Powered by Deep Web Technologies
Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Biomass burning sources of nitrogen oxides, carbon monoxide, and non-methane hydrocarbons  

SciTech Connect

Biomass burning is an important source of many key tropospheric species, including aerosols, carbon dioxide (CO{sub 2}), nitrogen oxides (NO{sub {times}}=NO+NO{sub 2}), carbon monoxide (CO), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), methyl bromide (CH{sub 3}Br), ammonia (NH{sub 3}), non-methane hydrocarbons (NMHCs) and other species. These emissions and their subsequent products act as pollutants and affect greenhouse warming of the atmosphere. One important by-product of biomass burning is tropospheric ozone, which is a pollutant that also absorbs infrared radiation. Ozone is formed when CO, CH{sub 4}, and NMHCs react in the presence of NO{sub {times}} and sunlight. Ozone concentrations in tropical regions (where the bulk of biomass burning occurs) may increase due to biomass burning. Additionally, biomass burning can increase the concentration of nitric acid (HNO{sub 3}), a key component of acid rain.

Atherton, C.S.

1995-11-01T23:59:59.000Z

2

Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate  

DOE Patents (OSTI)

The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

Liu, D. Kwok-Keung; Chang, Shih-Ger

1987-08-25T23:59:59.000Z

3

Why sequence carbon monoxide oxidizing thermophiles?  

NLE Websites -- All DOE Office Websites (Extended Search)

carbon monoxide oxidizing thermophiles? carbon monoxide oxidizing thermophiles? Many microbes that use carbon monoxide as an energy source are found in high temperature environments such as geothermal areas. Researchers think that these carboxydotrophs may be involved in reducing potentially toxic carbon monoxide hotspots by combine with water to form hydrogen, carbon dioxide and acetate, which are in turn used for thermophilic energy conservation and carbon sequestration mechanisms. The project focuses on sequencing two closely related microbes, one of which is Carboxydothermus hydrogenformans. A strain of C. hydrogenformans has been grown in hydrogen-enriched synthesis gas (syngas), which contains a mix of hydrogen and carbon monoxide. Researchers are interested in sequencing both microbial strains to track the genome's evolution and

4

Device for staged carbon monoxide oxidation  

DOE Patents (OSTI)

A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.

Vanderborgh, Nicholas E. (Los Alamos, NM); Nguyen, Trung V. (College Station, TX); Guante, Jr., Joseph (Denver, CO)

1993-01-01T23:59:59.000Z

5

Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation  

Science Conference Proceedings (OSTI)

Carbon monoxide oxidation over ruthenium catalysts has shown an unusual catalytic behavior. Here we report a particle size effect on CO oxidation over Ru nanoparticle (NP) catalysts. Uniform Ru NPs with a tunable particle size from 2 to 6 nm were synthesized by a polyol reduction of Ru(acac){sub 3} precursor in the presence of poly(vinylpyrrolidone) stabilizer. The measurement of catalytic activity of CO oxidation over two-dimensional Ru NPs arrays under oxidizing reaction conditions (40 Torr CO and 100 Torr O{sub 2}) showed an activity dependence on the Ru NP size. The CO oxidation activity increases with NP size, and the 6 nm Ru NP catalyst shows 8-fold higher activity than the 2 nm catalysts. The results gained from this study will provide the scientific basis for future design of Ru-based oxidation catalysts.

Joo, Sang Hoon; Park, Jeong Y.; Renzas, J. Russell; Butcher, Derek R.; Huang, Wenyu; Somorjai, Gabor A.

2010-04-04T23:59:59.000Z

6

A survey of carbon monoxide and nitrogen dioxide in indoor ice arenas in Vermont  

Science Conference Proceedings (OSTI)

Because of the history of health problems traceable to the exhaust of ice resurfacing machines, state sanitarians used detector tubes to measure carbon monoxide (CO) and nitrogen dioxide (NO[sub 2]) levels in enclosed ice arenas in Vermont during high school hockey games. Five of eight arenas had average game CO measurements of 30 ppm carbon monoxide or more. Two of the three periods of play had average CO readings in excess of 100 ppm in one arena. Only six arenas had the complete series of nitrogen dioxide measurements. One had an average game NO[sub 2] level of 1.2 ppm. Two had one or more periods of play that averaged in excess of 0.5 ppm. Despite the ample documentation of the hazards of operating combustion-powered resurfacing machines inside enclosed ice arenas, a significant portion of the arenas had undesirable levels of carbon monoxide or nitrogen dioxide. Ice arenas should be routinely monitored for air contaminants. Considerations should be given to the purchase of electric ice resurfacing machines for new arenas and arenas that have air contamination that cannot be resolved with ventilation.

Paulozzi, L.J. (Vermont Health Dept., Burlington, VT (United States)); Spengler, R.F.; Vogt, R.L.; Carney, J.K.

1993-12-01T23:59:59.000Z

7

Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases  

DOE Patents (OSTI)

A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

Clay, David T. (Longview, WA); Lynn, Scott (Walnut Creek, CA)

1976-10-19T23:59:59.000Z

8

Nitrogen Oxides Emission Control Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Nitrogen Oxides Emission Control Options for Coal-Fired Electric Utility Boilers Ravi K. Srivastava and Robert E. Hall U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Air Pollution Prevention and Control Division, Research Triangle Park, NC Sikander Khan and Kevin Culligan U.S. Environmental Protection Agency, Office of Air and Radiation, Clean Air Markets Division, Washington, DC Bruce W. Lani U.S. Department of Energy, National Energy Technology Laboratory, Environmental Projects Division, Pittsburgh, PA ABSTRACT Recent regulations have required reductions in emissions of nitrogen oxides (NO x ) from electric utility boilers. To comply with these regulatory requirements, it is increas- ingly important to implement state-of-the-art NO x con- trol technologies on coal-fired utility boilers. This paper reviews NO x control

9

Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst  

SciTech Connect

Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu{sub 2}O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu{sub 2}O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu{sub 2}O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N{sub 2} and CO{sub 2}. At the end of each reaction, the catalyst was found to be Cu{sub 2}O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

Jernigan, G.G. [California Univ., Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Materials and Chemical Sciences Div.

1994-10-01T23:59:59.000Z

10

nitrogen oxides | OpenEI  

Open Energy Info (EERE)

20 20 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279720 Varnish cache server nitrogen oxides Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago)

11

Nitrogen oxide delivery systems for biological media  

E-Print Network (OSTI)

Elevated levels of nitric oxide (NO) in vivo are associated with a variety of cellular modifications thought to be mutagenic or carcinogenic. These processes are likely mediated by reactive nitrogen species (RNS) such as ...

Skinn, Brian Thomas

2012-01-01T23:59:59.000Z

12

Interaction and reactivity of nitric oxide and carbon monoxide on ruthenium surfaces  

DOE Green Energy (OSTI)

A multifaceted investigation of the reduction of nitric oxide by carbon monoxide using a ruthenium (102) single crystal catalyst in the pressure range 10/sup -3/ to 10 Torr and temperature range of 300 to 475/sup 0/C has been undertaken. Kinetic and isotopic results indicate that the reaction products CO/sub 2/ and N/sub 2/ were produced via two reaction mechanisms. Using a reducing gas mixture (low P/sub NO//P/sub CO/ ratio) a two site mechanism was operative involving NO dissociation. The carbon monoxide kinetic order varied from +1 to -3 and the nitric oxide order varied from +1 to 0. The catalyst under these conditions was determined to be metallic ruthenium with oxygen bonded within the first surface layer. The oxygen was unreactive and formed a (1 x 3)-0 LEED pattern. Under oxidizing conditions (high P/sub NO//P/sub CO/ ratio) the catalyst was ruthenium dioxide and the functional mechanism under these reaction conditions yielded a nitric oxide order of +2 to -4. Inclusion of a site poisoning mechanism under reducing conditions and an RuO/sub 2/ growth mechanism involving ruthenium cation transfer under oxidizing conditions into the kinetic rate laws led to an overall rate law which could be fit to the carbon monoxide and nitric oxide order plots. Using isotopically oxygen labelled reactants, it was observed that the three possible isotopes of carbon dioxide were produced. A ..gamma..-CO surface species is postulated as an intermediate in the exchange process. The reaction was observed to be initially surface structure insensitive and the reaction kinetics were derived using a Langmuir-Hinshelwood formalism.

Quick, E.E.

1980-03-01T23:59:59.000Z

13

Gold Nanoparticles Supported on Carbon Nitride: Influence of Surface Hydroxyls on Low Temperature Carbon Monoxide Oxidation  

SciTech Connect

This paper reports the synthesis of 2.5 nm gold clusters on the oxygen free and chemically labile support carbon nitride (C3N4). Despite having small particle sizes and high enough water partial pressure these Au/C3N4 catalysts are inactive for the gas phase and liquid phase oxidation of carbon monoxide. The reason for the lack of activity is attributed to the lack of surface OH groups on the C3N4. These OH groups are argued to be responsible for the activation of CO in the oxidation of CO. The importance of basic OH groups explains the well document dependence of support isoelectric point versus catalytic activity.

Singh, Joseph A [ORNL; Dudney, Nancy J [ORNL; Li, Meijun [ORNL; Overbury, Steven {Steve} H [ORNL; Veith, Gabriel M [ORNL

2012-01-01T23:59:59.000Z

14

EXAFS of carbon monoxide oxidation on supported Pt fuel cell electrocatalysts  

Science Conference Proceedings (OSTI)

The potential dependence of the extended X-ray absorption fine structure (EXAFS) obtained at the Pt L{sub III} absorption edge for a carbon supported Pt electrocatalyst exposed to carbon monoxide is presented. The data have been analyzed using the difference file method to separate the dominant contributions of the Pt neighbors from contributions to the EXAFS from the adsorbed species. The presence of adsorbed CO is clearly observed with a Pt-C distance of 1.85 {angstrom} at potentials less than 0.5 V vs. RHE. Increasing the potential above 0.5 V resulted first in the removal of the adsorbed CO and at more positive potentials, e.g., 1.05 V, in the formation of an oxide layer, as evidenced by the presence of a Pt-O coordination shell at 2.00 {angstrom}. These results demonstrate that in situ EXAFS of supported Pt electrocatalysts may be used to probe adsorbate structures.

Maniguet, S.; Mathew, R.J.; Russell, A.E.

2000-03-09T23:59:59.000Z

15

Review Article A Review on Preferential Oxidation of Carbon Monoxide in Hydrogen Rich Gases  

E-Print Network (OSTI)

In this review, recent works on the preferential oxidation of carbon monoxide in hydrogen rich gases for fuel cell applications are summarized. H2 is used as a fuel for polymer-electrolyte membrane fuel cell (PEMFC). It is produced by reforming of natural gas or liquid fuels followed by water gas shift reaction. The produced gas consists of H2, CO, and CO2. In which CO content is around 1%, which is highly poisonous for the Pt anode of the PEMFC so that further removal of CO is needed. Catalytic preferential oxidation of CO (CO-PROX) is one of the most suitable methods of purification of H2 because of high CO conversion rate at low temperature range, which is preferable for PEMFC operating conditions. Catalysts used for CO-PROX are mainly noble metal based; gold based and base metal oxide catalysts among them Copper-Ceria based catalysts are the most appropriate due to its low cost, easy availability and result obtained by these catalysts are comparable with the conventional noble metal catalysts. Copyright © 2011 by BCREC UN-

A. Mishra; R. Prasad

2010-01-01T23:59:59.000Z

16

Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides  

SciTech Connect

The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

Haas, P.A.; Lee, D.D.; Mailen, J.C.

1991-11-01T23:59:59.000Z

17

METHOD OF FIXING NITROGEN FOR PRODUCING OXIDES OF NITROGEN  

DOE Patents (OSTI)

A method is described for fixing nitrogen from air by compressing the air, irradiating the compressed air in a nuclear reactor, cooling to remove NO/ sub 2/, compressing the cooled gas, further cooling to remove N/sub 2/O and recirculating the cooled compressed air to the reactor.

Harteck, P.; Dondes, S.

1959-08-01T23:59:59.000Z

18

Evolution of Nitrogen Oxide Chemistry in the Nocturnal Boundary Layer  

Science Conference Proceedings (OSTI)

The nocturnal cycle of nitrogen oxides in the atmospheric boundary layer is studied by means of a one-dimensional model. The model solves the conservation equations of momentum, entropy, total water content, and of five chemical species. The ...

S. Galmarini; P. G. Duynkerke; J. Vilŕ-Guerau de Arellano

1997-07-01T23:59:59.000Z

19

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

DOE Green Energy (OSTI)

Several different catalytic reactions must be carried out in order to convert hydrocarbons (or alcohols) into hydrogen for use as a fuel for polyelectrolyte membrane (PEM) fuel cells. Each reaction in the fuel-processing sequence has a different set of characteristics, which influences the type of catalyst support that should be used for that particular reaction. A wide range of supports are being evaluated for the various reactions in the fuel-processing scheme, including porous and non-porous particles, ceramic and metal straight-channel monoliths, and ceramic and metal monolithic foams. These different types of support have distinctly different transport characteristics. The best choice of support for a given reaction will depend on the design constraints for the system, e.g., allowable pressure drop, and on the characteristics of the reaction for which the catalyst is being designed. Three of the most important reaction characteristics are the intrinsic reaction rate, the exothermicity/endothermicity of the reaction, and the nature of the reaction network, e.g., whether more than one reaction takes place and, in the case of multiple reactions, the configuration of the network. Isotopic transient kinetic analysis was used to study the surface intermediates. The preferential oxidation of low concentrations of carbon monoxide in the presence of high concentrations of hydrogen (PROX) is an important final step in most fuel processor designs. Data on the behavior of straight-channel monoliths and foam monolith supports will be presented to illustrate some of the factors involved in choosing a support for this reaction.

Mr. Paul Chin; Dr. Xiaolei Sun; Professor George W. Roberts; Professor James J. Spivey; Mr. Amornmart Sirijarhuphan; Dr. James G. Goodwin, Jr.; Dr. Richard W. Rice

2002-12-31T23:59:59.000Z

20

Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Pollution Control Regulations: No.27 - Control of Nitrogen Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to stationary sources with the potential to emit 50 tons of nitrogen oxides (NOx) per year from all pollutant-emitting equipment or activities. The regulations describe possibilities for exemptions (i.e., for sources which have the potential to emit 50 tons but do not actually reach that level) and Reasonably Available Control

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method For Selective Catalytic Reduction Of Nitrogen Oxides  

DOE Patents (OSTI)

A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

2005-02-15T23:59:59.000Z

22

Method for selective catalytic reduction of nitrogen oxides  

DOE Patents (OSTI)

A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

Mowery-Evans, Deborah L. (Broomfield, CO); Gardner, Timothy J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

2005-02-15T23:59:59.000Z

23

Nitrogen Oxide Emission Statements (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) Nitrogen Oxide Emission Statements (Ohio) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency requires any facility that emits 25 tons or more of NOx and/or 25 tons or more of VOC during the calendar year and is located in a county designated as nonattainment for the National Ambient Air Quality Standards for ozone submit emission statements. Any facility that is located in a county described above is exempt from these requirements. If NOx

24

Nitrogen oxide abatement by distributed fuel addition  

DOE Green Energy (OSTI)

Experiments were conducted to investigate the processes that influence the destruction of NO in the fuel rich stage of the reburning process. The objective is to gain a better understanding of the mechanisms that control the fate of coal nitrogen in the fuel rich zone of a combustion process. Time resolved profiles of temperature, major (CO{sub 2}, CO, H{sub 2}O, O{sub 2}, H{sub 2} and N{sub 2}), nitrogenous (NO, HCN and NH{sub 3}) and hydrocarbon (CH{sub 4} and C{sub 2}H{sub 2}) species were obtained for various reburning tests. A slow continuous source of HCN was observed in the reburn zone for most tests. HCN formation from NO + CH{sub i} reactions would partially explain this trend. It has been proposed in the past that these reactions would be fast (less than 0.1s) and the produced HCN would be short lived. However, evidence was provided in this study indicating that NO + CH{sub i} reactions might contribute to HCN formation at longer residence times in the reburn zone. Reactions of molecular nitrogen with hydrocarbon radicals were determined to be a significant source of HCN formation, especially as NO levels decreased in the reburn zone. The results of several tests would justify the exclusion of continued coal devolatilization in the reburn zone as a major source of HCN.

Wendt, J.O.L.; Mereb, J.B.

1989-11-20T23:59:59.000Z

25

Nitrogen oxide abatement by distributed fuel addition  

Science Conference Proceedings (OSTI)

The research reported here is concerned with the application of secondary fuel addition, otherwise known as reburning, as a means of NO{sub x} destruction downstream of the primary flame zone in boilers. This paper consists of two parts: First, results from a statistically correct design of parametric experiments on a laboratory coal combustor are presented. These allow the effects of the most important variables to be isolated and identified. Second, mechanisms governing the inter-conversion and destruction of nitrogenous species in the fuel rich reburning zone of a laboratory coal combustor were explored, using fundamental kinetic arguments. The objective here was to extract models, which can be used to estimate reburning effectiveness in other, more practical combustion configurations. Emphasis is on the use of natural gas as the reburning fuel for a pulverized coal primary flame. Then, reburning mechanisms occur in two regimes; one in which fast reactions between NO and hydrocarbons are usually limited by mixing; the other in which reactions have slowed and in which known gas phase chemistry controls. For the latter regime, a simplified model based on detailed gas phase chemical kinetic mechanisms and known rate coefficients was able to predict temporal profiles of NO, NH{sub 3} and HCN. Reactions with hydrocarbons played important roles in both regimes and the Fenimore N{sub 2} fixation reactions limited reburning effectiveness at low primary NO values.

Wendt, J.O.L.; Mereb, J.B.

1990-08-27T23:59:59.000Z

26

Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering  

SciTech Connect

Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov [AO Mittal Steel Temirtau, Temirtau (Kazakhstan)

2007-07-01T23:59:59.000Z

27

Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions  

DOE Patents (OSTI)

A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

Apel, W.A.

1998-08-18T23:59:59.000Z

28

Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions  

DOE Patents (OSTI)

A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

Apel, William A. (Idaho Falls, ID)

1998-01-01T23:59:59.000Z

29

Nitrogen and carbon oxides chemistry in the HRS retorting process  

Science Conference Proceedings (OSTI)

The HRS Oil Shale Retort process consists of a pyrolysis section which converts kerogen of the shale to liquid and gaseous products, and a combustion section which burns residual carbon on the shale to heat the process. Average gas concentrations of selected gas phase species were determined from data measured at several placed on the combustion system of the Lawrence Livermore National Laboratory Hot-Recycled-Solids Retort Pilot Plant for representative rich and lean shale runs. The data was measured on-line and in real time by on-line meters (CO{sub 2}, CO, O{sub 2}), mass spectrometry (CO{sub 2}, O{sub 2}, H{sub 2}O, NO, CH{sub 4}, SO{sub 2}, N{sub 2} and Ar), and Fourier transform infrared spectroscopy (CO{sub 2}, CO, H{sub 2}O, NO, N{sub 2}O, NO{sub 2}, CH{sub 4}, SO{sub 2}, NH{sub 3}, and HCN). For both the rich and leans shale runs, the Lift-Pipe Combustor (LFT) exhibited gas concentrations (sampled at the exit of the LFT) indicative of incomplete combustion and oxidation; the Delayed-Fall Combustor (DFC) exhibited gas concentrations (sampled at the annulus and the exit of the DFC) indicative of much more complete combustion and oxidation. The Fluidized-Bed Combustor exhibited gas concentrations which were controlled to a large extent by the injection atmosphere of the FBC. High levels of nitrogen oxides and low levels of CO were detected when full air injection was used, while high levels of CO and low levels of nitrogen-oxides were detected with partial N{sub 2} injection. Sequential sampling limitations and nitrogen balances are also discussed.

Reynolds, J.G.

1993-11-12T23:59:59.000Z

30

Method for reducing nitrogen oxides in combustion effluents  

DOE Patents (OSTI)

Method for reducing nitrogen oxides (NO.sub.x) in the gas stream from the combustion of fossil fuels is disclosed. In a narrow gas temperature zone, NO.sub.x is converted to nitrogen by reaction with urea or ammonia with negligible remaining ammonia and other reaction pollutants. Specially designed injectors are used to introduce air atomized water droplets containing dissolved urea or ammonia into the gaseous combustion products in a manner that widely disperses the droplets exclusively in the optimum reaction temperature zone. The injector operates in a manner that forms droplet of a size that results in their vaporization exclusively in this optimum NO.sub.x -urea/ammonia reaction temperature zone. Also disclosed is a design of a system to effectively accomplish this injection.

Zauderer, Bert (Merion Station, PA)

2000-01-01T23:59:59.000Z

31

Roles of Surface Step on Pt Nanoparticles in Electro-oxidation of Carbon Monoxide and Methanol  

DOE Green Energy (OSTI)

Design of highly active nanoscale catalysts for electro-oxidation of small organic molecules is of great importance to the development of efficient fuel cells. Increasing steps on single-crystal Pt surfaces is shown to enhance the activity of CO and methanol electro-oxidation up to several orders of magnitude. However, little is known about the surface atomic structure of nanoparticles with sizes of practical relevance, which limits the application of fundamental understanding in the reaction mechanisms established on single-crystal surfaces to the development of active, nanoscale catalysts. In this study, we reveal the surface atomic structure of Pt nanoparticles supported on multiwall carbon nanotubes, from which the amount of high-index surface facets on Pt nanoparticles is quantified. Correlating the surface steps on Pt nanoparticles with the electrochemical activity and stability clearly shows the significant role of surface steps in enhancing intrinsic activity for CO and methanol electro-oxidation. Here, we show that increasing surface steps on Pt nanoparticles of {approx}2 nm can lead to enhanced intrinsic activity up to {approx}200% (current normalized to Pt surface area) for electro-oxidation of methanol.

Lee, S.W.; Vescovo, E.; Chen, S.; Sheng, W.; Yabuuchi, N.; Kim, Y.T.; Mitani, T.; Shao-Horn, Y.

2009-10-13T23:59:59.000Z

32

Method for combined removal of mercury and nitrogen oxides from off-gas streams  

DOE Patents (OSTI)

A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

Mendelsohn, Marshall H. (Downers Grove, IL); Livengood, C. David (Lockport, IL)

2006-10-10T23:59:59.000Z

33

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

DOE Green Energy (OSTI)

Hydrocarbon fuels must be reformed in a series of steps to provide hydrogen for use in proton exchange membrane fuel cells (PEMFCs). Preferential oxidation (PROX) is one method to reduce the CO concentration to less than 10 ppm in the presence of {approx}40% H{sub 2}, CO{sub 2}, and steam. This will prevent CO poisoning of the PEMFC anode. Structured supports, such as ceramic monoliths, can be used for the PROX reaction. Alternatively, metal foams offer a number of advantages over the traditional ceramic monolith.

Paul Chin; Xiaolei Sun; George W. Roberts; Amornmart Sirijarhuphan; Sourabh Pansare; James G. Goodwin Jr; Richard W. Rice; James J. Spivey

2005-06-01T23:59:59.000Z

34

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

DOE Green Energy (OSTI)

Uses for structured catalytic supports, such as ceramic straight-channel monoliths and ceramic foams, have been established for a long time. One of the most prominent examples is the washcoated ceramic monolith as a three-way catalytic converter for gasoline-powered automobiles. A distinct alternative to the ceramic monolith is the metal foam, with potential use in fuel cell-powered automobiles. The metal foams are characterized by their pores per inch (ppi) and density ({rho}). In previous research, using 5 wt% platinum (Pt) and 0.5 wt% iron (Fe) catalysts, washcoated metal foams, 5.08 cm in length and 2.54 cm in diameter, of both varying and similar ppi and {rho} were tested for their activity (X{sub CO}) and selectivity (S{sub CO}) on a CO preferential oxidation (PROX) reaction in the presence of a H{sub 2}-rich gas stream. The variances in these metal foams' activity and selectivity were much larger than expected. Other structured supports with 5 wt% Pt, 0-1 wt% Fe weight loading were also examined. A theory for this phenomenon states that even though these structured supports have a similar nominal catalyst weight loading, only a certain percentage of the Pt/Fe catalyst is exposed on the surface as an active site for CO adsorption. We will use two techniques, pulse chemisorption and temperature programmed desorption (TPD), to characterize our structured supports. Active metal count, metal dispersion, and other calculations will help clarify the causes for the activity and selectivity variations between the supports. Results on ceramic monoliths show that a higher Fe loading yields a lower dispersion, potentially because of Fe inhibition of the Pt surface for CO adsorption. This theory is used to explain the reason for activity and selectivity differences for varying ppi and {rho} metal foams; less active and selective metal foams have a lower Fe loading, which justifies their higher metal dispersion. Data on the CO desorption temperature and average metal crystallite size for TPD are also collected.

Paul Chin; George W. Roberts; James J. Spivey

2003-12-31T23:59:59.000Z

35

Nitrogen Oxides (NOx), Why and How They are Controlled  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Quality EPA 456/F-99-006R Air Quality EPA 456/F-99-006R Environmental Protection Planning and Standards November 1999 Agency Research Triangle Park, NC 27711 Air EPA-456/F-99-006R November 1999 Nitrogen Oxides (NOx), Why and How They Are Controlled Prepared by Clean Air Technology Center (MD-12) Information Transfer and Program Integration Division Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, North Carolina 27711 ii DISCLAIMER This report has been reviewed by the Information Transfer and Program Integration Division of the Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency and approved for publication. Approval does not signify that the contents of this report reflect the views and policies of the U.S. Environmental Protection Agency. Mention of trade

36

Nitrogen oxide emissions from coal fired MHD plants  

DOE Green Energy (OSTI)

In this topical report, the nitrogen oxide emission issues from a coal fired MHD steam combined cycle power plant are summarized, both from an experimental and theoretical/calculational viewpoint. The concept of staging the coal combustion to minimize NO{sub x} is described. The impact of NO{sub x} control design choices on electrical conductivity and overall plant efficiency are described. The results of the NO{sub x} measurements in over 3,000 hours of coal fired testing are summarized. A chemical kinetics model that was used to model the nooks decomposition is described. Finally, optimum design choices for a low nooks plant are discussed and it is shown that the MHD Steam Coal Fired Combined Cycle Power Plant can be designed to operate with nooks emissions less than 0.05 lbm/MMBTU.

Chapman, J.N. [ed.

1996-03-01T23:59:59.000Z

37

Improved Prediction of Nitrogen Oxides Using GRNN with K-Means Clustering and EDA  

Science Conference Proceedings (OSTI)

The current study presented a generalized regression neural network (GRNN) based approach to predict nitrogen oxides (NOx) emitted from coal-fired boiler. A novel 'multiple' smoothing parameters, which is different from the standard algorithm in which ... Keywords: GRNN, EDA, K-means Clustering, Nitrogen Oxides, Power plants

Ligang Zheng; Shuijun Yu; Wei Wang; Minggao Yu

2008-10-01T23:59:59.000Z

38

Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia  

DOE Patents (OSTI)

Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

Pence, Dallas T. (Idaho Falls, ID); Thomas, Thomas R. (Idaho Falls, ID)

1980-01-01T23:59:59.000Z

39

Method of removing carbon monoxide from gases  

DOE Patents (OSTI)

A process and catalyst are disclosed for purifying an atmosphere containing carbon monoxide by passing the atmosphere through a bed of a catalyst of TbO.sub.x, where x = 1.8 to 1.5, which oxidizes the carbon monoxide to carbon dioxide.

Gerstein, Bernard C. (Ames, IA); Macaulay, David B. (Arlington Heights, IL)

1976-06-01T23:59:59.000Z

40

The influence of Fe catalysts on the release of nitrogen oxides during the gasification of nitrogen doped carbon-13 material  

E-Print Network (OSTI)

855 The influence of Fe catalysts on the release of nitrogen oxides during the gasification. (Received 12 June 19%; accepted in revised form 4 April 1997) Key Words - A. Char, B. gasification, the rapid devol- atilisation of the coal is accompanied by the ignition/gasification of the volatiles

Thomas, Mark

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

TCE degradation by methane-oxidizing cultures grown with various nitrogen sources  

SciTech Connect

Methane-oxidizing microorganisms exhibit great potential for vadose zone bioremediation. This paper reports the effects of supplying nitrogen as nitrate, ammonia, and molecular nitrogen on the growth, trichloroethylene (TCE) degradation capacity, and energy storage capacity of a mixed methane-oxidizing culture. Cells inoculated from a nitrate-supplied methane-oxidizing culture grew fastest while fixing atmospheric nitrogen when oxygen partial pressures were kept less than 8%. Cell growth and methane oxidation were more rapid for ammonia-supplied cells than for nitrate-supplied or nitrogen-fixing cells. However, nitrogen-fixing cells were capable of oxidizing TCE as efficiently as nitrate or ammonia-supplied cells, and they exhibited the highest TCE transformation capacity of all three cultures both with and without formate as an exogenous reducing energy source. The TCE product toxicity was not as pronounced for the nitrogen fixing cells as for the nitrate- or ammonia-supplied cells after exposure to high (20 mg/L) or low (2 mg/L) TCE concentrations. Energy storage in the form of poly-{beta}- hydroxybutyrate was 20% to 30% higher for nitrogen-fixing cells; increased energy storage may be responsible for the higher transformation capacity of nitrogen-fixing cells when no external reducing energy was available. 35 refs., 4 figs., 2 tabs.

Chu, K.H.; Alvarez-Cohen, L. [Univ. of California, Berkeley, CA (United States)

1996-01-01T23:59:59.000Z

42

NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES  

E-Print Network (OSTI)

factors for carbon monoxide, nitrogen oxidesnitrogen dioxide, factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, 

Singer, Brett C.

2010-01-01T23:59:59.000Z

43

Passive measurement of nitrogen oxides to assess traffic-related...  

NLE Websites -- All DOE Office Websites (Extended Search)

393-403 Date Published 012004 Keywords Freeways, nitrogen dioxide, Passive sampler, schools Abstract The East Bay Children's Respiratory Health Study is examining associations...

44

Final Technical Report "Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation" Grant number : DE-FG02-86ER13615  

SciTech Connect

Title: Catalytic Hydrogenation of Carbon Monoxide and Olefin Oxidation Grant No. DE-FG02-86ER13615 PI: Wayland, B. B. (wayland@sas.upenn.edu) Abstract Development of new mechanistic strategies and catalyst materials for activation of CO, H2, CH4, C2H4, O2, and related substrates relevant to the conversion of carbon monoxide, alkanes, and alkenes to organic oxygenates are central objectives encompassed by this program. Design and synthesis of metal complexes that manifest reactivity patterns associated with potential pathways for the hydrogenation of carbon monoxide through metallo-formyl (M-CHO), dimetal ketone (M-C(O)-M), and dimetal dionyl (M-C(O)-C(O)-M) species is one major focus. Hydrocarbon oxidation using molecular oxygen is a central goal for methane activation and functionalization as well as regioselective oxidation of olefins. Discovery of new reactivity patterns and control of selectivity are pursued through designing new metal complexes and adjusting reaction conditions. Variation of reaction media promotes distinct reaction pathways that control both reaction rates and selectivities. Dimetalloradical diporphyrin complexes preorganize transition states for substrate reactions that involve two metal centers and manifest large rate increases over mono-metalloradical reactions of hydrogen, methane, and other small molecule substrates. Another broad goal and recurring theme of this program is to contribute to the thermodynamic database for a wide scope of organo-metal transformations in a range of reaction media. One of the most complete descriptions of equilibrium thermodynamics for organometallic reactions in water and methanol is emerging from the study of rhodium porphyrin substrate reactions in aqueous and alcoholic media. Water soluble group nine metalloporphyrins manifest remarkably versatile substrate reactivity in aqueous and alcoholic media which includes producing rhodium formyl (Rh-CHO) and hydroxy methyl (Rh-CH2OH) species. Exploratory directions for this program include expending new strategies for anti-Markovnikov addition of water, alcohols, and amines with olefins, developing catalytic reactions of CO to give formamides and formic esters, and evaluating the potential for coupling reactions of CO to produce organic building blocks.

Wayland, B.B.

2009-08-31T23:59:59.000Z

45

Method and apparatus for selective removal of carbon monoxide  

DOE Patents (OSTI)

There is provided a method and apparatus for treatment of a hydrogen-rich gas to reduce the carbon monoxide content thereof by reacting the carbon monoxide in the gas with an amount of oxygen sufficient to oxidize at least a portion of the carbon monoxide in the presence of a catalyst in a desired temperature range without substantial reaction of hydrogen. The catalyst is an iridium-based catalyst dispersed on, and supported on, a carrier. In the presence of the catalyst, carbon monoxide in a hydrogen-rich feed gas is selectively oxidized such that a product stream is produced with a very low carbon monoxide content.

Borup, Rodney L. (East Rochester, NY); Skala, Glenn W. (Churchville, NY); Brundage, Mark A. (Pittsford, NY); LaBarge, William J. (Bay City, MI)

2000-01-01T23:59:59.000Z

46

Removal of nitrogen oxides from a gas stream by using monatomic nitrogen induced by a pulsed arc  

DOE Green Energy (OSTI)

The effectiveness of N atoms, nitrogen, induced by a pulsed electric arc, in reducing nitric oxide (NO) and nitrogen dioxide (NO{sub 2}) was studied. Goal is reduction of nitrogen oxides (NO{sub x}) from automobile emissions by this alternative technique, which can be cost-effective and has the potential to reduce NO{sub x} in exhaust containing up to 10% oxygen. Initial tests with 100, 500, and 1,000 ppM NO in pure nitrogen have shown that a greater than 50% reduction of NO/NO{sub x} is readily achievable. At an NO concentration of 100 ppM, a greater than 90% NO/NO{sub x} reduction was recorded. Different flow rates of the monatomic nitrogen and the gas stream were tested. The flow rate of the monatomic nitrogen did not have a significant effect on the reduction efficiency, unlike the flow rate of the gas stream. The cross-sectional flow area of the gas stream was varied in order to assess whether the proximity of the gas stream to the arc would affect NO/NO{sub x} reduction. Results of the tests revealed that the smallest cross-sectional area had the best reduction, but also the highest chance of contacting the arc. The composition of the gas stream was also varied to elucidate the effects of N0{sub 2} and 0{sub 2} on the NO/NO{sub x} reduction efficiency. When N0{sub 2} and 0{sub 2} are present in the gas stream, both gases lower the reduction efficiency significantly by creating more NO or N0{sub 2}. Experiments are continuing to improve the reduction efficiency. The electrical power, a function of pulse frequency, voltage, and current, was treated as a key parameter in the investigation. The power consumption of the high-voltage purser apparatus for a 100-kW engine was estimated to be 3 kW.

Ng, H.K.; Novick, V.J.; Sekar, R.R. [Argonne National Lab., IL (United States); Pierucci, K.A. [Illinois Inst. of Tech., Chicago, IL (United States); Geise, M.F. [Notre Dame Univ., IN (United States)

1995-01-01T23:59:59.000Z

47

Carbon Monoxide Safety Tips  

E-Print Network (OSTI)

Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist.

Shaw, Bryan W.; Garcia, Monica L.

1999-07-26T23:59:59.000Z

48

Electrical and physical characteristics of HfLaON-gated metal-oxide-semiconductor capacitors with various nitrogen concentration profiles  

Science Conference Proceedings (OSTI)

The comparative studies of electrical and physical characteristics of HfLaON-gated metal-oxide-semiconductor (MOS) capacitors with various nitrogen concentration profiles (NCPs) were investigated. Various NCPs in HfLaON gate dielectrics were adjusted ... Keywords: Charge trapping, Current-conduction, High-k dielectric, Metal-oxide-semiconductor (MOS), Nitrogen concentration profiles (NCPs)

Chin-Lung Cheng; Jeng-Haur Horng; Hung-Yang Tsai

2011-02-01T23:59:59.000Z

49

On the Ratio of Sulfur Dioxide to Nitrogen Oxides as an Indicator of Air Pollution Sources  

Science Conference Proceedings (OSTI)

The ratio of sulfur dioxide to nitrogen oxides (RSN = SO2/NOx) is one indicator of air pollution sources. The role of this ratio in source attribution is illustrated here for the Ashdod area, located in the southern coastal plain of Israel. The ...

Ronit Nirel; Uri Dayan

2001-07-01T23:59:59.000Z

50

Nitrogen oxide -- Sensors and systems for engine management  

DOE Green Energy (OSTI)

The goal of this Cooperative Research and Development (CRADA) effort is to further develop sensors and sensor systems in order to meet current and anticipated air emissions requirements due to the operation of Defense Program facilities and the emission standards imposed on new vehicles operating in this country. Specific objectives of this work are to be able to measure and control on-line and in real-time, emissions, engine operation, air-to-fuel intake ratios, and throttle/accelerator positions in future models of consumer automobiles. Sensor and application specific integrated circuit developments within Lockheed Martin Energy Systems are applicable to the monitoring and engine controls needed by General Motors. In the case of emissions sensors, base technology in thick/thin film sensors and optical systems will be further developed to address the combination of high temperature and accumulated deposits expected in the exhaust stream. Other technologies will also be explored to measure fuel-to-air ratios and technologies such as fiber optic and acoustic wave devices that are applicable to the combustion sensing on an individual base. Two non-contact rotary position sensors have been developed for use in control-by-wire throttle control applications. The two CRADA developed sensors consist of a non-contact, differential capacitance position transducer and a custom complementary metal oxide semiconductor (C-MOS) application specific integrated circuit (ASIC) suitable for use in both passenger and engine compartments.

Hiller, J.M.; Bryan, W.L. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Miller, C.E. [General Motors, Inc., Flint, MI (United States). A.C. Rochester Div.

1997-06-24T23:59:59.000Z

51

An experimental investigation of the ignition properties of hydrogen and carbon monoxide  

E-Print Network (OSTI)

for syngas turbine applications S.M. Walton *, X. He, B.T. Zigler, M.S. Wooldridge Department of Mechanical of simulated syngas mixtures of hydrogen (H2), carbon monoxide (CO), oxygen (O2), nitrogen (N2), and carbon. Keywords: Carbon monoxide; Hydrogen; Syngas; Ignition; Rapid compression facility 1. Introduction Syngas

Wooldridge, Margaret S.

