) [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); Liu, Qi, E-mail: llaqii@yahoo.com.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China) [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); Guo, Xinjin, E-mail: guo.xinjin@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China)] [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Sun, Huijun, E-mail: sunhuijun@hotmail.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China) [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); Peng, Jinyong, E-mail: jinyongpeng2005@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China) [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); and others

    2012-11-01

    The purpose of this study is to investigate whether the effect of cyclo-trans-4-L-hydroxyprolyl-L-serine (JBP485) on acute renal failure (ARF) induced by cisplatin is related to change in expression of renal Oat1, Oat3 and Mrp2 in rats. JBP485 reduced creatinine, blood urea nitrogen (BUN) and indoxyl sulfate (IS) in plasma and malondialdehyde (MDA) in kidney, and recovered the glomerular filtration rate (GFR) and the activity of superoxide dismutase (SOD) in cisplatin-treated rats. The plasma concentration of PAH (para-aminohippurate) determined by LC–MS/MS was increased markedly after intravenous administration of cisplatin, whereas cumulative urinary excretion of PAH and the uptake of PAH in kidney slices were significantly decreased. qRT-PCR and Western-blot showed a decrease in mRNA and protein of Oat1 and Oat3, an increase in mRNA and protein of Mrp2 in cisplatin-treated rats, and an increase in IS (a uremic toxin) after co-treatment with JBP485. It indicated that JBP485 promoted urinary excretion of toxins by upregulating renal Mrp2. This therefore gives in part the explanation about the mechanism by which JBP485 improves ARF induced by cisplatin in rats. -- Highlights: ? Cisplatin induces acute renal failure (ARF). ? The expression of Oat1, Oat3 and Mrp2 were changed during ARF. ? The regulated expression of Oat1, Oat3 and Mrp2 is an adaptive protected response. ? JBP485 could facilitate the adaptive protective action.

  14. JBP485 improves gentamicin-induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats

    SciTech Connect (OSTI)

    Guo, Xinjin [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Meng, Qiang; Liu, Qi; Wang, Changyuan; Sun, Huijun; Peng, Jinyong; Ma, Xiaochi [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Liaoning (China); Kaku, Taiichi [Japan Bioproducts Industry Co. Ltd., Tomigaya, Shibuya-ku, Tokyo (Japan); Liu, Kexin, E-mail: kexinliu@dlmedu.edu.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian Medical University, Liaoning (China)

    2013-09-01

    We investigated the effects of JBP485 (an anti-inflammatory dipeptide and a substrate of OAT) on regulation of the expression and function of renal Oat1 and Oat3, which can accelerate the excretion of accumulated uremic toxins (e.g. indoxyl sulfate) in the kidney to improve gentamicin-induced ARF in rats. JBP485 caused a significant decrease in the accumulation of endogenous substances (creatinine, blood urea nitrogen and indoxyl sulfate) in vivo, an increase in the excretion of exogenous compounds (lisinopril and inulin) into urine, and up-regulation of the expressions of renal Oat1 and Oat3 in the kidney tissues and slices via substrate induction. To determine the effect of JBP485 on the accelerated excretion of uremic toxins mediated by Oat1 and Oat3, the mRNA and protein expression levels of renal basolateral Oats were assessed by quantitative real-time PCR, western blot, immunohistochemical analysis and an immunofluorescence method. Gentamicin down-regulated the expression of Oats mRNA and protein in rat kidney, and these effects were reversed after administration of JBP485. In addition, JBP485 caused a significant decrease in MPO and MDA levels in the kidney, and improved the pathological condition of rat kidney. These results indicated that JBP485 improved acute renal failure by increasing the expression and function of Oat1 and Oat3, and by decreasing overoxidation of the kidney in gentamicin-induced ARF rats. - Highlights: • JBP485 could up-regulate function and expression of Oat1 and Oat3 in kidney. • Effects of JBP485 on ARF are mediated by stimulating excretion of uremic toxins. • JBP485 protected against gentamicin-induced ARF by decreasing MPO and MDA.

  15. Differential cardiotoxicity in response to chronic doxorubicin treatment in male spontaneous hypertension-heart failure (SHHF), spontaneously hypertensive (SHR), and Wistar Kyoto (WKY) rats

    SciTech Connect (OSTI)

    Sharkey, Leslie C.; Radin, M. Judith; Heller, Lois; Rogers, Lynette K.; Tobias, Anthony; Matise, Ilze; Wang, Qi; Apple, Fred S.; McCune, Sylvia A.

    2013-11-15

    Life threatening complications from chemotherapy occur frequently in cancer survivors, however little is known about genetic risk factors. We treated male normotensive rats (WKY) and strains with hypertension (SHR) and hypertension with cardiomyopathy (SHHF) with 8 weekly doses of doxorubicin (DOX) followed by 12 weeks of observation to test the hypothesis that genetic cardiovascular disease would worsen delayed cardiotoxicity. Compared with WKY, SHR demonstrated weight loss, decreased systolic blood pressure, increased kidney weights, greater cardiac and renal histopathologic lesions and greater mortality. SHHF showed growth restriction, increased kidney weights and renal histopathology but no effect on systolic blood pressure or mortality. SHHF had less severe cardiac lesions than SHR. We evaluated cardiac soluble epoxide hydrolase (sEH) content and arachidonic acid metabolites after acute DOX exposure as potential mediators of genetic risk. Before DOX, SHHF and SHR had significantly greater cardiac sEH and decreased epoxyeicosatrienoic acid (EET) (4 of 4 isomers in SHHF and 2 of 4 isomers in SHR) than WKY. After DOX, sEH was unchanged in all strains, but SHHF and SHR rats increased EETs to a level similar to WKY. Leukotriene D4 increased after treatment in SHR. Genetic predisposition to heart failure superimposed on genetic hypertension failed to generate greater toxicity compared with hypertension alone. The relative resistance of DOX-treated SHHF males to the cardiotoxic effects of DOX in the delayed phase despite progression of genetic disease was unexpected and a key finding. Strain differences in arachidonic acid metabolism may contribute to variation in response to DOX toxicity. - Highlights: • Late doxorubicin toxicity evaluated in normal, hypertensive, and cardiomyopathic rats. • Hypertension enhances the delayed toxicity of doxorubicin. • Genetic predisposition to cardiomyopathy did not further enhance toxicity. • Epoxyeicosatrienoic acids increased in response to doxorubicin in SHR and SHHF. • Altered leukotriene metabolism may contribute greater toxicity in SHR vs. SHHF rats.

  16. Sprague-Dawley rats display metabolism-mediated sex differences in the acute toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy)

    SciTech Connect (OSTI)

    Fonsart, Julien [Universite Paris Descartes, Faculte de Pharmacie, Paris F-75006 (France)]|[CNRS, UMR 7157, Paris F-75006 (France)]|[INSERM, U705, Paris F-75006 (France); Menet, Marie-Claude [Universite Paris Descartes, Faculte de Pharmacie, Paris F-75006 (France)]|[Universite Paris Descartes, Faculte de Pharmacie, Plateau Spectrometrie de Masse (IFR 71), Service de Chimie Analytique, Paris F-75006 (France); Decleves, Xavier [Universite Paris Descartes, Faculte de Pharmacie, Paris F-75006 (France)]|[CNRS, UMR 7157, Paris F-75006 (France)]|[INSERM, U705, Paris F-75006 (France); Galons, Herve [Universite Paris Descartes, Faculte de Pharmacie, Paris F-75006 (France)]|[INSERM, U648, Paris F-75006 (France); Crete, Dominique; Debray, Marcel; Scherrmann, Jean-Michel [Universite Paris Descartes, Faculte de Pharmacie, Paris F-75006 (France)]|[CNRS, UMR 7157, Paris F-75006 (France)]|[INSERM, U705, Paris F-75006 (France); Noble, Florence [Universite Paris Descartes, Faculte de Pharmacie, Paris F-75006 (France)]|[CNRS, UMR 7157, Paris F-75006 (France)]|[INSERM, U705, Paris F-75006 (France)], E-mail: florence.noble@univ-paris5.fr

    2008-07-01

    The use of the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has been associated with unexplained deaths. Male humans and rodents are more sensitive to acute toxicity than are females, including a potentially lethal hyperthermia. MDMA is highly metabolized to five main metabolites, by the enzymes CYP1A2 and CYP2D. The major metabolite in rats, 3,4-methylenedioxyamphetamine (MDA), also causes hyperthermia. We postulated that the reported sex difference in rats is due to a sexual dimorphism(s). We therefore determined (1) the LD50 of MDMA and MDA, (2) their hyperthermic effects, (3) the activities of liver CYP1A2 and CYP2D, (4) the liver microsomal metabolism of MDMA and MDA, (5) and the plasma concentrations of MDMA and its metabolites 3 h after giving male and female Sprague-Dawley (SD) rats MDMA (5 mg.kg{sup -1} sc). The LD50 of MDMA was 2.4-times lower in males than in females. MDMA induced greater hyperthermia (0.9 deg. C) in males. The plasma MDA concentration was 1.3-fold higher in males, as were CYP1A2 activity (twice) and N-demethylation to MDA (3.3-fold), but the plasma MDMA concentration (1.4-fold) and CYP2D activity (1.3-fold) were higher in females. These results suggest that male SD rats are more sensitive to MDMA acute toxicity than are females, probably because their CYP1A2 is more active, leading to higher N-demethylation and plasma MDA concentration. This metabolic pathway could be responsible for the lethality of MDMA, as the LD50 of MDA is the same in both sexes. These data strongly suggest that the toxicity of amphetamine-related drugs largely depends on metabolic differences.

  17. Toxicity studies on Agents GB and GD (Phase 2): 90-day subchronic study of GB (Sarin, Type I) in CD rats. Final report, Jul 85-Aug 91

    SciTech Connect (OSTI)

    Bucci, T.J.; Parker, R.M.; Crowell, J.A.; Thurman, J.D.; Gosnell, P.A.

    1991-08-01

    A two-phase Dose Range finding study and a 90-Day Subchronic study were conducted in CD rats using the organophosphate ester Sarin (Agent GB, Type I, CAS Number 107-44-8). The highest dose level without lethality in the second phase of the range finding study was designated the maximum tolerated dose (MTD). The doses selected for the subchronic study were the MTD (300 micron GBI/Kg/day), MTD/2 (150, micron GBI/Kg/day), MTD/4 (75 micron GBI/Kg/day), and a vehicle control (O micron /Kg/day). Forty-eight male and forty-eight female CD rats were randomly allocated at 11-12 weeks of age into four treatment groups (12 per sex per group). The animals were gavaged Monday through Friday for 13 weeks and euthanized with carbon dioxide at the beginning of the fourteenth week. Animals were observed daily for clinical signs of toxicity and were weighed weekly. The rats were bled (6 rats/sex/dose) during weeks -1, 1, 3, 7, and at necropsy. Necropsy examination was performed on all animals. Microscopic evaluation was performed on all high-dose and control animals, and on those tissues of lower dose animals that were abnormal at necropsy. All gross lesions and all animals dying or removed early received histological examination. A cause of death or morbidity for animals removed before the end of the study, determined from histopathological examination, was established in four of the eight cases. There were several statistically significant effects in the clinical chemistry and hematology data. These effects were scattered among the treatment groups and were not numerous enough to develop a pattern of organ toxicity.

  18. Effects of prenatal exposure to a low dose atrazine metabolite mixture on pubertal timing and prostate development of male Long-Evans rats

    SciTech Connect (OSTI)

    Stanko, Jason; Enoch, Rolondo; Rayner, Jennifer L; Davis, Christine; Wolf, Douglas; Malarkey, David; Fenton, Suzanne

    2010-12-01

    The present study examines the postnatal reproductive development of male rats following prenatal exposure to an atrazine metabolite mixture (AMM) consisting of the herbicide atrazine and its environmental metabolites diaminochlorotriazine, hydroxyatrazine, deethylatrazine, and deisopropylatrazine. Pregnant Long-Evans rats were treated by gavage with 0.09, 0.87, or 8.73 mg AMM/kg body weight (BW), vehicle, or 100 mg ATR/kg BW positive control, on gestation days 15 19. Preputial separation was significantly delayed in 0.87 mg and 8.73 mg AMM-exposed males. AMM-exposed males demonstrated a significant treatment-related increase in incidence and severity of inflammation in the prostate on postnatal day (PND) 120. A dose-dependent increase in epididymal fat masses and prostate foci were grossly visible in AMM-exposed offspring. These results indicate that a short, late prenatal exposure to mixture of chlorotriazine metabolites can cause chronic prostatitis in male LE rats. The mode of action for these effects is presently unclear.