52

NATURAL GAS VARIABILITY IN CALIFORNIA: ENVIRONMENTAL IMPACTS AND DEVICE PERFORMANCE EXPERIMENTAL EVALUATION OF POLLUTANT EMISSIONS FROM RESIDENTIAL APPLIANCES  

E-Print Network (OSTI)

emission factors for carbon monoxide, nitrogen oxidesnitrogen dioxide, emission factors were determined for carbon monoxide, nitrogen oxides, nitrogen dioxide, 

Singer, Brett C.

2010-01-01T23:59:59.000Z

53

Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process  

DOE Patents (OSTI)

A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.

Gardner, Timothy J. (Albuquerque, NM); Lott, Stephen E. (Edgewood, NM); Lockwood, Steven J. (Albuquerque, NM); McLaughlin, Linda I. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

54

DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS  

SciTech Connect

Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. Evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with methane. Since the replacement of ammonia by methane is commercially very attractive, in this project, the effect of promoters on the activity and selectivity of copper oxide/cerium oxide-based catalysts and the reaction mechanism for the SCR with methane was investigated. Unpromoted and promoted catalysts were investigated for their SCR activity with methane in a microreactor setup and also, by the temperature-programmed desorption (TPD) technique. The results from the SCR experiments indicated that manganese is a more effective promoter than the other metals (Rh, Li, K, Na, Zn, and Sn) for the supported copper oxide-ceria catalysts under study. The effectiveness of the promoter increased with the increase in Ce/Cu ratio. Among the catalysts tested, the Cu1Ce3 catalyst promoted with 1 weight % Mn was found to be the best catalyst for the SCR of NO with methane. This catalyst was subjected to long-term testing at the facilities of our industrial partner TDA Research. TDA report indicated that the performance of this catalyst did not deteriorate during 100 hours of operation and the activity and selectivity of the catalyst was not affected by the presence of SO{sub 2}. The conversions obtained by TDA were significantly lower than those obtained at Hampton University due to the transport limitations on the reaction rate in the TDA reactor, in which 1/8th inch pellets were used while the Hampton University reactor contained 250-425-{micro}m catalyst particles. The selected catalyst was also tested at the TDA facilities with high-sulfur heavy oil as the reducing agent. Depending on the heavy oil flow rate, up to 100% NO conversions were obtained. The temperature programmed desorption studies a strong interaction between manganese and cerium. Presence of manganese not only enhanced the reduction rate of NO by methane, but also significantly improved the N{sub 2} selectivity. To increase the activity of the Mn-promoted catalyst, the manganese content of the catalyst need to be optimized and different methods of catalyst preparation and different reactor types need to be investigated to lower the transport limitations in the reactor.

Ates Akyurtlu; Jale F. Akyurtlu

2003-11-30T23:59:59.000Z

55

Oil shale oxidation at subretorting temperatures  

SciTech Connect

Green River oil shale was air oxidized at subretorting temperatures. Off gases consisting of nitrogen, oxygen, carbon monoxide, carbon dioxide, and water were monitored and quantitatively determined. A mathematical model of the oxidation reactions based on a shrinking core model has been developed. This model incorporates the chemical reaction of oxygen and the organic material in the oil shale as well as the diffusivity of the oxygen into the shale particle. Diffusivity appears to be rate limiting for the oxidation. Arrhenius type equations, which include a term for oil shale grade, have been derived for both the chemical reaction and the diffusivity.

Jacobson, I.A. Jr.

1980-06-01T23:59:59.000Z

56

Parameters affecting nitrogen oxides in a Coal-Fired Flow Facility system  

DOE Green Energy (OSTI)

The unusually high temperature in the primary combustor of the Coal-Fired Magnetohydrodynamics (MHD) power generation system causes much higher nitrogen oxides (NO{sub x}) to be produced than in a conventional coal fired generation system. In order to lower the NO{sub x} concentration to an acceptable level, it is important to know how parameters of the MM power generation system affect the NO{sub x} concentration. This thesis investigates those effects in the Coal-Fired Flow Facility (CFFF) at the University of Tennessee Space Institute under the contract of US Department Of Energy (DOE). With thermodynamic and kinetic computer codes, the theoretical studies were carried out on the parameters of the CFFF system. The results gathered from the computer codes were analyzed and compared with the experimental data collected during the LMF5J test. The thermodynamic and kinetic codes together modeled the NO.{sub x} behavior with reasonable accuracy while some inconsistencies happened at the secondary combustor inlet.

Lu, Xiaoliang

1996-03-01T23:59:59.000Z

57

Integrated assessment of the spatial variability of ozone impacts from emissions of nitrogen oxides  

Science Conference Proceedings (OSTI)

This paper examines the ozone (O{sub 3}) damages caused by nitrogen oxides (NOx) emissions in different locations around the Atlanta metropolitan area during a summer month. Ozone impacts are calculated using a new integrated assessment model that links pollution emissions to their chemical transformation, transport, population exposures, and effects on human health. It was found that increased NOx emissions in rural areas around Atlanta increase human exposure to ambient O{sub 3} twice as much as suburban emissions. However, increased NOx emissions in central city Atlanta actually reduce O{sub 3} exposures. For downtown emissions, the reduction in human exposures to O{sub 3} from titration by NO in the central city outweighs the effects from increased downwind O{sub 3}. The results indicate that the marginal damage from NOx emissions varies greatly across a metropolitan area. The results raise concerns if cap and trade regulations cause emissions to migrate toward higher marginal damage locations. 22 refs., 4 figs., 2 tabs.

Daniel Q. Tong; Nicholas Z. Muller; Denise L. Mauzerall; Robert O. Mendelsohn [Princeton University, Princeton, NJ (United States). Science, Technology and Environmental Policy Program, Woodrow Wilson School of Public and International Affairs

2006-03-01T23:59:59.000Z

58

Environmental considerations of selected energy-conserving manufacturing process options. Volume XVII. Nitrogen oxides summary report. Final report  

SciTech Connect

Arthur D. Little, Inc. undertook a study of the 'Environmental Consideration of Selected Energy-Conserving Manufacturing Process Options.' Some 80 industrial process options were examined in 13 industrial sectors. Results were published in 15 volumes, including a summary, industry prioritization report, and 13 industry oriented reports. The present report summarizes the information regarding nitrogen oxide pollutants in the 13 industry reports. Topics considered include the following: Processes and potential nitrogen oxide emissions--(Bases of calculations, NOx control methods, petroleum refining industry, cement industry, olefins industry, alumina and aluminum industry, glass industry, copper industry, fertilizer industry, ammonia, iron and steel, phosphorus/phosphoric acid, textile industry, pulp and paper industry, and chlor-alkali industry).

1979-07-01T23:59:59.000Z

59

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network (OSTI)

2005). Particulate emissions from construction activities.M. S. , (2000b). In-use emissions from heavy- duty dieseland nitrogen dioxide emissions from gasoline- and diesel-

Millstein, Dev

2009-01-01T23:59:59.000Z

60

On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions  

E-Print Network (OSTI)

in soils cropped to corn with varying N fertilization. Can.as affected by tillage, corn-soybean-alfalfa rotations, andsoil nitrogen mineralization for corn production in eastern

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Implementing a time- and location-differentiated cap-and-trade program : flexible nitrogen oxide abatement from power plants in the eastern United States  

E-Print Network (OSTI)

Studies suggest that timing and location of emissions can change the amount of ozone formed from a given amount of nitrogen oxide (NOx) by a factor of five (Mauzerall et al. 2005). Yet existing NOx cap-and-trade programs ...

Martin, Katherine C

2007-01-01T23:59:59.000Z

62

Observation-Based Assessment of the Impact of Nitrogen Oxides Emissions Reductions on Ozone Air Quality over the Eastern United States  

Science Conference Proceedings (OSTI)

Ozone is produced by chemical interactions involving nitrogen oxides (NOx) and volatile organic compounds in the presence of sunlight. At high concentrations, ground-level ozone has been shown to be harmful to human health and to the environment. ...

Edith Gégo; P. Steven Porter; Alice Gilliland; S. Trivikrama Rao

2007-07-01T23:59:59.000Z

63

A cost-effectiveness analysis of alternative ozone control strategies : flexible nitrogen oxide (NOx) abatement from power plants in the eastern United States  

E-Print Network (OSTI)

Ozone formation is a complex, non-linear process that depends on the atmospheric concentrations of its precursors, nitrogen oxide (NOx) and Volatile Organic Compounds (VOC), as well as on temperature and the available ...

Sun, Lin, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

64

Production of carbon monoxide-free hydrogen and helium from a high-purity source  

DOE Patents (OSTI)

The invention provides vacuum swing adsorption processes that produce an essentially carbon monoxide-free hydrogen or helium gas stream from, respectively, a high-purity (e.g., pipeline grade) hydrogen or helium gas stream using one or two adsorber beds. By using physical adsorbents with high heats of nitrogen adsorption, intermediate heats of carbon monoxide adsorption, and low heats of hydrogen and helium adsorption, and by using vacuum purging and high feed stream pressures (e.g., pressures of as high as around 1,000 bar), pipeline grade hydrogen or helium can purified to produce essentially carbon monoxide -free hydrogen and helium, or carbon monoxide, nitrogen, and methane-free hydrogen and helium.

Golden, Timothy Christopher (Allentown, PA); Farris, Thomas Stephen (Bethlehem, PA)

2008-11-18T23:59:59.000Z

65

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-01-01T23:59:59.000Z

66

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains a minimum of 92 citations and includes a subject term index and title list.)

NONE

1995-01-01T23:59:59.000Z

67

Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search  

SciTech Connect

The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-05-01T23:59:59.000Z

68

Nitrogen oxides emission control through reburning with biomass in coal-fired power plants  

E-Print Network (OSTI)

Oxides of nitrogen from coal-fired power stations are considered to be major pollutants, and there is increasing concern for regulating air quality and offsetting the emissions generated from the use of energy. Reburning is an in-furnace, combustion control technology for NOx reduction. Another environmental issue that needs to be addressed is the rapidly growing feedlot industry in the United States. The production of biomass from one or more animal species is in excess of what can safely be applied to farmland in accordance with nutrient management plans and stockpiled waste poses economic and environmental liabilities. In the present study, the feasibility of using biomass as a reburn fuel in existing coal-fired power plants is considered. It is expected to utilize biomass as a low-cost, substitute fuel and an agent to control emission. The successful development of this technology will create environment-friendly, low cost fuel source for the power industry, provide means for an alternate method of disposal of biomass, and generate a possible revenue source for feedlot operators. In the present study, the effect of coal, cattle manure or feedlot biomass, and blends of biomass with coal on the ability to reduce NOx were investigated in the Texas A&M University 29.31 kW (100,000 Btu/h) reburning facility. The facility used a mixture of propane and ammonia to generate the 600 ppm NOx in the primary zone. The reburn fuel was injected using air. The stoichiometry tested were 1.00 to 1.20 in the reburn zone. Two types of injectors, circular jet and fan spray injectors, which produce different types of mixing within the reburn zone, were studied to find their effect on NOx emissions reduction. The flat spray injector performed better in all cases. With the injection of biomass as reburn fuel with circular jet injector the maximum NOx reduction was 29.9 % and with flat spray injector was 62.2 %. The mixing time was estimated in model set up as 936 and 407 ms. The maximum NOx reduction observed with coal was 14.4 % and with biomass it was 62.2 % and the reduction with blends lay between that of coal and biomass.

Arumugam, Senthilvasan

2004-12-01T23:59:59.000Z

69

Role of char during reburning of nitrogen oxides. First quarterly report, October 1, 1993--December 31, 1993  

SciTech Connect

Customarily, coal and lignite have not been considered viable reburning fuels for a number of reasons. NO reduction through homogeneous gas phase mechanisms is generally believed more important than the heterogeneous NO reduction on char; and coal devolatilization in the fuel rich environment generates only about 50% of the volatile hydrocarbon radicals than gaseous hydrocarbons under the same fuel-to-oxidant stoichiometry. In addition, the fuel nitrogen could result in additional nitrogen oxide emissions in the burnout stage. What has not been anticipated is the highly active nature of lignite char surface. First, it has been demonstrated in the literature that lignite char can be gasified by nitrogen oxide; second, the minerals in lignite char can catalyze the CO + NO and gasification reaction; and third, lignite char has a highly porous structure which is desirable for gas/solid reactions. The unique NO activity on char surface is expected to benefit the utilities which are involved in coal combustion and have to meet the stringent Clean Air Act Amendments of 1990. This program is aimed at a better understanding of the chemical and physical mechanisms involved in the reburning with chars. Char gasification rates will be measured with and without the presence of CO. Further, the rate of the char catalyzed CO + NO reaction will also be measured. Experiments have been conducted with a flow reactor which simulates the reburning stage. One bituminous coal and two lignites, one from North Dakota and the other from Mississippi, are used in these tasks. A unique component of this program is the use of the fractal concept in the estimations of these gas/solid reaction rates. The proposed program is designed to investigate the relative importance of these two reactions (char gasification and ash catalyzed CO + NO reactions) under reburning conditions.

Chen, Wei-Yin

1993-12-31T23:59:59.000Z

70

Method for removing heavy metal and nitrogen oxides from flue gas, device for removing heavy metal and nitrogen oxides from flue gas  

DOE Patents (OSTI)

A method for the simultaneous removal of oxides and heavy metals from a fluid is provided comprising combining the fluid with compounds containing alkali and sulfur to create a mixture; spray drying the mixture to create a vapor phase and a solid phase; and isolating the vapor phase from the solid phase. A device is also provided comprising a means for spray-drying flue gas with alkali-sulfide containing liquor at a temperature sufficient to cause the flue gas to react with the compounds so as to create a gaseous fraction and a solid fraction and a means for directing the gaseous fraction to a fabric filter.

Huang, Hann-Sheng; Livengood, Charles David

1997-12-01T23:59:59.000Z

71

Carbon Monoxide Tolerant Electrocatalyst with Low Platinum ...  

Carbon Monoxide Tolerant Electrocatalyst with Low Platinum Loading and a Process for its Preparation Brookhaven National Laboratory. Contact BNL About ...

72

Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream  

DOE Patents (OSTI)

A process and system for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous The government of the United States of America has rights in this invention pursuant to Contract No. DE-AC21-88MC 23174 awarded by the U.S. Department of Energy.

Cohen, Mitchell R. (Troy, NY); Gal, Eli (Lititz, PA)

1993-01-01T23:59:59.000Z

73

Regenerative process and system for the simultaneous removal of particulates and the oxides of sulfur and nitrogen from a gas stream  

DOE Patents (OSTI)

A process and system are described for simultaneously removing from a gaseous mixture, sulfur oxides by means of a solid sulfur oxide acceptor on a porous carrier, nitrogen oxides by means of ammonia gas and particulate matter by means of filtration and for the regeneration of loaded solid sulfur oxide acceptor. Finely-divided solid sulfur oxide acceptor is entrained in a gaseous mixture to deplete sulfur oxides from the gaseous mixture, the finely-divided solid sulfur oxide acceptor being dispersed on a porous carrier material having a particle size up to about 200 microns. In the process, the gaseous mixture is optionally pre-filtered to remove particulate matter and thereafter finely-divided solid sulfur oxide acceptor is injected into the gaseous mixture.

Cohen, M.R.; Gal, E.

1993-04-13T23:59:59.000Z

74

On-farm Assessment of Nitrogen Fertilizer application to corn on Nitrous Oxide Emissions  

E-Print Network (OSTI)

mitigation of greenhouse gas emissions by agriculture. Nutr.1998. Nitrous oxide emission in three years as affected by2008. Soil-surface gas emissions. p.851-861. In: M.R. Carter

2009-01-01T23:59:59.000Z

75

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents (OSTI)

Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

1996-12-31T23:59:59.000Z

76

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

SciTech Connect

Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

Mollot, Darren J. (Morgantown, WV); Bonk, Donald L. (Louisville, OH); Dowdy, Thomas E. (Orlando, FL)

1998-01-01T23:59:59.000Z

77

Removal of oxides of nitrogen from gases in multi-stage coal combustion  

DOE Patents (OSTI)

Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

1998-01-13T23:59:59.000Z

78

Air Pollution Control Regulations: No.27 - Control of Nitrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27 - Control of Nitrogen Oxide Emissions (Rhode Island) Air Pollution Control Regulations: No.27 - Control of Nitrogen Oxide Emissions (Rhode Island) Eligibility Commercial...

79

Method and system for the removal of oxides of nitrogen and sulfur from combustion processes  

DOE Patents (OSTI)

A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

Walsh, John V. (Glendora, CA)

1987-12-15T23:59:59.000Z

80

Zevenhoven & Kilpinen NITROGEN 13.4.2002 4-34 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed  

E-Print Network (OSTI)

to gain importance. These processes comprise combustion or gasification stages at elevated pressure in gasification processes 4.13.1 Formation of nitrogen species during gasification In gasification, a solid.3..0.4). One of the challenges met at developing the (pressurized) gasification technique called the IGCC

Laughlin, Robert B.

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Zevenhoven & Kilpinen NITROGEN 18.1.2004 4-35 4.11 Chemistry of nitrogen oxides at atmospheric fluidized bed  

E-Print Network (OSTI)

. As the laughing gas in a burner #12;Zevenhoven & Kilpinen NITROGEN 18.1.2004 4-40 flame enters hot zones, or "combustion" in a fuel cell (+Chapter 2). Combustion of the gas in a gas turbine or engine may result, flame length and where hot/cold spots are), 3) inlet pressure/ temperature, 4) spark or fuel injection

Zevenhoven, Ron

82

Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission Requirements (Ohio) Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission...

83

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Proto col for US Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben, JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for US Midwest Agriculture. In Journal of Mitigation and Adaptation Strategies for Global Change,Volume 15, Number 2, 2010, pp. 185-204. Link to Journal Publication: See Journal of Mitigation and Adaptation Strategies for Global Change.

2010-09-03T23:59:59.000Z

84

Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Redu ction Protocol for U.S. Midwest Agriculture  

Science Conference Proceedings (OSTI)

Status: Published Citation: Millar, N; Robertson, GP; Grace, PR; Gehl, RJ; and Hoben; JP. 2010. Nitrogen Fertilizer Management for Nitrous Oxide (N2O) Mitigation in Intensive Corn (Maize) Production: An Emissions Reduction Protocol for U.S. Midwest Agriculture. In Mitigation and Adaptation Strategies for Global Change, Volume 15, Number 2, 2010, pp. 185-204. A peer-reviewed journal article that identifies, describes and analyzes socio-economic factors that may encourage or inhibit farmers from participat...

2009-12-17T23:59:59.000Z

85

Oxidation catalyst  

DOE Patents (OSTI)

The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

Ceyer, Sylvia T. (Cambridge, MA); Lahr, David L. (Cambridge, MA)

2010-11-09T23:59:59.000Z

86

Thermal and combined thermal and radiolytic reactions involving nitrous oxide, hydrogen, nitrogen, and ammonia in contact with tank 241-SY-101 simulated waste  

DOE Green Energy (OSTI)

Work described in this report was conducted at Pacific Northwest National Laboratory (PNNL) for the Flammable Gas Safety Project, the purpose of which is to develop information needed to support Westinghouse Hanford Company (WHC) in their efforts to ensure the safe interim storage of wastes at the Hanford Site. Described in this report are the results of tests to evaluate the rates of thermal and combined thermal and radiolytic reactions involving flammable gases in the presence of Tank 241-SY-101 simulated waste. Flammable gases generated by the radiolysis of water and by the thermal and radiolytic decomposition of organic waste constituents may themselves participate in further reactions. Examples include the decomposition of nitrous oxide to yield nitrogen and oxygen, the reaction of nitrous oxide and hydrogen to produce nitrogen and water, and the reaction of nitrogen and hydrogen to produce ammonia. The composition of the gases trapped in bubbles in the wastes might therefore change continuously as a function of the time that the gas bubbles are retained.

Bryan, S.A.; Pederson, L.R.

1996-02-01T23:59:59.000Z

87

THE NITROGEN OXIDES CONTROVERSY  

E-Print Network (OSTI)

2 ) by far ultraviolet solar radiation (hv) 02 + hv (A solar radiation above the atmosphere.by Chapman concerning solar radiation above the atmosphere

Johnston, Harold S.

2012-01-01T23:59:59.000Z

88

Abatement of Air Pollution: The Clean Air Interstate Rule (CAIR) Nitrogen Oxides (Nox) Ozone Season Trading Program (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations may apply to fossil-fuel fired emission units, and describe nitrogen emission allocations that owners of such units must meet. The regulations also contain provisions for...

89

Effect of fresh green waste and green waste compost on mineral nitrogen, nitrous oxide and carbon dioxide from a Vertisol  

Science Conference Proceedings (OSTI)

Incorporation of organic waste amendments to a horticultural soil, prior to expected risk periods, could immobilise mineral N, ultimately reducing nitrogen (N) losses as nitrous oxide (N{sub 2}O) and leaching. Two organic waste amendments were selected, a fresh green waste (FGW) and green waste compost (GWC) as they had suitable biochemical attributes to initiate N immobilisation into the microbial biomass and organic N forms. These characteristics include a high C:N ratio (FGW 44:1, GWC 35:1), low total N (14%). Both products were applied at 3 t C/ha to a high N (plus N fertiliser) or low N (no fertiliser addition) Vertisol soil in PVC columns. Cumulative N{sub 2}O production over the 28 day incubation from the control soil was 1.5 mg/N{sub 2}O/m{sup 2}, and 11 mg/N{sub 2}O/m{sup 2} from the control + N. The N{sub 2}O emission decreased with GWC addition (P < 0.05) for the high N soil, reducing cumulative N{sub 2}O emissions by 38% by the conclusion of the incubation. Analysis of mineral N concentrations at 7, 14 and 28 days identified that both FGW and GWC induced microbial immobilisation of N in the first 7 days of incubation regardless of whether the soil environment was initially high or low in N; with the FGW immobilising up to 30% of available N. It is likely that the reduced mineral N due to N immobilisation led to a reduced substrate for N{sub 2}O production during the first week of the trial, when soil N{sub 2}O emissions peaked. An additional finding was that FGW + N did not decrease cumulative N{sub 2}O emissions compared to the control + N, potentially due to the fact that it stimulated microbial respiration resulting in anaerobic micro sites in the soil and ultimately N{sub 2}O production via denitrification. Therefore, both materials could be used as post harvest amendments in horticulture to minimise N loss through nitrate-N leaching in the risk periods between crop rotations. The mature GWC has potential to reduce N{sub 2}O, an important greenhouse gas.

Vaughan, Sarah M., E-mail: s.vaughan@uq.edu.au [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia); Dalal, Ram C. [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia); Department of Environment and Resource Management, 80 Meiers Rd., Indooroopilly, QLD 4068 (Australia); Harper, Stephen M. [Department of Employment, Economic Development and Innovation, Warrego Highway, Gatton, QLD 4343 (Australia); Menzies, Neal W. [School of Land, Crop and Food Sciences, University of Queensland, St. Lucia, QLD 4072 (Australia)

2011-08-15T23:59:59.000Z

90

Zinc Thiolate Reactivity toward Nitrogen Oxides: Insights into the Interaction of Zn[superscript 2+] with S-Nitrosothiols and Implications for Nitric Oxide Synthase  

E-Print Network (OSTI)

Zinc thiolate complexes containing N[subscript 2]S tridentate ligands were prepared to investigate their reactivity toward reactive nitrogen species, chemistry proposed to occur at the zinc tetracysteine thiolate site of ...

Kozhukh, Julia

91

Nitrogen spark denoxer  

DOE Patents (OSTI)

A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

Ng, Henry K. (Naperville, IL); Novick, Vincent J. (Downers Grove, IL); Sekar, Ramanujam R. (Naperville, IL)

1997-01-01T23:59:59.000Z

92

Nitrogen oxide abatement by distributed fuel addition. Quarterly report No. 9, August 1, 1989--October 31, 1989  

DOE Green Energy (OSTI)

Experiments were conducted to investigate the processes that influence the destruction of NO in the fuel rich stage of the reburning process. The objective is to gain a better understanding of the mechanisms that control the fate of coal nitrogen in the fuel rich zone of a combustion process. Time resolved profiles of temperature, major (CO{sub 2}, CO, H{sub 2}O, O{sub 2}, H{sub 2} and N{sub 2}), nitrogenous (NO, HCN and NH{sub 3}) and hydrocarbon (CH{sub 4} and C{sub 2}H{sub 2}) species were obtained for various reburning tests. A slow continuous source of HCN was observed in the reburn zone for most tests. HCN formation from NO + CH{sub i} reactions would partially explain this trend. It has been proposed in the past that these reactions would be fast (less than 0.1s) and the produced HCN would be short lived. However, evidence was provided in this study indicating that NO + CH{sub i} reactions might contribute to HCN formation at longer residence times in the reburn zone. Reactions of molecular nitrogen with hydrocarbon radicals were determined to be a significant source of HCN formation, especially as NO levels decreased in the reburn zone. The results of several tests would justify the exclusion of continued coal devolatilization in the reburn zone as a major source of HCN.

Wendt, J.O.L.; Mereb, J.B.

1989-11-20T23:59:59.000Z

93

Structure, optical, and electrical properties of indium tin oxide thin films prepared by sputtering at room temperature and annealed in air or nitrogen  

Science Conference Proceedings (OSTI)

Indium tin oxide (ITO) thin films have been grown onto soda-lime glass substrates by sputtering at room temperature with various oxygen to argon partial pressure ratios. After deposition, the samples have been annealed at temperatures ranging from 100 to 500 degree sign C in nitrogen or in air. The structure, optical, and electrical characteristics of the ITO coatings have been analyzed as a function of the deposition and the annealing parameters by x-ray diffraction, spectrophotometry, and Hall effect measurements. It has been found that the as-grown amorphous layers crystallize in the cubic structure by heating above 200 degree sign C. Simultaneously, the visible optical transmittance increases and the electrical resistance decreases, in proportions that depend mainly on the sputtering conditions. The lowest resistivity values have been obtained by annealing at 400 degree sign C in nitrogen, where the highest carrier concentrations are achieved, related to oxygen vacancy creation. Some relationships between the analyzed properties have been established, showing the dependence of the cubic lattice distortion and the infrared optical characteristics on the carrier concentration.

Guillen, C.; Herrero, J. [Departamento de Energia, CIEMAT, Avda Complutense 22, 28040 Madrid (Spain)

2007-04-01T23:59:59.000Z

94

The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NOx) Emissions From Coal-Fired Boilers Demonstration Project: A DOE Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 The Advanced Tangentially Fired Combustion Techniques for the Reduction of Nitrogen Oxides (NO ) Emissions From Coal-Fired Boilers X Demonstration Project: A DOE Assessment March 2000 U.S. Department of Energy National Energy Technology Laboratory P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 and P.O. Box 10940, 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

95

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard  

Gasoline and Diesel Fuel Update (EIA)

3 3 ERRATA Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: Sulfur Dioxide, Nitrogen Oxides, Carbon Dioxide, and Mercury and a Renewable Portfolio Standard July 2001 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This Service Report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Contacts This report was prepared by the Office of Integrated Analysis and Forecasting, Energy Information Adminis- tration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler @eia.doe.gov), Director of the Office of Integrated Analysis and Forecasting, Scott B. Sitzer (202/586-2308,

96

Process for producing methane from gas streams containing carbon monoxide and hydrogen  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

Frost, Albert C. (Congers, NY)

1980-01-01T23:59:59.000Z

97

Carbon Monoxide in type II supernovae  

E-Print Network (OSTI)

Infrared spectra of two type II supernovae 6 months after explosion are presented. The spectra exhibit a strong similarity to the observations of SN 1987A and other type II SNe at comparable epochs. The continuum can be fitted with a cool black body and the hydrogen lines have emissivities that are approximately those of a Case B recombination spectrum. The data extend far enough into the thermal region to detect emission by the first overtone of carbon monoxide. The molecular emission is modeled and compared with that in the spectra of SN 1987A. It is found that the flux in the CO first overtone is comparable to that found in SN 1987A. We argue that Carbon Monoxide forms in the ejecta of all type II SNe during the first year after explosion.

J. Spyromilio; B. Leibundgut; R. Gilmozzi

2001-07-16T23:59:59.000Z

98

Enhanced carbon monoxide utilization in methanation process  

DOE Green Energy (OSTI)

Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

Elek, Louis F. (Peekskill, NY); Frost, Albert C. (Congers, NY)

1984-01-01T23:59:59.000Z

99

Nitrogen sorption  

DOE Patents (OSTI)

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas. 5 figs.

Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

1996-05-14T23:59:59.000Z

100

Nitrogen sorption  

DOE Patents (OSTI)

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Nitrogen sorption  

DOE Patents (OSTI)

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Bend, OR); Miller, Warren K. (Bend, OR)

1996-01-01T23:59:59.000Z

102

Nitrogen sorption  

DOE Patents (OSTI)

Nitrogen-sorbing and -desorbing compositions and methods of using the same are disclosed, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, D.T.; Babcock, W.C.; Edlund, D.J.; Miller, W.K.

1993-07-06T23:59:59.000Z

103

New chemistry with gold-nitrogen complexes: synthesis and characterization of tetra-, tri-, and dinuclear gold(I) amidinate complexes. Oxidative-addition to the dinuclear gold(I) amidinate  

E-Print Network (OSTI)

Nitrogen ligands have been little studied with gold(I) and almost no chemistry has been described using anionic bridging nitrogen ligands. This dissertation concerns the impact of the bridging ligands amidinate, ArNHC(H)NAr, on the chemistry of gold(I) and, in particular, the effect of substituents on the molecular arrangement. The electronic vs. steric effect of the substituents on the molecular arrangement of gold(I) amidinates complexes is studied in detail. Tetra-, tri-, and dinuclear gold(I) amidinate complexes are synthesized and characterized using X-ray diffraction. Spectroscopic and electrochemical studies of the amidinate complexes are described. Catalytic studies suggest that gold amidinates and related gold nitrogen complexes are the best catalyst precursors for CO oxidation on TiO2 surface reported to date (87% conversion). The dinuclear gold(I) amidinate complex with a Auâ ¦Au distance of 2.711(3) Ă is rare. To our knowledge, there is only one other example of a symmetrical dinuclear gold(I) nitrogen complex. Oxidative-addition reactions to the dinuclear gold(I) complex, [Au2(2,6-Me2-form)2] are studied in detail and result in the formation of gold(II) complexes. The gold(II) amidinate complexes are the first formed with nitrogen ligands. The complexes are stable at room temperature. Mixed ligand tetranuclear gold(I) clusters and tetranuclear mixed Au-Ag metal clusters of pyrazolate and amidinate ligands are synthesized and characterized using Xray diffraction.

Abdou, Hanan Elsayed

2006-05-01T23:59:59.000Z

104

Influence of fuel sulfur content on emissions from diesel engines equipped with oxidation catalysts.  

E-Print Network (OSTI)

??Diesel oxidation catalysts (DOCs) are a viable exhaust aftertreatment alternative for alleviating regulated exhaust emissions of hydrocarbon (HC), carbon monoxide (CO), and particulate matter (PM)… (more)

Evans, Jason Carter.

2000-01-01T23:59:59.000Z

105

The Performance of Planar Solid Oxide Fuel Cells using Hydrogen-depleted Coal Syngas.  

E-Print Network (OSTI)

??Since solid oxide fuel cells can operate on fuel containing both hydrogen and carbon monoxide, it may prove possible to remove hydrogen from syngas streams… (more)

Burnette, David D.

2007-01-01T23:59:59.000Z

106

Development of Nanofiller-Modulated Polymeric Oxygen Enrichment Membranes for Reduction of Nitrogen Oxides in Coal Combustion  

Science Conference Proceedings (OSTI)

North Carolina A&T State University in Greensboro, North Carolina, has undertaken this project to develop the knowledge and the material to improve the oxygen-enrichment polymer membrane, in order to provide high-grade oxygen-enriched streams for coal combustion and gasification applications. Both experimental and theoretical approaches were used in this project. The membranes evaluated thus far include single-walled carbon nano-tube, nano-fumed silica polydimethylsiloxane (PDMS), and zeolite-modulated polyimide membranes. To document the nanofiller-modulated polymer, molecular dynamics simulations have been conducted to calculate the theoretical oxygen molecular diffusion coefficient and nitrogen molecular coefficient inside single-walled carbon nano-tube PDMS membranes, in order to predict the effect of the nano-tubes on the gas-separation permeability. The team has performed permeation and diffusion experiments using polymers with nano-silica particles, nano-tubes, and zeolites as fillers; studied the influence of nano-fillers on the self diffusion, free volume, glass transition, oxygen diffusion and solubility, and perm-selectivity of oxygen in polymer membranes; developed molecular models of single-walled carbon nano-tube and nano-fumed silica PDMS membranes, and zeolites-modulated polyimide membranes. This project partially supported three graduate students (two finished degrees and one transferred to other institution). This project has resulted in two journal publications and additional publications will be prepared in the near future.

Jianzhong Lou; Shamsuddin Ilias

2010-12-31T23:59:59.000Z

107

Nitrogen oxide abatement by distributed fuel addition. Quarterly report No. 12, May 1, 1990--July 31, 1990  

Science Conference Proceedings (OSTI)

The research reported here is concerned with the application of secondary fuel addition, otherwise known as reburning, as a means of NO{sub x} destruction downstream of the primary flame zone in boilers. This paper consists of two parts: First, results from a statistically correct design of parametric experiments on a laboratory coal combustor are presented. These allow the effects of the most important variables to be isolated and identified. Second, mechanisms governing the inter-conversion and destruction of nitrogenous species in the fuel rich reburning zone of a laboratory coal combustor were explored, using fundamental kinetic arguments. The objective here was to extract models, which can be used to estimate reburning effectiveness in other, more practical combustion configurations. Emphasis is on the use of natural gas as the reburning fuel for a pulverized coal primary flame. Then, reburning mechanisms occur in two regimes; one in which fast reactions between NO and hydrocarbons are usually limited by mixing; the other in which reactions have slowed and in which known gas phase chemistry controls. For the latter regime, a simplified model based on detailed gas phase chemical kinetic mechanisms and known rate coefficients was able to predict temporal profiles of NO, NH{sub 3} and HCN. Reactions with hydrocarbons played important roles in both regimes and the Fenimore N{sub 2} fixation reactions limited reburning effectiveness at low primary NO values.

Wendt, J.O.L.; Mereb, J.B.

1990-08-27T23:59:59.000Z

108

CO (Carbon Monoxide Mixing Ratio System) Handbook  

Science Conference Proceedings (OSTI)

The main function of the CO instrument is to provide continuous accurate measurements of carbon monoxide mixing ratio at the ARM SGP Central Facility (CF) 60-meter tower (36.607 °N, 97.489 °W, 314 meters above sea level). The essential feature of the control and data acquisition system is to record signals from a Thermo Electron 48C and periodically calibrate out zero and span drifts in the instrument using the combination of a CO scrubber and two concentrations of span gas (100 and 300 ppb CO in air). The system was deployed on May 25, 2005.

Biraud, S

2011-02-23T23:59:59.000Z

109

Search of medical literature for indoor carbon monoxide exposure  

SciTech Connect

This report documents a literature search on carbon monoxide. The search was limited to the medical and toxicological databases at the National Library of Medicine (MEDLARS). The databases searched were Medline, Toxline and TOXNET. Searches were performed using a variety of strategies. Combinations of the following keywords were used: carbon, monoxide, accidental, residential, occult, diagnosis, misdiagnosis, heating, furnace, and indoor. The literature was searched from 1966 to the present. Over 1000 references were identified and summarized using the following abbreviations: The major findings of the search are: (1) Acute and subacute carbon monoxide exposures result in a large number of symptoms affecting the brain, kidneys, respiratory system, retina, and motor functions. (2) Acute and subacute carbon monoxide (CO) poisonings have been misdiagnosed on many occasions. (3) Very few systematic investigations have been made into the frequency and consequences of carbon monoxide poisonings.

Brennan, T.; Ivanovich, M.

1995-12-01T23:59:59.000Z

110

Premixed Carbon Monoxide–Nitrous Oxide–Hydrogen Flames ...  

Science Conference Proceedings (OSTI)

... the combustion emission charac- teristics of stationary and mobile power plants. ... present data are in good agreement with the low-hydro- gen data ...

2012-12-06T23:59:59.000Z

111

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Dry Ice vs. Liquid Nitrogen Previous Video (Dry Ice vs. Liquid Nitrogen) Frostbite Theater Main Index Next Video (Shattering Pennies) Shattering Pennies Liquid Nitrogen Cooled...

112

Reduction of Carbon Monoxide. Past Research Summary  

DOE R&D Accomplishments (OSTI)

Research programs for the year on the preparation, characterization, and reactions of binuclear tantalum complexes are described. All evidence to date suggest the following of these dimeric molecules: (1) the dimer does not break into monomers under mild conditions; (2) intermolecular hydride exchange is not negligible, but it is slow; (3) intermolecular non-ionic halide exchange is fast; (4) the ends of the dimers can rotate partially with respect to one another. The binuclear tantalum hydride complexes were found to react with carbon monoxide to give a molecule which is the only example of reduction of CO by a transition metal hydride to give a complex containing a CHO ligand. Isonitrides also reacted in a similar manner with dimeric tantalum hydride. (ATT)

Schrock, R. R.

1982-00-00T23:59:59.000Z

113

Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission Requirements (Ohio) Carbon Monoxide, Ozone, Hydrocarbon Air Quality Standards, and Related Emission Requirements (Ohio) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Savings Category Buying & Making Electricity Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter defining the roles of the Ohio Environmental Protection Agency gives specific detail on the regulation point-source air pollution for a variety of industries and pollutants.