  19. SU-E-I-34: Intermittent Low- and High-Dose Ethanol Exposure Alters Neurochemical Responses in Adult Rat Brain: An Ex Vivo 1H NMR Spectroscopy at 11.7 T

    SciTech Connect (OSTI)

    Lee, Do-Wan; Kim, Sang-Young; Song, Kyu-Ho; Choe, Bo-Young

    2014-06-01

    Purpose: The first goal of this study was to determine the influence of the dose-dependent effects of intermittent ethanol intoxication on cerebral neurochemical responses among sham controls and low- and high-dose-ethanol-exposed rats with ex vivo high-resolution spectra. The second goal of this study was to determine the correlations between the metabolite-metabolite levels (pairs-of-metabolite levels) from all of the individual data from the frontal cortex of the intermittent ethanol-intoxicated rats. Methods: Eight-week-old male Wistar rats were divided into 3 groups. Twenty rats in the LDE (n = 10) and the HDE (n = 10) groups received ethanol doses of 1.5 g/kg and 2.5 g/kg, respectively, through oral gavage every 8-h for 4 days. At the end of the 4-day intermittent ethanol exposure, one-dimensional ex vivo 500-MHz proton nuclear magnetic resonance spectra were acquired from 30 samples of the frontal cortex region (from the 3 groups). Results: Normalized total-N-acetylaspartate (tNAA: NAA + NAAG [N-acetylaspartyl-glutamate]), gamma-aminobutyric acid (GABA), and glutathione (GSH) levels were significantly lower in the frontal cortex of the HDE-exposed rats than that of the LDE-exposed rats. Moreover, compared to the CNTL group, the LDE rats exhibited significantly higher normalized GABA levels. The 6 pairs of normalized metabolite levels were positively (+) or negatively (?) correlated in the rat frontal cortex as follows: tNAA and GABA (+), tNAA and Aspartate (Asp) (?), myo-Inositol (mIns) and Asp (?), mIns and Alanine (+), mIns and Taurine (+), and mIns and tNAA (?). Conclusion: Our results suggested that repeated intermittent ethanol intoxication might result in neuronal degeneration and dysfunction, changes in the rate of GABA synthesis, and oxidative stress in the rat frontal cortex. Our ex vivo 1H high-resolution-magic angle spinning nuclear magnetic resonance spectroscopy results suggested some novel metabolic markers for the dose-dependent influence of repeated intermittent ethanol intoxication in the frontal cortex.

  20. Characterizing Rat PNS Electrophysiological Response to Electrical Stimulation Using in vitro Chip-Based Human Investigational Platform (iCHIP)

    SciTech Connect (OSTI)

    Khani, Joshua; Prescod, Lindsay; Enright, Heather; Felix, Sarah; Osburn, Joanne; Wheeler, Elizabeth; Kulp, Kris

    2015-08-18

    Ex vivo systems and organ-on-a-chip technology offer an unprecedented approach to modeling the inner workings of the human body. The ultimate goal of LLNL’s in vitro Chip-based Human Investigational Platform (iCHIP) is to integrate multiple organ tissue cultures using microfluidic channels, multi-electrode arrays (MEA), and other biosensors in order to effectively simulate and study the responses and interactions of the major organs to chemical and physical stimulation. In this study, we focused on the peripheral nervous system (PNS) component of the iCHIP system. Specifically we sought to expound on prior research investigating the electrophysiological response of rat dorsal root ganglion cells (rDRGs) to chemical exposures, such as capsaicin. Our aim was to establish a protocol for electrical stimulation using the iCHIP device that would reliably elicit a characteristic response in rDRGs. By varying the parameters for both the stimulation properties – amplitude, phase width, phase shape, and stimulation/ return configuration – and the culture conditions – day in vitro and neural cell types - we were able to make several key observations and uncover a potential convention with a minimal number of devices tested. Future work will seek to establish a standard protocol for human DRGs in the iCHIP which will afford a portable, rapid method for determining the effects of toxins and novel therapeutics on the PNS.

  1. Phase-Contrast MRI and CFD Modeling of Apparent 3He Gas Flow in Rat Pulmonary Airways

    SciTech Connect (OSTI)

    Minard, Kevin R.; Kuprat, Andrew P.; Kabilan, Senthil; Jacob, Rick E.; Einstein, Daniel R.; Carson, James P.; Corley, Richard A.

    2012-08-01

    Phase-contrast (PC) magnetic resonance imaging (MRI) with hyperpolarized 3He is potentially useful for developing and testing patient-specific models of pulmonary airflow. One challenge, however, is that PC-MRI provides apparent values of local 3He velocity that not only depend on actual airflow but also on gas diffusion. This not only blurs laminar flow patterns in narrow airways but also introduces anomalous airflow structure that reflects gas-wall interactions. Here, both effects are predicted in a live rat using computational fluid dynamics (CFD), and for the first time, simulated patterns of apparent 3He gas velocity are compared with in-vivo PC-MRI. Results show (1) that correlations (R2) between measured and simulated airflow patterns increase from 0.23 to 0.79 simply by accounting for apparent 3He transport, and that (2) remaining differences are mainly due to uncertain airway segmentation and partial volume effects stemming from relatively coarse MRI resolution. Higher-fidelity testing of pulmonary airflow predictions should therefore be possible with future imaging improvements.

  2. Metabolomic changes in follicular fluid induced by soy isoflavones administered to rats from weaning until sexual maturity

    SciTech Connect (OSTI)

    Wang, Wenxiang; Zhang, Wenchang; Liu, Jin; Sun, Yan; Li, Yuchen; Li, Hong; Xiao, Shihua; Shen, Xiaohua

    2013-06-15

    Female Wistar rats at 21 days of age were treated with one of three concentrations of soy isoflavones (SIF) (50, 100 or 200 mg/kg body weight, orally, once per day) from weaning until sexual maturity (3 months) in order to evaluate the influence of SIF on ovarian follicle development. After treatment, the serum sex hormone levels and enumeration of ovarian follicles of the ovary were measured. The metabolic profile of follicular fluid was determined using HPLC-MS. Principal component analysis (PCA) and partial least-squares-discriminant analysis (PLS-DA) was used to identify differences in metabolites and reveal useful toxic biomarkers. The results indicated that modest doses of SIF affect ovarian follicle development, as demonstrated by decreased serum estradiol levels and increases in both ovarian follicle atresia and corpora lutea number in the ovary. SIF treatment-related metabolic alterations in follicular fluid were also found in the PCA and PLS-DA models. The 24 most significantly altered metabolites were identified, including primary sex hormones, amino acids, fatty acids and metabolites involved in energy metabolism. These findings may indicate that soy isoflavones affect ovarian follicle development by inducing metabolomic variations in the follicular fluid. - Highlights: ? Modest doses of soy isoflavones (SIF) do affect ovarian follicle development. ? SIF treatment-related metabolic alterations in follicular fluid were found. ? The 24 most significantly altered metabolites were identified.

  3. Toxicity of polychlorinated diphenyl ethers in hydra attenuata and in rat whole-embryo culture. Master's thesis

    SciTech Connect (OSTI)

    Becker, M.C.

    1991-05-01

    Polychlorinated diphenyl ethers (PCDEs) are a class of biaryl compounds that have little commercial application, but appear to be widespread in the environment. They have been found in wood preservative waste dumpsites and in fly ash from municipal waste incinerators. They have been detected in bird eggs and tissues, fish, and other edible marine organisms in the United States, Canada, and Europe. There are limited reports in the extant literature on the toxicity of PCDEs. This study was designed to evaluate the toxicity of selected PCDEs in cultures of Hydra attenuata and post-implantation rat whole embryos. The toxicity of several closely related polychlorinated biphenyls (PCBs) was evaluated in both cultures and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was evaluated in whole embryo culture. Embryonic growth and development parameters (yolk sac diameter, crown-rump length, somite count, and DNA and protein content) and gross morphology were determined. Findings indicated that these chemicals were neither embryotoxic nor teratogenic. Thus, the PCDEs, which elicit other diverse toxic and biochemical responses in rodents, are relatively inactive in these bioassays for developmental toxicity.

  4. Sprague-Dawley rats display sex-linked differences in the pharmacokinetics of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolite 3,4-methylenedioxyamphetamine (MDA)

    SciTech Connect (OSTI)

    Fonsart, Julien, E-mail: julien.fonsart@lrb.aphp.f [Universite Paris Descartes, Faculte de Pharmacie, Paris F-75006 (France); CNRS, UMR 7157, Paris F-75006 (France); INSERM, U705, Paris F-75006 (France); Assistance Publique-Hopitaux de Paris, Laboratoire de Toxicologie Biologique, Hopital Lariboisiere, Paris F-75010 (France); Menet, Marie-Claude [Universite Paris Descartes, Faculte de Pharmacie, Paris F-75006 (France); Universite Paris Descartes, Faculte de Pharmacie, Plateau Spectrometrie de Masse (IFR 71), Service de Chimie Analytique, Paris F-75006 (France); Debray, Marcel; Hirt, Deborah; Noble, Florence; Scherrmann, Jean-Michel; Decleves, Xavier [Universite Paris Descartes, Faculte de Pharmacie, Paris F-75006 (France); CNRS, UMR 7157, Paris F-75006 (France); INSERM, U705, Paris F-75006 (France)

    2009-12-15

    The use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has increased in recent years; it can lead to life-threatening hyperthermia and serotonin syndrome. Human and rodent males appear to be more sensitive to acute toxicity than are females. MDMA is metabolized to five main metabolites by the enzymes CYP1A2, CYP2D and COMT. Little is presently known about sex-dependent differences in the pharmacokinetics of MDMA and its metabolites. We therefore analyzed MDMA disposition in male and female rats by measuring the plasma and urine concentrations of MDMA and its metabolites using a validated LC-MS method. MDA AUC{sub last} and C{sub max} were 1.6- to 1.7-fold higher in males than in females given MDMA (5 mg/kg sc), while HMMA C{sub max} and AUC{sub last} were 3.2- and 3.5-fold higher, respectively. MDMA renal clearance was 1.26-fold higher in males, and that of MDA was 2.2-fold higher. MDMA AUC{sub last} and t{sub 1/2} were 50% higher in females given MDMA (1 mg/kg iv). MDA C{sub max} and AUC{sub last} were 75-82% higher in males, with a 2.8-fold higher metabolic index. Finally, the AUC{sub last} of MDA was 0.73-fold lower in males given 1 mg/kg iv MDA. The volumes of distribution of MDMA and MDA at steady-state were similar in the two sexes. These data strongly suggest that differences in the N-demethylation of MDMA to MDA are major influences on the MDMA and MDA pharmacokinetics in male and female rats. Hence, males are exposed to significantly more toxic MDA, which could explain previously reported sexual dysmorphism in the acute effects and toxicity of MDMA in rats.

  5. o-p?-DDT-mediated uterotrophy and gene expression in immature C57BL/6 mice and Sprague–Dawley rats

    SciTech Connect (OSTI)

    Kwekel, Joshua C.; Forgacs, Agnes L.; Williams, Kurt J.; Zacharewski, Timothy R.

    2013-12-15

    1,1,1-Trichloro-2,2-bis(2-chlorophenyl-4-chlorophenyl)ethane (o,p?-DDT) is an organochlorine pesticide and endocrine disruptor known to activate the estrogen receptor. Comprehensive ligand- and species-comparative dose- and time-dependent studies were conducted to systematically assess the uterine physiological, morphological and gene expression responses elicited by o,p?-DDT and ethynyl estradiol (EE) in immature ovariectomized C57BL/6 mice and Sprague–Dawley rats. Custom cDNA microarrays were used to identify conserved and divergent differential gene expression responses. A total of 1256 genes were differentially expressed by both ligands in both species, 559 of which exhibited similar temporal expression profiles suggesting that o,p?-DDT elicits estrogenic effects at high doses when compared to EE. However, 51 genes exhibited species-specific uterine expression elicited by o,p?-DDT. For example, carbonic anhydrase 2 exhibited species- and ligand-divergent expression as confirmed by quantitative real-time PCR. The identification of comparable temporal phenotypic responses linked to gene expression demonstrates that systematic comparative gene expression assessments are valuable for elucidating conserved and divergent estrogen signaling mechanisms in rodent uterotrophy. - Highlights: • o,p?-DDT and enthynyl estradiol (EE) both elicit uterotrophy in mice and rats. • o,p?-DDT and EE have different kinetics in uterine wet weight induction. • o,p?-DDT elicited stromal hypertrophy in rats but myometrial hypertrophy in mice. • 1256 genes were differentially expressed by both ligands in both species. • Only 51 genes had species-specific uterine expression.

  6. The potential reproductive, neurobehavioral and systemic effects of soluble sodium tungstate exposure in Sprague-Dawley rats

    SciTech Connect (OSTI)

    McInturf, S.M. [Naval Medical Research Unit at Dayton (NAMRU), Wright Patterson Air Force Base, OH (United States); Bekkedal, M.Y.V. [Two Steps Forward, LLC, Sun Prairie, WI (United States); Wilfong, E. [U.S. Naval Academy, 572M Holloway Road, Annapolis, MD (United States); Arfsten, D. [Navy Drug Screening Laboratory P.O. Box 113, Naval Air Station Jacksonville, FL (United States); Chapman, G. [Naval Medical Research Unit at Dayton (NAMRU), Wright Patterson Air Force Base, OH (United States); Gunasekar, P.G., E-mail: palur.gunasekar@wpafb.af.mil [Naval Medical Research Unit at Dayton (NAMRU), Wright Patterson Air Force Base, OH (United States)

    2011-07-15

    The debate on tungsten (W) is fostered by its continuous usage in military munitions. Reports demonstrate W solubilizes in soil and can migrate into drinking water supplies and, therefore, is a potential health risk to humans. This study evaluated the reproductive, systemic and neurobehavioral effects of sodium tungstate (NaW) in rats following 70 days of daily pre-and postnatal exposure via oral gavage to 5, 62.5 and 125 mg/kg/day of NaW through mating, gestation and weaning (PND 0-20). Daily administration of NaW produced no overt evidence of toxicity and had no apparent effect on mating success or offspring physical development. Distress vocalizations were elevated in F{sub 1} offspring from the high dose group, whereas righting reflex showed unexpected sex differences where males demonstrated faster righting than females; however, the effects were not dose-dependent. Locomotor activity was affected in both low and high-dose groups of F{sub 1} females. Low-dose group showed increased distance traveled, more time in ambulatory movements and less time in stereotypic behavior than controls or high dose animals. The high-dose group had more time in stereotypical movements than controls, and less time resting than controls and the lowest exposure group. Maternal retrieval was not affected by NaW exposure. Tungsten analysis showed a systemic distribution of NaW in both parents and offspring, with preferential uptake within the immune organs, including the femur, spleen and thymus. Histopathological evidence suggested no severe chronic injury or loss of function in these organs. However, the heart showed histological lesions, histiocytic inflammation from minimal to mild with cardiomyocyte degeneration and necrosis in several P{sub 0} animals of 125 mg NaW dose group. The result of this study suggests that pre and postnatal exposure to NaW may produce subtle neurobehavioral effects in offspring related to motor activity and emotionality.

  7. Sexually dimorphic gene regulation in brain as a target for endocrine disrupters: Developmental exposure of rats to 4-methylbenzylidene camphor

    SciTech Connect (OSTI)

    Maerkel, Kirsten [Institute of Pharmacology and Toxicology and GREEN Tox, University of Zurich, CH-8057 Zurich (Switzerland); Durrer, Stefan [Institute of Pharmacology and Toxicology and GREEN Tox, University of Zurich, CH-8057 Zurich (Switzerland); Henseler, Manuel [Institute of Pharmacology and Toxicology and GREEN Tox, University of Zurich, CH-8057 Zurich (Switzerland); Schlumpf, Margret [Institute of Pharmacology and Toxicology and GREEN Tox, University of Zurich, CH-8057 Zurich (Switzerland); Lichtensteiger, Walter [Institute of Pharmacology and Toxicology and GREEN Tox, University of Zurich, CH-8057 Zurich (Switzerland)]. E-mail: Walter.Lichtensteiger@access.unizh.ch

    2007-01-15

    The developing neuroendocrine brain represents a potential target for endocrine active chemicals. The UV filter 4-methylbenzylidene camphor (4-MBC) exhibits estrogenic activity, but also interferes with the thyroid axis. We investigated effects of pre- and postnatal exposure to 4-MBC in the same rat offspring at brain and reproductive organ levels. 4-MBC (7, 24, 47 mg/kg/day) was administered in chow to the parent generation before mating, during gestation and lactation, and to the offspring until adulthood. mRNA of estrogen target genes involved in control of sexual behavior and gonadal functions was measured by real-time RT-PCR in ventromedial hypothalamic nucleus (VMH) and medial preoptic area (MPO) of adult offspring. 4-MBC exposure affected mRNA levels of ER alpha, progesterone receptor (PR), preproenkephalin (PPE) and insulin-like growth factor-I (IGF-I) in a sex- and region-specific manner. In order to assess possible changes in sensitivity of target genes to estrogens, offspring were gonadectomized on day 70, injected with estradiol (E2, 10 or 50 {mu}g/kg s.c.) or vehicle on day 84, and sacrificed 6 h later. The acute induction of PR mRNA, and repression (at 6 h) of PPE mRNA by E2 was enhanced by 4-MBC in male and female VMH and female MPO, whereas male MPO exhibited reduced responsiveness of both genes. Steroid receptor coactivator SRC-1 mRNA levels were increased in female VMH and MPO. The data indicate profound sex- and region-specific alterations in the regulation of estrogen target genes at brain level. Effect patterns in baseline and E2-induced gene expression differ from those in uterus and prostate.

  8. A STUDY OF FISCHER 344 RATS EXPOSED TO SILICA DUST AT CONCENTRATIONS OF 0, 2, 10 OR 20 MG/M3, THEN MAINTAINED FOR SIX MONTHS PRIOR TO ASSESSMENT.

    SciTech Connect (OSTI)

    KUTZMAN,R.S.

    1984-11-01

    The major objective of this study was to relate the results of a series of functional tests to the compositional and structural alterations in the rat lung induced by subchronic exposure to silica dust. To induce a fibrotic lesion, Fischer-344 rats were exposed to either 0, 2, 10, or 20 mg Si0{sub 2}/m{sup 3} for 6 hours/day, 5 days/week for six months and then maintained in an animal room, equipped with a laminar flow unit, for six months prior to assessment of the end points.

  9. Effects of potassium or potassium/magnesium supplementation on potassium content of body tissues and fluids in furosemide-treated rats on magnesium-deficient or magnesium-sufficient diet

    SciTech Connect (OSTI)

    Coram, W.M.; Kapeghian, J.C.; Plocinski, A.F.; Toledo, L.M.; Douglas, F.L.; Weiss, G.B. )

    1990-01-01

    Persistent Mg{sup 2+} deficiency may interfere with restoration of normal tissue K{sup +} levels. This study examined: (a) the effects of chronic furosemide treatment of K{sup +} of sartorius, aorta and ventricle of rats fed Mg{sup 2+}-deficient or Mg{sup 2+} sufficient diet and deionized water; (b) whether normal tissue K{sup +} is restored by oral K{sup +} or K{sup +}/Mg{sup 2+} supplementation with continued furosemide therapy. Levels of Mg{sup 2+} were also measured. Furosemide decreased K{sup +} in sartorius, aorta and ventricle by 5.5, 4.3 and 19.9 {mu}Eq/gm, respectively, in rats fed 100 ppm Mg{sup 2+} diet. Furosemide did not alter K{sup +} levels in rats fed 400 ppm Mg{sup 2+} diet. K{sup +} supplementation restored K{sup +} to normal in sartorius but the addition of Mg{sup 2+} supplementation was necessary to restore K+ levels to normal in ventricle and aorta. These data indicate that furosemide can decrease tissue K{sup +} in rats on a Mg{sup 2+}- deficient diet. This decrease can be reversed during diuretic administration by K{sup +} supplementation in sartorius, or K{sup +} plus Mg{sup 2+} supplementation in ventricle and aorta.

  10. Applications of FLUKA Monte Carlo Code for Nuclear and Accelerator...

    Office of Scientific and Technical Information (OSTI)

    Presently the code is maintained on Linux. The validity of the physical models implemented ... in particle accelerators, radiation protection and dosimetry, including the specific ...

  11. Monte Carlo Solution for Uncertainty Propagation in Particle...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: International Conference on Math. and Comp. Methods Applied ... presentation at the International Conference on Math. and Comp. Methods Applied to Nucl. ...

  12. Fast Monte Carlo for radiation therapy: the PEREGRINE Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  13. Correlated electron dynamics with time-dependent quantum Monte...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Journal Name: Journal of Chemical Physics; Journal Volume: 135; Journal Issue: 4; Other Information: (c) 2011 American Institute of Physics; Country of input: ...

  14. A Fast Monte Carlo Simulation for the International Linear Collider...

    Office of Scientific and Technical Information (OSTI)

    with the full simulation by sacrificing what is in more many cases inappropriate attention to detail for valuable gains in time required for results. less Authors: Furse, D. ...

  15. Uncertainty Quantification with Monte Carlo Hauser-Feshbach Calculatio...

    Office of Scientific and Technical Information (OSTI)

    LANL Country of Publication: United States Language: English Subject: Atomic and Nuclear Physics; Nuclear Fuel Cycle & Fuel Materials(11); Nuclear Physics & Radiation Physics(73)...

  16. Monte-Carlo particle dynamics in a variable specific impulse...

    Office of Scientific and Technical Information (OSTI)

    Authors: Ilin, A.V. 1 ; Diaz, F.R.C. ; Squire, J.P. 2 ; Carter, M.D. 3 + Show Author Affiliations Lockheed Martin Space Mission Systems and Services, Houston, TX (United ...

  17. Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons...

    Office of Scientific and Technical Information (OSTI)

    Org: DOELANL Country of Publication: United States Language: English Subject: Atomic and Nuclear Physics; Nuclear Fuel Cycle & Fuel Materials(11); Nuclear Physics & Radiation...

  18. Monte Carlo Solution for Uncertainty Propagation in Particle Transport with

    Office of Scientific and Technical Information (OSTI)

    a Stochastic Galerkin Method. (Conference) | SciTech Connect Authors: Franke, Brian C. ; Prinja, Anil K. Publication Date: 2013-01-01 OSTI Identifier: 1063492 Report Number(s): SAND2013-0204C DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the International Conference on Math. and Comp. Methods Applied to Nucl. Sci. and Engg. (M&C 2013) held May 5-9, 2013 in Sun Valley, ID. Research Org: Sandia National

  19. Monte Carlo Solution for Uncertainty Propagation in Particle Transport with

    Office of Scientific and Technical Information (OSTI)

    a Stochastic Galerkin Method. (Conference) | SciTech Connect Abstract not provided. Authors: Franke, Brian C. ; Prinja, Anil K. Publication Date: 2013-04-01 OSTI Identifier: 1078905 Report Number(s): SAND2013-3409C 448625 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: International Conference on Math. and Comp. Methods Applied to Nucl. Sci. and Engg. (M&C 2013) held May 5-9, 2013 in Sun Valley, ID.; Related Information: Proposed for

  20. Quantum Monte Carlo Calculations of Light Nuclei Using Chiral...

    Office of Scientific and Technical Information (OSTI)

    GrantContract Number: AC02-05CH11231 Type: Publisher's Accepted Manuscript Journal Name: Physical Review Letters Additional Journal Information: Journal Volume: 113; Journal ...