114

Carbon Monoxide Poisoning Avoided Through Weatherization | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Monoxide Poisoning Avoided Through Weatherization Carbon Monoxide Poisoning Avoided Through Weatherization Carbon Monoxide Poisoning Avoided Through Weatherization October 5, 2010 - 10:56am Addthis Joshua DeLung What does this mean for me? Getting your heating pipes fixed can not only save you money, but also improve your health. "If we'd had a couple cold nights where I would've had to use my heat more than usual, it probably would've put me to sleep and left me there -- it was just too much carbon monoxide coming out in the house," says Mark Pickartz, of Van Buren, Ark. Pickartz's home was weatherized in February by his local community action agency, Crawford-Sebastian Community Development Council (C-SCDC). When energy auditors arrived to his house, they found that his home's heater was severely leaking the poisonous gas. C-SCDC, based in Fort Smith, Ark.,

115

Photochemistry and Transport of Carbon Monoxide in the Middle Atmosphere  

Science Conference Proceedings (OSTI)

Two-dimensional model calculations of the photochemistry and transport of carbon monoxide in the stratosphere, mesosphere, and lower thermosphere are presented. Results are compared to available observations at midlatitudes, where both ...

S. Solomon; R. R. Garcia; J. J. Olivero; R. M. Bevilacqua; P. R. Schwartz; R. T. Clancy; D. O. Muhleman

1985-05-01T23:59:59.000Z

116

Inhibition of Premixed Carbon Monoxide-Hydrogen-Oxygen ...  

Science Conference Proceedings (OSTI)

... The fuel gas is carbon monoxide (Mathe- son UHP, 99.9% CO, with the sum of ... filters) gener- ates the schlieren image of the flame for capture by a ...

2012-09-07T23:59:59.000Z

117

OpenEI - nitrogen oxides  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4610 en Hourly Energy Emission Factors for Electricity Generation in the United States http:en.openei.orgdatasetsnode488...

118

The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

Xu, Xin, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

119

Metal atom oxidation laser  

DOE Patents (OSTI)

A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

Jensen, R.J.; Rice, W.W.; Beattie, W.H.

1975-10-28T23:59:59.000Z

120

Metal atom oxidation laser  

DOE Patents (OSTI)

A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

Jensen, R.J.; Rice, W.W.; Beattie, W.H.

1975-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nox control for high nitric oxide concentration flows through combustion-driven reduction  

DOE Patents (OSTI)

An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

Yeh, James T. (Bethel Park, PA); Ekmann, James M. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA); Drummond, Charles J. (Churchill, PA)

1989-01-01T23:59:59.000Z

122

Electrochemical process for the preparation of nitrogen fertilizers  

DOE Patents (OSTI)

The present invention provides methods and apparatus for the preparation of nitrogen fertilizers including ammonium nitrate, urea, urea-ammonium nitrate, and/or ammonia utilizing a source of carbon, a source of nitrogen, and/or a source of hydrogen. Implementing an electrolyte serving as ionic charge carrier, (1) ammonium nitrate is produced via the reduction of a nitrogen source at the cathode and the oxidation of a nitrogen source at the anode; (2) urea or its isomers are produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source; (3) ammonia is produced via the reduction of nitrogen source at the cathode and the oxidation of a hydrogen source at the anode; and (4) urea-ammonium nitrate is produced via the simultaneous cathodic reduction of a carbon source and a nitrogen source, and anodic oxidation of a nitrogen source. The electrolyte can be solid.

Aulich, Ted R.; Olson, Edwin S.; Jiang, Junhua

2013-03-19T23:59:59.000Z

123

Atmospheric Nitrogen Fixation by Lightning  

Science Conference Proceedings (OSTI)

The production Of nitrogen oxides (NO and NO2) by lightning flashes has been computed from a model of gaseous molecular reactions occurring as heated lightning-channel air cools by mixing with surrounding ambient air. The effect of ozone (O3) on ...

R. D. Hill; R. G. Rinker; H. Dale Wilson

1980-01-01T23:59:59.000Z

124

Understanding Nitrogen Fixation  

DOE Green Energy (OSTI)

The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from atmospheric nitrogen could, in principle, be more energy-efficient. This is particularly attractive giv

Paul J. Chirik

2012-05-25T23:59:59.000Z

125

Terpolymerization of ethylene, sulfur dioxide and carbon monoxide  

DOE Patents (OSTI)

This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

Johnson, Richard (Shirley, NY); Steinberg, Meyer (Huntington Station, NY)

1981-01-01T23:59:59.000Z

126

Removal of sulfur and nitrogen containing pollutants from discharge gases  

DOE Patents (OSTI)

Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

Joubert, James I. (Pittsburgh, PA)

1986-01-01T23:59:59.000Z

127

A Smart Sensor System for Carbon Monoxide Detection  

Science Conference Proceedings (OSTI)

This paper illustrates a smart sensor system for carbon monoxide detection. An innovative technological approach has been pursued to fabricate gas sensors on silicon substrate, compatible with IC fabrication. A mixed analog-digital electronic interface processes ... Keywords: sensor interfaces, sensors, sigma-delta converters

G. C. Cardinali; L. Dori; M. Fiorini; I. Sayago; G. Faglia; C. Perego; G. Sberveglieri; V. Liberali; F. Maloberti; D. Tonietto

1997-11-01T23:59:59.000Z

128

Ultraviolet photoelectron spectroscopy of molybdenum and molybdenum monoxide anions  

E-Print Network (OSTI)

of Utah, Salt Lake City, Utah 84112 Received 30 May 1995; accepted 23 October 1995 The 351 nm photoelectron spectra of Mo and MoO have been measured. The electron affinity of atomic molybdenum is 0.748 2 e- denum monoxide illustrates these difficulties especially well, since the molybdenum atomic ground state

Lineberger, W. Carl

129

Recovery of iron, carbon and zinc from steel plant waste oxides using the AISI-DOE postcombustion smelting technology  

SciTech Connect

This report describes a process to recover steel plant waste oxides to be used in the production of hot metal. The process flowsheet used at the pilot plant. Coal/coke breeze and iron ore pellets/waste oxides are charged into the smelting reactor. The waste oxides are either agglomerated into briquettes (1 inch) using a binder or micro-agglomerated into pellets (1/4 inch) without the use of a binder. The iron oxides dissolve in the slag and are reduced by carbon to produce molten iron. The gangue oxides present in the raw materials report to the slag. Coal charged to the smelter is both the fuel as well as the reductant. Carbon present in the waste oxides is also used as the fuel/reductant resulting in a decrease in the coal requirement. Oxygen is top blown through a central, water-cooled, dual circuit lance. Nitrogen is injected through tuyeres at the bottom of the reactor for stirring purposes. The hot metal and slag produced in the smelting reactor are tapped at regular intervals through a single taphole using a mudgun and drill system. The energy requirements of the process are provided by (i) the combustion of carbon to carbon monoxide, referred to as primary combustion and (ii) the combustion of CO and H{sub 2} to CO{sub 2} and H{sub 2}O, known as postcombustion.

Sarma, B. [Praxair, Inc., Tarrytown, NY (United States); Downing, K.B. [Fluor Daniel, Greenville, SC (United States); Aukrust, E.

1996-09-01T23:59:59.000Z

130

Nitrogen Deposition Data Available  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Deposition Data Available This data set, prepared by Elizabeth Holland and colleagues, contains data for wet and dry nitrogen-species deposition for the United States and...

131

Liquid Nitrogen Ice Cream  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Ice Cream If you have access to liquid nitrogen and the proper safety equipment and training, try this in place of your normal cryogenics demonstration Download...

132

A Sensor System Based on Semi-Conductor Metal Oxide Technology for In Situ Detection of Coal Fired Combustion Gases  

SciTech Connect

Sensor Research and Development Corporation (SRD) proposed a two-phase program to develop a robust, autonomous prototype analyzer for in situ, real-time detection, identification, and measurement of coal-fired combustion gases and perform field-testing at an approved power generation facility. SRD developed and selected sensor materials showing selective responses to carbon monoxide, carbon dioxide, nitric oxide, nitrogen dioxide, ammonia, sulfur dioxide and hydrogen chloride. Sensor support electronics were also developed to enable prototype to function in elevated temperatures without any issues. Field-testing at DOE approved facility showed the ability of the prototype to detect and estimate the concentration of combustion by-products accurately with relatively low false-alarm rates at very fast sampling intervals.

Brent Marquis

2007-05-31T23:59:59.000Z

133

Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas  

DOE Patents (OSTI)

A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

Pierantozzi, Ronald (Macungie, PA)

1985-01-01T23:59:59.000Z

134

Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas  

DOE Patents (OSTI)

A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

Pierantozzi, R.

1985-04-02T23:59:59.000Z

135

Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide  

DOE Patents (OSTI)

A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

Pierantozzi, R.

1985-04-09T23:59:59.000Z

136

Method for the purification of noble gases, nitrogen and hydrogen  

DOE Patents (OSTI)

A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.

Baker, John D. (Blackfoot, ID); Meikrantz, David H. (Idaho Falls, ID); Tuggle, Dale G. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

137

JV Task-121 Electrochemical Synthesis of Nitrogen Fertilizers  

SciTech Connect

An electrolytic renewable nitrogen fertilizer process that utilizes wind-generated electricity, N{sub 2} extracted from air, and syngas produced via the gasification of biomass to produce nitrogen fertilizer ammonia was developed at the University of North Dakota Energy & Environmental Research Center. This novel process provides an important way to directly utilize biosyngas generated mainly via the biomass gasification in place of the high-purity hydrogen which is required for Haber Bosch-based production of the fertilizer for the production of the widely used nitrogen fertilizers. Our preliminary economic projection shows that the economic competitiveness of the electrochemical nitrogen fertilizer process strongly depends upon the cost of hydrogen gas and the cost of electricity. It is therefore expected the cost of nitrogen fertilizer production could be considerably decreased owing to the direct use of cost-effective 'hydrogen-equivalent' biosyngas compared to the high-purity hydrogen. The technical feasibility of the electrolytic process has been proven via studying ammonia production using humidified carbon monoxide as the hydrogen-equivalent vs. the high-purity hydrogen. Process optimization efforts have been focused on the development of catalysts for ammonia formation, electrolytic membrane systems, and membrane-electrode assemblies. The status of the electrochemical ammonia process is characterized by a current efficiency of 43% using humidified carbon monoxide as a feedstock to the anode chamber and a current efficiency of 56% using high-purity hydrogen as the anode gas feedstock. Further optimization of the electrolytic process for higher current efficiency and decreased energy consumption is ongoing at the EERC.

Junhua Jiang; Ted Aulich

2008-11-30T23:59:59.000Z

138

JV Task-121 Electrochemical Synthesis of Nitrogen Fertilizers  

DOE Green Energy (OSTI)

An electrolytic renewable nitrogen fertilizer process that utilizes wind-generated electricity, N{sub 2} extracted from air, and syngas produced via the gasification of biomass to produce nitrogen fertilizer ammonia was developed at the University of North Dakota Energy & Environmental Research Center. This novel process provides an important way to directly utilize biosyngas generated mainly via the biomass gasification in place of the high-purity hydrogen which is required for Haber Bosch-based production of the fertilizer for the production of the widely used nitrogen fertilizers. Our preliminary economic projection shows that the economic competitiveness of the electrochemical nitrogen fertilizer process strongly depends upon the cost of hydrogen gas and the cost of electricity. It is therefore expected the cost of nitrogen fertilizer production could be considerably decreased owing to the direct use of cost-effective 'hydrogen-equivalent' biosyngas compared to the high-purity hydrogen. The technical feasibility of the electrolytic process has been proven via studying ammonia production using humidified carbon monoxide as the hydrogen-equivalent vs. the high-purity hydrogen. Process optimization efforts have been focused on the development of catalysts for ammonia formation, electrolytic membrane systems, and membrane-electrode assemblies. The status of the electrochemical ammonia process is characterized by a current efficiency of 43% using humidified carbon monoxide as a feedstock to the anode chamber and a current efficiency of 56% using high-purity hydrogen as the anode gas feedstock. Further optimization of the electrolytic process for higher current efficiency and decreased energy consumption is ongoing at the EERC.

Junhua Jiang; Ted Aulich

2008-11-30T23:59:59.000Z

139

Electrocatalytic reduction of carbon dioxide to carbon monoxide by rhenium and manganese polypyridyl catalysts  

E-Print Network (OSTI)

for reduction of carbon dioxide. IR-SpectroelectrochemicalElectrocatalytic reduction of carbon dioxide mediated by Re(Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (

Smieja, Jonathan Mark

2012-01-01T23:59:59.000Z

140

Carbon monoxide study - Seattle, Washington, October 6-November 2, 1977. Part 1. Executive summary report  

SciTech Connect

This report is a summary of EPA 910/9-78-054b, a study of the carbon monoxide problem in downtown Seattle.

Wilson, C.B.; Schweiss, J.W.

1978-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Transient PrOx carbon monoxide measurement, control, and optimization  

DOE Green Energy (OSTI)

Fuel processing systems for low temperature polymer electrolyte membrane (PEM) fuel cell systems require control of the carbon monoxide concentration to less than 100 ppm to 10 ppm in the anode feed. Conventional hydrocarbon fuel processors use a water-gas shift (WGS) reactor to react CO with water to form H2 and reduce the CO concentration. The CO conversion is limited by equilibrium at the outlet temperature of the WGS reactor. The WGS outlet CO concentration can range from over 1% to 2000 ppm depending on the system and its operating parameters. At these concentrations, CO poisons low temperature PEM fuel cells and the concentrations needs to be reduced further.

Inbody, M. A. (Michael A.); Borup, R. L. (Rodney L.); Tafoya, J. (Jose I.)

2002-01-01T23:59:59.000Z

142

717 Notices to Readers Carbon Monoxide Poisoning Deaths  

E-Print Network (OSTI)

Carbon Monoxide monoxide Poisoning (CO) is an odorless, — Continued colorless, nonirritating gas produced by the incomplete combustion of carbon-based fuels. CO exposure is responsible for more fatal unintentional poisonings in the United States than any other agent, with the highest incidence occurring during the cold-weather months (1). Although most of these deaths occur in residences or motor vehicles (2), two incidents among campers in Georgia illustrate the danger of CO in outdoor settings. This report describes the two incidents, which resulted in six deaths, and provides recommendations for avoiding CO poisoning in outdoor settings. Cases 1–4. On the afternoon of March 14, 1999, a 51-year-old man, his 10-year-old son, a 9-year-old boy, and a 7-year-old girl were found dead inside a zipped-up, 10-foot by 14-foot, two-room tent at their campsite in southeast Georgia (a pet dog also died). A propane gas stove, still burning, was found inside the tent; the stove apparently had been brought inside to provide warmth. The occupants had died during the night. Postmortem carboxyhemoglobin (COHb) levels measured 50%, 63%, 69%, and 63%, respectively, in the four decedents (in the general U.S. population, COHb concentrations

Basidiobolomycosis Arizona; North Carolinia

1999-01-01T23:59:59.000Z

143

Glossary Term - Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Lepton Previous Term (Lepton) Glossary Main Index Next Term (Mercury) Mercury Liquid Nitrogen Liquid nitrogen boils in a frying pan on a desk. The liquid state of the element...

144

Nitrogen control of chloroplast differentiation  

DOE Green Energy (OSTI)

This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

Schmidt, G.W.

1992-07-01T23:59:59.000Z

145

Effectiveness of Diesel Oxidation Catalyst in Reducing HC and CO Emissions from Reactivity Controlled Compression Ignition  

SciTech Connect

Reactivity Controlled Compression Ignition (RCCI) has been shown to allow for diesel-like or better brake thermal efficiency with significant reductions in nitrogen oxide (NOX) particulate matter (PM) emissions. Hydrocarbon (HC) and carbon monoxide (CO) emission levels, on the other hand, are similar to those of port fuel injected gasoline engines. The higher HC and CO emissions combined with the lower exhaust temperatures with RCCI operation present a challenge for current exhaust aftertreatments. The reduction of HC and CO emissions in a lean environment is typically achieved with an oxidation catalyst. In this work, several diesel oxidation catalysts (DOC) with different precious metal loadings were evaluated for effectiveness to control HC and CO emissions from RCCI combustion in a light-duty multi-cylinder engine operating on gasoline and diesel fuels. Each catalyst was evaluated in a steady-state engine operation with temperatures ranging from 160 to 260 C. A shift to a higher light-off temperature was observed during the RCCI operation. In addition to the steady-state experiments, the performances of the DOCs were evaluated during multi-mode engine operation by switching from diesel-like combustion at higher exhaust temperature and low HC/CO emissions to RCCI combustion at lower temperature and higher HC/CO emissions. High CO and HC emissions from RCCI generated an exotherm keeping the catalyst above the light-off temperature.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

146

Atomic and electronic structures of oxides on III-V semiconductors :  

E-Print Network (OSTI)

STM imaging. Subsequently, indium oxide is deposited byIndium Monoxide (In 2 O) Once the surface structure of InAs(001)-(4×2) was characterized, the gate oxidesIndium I t Tunneling Current LDOS Local Density of States LEED Low Energy Electron Diffraction MBE Molecular Beam Epitaxy MOSFET Metal-Oxide

Shen, Jian

2010-01-01T23:59:59.000Z

147

One-dimensional turbulence model simulations of autoignition of hydrogen/carbon monoxide fuel mixtures in a turbulent jet  

Science Conference Proceedings (OSTI)

The autoignition of hydrogen/carbon monoxide in a turbulent jet with preheated co-flow air is studied using the one-dimensional turbulence (ODT) model. The simulations are performed at atmospheric pressure based on varying the jet Reynolds number and the oxidizer preheat temperature for two compositions corresponding to varying the ratios of H{sub 2} and CO in the fuel stream. Moreover, simulations for homogeneous autoignition are implemented for similar mixture conditions for comparison with the turbulent jet results. The results identify the key effects of differential diffusion and turbulence on the onset and eventual progress of autoignition in the turbulent jets. The differential diffusion of hydrogen fuels results in a reduction of the ignition delay relative to similar conditions of homogeneous autoignition. Turbulence may play an important role in delaying ignition at high-turbulence conditions, a process countered by the differential diffusion of hydrogen relative to carbon monoxide; however, when ignition is established, turbulence enhances the overall rates of combustion of the non-premixed flame downstream of the ignition point. (author)

Gupta, Kamlesh G.; Echekki, Tarek [Department of Mechanical and Aerospace Engineering, North Carolina State University, NC (United States)

2011-02-15T23:59:59.000Z

148

Interaction of carbon monoxide and hydrogen with the (1010) face of ruthenium  

DOE Green Energy (OSTI)

The interaction was studied at 23.5, 200, and -135/sup 0/C with low energy electron diffraction (LEED) and Auger electron spectroscopy. (AES). Carbon monoxide adsorbs associatively at 23.5/sup 0/C, but is apparently dissociated by the LEED beam and hydrogen adsorbed from the ambient after a few minutes for less than 10 Langmuirs of carbon monoxide. For large doses of carbon monoxide at 23.5/sup 0/C, 10 Langmuirs or more, the LEED beam does not disociate carbon monoxide, but carbon monoxide and hydrogen adsorbed from the ambient do appear to be removed from the surface by the LEED beam. Carbon monoxide and hydrogen on the surface together will react and form surface complexes with distinctive LEED patterns at 23.5/sup 0/C though some of the interactions appear to be LEED beam induced. If sufficient hydrogen is present, some of these complexes are lost from the surface probably as methane and water. Carbon monoxide will react with itself and hydrogen at 23.5/sup 0/C with carbon being lost from the surface probably as carbon dioxide. At 200/sup 0/C, neither carbon monoxide nor hydrogen will absorb on Ru (1010) in significant amounts at the low dose pressures used. However, if the Ru(1010) crystal is allowed to cool below 70/sup 0/C, ambient carbon monoxide and hydrogen will adsorb on Ru (1010) and form LEED patterns like those formed at 23.5/sup 0/C. At -135/sup 0/C, carbon monoxide will react with itself and hydrogen readily most of the time producing surface complexes with distinctive LEED paterns. If a moderate amount of hydrogen is present, some of these complexes are lost from the surface, probably as methane. If a large amount of hydrogen is present, some of these complexes are lost from the surface probably as carbon dioxdie. 17 figures, 8 tables.

Tomcsik, T.L.

1979-01-01T23:59:59.000Z

149

Reading Comprehension - Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen Liquid Nitrogen Nitrogen is the most common substance in Earth's _________ crust oceans atmosphere trees . In the Earth's atmosphere, nitrogen is a gas. The particles of a gas move very quickly. They run around and bounce into everyone and everything. The hotter a gas is, the _________ slower faster hotter colder the particles move. When a gas is _________ cooled warmed heated compressed , its particles slow down. If a gas is cooled enough, it can change from a gas to a liquid. For nitrogen, this happens at a very _________ strange warm low high temperature. If you want to change nitrogen from a gas to a liquid, you have to bring its temperature down to 77 Kelvin. That's 321 degrees below zero _________ Kelvin Celsius Centigrade Fahrenheit ! Liquid nitrogen looks like water, but it acts very differently. It

150

Gas turbine combustion modeling for a Parametric Emissions Monitoring System.  

E-Print Network (OSTI)

??Oxides of nitrogen (NOx), carbon monoxide (CO) and other combustion by-products of gas turbines have long been identified as harmful atmospheric pollutants to the environment… (more)

Honegger, Ueli

2007-01-01T23:59:59.000Z

151

Building Energy Software Tools Directory: IAQ-Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

monoxide, ethane, formaldehyde, hydrogen sulfide, methane, nitrogen oxides, ozone, propane, radon, and sulfur dioxide. 3. Bioaerosols, including bacteria, fungi, and molds. 4....

152

Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B  

SciTech Connect

This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

NONE

1998-01-01T23:59:59.000Z

153

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Technical progress report, fourth quarter, 1994, October 1994--December 1994  

Science Conference Proceedings (OSTI)

This quarterly report discusses the technical progress of an innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. The project provides a stepwise evaluation of the following NOx reduction technologies: Advanced overfire air (AOFA), Low NOx burners (LNB), LNB with AOFA, and Advanced Digital Controls and Optimization Strategies. The project has completed the baseline, AOFA, LNB, and LNB+AOFA test segments, fulfilling all testing originally proposed to DOE. Analysis of the LNB long-term data collected show the full load NOx emission levels to be near 0.65 lb/MBtu. This NOx level represents a 48 percent reduction when compared to the baseline, full load value of 1.24 lb/MBtu. These reductions were sustainable over the long-term test period and were consistent over the entire load range. Full load, fly ash LOI values in the LNB configuration were near 8 percent compared to 5 percent for baseline. Results from the LNB+AOFA phase indicate that full load NOx emissions are approximately 0.40 lb/MBtu with a corresponding fly ash LOI value of near 8 percent. Although this NOx level represents a 67 percent reduction from baseline levels, a substantial portion of the incremental change in NOx emissions between the LNB and LNB+AOFA configurations was the result of operational changes and not the result of the AOFA system. Phase 4 of the project is now underway.

NONE

1995-09-01T23:59:59.000Z

154

500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Technical progress report, third quarter 1994, July 1994--September 1994  

Science Conference Proceedings (OSTI)

This quarterly report discusses the technical progress of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NOx combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NOx reduction using combustion modifications has been established for the project. The project provides a stepwise evaluation of the following NOx reduction technologies: Advanced overfire air (AOFA), Low NOx burners (LNB), LNB, with AOFA, and Advanced Digital Controls and Optimization Strategies. Baseline, AOFA, LNB, and LNB plus AOFA test segments have been completed. Based on a preliminary analysis, approximately 17 percent of the incremental change in NOx emissions between the LNB and LNB+AOFA configurations is the result of AOFA, the balance of the NOx reduction resulting from other operational adjustments. Preliminary diagnostic testing was conducted during August and September. The purpose of these tests was to determine the emissions and performance characteristics of the unit prior to activation of the advanced control/optimization strategies. Short-term, full load NOx emissions were near 0.47 lb/MBtu, slightly higher than that seen during the LNB+AOFA test phase. Long-term NO{sub x} emissions for this quarter averaged near 0.41 lb/MBtu. Due to turbine problems, a four week outage has been planned for Hammond 4 starting October 1. Two on-line carbon-in-ash monitors are being installed at Hammond Unit 4 as part of the Wall-Fired Project. These monitors will be evaluated as to their accuracy, repeatability, reliability, and serviceability.

NONE

1995-09-01T23:59:59.000Z

155

Methanation of gas streams containing carbon monoxide and hydrogen  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

Frost, Albert C. (Congers, NY)

1983-01-01T23:59:59.000Z

156

Market Potential for Nitrogen Fertilizers Derived from the Electric Power Industry  

Science Conference Proceedings (OSTI)

This technology evaluation report describes the potential market for fertilizer materials derived from utility by-products from developing ammonia-based flue gas desulfurization (FGD) systems to control sulfur oxides (SOx) and nitrogen oxides (NOx).

2002-11-27T23:59:59.000Z

157

Nitrogen Fixation by Lightning  

Science Conference Proceedings (OSTI)

When some of the uncertainties associated with lightning are reviewed, it becomes difficult to support a large production of fixed nitrogen from the lightning shock wave.

G. A. Dawson

1980-01-01T23:59:59.000Z

158

Modeling Ambient Carbon Monoxide Trends to Evaluate Mobile Source Emissions Reductions  

Science Conference Proceedings (OSTI)

Regression models have been used with poor success to detect the effect of emission control programs in ambient concentration measurements of carbon monoxide. An advanced CO regression model is developed whose form is based on an understanding of ...

Robin L. Dennis; Mary W. Downton

1987-10-01T23:59:59.000Z

159

Basin-Scale Carbon Monoxide Distributions in the Parallel Ocean Program  

Science Conference Proceedings (OSTI)

As a primary photochemical constituent in upper-ocean and tropospheric geocycling, carbon monoxide is of interest to a variety of global change research communities. Dynamic three-dimensional simulations of its marine concentration patterns, ...

Shaoping Chu; Scott Elliott; David Erickson

2007-12-01T23:59:59.000Z

160

Discovery of carbon monoxide in the upper atmosphere of Pluto  

E-Print Network (OSTI)

Pluto's icy surface has changed colour and its atmosphere has swelled since its last closest approach to the Sun in 1989. The thin atmosphere is produced by evaporating ices, and so can also change rapidly, and in particular carbon monoxide should be present as an active thermostat. Here we report the discovery of gaseous CO via the 1.3mm wavelength J=2-1 rotational transition, and find that the line-centre signal is more than twice as bright as a tentative result obtained by Bockelee-Morvan et al. in 2000. Greater surface-ice evaporation over the last decade could explain this, or increased pressure could have caused the atmosphere to expand. The gas must be cold, with a narrow line-width consistent with temperatures around 50 K, as predicted for the very high atmosphere, and the line brightness implies that CO molecules extend up to approximately 3 Pluto radii above the surface. The upper atmosphere must have changed markedly over only a decade since the prior search, and more alterations could occur by the...

Greaves, J S; Friberg, P

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nitrogen Deposition Data Available  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Cycle Data Available The ORNL DAAC announces the release of a data set prepared by Elisabeth Holland and colleagues titled "Global N Cycle: Fluxes and N2O Mixing Ratios...

162

Nitrogen Trifluoride-Based Fluoride- Volatility Separations Process: Initial Studies  

SciTech Connect

This document describes the results of our investigations on the potential use of nitrogen trifluoride as the fluorinating and oxidizing agent in fluoride volatility-based used nuclear fuel reprocessing. The conceptual process uses differences in reaction temperatures between nitrogen trifluoride and fuel constituents that produce volatile fluorides to achieve separations and recover valuable constituents. We provide results from our thermodynamic evaluations, thermo-analytical experiments, kinetic models, and provide a preliminary process flowsheet. The evaluations found that nitrogen trifluoride can effectively produce volatile fluorides at different temperatures dependent on the fuel constituent.

McNamara, Bruce K.; Scheele, Randall D.; Casella, Andrew M.; Kozelisky, Anne E.

2011-09-28T23:59:59.000Z

163

Nitrogen Control in Electric Arc Furnace Steelmaking by DRI (TRP 0009)  

SciTech Connect

Nitrogen is difficult to remove in electric arc furnace (EAF) steelmaking, requiring the use of more energy in the oxygen steelmaking route to produce low-nitrogen steel. The objective of this work was to determine if the injection of directly reduced iron (DRI) fines into EAFs could reduce the nitrogen content by creating fine carbon monoxide bubbles that rinse nitrogen from the steel. The proposed work included physical and chemical characterization of DRI fines, pilot-scale injection into steel, and mathematical modeling to aid in scale-up of the process. Unfortunately, the pilot-scale injections were unsuccessful, but some full-scale data was obtained. Therefore, the original objectives were met, and presented in the form of recommendations to EAF steelmakers regarding: (1) The best composition and size of DRI fines to use; (2) The amount of DRI fines required to achieve a specific reduction in nitrogen content in the steel; and (3) The injection conditions. This information may be used by steelmakers in techno-economic assessments of the cost of reducing nitrogen with this technology.

Dr. Gordon A. Irons

2004-03-31T23:59:59.000Z

164

Nitrogen-incorporation induced changes in the microstructure of nanocrystalline WO3 thin films  

SciTech Connect

Nitrogen doped tungsten oxide (WO3) films were grown by reactive magnetron sputter-deposition by varying the nitrogen content in the reactive gas mixture keeping the deposition temperature fixed at 400 C. The crystal structure, surface morphology, chemical composition, and electrical resistivity of nitrogen doped WO3 films were evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and electrical conductivity measurements. The results indicate that the nitrogen-doping induced changes in the microstructure and electrical properties of WO3 films are significant. XRD measurements coupled with SEM analysis indicates that the increasing nitrogen content decreases the grain size and crystal quality. The nitrogen concentration increases from 0 at.% to 1.35 at.% with increasing nitrogen flow rate from 0 to 20 sccm. The corresponding dc electrical conductivity of the films had shown a decreasing trend with increasing nitrogen content.

Vemuri, Venkata Rama Sesha R.; Noor-A-Alam, M.; Gullapalli, Satya K.; Engelhard, Mark H.; Ramana, C.V.

2011-12-30T23:59:59.000Z

165

Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin  

DOE Patents (OSTI)

The compound, [Pd(Me-DUPHOS)(MeCN){sub 2}](BF{sub 4}){sub 2}, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic {alpha}-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone).

Sen, A.; Jiang, Z.

1996-05-28T23:59:59.000Z

166

Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin  

DOE Patents (OSTI)

The compound, [Pd(Me-DUPHOS)(MeCN).sub.2 ](BF.sub.4).sub.2, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic .alpha.-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone)

Sen, Ayusman (State College, PA); Jiang, Zhaozhong (State College, PA)

1996-01-01T23:59:59.000Z

167

Nitric oxide and carbon monoxide in cigarette smoke in the development of cardiorespiratory disease in smokers  

E-Print Network (OSTI)

in General and Geriatric Medicine, West Suffolk Hospital . 1985 - 1986 . 3) Consultant Physician in General and Geriatric Medicine, Huntingdon District Health Au~hority. 1986. Acknowledgements I am most grateful to the East Anglian Regional Health... was starting in Virginia. Growing was also started at that time in other parts of the world where the climate was suitable e.g. Turkey (Akehurst 1981). During the 18th century snuff became the most popular way of taking tobacco but the habit rapidly...

Borland, Colin David Ross

1988-10-18T23:59:59.000Z

168

Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana  

DOE Green Energy (OSTI)

The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

Kevin Peavey; Norm Bessette

2007-09-30T23:59:59.000Z

169

A Micro-Computer-Based Fuel Optimization System Utilizing In-Situ Measurement of Carbon Monoxide  

E-Print Network (OSTI)

A microcomputer-based control system utilizing a distributed intelligence architecture has been developed to control combustion in hydrocarbon fuel-fired boilers and heaters to significantly reduce fuel usage. The system incorporates a unique flue gas analyzer that mounts directly in the flue or stack to continuously measure carbon monoxide, unburned hydrocarbons, opacity and temperature. The control console interfaces directly with the boiler's existing analog control system to provide precise air fuel ratio control based on carbon monoxide measurements. Significant decreases in excess air result in reduced fuel usage while meeting steam demand. Actual performance on industrial boilers shows increases in efficiency of from 1% to 3% with substantial fuel savings.

DeVivo, D. G.

1980-01-01T23:59:59.000Z

170

Cyclic process for producing methane from carbon monoxide with heat removal  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

1982-01-01T23:59:59.000Z

171

Indonesia Forest Fires Exacerbate Carbon Monoxide Pollution over Peninsular Malaysia during July to September 2005  

Science Conference Proceedings (OSTI)

Wind carried the smoke further afield from forest fires in Sumatra caused worse air pollution in Malaysia reached extremely hazardous levels and forced schools and an airport to close. There were 3,258 'hot spots' recorded by NOAA satellites in the province ... Keywords: AIRS, Carbon monoxide, Peninsular

Jasim M. Rajab; M. Z. MatJafri; H. S. Lim; K. Abdullah

2009-08-01T23:59:59.000Z

172

Compressed Air Sample Technology for Isotopic Analysis of Atmospheric Carbon Monoxide  

Science Conference Proceedings (OSTI)

A methodology for the collection of large (1000 L) air samples for isotopic analysis of atmospheric carbon monoxide is presented. A low-background, high-pressure, high-flow sampling system with a residual background of less than 2 ppbv CO has ...

John E. Mak; Carl A. M. Brenninkmeijer

1994-04-01T23:59:59.000Z

173

Ethanol oxidation on metal oxide-supported platinum catalysts  

SciTech Connect

Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

2009-09-01T23:59:59.000Z

174

Comparison of five organic wastes regarding their behaviour during composting: Part 2, nitrogen dynamic  

Science Conference Proceedings (OSTI)

This paper aimed to compare household waste, separated pig solids, food waste, pig slaughterhouse sludge and green algae regarding processes ruling nitrogen dynamic during composting. For each waste, three composting simulations were performed in parallel in three similar reactors (300 L), each one under a constant aeration rate. The aeration flows applied were comprised between 100 and 1100 L/h. The initial waste and the compost were characterized through the measurements of their contents in dry matter, total carbon, Kjeldahl and total ammoniacal nitrogen, nitrite and nitrate. Kjeldahl and total ammoniacal nitrogen and nitrite and nitrate were measured in leachates and in condensates too. Ammonia and nitrous oxide emissions were monitored in continue. The cumulated emissions in ammonia and in nitrous oxide were given for each waste and at each aeration rate. The paper focused on process of ammonification and on transformations and transfer of total ammoniacal nitrogen. The parameters of nitrous oxide emissions were not investigated. The removal rate of total Kjeldahl nitrogen was shown being closely tied to the ammonification rate. Ammonification was modelled thanks to the calculation of the ratio of biodegradable carbon to organic nitrogen content of the biodegradable fraction. The wastes were shown to differ significantly regarding their ammonification ability. Nitrogen balances were calculated by subtracting nitrogen losses from nitrogen removed from material. Defaults in nitrogen balances were assumed to correspond to conversion of nitrate even nitrite into molecular nitrogen and then to the previous conversion by nitrification of total ammoniacal nitrogen. The pool of total ammoniacal nitrogen, i.e. total ammoniacal nitrogen initially contained in waste plus total ammoniacal nitrogen released by ammonification, was calculated for each experiment. Then, this pool was used as the referring amount in the calculation of the rates of accumulation, stripping and nitrification of total ammoniacal nitrogen. Separated pig solids were characterised by a high ability to accumulate total ammoniacal nitrogen. Whatever the waste, the striping rate depended mostly on the aeration rate and on the pool concentration in biofilm. The nitrification rate was observed as all the higher as the concentration in total ammoniacal nitrogen in the initial waste was low. Thus, household waste and green algae exhibited the highest nitrification rates. This result could mean that in case of low concentrations in total ammoniacal nitrogen, a nitrifying biomass was already developed and that this biomass consumed it. In contrast, in case of high concentrations, this could traduce some difficulties for nitrifying microorganisms to develop.

Guardia, A. de, E-mail: amaury.de-guardia@cemagref.f [Cemagref, UR GERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Universite Europeenne de Bretagne, F-35000 Rennes (France); Mallard, P.; Teglia, C.; Marin, A.; Le Pape, C.; Launay, M.; Benoist, J.C.; Petiot, C. [Cemagref, UR GERE, 17 Avenue de Cucille, CS 64427, F-35044 Rennes (France); Universite Europeenne de Bretagne, F-35000 Rennes (France)

2010-03-15T23:59:59.000Z

175

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen in a  

NLE Websites -- All DOE Office Websites (Extended Search)

Freeze Liquid Nitrogen! Freeze Liquid Nitrogen! Previous Video (Let's Freeze Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Freeze the Rainbow!) Freeze the Rainbow! Liquid Nitrogen in a Microwave! What happens when the world's most beloved cryogenic liquid meets one of the most common household appliances? Find out when we try to microwave liquid nitrogen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: A little while ago we received an email from Star of the Sea Catholic School in Virginia Beach, Virginia, asking what happens when you place liquid nitrogen in a microwave. Well, I just happen to have some liquid nitrogen! Steve: And I just happen to have a microwave!

176

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Freeze the Rainbow! Freeze the Rainbow! Previous Video (Freeze the Rainbow!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and Fire!) Liquid Nitrogen and Fire! Liquid Nitrogen and Antifreeze! What happens when the freezing power of liquid nitrogen meets the antifreezing power of ethylene glycol? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: What happens when the freezing power of liquid nitrogen... Steve: ...meets the antifreezing power of ethylene glycol! Joanna: While a mix of 70 percent ethylene glycol and 30 percent water doesn't freeze until 60 degrees below zero, it's still no match for liquid nitrogen. At 321 degrees below zero, liquid nitrogen easily freezes

177

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

Baker, Richard W. (Palo Alto, CA); Lokhandwala, Kaaeid A. (Menlo Park, CA); Pinnau, Ingo (Palo Alto, CA); Segelke, Scott (Mountain View, CA)

1997-01-01T23:59:59.000Z

178

Methane/nitrogen separation process  

DOE Patents (OSTI)

A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

1997-09-23T23:59:59.000Z

179

Turn-on fluorescent probes for detecting nitric oxide in biology  

E-Print Network (OSTI)

Chapter 1. Investigating the Biological Roles of Nitric Oxide and Other Reactive Nitrogen Species Using Fluorescent Probes: This chapter presents an overview of recent progress in the field of reactive nitrogen species ...

McQuade, Lindsey Elizabeth, 1981-

2010-01-01T23:59:59.000Z

180

The biogeochemistry of marine nitrous oxide  

E-Print Network (OSTI)

Atmospheric nitrous oxide N?O concentrations have been rising steadily for the past century as a result of human activities. In particular, human perturbation of the nitrogen cycle has increased the N?O production rates ...

Frame, Caitlin H

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2  

E-Print Network (OSTI)

to Elec (RDSF) MSW to Elec (Oil) Source Separation *Million~----------- MSW to Elec (Oil) Source Separation(2) *D.C.Oil Bituminous (Incineration) Coal Particulates Sulphur Oxide Carbon Monoxide Hydrocarbon Nitrogen Oxide Source:

Authors, Various

2011-01-01T23:59:59.000Z

182

Synthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge  

E-Print Network (OSTI)

depending on the ratio of hydrogen to carbon monoxide. Most synthesis gas is produced by the steam reform reaction. Industrially, steam reforming is performed over a Ni/ Al2O3 catalyst.9 The typical problemSynthesis Gas Production from Partial Oxidation of Methane with Air in AC Electric Gas Discharge K

Mallinson, Richard

183

Impact of emissions, chemistry, and climate on atmospheric carbon monoxide : 100-year predictions from a global chemistry-climate model  

E-Print Network (OSTI)

The possible trends for atmospheric carbon monoxide in the next 100 yr have been illustrated using a coupled atmospheric chemistry and climate model driven by emissions predicted by a global economic development model. ...

Wang, Chien.; Prinn, Ronald G.

184

Nitrogen fixation apparatus  

DOE Patents (OSTI)

A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

Chen, Hao-Lin (Walnut Creek, CA)

1984-01-01T23:59:59.000Z

185

In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen  

SciTech Connect

The present invention is directed to an in situ coal gasification process wherein the combustion zone within the underground coal bed is fed with air at increasing pressure to increase pressure and temperature in the combustion zone for forcing product gases and water naturally present in the coal bed into the coal bed surrounding the combustion zone. No outflow of combustion products occurs during the build-up of pressure and temperature in the combustion zone. After the coal bed reaches a temperature of about 2000.degree. F and a pressure in the range of about 100-200 psi above pore pressure the airflow is terminated and the outflow of the combustion products from the combustion zone is initiated. The CO.sub.2 containing gaseous products and the water bleed back into the combustion zone to react endothermically with the hot carbon of the combustion zone to produce a burnable gas with a relatively high hydrogen and carbon monoxide content. About 11 to 29 percent of the gas recovered from the combustion zone is carbon monoxide which is considerably better than the 4 to 10 percent carbon monoxide obtained by employing previously known coal gasification techniques.

Capp, John P. (Morgantown, WV); Bissett, Larry A. (Morgantown, WV)

1978-01-01T23:59:59.000Z

186

Multi-stage, isothermal CO preferential oxidation reactor  

DOE Patents (OSTI)

A multi-stage, isothermal, carbon monoxide preferential oxidation (PrOx) reactor comprising a plurality of serially arranged, catalyzed heat exchangers, each separated from the next by a mixing chamber for homogenizing the gases exiting one heat exchanger and entering the next. In a preferred embodiment, at least some of the air used in the PrOx reaction is injected directly into the mixing chamber between the catalyzed heat exchangers.

Skala, Glenn William (Churchville, NY); Brundage, Mark A. (Pittsford, NY); Borup, Rodney Lynn (East Rochester, NY); Pettit, William Henry (Rochester, NY); Stukey, Kevin (W. Henrietta, NY); Hart-Predmore, David James (Rochester, NY); Fairchok, Joel (Alexander, NY)

2000-01-01T23:59:59.000Z

187

Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions  

DOE Green Energy (OSTI)

A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

Biruduganti, Munidhar S. (Naperville, IL); Gupta, Sreenath Borra (Naperville, IL); Sekar, R. Raj (Naperville, IL); McConnell, Steven S. (Shorewood, IL)

2008-11-25T23:59:59.000Z

188

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen and Fire!  

NLE Websites -- All DOE Office Websites (Extended Search)

Antifreeze! Antifreeze! Previous Video (Liquid Nitrogen and Antifreeze!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and the Tea Kettle Mystery!) Liquid Nitrogen and the Tea Kettle Mystery! Liquid Nitrogen and Fire! A burning candle is placed in a container of liquid nitrogen! Filmed in front of a live studio audience. Well, they were live when we started... [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Steve: Now, then. I'm a little bit afraid to ask this next question because I think I already know the answer, but is anyone in here feeling a little... dangerous? You're willing to take a chance? Because I am willing to do an experiment they haven't let me do since 'The Incident.' Now, because of the danger, I cannot have a volunteer. I must do this on my

189

Nitrogen chiller acceptance test procedure  

SciTech Connect

This document includes the inspection and testing requirements for the Nitrogen Chiller unit. The Chiller will support the Rotary Mode core Sampling System during the summer. The Chiller cools the Nitrogen Purge Gas that is used when drilling in tank wastes to cool the drill bit.

Kostelnik, A.J.

1995-03-07T23:59:59.000Z

190

Quantitative X-ray microanalysis of submicron carbide formation in chromium (III) oxide rich scale  

SciTech Connect

This paper discusses the chemical microanalysis techniques adapted to identify the precipitates that form on the surface of, or within, the oxide scale of a Fe-22Cr ferritic steel during exposure to a carbon-monoxide rich environment at 750C for 800 hours. Examination of oxidized test coupons revealed the presence of a fiber like structure at the surface, shown in figure 1. Other studies have reported that these structures are carbon precipitates.

Collins, W.K.; Ziomek-Moroz, M.; Holcomb, G.R.; Danielson, P.; Hunt, A.H

2007-08-01T23:59:59.000Z

191

Eighth international congress on nitrogen fixation  

DOE Green Energy (OSTI)

This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

Not Available

1990-01-01T23:59:59.000Z

192

Frostbite Theater - Liquid Nitrogen Experiments - Superconductors...  

NLE Websites -- All DOE Office Websites (Extended Search)

Main Index Next Video (Cells vs. Liquid Nitrogen) Cells vs. Liquid Nitrogen Superconductors What happens when a magnet is placed on a superconductor? Play the video to find...

193

Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor  

SciTech Connect

Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

2010-08-31T23:59:59.000Z

194

Frostbite Theater - Liquid Nitrogen Experiments - Instant Liquid Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Freezing Balloons! Freezing Balloons! Previous Video (Freezing Balloons!) Frostbite Theater Main Index Next Video (Shattering Flowers!) Shattering Flowers! Instant Liquid Nitrogen Balloon Party! Need a bunch of balloons blown-up quickly? Liquid nitrogen to the rescue! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: We've been making videos for a while now and we've learned that people like balloons and liquid nitrogen! Steve: So... Here you go! Balloon: Crackling... Balloon: Pop! Joanna: Ooh! Balloon: Pop! Balloon: Pop! Steve: If you'd like to know the science of what's going on behind this, please one of our first videos, "Liquid Nitrogen Experiments: The Balloon."

195

NETL: News Release - Record Run by Solid Oxide Fuel Cell Comes...  

NLE Websites -- All DOE Office Websites (Extended Search)

the equivalent of 65 kilowatts of thermal energy in the form of hot water to the local district heating system. Air emissions from the unit - nitrogen oxides, sulfur oxides,...

196

It's Elemental - The Element Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen The Element Nitrogen [Click for Isotope Data] 7 N Nitrogen 14.0067 Atomic Number: 7 Atomic Weight: 14.0067 Melting Point: 63.15 K (-210.00°C or -346.00°F) Boiling Point: 77.36 K (-195.79°C or -320.44°F) Density: 0.0012506 grams per cubic centimeter Phase at Room Temperature: Gas Element Classification: Non-metal Period Number: 2 Group Number: 15 Group Name: Pnictogen What's in a name? From the Greek words nitron and genes, which together mean "saltpetre forming." Say what? Nitrogen is pronounced as NYE-treh-gen. History and Uses: Nitrogen was discovered by the Scottish physician Daniel Rutherford in 1772. It is the fifth most abundant element in the universe and makes up

197

COMBUSTION SOURCES OF NITROGEN COMPOUNDS  

E-Print Network (OSTI)

Rasmussen, R.A. (1976). Combustion as a source of nitrousx control for stationary combustion sources. Prog. Energy,CA, March 3-4, 1977 COMBUSTION SOURCES OF NITROGEN COMPOUNDS

Brown, Nancy J.

2011-01-01T23:59:59.000Z

198

Nitrogen removal from natural gas  

SciTech Connect

According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

1997-04-01T23:59:59.000Z

199

Thermal device and method for production of carbon monoxide and hydrogen by thermal dissociation of hydrocarbon gases  

DOE Patents (OSTI)

Carbon monoxide is produced in a fast quench reactor. The production of carbon monoxide includes injecting carbon dioxide and some air into a reactor chamber having a high temperature at its inlet and a rapidly expanding a reactant stream, such as a restrictive convergent-divergent nozzle at its outlet end. Carbon dioxide and other reactants such as methane and other low molecular weight hydrocarbons are injected into the reactor chamber. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The resulting heated gaseous stream is then rapidly cooled by expansion of the gaseous stream.

Detering, Brent A. (Idaho Falls, ID); Kong, Peter C. (Idaho Falls, ID)

2001-01-01T23:59:59.000Z

200

Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14  

NLE Websites -- All DOE Office Websites (Extended Search)

Reburning Technologies for the Control of Nitrogen Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers TOPICAL REPORT NUMBER 14 MAY 1999 TOPICAL REPORT NUMBER 14 A report on three projects conducted under separate cooperative agreements between: The U.S. Department of Energy and * The Babcock & Wilcox Company * Energy and Environmental Research Corporation * New York State Electric & Gas Corporation MAY 1999 Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Cover image: Schematic of reburning technology Source: Energy and Environmental Research Corporation Reburning Technologies for the Control of Nitrogen Oxides Emissions from Coal-Fired Boilers Executive Summary ..................................................................................................

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Final Report, "Molecular Design of Hydrocarbon Oxidation Catalytic Processes"  

SciTech Connect

The main goal of this project had been to use model systems to correlate selectivities in partial oxidation catalysis with the presence of specific sites on the surface of the catalyst. Extensive work was performed this year on characterizing oxygen-treated nickel surfaces by chemical means. Specifically, the surface chemistry of ammonia coadsorbed with atomic oxygen on Ni(110) single-crystal surfaces was studied by temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). It was determined that at intermediate oxygen coverages direct ammonia adsorption on nickel sites is suppressed, but a new high-temperature reaction regime is generated at 400 K where NHx surface fragments are rehydrogenated concurrently with the production of water and molecular hydrogen. The extensive isotope scrambling and hydrogen transfer seen from nitrogen- to oxygen-containing surface intermediates, and the optimum yields seen for this 400 K state at intermediate oxygen coverages, strongly suggest the direct interaction of the adsorbed ammonia with oxygen atoms at the end of the –Ni–O- rows that form upon reconstruction of the surface. Hydrogen transfer between ammonia and oxygen appears to take place directly via hydrogen bonding, and to be reversible but biased towards water formation. An equilibrium is reached between the produced water and the reacting surface oxygen and hydrogen. The strong influence of the OH surface groups on the thermal chemistry of the adsorbed ammonia was interpreted in terms of the adsorbing geometry of the OH groups on the surface, and of hydrogen bonding between adsorbed OH and NH3 species. In terms of alcohol reactivity, the adsorption of 2-iodoethanol, a precursor for the preparation of 2-hydroxyethyl and oxametallacycle surface species, was found to lead to two configurations involving either just the iodine atom or both iodine and hydroxyl ends of the molecule. A complex chemical behavior starts around 140 K with the production of small amounts of ethylene and water, most likely via the concerted decomposition or disproportionation of the adsorbed molecular species. The bulk of the 2-iodoethanol decomposes at about 150 K via an initial carbon-iodine scission to form –O(H)CH2CH2– (~80%) and 2-hydroxyethyl (~20%) intermediates. Two competing reactions are involved with the subsequent conversion of the 2-hydroxyethyl species around 160 K, a reductive elimination with surface hydrogen to yield ethanol, and a ?-H elimination to surface vinyl alcohol. The –O(H)CH2CH2–, on the other hand, dehydrogenates to a –OCH2CH2– oxametallacycle species about the same temperature. Both 2-hydroxyethyl and oxametallacycle species tautomerize to acetaldehyde, around 210 K and above 250 K, respectively, and some of that acetaldehyde desorbs while the rest decomposes to hydrogen and carbon monoxide. We contend that a better understanding of the surface chemistry of oxygen-containing surfaces can lead to better selectivities in catalysis. This is arguably the most important issue in the field of catalysis in the near future, and one that impacts several technologies of interest to DOE such as the manufacturing of speciality chemicals and the control and removal of pollutants. Additional work was performed on the characterization of the chemistry of methyl and methylene adsorbed species on oxygen-treated nickel surfaces. Complex chemistry was observed involving not only hydrogenation and dehydrogenation steps, but also C-C couplings and methylene insertions to produce heavier hydrocarbons, and oxygen insertion reactions that yield oxygenates. Finally, a dual titration technique employing xenon and a chemically sensitive probe was developed to identify minority catalytic sites on oxide surfaces. In the case of oxygen-treated Ni(110) single crystals, it was found that both hydrogen transfer with adsorbed water or ammonia and certain hydrocarbon hydrogenation reactions take place at the end of the –Ni–O rows that form in this system. Carbon and nitrogen oxides, on the other hand, display no pre

Professor Francisco Zaera

2007-08-09T23:59:59.000Z

202

EIA - Greenhouse Gas Emissions - Nitrous Oxide Emissions  

Gasoline and Diesel Fuel Update (EIA)

4. Nitrous Oxide Emissions 4. Nitrous Oxide Emissions 4.1 Total emissions U.S. nitrous oxide emissions in 2009 were 4 MMTCO2e (1.7 percent) below their 2008 total (Table 22). Sources of U.S. nitrous oxide emissions include agriculture, energy use, industrial processes, and waste management (Figure 22). The largest source is agriculture (73 percent), and the majority of agricultural emissions result from nitrogen fertilization of agricultural soils (87 percent of the agriculture total) and management of animal waste (13 percent). U.S. nitrous oxide emissions rose from 1990 to 1994, fell from 1994 to 2002, and returned to an upward trajectory from 2003 to 2007, largely as a result of increased use of synthetic fertilizers. Fertilizers are the primary contributor of emissions from nitrogen fertilization of soils, which grew by more than 30 percent from

203

Thirdhand Tobacco Smoke: Emerging Evidence and Arguments for a Multidisciplinary Research Agenda  

E-Print Network (OSTI)

influence of ammonia and carbon dioxide on the sorption of aInfluence of ammonia and carbon dioxide on the sorption of acarbon monoxide, formaldehyde, hydrogen cyanide, nicotine, nitrogen oxides, polycyclic aromatic hydrocarbons (PAHs), sulfur dioxide

Matt, Georg E.

2013-01-01T23:59:59.000Z

204

Increased Cytotoxicity of Oxidized Flame Soot  

NLE Websites -- All DOE Office Websites (Extended Search)

Increased Cytotoxicity of Oxidized Flame Soot Increased Cytotoxicity of Oxidized Flame Soot Title Increased Cytotoxicity of Oxidized Flame Soot Publication Type Journal Article Year of Publication 2012 Authors Holder, Amara L., Brietta J. Carter, Regine Goth-Goldstein, Donald Lucas, and Catherine P. Koshland Journal Atmospheric Pollution Research Volume 3 Start Page 25 Issue 1 Pagination 25-31 Date Published 01/2012 Keywords health effects, ozone, soot, toxicity Abstract Combustion-generated particles released into the atmosphere undergo reactions with oxidants, which can change the particles' physiochemical characteristics. In this work, we compare the physical and chemical properties and cellular response of particles fresh from a flame with those oxidized by ozone and nitrogen dioxide. The reaction with ozone and nitrogen dioxide does not significantly modify the physical characteristics of the particles (primary particle size, fractal dimension, and surface area). However, oxidation affects the chemical characteristics of the particles, creating more oxygen and nitrogen containing functional groups, and increases their hydrophilicity. In addition, oxidized soot generates more reactive oxygen species, as measured by the dithiothreitol (DTT) assay. Furthermore, oxidized soot is 1.5-2 times more toxic than soot that was not reacted with ozone, but the inflammatory response, measured by interleukin-8 (IL-8) secretion, is unchanged. These results imply that combustion-generated particles released into the atmosphere will have an increased toxicity on or after high ozone days.

205

Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil  

Science Conference Proceedings (OSTI)

The carbon monoxide consumption rates of the carboxydobacteria Pseudomonas (Seliberia) carboxydohydrogena, P. carboxydovorans, and P. carboxydoflava were measured at high (50%) and low (0.5 ..mu..l liter/sup -1/) mixing ratios of CO in air. CO was only consumed when the bacteria had been grown under CO-autotrophic conditions. At low cell densities the CO comsumption rates measured at low CO mixing ratios were similar in cell suspensions and in mixtures of bacteria in soil. CO consumption observed in natural soil (loess, eolian sand, chernozem) as well as in suspensions or soil mixtures of carboxydobacteria showed Michaelis-Menten kinetics. Considering the difference of the K/sub m/, values and the observed V/sub max/ values, carboxydobacteria cannot contribute significantly to the consumption of atmospheric CO.

Conrad, R. (Max-Planck-Institut fuer Chemie, Mainz, Germany); Meyer, O.; Seiler, W.

1981-08-01T23:59:59.000Z

206

REDUCTION OF NITRIC OXIDE BY CARBON MONOXIDE OVER A SILICA SUPPORTED PLATINUM CATALYST: INFRARED AND KINETIC STUDIES  

E-Print Network (OSTI)

System. • B. Procedures. Catalyst Preparation Infrared DiskPreparation. Catalyst Characterization. PreliminaryReduction by CO Over a Pt Catalyst," M.S. thesis, Department

Lorimer, D.H.

2011-01-01T23:59:59.000Z

207

Program on Technology Innovation: Monitoring Carbon Monoxide and Nitric Oxide in Combustion Gases with Laser Absorption Sensors  

Science Conference Proceedings (OSTI)

Two important considerations for monitoring CO/O2 and NO/NH3 in the flue gas of coal-fired boilers include (1) optimization of the air/fuel distribution to individual burners, thereby enabling lower excess oxygen operation, reduced NOx emissions, and improved unit heat rate, and (2) optimization of NH3/NOx distribution at the inlet of a selective catalytic reduction (SCR) reactor, thereby enabling increased NOx reduction performance while maintaining ammonia slip targets. Lower NOx emissions can be achie...

2011-04-12T23:59:59.000Z

208

Stanford Nitrogen Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Nitrogen Group Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen. Wastewater treatment facilities experience dual financial pressures - rising energy costs and meeting increasingly stringent nitrogen discharge

209

Stanford Nitrogen Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stanford Nitrogen Group Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen. Wastewater treatment facilities experience dual financial pressures - rising energy costs and meeting increasingly stringent nitrogen discharge

210

Nucleation and Characteristics of Liquid Nitrogen  

Science Conference Proceedings (OSTI)

This paper describes experiments on a refrigerating catalyst?liquid nitrogen (LN)?in different cloud chambers and their results. The nucleation threshold temperature of liquid nitrogen is 0°C, and when the temperature less than ?2°C, the ice ...

Cao Xuecheng; Wang Weimin

1996-09-01T23:59:59.000Z

211

EFFECT OF NITROGEN OXIDE PRETREATMENTS ON ENZYMATIC HYDROLYSIS OF CELLULOSE  

E-Print Network (OSTI)

is needed. Besides petroleum, the only sources from whichdependence on petroleum as a fuel and chemical source. In

Borrevik, R.K.

2011-01-01T23:59:59.000Z

212

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

Have a question, comment, or suggestion for a future article? Send your feedback to todayinenergy@eia.gov

213

Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies  

E-Print Network (OSTI)

x Abatement and Control. IEA Coal Research: London, UnitedM. Air Pollution Control Costs for Coal-Fired PowerStations; IEA Coal Research: London, UK, 1995. 25. Arrow, K.

Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

2007-01-01T23:59:59.000Z

214

Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits  

Reports and Publications (EIA)

The purpose of this article is to summarize the existing Federal Nox regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.

Information Center

1998-05-01T23:59:59.000Z

215

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel ... acid rain program in the eastern half of the United States. ... and settlements under the Clean Air Act's New Source Review ...

216

Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology  

DOE Green Energy (OSTI)

reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

McGill, R.N.

1998-08-04T23:59:59.000Z

217

Technology Innovations and Experience Curves for Nitrogen Oxides Control Technologies  

E-Print Network (OSTI)

Selective Catalytic Reduction (SCR) NOx Control; Prepared byNOx Removal Technologies. Volume 1. Selective Catalytic Reduction.

Yeh, Sonia; Rubin, Edward S.; Taylor, Margaret R.

2007-01-01T23:59:59.000Z

218

OXIDES OF NITROGEN: FORMATION AND CONTROL IN RESOURCE RECOVERY FACILITIES  

E-Print Network (OSTI)

or RDF. NOx reduction by use of catalytic reduction and ammonia injection are clearly impractical research in this area, so that we can understand the principles of NOx reduction sufficiently to fill our·lined in cinerator by Hiraoka [2] reveals a reduction from 150 ppm NOx to below 100 ppm NOx (at 12% O2) by using

Columbia University

219

OXIDES OF NITROGEN: FORMATION AND CONTROL IN RESOURCE RECOVERY FACILITIES  

E-Print Network (OSTI)

utilizing all of the known techniques for NOx reduction. To be precise, the NOx formed within the flame] and several others [6, 7] have suggested certain reduction methods which are consistent with NOx formation, not solid waste. The results of NOx reduction techniques in coal combustion should be applied with caution

Columbia University

220

Greatly reduces harmful nitrogen oxides in engine exhaust  

E-Print Network (OSTI)

or RDF. NOx reduction by use of catalytic reduction and ammonia injection are clearly impractical research in this area, so that we can understand the principles of NOx reduction sufficiently to fill our·lined in cinerator by Hiraoka [2] reveals a reduction from 150 ppm NOx to below 100 ppm NOx (at 12% O2) by using

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Abatement of Air Pollution: Control of Nitrogen Oxides Emissions (Connecticut)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations may apply to reciprocating engines, fuel-burning equipment, or waste combusting equipment which are either attached to major stationary sources of NOx or have high potential NOx...

222

Power plant emissions of sulfur dioxide and nitrogen oxides ...  

U.S. Energy Information Administration (EIA)

State Energy Data System ... the program provided an economic incentive for coal-fired power plants to reduce emissions by installing pollution contro ...

223

Proposal to Designate an Emission Control Area for Nitrogen Oxides,  

E-Print Network (OSTI)

on a massive scale. These processes include catalytic reforming (to increase the octane number), catalytic

Hanson, Thomas

224

COMBUSTION SOURCES OF NITROGEN COMPOUNDS  

E-Print Network (OSTI)

Shale Derived Heavy Oil Coal Sarofim and Flagan (1976) Coal Liquids Coal-oil Slurry Heap (1978) Heap (1978) Heap (1978) Nitric oxide production

Brown, Nancy J.

2011-01-01T23:59:59.000Z

225

Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor  

Science Conference Proceedings (OSTI)

This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

Scheele, Randall D.; Casella, Andrew M.

2010-09-28T23:59:59.000Z

226

Frostbite Theater - Liquid Nitrogen Experiments - Liquid Nitrogen Show!  

NLE Websites -- All DOE Office Websites (Extended Search)

Insulators! Insulators! Previous Video (Insulators!) Frostbite Theater Main Index Next Video (Superconductors!) Superconductors! Liquid Nitrogen Show! All of your favorite liquid nitrogen experiments all in one place! Flowers! Balloons! Racquetballs! Nothing is safe! Just sit back, relax, and enjoy the show! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Usually, every couple years, Jefferson Lab hosts an Open House. This is the one time the public and come and tour our accelerator and end stations. Steve: During the 2010 Open House, our cameraman snuck into one of the ongoing cryo shows that are held throughout the day. He missed half of it. So if you want to see the entire thing, check our website to see when the

227

Nitrogen control of chloroplast differentiation. Annual progress report  

DOE Green Energy (OSTI)

This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

Schmidt, G.W.

1992-07-01T23:59:59.000Z

228

Microbial nitrogen transformation potential in surface run-off leachate from a tropical landfill  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Microbial nitrogen transformations can alleviate toxic ammonium discharge. Black-Right-Pointing-Pointer Aerobic ammonium oxidation was rate-limiting in Indonesian landfill leachate. Black-Right-Pointing-Pointer Organic nitrogen ammonification was most dominant. Black-Right-Pointing-Pointer Anaerobic nitrate reduction and ammonium oxidation potential were also high. Black-Right-Pointing-Pointer A two-stage aerobic-anaerobic nitrogen removal system needs to be implemented. - Abstract: Ammonium is one of the major toxic compounds and a critical long-term pollutant in landfill leachate. Leachate from the Jatibarang landfill in Semarang, Indonesia, contains ammonium in concentrations ranging from 376 to 929 mg N L{sup -1}. The objective of this study was to determine seasonal variation in the potential for organic nitrogen ammonification, aerobic nitrification, anaerobic nitrate reduction and anaerobic ammonium oxidation (anammox) at this landfilling site. Seasonal samples from leachate collection treatment ponds were used as an inoculum to feed synthetic media to determine potential rates of nitrogen transformations. Aerobic ammonium oxidation potential (<0.06 mg N L{sup -1} h{sup -1}) was more than a hundred times lower than the anaerobic nitrogen transformation processes and organic nitrogen ammonification, which were of the same order of magnitude. Anaerobic nitrate oxidation did not proceed beyond nitrite; isolates grown with nitrate as electron acceptor did not degrade nitrite further. Effects of season were only observed for aerobic nitrification and anammox, and were relatively minor: rates were up to three times higher in the dry season. To completely remove the excess ammonium from the leachate, we propose a two-stage treatment system to be implemented. Aeration in the first leachate pond would strongly contribute to aerobic ammonium oxidation to nitrate by providing the currently missing oxygen in the anaerobic leachate and allowing for the growth of ammonium oxidisers. In the second pond the remaining ammonium and produced nitrate can be converted by a combination of nitrate reduction to nitrite and anammox. Such optimization of microbial nitrogen transformations can contribute to alleviating the ammonium discharge to surface water draining the landfill.

Mangimbulude, Jubhar C. [Faculty of Biology, Universitas Kristen Satya Wacana, Jl Diponegoro 52-60, Salatiga 50711 (Indonesia); Straalen, Nico M. van [Department of Ecological Science, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam (Netherlands); Roeling, Wilfred F.M., E-mail: wilfred.roling@falw.vu.nl [Department of Molecular Cell Physiology, Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, NL-1081 HV, Amsterdam (Netherlands)

2012-01-15T23:59:59.000Z

229

Innovative Clean Coal Technology (ICCT): 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. Phase 3A, Low NO{sub x} burner tests  

SciTech Connect

This Phase 3A test report summarizes the testing activities and results for the third testing phase of an Innovative Clean Coal Technology (ICCT) demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. Described in this report are the test plans, data measurements, and data analyses performed during the Phase 3A effort. The present report also contains sufficient background material to provide an understanding of the overall program scope, the relationship of Phase 3A to the overall program, the testing methodologies, testing procedures, and unit configuration. Results from 66 short-term tests indicate increasing NO{sub x} emissions over the load range ranging from 0.5 lb/MBtu at 300 NM to around 0.65 lb/MBtu at 480 MW. Fly ash loss-on-ignition (LOI) for these loads ranged from 5.4 to 8.6 percent. Long-term test results indicated high load (480 MW) NO{sub x} emissions of approximately 0.65 lb/MBtu. At the 300 MW mid load point, the emissions dropped to 0.47 lb/MBtu which is slightly lower than the 0.50 lb/MBtu shown for the short-term data. The annual and 30-day average achievable NO{sub x} emissions were determined to be 0.55 and 0.64 lb/MBtu, respectively, for the load scenario experienced during the Phase 3A, long-term test period. Based on the long-term test results for Phase 3A, at full-load the low NO{sub x} burners (LNB) retrofit resulted in a NO{sub x} reduction of 48 percent from baseline, while at 300 MW the reduction was approximately 50 percent. A series of tests was also conducted to evaluate the effects of various burner equipment settings and mill coal flow biasing on both NO{sub x} and LOI emissions.

Not Available

1993-03-15T23:59:59.000Z

230

Retrieval of Tropospheric Carbon Monoxide Profiles from High-Resolution Interferometer Observations: A New Digital Gas Correlation (DGC)Method and Applications  

Science Conference Proceedings (OSTI)

Global tropospheric carbon monoxide (CO) distributions can be retrieved from observations by spaceborne gas correlation radiometers and high-resolution interferometers. The Measurement of Pollution in the Troposphere (MOPITT) is a gas correlation ...

Jinxue Wang; John C. Gille; Paul L. Bailey; Liwen Pan; David Edwards; James R. Drummond

1999-01-01T23:59:59.000Z

231

CO oxidation on substituted copper chromite spinel oxide catalysts  

Science Conference Proceedings (OSTI)

Oxidation of carbon monoxide was studied on Mg- and Al-substituted CuCr[sub 2]O[sub 4] spinel catalyst at atmospheric pressure and temperatures between 373 and 723 K. The activity of CuCr[sub 2]O[sub 4] decreased even for small replacements of either Cu by Mg or Cr by Al and none of the substituted oxides was as active as CuCr[sub 2]O[sub 4]. In Cu[sub 1[minus]x]Mg[sub x]Cr[sub 2]O[sub 4] catalysts, the activity systematically decreased with increasing x, except for 0.4 < x < 0.6. The decrease in activity is due to a decrease in the active Cu[sup 2+] ions of the catalyst. The increase in activity on increasing x from 0.4 to 0.6 is attributed to the crystallographic phase change, i.e., tetragonal to cubic, in the catalyst. This was also found in the CuCr[sub 2[minus]x]Al[sub x]O[sub 4] catalysts. The decrease in the catalytic activity on substitution of Cr by Al, even when the total copper content is not altered, is due to the reduction of some of the active Cu[sup 2+] ions to Cu[sup 1+] ions. 10 refs., 9 figs., 2 tabs.

Murthy, K.S.R.C. (Indian Telephone Industries, Ltd., Banglore (India)); Ghose, J. (Indian Institute of Technology, Kharagpur (India))

1994-05-01T23:59:59.000Z

232

Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor  

Science Conference Proceedings (OSTI)

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

2012-11-13T23:59:59.000Z

233

Superior catalysts for selective catalytic reduction of nitric oxide. Quarterly technical progress report, January 1, 1995--March 31, 1995  

DOE Green Energy (OSTI)

During this quarter, progress was made on the following tasks: TPD techniques were employed to study the reaction mechanism of the selective catalytic reduction of nitrogen oxide with ammonia over iron oxide pillared clay catalyst; and a sulfur dioxide resistant iron oxide/titanium oxide catalyst was developed.

Li, W.B.; Yang, R.T.

1995-12-01T23:59:59.000Z

234

Carbon monoxide in indoor ice skating rinks: Evaluation of absorption by adult hockey players  

Science Conference Proceedings (OSTI)

We evaluated alveolar carbon monoxide (CO) levels of 122 male, adult hockey players active in recreational leagues of the Quebec City region (Canada), before and after 10 weekly 90-minute games in 10 different rinks. We also determined exposure by quantifying the average CO level in the rink during the games. Other variables documented included age, pulmonary function, aerobic capacity, and smoking status. Environmental concentrations varied from 1.6 to 131.5 parts per million (ppm). We examined the absorption/exposure relationship using a simple linear regression model. In low CO exposure levels, physical exercise lowered the alveolar CO concentration. However, we noted that for each 10 ppm of CO in the ambient air, the players had adsorbed enough CO to raise their carboxyhemoglobin (COHb) levels by 1 percent. This relationship was true both for smokers and non-smokers. We suggest that an average environmental concentration of 20 ppm of CO for the duration of a hockey game (90 minutes) should be reference limit not to be exceeded in indoor skating rinks.

Levesque, B.; Dewailly, E.; Lavoie, R.; Prud'Homme, D.; Allaire, S. (Centre hospitalier de l'Universite Laval, Quebec City (Canada))

1990-05-01T23:59:59.000Z

235

Highly ordered magnetic mesoporous silicas for effective elimination of carbon monoxide  

Science Conference Proceedings (OSTI)

Catalysts based on crystalline nanoparticles of Fe metal supported on mesoporous silica have been developed. The synthetic process involves hydrogen reduction processing for high abundant Fe metal nanoparticles within the mesopores, in which impregnated Fe salt in the inner nanopores of mesoporous silica is thermally treated under hydrogen at 500 Degree-Sign C. Detailed characterization was achieved by XRD, XPS, BET, and HR-TEM techniques. The catalytic efficiency was demonstrated as a function of the used amounts and reaction time. The results show that more than 90% of the carbon monoxide was eliminated at room temperature during a period 80 min with 0.5 g of catalyst. - Graphical abstract: Strategy for the preparation of highly abundant Fe nanoparticle embedded MS catalyst by hydrogen reduction process and HR-TEM images of cross-sectional and top view. Highlights: Black-Right-Pointing-Pointer MS based heterogeneous catalyst with Fe nanoparticles were demonstrated for CO elimination. Black-Right-Pointing-Pointer Highly Fe nanoparticle embedded MS catalyst prepared by hydrogen reduction process. Black-Right-Pointing-Pointer Systematic characterization was achieved by XRD, XPS, BET, and HR-TEM analyses. Black-Right-Pointing-Pointer More than 90% of the CO was eliminated at RT during 80 min with 0.5 g of catalyst.

Lee, Jiho [Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of); Department of Chemistry, Inha University, Incheon 402-751 (Korea, Republic of); Ho Chang, Jeong, E-mail: jhchang@kicet.re.kr [Korea Institute of Ceramic Engineering and Technology, Seoul 153-801 (Korea, Republic of)

2012-04-15T23:59:59.000Z

236

Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment  

E-Print Network (OSTI)

pollutants by combustion and evaporation, including nitrogen oxides, sulfur oxide, carbon monoxide-burning characteristics.2 Moreover, the huge reserves of natural gas (NG) (>95% CH4, with some ethane, nitrogen, higher be liquefied at room temperature, increasing the cost of its transportation.3 Attempts to overcome

Yaghi, Omar M.

237

Published: December 12, 2011 r 2011 American Chemical Society 551 dx.doi.org/10.1021/es202392g |Environ. Sci. Technol. 2012, 46, 551558  

E-Print Network (OSTI)

emissions of particulate matter and oxides of nitrogen from heavy-duty diesel trucks. To accelerate fleet.5 years in May of 2010 with significant reductions in carbon monoxide (30%), oxides of nitrogen (48 emissions as a result of new, stoichiometrically combusted, liquefied natural gas powered trucks

Denver, University of

238

Nitrogen fixation method and apparatus  

DOE Patents (OSTI)

A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O[sub 2]/cm promotes the formation of vibrationally excited N[sub 2]. Atomic oxygen interacts with vibrationally excited N[sub 2] at a much quicker rate than unexcited N[sub 2], greatly improving the rate at which NO is formed. 1 fig.

Chen, H.L.

1983-08-16T23:59:59.000Z

239

Nitrogen fixation method and apparatus  

DOE Patents (OSTI)

A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

Chen, Hao-Lin (Walnut Creek, CA)

1983-01-01T23:59:59.000Z

240

Stanford Nitrogen Group | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Innovation » Commercialization » National Science & Innovation » Innovation » Commercialization » National Clean Energy Business Plan Competition » Stanford Nitrogen Group National Clean Energy Business Plan Competition Stanford Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process for the removal and recovery of energy from waste nitrogen (i.e. ammonia). This process improves the efficiency and lowers the cost of nitrogen treatment. The process is termed the Coupled Aerobic-anoxic Nitrous Decomposition Operation (CANDO) and consists of 2 principal steps: biological conversion of ammonia to N2O gas, and combustion of a fuel (i.e. biogas) with N2O to recover energy. It's the first wastewater treatment process to recover energy from nitrogen.

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NO-assisted molecular-beam epitaxial growth of nitrogen substituted EuO  

Science Conference Proceedings (OSTI)

We have investigated a method for substituting oxygen with nitrogen in EuO thin films, which is based on molecular beam epitaxy distillation with NO gas as the oxidizer. By varying the NO gas pressure, we produce crystalline, epitaxial EuO{sub 1-x}N{sub x} films with good control over the films' nitrogen concentration. In situ x-ray photoemission spectroscopy reveals that nitrogen substitution is connected to the formation Eu{sup 3+}4f{sup 6} and a corresponding decrease in the number of Eu{sup 2+}4f{sup 7}, indicating that nitrogen is being incorporated in its 3{sup -} oxidation state. While small amounts of Eu{sup 3+} in over-oxidized Eu{sub 1-{delta}}O thin films lead to a drastic suppression of the ferromagnetism, the formation of Eu{sup 3+} in EuO{sub 1-x}N{sub x} still allows the ferromagnetic phase to exist with an unaffected T{sub c}, thus providing an ideal model system to study the interplay between the magnetic f{sup 7} (J = 7/2) and the non-magnetic f{sup 6} (J = 0) states close to the Fermi level.