  1. Tests of Monte Carlo Independent Column Approximation With a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jrvenoja Heikki Jrvinen Risnen Finnish Meteorological Institute Figure 1. Root-mean-square sampling errors in local instant- aneous total (LW+SW) net flux at the surface...

  2. Monte Carlo Hauser-Feshbach Calculations of Prompt Fission Neutrons...

    Office of Scientific and Technical Information (OSTI)

    DOELANL Country of Publication: United States Language: English Subject: Atomic and Nuclear Physics; Nuclear Fuel Cycle & Fuel Materials(11); Nuclear Physics & Radiation...

  3. Monte Carlo Simulation of Light Transport in Tissue, Beta Version

    Energy Science and Technology Software Center (OSTI)

    2003-12-09

    Understanding light-tissue interaction is fundamental in the field of Biomedical Optics. It has important implications for both therapeutic and diagnostic technologies. In this program, light transport in scattering tissue is modeled by absorption and scattering events as each photon travels through the tissue. the path of each photon is determined statistically by calculating probabilities of scattering and absorption. Other meausured quantities are total reflected light, total transmitted light, and total heat absorbed.

  4. A Monte Carlo Approach To Generator Portfolio Planning And Carbon...

    Open Energy Info (EERE)

    solar thermal, and rooftop photovoltaics, as well as hydroelectric, geothermal, and natural gas plants. The portfolios produced by the model take advantage of the aggregation of...

  5. The Monte Carlo Independent Column Approximation Model Intercomparison...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Service of Canada Raisanen, Petri Finnish Meteorological Institute Pincus, Robert NOAA-CIRES Climate Diagnostics Center Morcrette, Jean-Jacques European Centre for...

  6. In the OSTI Collections: Monte Carlo Methods | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    ... and acetic acid if the reaction is catalyzed on the surface of a gold-palladium alloy. ... calculation was used to work out how the gold and palladium atoms are likely to be ...

  7. Microsoft Word - Mont SMP_Sec5_2011

    Office of Legacy Management (LM)

    November 2011 Site Management Plan Page 1 5.0 Project Schedules and Milestones (FY 2012-2014) 5.1 Establishing Project Schedules and Milestones As stated in Section 1.1.2, the Site Management Plan (SMP) establishes the overall plan for remedial actions at the Monticello Mill Tailings Site (MMTS) and milestones against which progress can be measured. The SMP also documents the overall plan for remedial actions at the Monticello Vicinity Properties site (MVP), which was deleted from the National

  8. Monte Sereno, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    lse,"poi":true,"imageoverlays":,"markercluster":false,"searchmarkers":"","locations":"text":"","title":"","link":null,"lat":37.236333,"lon":-121.992458,"alt":0,"address":"","ic...

  9. Diagnostic Mass-Consistent Wind Field Monte Carlo Dispersion Model

    Energy Science and Technology Software Center (OSTI)

    1991-01-01

    MATHEW generates a diagnostic mass-consistent, three-dimensional wind field based on point measurements of wind speed and direction. It accounts for changes in topography within its calculational domain. The modeled wind field is used by the Langrangian ADPIC dispersion model. This code is designed to predict the atmospheric boundary layer transport and diffusion of neutrally bouyant, non-reactive species as well as first-order chemical reactions and radioactive decay (including daughter products).

  10. Monte Carlo Simulations for Homeland Security Using Anthropomorphic Phantoms

    SciTech Connect (OSTI)

    Burns, Kimberly A.

    2008-01-01

    A radiological dispersion device (RDD) is a device which deliberately releases radioactive material for the purpose of causing terror or harm. In the event that a dirty bomb is detonated, there may be airborne radioactive material that can be inhaled as well as settle on an individuals leading to external contamination.

  11. Microsoft Word - Mont Co Final Report 1-4-13

    Office of Environmental Management (EM)

    Montgomery County Department of Housing and Community Affairs - Weatherization Assistance Program Funds Provided by the American Recovery and Reinvestment Act of 2009 OAS-RA-13-06 January 2013 Department of Energy Washington, DC 20585 January 17, 2013 MEMORANDUM FOR THE ASSISTANT SECRETARY FOR ENERGY EFFICIENCY AND RENEWABLE ENERGY FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Examination Report on "Montgomery

  12. Phosphorus-31 NMR magnetization-transfer measurements of ATP turnover during steady-state isometric muscle contraction in the rat hind limb in vivo

    SciTech Connect (OSTI)

    Brindle, K.M.; Blackledge, M.J.; Challiss, R.A.J.; Radda, G.K. )

    1989-05-30

    Phosphorus-31 NMR magnetization-transfer measurement have been used to measure the flux between ATP and inorganic phosphate during steady-state isometric muscle contraction in the rat hind limb in vivo. Steady-state contraction was obtained by supramaximal sciatic nerve stimulation. Increasing the stimulation pulse width from 10 to 90 ms, at a pulse frequency of 1 Hz, or increasing the frequency of a 10-ms pulse from 0.5 to 2 Hz resulted in an increase in the flux which was an approximately linear function of the increase in the tension-time integral. The flux showed an approximately linear dependence on the calculated free cytosolic ADP concentration up to an ADP concentration of about 90 {mu}M. The data are consistent with control of mitochondrial ATP synthesis by the cytosolic ADP concentration and indicate that the apparent K{sub m} of the mitochondria for ADP is at least 30 {mu}M.

  13. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    SciTech Connect (OSTI)

    Yogi, Alvaro; Callera, Glaucia E.; Mecawi, André S.; Batalhão, Marcelo E.; Carnio, Evelin C.; Antunes-Rodrigues, José; Queiroz, Regina H.; Touyz, Rhian M.; Tirapelli, Carlos R.

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase?mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ? Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ? RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation. ? Translocation of p47phox and MAPKs phosphorylation are downstream effectors. ? Acute ethanol consumption increases the risk for acute vascular injury.

  14. Androgenic endocrine disruptors in wastewater treatment plant effluents in India: Their influence on reproductive processes and systemic toxicity in male rats

    SciTech Connect (OSTI)

    Kumar, Vikas; Chakraborty, Ajanta; Viswanath, Gunda; Roy, Partha

    2008-01-01

    Endocrine-disrupting chemicals (EDC) are linked to human health and diseases as they mimic or block the normal functioning of endogenous hormones. The present work dealt with a comparative study of the androgenic potential of wastewater treatment plant (WWTP) influents and effluents in Northern region of India, well known for its polluted water. Water samples were screened for their androgenic potential using the Hershberger assay and when they were found positive for androgenicity, we studied their mode of action in intact rats. The data showed a significant change in the weight and structure of sex accessory tissues (SATs) of castrated and intact rats. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis demonstrated a significant change in the expression patterns of the major steroidogenic enzymes in adrenal and testis: cytochrome P450{sub SCC}, cytochrome P450{sub C17}, 3{beta}-hydroxysteroid dehydrogenase, 17{beta}-hydroxysteroid dehydrogenase. This was further supported by increased enzymatic activities measured in vitro spectrophotometrically. Serum hormone profile showed a decreased level of gonadotrophic hormones and increased testosterone level. Further, increase in the serum level of alkaline phosphatase, SGPT and SGOT and histopathological changes in kidney and liver of treated animals, confirmed the toxic effects of contaminating chemicals. Analysis of water samples using HPLC and GC-MS showed the presence of various compounds and from them, four prominent aromatic compounds viz. nonylphenol, hexachlorobenzene and two testosterone equivalents, were identified. Our data suggest that despite rigorous treatment, the final treated effluent from WWTP still has enough androgenic and toxic compounds to affect general health.

  15. Oral administration of drugs with hypersensitivity potential induces germinal center hyperplasia in secondary lymphoid organ/tissue in Brown Norway rats, and this histological lesion is a promising candidate as a predictive biomarker for drug hypersensitivity occurrence in humans

    SciTech Connect (OSTI)

    Tamura, Akitoshi Miyawaki, Izuru; Yamada, Toru; Kimura, Juki; Funabashi, Hitoshi

    2013-08-15

    It is important to evaluate the potential of drug hypersensitivity as well as other adverse effects during the preclinical stage of the drug development process, but validated methods are not available yet. In the present study we examined whether it would be possible to develop a new predictive model of drug hypersensitivity using Brown Norway (BN) rats. As representative drugs with hypersensitivity potential in humans, phenytoin (PHT), carbamazepine (CBZ), amoxicillin (AMX), and sulfamethoxazole (SMX) were orally administered to BN rats for 28 days to investigate their effects on these animals by examinations including observation of clinical signs, hematology, determination of serum IgE levels, histology, and flow cytometric analysis. Skin rashes were not observed in any animals treated with these drugs. Increases in the number of circulating inflammatory cells and serum IgE level did not necessarily occur in the animals treated with these drugs. However, histological examination revealed that germinal center hyperplasia was commonly induced in secondary lymphoid organs/tissues in the animals treated with these drugs. In cytometric analysis, changes in proportions of lymphocyte subsets were noted in the spleen of the animals treated with PHT or CBZ during the early period of administration. The results indicated that the potential of drug hypersensitivity was identified in BN rat by performing histological examination of secondary lymphoid organs/tissues. Data obtained herein suggested that drugs with hypersensitivity potential in humans gained immune reactivity in BN rat, and the germinal center hyperplasia induced by administration of these drugs may serve as a predictive biomarker for drug hypersensitivity occurrence. - Highlights: • We tested Brown Norway rats as a candidate model for predicting drug hypersensitivity. • The allergic drugs did not induce skin rash, whereas D-penicillamine did so in the rats. • Some of allergic drugs increased inflammatory cells and IgE, but the others did not. • The allergic drugs commonly induced germinal center hyperplasia in lymphoid tissues. • Some of these allergic drugs transiently increased CD4{sup +}CD25{sup +} T cells in the spleen.

  16. Sex ratio of the offspring of Sprague-Dawley rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero and lactationally in a three-generation study

    SciTech Connect (OSTI)

    Rowlands, J.C. [Dow Chemical Company, Toxicology and Environmental Research and Consulting, 1803 Building, Midland, MI 48674 (United States); Budinsky, R.A. [Dow Chemical Company, Toxicology and Environmental Research and Consulting, 1803 Building, Midland, MI 48674 (United States)]. E-mail: RABudinsky@dow.com; Aylward, L.L. [Summit Toxicology, L.L.P., 6343 Carolyn Drive, Falls Church, VA 22044 (United States); Faqi, A.S. [MPI Research, Department of Developmental and Reproductive Toxicology, 54943 N. Main Street, Mattawan, MI 49071 (United States); Carney, E.W. [Dow Chemical Company, Toxicology and Environmental Research and Consulting, 1803 Building, Midland, MI 48674 (United States)

    2006-10-01

    Reports of a decreased male/female sex ratio in children born to males exposed to TCDD in Seveso, Italy, at a young age have sparked examinations of this endpoint in other populations exposed to TCDD or related compounds. Overall, the male/female sex ratio results reported in these studies, with slightly different age-exposed male populations, have shown mixed results. Experimental studies of the effects of in utero exposure to TCDD in laboratory animals have reported no effect on the f{sub 1} sex ratio and mixed results for the sex ratio of the f{sub 2} generation. In order to better understand the potential effects of TCDD on second generation sex ratio, we retrieved archived data from a comprehensive three-generation feeding study of TCDD in rats that was conducted and published in the 1970s, but which did not publish data on sex ratio of the offspring [Murray, F.J., Smith, F.A., Nitschke, K.D., Humiston, C.G., Kociba, R.J., Schwetz, B.A., 1979. Three-generation reproduction study of rats given 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the diet. Toxicol. Appl. Pharmacol. 50, 241-252]. A re-examination of the original Murray et al. data found no statistically significant treatment-related changes in postnatal day 1 sex ratio in any generation of treated animals, consistent with one other relatively large study reporting on this endpoint. We discuss mechanistic data underlying a potential effect of TCDD on this endpoint. We conclude that the inconsistency in findings on sex ratio of the offspring of male rats exposed to TCDD in utero is likely due to random variation associated with a relatively small sample size, although differences between studies in strain of rat, dose regimen, and day of ascertainment of sex ratio cannot be ruled out.

  17. Exposure to Pb, Cd, and As mixtures potentiates the production of oxidative stress precursors: 30-day, 90-day, and 180-day drinking water studies in rats

    SciTech Connect (OSTI)

    Whittaker, Margaret H.; Wang, Gensheng; Chen Xueqing; Lipsky, Michael; Smith, Donald; Gwiazda, Roberto; Fowler, Bruce A.

    2011-07-15

    Exposure to chemical mixtures is a common and important determinant of toxicity and is of particular concern due to their appearance in sources of drinking water. Despite this, few in vivo mixture studies have been conducted to date to understand the health impact of chemical mixtures compared to single chemicals. Interactive effects of lead (Pb), cadmium (Cd) and arsenic (As) were evaluated in 30-, 90-, and 180-day factorial design drinking water studies in rats designed to test the hypothesis that ingestion of such mixtures at individual component Lowest-Observed-Effect-Levels (LOELs) results in increased levels of the pro-oxidant delta aminolevulinic acid (ALA), iron, and copper. LOEL levels of Pb, Cd, and As mixtures resulted in the increased presence of mediators of oxidative stress such as ALA, copper, and iron. ALA increases were followed by statistically significant increases in kidney copper in the 90- and 180-day studies. Statistical evidence of interaction was identified for six biologically relevant variables: blood delta aminolevulinic acid dehydratase (ALAD), kidney ALAD, urinary ALA, urinary iron, kidney iron, and kidney copper. The current investigations underscore the importance of considering interactive effects that common toxic agents such as Pb, Cd, and As may have upon one another at low-dose levels. The interactions between known toxic trace elements at biologically relevant concentrations shown here demonstrate a clear need to rigorously review methods by which national/international agencies assess health risks of chemicals, since exposures may commonly occur as complex mixtures.

  18. Inhibition of aminoacylase 3 protects rat brain cortex neuronal cells from the toxicity of 4-hydroxy-2-nonenal mercapturate and 4-hydroxy-2-nonenal

    SciTech Connect (OSTI)

    Tsirulnikov, Kirill; Abuladze, Natalia; Bragin, Anatol; Brain Research Institute, University of California at Los Angeles, CA 90095 ; Faull, Kym; Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, CA 90095; Pasarow Mass Spectrometry Laboratory, University of California at Los Angeles, CA 90095 ; Cascio, Duilio; Damoiseaux, Robert; Schibler, Matthew J.; Pushkin, Alexander

    2012-09-15

    4-Hydroxy-2-nonenal (4HNE) and acrolein (ACR) are highly reactive neurotoxic products of lipid peroxidation that are implicated in the pathogenesis and progression of Alzheimer's and Parkinson's diseases. Conjugation with glutathione (GSH) initiates the 4HNE and ACR detoxification pathway, which generates the mercapturates of 4HNE and ACR that can be excreted. Prior work has shown that the efficiency of the GSH-dependent renal detoxification of haloalkene derived mercapturates is significantly decreased upon their deacetylation because of rapid transformation of the deacetylated products into toxic compounds mediated by ?-lyase. The enzymes of the GSH-conjugation pathway and ?-lyases are expressed in the brain, and we hypothesized that a similar toxicity mechanism may be initiated in the brain by the deacetylation of 4HNE- and ACR-mercapturate. The present study was performed to identify an enzyme(s) involved in 4HNE- and ACR-mercapturate deacetylation, characterize the brain expression of this enzyme and determine whether its inhibition decreases 4HNE and 4HNE-mercapturate neurotoxicity. We demonstrated that of two candidate deacetylases, aminoacylases 1 (AA1) and 3 (AA3), only AA3 efficiently deacetylates both 4HNE- and ACR-mercapturate. AA3 was further localized to neurons and blood vessels. Using a small molecule screen we generated high-affinity AA3 inhibitors. Two of them completely protected rat brain cortex neurons expressing AA3 from the toxicity of 4HNE-mercapturate. 4HNE-cysteine (4HNE-Cys) was also neurotoxic and its toxicity was mostly prevented by a ?-lyase inhibitor, aminooxyacetate. The results suggest that the AA3 mediated deacetylation of 4HNE-mercapturate may be involved in the neurotoxicity of 4HNE.

  19. Low doses of ochratoxin A upregulate the protein expression of organic anion transporters Oat1, Oat2, Oat3 and Oat5 in rat kidney cortex

    SciTech Connect (OSTI)

    Zlender, Vilim; Breljak, Davorka; Ljubojevic, Marija; Flajs, Dubravka; Balen, Daniela; Brzica, Hrvoje; Domijan, Ana-Marija; Peraica, Maja; Fuchs, Radovan; Anzai, Naohiko; Sabolic, Ivan

    2009-09-15

    Mycotoxin ochratoxin A (OTA) is nephrotoxic in various animal species. In rodents, OTA intoxication impairs various proximal tubule (PT) functions, including secretion of p-aminohippurate (PAH), possibly via affecting the renal organic anion (OA) transporters (Oat). However, an effect of OTA on the activity/expression of specific Oats in the mammalian kidney has not been reported. In this work, male rats were gavaged various doses of OTA every 2nd day for 10 days, and in their kidneys we studied: tubule integrity by microscopy, abundance of basolateral (rOat1, rOat3) and brush-border (rOat2, rOat5) rOat proteins by immunochemical methods, and expression of rOats mRNA by RT-PCR. The OTA treatment caused: a) dose-dependent damage of the cells in S3 segments of medullary rays, b) dual effect upon rOats in PT: low doses (50-250 {mu}g OTA/kg b.m.) upregulated the abundance of all rOats, while a high dose (500 {mu}g OTA/kg b.m.) downregulated the abundance of rOat1, and c) unchanged mRNA expression for all rOats at low OTA doses, and its downregulation at high OTA dose. Changes in the expression of renal Oats were associated with enhanced OTA accumulation in tissue and excretion in urine, whereas the indicators of oxidative stress either remained unchanged (malondialdehyde, glutathione, 8-hydroxydeoxyguanosine) or became deranged (microtubules). While OTA accumulation and downregulation of rOats in the kidney are consistent with the previously reported impaired renal PAH secretion in rodents intoxicated with high OTA doses, the post-transcriptional upregulation of Oats at low OTA doses may contribute to OTA accumulation and development of nephrotoxicity.

  20. Role of the nuclear xenobiotic receptors CAR and PXR in induction of cytochromes P450 by non-dioxinlike polychlorinated biphenyls in cultured rat hepatocytes

    SciTech Connect (OSTI)

    Gährs, Maike; Roos, Robert; Andersson, Patrik L.; Schrenk, Dieter

    2013-10-01

    Polychlorinated biphenyls (PCBs) are among the most ubiquitously detectable ‘persistent organic pollutants’. In contrast to ‘dioxinlike’ (DL) PCBs, less is known about the molecular mode of action of the larger group of the ‘non-dioxinlike’ (NDL) PCBs. Owing to the life-long exposure of the human population, a carcinogenic, i.e., tumor-promoting potency of NDL-PCBs has to be considered in human risk assessment. A major problem in risk assessment of NDL-PCBs is dioxin-like impurities that can occur in commercially available NDL-PCB standards. In the present study, we analyzed the induction of CYP2B1 and CYP3A1 in primary rat hepatocytes using a number of highly purified NDL-PCBs with various degrees of chlorination and substitution patterns. Induction of these enzymes is mediated by the nuclear xenobiotic receptors CAR (Constitutive androstane receptor) and PXR (Pregnane X receptor). For CYP2B1 induction, concentration–response analysis revealed a very narrow window of EC{sub 50} estimates, being in the range of 1–4 ?M for PCBs 28 and 52, and between 0.4 and 1 ?M for PCBs 101, 138, 153 and 180. CYP3A1 induction was less sensitive to NDL-PCBs, the most pronounced induction being achieved at 100 ?M with the higher chlorinated congeners. Using okadaic acid and small interfering RNAs targeting CAR and PXR, we could demonstrate that CAR plays a major role and PXR a minor role in NDL-PCB-driven induction of CYPs, both effects showing no stringent structure–activity relationship. As the only obvious relevant determinant, the degree of chlorination was found to be positively correlated with the inducing potency of the congeners. - Highlights: • We analyzed six highly purified NDL-PCBs for CYP2B1 and CYP3A1 expression. • CAR plays a major, PXR a minor role in NDL-PCB-driven induction of CYPs. • The degree of chlorination seems to be the major parameter for the inducing potency. • There exists a competition between CAR and PXR. • Activated PXR may antagonize CAR binding to the CYP2B1 promoter.

  1. Apelin-13-induced proliferation and migration induced of rat vascular smooth muscle cells is mediated by the upregulation of Egr-1

    SciTech Connect (OSTI)

    Liu, Qi-Feng; Yu, Hong-Wei; You, Lu; Liu, Ming-Xin; Li, Ke-Yan; Department of Cardiology, Jinzhou Central Hospital, Jinzhou 121001 ; Tao, Gui-Zhou

    2013-09-20

    Highlights: •The mechanism underlying the effects of Apelin-13 on VSMC was investigated. •Apelin-13 induced VSMC migration, proliferation and Egr-1 and OPN upregulation. •These effects were inhibited by the Egr-1 specific deoxyribozyme, ED5. •The effects of Apelin-13 on VSMC are mediated via Egr-1 upregulation. •These data will help in attempts to prevent and treat vascular remodeling diseases. -- Abstract: Apelin-13 plays an important role in the migration and proliferation of vascular smooth muscle cells (VSMCs); however, the underlying mechanisms are still unclear. Egr-1 is a nuclear transcription factor, which is considered to be the critical initiating factor of the processes of VSMC proliferation and migration. Egr-1 is known to regulate the expression of osteopontin (OPN), which is a marker of the phenotypic modulation that is a necessary condition of VSMC proliferation and migration. We hypothesized that the role of Apelin-13 is mediated via upregulation of Egr-1. To test this hypothesis, we analyzed the effects of Apelin-13 treatment on Egr-1 mRNA and protein expression in A10 rat aortic VSMCs by RT-PCR and Western blotting, respectively. Results showed that, Apelin-13 upregulated the expression of Egr-1. Furthermore, treatment with the extracellular-regulated protein kinase (ERK) inhibitor, PD98059, inhibited the upregulation of Egr-1 by Apelin-13. In addition, this upregulation was inhibited by treatment of VSMCs with the Egr-1 specific deoxyribozyme ED5 (DNAenzyme/10-23 DRz). Furthermore, ED5 treatment was found to significantly inhibit Apelin-13-induced migration and proliferation of VSMCs using transwell and MTT assays, respectively. The evaluation of OPN mRNA and protein expression levels by RT-PCR and Western blot analyses revealed that ED5 treatment also inhibited Apelin-13-induced OPN upregulation. The results of this study indicated that Apelin-13 upregulates Egr-1 via ERK. Furthermore, Apelin-13 induced the proliferation and migration of VSMCs as well as the upregulation of OPN via the upregulation of Egr-1. These results will provide an important theoretical and experimental basis for the control of inappropriate remodeling of vessel walls, and will hopefully lead to the prevention and treatment of vascular remodeling diseases.

  2. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 9: Appendices RM, SCR, SER, SUM, WRAC

    SciTech Connect (OSTI)

    1995-03-31

    The Rock Mechanics Program is important to the establishment of a radioactive waste repository in salt because rock mechanics deals with the prediction of creep closure and eventual encapsulation of the waste. The intent of this paper is to give the current status of the program. This program consists of three major modeling efforts: continuum creep, fracture, and the disturbed rock zone. These models, together with laboratory material parameters, plastic flow potentials, initial and boundary input data, and other peripheral information forms the predictive technology. The extent to which the predictive technology is validated against in situ test data adds certainty to the method. Application of the technology is through simulations of the test results, design, or performance using numerical codes. In summary, the predictive capabilities are technically sound and reasonable. The current status of the program is that which would be advanced for compliance.