Wicks, R. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Altendorf, S. G.; Caspers, C.; Kierspel, H.; Sutarto, R. [II. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Tjeng, L. H. [II. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany); Max Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Damascelli, A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada)

2012-04-16T23:59:59.000Z

242

The Bevatron liquid nitrogen circulation system  

SciTech Connect

A nitrogen liquefier and computer controlled valving system have been added to the Bevatron cryoliner vacuum system to cut operating costs by reducing liquid nitrogen consumption. The computer and interface electronic systems, which control the temperatures of twenty-eight liquid nitrogen circuits, have been chosen and designed to operate in the Bevatron's pulsating magnetic field. The nitrogen exhaust is routed back to a liquefier, of about five kilowatt capacity, liquefied, and rerouted through the cooling circuits. A description of the system and operating results are presented.

Hunt, D.; Stover, G.

1987-03-01T23:59:59.000Z

243

Electrochemical process for the preparation of nitrogen ...  

Electrochemical process for the preparation of nitrogen fertilizers United States Patent. Patent Number: 8,152,988: Issued: April 10, 2012: Official Filing:

244

RELATIONSHIPS BETWEEN NITROGEN METABOLISM AND PHOTOSYNTHESIS  

E-Print Network (OSTI)

RG and JA Bassham, Photosynthesis by isolated chloroplasts.chloroplasts during photosynthesis. Plant Physiol ~0:22H-2?NITROGEN METABOLISM AND PHOTOSYNTHESIS James A. Bassham,

Bassham, James A.

2013-01-01T23:59:59.000Z

245

Multifunctional Oxides  

Science Conference Proceedings (OSTI)

3) Electric, ferroelectric, magnetic and photonic properties of oxides 4) Theoretical modeling of epitaxial growth, interfaces and microstructures 5) Composition ...

246

SOFT X-RAY IRRADIATION OF PURE CARBON MONOXIDE INTERSTELLAR ICE ANALOGUES  

SciTech Connect

There is an increasing evidence for the existence of large organic molecules in the interstellar and circumstellar medium. Very few among such species are readily formed in conventional gas-phase chemistry under typical conditions of interstellar clouds. Attention has therefore focused on interstellar ices as a potential source of these relatively complex species. Laboratory experiments show that irradiation of interstellar ice analogues by fast particles or ultraviolet radiation can induce significant chemical complexity. However, stars are sources of intense X-rays at almost every stage of their formation and evolution. Such radiation may thus provide chemical changes in regions where ultraviolet radiation is severely inhibited. After H{sub 2}O, CO is often the most abundant component of icy grain mantles in dense interstellar clouds and circumstellar disks. In this work we present irradiation of a pure carbon monoxide ice using a soft X-ray spectrum peaked at 0.3 keV. Analysis of irradiated samples shows formation of CO{sub 2}, C{sub 2}O, C{sub 3}O{sub 2}, C{sub 3}, C{sub 4}O, and CO{sub 3}/C{sub 5}. Comparison of X-rays and ultraviolet irradiation experiments, of the same energy dose, shows that X-rays are more efficient than ultraviolet radiation in producing new species. With the exception of CO{sub 2}, X-ray photolysis induces formation of a larger number of products with higher abundances, e.g., C{sub 3}O{sub 2} column density is about one order of magnitude higher in the X-ray experiment. To our knowledge this is the first report on X-ray photolysis of CO ices. The present results show that X-ray irradiation represents an efficient photo-chemical way to convert simple ices to more complex species.

Ciaravella, A.; Candia, R.; Collura, A. [INAF-Osservatorio Astronomico di Palermo, P.za Parlamento 1, 90134 Palermo (Italy); Jimenez-Escobar, A.; Munoz Caro, G. M. [Centro de Astrobiologia (CSIC-INTA), Carretera de Ajalvir, km 4, Torrejon de Ardoz, 28850 Madrid (Spain); Cecchi-Pestellini, C. [INAF-Osservatorio Astronomico di Cagliari, Strada n.54, Loc. Poggio dei Pini, I-09012 Capoterra (Italy); Giarrusso, S. [INAF-Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Barbera, M., E-mail: aciaravella@astropa.unipa.it [Dipartimento di Scienze Fisiche and Astronomiche, Universita di Palermo, Sezione di Astronomia, Piazza del Parlamento 1, I-90134 Palermo (Italy)

2012-02-10T23:59:59.000Z

247

INSENSITIVE HIGH-NITROGEN COMPOUNDS  

DOE Green Energy (OSTI)

The conventional approach to developing energetic molecules is to chemically place one or more nitro groups onto a carbon skeleton, which is why the term ''nitration'' is synonymous to explosives preparation. The nitro group carries the oxygen that reacts with the skeletal carbon and hydrogen fuels, which in turn produces the heat and gaseous reaction products necessary for driving an explosive shock. These nitro-containing energetic molecules typically have heats of formation near zero and therefore most of the released energy is derived from the combustion process. Our investigation of the tetrazine, furazan and tetrazole ring systems has offered a different approach to explosives development, where a significant amount of the chemical potential energy is derived from their large positive heats of formation. Because these compounds often contain a large percentage of nitrogen atoms, they are usually regarded as high-nitrogen fuels or explosives. A general artifact of these high-nitrogen compounds is that they are less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine, several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. Some of the first compounds are 3,6-diamino-s-tetrazine-1,4-dioxide (LAX-112) and 3,6-dihydrazino-s-tetrazine (DHT). LAX-112 was once extensively studied as an insensitive explosive by Los Alamos; DHT is an example of a high-nitrogen explosive that relies entirely on its heat of formation for sustaining a detonation. Recent synthesis efforts have yielded an azo-s-tetrazine, 3,3'-azobis(6-amino-s-tetrazine) or DAAT, which has a very high positive heat of formation. The compounds, 4,4'-diamino-3,3'-azoxyfurazan (DAAF) and 4,4'-diamino-3,3'-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB--the standard of insensitive high explosives. The thermal stability of DAAzF is equal to that of hexanitrostilbene (HNS), yet it too is a better explosive performer. The recently discovered tetrazol derivative, 3,6-bis-(1H-1,2,3,4-tetrazol-5-ylamino)-s-tetrazine (BTATz) was measured to have exceptional positive heats of formation and to be insensitive to explosive initiation. Because of its high burn rate with low sensitivity to pressure, this material is of great interest to the propellant community.

D. CHAVEZ; ET AL

2001-03-01T23:59:59.000Z

248

NITROGEN K-SHELL PHOTOABSORPTION  

Science Conference Proceedings (OSTI)

Reliable atomic data have been computed for the spectral modeling of the nitrogen K lines, which may lead to useful astrophysical diagnostics. Data sets comprise valence and K-vacancy level energies, wavelengths, Einstein A-coefficients, radiative and Auger widths, and K-edge photoionization cross sections. An important issue is the lack of measurements that are usually employed to fine-tune calculations so as to attain spectroscopic accuracy. In order to estimate data quality, several atomic structure codes are used and extensive comparisons with previous theoretical data have been carried out. In the calculation of K photoabsorption with the Breit-Pauli R-matrix method, both radiation and Auger dampings, which cause the smearing of the K edge, are taken into account. This work is part of a wider project to compute atomic data in the X-ray regime to be included in the database of the popular XSTAR modeling code.

GarcIa, J. [Catholic University of America, IACS, Physics Department, Washington DC 20064 (United States); Kallman, T. R.; Witthoeft, M.; Behar, E. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mendoza, C. [Centro de Fisica, IVIC, Caracas 1020A (Venezuela, Bolivarian Republic of); Palmeri, P.; Quinet, P. [Astrophysique et Spectroscopie, Universite de Mons, B-7000 Mons (Belgium); Bautista, M.A. [Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Klapisch, M. [ARTEP, Inc., Ellicott City, MD 21042 (United States)], E-mail: javier@milkyway.gsfc.nasa.gov, E-mail: michael.c.witthoeft@nasa.gov, E-mail: timothy.r.kallman@nasa.gov, E-mail: behar@milkyway.gsfc.nasa.gov, E-mail: claudio@ivic.ve, E-mail: palmeri@umons.ac.be, E-mail: quinet@umons.ac.be, E-mail: bautista@vt.edu, E-mail: marcel.klapisch.ctr@nrl.navy.mil

2009-12-01T23:59:59.000Z

249

Carbon and Nitrogen Dynamics in Agricultural Soils  

E-Print Network (OSTI)

Carbon and Nitrogen Dynamics in Agricultural Soils Model Applications at Different Scales in Time Print: SLU Service/Repro, Uppsala 2012 #12;Carbon and Nitrogen Dynamics in Agricultural Soils. Model Applications at Different Scales in Time and Space Abstract An understanding of soil organic carbon (C

250

Thermodynamic investigation into steam-methane reforming and the synthesis of methane from carbon monoxide and hydrogen  

SciTech Connect

In this study the stream-methane equilibrium reaction was investigated by considering both methane synthesis from hydrogen and carbon monoxide and by considering steam-methane reforming from methane and steam. A FORTRAN computer program was written to carry out all the calculations over a wide range of temperatures, pressures, and initial compositions. The products of each process as a function of pressure, temperature, and starting ratio of reactant gases were calculated, as well as the heats involved. In both processes the minimum ratios above which no carbon precipitates were determined as a function of temperature and pressure were given.

Wu, L.H.; Lietzke, M.H.

1976-11-01T23:59:59.000Z

251

Frostbite Theater - Liquid Nitrogen Experiments - Freezing Balloons!  

NLE Websites -- All DOE Office Websites (Extended Search)

Season Two Bloopers Season Two Bloopers Previous Video (Season Two Bloopers) Frostbite Theater Main Index Next Video (Instant Liquid Nitrogen Balloon Party!) Instant Liquid Nitrogen Balloon Party! Freezing Balloons! What happens when a balloon full of air is plunged into a container full of liquid nitrogen? Play the video to find out! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And this is a really big balloon! Joanna: Let's see what happens when we place the balloon in the liquid nitrogen! Steve: Okay! Wait! Wait! Wait! Wait! Wait! Isn't the balloon going to pop? Joanna: We'll see! Steve: Aw, man... Huh. Okay, so the balloon didn't pop. But, there's

252

Frostbite Theater - Liquid Nitrogen Experiments - Insulators!  

NLE Websites -- All DOE Office Websites (Extended Search)

Popping Film Canisters! Popping Film Canisters! Previous Video (Popping Film Canisters!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Show!) Liquid Nitrogen Show! Insulators! Cups full of water are placed into bowls of liquid nitrogen! Which cup will insulate the best? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And these are two plastic cups! Joanna: Let's see which cup is the better insulator! Steve: Okay! So, um, how do we do that? Joanna: Well, we'll pour water into each of the cups and then we'll pour the liquid nitrogen into each of the bowls. If we then place the cup in the bowl, the heat from the water will try to pass through the cup into the

253

Visualizing Individual Nitrogen Dopants in Monolayer Graphene  

SciTech Connect

In monolayer graphene, substitutional doping during growth can be used to alter its electronic properties. We used scanning tunneling microscopy, Raman spectroscopy, x-ray spectroscopy, and first principles calculations to characterize individual nitrogen dopants in monolayer graphene grown on a copper substrate. Individual nitrogen atoms were incorporated as graphitic dopants, and a fraction of the extra electron on each nitrogen atom was delocalized into the graphene lattice. The electronic structure of nitrogen-doped graphene was strongly modified only within a few lattice spacings of the site of the nitrogen dopant. These findings show that chemical doping is a promising route to achieving high-quality graphene films with a large carrier concentration.

L Zhao; R He; K Rim; T Schiros; K Kim; H Zhou; C Gutierrez; S Chockalingam; C Arguello; et al.

2011-12-31T23:59:59.000Z

254

Eighth international congress on nitrogen fixation. Final program  

DOE Green Energy (OSTI)

This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

Not Available

1990-12-31T23:59:59.000Z

255

On-site generated nitrogen cuts cost of underbalanced drilling  

Science Conference Proceedings (OSTI)

The use of on-site generated nitrogen, instead of liquid nitrogen, has reduced the cost of drilling underbalanced horizontal wells in Canada and the western US. Because nitrogen is inert and inflammable, it is the preferred gas for underbalanced drilling. Nitrogen can be supplied for oil field use by three different methods: cryogenic liquid separation, pressure swing adsorption, and hollow fiber membranes. The selection of nitrogen supply from one of these methods depends on the cost of delivered nitrogen, the required flow rates and pressure, the required nitrogen purity, and the availability and reliability of the equipment for nitrogen generation. These three methods are described, as well as the required equipment.

Downey, R.A. [Energy Ingenuity Co., Englewood, CO (United States)

1997-02-24T23:59:59.000Z

256

Internal energy and parameters of the order-disorder phase transition in titanium monoxide TiO{sub y}  

Science Conference Proceedings (OSTI)

Quantum-mechanical ab initio calculations are used to simulate the free energy functions for titanium monoxide TiO{sub y}. The effect of the long-range order of the Ti{sub 5}O{sub 5} type superstructure on the internal energy of the compound is studied by the supercell method. The dependences of the configuration entropy and free energy on the long-range order parameter are determined. It is found that the order-disorder phase transition in titanium monoxide must occur in accordance with the mechanism of the first-order phase transition with a critical value of the long-range order parameter of 0.971. The calculated parameters of the phase transition are compared with the experimental data and the results obtained using the model of point charges and by calculating the Madelung energy. It is concluded that the short-range order and the phonon entropy must be taken into account in calculating the equilibrium phase diagrams for strongly nonstoichiometric compounds.

Kostenko, M. G.; Rempel, A. A., E-mail: rempel@ihim.uran.ru [Russian Academy of Sciences, Institute of Solid-State Chemistry, Ural Branch (Russian Federation); Lukoyanov, A. V. [Ural Federal University (Russian Federation)

2013-06-15T23:59:59.000Z

257

Effects of Chlorine and Other Flue Gas Parameters on Selective Catalytic Reduction Technology for Mercury Oxidation and Capture  

Science Conference Proceedings (OSTI)

Selective Catalytic Reduction (SCR) technologythe technology of choice for meeting stringent nitrogen oxides (NOx) emission limits for coal-fired electric generating plantshas potential for oxidizing mercury, which would provide enhanced removal in downstream systems. Catalyst behavior is relatively well understood for deNOx and SO2 oxidation, but less is known about mercury oxidation behavior. This test program was designed to determine general behavior of typical SCR catalysts on mercury oxidation and ...

2009-12-21T23:59:59.000Z

258

Synthesis of higher alcohols from carbon monoxide and hydrogen in a slurry reactor  

DOE Green Energy (OSTI)

Higher, i.e. C{sub 2{sup +}}, alcohols are desired as gasoline additives, feedstocks for producing ethers and as alternative fuels for automobiles. In all cases, the backbone branching of an alcohol improves octane rating, which is essential for good engine performance. These types of branched, higher alcohols are the desired products for a process converting synthesis gas, a CO and H{sub 2} mixture, often generated from coal gasification. Based on this premise, promoted ZnCr oxide catalysts appear to be as one of the best avenues for further investigation. Once this investigation is complete, a natural extension is to replace the Cr in the ZnCr oxide catalyst with Mo and W, both in the same elemental triad with Cr. Mo has already been shown as an active HAS catalyst, both on a SiO{sub 2} support and in the MoS{sub 2} form. The three catalyst combinations, ZnMo, ZnW, and MnCr oxides will be tested in the stirred autoclave system. However, if none of the three indicate any comparable activity and/or selectivity toward higher alcohols as compared with other HAS catalysts, then an investigation of the effects of Cs promotion on the ZnCr oxide methanol catalysts will be executed.

McCutchen, M.S.

1992-08-28T23:59:59.000Z

259

Comminution employing liquid nitrogen pretreatments  

SciTech Connect

The goal of this project is to develop a methodology that will lead to the establishment of an effective, efficient technique for ultrafine grinding of coal. We believe that the key to successful coal grinding is strongly dependent upon the change of the brittleness of coal under a freezing temperature pretreatment. Furthermore, a cryogenic grinding process may provide the basis for the development of advanced technologies involving the separation of the pyritic minerals from coal. Specific objectives of the program are to: determine the effect of low temperature pretreatments on the microfracture development along the coal/pyrite interface and on the fracture resistance (brittleness) of coal. Specifically, we intend to examine the effect of direct contact of coal with liquid nitrogen, dry ice, and dry-iced acetone. Also, we intend to study pyrite liberation as a result of these treatments; determine the fracture resistance of coal under different low temperature pretreatments; determine the relationships between the fracture resistance of coal and the effectiveness of a grinding process; determine the effect of the frozen coal grinding on the pyrite liberation; evaluate factors which might effect process design, scale-up, and economics; and make a first pass economic assessment of the process. 15 refs., 13 figs., 3 tabs.

Yen, S.C. (Southern Illinois Univ., Carbondale, IL (USA). Dept. of Civil Engineering and Mechanics); Hippo, E.J. (Southern Illinois Univ., Carbondale, IL (USA). Dept. of Mechanical Engineering and Energy Processes)

1990-11-01T23:59:59.000Z

260

Nitrogen Removal From Low Quality Natural Gas  

SciTech Connect

Natural gas provides more than one-fifth of all the primary energy used in the United States. It is especially important in the residential sector, where it supplies nearly half of all the energy consumed in U.S. homes. However, significant quantities of natural gas cannot be produced economically because its quality is too low to enter the pipeline transportation system without some type of processing, other than dehydration, to remove the undesired gas fraction. Such low-quality natural gas (LQNG) contains significant concentration or quantities of gas other than methane. These non- hydrocarbons are predominantly nitrogen, carbon dioxide, and hydrogen sulfide, but may also include other gaseous components. The nitrogen concentrations usually exceeds 4%. Nitrogen rejection is presently an expensive operation which can present uneconomic scenarios in the potential development of natural gas fields containing high nitrogen concentrations. The most reliable and widely used process for nitrogen rejection from natural gas consists of liquefying the feed stream using temperatures in the order of - 300{degrees}F and separating the nitrogen via fractionation. In order to reduce the gas temperature to this level, the gas is compressed, cooled by mullet-stream heat exchangers, and expanded to low pressure. Significant energy for compression and expensive materials of construction are required. Water and carbon dioxide concentrations must be reduced to levels required to prevent freezing. SRI`s proposed research involves screening new nitrogen selective absorbents and developing a more cost effective nitrogen removal process from natural gas using those compounds. The long-term objective of this project is to determine the technical and economical feasibility of a N{sub 2}2 removal concept based on complexation of molecular N{sub 2} with novel complexing agents. Successful development of a selective, reversible, and stable reagent with an appropriate combination of capacity and N{sub 2} absorption/desorption characteristics will allow selective separation of N{sub 2} from LQNG.

Alvarado, D.B.; Asaro, M.F.; Bomben, J.L.; Damle, A.S.; Bhown, A.S.

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Catalysts for the production of hydrocarbons from carbon monoxide and water  

DOE Patents (OSTI)

A method of converting low H.sub.2 /CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200.degree. to 350.degree. C. in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinium, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n+1).gtoreq.x.gtoreq.O and for olefinic hydrocarbons: 2n.gtoreq.x.gtoreq.O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

Sapienza, Richard S. (Shoreham, NY); Slegeir, William A. (Hampton Bays, NY); Goldberg, Robert I. (Selden, NY)

1987-01-01T23:59:59.000Z

262

Catalysts for the production of hydrocarbons from carbon monoxide and water  

DOE Patents (OSTI)

A method of converting low H/sub 2//CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200 to 350/sup 0/C in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinum, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n + 1) greater than or equal to x greater than or equal to O and for olefinic hydrocarbons: 2n greater than or equal to x greater than or equal to O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

Sapienza, R.S.; Slegeir, W.A.; Goldberg, R.I.

1985-11-06T23:59:59.000Z

263

A toolbox for calculating net anthropogenic nitrogen inputs (NANI)  

Science Conference Proceedings (OSTI)

The ''Net Anthropogenic Nitrogen Input'' (NANI) to a region represents an estimate of anthropogenic net nitrogen (N) fluxes across its boundaries, and is thus a measure of the effect of human activity on the regional nitrogen cycle. NANI accounts for ... Keywords: Anthropogenic, Nitrogen, Synthesis, Toolbox, Watershed

Bongghi Hong; Dennis P. Swaney; Robert W. Howarth

2011-05-01T23:59:59.000Z

264

Determination of the forms of nitrogen released in coal tar during rapid devolatilization. Semi-annual report, November 1, 1995--April 30, 1996  

SciTech Connect

Control of emissions of nitrogen oxides (NO{sub x}) from coal combustion systems is becoming a major design and retrofit consideration. Most NO{sub x} in coal combustion systems comes from nitrogen in the fuel, rather than from nitrogen in the air. Practical emission control strategies include burner design strategies (e.g., low NO{sub x} burners), overfire air, reburning, selective non-catalytic reduction (SNCR) using reduction agents such as NH{sub 3} or urea, and selective catalytic reduction (SCR). The order listed also reflects the order of increasing costs for implementation. It is therefore most economically desirable to perform burner modifications to reduce NO{sub x} emissions rather than other control measures. Low-NO{sub x} burners work on the principle that devolatilized nitrogen species will form N{sub 2} rather than NO{sub x} under locally fuel-rich conditions with sufficient residence time at appropriate temperatures. The amount and form of nitrogen released during devolatilization influence the degree of NO{sub x} reduction attainable using burner design strategies for a given coal. Nitrogen in the char following devolatilization is released by heterogeneous oxidation, and may not be controlled by aerodynamic burner modifications. The objectives of this work are to perform detailed chemical measurements of the nitrogen in coal, tar, and char.

Fletcher, T.H.

1996-04-30T23:59:59.000Z

265

Nitrogen and phosphorus in the Finnish energy system, 1900-2003  

Science Conference Proceedings (OSTI)

In producing power, humans move the nutrients nitrogen (N) and phosphorus (P) from their long-term geological and biological stocks and release or emit them in soil, water, and the atmosphere. In Finland, peat combustion is an important driver of N and P fluxes from the environment to human economy. The flows of N and P in the Finnish energy system were quantified with partial substance flow analysis, and the driving forces of emissions of nitrogen oxides (NOx) were analyzed using the ImPACT model. In the year 2000 in Finland, 140,000 tonnes of nitrogen entered the energy system, mainly in peat and hard coal. Combustion released an estimated 66,000 tonnes of N as nitrogen oxides (NOx) and nitrous oxides (N{sub 2}O) and another 74,000 tonnes as elemental N{sub 2}. Most of the emissions were borne in traffic. At the same time, 6,000 tonnes of P was estimated to enter the Finnish energy system, mostly in peat and wood. Ash was mainly used in earth construction and disposed in landfills; thus negligible levels of P were recycled back to nature. During the twentieth century, fuel-borne input of N increased 20-fold, and of P 8-fold. In 1900-1950, the increasing use of hard coal slowly boosted N input, whereas wood fuels were the main carrier of P. Since 1970, the fluxes have been on the rise. NOx emissions leveled off in the 1980s, though, and then declined in conjunction with improvements in combustion technologies such as NOx removal (de-NOx) technologies in energy production and catalytic converters in cars.

Saikku, L.; Antikainen, R.; Kauppi, P.E. [University of Helsinki, Helsinki (Finland). Dept. of Biology & Environmental Science

2007-01-01T23:59:59.000Z

266

Nitrogen control of chloroplast development and differentiation  

DOE Green Energy (OSTI)

The growth and development of plants and photosynthetic microorganisms is commonly limited by the availability of nitrogen. Our work concerns understanding the mechanisms by which plants and algae that are subjected to nitrogen deprivation alter the composition of photosynthetic membranes and enzymes involved in photosynthetic carbon metabolism. Toward these ends, we study biosynthetic and gene expression processes in the unicellular green alga Chlamydomonas reinhardtii which is grown in an ammonium-limited continuous culture system. We have found that the expression of nuclear genes, including those encoding for light-harvesting proteins, are severely repressed in nitrogen-limited cells whereas, in general, chloroplast protein synthesis is attenuated primarily at the level of mRNA translation. Conversely, nitrogen deprivation appears to lead to enhanced synthesis of enzymes that are involved in starch and storage lipid deposition. In addition, as a possible means by which photosynthetic electron transport activities and ATP synthesis is sustained during chronic periods of nitrogen deprivation, thylakoid membranes become enriched with components for chlororespiration. Characterization of the chlororespiratory electron transport constituents, including cytochrome complexes and NAD(P)H dehydrogenase is a major current effort. Also, we are striving to isolate the genes encoding chlororespiration proteins toward determining how they and others that are strongly responsive to nutrient availability are regulated.

Schmidt, G.W.

1991-12-01T23:59:59.000Z

267

Multi-stage catalyst systems and uses thereof  

DOE Patents (OSTI)

Catalyst systems and methods provide benefits in reducing the content of nitrogen oxides in a gaseous stream containing nitric oxide (NO), hydrocarbons, carbon monoxide (CO), and oxygen (O.sub.2). The catalyst system comprises an oxidation catalyst comprising a first metal supported on a first inorganic oxide for catalyzing the oxidation of NO to nitrogen dioxide (NO.sub.2), and a reduction catalyst comprising a second metal supported on a second inorganic oxide for catalyzing the reduction of NO.sub.2 to nitrogen (N.sub.2).

Ozkan, Umit S. (Worthington, OH); Holmgreen, Erik M. (Columbus, OH); Yung, Matthew M. (Columbus, OH)

2009-02-10T23:59:59.000Z

268

Frostbite Theater - Liquid Nitrogen Experiments - Dry Ice vs. Liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

Egg + Liquid Nitrogen + Time-lapse! Egg + Liquid Nitrogen + Time-lapse! Previous Video (Egg + Liquid Nitrogen + Time-lapse!) Frostbite Theater Main Index Next Video (Liquid Nitrogen Cooled Dry Ice in Water!) Liquid Nitrogen Cooled Dry Ice in Water! Dry Ice vs. Liquid Nitrogen! Dry ice is cold. Liquid nitrogen is cold, too. What happens when the two are mixed together? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Have you ever wondered what happens when you mix dry ice and liquid nitrogen? Steve: Well, we just happen to have a chunk of dry ice left over from when we filmed 'How to Make a Cloud Chamber,' and here at Jefferson Lab, liquid nitrogen flows like water, so we're going to find out!

269

Nitrogen heat pipe for cryocooler thermal shunt  

SciTech Connect

A nitrogen heat pipe was designed, built and tested for the purpose of providing a thermal shunt between the two stages of a Gifford-McMahan (GM) cryocooler during cooldown. The nitrogen heat pipe has an operating temperature range between 63 and 123 K. While the heat pipe is in the temperature range during the system cooldown, it acts as a thermal shunt between the first and second stage of the cryocooler. The heat pipe increases the heat transfer to the first stage of the cryocooler, thereby reducing the cooldown time of the system. When the heat pipe temperature drops below the triple point, the nitrogen working fluid freezes, effectively stopping the heat pipe operation. A small heat leak between cryocooler stages remains because of axial conduction along the heat pipe wall. As long as the heat pipe remains below 63 K, the heat pipe remains inactive. Heat pipe performance limits were measured and the optimum fluid charge was determined.

Prenger, F.C.; Hill, D.D.; Daney, D.E.; Daugherty, M.A. [Los Alamos National Lab., NM (United States); Green, G.F.; Roth, E.W. [Naval Surface Warfare Center, Annapolis, MD (United States)

1995-09-01T23:59:59.000Z

270

Characterization of nitrogen compound types in hydrotreated Paraho shale oil  

DOE Green Energy (OSTI)

Results from the separation and characterization of nitrogen compound types in hydrotreated Paraho shale oil samples were obtained. Two samples of Paraho shale oil were hydrotreated by Chevron Research Company such that one sample contained about 0.05 wt. percent nitrogen and the other sample contained about 0.10 wt. percent nitrogen. A separation method concentrate specific nitrogen compound types was developed. Characterization of the nitrogen types was accomplished by infrared spectroscopy, mass spectrometry, potentiometric titration, and elemental analysis. The distribution of nitrogen compound types in both samples and in the Paraho crude shale oil is compared.

Holmes, S.A.; Latham, D.R.

1980-10-01T23:59:59.000Z

271

Modelling nitrogen leaching from overlapping urine patches  

Science Conference Proceedings (OSTI)

Urine depositions have been shown to be the main source of N leaching from grazing systems and thus it is important to consider them in simulation models. The inclusion of urine patches considerably increases the complexity of the model and this can ... Keywords: APSIM, Grazing system, Heterogeneity, Leaching, Nitrogen, Simulation modelling, Urine patches

R. Cichota; V. O. Snow; I. Vogeler

2013-03-01T23:59:59.000Z

272

Method for producing high carrier concentration p-Type transparent conducting oxides  

DOE Patents (OSTI)

A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

Li, Xiaonan (Evergreen, CO); Yan, Yanfa (Littleton, CO); Coutts, Timothy J. (Golden, CO); Gessert, Timothy A. (Conifer, CO); Dehart, Clay M. (Westminster, CO)

2009-04-14T23:59:59.000Z

273

Nitrogen and Sulfur Requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on Cellulosic Substrates in Minimal Nutrient Media  

Science Conference Proceedings (OSTI)

Growth media for cellulolytic Clostridium thermocellum and Caldicellulosiruptor bescii bacteria usually contain excess nutrients that would increase costs for consolidated bioprocessing for biofuel production and create a waste stream with nitrogen, sulfur and phosphate. C. thermocellum was grown on crystalline cellulose with varying concentrations of nitrogen and sulfur compounds, and growth rate and alcohol production response curves were determined. Both bacteria assimilated sulfate in the presence of ascorbate reductant, increasing the ratio of oxidized to reduced fermentation products. From these results, a low ionic strength, defined minimal nutrient medium with decreased nitrogen, sulfur, phosphate and vitamin supplements was developed for the fermentation of cellobiose, cellulose and acid-pretreated Populus. Carbon and electron balance calculations indicate the unidentified residual fermentation products must include highly reduced molecules. Both bacterial populations were maintained in co-cultures with substrates containing xylan or hemicellulose in defined medium with sulfate and basal vitamin supplements.

Kridelbaugh, Donna M [ORNL; Nelson, Josh C [ORNL; Engle, Nancy L [ORNL; Tschaplinski, Timothy J [ORNL; Graham, David E [ORNL

2013-01-01T23:59:59.000Z

274

Frostbite Theater - Liquid Oxygen vs. Liquid Nitrogen - Liquid Oxygen and  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells vs. Liquid Nitrogen! Cells vs. Liquid Nitrogen! Previous Video (Cells vs. Liquid Nitrogen!) Frostbite Theater Main Index Next Video (Paramagnetism) Paramagnetism Liquid Oxygen and Fire! What happens when nitrogen and oxygen are exposed to fire? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a test tube of liquid nitrogen! Steve: And this is a test tube of liquid oxygen! Joanna: Let's see what happens when nitrogen and oxygen are exposed to fire. Steve: Fire?! Joanna: Yeah! Steve: Really?! Joanna: Why not! Steve: Okay! Joanna: As nitrogen boils, it changes into nitrogen gas. Because it's so cold, it's denser than the air in the room. The test tube fills up with

275

Liquid absorbent solutions for separating nitrogen from natural gas  

DOE Patents (OSTI)

Nitrogen-absorbing and -desorbing compositions, novel ligands and transition metal complexes, and methods of using the same, which are useful for the selective separation of nitrogen from other gases, especially natural gas.

Friesen, Dwayne T. (Bend, OR); Babcock, Walter C. (Bend, OR); Edlund, David J. (Redmond, OR); Lyon, David K. (Bend, OR); Miller, Warren K. (Bend, OR)

2000-01-01T23:59:59.000Z

276

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole...

277

Plant Communities, Soil Carbon, and Soil Nitrogen Properties in a ...  

Science Conference Proceedings (OSTI)

Brye KR, Kucharik CJ (2003) Carbon and nitrogen sequestration in two prairie topochronosequences on contrasting soils in Southern. Wisconsin. American ...

278

Published: April 28, 2011 r 2011 American Chemical Society 629 dx.doi.org/10.1021/cs200092c |ACS Catal. 2011, 1, 629635  

E-Print Network (OSTI)

and diesel generate harmful pollutants such as nitrogen oxides (NOx), carbon monoxide (CO), unburned hydrocarbons (HC), particulates, and sulfur oxides (SOx). Liquefied petroleum gas (LPG), an alternative cleaner burning fuel, is gaining ground for use in internal combustion engines.1 Liquefied petroleum gas has

Poeppelmeier, Kenneth R.

279

Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start  

DOE Patents (OSTI)

A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

Janata, Jiri (Richland, WA); McVay, Gary L. (Richland, WA); Peden, Charles H. (West Richland, WA); Exarhos, Gregory J. (Richland, WA)

1998-01-01T23:59:59.000Z

280

"LIMITS AND CHANCES IN FLUE-GAS CLEANING -INTE RNATIONAL PERSPECTIVE"  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Mercury and Dioxin Control for Municipal Waste Combustors Anthony Licata  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

282

National Waste Processing Conference Proceedings ASME 1994 THE RETROFIT OF THE MWC ROTEB IN  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

283

National Waste Processing Conference Proceedings ASME 1994 ACID GASES, MERCURY,  

E-Print Network (OSTI)

) and elemental mercury (Hg«» under oxidizing conditions of the off-gases downstream of the refuse incinerator), sulfur dioxide (S02)' nitrogen oxides (NOx), carbon monoxide (CO), PCDDs/PCDFs, cadmium (Cd), mercury (Hg emission regulations. Mercury Control in MWCs The capture of Hg in flue gas cleaning devices depends on the

Columbia University

284

NATURAL CONVECTION OF SUBCOOLED LIQUID NITROGEN IN A VERTICAL CAVITY  

E-Print Network (OSTI)

power transformer cooled by natural convection of subcooled liquid nitrogen. A liquid nitrogen bath temperature superconductor) power devices, such as HTS transformers, fault current limiters, and terminals of subcooled liquid nitrogen system for an HTS transformer, operating at around 65 K. This system consists

Chang, Ho-Myung

285

NITROGEN EVOLUTION AND SOOT FORMATION DURING SECONDARY COAL PYROLYSIS  

E-Print Network (OSTI)

reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions yields of the primary tar as a function of reactor temperature in coal [N]tar nitrogen content in tar or soot N nitrogen N2 molecular nitrogen NH3 ammonia NMR Nuclear

Fletcher, Thomas H.

286

Syngas formation in methane flames and carbon monoxide release during quenching  

SciTech Connect

Following a recent investigation into chemi-ionization and chemiluminescence during gradual aeration of small, laminar methane flames, we proposed that partial oxidation products, or syngas constituents, formed in the pre-flame zone well below the luminous region, were responsible for the observed effects. We therefore map temperature, CO, and H{sub 2} for geometries and conditions relevant to burners in domestic boiler systems, to assess the potential hazard of CO release into the ambient atmosphere, should any partial quenching occur. CO concentrations peaks of 5.5 volume % are recorded in the core surrounding the axis. Appreciable CO concentrations are also found in the absence of added air. Experiments on various burner port geometries and temperatures suggest that this is not due to air entrainment at the flame base but to diffusion from zones closer to the flame. Next, quenching surfaces such as grids, perforated plates and flame trap matrices of different metals are progressively lowered into the flame. To avoid flow line distortion, suction aspirates the quenched products. The highest emission rate occurs with the quenching plane some 4 mm above the burner; further lowering of the quenching surface causes flame extinction. The maximum CO release is close to converting 10% of the CH{sub 4} feed, with some variation with quenching material. Expressing this potential release in terms of, e.g. boiler power, predicts a potentially serious hazard. Results of numerical simulations adequately parallel the experimental sampling profiles and provide insights into local concentrations, as well as the spatially resolved CO flux, which is calculated for a parabolic inlet flow profile. Integration across the stream implies, on the basis of the simulation, a possible tripling of the experimental CO release, were quenching simply to release the local gas composition into the atmosphere. Comparison with experiment suggests some chemical interaction with the quenching surface. (author)

Weinberg, Felix; Carleton, Fred; Houdmont, Raphael [Department of Chemical Engineering, Imperial College, London (United Kingdom); Dunn-Rankin, Derek; Karnani, Sunny [Department of Mechanical and Aerospace Engineering, University of California, Irvine (United States)

2011-02-15T23:59:59.000Z

287

Striking nitrogen isotope anomaly in the Bencubbin and Weatherford meteorites  

SciTech Connect

The stony-iron meteorites Bencubbin and Weatherford contain nitrogen with a ratio of nitrogen-15 to nitrogen-14 larger than normal by as much as a factor of 2. The excess nitrogen-15 may be due either to a nucleosynthetic origin or to extreme isotopic fractionation. In the former case, it may reflect failure to homogenize nitrogen-15 produced in nova explosions. In the latter case, it may reflect chemical processing at temperatures below 40 K in a presolar molecular cloud. 34 references.

Prombo, C.A.; Clayton, R.N.

1985-11-01T23:59:59.000Z

288

A Mechanistic Investigation of Nitrogen Evolution and Corrosion with Oxy-Combustion  

SciTech Connect

A premixed, staged, down-fired, pulverized coal reactor and a flat flame burner were used to study the evolution of nitrogen in coal contrasting differences in air and oxy-combustion. In the premixed reactor, the oxidizer was staged to produce a fuel rich zone followed by a burnout zone. The initial nominal fuel rich zone stoichiometric ratio (S.R.) of 0.85 selected produced higher NO reductions in the fuel rich region under oxy-combustion conditions. Air was found to be capable of similar NO reductions when the fuel rich zone was at a much lower S.R. of 0.65. At a S.R. of 0.85, oxy-combustion was measured to have higher CO, unburned hydrocarbons, HCN and NH{sub 3} in the fuel rich region than air at the same S.R. There was no measured difference in the initial formation of NO. The data suggest devolatilization and initial NO formation is similar for the two oxidizers when flame temperatures are the same, but the higher CO{sub 2} leads to higher concentrations of CO and nitrogen reducing intermediates at a given equivalence ratio which increases the ability of the gas phase to reduce NO. These results are supported by flat flame burner experiments which show devolatilization of nitrogen from the coal and char to be similar for air and oxy-flame conditions at a given temperature. A model of premixed combustion containing devolatilization, char oxidation and detailed kinetics captures most of the trends seen in the data. The model suggests CO is high in oxy-combustion because of dissociation of CO{sub 2}. The model also predicts a fraction (up to 20%, dependent on S.R.) of NO in air combustion can be formed via thermal processes with the source being nitrogen from the air while in oxy-combustion equilibrium drives a reduction in NO of similar magnitude. The data confirm oxy-combustion is a superior oxidizer to air for NO control because NO reduction can be achieved at higher S.R. producing better char burnout in addition to NO from recirculated flue gas being reduced as it passes back through the flame.