  3. Correlated histogram representation of Monte Carlo derived medical accelerator photon-output phase space

    DOE Patents [OSTI]

    Schach Von Wittenau, Alexis E. (Livermore, CA)

    2003-01-01

    A method is provided to represent the calculated phase space of photons emanating from medical accelerators used in photon teletherapy. The method reproduces the energy distributions and trajectories of the photons originating in the bremsstrahlung target and of photons scattered by components within the accelerator head. The method reproduces the energy and directional information from sources up to several centimeters in radial extent, so it is expected to generalize well to accelerators made by different manufacturers. The method is computationally both fast and efficient overall sampling efficiency of 80% or higher for most field sizes. The computational cost is independent of the number of beams used in the treatment plan.

  4. Monte-Carlo simulation of noise in hard X-ray Transmission Crystal...

    Office of Scientific and Technical Information (OSTI)

    UPMC, 91128 Palaiseau (France) University of Milano, via Celoria 16, 20133 Milano (Italy) Publication Date: 2014-11-15 OSTI Identifier: 22308598 Resource Type: Journal Article ...

  5. Final report for LDRD13-0130 : exponentially convergent Monte Carlo for electron transport.

    SciTech Connect (OSTI)

    Franke, Brian Claude

    2013-09-01

    This is the final report on the LDRD, though the interested reader is referred to the ANS Transactions paper which more thoroughly documents the technical work of this project.

  6. Monte Carlo modeling of electron density in hypersonic rarefied gas flows

    SciTech Connect (OSTI)

    Fan, Jin; Zhang, Yuhuai; Jiang, Jianzheng

    2014-12-09

    The electron density distribution around a vehicle employed in the RAM-C II flight test is calculated with the DSMC method. To resolve the mole fraction of electrons which is several orders lower than those of the primary species in the free stream, an algorithm named as trace species separation (TSS) is utilized. The TSS algorithm solves the primary and trace species separately, which is similar to the DSMC overlay techniques; however it generates new simulated molecules of trace species, such as ions and electrons in each cell, basing on the ionization and recombination rates directly, which differs from the DSMC overlay techniques based on probabilistic models. The electron density distributions computed by TSS agree well with the flight data measured in the RAM-C II test along a decent trajectory at three altitudes 81km, 76km, and 71km.

  7. Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions...

    Office of Scientific and Technical Information (OSTI)

    Subject: 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; 22 GENERAL STUDIES OF NUCLEAR REACTORS; 73 NUCLEAR PHYSICS AND ...

  8. Zori 1.0: A Parallel Quantum Monte Carlo Electronic StructurePackage...

    Office of Scientific and Technical Information (OSTI)

    Authors: Aspuru-Guzik, Alan ; Salomon-Ferrer, Romelia ; Austin, Brian ; Perusquia-Flores, Raul ; Griffin, Mary A. ; Oliva, Ricardo A. ; Skinner,David ; Dominik,Domin ; Lester Jr., ...

  9. Monte Carlo Implementation Of Up- Or Down-Scattering Due To Collisions...

    Office of Scientific and Technical Information (OSTI)

    PHYSICS; 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; 22 GENERAL STUDIES OF NUCLEAR REACTORS; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Word Cloud More Like This Full...

  10. Evaluation of Monte Carlo Electron-Transport Algorithms in the Integrated

    Office of Scientific and Technical Information (OSTI)

    Tiger Series Codes for Stochastic-Media Simulations. (Conference) | SciTech Connect Patrick ; Prinja, Anil K. Publication Date: 2013-09-01 OSTI Identifier: 1110389 Report Number(s): SAND2013-7609C 473868

  11. Evaluation of Monte Carlo Electron-Transport Algorithms in the Integrated

    Office of Scientific and Technical Information (OSTI)

    Tiger Series Codes for Stochastic-Media Simulations. (Conference) | SciTech Connect P. ; Prinja, Anil K. Publication Date: 2013-10-01 OSTI Identifier: 1114635 Report Number(s): SAND2013-8831C 477016

  12. Structure of Cu64.5Zr35.5 Metallic glass by reverse Monte Carlo...

    Office of Scientific and Technical Information (OSTI)

    2 + Show Author Affiliations Ames Laboratory University of Science and Technology of China Publication Date: 2014-02-07 OSTI Identifier: 1134611 Report Number(s): IS-J 8231...

  13. SU-E-T-584: Commissioning of the MC2 Monte Carlo Dose Computation Engine

    SciTech Connect (OSTI)

    Titt, U; Mirkovic, D; Liu, A; Ciangaru, G; Mohan, R; Anand, A; Perles, L

    2014-06-01

    Purpose: An automated system, MC2, was developed to convert DICOM proton therapy treatment plans into a sequence MCNPX input files, and submit these to a computing cluster. MC2 converts the results into DICOM format, and any treatment planning system can import the data for comparison vs. conventional dose predictions. This work describes the data and the efforts made to validate the MC2 system against measured dose profiles and how the system was calibrated to predict the correct number of monitor units (MUs) to deliver the prescribed dose. Methods: A set of simulated lateral and longitudinal profiles was compared to data measured for commissioning purposes and during annual quality assurance efforts. Acceptance criteria were relative dose differences smaller than 3% and differences in range (in water) of less than 2 mm. For two out of three double scattering beam lines validation results were already published. Spot checks were performed to assure proper performance. For the small snout, all available measurements were used for validation vs. simulated data. To calibrate the dose per MU, the energy deposition per source proton at the center of the spread out Bragg peaks (SOBPs) was recorded for a set of SOBPs from each option. Subsequently these were then scaled to the results of dose per MU determination based on published methods. The simulations of the doses in the magnetically scanned beam line were also validated vs. measured longitudinal and lateral profiles. The source parameters were fine tuned to achieve maximum agreement with measured data. The dosimetric calibration was performed by scoring energy deposition per proton, and scaling the results to a standard dose measurement of a 10 x 10 x 10 cm3 volume irradiation using 100 MU. Results: All simulated data passed the acceptance criteria. Conclusion: MC2 is fully validated and ready for clinical application.

  14. Random-Walk Monte Carlo Simulation of Intergranular Gas Bubble Nucleation in UO2 Fuel

    SciTech Connect (OSTI)

    Yongfeng Zhang; Michael R. Tonks; S. B. Biner; D.A. Andersson

    2012-11-01

    Using a random-walk particle algorithm, we investigate the clustering of fission gas atoms on grain bound- aries in oxide fuels. The computational algorithm implemented in this work considers a planar surface representing a grain boundary on which particles appear at a rate dictated by the Booth flux, migrate two dimensionally according to their grain boundary diffusivity, and coalesce by random encounters. Specifically, the intergranular bubble nucleation density is the key variable we investigate using a parametric study in which the temperature, grain boundary gas diffusivity, and grain boundary segregation energy are varied. The results reveal that the grain boundary bubble nucleation density can vary widely due to these three parameters, which may be an important factor in the observed variability in intergranular bubble percolation among grain boundaries in oxide fuel during fission gas release.

  15. Exploration of the El Hoyo-Monte Galan Geothermal Concession. Final report

    SciTech Connect (OSTI)

    1997-12-01

    In January 1996 Trans-Pacific Geothermal Corporation (TGC) was granted a geothermal concession of 114 square kilometers from the Instituto Nicaragueense de Energie (INE) for the purpose of developing between 50 and 150 MWe of geothermal electrical generating capacity. The Concession Agreement required TGC to perform geological, geophysical, and geochemical studies as part of the development program. TGC commenced the geotechnical studies in January 1996 with a comprehensive review of all existing data and surveys. Based on this review, TGC formulated an exploration plan and executed that plan commencing in April, 1996. The ground magnetic (GM), self potential (SP), magnetotelluric/controlled source audio magnetotelluric (MT/CSAMT) and one-meter temperature surveys, data integration, and synthesis of a hydrogeologic model were performed. The purpose of this report is to present a compilation of all data gathered from the geophysical exploration program and to provide an integrated interpretation of that data.

  16. Les Houches Guidebook to Monte Carlo generators for hadron collider physics

    SciTech Connect (OSTI)

    Dobbs, M.A

    2004-08-24

    Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.

  17. Monte Carlo Fundamentals E B. BROWN and T M. S N

    Office of Scientific and Technical Information (OSTI)

    constitute or imply its endorsement, recommendation, or favoring by the United States ... independent calculations mi result from job j (all J jobs are identical except for ...

  18. CASL-U-2015-0247-000 The OpenMC Monte Carlo Particle Transport...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ellis, Nich Horelik, Benoit Forget, Kord Smith Massachusetts Institute of Technology ... Paul Romano 3 , Benoit Forget, 1 and Kord Smith 1 1 Massachusetts Institute of Technology, ...

  19. CASL-U-2015-0170-000-a SHIFT: A New Monte Carlo Package Seth...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CASL-U-2015-0170-000-a 2 Shift: MC RT Code What makes Shift an HPC transport code? * Modern framework - Rapid development with C++11, Python, CMake, CTest, ... - Integration...

  20. Radial quasiballistic transport in time-domain thermoreflectance studied using Monte Carlo simulations

    SciTech Connect (OSTI)

    Ding, D.; Chen, X.; Minnich, A. J.

    2014-04-07

    Recently, a pump beam size dependence of thermal conductivity was observed in Si at cryogenic temperatures using time-domain thermal reflectance (TDTR). These observations were attributed to quasiballistic phonon transport, but the interpretation of the measurements has been semi-empirical. Here, we present a numerical study of the heat conduction that occurs in the full 3D geometry of a TDTR experiment, including an interface, using the Boltzmann transport equation. We identify the radial suppression function that describes the suppression in heat flux, compared to Fourier's law, that occurs due to quasiballistic transport and demonstrate good agreement with experimental data. We also discuss unresolved discrepancies that are important topics for future study.

  1. A Geant4 Implementation of a Novel Single-Event Monte Carlo Method...

    Office of Scientific and Technical Information (OSTI)

    Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: 2013 American Nuclear Society Winter Meeting held November 10-14, 2013 in Washington, DC.; Related...

  2. Delayed myelosuppression with acute exposure to hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and environmental degradation product hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) in rats

    SciTech Connect (OSTI)

    Jaligama, Sridhar; Kale, Vijay M.; Wilbanks, Mitchell S.; Perkins, Edward J.; Meyer, Sharon A.

    2013-02-01

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a widely used munitions compound, and hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), its N-nitroso product of anaerobic microbial nitroreduction, are contaminants of military sites. Previous studies have shown MNX to be the most acutely toxic among the nitroreduced degradation products of RDX and to cause mild anemia at high dose. The present study compares hematotoxicity with acute oral exposure to MNX with parent RDX. Both RDX and MNX caused a modest decrease in blood hemoglobin and ? 50% loss of granulocytes (NOAELs = 47 mg/kg) in female Sprague–Dawley rats observed 14 days post-exposure. We explored the possibility that blood cell loss observed after 14 days was delayed in onset because of toxicity to bone marrow (BM) progenitors. RDX and MNX decreased granulocyte/macrophage-colony forming cells (GM-CFCs) at 14, but not 7, days (NOAELs = 24 mg/kg). The earliest observed time at which MNX decreased GM-CFCs was 10 days post-exposure. RDX and MNX likewise decreased BM burst-forming units-erythroid (BFU-Es) at 14, but not 7, days. Granulocyte–erythrocyte–monocyte–megakaryocyte (GEMM)-CFCs were unaffected by RDX and MNX at 7 days suggesting precursor depletion did not account for GM-CFC and BFU-E loss. MNX added to the culture media was without effect on GM-CFC formation indicating no direct inhibition. Flow cytometry showed no differential loss of BM multilineage progenitors (Thy1.1{sup +}) or erythroid (CD71{sup +}) precursors with MNX suggesting myeloid and erythroid lineages were comparably affected. Collectively, these data indicate that acute exposure to both RDX and MNX caused delayed suppression of myelo- and erythropoiesis with subsequent decrease of peripheral granulocytes and erythrocytes. Highlights: ? Acute oral exposure to munitions RDX causes myelosuppression. ? Environmental degradation product MNX is comparable in effect. ? RDX and MNX are cytotoxic to both myeloid and erythroid progenitor cells. ? Myelosuppression is delayed in onset by > 7 days after single exposure.