Dale Tree; Andrew Mackrory; Thomas Fletcher

2008-12-31T23:59:59.000Z

289

Aqueous and gaseous nitrogen losses induced by fertilizer application  

Science Conference Proceedings (OSTI)

In recent years concern has grown over the contribution of nitrogen (N) fertilizer use to nitrate (NO{sub 3}{sup -}) water pollution and nitrous oxide (N{sub 2}O), nitric oxide (NO), and ammonia (NH{sub 3}) atmospheric pollution. Characterizing soil N effluxes is essential in developing a strategy to mitigate N leaching and emissions to the atmosphere. In this paper, a previously described and tested mechanistic N cycle model (TOUGHREACT-N) was successfully tested against additional observations of soil pH and N{sub 2}O emissions after fertilization and irrigation, and before plant emergence. We used TOUGHREACT-N to explain the significantly different N gas emissions and nitrate leaching rates resulting from the different N fertilizer types, application methods, and soil properties. The N{sub 2}O emissions from NH{sub 4}{sup +}-N fertilizer were higher than from urea and NO{sub 3}{sup -}-N fertilizers in coarse-textured soils. This difference increased with decreases in fertilization application rate and increases in soil buffering capacity. In contrast to methods used to estimate global terrestrial gas emissions, we found strongly non-linear N{sub 2}O emissions as a function of fertilizer application rate and soil calcite content. Speciation of predicted gas N flux into N{sub 2}O and N{sub 2} depended on pH, fertilizer form, and soil properties. Our results highlighted the need to derive emission and leaching factors that account for fertilizer type, application method, and soil properties.

Gu, C.; Maggi, F.; Riley, W.J.; Hornberger, G.M.; Xu, T.; Oldenburg, C.M.; Spycher, N.; Miller, N.L.; Venterea, R.T.; Steefel, C.

2009-01-15T23:59:59.000Z

290

NITROGEN -N2 MSDS (Document # 001040) PAGE 1 OF 10 MATERIAL SAFETY DATA SHEET  

E-Print Network (OSTI)

in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: NITROGEN - N2 LIQUEFIED NITROGEN N2, (CryogenicNITROGEN - N2 MSDS (Document # 001040) PAGE 1 OF 10 MATERIAL SAFETY DATA SHEET Prepared to U ppm ppm ppm Nitrogen 7727-37-9 >99 % There are no specific exposure limits for Nitrogen. Nitrogen

Choi, Kyu Yong

291

Nitrogen control of chloroplast differentiation. Final report  

DOE Green Energy (OSTI)

This project was directed toward understanding at the physiological, biochemical and molecular levels of how photosynthetic organisms adapt to long-term nitrogen-deficiency conditions is quite incomplete even though limitation of this nutrient is the most commonly restricts plant growth and development. For our work on this problem, the unicellular green alga, Chlamydomonas reinhardtii, was grown in continuous cultures in which steady-state levels of nitrogen can be precisely controlled. N-limited cells exhibit the classical symptoms of deficiency of this nutrient, chlorosis and slow growth rates, and respond to nitrogen provision by rapid greening and chloroplast differentiation. We have addressed three aspects of this problem: (1) the regulation of pigment synthesis; (2) control of expression of nuclear genes encoding photosynthetic proteins; (3) changes in metabolic and electron transport pathways that enable sustained CO{sub 2} fixation even though they cannot be readily converted into amino and nucleic acids. For the last, principle components are: (a) enhanced mitochondrial respiratory activity intimately associated with photosynthates, and (b) the occurrence in thylakoids of a supplemental electron transport pathway that facilitates reduction of the plastoquinone pool. Together, these distinguishing features of N-limited cells are likely to enable cell survival, especially under conditions of high irradiance stress.

Schmidt, G.W.

1998-05-01T23:59:59.000Z

292

Frostbite Theater - Liquid Nitrogen Experiments - Let's Freeze Liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

Shattering Pennies! Shattering Pennies! Previous Video (Shattering Pennies!) Frostbite Theater Main Index Next Video (Liquid Nitrogen in a Microwave!) Liquid Nitrogen in a Microwave! Let's Freeze Liquid Nitrogen! By removing the hottest molecules, we're able to freeze liquid nitrogen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: Today, we're going to freeze liquid nitrogen! Joanna and Steve: Yeah! Joanna: The obvious way to do this is to put the liquid nitrogen into something colder. Something that we have lots of around here! Something like... liquid helium! Steve: Yes! Joanna: Yeah, but we're not going to do that. Instead, we're going to freeze the nitrogen by removing the hottest molecules!

293

Frostbite Theater - Liquid Nitrogen Experiments - Freeze the Rainbow!  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen in a Microwave! Liquid Nitrogen in a Microwave! Previous Video (Liquid Nitrogen in a Microwave!) Frostbite Theater Main Index Next Video (Liquid Nitrogen and Antifreeze!) Liquid Nitrogen and Antifreeze! Freeze the Rainbow! Starburst candy. They're fruity. They're chewy. They're delicious! But, can they survive taking a bath in liquid nitrogen? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: A student visiting Jefferson Lab from Huntington Middle School in Newport News, Virginia, asked what happens to a starburst if you put it in liquid nitrogen. Well, we're going to find out! Steve: At room temperature, starburst isn't really all that special. I can kind of squish it if I squeeze it hard enough and, if I drop it, nothing

294

Frostbite Theater - Liquid Nitrogen Experiments - Giant Koosh Ball!  

NLE Websites -- All DOE Office Websites (Extended Search)

Let's Pour Liquid Nitrogen on the Floor! Let's Pour Liquid Nitrogen on the Floor! Previous Video (Let's Pour Liquid Nitrogen on the Floor!) Frostbite Theater Main Index Next Video (Egg + Liquid Nitrogen + Time-lapse!) Egg + Liquid Nitrogen + Time-lapse! Giant Koosh Ball! Sometimes, you just want to know what's going to happen! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! A while ago, I was at the mall and I saw this. And, the first thing that popped into my head was 'I wonder what would happen if we were to put this in liquid nitrogen?' Now, that's one thing I really love about science. If you have a question, you can, sometimes, do an experiment to find out what the answer is! Here at the Lab, we have a lot of liquid nitrogen, so that's

295

Effects of Emissions Reductions on Ozone Predictions by the Regional Oxidant Model during the July 1988 Episode  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency Regional Oxidant Model, ROM2.2, was applied to a 2?10 July 1988 episode to test the regional episodic ozone response to different combinations of the across-the-board nitrogen oxides (NOx) and volatile ...

Shao-Hang Chu; William M. Cox

1995-03-01T23:59:59.000Z

296

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal are being performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation correlations will be developed for each catalyst. The contributions of temperature are also being investigated. SO2 oxidation is also being investigated for each test condition.

Thomas K. Gale

2005-12-31T23:59:59.000Z

297

Synthesis and energetic properties of TAGDNAT: a new high-nitrogen material  

DOE Green Energy (OSTI)

This paper describes the synthesis and characterization of Bis-(triaminoguanidinium)3,3'-dinitro5,5'-azo-1,2,4-triazolate (TAGDNAT), a novel high-nitrogen molecule that derives its energy release from both a high heat of formation and intramolecular oxidation reactions. TAGDNAT shows promise as a propellant or explosive ingredient not only due to its high nitrogen content (66.35 wt%) but additionally due to its high hydrogen content (4.34 wt%). This new molecule has been characterized with respect to its morphology, sensitivity properties, explosive and combustion performance. The heat of formation of TAGDNAT was also experimentally determined. The results of these studies show that TAGDNAT has one of the gastest low-pressure burning rates (at 1000 PSI) we have yet measured, 6.79 cm/s at 100 p.s.i. (39% faster than triaminoguanidinium azotetrazolate (TAGzT), a comparable high-nitrogen/high-hydrogen material). Furthermore, its pressure sensitivity is 0.507, a 33% reduction compared to TAGzT.

Chavez, David E [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

298

Evolution of Photosynthesis and Biospheric Oxygenation Contingent Upon Nitrogen Fixation?  

E-Print Network (OSTI)

How photosynthesis by Precambrian cyanobacteria oxygenated Earth's biosphere remains incompletely understood. Here it is argued that the oxic transition, which took place between approximately 2.3 and 0.5 Gyr ago, required a great proliferation of cyanobacteria, and this in turn depended on their ability to fix nitrogen via the nitrogenase enzyme system. However, the ability to fix nitrogen was not a panacea, and the rate of biospheric oxygenation may still have been affected by nitrogen constraints on cyanobacterial expansion. Evidence is presented for why cyanobacteria probably have a great need for fixed nitrogen than other prokaryotes, underscoring the importance of their ability to fix nitrogen. The connection between nitrogen fixation and the evolution of photosynthesis is demonstrated by the similarities between nitrogenase and enzymes critical for the biosynthesis of (bacterio)chlorophyll. It is hypothesized that biospheric oxygenation would not have occurred if the emergence of cyanobacteria had not been preceded by the evolution of nitrogen fixation, and if these organisms had not also acquired the ability to fix nitrogen at the beginning of or very early in their history. The evolution of nitrogen fixation also appears to have been a precondition for the evolution of (bacterio)chlorophyll-based photosynthesis. Given that some form of chlorophyll is obligatory for true photosynthesis, and its light absorption and chemical properties make it a "universal pigment," it may be predicted that the evolution of nitrogen fixation and photosynthesis are also closely linked on other Earth- like planets.

John W. Grula

2006-05-12T23:59:59.000Z

299

Traffic-related air pollution exposures and changes in heart rate variability in Mexico City: A panel study  

E-Print Network (OSTI)

related pollutants including PM 2.5 , carbon dioxide (COparticles; CO 2 : Carbon dioxide; CO: Carbon monoxide; HF:2 ), carbon monoxide (CO), nitrogen dioxide (NO 2 ),

2013-01-01T23:59:59.000Z

300

Worldwide organic soil carbon and nitrogen data  

Science Conference Proceedings (OSTI)

The objective of the research presented in this package was to identify data that could be used to estimate the size of the soil organic carbon pool under relatively undisturbed soil conditions. A subset of the data can be used to estimate amounts of soil carbon storage at equilibrium with natural soil-forming factors. The magnitude of soil properties so defined is a resulting nonequilibrium values for carbon storage. Variation in these values is due to differences in local and geographic soil-forming factors. Therefore, information is included on location, soil nitrogen content, climate, and vegetation along with carbon density and variation.

Zinke, P.J.; Stangenberger, A.G. [Univ. of California, Berkeley, CA (United States). Dept. of Forestry and Resource Management; Post, W.M.; Emanual, W.R.; Olson, J.S. [Oak Ridge National Lab., TN (United States)

1986-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Final Report for DOE grant no. DE-FG02-04ER63883: Can soil genomics predict the impact of precipitation on nitrous oxide flux from soil  

SciTech Connect

Nitrous oxide is a potent greenhouse gas that is released by microorganisms in soil. However, the production of nitrous oxide in soil is highly variable and difficult to predict. Future climate change may have large impacts on nitrous oxide release through alteration of precipitation patterns. We analyzed DNA extracted from soil in order to uncover relationships between microbial processes, abundance of particular DNA sequences and net nitrous oxide fluxes from soil. Denitrification, a microbial process in which nitrate is used as an electron acceptor, correlated with nitrous oxide flux from soil. The abundance of ammonia oxidizing archaea correlated positively, but weakly, with nitrous oxide production in soil. The abundance of bacterial genes in soil was negatively correlated with gross nitrogen mineralization rates and nitrous oxide release from soil. We suggest that the most important control over nitrous oxide production in soil is the growth and death of microorganisms. When organisms are growing nitrogen is incorporated into their biomass and nitrous oxide flux is low. In contrast, when microorganisms die, due to predation or infection by viruses, inorganic nitrogen is released into the soil resulting in nitrous oxide release. Higher rates of precipitation increase access to microorganisms by predators or viruses through filling large soil pores with water and therefore can lead to large releases of nitrous oxide from soil. We developed a new technique, stable isotope probing with 18O-water, to study growth and mortality of microorganisms in soil.

Egbert Schwartz

2008-12-15T23:59:59.000Z

302

Evolution of Photosynthesis and Biospheric Oxygenation Contingent Upon Nitrogen Fixation?  

E-Print Network (OSTI)

How photosynthesis by Precambrian cyanobacteria oxygenated Earth's biosphere remains incompletely understood. Here it is argued that the oxic transition, which took place between approximately 2.3 and 0.5 Gyr ago, required a great proliferation of cyanobacteria, and this in turn depended on their ability to fix nitrogen via the nitrogenase enzyme system. However, the ability to fix nitrogen was not a panacea, and the rate of biospheric oxygenation may still have been affected by nitrogen constraints on cyanobacterial expansion. Evidence is presented for why cyanobacteria probably have a great need for fixed nitrogen than other prokaryotes, underscoring the importance of their ability to fix nitrogen. The connection between nitrogen fixation and the evolution of photosynthesis is demonstrated by the similarities between nitrogenase and enzymes critical for the biosynthesis of (bacterio)chlorophyll. It is hypothesized that biospheric oxygenation would not have occurred if the emergence of cyanobacteria had not ...

Grula, J W

2006-01-01T23:59:59.000Z

303

Lipid Oxidation Pathways  

Science Conference Proceedings (OSTI)

This book reviews state-of-the-art developments in the understanding of the oxidation of lipids and its connection with the oxidation of other biological molecules such as proteins and starch. Lipid Oxidation Pathways Hardback Books Health - Nutrition -

304

Optical constants of evaporation-deposited silicon monoxide films in the 7.1–800 eV photon energy range  

Science Conference Proceedings (OSTI)

The transmittance of silicon monoxide films prepared by thermal evaporation was measured from 7.1 to 800 eV and used to determine the optical constants of the material. SiO filmsdeposited onto C-coated microgrids in ultrahigh vacuum conditions were measured in situ from 7.1 to 23.1 eV. Grid-supported SiO filmsdeposited in high vacuum conditions were characterized ex situ from 28.5 to 800 eV. At each photon energy

Mónica Fernández-Perea; Manuela Vidal-Dasilva; Juan I. Larruquert; José A. Aznárez; José A. Méndez; Eric Gullikson; Andy Aquila; Regina Soufli

2009-01-01T23:59:59.000Z

305

Program on Technology Innovation: Water Quality Trading Program for Nitrogen  

Science Conference Proceedings (OSTI)

Anthropogenic releases of nitrogen have greatly increased environmental fluxes of biologically available nitrogen and contributed to serious ecological problems, such as algal blooms that cause waters to become severely depleted of oxygen. Power plant sources of nitrogen include NOx air emissions, the ammonia required for the Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) systems that are used for NOx reduction, and the ammonia used for SOx control and ash pond condition...

2007-05-15T23:59:59.000Z

306

Selective methane oxidation over promoted oxide catalysts  

DOE Green Energy (OSTI)

Objective was to selectively oxidize methane to C{sub 2} hydrocarbons and to oxygenates, in particular formaldehyde and methanol, in high space time yields under relatively mild reaction conditions. Results in this document are reported under the headings: methane oxidation over silica, methane oxidation over Sr/La{sub 2}O{sub 3} catalysts, and oxidative coupling of methane over sulfate-doped Sr/La{sub 2}O{sub 3} catalysts. 24 refs, 10 figs, 4 tabs.

Klier, K.; Herman, R.G.

1993-12-31T23:59:59.000Z

307

COMBUSTION SOURCES OF UNREGULATED GAS PHASE NITROGENEOUS SPECIES  

E-Print Network (OSTI)

Nitrogeneous Species in Gas Turbine Exhaust, from Conkle, et82) Percent of Organic Gas Turbine Emissions which containnitrogen dioxide from gas turbines (from the data presented

Matthews, Ronald D.

2013-01-01T23:59:59.000Z

308

Numerical Simulation of Carbon and Nitrogen Profiles Produced by ...  

Science Conference Proceedings (OSTI)

In advance of the nitrogen diffusion zone the carbon concentration is as high as 10 at. pct. ... Discovery of Efficient Metal-Organic Frameworks for CO2 Capture.

309

Method for the purification of noble gases, nitrogen and hydrogen ...  

... methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more ...

310

Why sequence functional metagenomics of methane and nitrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

functional metagenomics of methane and nitrogen cycles in freshwater lakes? Methane is a more potent greenhouse gas than carbon dioxide, but it is also a potential source of...

311

Modeling nitrogen cycling in forested watersheds of Chesapeake Bay  

Science Conference Proceedings (OSTI)

The Chesapeake Bay Agreement calls for a 40% reduction of controllable phosphorus and nitrogen to the tidal Bay by the year 2000. To accomplish this goal the Chesapeake Bay Program needs accurate estimates of nutrient loadings, including atmospheric deposition, from various land uses. The literature was reviewed on forest nitrogen pools and fluxes, and nitrogen data from research catchments in the Chesapeake Basin were identified. The structure of a nitrogen module for forests is recommended for the Chesapeake Bay Watershed Model along with the possible functional forms for fluxes.

Hunsaker, C.T.; Garten, C.T.; Mulholland, P.J.

1995-03-01T23:59:59.000Z

312

Recovery of nitrogen and light hydrocarbons from polyalkene ...  

Recovery of nitrogen and light hydrocarbons from polyalkene purge gas United States Patent. Patent Number: 6,576,043: Issued: June 10, 2003: Official Filing:

313

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with...

314

Multi-stage combustion using nitrogen-enriched air - Energy ...  

Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and ...

315

Nitrogen removal from natural gas using two types of membranes ...  

A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using ...

316

Autothermal Partial Oxidation of Ethanol and Alcohols  

Autothermal Reforming of Ethanol and Alcohols into Syngas Ethanol and alcohols can be converted into syngas using a robust autothermal reforming process. Syngas is a mixture of carbon monoxide and hydrogen that can be used to synthesize other ...

317

The use of mathematical modeling and pilot plant testing to develop a new biological phosphorus and nitrogen removal process  

Science Conference Proceedings (OSTI)

A mechanistic mathematical model for carbon oxidation, nitrogen removal, and enhanced biological phosphorus removal was used to develop the Step Bio-P process, a new biological phosphorus and nitrogen removal process with a step-feed configuration. A 9,000-L pilot plant with diurnally varying influent process loading rates was operated to verify the model results and to optimize the Step Bio-P process for application at the lethbridge, Alberta, Canada, wastewater treatment plant. The pilot plant was operated for 10 months. An automatic on-line data acquisition system with multiple sampling and metering points for dissolved oxygen, mixed liquor suspended solids, ammonia-nitrogen, nitrate-nitrogen, ortho-phosphate, and flow rates was used. A sampling program to obtain off-line data was carried out to verify the information from the on-line system and monitor additional parameters. The on-line and off-line data were used to recalibrate the model, which was used as an experimental design and process optimization tool.

Nolasco, D.A.; Daigger, G.T.; Stafford, D.R.; Kaupp, D.M.; Stephenson, J.P.

1998-09-01T23:59:59.000Z

318

HIGH-TEMPERATURE REACTIONS OF TYPE 304 STAINLESS STEEL IN LOW CONCENTRATIONS OF CARBON DIOXIDE AND CARBON MONOXIDE  

SciTech Connect

Compatibility studies of type 304 stainless steel in helium containing low concentrations of CO and CO/sub 2/ were conducted. The oxidation rates were insensitive to impurity concentrations between 0.0006--0.3 vol% in the temperature range 400--1000 deg C when P/sub co2/P/sub co/ was less than 0.66. Ratios above this value resulted initially in a slow oxidation rate, but was followed by an accelerated attack. The incubation period for the break-away varied with the P/sub co2//P/sub co/ ratio and the pressure of the two gases. The oxidation reactions proceeded through a selective depletion of chromium from the alloy which increased the carbon solubility and depletion of nickel which led to the transformation of austenite to ferrite. Parabolic reaction rates were observed for the formation of the protective oxides. Arrhenius plots of rate constants versus 1/T indicated the presence of several oxides which was confirmed by other methods. Carburization or decarburization reactions occurred coincidentally with oxidation and depended upon temperature and (P/sub CO/)/sup 2/ /P/sub CO2/ and the P/sub co2//P /sub CO/. Neither was detected below 600 deg C. Between 600--900 deg C, only carburization occurred and appeared to be mainly dependent on the temperature. Above 900 deg C, both carburization and decarburization occurred depending upon the (P/sub co/)/sup 2//P/sub co2/ and the P/sub co2//P/sub co/. The interactions of the oxidizing and carburization reactions resulted in carbon maxima at a (P/sub co/)/sup 2//P/sub co2/ ratio of 0.227. The results indicate that it may be impractical or unnecessary to reduce impurity gases to levels which do not cause surface reactions. It is concluded that undesirable oxidation and carburization reactions can be eliminated by controlling the ratios of the impurity gases. (auth)

Inouye, H.

1962-08-29T23:59:59.000Z

319

Electrocatalysts for Alcohol Oxidation in Fuel Cells - Energy ...  

Platinum is an excellent catalyst and electrocatalyst. It is also expensive and vulnerable to poisoning by carbon monoxide in the reaction ...

320

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents (OSTI)

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA); Collie, Jeffrey C. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents (OSTI)

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

1998-04-21T23:59:59.000Z

322

Spectroscopic detection of nitrogen concentrations in sagebrush  

SciTech Connect

The ability to estimate foliar nitrogen (N) in semi-arid landscapes can yield information on nutritional status and improve our limited understanding of controls on canopy photosynthesis. We examined two spectroscopic methods for estimating sagebrush dried leaf and live shrub N content: first derivative reflectance (FDR) and continuum removal. Both methods used partial least squares (PLS) regression to select wavebands most significantly correlated with N concentrations in the samples. Sagebrush dried leaf spectra produced PLS models (R2 = 0.76–0.86) that could predict N concentrations within the dataset more accurately than PLS models generated from live shrub spectra (R2 = 0.41–0.63). Inclusion of wavelengths associated with leaf water in the FDR transformations appeared to improve regression results. Findings are encouraging and warrant further exploration into sagebrush reflectance spectra to characterize N concentrations.

J. J. MITCHELL; N. F. GLENN; T.T. SANKEY; D. R. DERRYBERRY; R. C. HRUSKA; M. O. Anderson

2012-07-01T23:59:59.000Z

323

Carbon and Nitrogen Dynamics of Temperate and Subarctic Heath  

E-Print Network (OSTI)

Carbon and Nitrogen Dynamics of Temperate and Subarctic Heath Ecosystems with Emphasis on Cold-season cycling of carbon and nitrogen in temperate and subarctic heath ecosystems. Over the last three years, I spend many hours introducing me to modeling carbon exchange, thank you. Also thanks to Karina Clemmensen

324

Nitrogen modification of highly porous carbon for improved supercapacitor performance  

E-Print Network (OSTI)

Nitrogen modification of highly porous carbon for improved supercapacitor performance Stephanie L for supercapacitor applications. Surface modification increases the amount of nitrogen by four times when compared elements in highly porous carbon used for electric double-layer supercapacitors.1 These elements modify

Cao, Guozhong

325

Removal of basic nitrogen compounds from hydrocarbon liquids  

DOE Patents (OSTI)

A method is provided for reducing the concentration of basic nitrogen compounds in hydrocarbonaceous feedstock fluids used in the refining industry by providing a solid particulate carbonaceous adsorbent/fuel material such as coal having active basic nitrogen complexing sites on the surface thereof and the coal with a hydrocarbonaceous feedstock containing basic nitrogen compounds to facilitate attraction of the basic nitrogen compounds to the complexing sites and the formation of complexes thereof on the surface of the coal. The adsorbent coal material and the complexes formed thereon are from the feedstock fluid to provide a hydrocarbonaceous fluid of reduced basic nitrogen compound concentration. The coal can then be used as fuel for boilers and the like.

Givens, Edwin N. (Bethlehem, PA); Hoover, David S. (New Tripoli, PA)

1985-01-01T23:59:59.000Z

326

Questions and Answers - Is there anything colder than liquid nitrogen?  

NLE Websites -- All DOE Office Websites (Extended Search)

How cold is liquid nitrogen? How cold is liquid nitrogen? Previous Question (How cold is liquid nitrogen?) Questions and Answers Main Index Next Question (If you jumped into a pool of liquid oxygen, would your body instantly crystallize?) If you jumped into a pool of liquid oxygen,would your body instantly crystallize? Is there anything colder than liquid nitrogen? Yes, there are things colder than liquid nitrogen, like most of the Universe! I assume, though, that you mean things on the Earth. There actually is an entire branch of science called cryogenics that deals with really cold things. Generally the science of cryogenics is when the temperature goes below that which we can reach with conventional refrigeration equipment, around 250 degrees (Fahrenheit) below zero. Many

327

Frostbite Theater - Liquid Nitrogen Experiments - Popping Film Canisters!  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploding Rubber Stopper! Exploding Rubber Stopper! Previous Video (Exploding Rubber Stopper!) Frostbite Theater Main Index Next Video (Insulators!) Insulators! Popping Film Canisters! What happens when liquid nitrogen is trapped inside a sealed container? Play the video to find out! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a container of liquid nitrogen! Steve: And these are a bunch of film canisters! Joanna: Let's see what happens when we trap the liquid nitrogen in the film canisters! Steve: Okay! Now the room, and everything in it, is way too hot for the liquid nitrogen to stay as a liquid. As soon as the liquid nitrogen touches anything in the room, it boils and changes into a gas.

328

Safety evaluation for packaging (onsite) nitrogen trailers propane tanks  

SciTech Connect

The purpose of the Safety Evaluation for Packaging (SEP) is the evaluation and authorization of the onsite transport of propane tanks that are mounted on the Lockheed Martin Hanford Corporation Characterization Project`s nitrogen trailers. This SEP authorizes onsite transport of the nitrogen trailers, including the propane tanks, until May 31, 1998. The three nitrogen trailers (HO-64-4966, HO-64-4968, and HO-64-5170) are rated for 1,361 kg (30,000 lb) and are equipped with tandem axles and pintel hitches. Permanently mounted on each trailer is a 5,678 L (1,500 gal) cryogenic dewar that is filled with nitrogen, and a propane fired water bath vaporizer system, and a 454 L (1 20 gal) propane tank. The nitrogen trailer system is operated only when it is disconnected from the tow vehicle and is leveled and stabilized. When the trailers are transported, the propane tanks are isolated via closed supply valves.

Ferrell, P.C.

1998-01-28T23:59:59.000Z

329

Process for separating nitrogen from methane using microchannel process technology  

DOE Patents (OSTI)

The disclosed invention relates to a process for separating methane or nitrogen from a fluid mixture comprising methane and nitrogen, the process comprising: (A) flowing the fluid mixture into a microchannel separator, the microchannel separator comprising a plurality of process microchannels containing a sorption medium, the fluid mixture being maintained in the microchannel separator until at least part of the methane or nitrogen is sorbed by the sorption medium, and removing non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the methane or nitrogen from the sorption medium and removing the desorbed methane or nitrogen from the microchannel separator. The process is suitable for upgrading methane from coal mines, landfills, and other sub-quality sources.

Tonkovich, Anna Lee (Marysville, OH); Qiu, Dongming (Dublin, OH); Dritz, Terence Andrew (Worthington, OH); Neagle, Paul (Westerville, OH); Litt, Robert Dwayne (Westerville, OH); Arora, Ravi (Dublin, OH); Lamont, Michael Jay (Hilliard, OH); Pagnotto, Kristina M. (Cincinnati, OH)

2007-07-31T23:59:59.000Z

330

Photo-oxidation catalysts  

DOE Patents (OSTI)

Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

Pitts, J. Roland (Lakewood, CO); Liu, Ping (Irvine, CA); Smith, R. Davis (Golden, CO)

2009-07-14T23:59:59.000Z

331

Effect of nitrogen incorporation on improvement of leakage properties in high-k HfO{sub 2} capacitors treated by N{sub 2}-plasma  

Science Conference Proceedings (OSTI)

The nitrogen incorporation into the HfO{sub 2} films with an EOT (equivalent oxide thickness) of 9 A was performed by N{sub 2}-plasma to improve the electrical properties. The dielectric properties and a leakage current characteristics of the capacitors were investigated as a function of plasma power and plasma treatment temperature. The dielectric constant of the capacitors is not influenced by nitrogen incorporation. The N{sub 2}-plasma treatment at 300 deg. C and 70 W exhibits the most effective influence on improvement of the leakage current characteristics. Leakage current density of the capacitors treated at 300 deg. C and 70 W exhibits a half order of magnitude lower than that without plasma treatment. Nitrogen incorporated into the HfO{sub 2} films possesses the intrinsic effect that drastically reduce the electron leakage current through HfO{sub 2} dielectrics by deactivating the V{sub O} (oxygen vacancy) related gap states.

Seong, Nak-Jin; Yoon, Soon-Gil; Yeom, Seung-Jin; Woo, Hyun-Kyung; Kil, Deok-Sin; Roh, Jae-Sung; Sohn, Hyun-Chul [Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 305-764, Daejon (Korea, Republic of); Hynix Semiconductor Inc., San 136-1 Ami-ri Bubal-eub Icheon-si Kyoungki-do, 467-701 (Korea, Republic of)

2005-09-26T23:59:59.000Z

332

Effects of soil substrate and nitrogen fertilizer on biomass production of  

E-Print Network (OSTI)

Effects of soil substrate and nitrogen fertilizer on biomass production of Acacia senegal;Effects of soil substrate and nitrogen fertilizer on biomass production of Acacia senegal and Acacia, biomass allocation, fertilizer, growth rate, nitrogen, soil substrate Sveriges lantbruksuniversitet

333

L.C.C. laser isotope separation project progress report  

SciTech Connect

Progress is described in the following areas: matrix isolation of uranium hexafluoride in carbon monoxide host and obtainment of stable narrow bands in the 623cm{sup -1} region of uranium hexafluoride; and reactions of nitrogen oxide with uranium hexafluoride.

Catalano, E.

1974-12-02T23:59:59.000Z

334

Harmful Exhaust Emissions Monitoring of Road Vehicle Engine  

Science Conference Proceedings (OSTI)

Road vehicle improve the quality of people's life, however harmful vehicle exhaust emissions, such as carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), hydrocarbon (HC), and sulphur dioxide (SO2), have become more and more unacceptable ... Keywords: optic absorption spectroscopy based gas sensor, harmful exhaust emission monitoring, engine vibration

Chuliang Wei; Zhemin Zhuang; H. Ewald; A. I. Al-Shamma'a

2012-01-01T23:59:59.000Z

335

Multifunctional Oxides: Multifunctional Oxides: Synthesis and ...  

Science Conference Proceedings (OSTI)

Using Ultrafast Optical Spectroscopy to Explore Magneoelectric Coupling in Multiferroic Oxide Heterostructures: Y-M Sheu1; S. Trugman1; L Yan1; C-P Chuu 1; ...

336

Asphalt Oxidation Kinetics and Pavement Oxidation Modeling  

E-Print Network (OSTI)

Most paved roads in the United States are surfaced with asphalt. These asphalt pavements suffer from fatigue cracking and thermal cracking, aggravated by the oxidation and hardening of asphalt. This negative impact of asphalt oxidation on pavement performance has not been considered adequately in pavement design. Part of the reason is that the process of asphalt oxidation in pavement is not well understood. This work focused on understanding the asphalt oxidation kinetics and on developing pavement oxidation model that predicts asphalt oxidation and hardening in pavement under environmental conditions. A number of asphalts were studied in laboratory condition. Based on kinetics data, a fast-rate ? constant-rate asphalt oxidation kinetics model was developed to describe the early nonlinear fast-rate aging period and the later constant-rate period of asphalt oxidation. Furthermore, reaction kinetics parameters for the fast-rate and constant-rate reactions were empirically correlated, leading to a simplified model. And the experimental effort and time to obtain these kinetics parameters were significantly reduced. Furthermore, to investigate the mechanism of asphalt oxidation, two antioxidants were studied on their effectiveness. Asphalt oxidation was not significantly affected. It was found that evaluation of antioxidant effectiveness based on viscosity only is not reliable. The asphalt oxidation kinetics model was incorporated into the pavement oxidation model that predicts asphalt oxidation in pavement. The pavement oxidation model mimics the oxidation process of asphalt in real mixture at pavement temperatures. A new parameter, diffusion depth, defined the oxygen diffusion region in the mastic. A field calibration factor accounted for the factors not considered in the model such as the effect of small aggregate particles on oxygen diffusion. Carbonyl area and viscosity of binders recovered from field cores of three pavements in Texas were measured and were used for model calibration and validation. Results demonstrated that the proposed model estimates carbonyl growth over time in pavement, layer-by-layer, quite well. Finally, this work can be useful for incorporating asphalt oxidation into a pavement design method that can predict pavement performance with time and for making strategic decisions such as optimal time for maintenance treatments.

Jin, Xin

2012-05-01T23:59:59.000Z

337

DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES  

Science Conference Proceedings (OSTI)

This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

Kyser, E

2009-01-12T23:59:59.000Z

338

Nitrogen-Doped Graphitic Nanoribbons: Synthesis, Characterization and Transport  

SciTech Connect

Nitrogen-doped graphitic nanoribbons (Nx-GNRs), synthesized by chemical vapor deposition (CVD) using pyrazine as a nitrogen precursor, are reported for the first time. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) reveal that the synthesized materials are formed by multi-layered corrugated graphitic nanoribbons (GNRs) which in most cases exhibit the formation of curved graphene edges (loops). This suggests that during growth, nitrogen atoms promote loop formation; undoped GNRs do not form loops at their edges. Transport measurements on individual pure carbon GNRs exhibit a linear I-V (current-voltage) behavior, whereas Nx-GNRs show reduced current responses following a semiconducting-like behavior, which becomes more prominent for high nitrogen concentrations. To better understand the experimental findings, electron density of states (DOS), quantum conductance for nitrogen doped zigzag and armchair single-layer GNRs are calculated for different N doping concentrations using Density Functional Theory (DFT) and non-equilibrium Green functions. These calculations confirm the crucial role of nitrogen atoms in the transport properties, confirming that the nonlinear I-V curves are due to the presence of nitrogen atoms within the Nx-GNRs lattice that act as scattering sites. These characteristic Nx-GNRs transport could be advantageous in the fabrication of electronic devices including sensors in which metal-like undoped GNRs are unsuitable.

Jia, Xiaoting [Massachusetts Institute of Technology (MIT); Dresselhaus, M [Massachusetts Institute of Technology (MIT); Cruz Silva, Eduardo [ORNL; Munoz-Sandoval, E [Instituto de Microelectronica de Madrid (CNM, CSIC); Sumpter, Bobby G [ORNL; Terrones Maldonado, Humberto [ORNL; Terrones Maldonado, Humberto [ORNL; Lopez, Florentino [IPICyT

2013-01-01T23:59:59.000Z

339

Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System  

DOE Green Energy (OSTI)

Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the consequential drop in oxygen content and necessary increases in flow rates.

Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

2005-03-01T23:59:59.000Z

340

METHANE AND NITROGEN ABUNDANCES ON PLUTO AND ERIS  

SciTech Connect

We present spectra of Eris from the MMT 6.5 m Telescope and Red Channel Spectrograph (5700-9800 A, 5 A pixel{sup -1}) on Mt. Hopkins, AZ, and of Pluto from the Steward Observatory 2.3 m Telescope and Boller and Chivens Spectrograph (7100-9400 A, 2 A pixel{sup -1}) on Kitt Peak, AZ. In addition, we present laboratory transmission spectra of methane-nitrogen and methane-argon ice mixtures. By anchoring our analysis in methane and nitrogen solubilities in one another as expressed in the phase diagram of Prokhvatilov and Yantsevich, and comparing methane bands in our Eris and Pluto spectra and methane bands in our laboratory spectra of methane and nitrogen ice mixtures, we find Eris' bulk methane and nitrogen abundances are {approx}10% and {approx}90% and Pluto's bulk methane and nitrogen abundances are {approx}3% and {approx}97%. Such abundances for Pluto are consistent with values reported in the literature. It appears that the bulk volatile composition of Eris is similar to the bulk volatile composition of Pluto. Both objects appear to be dominated by nitrogen ice. Our analysis also suggests, unlike previous work reported in the literature, that the methane and nitrogen stoichiometry is constant with depth into the surface of Eris. Finally, we point out that our Eris spectrum is also consistent with a laboratory ice mixture consisting of 40% methane and 60% argon. Although we cannot rule out an argon-rich surface, it seems more likely that nitrogen is the dominant species on Eris because the nitrogen ice 2.15 {mu}m band is seen in spectra of Pluto and Triton.

Tegler, S. C.; Cornelison, D. M.; Abernathy, M. R.; Bovyn, M. J.; Burt, J. A.; Evans, D. E.; Maleszewski, C. K.; Thompson, Z. [Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86011 (United States); Grundy, W. M. [Lowell Observatory, Flagstaff, AZ 86001 (United States); Romanishin, W. [Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States); Vilas, F., E-mail: Stephen.Tegler@nau.ed, E-mail: David.Cornelison@nau.ed, E-mail: W.Grundy@lowell.ed, E-mail: wjr@nhn.ou.ed, E-mail: fvilas@mmto.or [MMT Observatory, University of Arizona, Tucson, AZ 85721 (United States)

2010-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Implications of mercury interactions with band-gap semiconductor oxides  

SciTech Connect

Titanium dioxide is a well-known photooxidation catalyst. It will oxidize mercury in the presence of ultraviolet light from the sun and oxygen and/or moisture to form mercuric oxide. Several companies manufacture self-cleaning windows. These windows have a transparent coating of titanium dioxide. The titanium dioxide is capable of destroying organic contaminants in air in the presence of ultraviolet light from the sun, thereby keeping the windows clean. The commercially available self-cleaning windows were used to sequester mercury from oxygen–nitrogen mixtures. Samples of the self-cleaning glass were placed into specially designed photo-reactors in order to study the removal of elemental mercury from oxygen–nitrogen mixtures resembling air. The possibility of removing mercury from ambient air with a self-cleaning glass apparatus is examined. The intensity of 365-nm ultraviolet light was similar to the natural intensity from sunlight in the Pittsburgh region. Passive removal of mercury from the air may represent an option in lieu of, or in addition to, point source clean-up at combustion facilities. There are several common band-gap semiconductor oxide photocatalysts. Sunlight (both the ultraviolet and visible light components) and band-gap semiconductor particles may have a small impact on the global cycle of mercury in the environment. The potential environmental consequences of mercury interactions with band-gap semiconductor oxides are discussed. Heterogeneous photooxidation might impact the global transport of elemental mercury emanating from flue gases.