  3. Production and dosimetry of simultaneous therapeutic photons and electrons beam by linear accelerator: A Monte Carlo study

    SciTech Connect (OSTI)

    Khledi, Navid; Sardari, Dariush; Arbabi, Azim; Ameri, Ahmad; Mohammadi, Mohammad

    2015-02-24

    Depending on the location and depth of tumor, the electron or photon beams might be used for treatment. Electron beam have some advantages over photon beam for treatment of shallow tumors to spare the normal tissues beyond of the tumor. In the other hand, the photon beam are used for deep targets treatment. Both of these beams have some limitations, for example the dependency of penumbra with depth, and the lack of lateral equilibrium for small electron beam fields. In first, we simulated the conventional head configuration of Varian 2300 for 16 MeV electron, and the results approved by benchmarking the Percent Depth Dose (PDD) and profile of the simulation and measurement. In the next step, a perforated Lead (Pb) sheet with 1mm thickness placed at the top of the applicator holder tray. This layer producing bremsstrahlung x-ray and a part of the electrons passing through the holes, in result, we have a simultaneous mixed electron and photon beam. For making the irradiation field uniform, a layer of steel placed after the Pb layer. The simulation was performed for 10×10, and 4×4 cm2 field size. This study was showed the advantages of mixing the electron and photon beam by reduction of pure electron's penumbra dependency with the depth, especially for small fields, also decreasing of dramatic changes of PDD curve with irradiation field size.

  4. System and method for radiation dose calculation within sub-volumes of a monte carlo based particle transport grid

    DOE Patents [OSTI]

    Bergstrom, Paul M. (Livermore, CA); Daly, Thomas P. (Livermore, CA); Moses, Edward I. (Livermore, CA); Patterson, Jr., Ralph W. (Livermore, CA); Schach von Wittenau, Alexis E. (Livermore, CA); Garrett, Dewey N. (Livermore, CA); House, Ronald K. (Tracy, CA); Hartmann-Siantar, Christine L. (Livermore, CA); Cox, Lawrence J. (Los Alamos, NM); Fujino, Donald H. (San Leandro, CA)

    2000-01-01

    A system and method is disclosed for radiation dose calculation within sub-volumes of a particle transport grid. In a first step of the method voxel volumes enclosing a first portion of the target mass are received. A second step in the method defines dosel volumes which enclose a second portion of the target mass and overlap the first portion. A third step in the method calculates common volumes between the dosel volumes and the voxel volumes. A fourth step in the method identifies locations in the target mass of energy deposits. And, a fifth step in the method calculates radiation doses received by the target mass within the dosel volumes. A common volume calculation module inputs voxel volumes enclosing a first portion of the target mass, inputs voxel mass densities corresponding to a density of the target mass within each of the voxel volumes, defines dosel volumes which enclose a second portion of the target mass and overlap the first portion, and calculates common volumes between the dosel volumes and the voxel volumes. A dosel mass module, multiplies the common volumes by corresponding voxel mass densities to obtain incremental dosel masses, and adds the incremental dosel masses corresponding to the dosel volumes to obtain dosel masses. A radiation transport module identifies locations in the target mass of energy deposits. And, a dose calculation module, coupled to the common volume calculation module and the radiation transport module, for calculating radiation doses received by the target mass within the dosel volumes.

  5. Inflection points of microcanonical entropy: Monte Carlo simulation of q state Potts model on a finite square lattice

    SciTech Connect (OSTI)

    Praveen, E. Satyanarayana, S. V. M.

    2014-04-24

    Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) ? ln g(E) = ln g(E+ ?E) ?ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition.

  6. MaGe - a GEANT4-based Monte Carlo Application Framework for Low-background Germanium Experiments

    SciTech Connect (OSTI)

    Boswell, M.; Chan, Yuen-Dat; Detwiler, Jason A.; Finnerty, P.; Henning, R.; Gehman, Victor; Johnson, Robert A.; Jordan, David V.; Kazkaz, Kareem; Knapp, Markus; Kroninger, Kevin; Lenz, Daniel; Leviner, L.; Liu, Jing; Liu, Xiang; MacMullin, S.; Marino, Michael G.; Mokhtarani, A.; Pandola, Luciano; Schubert, Alexis G.; Schubert, J.; Tomei, Claudia; Volynets, Oleksandr

    2011-06-13

    We describe a physics simulation software framework, MAGE, that is based on the GEANT4 simulation toolkit. MAGE is used to simulate the response of ultra-low radioactive background radiation detectors to ionizing radiation, speci?cally the MAJ ORANA and GE RDA neutrinoless double-beta decay experiments. MAJ ORANA and GERDA use high-purity germanium technology to search for the neutrinoless double-beta decay of the 76 Ge isotope, and MAGE is jointly developed between these two collaborations. The MAGE framework contains simulated geometries of common objects, prototypes, test stands, and the actual experiments. It also implements customized event generators, GE ANT 4 physics lists, and output formats. All of these features are available as class libraries that are typically compiled into a single executable. The user selects the particular experimental setup implementation at run-time via macros. The combination of all these common classes into one framework reduces duplication of efforts, eases comparison between simulated data and experiment, and simpli?es the addition of new detectors to be simulated. This paper focuses on the software framework, custom event generators, and physics list.

  7. GPU Acceleration of Mean Free Path Based Kernel Density Estimators in Monte Carlo Neutronics Simulations with Curvilinear Geometries

    SciTech Connect (OSTI)

    Burke, Timothy Patrick; Kiedrowski, Brian; Martin, William R.; Brown, Forrest B.

    2015-08-27

    KDEs show potential reducing variance for global solutions (flux, reaction rates) when compared to histogram solutions.

  8. Lithium potentiates GSK-3? activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation

    SciTech Connect (OSTI)

    Tian, Nie; Kanno, Takeshi; Jin, Yu; Nishizaki, Tomoyuki

    2014-07-18

    Highlights: • Lithium suppresses Akt activity by reducing PI3K-mediated Akt phosphorylation. • Lithium enhances GSK-3? activity by reducing Akt-mediated GSK-3? phosphorylation. • Lithium suppresses GSK-3? activity through its direct inhibition. - Abstract: Accumulating evidence has pointed to the direct inhibitory action of lithium, an anti-depressant, on GSK-3?. The present study investigated further insight into lithium signaling pathways. In the cell-free assay Li{sub 2}CO{sub 3} significantly inhibited phosphoinositide 3-kinase (PI3K)-mediated phosphorylation of Akt1 at Ser473, but Li{sub 2}CO{sub 3} did not affect PI3K-mediated PI(3,4,5)P{sub 3} production and 3-phosphoinositide-dependent protein kinase 1 (PDK1)-mediated phosphorylation of Akt1 at Thr308. This indicates that lithium could enhance GSK-3? activity by suppressing Akt-mediated Ser9 phosphorylation of GSK-3? in association with inhibition of PI3K-mediated Akt activation. There was no direct effect of Li{sub 2}CO{sub 3} on Akt1-induced phosphorylation of GSK-3? at Ser9, but otherwise Li{sub 2}CO{sub 3} significantly reduced GSK-3?-mediated phosphorylation of ?-catenin at Ser33/37 and Thr41. This indicates that lithium directly inhibits GSK-3? in an Akt-independent manner. In rat hippocampal slices Li{sub 2}CO{sub 3} significantly inhibited phosphorylation of Akt1/2 at Ser473/474, GSK-3? at Ser9, and ?-catenin at Ser33/37 and Thr41. Taken together, these results indicate that lithium exerts its potentiating and inhibiting bidirectional actions on GSK-3? activity.

  9. On the ground state calculation of a many-body system using a self-consistent basis and quasi-Monte Carlo: An application to water hexamer

    SciTech Connect (OSTI)

    Georgescu, Ionu? Mandelshtam, Vladimir A.; Jitomirskaya, Svetlana

    2013-11-28

    Given a quantum many-body system, the Self-Consistent Phonons (SCP) method provides an optimal harmonic approximation by minimizing the free energy. In particular, the SCP estimate for the vibrational ground state (zero temperature) appears to be surprisingly accurate. We explore the possibility of going beyond the SCP approximation by considering the system Hamiltonian evaluated in the harmonic eigenbasis of the SCP Hamiltonian. It appears that the SCP ground state is already uncoupled to all singly- and doubly-excited basis functions. So, in order to improve the SCP result at least triply-excited states must be included, which then reduces the error in the ground state estimate substantially. For a multidimensional system two numerical challenges arise, namely, evaluation of the potential energy matrix elements in the harmonic basis, and handling and diagonalizing the resulting Hamiltonian matrix, whose size grows rapidly with the dimensionality of the system. Using the example of water hexamer we demonstrate that such calculation is feasible, i.e., constructing and diagonalizing the Hamiltonian matrix in a triply-excited SCP basis, without any additional assumptions or approximations. Our results indicate particularly that the ground state energy differences between different isomers (e.g., cage and prism) of water hexamer are already quite accurate within the SCP approximation.

  10. Monte Carlo study of efficiency roll-off of phosphorescent organic light-emitting diodes: Evidence for dominant role of triplet-polaron quenching

    SciTech Connect (OSTI)

    Eersel, H. van, E-mail: h.v.eersel@tue.nl; Coehoorn, R. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Bobbert, P. A.; Janssen, R. A. J. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-10-06

    We present an advanced molecular-scale organic light-emitting diode (OLED) model, integrating both electronic and excitonic processes. Using this model, we can reproduce the measured efficiency roll-off for prototypical phosphorescent OLED stacks based on the green dye tris[2-phenylpyridine]iridium (Ir(ppy){sub 3}) and the red dye octaethylporphine platinum (PtOEP) and study the cause of the roll-off as function of the current density. Both the voltage versus current density characteristics and roll-off agree well with experimental data. Surprisingly, the results of the simulations lead us to conclude that, contrary to what is often assumed, not triplet-triplet annihilation but triplet-polaron quenching is the dominant mechanism causing the roll-off under realistic operating conditions. Simulations for devices with an optimized recombination profile, achieved by carefully tuning the dye trap depth, show that it will be possible to fabricate OLEDs with a drastically reduced roll-off. It is envisaged that J{sub 90}, the current density at which the efficiency is reduced to 90%, can be increased by almost one order of magnitude as compared to the experimental state-of-the-art.

  11. A Generalized Boltzmann Fokker-Planck Method for Coupled Charged...

    Office of Scientific and Technical Information (OSTI)

    Monte Carlo methods but also the established condensed history Monte Carlo technique. ... Resource Type: Technical Report Research Org: University of New Mexico Sponsoring Org: ...

  12. Bayesian Calibration of the Community Land Model using Surrogates...

    Office of Scientific and Technical Information (OSTI)

    CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. ... models; structural error models; Markov chain Monte Word Cloud More Like This ...

  13. A role for AMPK in the inhibition of glucose-6-phosphate dehydrogenase by polyunsaturated fatty acids

    SciTech Connect (OSTI)

    Kohan, Alison B.; Talukdar, Indrani; Walsh, Callee M.; Salati, Lisa M.

    2009-10-09

    Both polyunsaturated fatty acids and AMPK promote energy partitioning away from energy consuming processes, such as fatty acid synthesis, towards energy generating processes, such as {beta}-oxidation. In this report, we demonstrate that arachidonic acid activates AMPK in primary rat hepatocytes, and that this effect is p38 MAPK-dependent. Activation of AMPK mimics the inhibition by arachidonic acid of the insulin-mediated induction of G6PD. Similar to intracellular signaling by arachidonic acid, AMPK decreases insulin signal transduction, increasing Ser{sup 307} phosphorylation of IRS-1 and a subsequent decrease in AKT phosphorylation. Overexpression of dominant-negative AMPK abolishes the effect of arachidonic acid on G6PD expression. These data suggest a role for AMPK in the inhibition of G6PD by polyunsaturated fatty acids.

  14. Franklin County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Chambersburg, Pennsylvania Fayetteville, Pennsylvania Greencastle, Pennsylvania Guilford, Pennsylvania Mercersburg, Pennsylvania Mont Alto, Pennsylvania Orrstown,...