Granite, E.J.; King, W.P.; Stanko, D.C.; Pennline, H.W.

2008-09-01T23:59:59.000Z

342

Thermal oxidation of tungsten-based sputtered coatings  

SciTech Connect

The effect of the addition of nickel, titanium, and nitrogen on the air oxidation behavior of W-based sputtered coatings in the temperature range 600 to 800 C was studied. In some cases these additions significantly improved the oxidation resistance of the tungsten coatings. As reported for bulk tungsten, all the coatings studied were oxidized by layers following a parabolic law. Besides WO{sub 3} and WO{sub x} phases detected in all the oxidized coatings, TiO{sub 2} and NiWO{sub 4} were also detected for W-Ti and W-Ni films, respectively. WO{sub x} was present as an inner protective compact layer covered by the porous WO{sub 3} oxide. The best oxidation resistance was found for W-Ti and W-N-Ni coatings which also presented the highest activation energies (E{sub a} = 234 and 218 kJ/mol, respectively, as opposed to E{sub a} {approx} 188 kJ/mol for the other coatings). These lower oxidation weight gains were attributed to the greater difficulty of the inward diffusion of oxygen ions for W-Ti films, owing to the formation of fine particles of TiO{sub 2}, and the formation of the external, more protective layer of NiWO{sub 4} for W-N-Ni coatings.

Louro, C.; Cavaleiro, A. [Dept. de Engenharia Mecanica-Polo II, Coimbra (Portugal)

1997-01-01T23:59:59.000Z

343

Effect of Temperature on NOx Reduction by Nitrogen Atom Injection  

DOE Green Energy (OSTI)

Chemical reduction of NO{sub x} can be accomplished by injection of nitrogen atoms into the diesel engine exhaust stream. The nitrogen atoms can be generated from a separate stream of pure N{sub 2} by means of plasma jets or non-thermal plasma reactors. This paper examines the effect of exhaust temperature on the NO{sub x} reduction efficiency that can be achieved by nitrogen atom injection. It is shown that to achieve a high NO{sub x} reduction efficiency at a reasonable power consumption penalty, the exhaust temperature needs to be 100 C or less.

Penetrante, B

1999-10-28T23:59:59.000Z

344

Nitrogen-doped Graphene and Its Electrochemical Applications  

SciTech Connect

Nitrogen-doped graphene (N-graphene) is obtained by exposing graphene to nitrogen plasma. N-graphene exhibits much higher electrocatalytic activity toward oxygen reduction and H2O2 reduction than graphene, and much higher durability and selectivity than the widely-used expensive Pt. The excellent electrochemical performance of N-graphene is attributed to nitrogen functional groups and the specific properties of graphene. This indicates that N-graphene is promising for applications in electrochemical energy devices (fuel cells, metal-air batteries) and biosensors.

Shao, Yuyan; Zhang, Sheng; Engelhard, Mark H.; Li, Guosheng; Shao, Guocheng; Wang, Yong; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

2010-06-04T23:59:59.000Z

345

It's Elemental - Isotopes of the Element Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Carbon Previous Element (Carbon) The Periodic Table of Elements Next Element (Oxygen) Oxygen Isotopes of the Element Nitrogen [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 14 99.636% STABLE 15 0.364% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 10 No Data Available Proton Emission 100.00% 11 5.49Ă—10-22 seconds Proton Emission 100.00% 12 11.000 milliseconds Electron Capture 100.00% 13 9.965 minutes Electron Capture 100.00% 14 STABLE - - 15 STABLE - - 16 7.13 seconds Beta-minus Decay 100.00% Beta-minus Decay with delayed Alpha Decay 1.2Ă—10-3 % 17 4.173 seconds Beta-minus Decay 100.00%

346

On the Use of Thermal NF3 as the Fluorination and Oxidation Agent in Treatment of Used Nuclear Fuels  

SciTech Connect

This paper presents results of our investigation on the use of nitrogen trifluoride as the fluorination or fluorination/oxidation agent for use in a process for separating valuable constituents from used nuclear fuels by employing the volatility of many transition metal and actinide fluorides. Nitrogen trifluoride is less chemically and reactively hazardous than the hazardous and aggressive fluorinating agents used to prepare uranium hexafluoride and considered for fluoride volatility based nuclear fuels reprocessing. In addition, nitrogen trifluoride’s less aggressive character may be used to separate the volatile fluorides from used fuel and from themselves based on the fluorination reaction’s temperature sensitivity (thermal tunability) rather than relying on differences in sublimation/boiling temperature and sorbents. Our thermodynamic calculations found that nitrogen trifluoride has the potential to produce volatile fission product and actinide fluorides from candidate oxides and metals. Our simultaneous thermogravimetric and differential thermal analyses found that the oxides of lanthanum, cerium, rhodium, and plutonium fluorinated but did not form volatile fluorides and that depending on temperature volatile fluorides formed from the oxides of niobium, molybdenum, ruthenium, tellurium, uranium, and neptunium. We also demonstrated near-quantitative removal of uranium from plutonium in a mixed oxide.

Scheele, Randall D.; McNamara, Bruce K.; Casella, Andrew M.; Kozelisky, Anne E.

2012-05-01T23:59:59.000Z

347

Effect of near atmospheric pressure nitrogen plasma treatment on Pt/ZnO interface  

SciTech Connect

The effect of near atmospheric pressure nitrogen plasma (NAP) treatment of platinum (Pt)/zinc oxide (ZnO) interface was investigated. NAP can nitride the ZnO surface at even room temperature. Hard x-ray photoelectron spectroscopy revealed that NAP treatment reduced the surface electron accumulation at the ZnO surface and inhibited the Zn diffusion into the Pt electrode, which are critical issues affecting the Schottky barrier height and the ideality factor of the Pt/ZnO structure. After NAP treatment, the Pt Schottky contact indicated an improvement of electrical properties. NAP treatment is effective for the surface passivation and the Schottky contact formation of ZnO.

Nagata, Takahiro; Haemori, Masamitsu; Chikyow, Toyohiro [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Yamashita, Yoshiyuki [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Yoshikawa, Hideki; Kobayashi, Keisuke [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Uehara, Tsuyoshi [Sekisui Chemical Co., Ltd., Wadai, Tsukuba, Ibaraki 300-4292 (Japan)

2012-12-01T23:59:59.000Z

348

A study on oxidized glassy carbon sheets for bipolar supercapacitor electrodes  

Science Conference Proceedings (OSTI)

Electrochemical Double Layer Capacitors (EDLC) for high energy and power density applications, based on glassy carbon (GC) electrodes, are being developed in this laboratory. In the context of this project, GC sheets were oxidized and investigated with Small Angle X-ray Scattering (SAXS), Electrochemical Impedance Spectroscopy (EIS) and Nitrogen Gas Adsorption (BET). During oxidation on active film with open pores is built on the surface of the GC. Upon oxidation, the internal volumetric surface area of the active film decreases, whereas the volumetric electrochemical double layer capacitance increases. The authors show that this effect is correlated with the opening, the growth and the coalescence of the pores.

Braun, A.; Baertsch, M.; Geiger, F. [and others

2000-07-01T23:59:59.000Z

349

Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases  

E-Print Network (OSTI)

Exhaust Aftertreatment System for Diesel Engine", SAE 2002-Exhaust Aftertreatment System for Diesel Engine", SAE 2002-

Rheaume, Jonathan Michael

2010-01-01T23:59:59.000Z

350

Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases  

E-Print Network (OSTI)

Measurements for the Ceramic Industry, A. Jillavenkatesa,Measurements for the Ceramic Industry, A. Jillavenkatesa,

Rheaume, Jonathan Michael

2010-01-01T23:59:59.000Z

351

Reducing Emissions of Sulfur Dioxide, Nitrogen Oxides, and Mercury from Electric Power Plants  

Reports and Publications (EIA)

This analysis responds to a request from Senators Bob Smith, George Voinovich, and Sam Brownback to examine the costs of specific multi-emission reduction strategies

J. Alan Beamon

2001-10-01T23:59:59.000Z

352

A Cost-Effectiveness Analysis of Alternative Ozone Control Strategies: Flexible Nitrogen Oxide (NOx) Abatement  

E-Print Network (OSTI)

hydrolysis of N2O5, and ultimately leads to the computed reduction in NOx levels. 4. Effects of the different in the source magnitude of LtNOx can lead to a substantial10 reduction in the computed lifetimes of these trace. This increase of O3 at higher altitudes is responsible for the reduction of surface NOx levels simulated at high

353

REDUCING OXIDES OF NITROGEN EMISSIONS FROM WASTE-TO-ENERGY FACILITIES WITH  

E-Print Network (OSTI)

compromising combustion ef ficiency. Further research to determine the potential for NOx reduction via to a lower level by applying combustion control for the reduction of NOx, while still maintaining acceptable, resulting in a 30% reduction of NOx' The techniques developed from this test program are used today

Columbia University

354

Microbial removal of nitrogen oxides from flue gas: The BioDeNOx-process  

E-Print Network (OSTI)

W) facilities. NOx levels below 60 ppm (7% O2) have been reliably achieved, which is a reduction of 70% below combustion controls to maximize NOx reduction and minimize ammonia slip. A simplified version of the process forward in the reduction of NOx emissions from EfW facilities. INTRODUCTION Emissions from U.S. Energy

Dekker, Cees

355

Solid State Electrochemical Sensors for Nitrogen Oxide (NOx) Detection in Lean Exhaust Gases  

E-Print Network (OSTI)

Low Temperature Electrodes for SOFC’s”, EPRI /GRI / DOE FuelSm 0.5 Sr 0.5 CoO 3 as SOFC cathode", Sol. Stat. Ion. ,Low Temperature Electrodes for SOFC’s”, EPRI /GRI / DOE Fuel

Rheaume, Jonathan Michael

2010-01-01T23:59:59.000Z

356

Air Quality Responses to Changes in Black Carbon and Nitrogen Oxide Emissions  

E-Print Network (OSTI)

Air Resource Board, Sacramento, CA, April 2006. CARB (Air Resources Board, Sacramento, CA. CARB (2009a).Air Resources Board, Sacramento, CA. http://www.arb.ca.gov/

Millstein, Dev

2009-01-01T23:59:59.000Z

357

The nitrogen cycle and ecohydrology of seasonally dry grasslands  

E-Print Network (OSTI)

This thesis addresses the coupling of hydrologic and biogeochemical processes and, specifically, the organization of ecosystem traits with the water, carbon, and nitrogen cycles. Observations from a factorial irrigation- ...

Parolari, Anthony Joseph

2013-01-01T23:59:59.000Z

358

Frostbite Theater - Liquid Nitrogen Experiments - The Flying Ring!  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Nitrogen and the Tea Kettle Mystery! Liquid Nitrogen and the Tea Kettle Mystery! Previous Video (Liquid Nitrogen and the Tea Kettle Mystery!) Frostbite Theater Main Index Next Video (Pewter Bells) Pewter Bells The Flying Ring! A copper ring leaps off an electromagnet when it's turned on. What happens when the ring's resistance is lowered using liquid nitrogen? [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is an AC powered electromagnet. And this is a copper ring. When I place the copper ring on the electromagnet and turn it on, the magnet's changing magnetic field will induce an electric current in the copper ring. The current in the ring will then create it's own magnetic

359

Frostbite Theater - Liquid Nitrogen Experiments - Let's Pour Liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

Shattering Flowers! Shattering Flowers! Previous Video (Shattering Flowers!) Frostbite Theater Main Index Next Video (Giant Koosh Ball!) Giant Koosh Ball! Let's Pour Liquid Nitrogen on the Floor! Liquid nitrogen?! On the floor?! Who's going to clean that mess up?! See what really happens when one of the world's most beloved cryogenic liquids comes into contact with a room temperature floor. [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: From time to time, we spill a little liquid nitrogen! The reaction we sometimes get is.... Shannon: Did they just pour LIQUID NITROGEN on the FLOOR?!?! Joanna: Yes. Yes we did. Steve: One thing people seem to have a problem with is the mess that liquid

360

Nitrogen trifluoride global emissions estimated from updated atmospheric measurements  

E-Print Network (OSTI)

Nitrogen trifluoride (NF[subscript 3]) has potential to make a growing contribution to the Earth’s radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a ...

Ivy, Diane J.

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry  

E-Print Network (OSTI)

to decadal global forcing for ocean and sea-ice models: Theorganic nitrogen to the oceans, Nature, 376, 243 – 246.trace species to the world ocean, Global Biogeochem. Cycles,

Krishnamurthy, Aparna; Moore, J. Keith; Zender, Charles S; Luo, Chao

2007-01-01T23:59:59.000Z

362

The relationship between iron and nitrogen fixation in Trichodesmium spp.  

E-Print Network (OSTI)

Trichodesmium spp. are considered the dominant nitrogen (N) fixing cyanobacteria in tropical and subtropical oceans, regimes frequently characterized by low iron (Fe). Limited information exists about what levels of Fe ...

Chappell, Phoebe Dreux

2009-01-01T23:59:59.000Z

363

Land Use and Reactive Nitrogen Discharge: Effects of Dietary Choices  

Science Conference Proceedings (OSTI)

Modern agriculture alters natural biological and geophysical processes, with magnitudes proportional to its spatial extent. Cultivation is also the main cause of artificially enhanced reactive nitrogen (Nr) availability in natural ecosystems. ...

Gidon Eshel; Pamela A. Martin; Esther E. Bowen

2010-12-01T23:59:59.000Z

364

Membrane-augmented cryogenic methane/nitrogen separation  

DOE Patents (OSTI)

A membrane separation process combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C.sub.3+ hydrocarbons that might otherwise freeze and plug the cryogenic equipment.

Lokhandwala, Kaaeid (Menlo Park, CA)

1997-01-01T23:59:59.000Z

365

Membrane-augmented cryogenic methane/nitrogen separation  

DOE Patents (OSTI)

A membrane separation process is described which is combined with a cryogenic separation process for treating a gas stream containing methane, nitrogen and at least one other component. The membrane separation process works by preferentially permeating methane and the other component and rejecting nitrogen. The process is particularly useful in removing components such as water, carbon dioxide or C{sub +2} hydrocarbons that might otherwise freeze and plug the cryogenic equipment. 10 figs.

Lokhandwala, K.

1997-07-15T23:59:59.000Z

366

Electro Catalytic Oxidation (ECO) Operation  

Science Conference Proceedings (OSTI)

The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large scale capture and sequestration projects. The objectives of this project were to prove at a commercial scale that ECO is capable of extended operations over a range of conditions, that it meets the reliability requirements of a typical utility, and that the fertilizer co-product can be consistently generated, providing ECO with an economic advantage over conventional technologies currently available. Further objectives of the project were to show that the ECO system provides flue gas that meets the inlet standards necessary for ECO{sub 2} to operate, and that the outlet CO{sub 2} and other constituents produced by the ECO{sub 2} pilot can meet Kinder-Morgan pipeline standards for purposes of sequestration. All project objectives are consistent with DOE's Pollution Control Innovations for Power Plants program goals.

Morgan Jones

2011-03-31T23:59:59.000Z

367

Partial oxidation catalyst  

DOE Patents (OSTI)

A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.

Krumpelt, Michael (Naperville, IL); Ahmed, Shabbir (Bolingbrook, IL); Kumar, Romesh (Naperville, IL); Doshi, Rajiv (Downers Grove, IL)

2000-01-01T23:59:59.000Z

368

Carbon-13 kinetic isotope effects in CO oxidation by Ag  

SciTech Connect

In the catalytic oxidation of carbon monoxide over silver wool the {sup 13}C kinetic isotope effects in the 343--453 K temperature range were experimentally determined and the following temperature dependence was found: 100 ln(k{sub 12}/k{sub 13}) = (3.398--630/T) {+-} 0.083. A reaction CO/O{sub 2}gas mixture of 1:2 ratio was used in a static system with initial pressures ranging from 20 to 40 kPa. Under these conditions the reaction is of order 1 with respect to CO and order 0 with respect to O{sub 2} and CO{sub 2} pressure. The apparent activation energy is 59.3 {+-} 1.7 kJ/mol. In the authors theoretical interpretation of the experimental data various geometries of (CO{sub 2})* and (CO{sub 3})* transition states were applied, and only a (CO{sub 2})* with an interbond angle of 110{degree} and CO stretching force constants of 1,700 and 1,000--1,400 N/m, respectively, with an asymmetric reaction coordinate was found to be acceptable.

Kobal, I.; Burghaus, U.; Senegacnik, M.; Ogrinc, N.

1999-08-31T23:59:59.000Z

369

Hydrogen and Nitrogen Control in Ladle and Casting Operations  

DOE Green Energy (OSTI)

In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly. Several steelmaking additions have been investigated in this research for their effect on the hydrogen and nitrogen content of steels. It has been established that calcium hydroxide (hydrated lime) acts as a source of hydrogen. Carburizers, such as metallurgical coke, were found to result in no hydrogen pickup when added to liquid steel. Addition of petroleum coke, on the other hand, increased the hydrogen content of liquid steel. Ferroalloy such as medium carbon ferromanganese when added to the liquid iron was found to increase its nitrogen content, the increase being proportional to the amount of ferroalloy added. Similarly, addition of pitch coke, which had a significant nitrogen impurity, increased the nitrogen content of liquid iron. A mathematical model was developed to quantify the absorption of nitrogen and hydrogen from the air bubbles entrained during tapping of liquid steel. During the bottom stirring of liquid metal in a ladle, the inert gas escaping from the top displaces the slag layer and often forms an open eye. The absorption of atmospheric nitrogen through the spout eye was estimated for different slag thickness and gas flow rate. The ultimate goal of this research was to develop a comprehensive set of equations which could predict the nitrogen and hydrogen pickup from their various sources. Estimates of hydrogen and nitrogen pickup during the steel transfer operations such as tapping and ladle stirring and the predicted pickup from steelmaking additions were integrated into empirical equations. The comprehensive model is designed to predict the gas pickup under varying operating conditions such as the metal oxygen and sulfur content, the total tapping or stirring time, the stirring gas flow rate and the slag thickness. The model predictions are based on mathematical and empirical evidence which are derived from thermodynamic and kinetic fundamental principles.

Richard J. Fruehan; Siddhartha Misra

2005-01-15T23:59:59.000Z

370

Synthesis and Characterization of Chromium, Nitrogen Co-Doped ...  

Science Conference Proceedings (OSTI)

... requirements for high efficiency solar energy utilization, guided by theoretical ... Minimization of Thermal Conductivity in Oxide Thin Film Thermoelectrics.

371

Nitrogen control of chloroplast development and differentiation. Annual progress report  

DOE Green Energy (OSTI)

The growth and development of plants and photosynthetic microorganisms is commonly limited by the availability of nitrogen. Our work concerns understanding the mechanisms by which plants and algae that are subjected to nitrogen deprivation alter the composition of photosynthetic membranes and enzymes involved in photosynthetic carbon metabolism. Toward these ends, we study biosynthetic and gene expression processes in the unicellular green alga Chlamydomonas reinhardtii which is grown in an ammonium-limited continuous culture system. We have found that the expression of nuclear genes, including those encoding for light-harvesting proteins, are severely repressed in nitrogen-limited cells whereas, in general, chloroplast protein synthesis is attenuated primarily at the level of mRNA translation. Conversely, nitrogen deprivation appears to lead to enhanced synthesis of enzymes that are involved in starch and storage lipid deposition. In addition, as a possible means by which photosynthetic electron transport activities and ATP synthesis is sustained during chronic periods of nitrogen deprivation, thylakoid membranes become enriched with components for chlororespiration. Characterization of the chlororespiratory electron transport constituents, including cytochrome complexes and NAD(P)H dehydrogenase is a major current effort. Also, we are striving to isolate the genes encoding chlororespiration proteins toward determining how they and others that are strongly responsive to nutrient availability are regulated.

Schmidt, G.W.

1991-12-01T23:59:59.000Z

372

Phosphorus versus nitrogen limitation in the marine environment  

E-Print Network (OSTI)

Limnological and marine geochemical opinion favors phosphorus limitation of organic production in aquatic environments, while marine biological opinion favors nitrogen limitation. Clues in the literature and nutrient budgets for selected marine ecosystems suggest that phosphorus vs. nitrogen limitation is a function of the relative rates of water exchange and internal biochemical processes acting to adjust the ratio of ecosystem N:P availability. A limiting factor to biological activity is that material available in an amount most closely approaching the critical minimum required to sustain that activity (Odum 197 1). This definition can be applied at any scale from cellular metabolism to global biogeochemical cycles. This paper deals with inorganic plant nutrients as limiting factors for the net production of new organic material in marine systems. Marine geochemists and biologists hold antithetical views about nutrient limitation in the ocean. The view held by most marine geochemists (e.g. Lerman et al. 1975; Meybeck 1982; Broecker and Peng 1982) can apparently be traced to the seminal paper by Redfield ( 1958). Redfield concluded that phosphorus availability limits net organic production in the sea. He pointed out that any nitrogen deficits can be met by the biological fixation of atmospheric nitrogen, hence nitrogenous compounds can accumulate until the available phosphorus is utilized.

S. V. Smith

1984-01-01T23:59:59.000Z

373

Barium oxide, calcium oxide, magnesia, and alkali oxide free glass  

DOE Patents (OSTI)

A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

2013-09-24T23:59:59.000Z

374

Multifunctional Oxide Heterostructures  

Science Conference Proceedings (OSTI)

This book is devoted to the rapidly developing field of oxide thin-films and heterostructures. Oxide materials combined with atomic-scale precision in a heterostructure exhibit an abundance of macroscopic physical properties involving the strong coupling between the electronic, spin, and structural degrees of freedom, and the interplay between magnetism, ferroelectricity, and conductivity. Recent advances in thin-film deposition and characterization techniques made possible the experimental realization of such oxide heterostructures, promising novel functionalities and device concepts.

Tsymbal, E Y [University of Nebraska, Lincoln; Dagotto, Elbio R [ORNL; Eom, Professor Chang-Beom [University of Wisconsin, Madison; Ramesh, Ramamoorthy [University of California, Berkeley

2012-01-01T23:59:59.000Z

375

METAL OXIDE NANOPARTICLES  

SciTech Connect

This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

2007-10-01T23:59:59.000Z

376

Defect Structure of Oxides  

Science Conference Proceedings (OSTI)

Table 1   Classification of electrical conductors: oxides, sulfides, and nitrides...2 O 4 , NiAl 2 O 4 , (Tl 2 O),

377

Oxidation of gallium arsenide  

DOE Patents (OSTI)

This invention relates to gallium arsenide semiconductors and, more particularly, to the oxidation of surface layers of gallium arsenide semiconductors for semiconductor device fabrication.

Hoffbauer, M.A.; Cross, J.B.

1991-11-16T23:59:59.000Z

378

Oxidation/Coatings  

Science Conference Proceedings (OSTI)

Oct 28, 2009 ... International Symposium on Ceramic Matrix Composites: Oxidation/ ... on combustor liners of a Solar Turbines' industrial gas turbine engine, ...

379

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization in Molecular Nitrogen Print Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists from the University of Frankfurt in Germany, Berkeley Lab, Kansas State University, and Auburn University has now resolved the issue with an appropriate twist of quantum fuzziness. By means of coincident detection of the photoelectron ejected from molecular nitrogen and the Auger electron emitted femtoseconds later, the team found that how the measurements are done determines which description-localized or delocalized-is valid.

380

Change in Pacific nitrogen content tied to climate change  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 For immediate release: 12/15/2013 | NR-13-12-04 High Resolution Image Living and fossilized coral are gathered from dives in the Hawaiian Islands. A Lawrence Livermore scientist and collaborators have studied coral to determine that a long-term shift in nitrogen content in the Pacific Ocean has occurred as a result of climate change. Image courtesy of NOAA Hawaii Undersea Research Laboratory. Change in Pacific nitrogen content tied to climate change Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Using deep sea corals gathered near the Hawaiian Islands, a Lawrence Livermore scientist, in collaboration with UC Santa Cruz colleagues, has determined that a long-term shift in nitrogen content in the Pacific Ocean has occurred as a result of climate change.

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization in Molecular Nitrogen Print Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists from the University of Frankfurt in Germany, Berkeley Lab, Kansas State University, and Auburn University has now resolved the issue with an appropriate twist of quantum fuzziness. By means of coincident detection of the photoelectron ejected from molecular nitrogen and the Auger electron emitted femtoseconds later, the team found that how the measurements are done determines which description-localized or delocalized-is valid.

382

Mercury Oxidation Behavior of New, Aged, and Regenerated SCR Catalysts  

Science Conference Proceedings (OSTI)

Over 110,000 MW of coal-fired capacity in the United States has deployed selective catalytic reduction (SCR) for nitrogen oxide (NOx) control, and an additional estimated 60,000 MW may be installed by 2020. End users and operators of SCR systems have an ongoing need for the latest guidelines, methods, and other tools to ensure that existing and additional SCR equipment functions optimally without disrupting other unit operations. It is now widely known that along with NOx reduction, SCR catalysts have th...

2007-12-20T23:59:59.000Z

383

Engineering shallow spins in diamond with nitrogen delta-doping  

SciTech Connect

We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of synthetic diamond using an in situ nitrogen delta-doping technique during plasma-enhanced chemical vapor deposition. Despite their proximity to the surface, doped NV centers with depths (d) ranging from 5 to 100 nm display long spin coherence times, T{sub 2} > 100 {mu}s at d = 5 nm and T{sub 2} > 600 {mu}s at d {>=} 50 nm. The consistently long spin coherence observed in such shallow NV centers enables applications such as atomic-scale external spin sensing and hybrid quantum architectures.

Ohno, Kenichi; Joseph Heremans, F.; Bassett, Lee C.; Myers, Bryan A.; Toyli, David M.; Bleszynski Jayich, Ania C.; Palmstrom, Christopher J.; Awschalom, David D. [Center for Spintronics and Quantum Computation, University of California, Santa Barbara, California 93106 (United States)

2012-08-20T23:59:59.000Z

384

Stabilized chromium oxide film  

DOE Patents (OSTI)

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150.ANG. are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Garwin, Edward L. (Los Altos, CA); Nyaiesh, Ali R. (Palo Alto, CA)

1988-01-01T23:59:59.000Z

385

Stabilized chromium oxide film  

DOE Patents (OSTI)

Stabilized air-oxidized chromium films deposited on high-power klystron ceramic windows and sleeves having a thickness between 20 and 150A are useful in lowering secondary electron emission yield and in avoiding multipactoring and window failure due to overheating. The ceramic substrate for the film is chosen from alumina, sapphire or beryllium oxide.

Nyaiesh, A.R.; Garwin, E.L.

1986-08-04T23:59:59.000Z

386

Nitrogen actinometry for measurement of nitrogen radical spatial distribution in large-area plasma-enhanced chemical vapor deposition  

Science Conference Proceedings (OSTI)

Density distributions of radicals in the large-area silicon nitride (Si{sub 3}N{sub 4}) plasma-enhanced chemical vapor deposition (PECVD) process were measured using a spatially resolvable optical emission spectrometer (SROES). To determine the qualitative distribution of a target radical, the authors used optical actinometry with nitrogen (N{sub 2}) gas as an actinometer. To compare the SROES data and process results, the thickness of the deposited Si{sub 3}N{sub 4} thin films using an ellipsometer was measured. By introducing nitrogen-based optical actinometry, the authors obtained very good agreement between the experimental results of the distributions of atomic nitrogen radical and the deposited thicknesses of Si{sub 3}N{sub 4} thin films. Based on these experimental results, the uniformity of the process plasma in the PECVD process at different applied radio frequency powers was analyzed.

Oh, Changhoon; Kang, Minwook; Hahn, Jae W. [Nano Photonics Laboratory, School of Mechanical Engineering, Yonsei University, 50 Yonesi-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Nam, Seungsuk [Based Technology of Equipment Team, LG Display, Paju-City, Gyeonggi-do 413-811 (Korea, Republic of)

2013-05-15T23:59:59.000Z

387

Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer  

Science Conference Proceedings (OSTI)

The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel.

Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

2010-01-01T23:59:59.000Z

388

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. Three different SCR catalysts are being studied. These are honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts are manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Test methods and experimental procedures were developed for current and future testing. The methods and procedures equalize factors influencing mercury adsorption and oxidation (surface area, catalyst activity, and pore structure) that normally differ for each catalyst type. Initial testing was performed to determine the time necessary for each catalyst to reach surface-adsorption equilibrium. In addition, the fraction of Hg oxidized by each of the SCR catalyst types is being investigated, for a given amount of catalyst and flow rate of mercury and flue gas. The next major effort will be to examine the kinetics of mercury oxidation across the SCR catalysts with respect to changes in mercury concentration and with respect to HCl concentration. Hg-sorption equilibrium times will also be investigated with respect to ammonia concentration in the simulated flue gas.

Jared W. Cannon; Thomas K. Gale

2004-12-31T23:59:59.000Z

389

Oxidative Degradation of Monoethanolamine  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxidative Degradation of Monoethanolamine Oxidative Degradation of Monoethanolamine Susan Chi Gary T. Rochelle* (gtr@che.utexas.edu, 512-471-7230) The University of Texas at Austin Department of Chemical Engineering Austin, Texas 78712 Prepared for presentation at the First National Conference on Carbon Sequestration, Washington, DC, May 14-17, 2001 Abstract Oxidative degradation of monoethanolamine (MEA) was studied under typical absorber condition of 55°C. The rate of evolution of NH 3 , which was indicative of the overall rate of degradation, was measured continuously in a batch system sparged with air. Dissolved iron from 0.0001 mM to 1 mM yields oxidation rates from 0.37 to 2 mM/hr in MEA solutions loaded with 0.4 mole CO 2 / mole MEA. Ethylenediaminetetraacetic acid (EDTA) and N,N-bis(2- hydroxyethyl)glycine effectively decrease the rate of oxidation in the presence of iron by 40 to

390

Thermal oxidation vitrification flue gas elimination system  

SciTech Connect

With minor modifications to a Best Demonstrated Available Technology hazardous waste incinerator, it is possible to obtain combustion without potentially toxic emissions by using technology currently employed in similar applications throughout industry. Further, these same modifications will reduce waste handling over an extended operating envelope while minimizing energy consumption. Three by-products are produced: industrial grade carbon dioxide, nitrogen, and a final waste form that will exceed Toxicity Characteristics Leaching Procedures requirements and satisfy nuclear waste product consistency tests. The proposed system utilizes oxygen rather than air as an oxidant to reduce the quantities of total emissions, improve the efficiency of the oxidation reactions, and minimize the generation of toxic NO{sub x} emissions. Not only will less potentially hazardous constituents be generated; all toxic substances can be contained and the primary emission, carbon dioxide -- the leading ``greenhouse gas`` contributing to global warming -- will be converted to an industrial by-product needed to enhance the extraction of energy feedstocks from maturing wells. Clearly, the proposed configuration conforms to the provisions for Most Achievable Control Technology as defined and mandated for the private sector by the Clear Air Act Amendments of 1990 to be implemented in 1997 and still lacking definition.

Kephart, W. [Foster-Wheeler Environmental Corp., Oak Ridge, TN (United States); Angelo, F. [Resource Energy Corp. (United States); Clemens, M. [Argonne National Lab., IL (United States)

1995-06-01T23:59:59.000Z

391

Nitrogen management in landfill leachate: Application of SHARON, ANAMMOX and combined SHARON-ANAMMOX process  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Significant research on ammonia removal from leachate by SHARON and ANAMMOX process. Black-Right-Pointing-Pointer Operational parameters, microbiology, biochemistry and application of the process. Black-Right-Pointing-Pointer SHARON-ANAMMOX process for leachate a new research and this paper gives wide facts. Black-Right-Pointing-Pointer Cost-effective process, alternative to existing technologies for leachate treatment. Black-Right-Pointing-Pointer Address the issues and operational conditions for application in leachate treatment. - Abstract: In today's context of waste management, landfilling of Municipal Solid Waste (MSW) is considered to be one of the standard practices worldwide. Leachate generated from municipal landfills has become a great threat to the surroundings as it contains high concentration of organics, ammonia and other toxic pollutants. Emphasis has to be placed on the removal of ammonia nitrogen in particular, derived from the nitrogen content of the MSW and it is a long term pollution problem in landfills which determines when the landfill can be considered stable. Several biological processes are available for the removal of ammonia but novel processes such as the Single Reactor System for High Activity Ammonia Removal over Nitrite (SHARON) and Anaerobic Ammonium Oxidation (ANAMMOX) process have great potential and several advantages over conventional processes. The combined SHARON-ANAMMOX process for municipal landfill leachate treatment is a new, innovative and significant approach that requires more research to identify and solve critical issues. This review addresses the operational parameters, microbiology, biochemistry and application of both the processes to remove ammonia from leachate.

Sri Shalini, S., E-mail: srishalini10@gmail.com [Centre for Environmental Studies, Anna University, Chennai (India); Joseph, Kurian, E-mail: kuttiani@gmail.com [Centre for Environmental Studies, Anna University, Chennai (India)

2012-12-15T23:59:59.000Z

392

Complete genome sequence of Nitrosomonas sp. Is79, an ammonia oxidizing bacterium adapted to low ammonium concentrations  

Science Conference Proceedings (OSTI)

Nitrosomonas sp. Is79 is a chemolithoautotrophic ammonia-oxidizing bacterium that belongs to the family Nitrosomonadaceae within the phylum Proteobacteria. Ammonia oxidation is the first step of nitrification, an important process in the global nitrogen cycle ultimately resulting in the production of nitrate. Nitrosomonas sp. Is79 is an ammonia oxidizer of high interest because it is adapted to low ammonium and can be found in freshwater environments around the world. The 3,783,444-bp chromosome with a total of 3,553 protein coding genes and 44 RNA genes was sequenced by the DOE-Joint Genome Institute Program CSP 2006.

Bollmann, Annette [Miami University, Oxford, OH; Sedlacek, Christopher J [Miami University, Oxford, OH; Laanbroek, Hendrikus J [Netherlands Institute of Ecology (NIOO-KNAW); Suwa, Yuichi [Chuo University, Tokyo, Japan; Stein, Lisa Y [University of California, Riverside; Klotz, Martin G [University of Louisville, Louisville; Arp, D J [Oregon State University; Sayavedra-Soto, LA [Oregon State University; Lu, Megan [Los Alamos National Laboratory (LANL); Bruce, David [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Han, James [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Pennacchio, Len [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Huntemann, Marcel [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Szeto, Ernest [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Peters, Lin [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL)

2013-01-01T23:59:59.000Z

393

Carbon and nitrogen allocation in trees R.E. Dickson  

E-Print Network (OSTI)

Carbon and nitrogen allocation in trees R.E. Dickson USDA-Forest Service, NCFES, Rhinelander, WI, U.S.A. Introduction Growth of trees and all plants depends up- on maintaining a positive carbon balance despite to multiple environ- mental stresses (Chapin et aL, 1987; Osmond et al., 1987). Light, carbon, water

Recanati, Catherine

394

Nitrogen Adsorption in Carbon Aerogels: A Molecular Simulation Study  

E-Print Network (OSTI)

Nitrogen Adsorption in Carbon Aerogels: A Molecular Simulation Study S. Gavalda, K. E. Gubbins,*, Y a molecular model for carbon aerogel in which the mesopore space is represented by carbon spheres-ray diffraction. The resulting model aerogel had a surface area, porosity, and pore size distribution that closely

395

NOx reduction by electron beam-produced nitrogen atom injection  

DOE Patents (OSTI)

Deactivated atomic nitrogen generated by an electron beam from a gas stream containing more than 99% N.sub.2 is injected at low temperatures into an engine exhaust to reduce NOx emissions. High NOx reduction efficiency is achieved with compact electron beam devices without use of a catalyst.

Penetrante, Bernardino M. (San Ramon, CA)

2002-01-01T23:59:59.000Z

396

Liquid Nitrogen Ice Cream (1st Grade) Lesson Plan  

E-Print Network (OSTI)

Liquid Nitrogen Ice Cream (1st Grade) Lesson Plan Science Standards Addressed (From the Colorado=0 Standard 1 - Physical Science 1st Grade: Outcome 1: Solids and liquids have unique properties) Large Metal or plastic mixing bowl Wire whisk and wooden spoon 4 cups heavy cream 1-1/2 Half & Half

397

Investigation on the Fischer-Tropsch synthesis with nitrogen-containing syngas over CoPtZrO{sub 2}/Al{sub 2}O{sub 3} catalyst  

Science Conference Proceedings (OSTI)

The Fischer-Tropsch synthesis with nitrogen-containing syngas derived from combined air partial oxidation and CO{sub 2} reforming of methane has been performed in a fixed-bed reactor. The effects of key factors including reaction temperature, pressure, and nitrogen content of the syngas on the performance of CoPtZrO{sub 2}/Al{sub 2}O{sub 3} catalyst were mainly investigated. The results indicate that the syngas containing a high content of nitrogen is suitable for Fischer-Tropsch synthesis and that a high initial catalytic activity can be achieved under typical operating conditions. The decreasing of catalytic activity with time on stream before reaching steady state was observed, which is mainly due to the blockage of catalyst pores by heavy hydrocarbons. 22 refs., 7 figs.