  15. PROCESSMC

    Energy Science and Technology Software Center (OSTI)

    002763MLTPL00 Quantum Process Matrix Computation by Monte Carlo  https://development.sandia.gov/-kyoung/ 

  16. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Monte Carlo

  17. Recombinant lactobacillus for fermentation of xylose to lactic acid and lactate

    DOE Patents [OSTI]

    Picataggio, Stephen K. (Golden, CO); Zhang, Min (Lakewood, CO); Franden, Mary Ann (Littleton, CO); Mc Millan, James D. (Boulder, CO); Finkelstein, Mark (Fort Collins, CO)

    1998-01-01

    A recombinant Lactobacillus MONT4 is provided which has been genetically engineered with xylose isomerase and xylulokinase genes from Lactobacillus pentosus to impart to the Lactobacillus MONT4 the ability to ferment lignocellulosic biomass containing xylose to lactic acid.

  18. SU-E-T-351: Verification of Monitor Unit Calculation for Lung...

    Office of Scientific and Technical Information (OSTI)

    States Language: English Subject: 60 APPLIED LIFE SCIENCES; COMPUTERIZED TOMOGRAPHY; LUNGS; MONTE CARLO METHOD; RADIATION DOSES; RADIATION MONITORS; RADIOTHERAPY; SPATIAL...

  19. On the dust environment of comet C/2012 S1 (ISON) from 12 AU...

    Office of Scientific and Technical Information (OSTI)

    COSMOLOGY AND ASTRONOMY; ALFVEN WAVES; COMETS; CONFIGURATION; DENSITY; DUSTS; EMISSION; FRAGMENTATION; GALAXY NUCLEI; IMAGES; MASS; MONTE CARLO METHOD; PARTICLES; SPHERES;...

  20. Letter: Direction and Guidance for Implementing Direct DOE Relationship & Funding for EMSSABs

    Broader source: Energy.gov [DOE]

    From: Assistant Secretary, Jessie Hill Roberson (EM-11) To: Mr. Monte Wilson, Chair, INEEL Citizens Advisory Board

  1. Advanced surface-enhanced Raman gene probe systems and methods thereof

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    2001-01-01

    The subject invention is a series of methods and systems for using the Surface-Enhanced Raman (SER)-labeled Gene Probe for hybridization, detection and identification of SER-labeled hybridized target oligonucleotide material comprising the steps of immobilizing SER-labeled hybridized target oligonucleotide material on a support means, wherein the SER-labeled hybridized target oligonucleotide material comprise a SER label attached either to a target oligonucleotide of unknown sequence or to a gene probe of known sequence complementary to the target oligonucleotide sequence, the SER label is unique for the target oligonucleotide strands of a particular sequence wherein the SER-labeled oligonucleotide is hybridized to its complementary oligonucleotide strand, then the support means having the SER-labeled hybridized target oligonucleotide material adsorbed thereon is SERS activated with a SERS activating means, then the support means is analyzed.

  2. High-resolution imaging of selenium in kidneys: a localized selenium pool associated with glutathione peroxidase 3

    SciTech Connect (OSTI)

    Malinouski, M.; Kehr, S.; Finney, L.; Vogt, S.; Carlson, B.A.; Seravalli, J.; Jin, R.; Handy, D.E.; Park, T.J.; Loscalzo, J.; Hatfield, D.L.; Gladyshev, V.N.

    2012-04-17

    Recent advances in quantitative methods and sensitive imaging techniques of trace elements provide opportunities to uncover and explain their biological roles. In particular, the distribution of selenium in tissues and cells under both physiological and pathological conditions remains unknown. In this work, we applied high-resolution synchrotron X-ray fluorescence microscopy (XFM) to map selenium distribution in mouse liver and kidney. Liver showed a uniform selenium distribution that was dependent on selenocysteine tRNA{sup [Ser]Sec} and dietary selenium. In contrast, kidney selenium had both uniformly distributed and highly localized components, the latter visualized as thin circular structures surrounding proximal tubules. Other parts of the kidney, such as glomeruli and distal tubules, only manifested the uniformly distributed selenium pattern that co-localized with sulfur. We found that proximal tubule selenium localized to the basement membrane. It was preserved in Selenoprotein P knockout mice, but was completely eliminated in glutathione peroxidase 3 (GPx3) knockout mice, indicating that this selenium represented GPx3. We further imaged kidneys of another model organism, the naked mole rat, which showed a diminished uniformly distributed selenium pool, but preserved the circular proximal tubule signal. We applied XFM to image selenium in mammalian tissues and identified a highly localized pool of this trace element at the basement membrane of kidneys that was associated with GPx3. XFM allowed us to define and explain the tissue topography of selenium in mammalian kidneys at submicron resolution.

  3. Surface enhanced Raman gene probe and methods thereof

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1998-01-01

    The subject invention disclosed herein is a new gene probe biosensor and methods thereof based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays.

  4. Surface enhanced Raman gene probe and methods thereof

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1998-09-29

    The subject invention disclosed herein is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  5. Surface enhanced Raman gene probe and methods thereof

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1998-07-21

    The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means supporting the SERS active substrate includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  6. Implementation and commissioning of an integrated micro-CT/RT system with computerized independent jaw collimation

    SciTech Connect (OSTI)

    Jensen, Michael D.; Hrinivich, W. Thomas; Jung, Jongho A.; Holdsworth, David W.; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7; Department of Surgery, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 ; Drangova, Maria; Chen, Jeff; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7; Department of Oncology, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7 ; Wong, Eugene; Department of Medical Biophysics, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7; Department of Oncology, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7; Department of Physics and Engineering, London Regional Cancer Program, London Health Sciences Centre, 800 Commissioners Road East, London, Ontario N6A 5W9

    2013-08-15

    Purpose: To design, construct, and commission a set of computer-controlled motorized jaws for a micro-CT/RT system to perform conformal image-guided small animal radiotherapy.Methods: The authors designed and evaluated a system of custom-built motorized orthogonal jaws, which allows the delivery of off-axis rectangular fields on a GE eXplore CT 120 preclinical imaging system. The jaws in the x direction are independently driven, while the y-direction jaws are symmetric. All motors have backup encoders, verifying jaw positions. Mechanical performance of the jaws was characterized. Square beam profiles ranging from 2 × 2 to 60 × 60 mm{sup 2} were measured using EBT2 film in the center of a 70 × 70 × 22 mm{sup 3} solid water block. Similarly, absolute depth dose was measured in a solid water and EBT2 film stack 50 × 50 × 50 mm{sup 3}. A calibrated Farmer ion chamber in a 70 × 70 × 20 mm{sup 3} solid water block was used to measure the output of three field sizes: 50 × 50, 40 × 40, and 30 × 30 mm{sup 2}. Elliptical target plans were delivered to films to assess overall system performance. Respiratory-gated treatment was implemented on the system and initially proved using a simple sinusoidal motion phantom. All films were scanned on a flatbed scanner (Epson 1000XL) and converted to dose using a fitted calibration curve. A Monte Carlo beam model of the micro-CT with the jaws has been created using BEAMnrc for comparison with the measurements. An example image-guided partial lung irradiation in a rat is demonstrated.Results: The averaged random error of positioning each jaw is less than 0.1 mm. Relative output factors measured with the ion chamber agree with Monte Carlo simulations within 2%. Beam profiles and absolute depth dose curves measured from the films agree with simulations within measurement uncertainty. Respiratory-gated treatments applied to a phantom moving with a peak-to-peak amplitude of 5 mm showed improved beam penumbra (80%–20%) from 3.9 to 0.8 mm.Conclusions: A set of computer-controlled motorized jaws for a micro-CT/RT system were constructed with position reliably better than a tenth of a millimeter. The hardware system is ready for image-guided conformal radiotherapy for small animals with capability of respiratory-gated delivery.

  7. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A.S. Deineko and R.P. Slabospitskii, Izv. Akad. Nauk SSSR Ser. Fiz. 40 (1976) 2189; Bull. Acad. Sci. USSR Phys. Ser. 40 (1976) 140 1976ME1C Meboniya and Surmava, Sov. J....

  8. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I.I. Zalyubovskii and V.E. Storizhko, Izv. Akad. Nauk SSSR Ser. Fiz. 43 (1979) 2189; Bull. Acad. Sci. USSR Phys. Ser. 43 (1979) 144 1979VA08 K. van der Borg, R.J. de...

  9. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B.K. Kerimov, A.I. Elgavkhari and A.G. Ganiev, Izv. Akad. Nauk SSSR Ser. Fiz. 45 (1981) 2189; Bull. Acad. Sci. USSR Phys. Ser. 45 (1981) 145 1981KE1F kemper et al., Bull. Amer....

  10. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A.S. Deineko and R.P. Slabospitskii, Izv. Akad. Nauk SSSR Ser. Fiz. 40 (1976) 2189; Bull. Acad. Sci. USSR Phys. Ser. 40 (1976) 140 1976MI13 T. Mikumo, I. Kohno, K....

  11. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A.S. Deineko and R.P. Slabospitskii, Izv. Akad. Nauk SSSR Ser. Fiz. 40 (1976) 2189; Bull. Acad. Sci. USSR Phys. Ser. 40 (1976) 140 1976MAZG D.G. Mavis and H.F. Glavish,...

  12. Surface enhanced Raman gene probe and methods thereof

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1998-02-24

    The subject invention disclosed is a new gene probe biosensor and methods based on surface enhanced Raman scattering (SERS) label detection. The SER gene probe biosensor comprises a support means, a SER gene probe having at least one oligonucleotide strand labeled with at least one SERS label, and a SERS active substrate disposed on the support means and having at least one of the SER gene probes adsorbed thereon. Biotargets such as bacterial and viral DNA, RNA and PNA are detected using a SER gene probe via hybridization to oligonucleotide strands complementary to the SER gene probe. The support means includes a fiberoptic probe, an array of fiberoptic probes for performance of multiple assays and a waveguide microsensor array with charge-coupled devices or photodiode arrays. 18 figs.

  13. Random-matrix approach to the statistical compound nuclear reaction at low

    Office of Scientific and Technical Information (OSTI)

    energies using the Monte-Carlo technique (Conference) | SciTech Connect Conference: Random-matrix approach to the statistical compound nuclear reaction at low energies using the Monte-Carlo technique Citation Details In-Document Search Title: Random-matrix approach to the statistical compound nuclear reaction at low energies using the Monte-Carlo technique Authors: Kawano, Toshihiko [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2015-11-10 OSTI Identifier:

  14. Electrolyte pore/solution partitioning by expanded grand canonical ensemble

    Office of Scientific and Technical Information (OSTI)

    Monte Carlo simulation (Journal Article) | SciTech Connect Title: Electrolyte pore/solution partitioning by expanded grand canonical ensemble Monte Carlo simulation Using a newly developed grand canonical Monte Carlo approach based on fractional exchanges of dissolved ions and water molecules, we studied equilibrium partitioning of both components between laterally extended apolar confinements and surrounding electrolyte solution. Accurate calculations of the Hamiltonian and tensorial

  15. Xianzhu Tang

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kinetic equation in the sheath and presheath region. The materials modeling is based on molecular dynamics, accelerated molecular dynamics, and kinetic Monte Carlo simulations....

  16. Chambers County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Texas Reliant Baytown Biomass Facility Places in Chambers County, Texas Anahuac, Texas Baytown, Texas Beach City, Texas Cove, Texas Mont Belvieu, Texas Old...

  17. Torus through Integrated Data Analysis Mark Nornberg Matthew...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emissivity predicts bremsstrahlung and recombination emission * Parameter search using Markov Chain Monte Carlo - Allows many model parameters with reasonable processing time -...

  18. Consortium for Advanced Simulation of Light Water Reactors (CASL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Monte Carlo transport applications. Exnihilo is based on a package architecture model such that each package provides well-defined capabilities. Exnihilo currently...

  19. Neutron Production by Muon Spallation I: Theory (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Monte Carlo package MCNPX. We calculate simulated energy spectra, multiplicities, and angular distributions of direct neutrons and pions from muon spallation. Authors: Luu, T ;...

  20. STATEMENT OF MELANIE KENDERDINE DIRECTOR OF THE OFFICE OF ENERGY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2.97gal above the price at Mont Belvieu. This differential sent a strong signal to producers and distributors, and market participants responded by moving additional supplies...