Dongyan Xu; Hongmin Duan; Wenzhao Li; Hengyong Xu [Chinese Academy of Sciences, Dalian (China). Dalian Institute of Chemical Physics

2006-05-15T23:59:59.000Z

398

OXIDATION OF DRY HYDROCARBONS AT HIGH-POWER DENSITY ANODES  

DOE Green Energy (OSTI)

This work builds upon discoveries by the University of Pennsylvania and others pertaining to the oxidation of dry hydrocarbon fuels in high temperature solid oxide fuel cells. The work reported here was restricted primarily to dry methane and confirms that YSZ-based cells, having ceria in the anode as a catalyst and copper in the anode as a current collector, can operate on dry methane for extended periods. Thirty-three lab-scale cells of various designs were fabricated and operated under a variety of conditions. The longest-lived cell gave stable performance on dry methane at 800 C for over 305 hours. Only slight carbon deposition was noted at the completion of the test. A corresponding nickel/YSZ-based anode would have lasted for less than an hour under these test conditions (which included open circuit potential measurements) before carbon fouling essentially destroyed the cell. The best performing cell achieved 112 mW/cm{sub 2} on dry methane at 800 C. Several problems were encountered with carbon fouling and declining open circuit voltages in many of the test cells after switching from operation on hydrogen to dry methane. Although not rigorously confirmed by experimentation, the results suggested that air infiltration through less than perfect perimeter seals or pinholes in the electrolytes, or both gave rise to conditions that caused the carbon fouling and OCV decline. Small amounts of air reacting with methane in a partial oxidation reaction could produce carbon monoxide that, in turn, would deposit the carbon. If this mechanism is confirmed, it implies that near perfect hardware is required for extended operation. Some evidence was also found for the formation of electrical shorts, probably from carbon deposits bridging the electrolyte. Work with odorized methane and with methane containing 100-ppm hydrogen sulfide confirmed that copper is stable at 800 C in dry hydrocarbon fuels in the presence of sulfur. In a number of cases, but not exclusively, the performance life on dry methane with sulfur compounds was much longer than with dry methane alone. The effect of sulfur compounds in these cases appeared to correlate with inhibition of carbon deposition. Mixed results were obtained for the effect of the sulfur compounds on power density. Progress also was made in understanding the mechanisms involved in direct utilization of dry natural gas. Evidence was developed for three possible mechanisms for dry methane utilization in addition to the usually cited mechanism--direct oxidation of methane by oxygen anions. Further work is required at a fundamental level before the knowledge gained here can be translated into higher levels of performance.

K.Krist; O. Spaldon-Stewart; R. Remick

2004-03-01T23:59:59.000Z

399

Yield, quality components and nitrogen levels of silage corn fertilized with urea and zeolite  

E-Print Network (OSTI)

and N fertilization affect corn silage yield and quality. Jand the nitrogen status of corn. J Prod Agric. 1991;4:525-and nitrogen effects on corn silage. Agron. J. ___, Kalonge

Bernardi, Alberto C. de Campos; Souza, Gilberto Batista de; Polidoro, José Carlos; Paiva, Paulo Renato Perdigăo; Monte, Marisa Bezerra de Melo

2009-01-01T23:59:59.000Z

400

Electronic Properties of Nitrogen-/Boron-Doped Graphene Nanoribbons With Armchair Edges  

Science Conference Proceedings (OSTI)

Calculation of electronic structures has been performed for graphene nanoribbons with eight-armchair edges containing nitrogen or boron substitutional impurity by using ab initio density functional theory. It is found that the electronic structures ... Keywords: Doping, graphene, nanotechnology, nitrogen

Shan Sheng Yu; Wei Tao Zheng; Qing Jiang

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project - honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. Most experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. Future work to characterize flue gas simulations typically derived from low and high sulfur bituminous coal will be performed in a stepwise manner, to avoid the constant interruptions in testing that occur when leaks in the system are generated during temperature transitions. Specifically, chlorine concentration vs. mercury oxidation graph will be developed for each catalyst. The contributions of temperature and later sulfur will be investigated after this is complete. Also, last quarter's tests showed a potential linear relationship between SO3 conversion and mercury oxidation. As a result, SO3 samples will be taken more frequently to investigate each catalyst's ability to selectively oxidize mercury.

Alex J. Berry; Thomas K. Gale

2005-09-30T23:59:59.000Z

402

Methods of detection and identificationoc carbon- and nitrogen-containing materials  

SciTech Connect

Methods for detecting and identifying carbon- and/or nitrogen-containing materials are disclosed. The methods may comprise detection of photo-nuclear reaction products of nitrogen and carbon to detect and identify the carbon- and/or nitrogen-containing materials.

Karev, Alexander Ivanovich; Raevsky, Valery Georgievich; Dzhalivyan, Leonid Zavenovich; Brothers, Louis Joseph; Wilhide, Larry K

2013-11-12T23:59:59.000Z

403

The Effects of Nitrogen Fertilization on Bioenergy Sorghum Yield and Quality  

E-Print Network (OSTI)

Forage sorghum (Sorghum bicolor L. Moench) is one of the prospective crops that may be used to produce biofuels in the future. Therefore, it is of interest to find management practices that improve both the production of biomass yield and quality. This study presents observations of the effects different rates of nitrogen fertilization have on yield, tissue nitrogen content, and tissue quality measures such as ash, lignin, sucrose, xylans, cellulose and starch content, based on three years of field trials from the Brazos Bottom and one year of field trials from near China, Texas. Data for the quality components were obtained using near infrared spectroscopy, with the exception of tissue nitrogen which was determined by using the dry combustion method. This study has showed fertilizer nitrogen had a strong positive correlation with the tissue nitrogen of sorghum biomass. Changes in tissue quality in relationship with fertilizer nitrogen levels and tissue nitrogen concentration were also observed. Ash showed a strong positive and sucrose showed a strong negative correlation to both tissue nitrogen concentration and fertilizer nitrogen application. Similarly to sucrose, starch also decreased with higher nitrogen levels and lignin was found to increase slightly. The concentration of cellulose and xylans were very weakly affected by nitrogen application and nitrogen concentration.

Zilahi-Sebess, Szilvia

2012-05-01T23:59:59.000Z

404

A MOLECULAR SIMULATION STUDY OF ADSORPTION OF NITROGEN AND METHANE IN TITANIUM SILICATE (ETS-4)  

E-Print Network (OSTI)

, those obtained from nitrogen injection through enhanced gas recovery2 or from landfill gases3. Even when the nitrogen content in natural gas or landfill gases is consid- erably lower than the CO2 content viable when natural gas prices are high enough4. Therefore, understanding the fundamentals of nitrogen

Lisal, Martin

405

Oxidative Tritium Decontamination System  

DOE Patents (OSTI)

The Oxidative Tritium Decontamination System, OTDS, provides a method and apparatus for reduction of tritium surface contamination on various items. The OTDS employs ozone gas as oxidizing agent to convert elemental tritium to tritium oxide. Tritium oxide vapor and excess ozone gas is purged from the OTDS, for discharge to atmosphere or transport to further process. An effluent stream is subjected to a catalytic process for the decomposition of excess ozone to diatomic oxygen. One of two configurations of the OTDS is employed: dynamic apparatus equipped with agitation mechanism and large volumetric capacity for decontamination of light items, or static apparatus equipped with pressurization and evacuation capability for decontamination of heavier, delicate, and/or valuable items.

Gentile, Charles A. (Plainsboro, NJ), Guttadora, Gregory L. (Highland Park, NJ), Parker, John J. (Medford, NJ)

2006-02-07T23:59:59.000Z

406

Analysis of Lipid Oxidation  

Science Conference Proceedings (OSTI)

Analysis of Lipid Oxidation is essential for further developments in analytical methodology and hyphenated techniques, with which more understanding of the reaction kinetics, mechanism, and implications will take place. ...

407

Cathodoluminescence of uranium oxides  

SciTech Connect

The cathodoluminescence of uranium oxide surfaces prepared in-situ from clean uranium exposed to dry oxygen was studied. The broad asymmetric peak observed at 470 nm is attributed to F-center excitation.

Winer, K.; Colmenares, C.; Wooten, F.

1984-08-09T23:59:59.000Z

408

Per-plant eco-physiological responses of maize to varied nitrogen availability at low and high plant densities  

E-Print Network (OSTI)

and low nitrogen availability. Agron. J. 2009; forthcoming.the impacts of nitrogen (N) availability on intra-specificgenotypes to varied N availability at both low and high

Boomsma, Christopher R; Vyn, Tony J

2009-01-01T23:59:59.000Z

409

Controlled CO preferential oxidation  

DOE Patents (OSTI)

Method is described for controlling the supply of air to a PROX (PReferential OXidation for CO cleanup) reactor for the preferential oxidation in the presence of hydrogen wherein the concentration of the hydrogen entering and exiting the PROX reactor is monitored, the difference there between correlated to the amount of air needed to minimize such difference, and based thereon the air supply to the PROX reactor adjusted to provide such amount and minimize such difference. 2 figs.

Meltser, M.A.; Hoch, M.M.

1997-06-10T23:59:59.000Z

410

ADVANCED OXIDATION PROCESS  

DOE Green Energy (OSTI)

The removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from automotive fuels is an integral component in the development of cleaner burning and more efficient automobile engines. Oxidative desulfurization (ODS) wherein the dibenzothiophene derivative is converted to its corresponding sulfoxide and sulfone is an attractive approach to sulfur removal because the oxidized species are easily extracted or precipitated and filtered from the hydrocarbon phase. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) catalytically convert dibenzothiophene and its derivatives rapidly and effectively at moderate temperatures (50-60 C) and ambient pressure to the corresponding sulfoxides and sulfones. The oxidation process can be performed in both aqueous systems containing alcohols such as methanol, ethanol, or t-butanol, and in a two-phase hydrocarbon/aqueous system containing tert-butanol or acetonitrile. In the biphasic system, essentially complete conversion of the DBT to its oxidized products can be achieved using slightly longer reaction times than in homogeneous solution. Among the key features of the technology are the mild reaction conditions, the very high selectivity where no over oxidation of the sulfur compounds occurs, the near stoichiometric use of hydrogen peroxide, the apparent lack of degradation of sensitive fuel components, and the ease of separation of oxidized products.

Dr. Colin P. Horwitz; Dr. Terrence J. Collins

2003-11-04T23:59:59.000Z

411

Long-term tillage, cropping sequence, and nitrogen fertilization effects on soil carbon and nitrogen dynamics  

E-Print Network (OSTI)

Management practices that may increase soil organic matter (SOM) storage include conservation tillage, especially no till (NT), enhanced cropping intensity, and fertilization. My objectives were to evaluate management effects on labile [soil microbial biomass (SMB) and mineralizable, particulate organic matter (POM), and hydrolyzable SOM] and slow (mineral-associated and resistant organic) C and N pools and turnover in continuous sorghum [Sorghum bicolor (L.) Moench.], wheat (Triticum aestivum L.), and soybean [Glycine max (L.) Merr.], sorghum-wheat/soybean, and wheat/soybean sequences under convent ional tillage (CT) and NT with and without N fertilization. A Weswood silty clay loam (fine, mixed, thermic Fluventic Ustochepts) in southern central Texas was sampled at three depth increments to a 30-cm depth after wheat, sorghum, and soybean harvesting. Soil organic C and total N showed similar responses to tillage, cropping sequence, and N fertilization following wheat, sorghum, and soybean. Most effects were observed in surface soils. NT significantly increased SOC. Nitrogen fertilization significantly increased SOC only under NT. Compared to NT or N addition, enhanced cropping intensity only slightly increased SOC. Estimates of C sequestration rates under NT indicated that SOC would reach a new equilibrium after 20 yr or less of imposition of this treatment. Labile pools were all significantly greater with NT than CT at 0 to 5 cm and decreased with depth. SMB, mineralizable C and N, POM, and hydrolyzable C were highly correlated with each other and SOC, but their slopes were significantly different, being lowest in mineralizable C and highest in hydrolyzable C. These results indicated that different methods determined various fractions of total SOC. Results from soil physical fractionation and 13C concentrations further supported these observations. Carbon turnover rates increased in the sequence: ROC < silt- and clayassociated C < microaggregate-C < POM-C. Long-term incubation showed that 4 to 5% of SOC was in active pools with mean residence time (MRT) of about 50 days, 50% of SOC was in slow pools with an average MRT of 12 years, and the remainder was in resistant pools with an assumed MRT of over 500 years.

Dou, Fugen

412

Literature information applicable to the reaction of uranium oxides with chlorine to prepare uranium tetrachloride  

Science Conference Proceedings (OSTI)

The reaction of uranium oxides and chlorine to prepare anhydrous uranium tetrachloride (UCl{sub 4}) are important to more economical preparation of uranium metal. The most practical reactions require carbon or carbon monoxide (CO) to give CO or carbon dioxide (CO{sub 2}) as waste gases. The chemistry of U-O-Cl compounds is very complex with valances of 3, 4, 5, and 6 and with stable oxychlorides. Literature was reviewed to collect thermochemical data, phase equilibrium information, and results of experimental studies. Calculations using thermodynamic data can identify the probable reactions, but the results are uncertain. All the U-O-Cl compounds have large free energies of formation and the calculations give uncertain small differences of large numbers. The phase diagram for UCl{sub 4}-UO{sub 2} shows a reaction to form uranium oxychloride (UOCl{sub 2}) that has a good solubility in molten UCl{sub 4}. This appears more favorable to good rates of reaction than reaction of solids and gases. There is limited information on U-O-Cl salt properties. Information on the preparation of titanium, zirconium, silicon, and thorium tetrachlorides (TiCl{sub 4}, ZrCl{sub 4}, SiCl{sub 4}, ThCl{sub 4}) by reaction of oxides with chlorine (Cl{sub 2}) and carbon has application to the preparation of UCl{sub 4}.

Haas, P.A.

1992-02-01T23:59:59.000Z

413

Nitrogen Deposition onto the United States and Western Europe  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL DAAC Data Set Change Information ORNL DAAC Data Set Change Information Data Set: Nitrogen Deposition onto the United States and Western Europe Effective Date of Revision: May 2, 2005 Data Set Citation: Holland, E. A., B. H. Braswell, J. M. Sulzman, and J. -F. Lamarque. 2005. Nitrogen Deposition onto the United States and Western Europe. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. Revision Summary: The investigator advised us that data in two of the deposition files were a factor of 100 too large and the order of the records was reversed from the description in the documentation. NADP_wet_deposition_no3_0.5x0.5_grid_annual.txt NADP_wet_deposition_nh4_0.5x0.5_grid_annual.txt Data File Changes:

414

Questions and Answers - Are nitrogen, arsenic, and tantalum radioactive?  

NLE Websites -- All DOE Office Websites (Extended Search)

How many neutrons can you add to anatom without it getting unbalanced? How many neutrons can you add to an<br>atom without it getting unbalanced? Previous Question (How many neutrons can you add to an atom without it getting unbalanced?) Questions and Answers Main Index Next Question (How long is the life span of an atom?) How long is the life span of an atom? Are nitrogen, arsenic, and tantalum radioactive? The answer is yes and no. Let's see why. When you want to know about elements, you go look in the periodic table. But what you see listed in the periodic table of the elements is only part of the picture. For every element listed, there are different "flavors" called isotopes. All of the elements have at least one isotope that is radioactive. So, we can say that there is such a thing as radioactive nitrogen, arsenic and tantalum. Some

415

Questions and Answers - What's the difference between hydrogen, nitrogen,  

NLE Websites -- All DOE Office Websites (Extended Search)

Which element has 11 protonsand 12 neutrons? Which element has 11 protons<br>and 12 neutrons? Previous Question (Which element has 11 protons and 12 neutrons?) Questions and Answers Main Index Next Question (Does sodium have any isotopes? Is it radioactive?) Does sodium have anyisotopes? Is it radioactive? What's the difference between hydrogen, nitrogen, oxygen, neon, copper, gold and magnesium? Hydrogen, nitrogen, oxygen, neon, copper, gold and magnesium all have different physical and chemical properties. You can find descriptions of all of these elements on our Periodic Table of Elements. The single most important difference between these elements is the number of protons each one contains in its nucleus. The number of protons an atom contains dictates how many electrons it will have. It is the arrangement of

416

Shock Wave Structure for Argon, Helium, and Nitrogen  

E-Print Network (OSTI)

We compare the thickness of shock wave fronts at different Mach numbers, modeled via Navier-Stokes (NS) and Quasi-gasdynamic (QGD) equations, with experimental results from the literature. Monoatomic argon and helium, and diatomic nitrogen, are considered. In this modeling a finite-difference scheme with second-order spatial accuracy is employed. For argon the density thickness calculated via QGD and NS models are in good agreement with each other, and with the experimental results. For helium QGD and NS results agree well with those from the bimodal model. For nitrogen, the QGD results are closer to the experimental data than NS results. The QGD-based algorithm converges to the steady state solution faster than the NS-based one.

T. G. Elizarova; I. A. Shirokov; S. Montero

2004-07-28T23:59:59.000Z

417

Aromatic nitrogen compounds in fossil fuels: a potential hazard  

DOE Green Energy (OSTI)

To achieve energy independence in the United States, converting coal to oil or extracting oil from shale will be required. Before commercial scale fossil fuel conversion facilities become a reality, chemical and biological studies of currently available synfuel samples derived from coal or shale are urgently needed in order to determine what the potential health problems, such as from occupational exposure, might be. Aromatic nitrogen compounds such as basic aza-arenes, neutral aza-arenes, and aromatic amines are considered environmentally important and several members of these classes of compounds possess biological activity. For example, dibenz(a,h)acridine, 7 H-dibenzo(c,g)carbazole, and 2-naphthylamine, are well known as carcinogens. The methods used to isolate the basic aromatic nitrogen compounds and neutral aza-arenes from one shale oil and one coal-derived oil are discussed. The mutagenic activities of these fractions, based on the Ames Salmonella typhimurium test, are compared.

Ho, C H; Clark, B R; Guerin, M R; Ma, C Y; Rao, T K

1979-01-01T23:59:59.000Z

418

Carbon and nitrogen isotope studies in an arctic ecosystem  

Science Conference Proceedings (OSTI)

This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

Schell, D.M.

1989-01-01T23:59:59.000Z

419

Carbon and nitrogen isotope studies in an arctic ecosystem  

Science Conference Proceedings (OSTI)

This proposal requests funding for the completion of our current ecological studies at the MS-117 research site at Toolik Lake, Alaska. We have been using a mix of stable and radioisotope techniques to assess the fluxes of carbon and nitrogen within the ecosystem and the implications for long-term carbon storage or loss from the tundra. Several tentative conclusions have emerged from our study including: Tundra in the foothills is no longer accumulating carbon. Surficial radiocarbon abundances show little or no accumulation since 1000--2500 yrs BP. Coastal plain tundra is still accumulating carbon, but the rate of accumulation has dropped in the last few thousand years. Carbon export from watersheds in the Kuparuk and Imnavait Creek drainages are in excess of that expected from estimated primary productivity; and Nitrogen isotope abundances vary between species of plants and along hydrologic gradients.

Schell, D.M.

1989-12-31T23:59:59.000Z

420

Frostbite Theater - Liquid Nitrogen Experiments - Cells vs. Liquid  

NLE Websites -- All DOE Office Websites (Extended Search)

Superconductors! Superconductors! Previous Video (Superconductors!) Frostbite Theater Main Index Next Video (Liquid Oxygen and Fire!) Liquid Oxygen and Fire! Cells vs. Liquid Nitrogen! Let's say you've carelessly dunked your hand into a vat of liquid nitrogen and let it freeze solid. Every movie you've seen where this happens tells you that your hand will shatter like fine china should you bump it into something. If you're extremely careful, will your hand be okay once it thaws out? We'll explore this issue, using flower and onion cells rather than our hands! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: By now, we all know what happens when you place a flower in liquid

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FUMIGATION, GROSS NITROGEN TRANSFORMATIONS, N-15, NITRATE, RATES, SOIL  

NLE Websites -- All DOE Office Websites (Extended Search)

FUMIGATION, GROSS NITROGEN TRANSFORMATIONS, N-15, FUMIGATION, GROSS NITROGEN TRANSFORMATIONS, N-15, NITRATE, RATES, SOIL 1909 Pushnik, J.C., R.S. Demaree, J.L.J. Houpis, W.B. Flory, S.M. Bauer, and P.D. Anderson. 1995. The effect of elevated carbon dioxide on a Sierra-Nevadan dominant species: Pinus ponderosa. Journal of Biogeography 22(2-3):249-254. The impact of increasing atmospheric CO2 has not been fully evaluated on western coniferous forest species. Two year old seedlings of Pinus ponderosa were grown in environmentally controlled chambers under increased CO2 conditions (525 mu L L(-1) and 700 mu L L(-1)) for 6 months. These trees exhibited morphological, physiological and biochemical alterations when compared to our controls (350 mu L L(- 1)). Analysis of whole plant biomass distribution has shown no

422

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists from the University of Frankfurt in Germany, Berkeley Lab, Kansas State University, and Auburn University has now resolved the issue with an appropriate twist of quantum fuzziness. By means of coincident detection of the photoelectron ejected from molecular nitrogen and the Auger electron emitted femtoseconds later, the team found that how the measurements are done determines which description-localized or delocalized-is valid.

423

A Very Short Ruthenium(II) - Nitrogen Heterocycle Bond  

NLE Websites -- All DOE Office Websites (Extended Search)

Very Short Ruthenium(II) - Nitrogen Heterocycle Bond: The Crystal Very Short Ruthenium(II) - Nitrogen Heterocycle Bond: The Crystal Structures of Pentaammine(N-methylpyrazinium)ruthenium(II) Iodide and Pentaammine(N-methylpyrazinium)ruthenium(III) p-Toluenesulfonate Pentahydrate James F. Wishart, Avi Bino and Henry Taube Inorg. Chem. 25, 3318-3321 (1986) Abstract: The crystal structures of [(NH3)5Ru(NC4H4NCH3)] I3 and [(NH3)5Ru(NC4H4NCH3)] (CH3C6H4SO3)4°5H2O have been solved to weighted R factors of 0.053 and 0.083, respectively. For the former structure, the space group is Pmma with a = 10.655(2)Å, b = 7.704(1)Å, c = 21.488(3)Å, and Z = 4. The Ru(II)-N(Mepyz) distance of 1.95(1)Å in this complex is the shortest yet reported for a ruthenium(II) to heteroctclic nitrogen bond. A difference of 0.04(1)Å between the cis (2.122(7)Å and 2.136(8)Å) and

424

Stability Regimes of Turbulent Nitrogen-Diluted Hydrogen Jet Flames  

SciTech Connect

One option for combustion in zero-emission Integrated Gasification Combined Cycle (IGCC) power plants is non-premixed combustion of nitrogen-diluted hydrogen in air. An important aspect to non-premixed combustion is flame stability or anchoring, though only a few fundamental stability studies of these flames have taken place to date. The following paper presents the results of experiments investigating the effects of nitrogen diluent fraction, jet diameter, and exit velocity on the static stability limits of a turbulent hydrogen jet flame issuing from a thin-lipped tube into a quiescent atmosphere. Four different stability limits are observed: detachment from the burner lip, reattachment to the burner lip, transition from a laminar lifted flame base to blowout or to a turbulent lifted flame, and transition from a turbulent lifted flame to blowout. The applicability of existing theories and correlations to the stability results is discussed. These results are an important step in assessing the viability of a non-premixed combustion approach using hydrogen diluted with nitrogen as a fuel.

Weiland, N.T.; Strakey, P.A.

2007-03-01T23:59:59.000Z

425

Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid  

DOE Patents (OSTI)

A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

Michaels, E.D.

1981-02-25T23:59:59.000Z

426

Insights into proton-coupled electron transfer mechanisms of electrocatalytic H2 oxidation and production  

SciTech Connect

The design of molecular electrocatalysts for H2 oxidation and production is important for the development of alternative renewable energy sources that are abundant, inexpensive, and environmentally benign. Recently nickel-based molecular electrocatalysts with pendant amines that act as proton relays for the nickel center were shown to effectively catalyze H2 oxidation and production. We developed a quantum mechanical approach for studying proton-coupled electron transfer processes in these types of molecular electrocatalysts. This theoretical approach is applied to a nickel-based catalyst in which phosphorous atoms are directly bonded to the nickel center and nitrogen atoms of the ligand rings act as proton relays. The cataly c step of interest involves electron transfer between the nickel complex and the electrode as well as intramolecular proton transfer between the nickel and nitrogen atoms. This process can occur sequentially, with either the electron or proton transferring first, or concertedly, with the electron and proton transferring simultaneously without a stable intermediate. The heterogeneous rate constants are calculated as functions of overpotential for the concerted electron-proton transfer reaction and the two electron transfer reactions in the sequential mechanisms. Our calculations illustrate that the concerted electron-proton transfer standard rate constant will increase as the equilibrium distance between the nickel and nitrogen atoms decreases and as the nitrogen atoms become more mobile to facilitate the contraction of this distance. This approach assists in the identification of the favored mechanisms under various experimental conditions and provides insight into the qualitative impact of substituents on the nitrogen and phosphorous atoms. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under FWP 56073.

Horvath, Samantha; Fernandez, Laura; Soudackov, Alexander V.; Hammes-Schiffer, Sharon

2012-09-25T23:59:59.000Z

427

Thermally Oxidized Silicon  

NLE Websites -- All DOE Office Websites (Extended Search)

Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Anneli Munkholm (Lumileds Lighting) and Sean Brennan (SSRL) Illustration of the silicon positions near the Si-SiO2 interface for a 4° miscut projected onto the ( ) plane. The silicon atoms in the substrate are blue and those in the oxide are red. The small black spots represent the translated silicon positions in the absence of static disorder. The silicon atoms in the oxide have been randomly assigned a magnitude and direction based on the static disorder value at that position in the lattice. The outline of four silicon unit cells is shown in black, whereas the outline of four expanded lattice cells in the oxide is shown in blue One of the most studied devices of modern technology is the field-effect transistor, which is the basis for most integrated circuits. At its heart

428

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

429

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

430

Molecular water oxidation catalyst  

DOE Patents (OSTI)

A dimeric composition of the formula: ##STR1## wherein L', L", L'", and L"" are each a bidentate ligand having at least one functional substituent, the ligand selected from bipyridine, phenanthroline, 2-phenylpyridine, bipyrimidine, and bipyrazyl and the functional substituent selected from carboxylic acid, ester, amide, halogenide, anhydride, acyl ketone, alkyl ketone, acid chloride, sulfonic acid, phosphonic acid, and nitro and nitroso groups. An electrochemical oxidation process for the production of the above functionally substituted bidentate ligand diaqua oxo-bridged ruthenium dimers and their use as water oxidation catalysts is described.

Gratzel, Michael (St. Sulpice, CH); Munavalli, Shekhar (Bel Air, MD); Pern, Fu-Jann (Lakewood, CO); Frank, Arthur J. (Lakewood, CO)

1993-01-01T23:59:59.000Z

431

Tetraalykylammonium polyoxoanionic oxidation catalysts  

DOE Patents (OSTI)

Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H.sub.e-z ›(n-C.sub.4 H.sub.9).sub.4 N!.sub.z (XM.sub.11 M'O.sub.39).sup.-e The M' (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

Ellis, Paul E. (Downingtown, PA); Lyons, James E. (Wallingford, PA); Myers, Jr., Harry K. (Cochranville, PA); Shaikh, Shahid N. (Media, PA)

1998-01-01T23:59:59.000Z

432

Tetraalklylammonium polyoxoanionic oxidation catalysts  

DOE Patents (OSTI)

Alkanes are catalytically oxidized in air or oxygen using iron-substituted polyoxoanions (POAs) of the formula: H{sub e{minus}z}[(n-C{sub 4}H{sub 9}){sub 4}N]{sub z}(XM{sub 11}M{prime}O{sub 39}){sup {minus}e}. The M{prime} (e.g., iron(III)/iron(II)) reduction potential of the POAs is affected by selection of the central atom X and the framework metal M, and by the number of tetrabutyl-ammonium groups. Decreased Fe(III)/Fe(II) reduction potential has been found to correlate to increased oxidation activity.

Ellis, P.E.; Lyons, J.E.; Myers, H.K. Jr.; Shaikh, S.N.

1998-10-06T23:59:59.000Z

433

Biological Properties of Zinc Oxide-Coated Anodized Aluminum Oxide  

Science Conference Proceedings (OSTI)

We used agar diffusion assays to evaluate the activity of zinc oxide-coated ... Zirconia Stabilisation Nano-Confined by Using Electroless Nickel Cladding .... Metal Oxide Nanofibers Produced by a ForceSpinning Method for Battery Electrodes.

434

Characterizing the transformation and transfer of nitrogen during the aerobic treatment of organic wastes and digestates  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Ammonia emissions varied depending on the nature of wastes and the treatment conditions. Black-Right-Pointing-Pointer Nitrogen losses resulted from ammonia emissions and nitrification-denitrification. Black-Right-Pointing-Pointer Ammonification can be estimated from biodegradable carbon and carbon/nitrogen ratio. Black-Right-Pointing-Pointer Ammonification was the main process contributing to N losses. Black-Right-Pointing-Pointer Nitrification rate was negatively correlated to stripping rate of ammonia nitrogen. - Abstract: The transformation and transfer of nitrogen during the aerobic treatment of seven wastes were studied in ventilated air-tight 10-L reactors at 35 Degree-Sign C. Studied wastes included distinct types of organic wastes and their digestates. Ammonia emissions varied depending on the kind of waste and treatment conditions. These emissions accounted for 2-43% of the initial nitrogen. Total nitrogen losses, which resulted mainly from ammonia emissions and nitrification-denitrification, accounted for 1-76% of the initial nitrogen. Ammonification was the main process responsible for nitrogen losses. An equation which allows estimating the ammonification flow of each type of waste according to its biodegradable carbon and carbon/nitrogen ratio was proposed. As a consequence of the lower contribution of storage and leachate rates, stripping and nitrification rates of ammonia nitrogen were negatively correlated. This observation suggests the possibility of promotingnitrification in order to reduce ammonia emissions.

Zeng Yang, E-mail: yang.zeng@irstea.fr [Irstea, UR GERE, 17 avenue de Cucille, CS 64427, F-35044 Rennes Cedex (France); Universite Europeenne de Bretagne, F-35000 Rennes (France); Guardia, Amaury de; Daumoin, Mylene; Benoist, Jean-Claude [Irstea, UR GERE, 17 avenue de Cucille, CS 64427, F-35044 Rennes Cedex (France)

2012-12-15T23:59:59.000Z

435

Highly oxidized superconductors  

DOE Patents (OSTI)

Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known synthesis in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed. 16 figs.

Morris, D.E.

1994-09-20T23:59:59.000Z

436

Highly oxidized superconductors  

DOE Patents (OSTI)

Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

Morris, Donald E. (Kensington, CA)

1994-01-01T23:59:59.000Z

437

Hydrous oxide activated charcoal  

SciTech Connect

This patent describes a process for preparing of an ion exchanger, comprising: treating an ionically inert activated charcoal porous support with an aqueous solution of metal oxychloride selected from the group consisting of zirconium and titanium oxychlorides so as to impregnate the pores of the support with the solution; separating the treated support from excess metal oxychloride solution; converting the metal oxychloride to a hydrous metal oxide precipitate in the pores of the support at a pH above 8 and above the pH whereat the hydrous metal oxide and activated charcoal support have opposite zeta potentials and sufficient to hydrolyze the metal oxychloride. It also describes a process for preparing an ion exchanger comprising: treating granulated activated charcoal with a concentrated solution of a metal oxychloride from the group consisting of zirconium and titanium oxychlorides, degassing the mixture; and treating the resultant mixture with a base selected from the group consisting of ammonium hydroxide and alkali metal hydroxides so as to precipitate the oxychloride within the pores of the activated carbon granules as hydrous metal oxide at a pH above 8 and above the pH whereat the hydrous metal oxide and activated charcoal have opposite zeta potentials.

Weller, J.P.

1987-09-08T23:59:59.000Z

438

Doped zinc oxide microspheres  

DOE Patents (OSTI)

A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

1993-12-14T23:59:59.000Z

439

ADVANCED OXIDATION PROCESS  

DOE Green Energy (OSTI)

The design of new, high efficiency and cleaner burning engines is strongly coupled with the removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from fuels. Oxidative desulfurization (ODS) wherein these dibenzothiophene derivatives are oxidized to their corresponding sulfoxides and sulfones is an approach that has gained significant attention. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) convert in a catalytic process dibenzothiophene and its derivatives to the corresponding sulfoxides and sulfones rapidly at moderate temperatures (60 C) and ambient pressure. The reaction can be performed in both an aqueous system containing an alcohol (methanol, ethanol, or t-butanol) to solubilize the DBT and in a two-phase hydrocarbon/aqueous system where the alcohol is present in both phases and facilitates the oxidation. Under a consistent set of conditions using the FeBF{sub 2} TAML activator, the degree of conversion was found to be t-butanol > methanol > ethanol. In the cases of methanol and ethanol, both the sulfoxide and sulfone were observed while for t-butanol only the sulfone was detected. In the two-phase system, the alcohol may function as an inverse phase transfer agent. The oxidation was carried out using two different TAML activators. In homogeneous solution, approximately 90% oxidation of the DBT could be achieved using the prototype TAML activator, FeB*, by sonicating the solution at near room temperature. In bi-phasic systems conversions as high as 50% were achieved using the FeB* TAML activator and hydrogen peroxide at 100 C. The sonication method yielded only {approx}6% conversion but this may have been due to mixing.

Colin P. Horwitz; Terrence J. Collins

2003-10-22T23:59:59.000Z

440

Lipid Oxidation Pathways, Volume 2  

Science Conference Proceedings (OSTI)

This book complements Lipid Oxidation Pathways, Volume 1. Lipid Oxidation Pathways, Volume 2 Health acid analysis aocs april articles chloropropanediol contaminants detergents dietary fats division divisions esters fats fatty food foods glycidol Health h

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cholesterol and Phytosterol Oxidation Products  

Science Conference Proceedings (OSTI)

This book comprehensively reviews several aspects of cholesterol oxidation products: cholesterol oxidation mechanisms, analytical determination, origin and content of these compounds in foods and biological samples, and their biological effects, with an em

442

Oxygen sensitive, refractory oxide composition  

DOE Patents (OSTI)

Oxide compositions containing niobium pentoxide and an oxide selected from the group consisting of hafnia, titania, and zirconia have electrical conductivity characteristics which vary greatly depending on the oxygen content.

Holcombe, Jr., Cressie E. (Oak Ridge, TN); Smith, Douglas D. (Knoxville, TN)

1976-01-01T23:59:59.000Z

443

Low temperature plasma enhanced chemical vapor deposition of silicon oxide films using disilane and nitrous oxide  

Science Conference Proceedings (OSTI)

Keywords: disilane, low temperature, nitrous oxide, plasma enhanced chemical vapor deposition, silicon oxide

Juho Song; G. S. Lee; P. K. Ajmera

1995-10-01T23:59:59.000Z

444

Nitrogen fixation method and apparatus. [DOE patent application  

DOE Patents (OSTI)

A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O/sub 2//cm promotes the formation of vibrationally excited N/sub 2/. Atomic oxygen interacts with vibrationally excited N/sub 2/ at a much quicker rate than unexcited N/sub 2/, greatly improving the rate at which NO is formed.

Chen, H.L.

1981-08-11T23:59:59.000Z

445

REVIEW OF PLUTONIUM OXIDATION LITERATURE  

Science Conference Proceedings (OSTI)

A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles ( 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

Korinko, P.

2009-11-12T23:59:59.000Z

446

REVIEW OF PLUTONIUM OXIDATION LITERATURE  

SciTech Connect

A brief review of plutonium oxidation literature was conducted. The purpose of the review was to ascertain the effect of oxidation conditions on oxide morphology to support the design and operation of the PDCF direct metal oxidation (DMO) furnace. The interest in the review was due to a new furnace design that resulted in oxide characteristics that are different than those of the original furnace. Very little of the published literature is directly relevant to the DMO furnace operation, which makes assimilation of the literature data with operating conditions and data a convoluted task. The oxidation behavior can be distilled into three regimes, a low temperature regime (RT to 350 C) with a relatively slow oxidation rate that is influenced by moisture, a moderate temperature regime (350-450 C) that is temperature dependent and relies on more or less conventional oxidation growth of a partially protective oxide scale, and high temperature oxidation (> 500 C) where the metal autocatalytically combusts and oxidizes. The particle sizes obtained from these three regimes vary with the finest being from the lowest temperature. It is surmised that the slow growth rate permits significant stress levels to be achieved that help break up the oxides. The intermediate temperatures result in a fairly compact scale that is partially protective and that grows to critical thickness prior to fracturing. The growth rate in this regime may be parabolic or paralinear, depending on the oxidation time and consequently the oxide thickness. The high temperature oxidation is invariant in quiescent or nearly quiescent conditions due to gas blanketing while it accelerates with temperature under flowing conditions. The oxide morphology will generally consist of fine particles (<15 {micro}m), moderately sized particles (15 < x < 250 {micro}m) and large particles (> 250 {micro}m). The particle size ratio is expected to be < 5%, 25%, and 70% for fine, medium and large particles, respectively, for metal temperatures in the 500-600 C range.

Korinko, P.

2009-11-12T23:59:59.000Z

447

Multifunctional Oxide - Programmaster.org  

Science Conference Proceedings (OSTI)

Toshihiko Tani, Toyota Motor Engineering and Manufacturing North America, Inc. Scope, Multifunctional oxide ceramics and thin films exhibit fascinating ...

448

Frostbite Theater - Just for Fun - How to Make Liquid Nitrogen Ice Cream  

NLE Websites -- All DOE Office Websites (Extended Search)

The Total Lunar Eclipse of December 21, 2010 The Total Lunar Eclipse of December 21, 2010 Previous Video (The Total Lunar Eclipse of December 21, 2010) Frostbite Theater Main Index Next Video (Liquid Nitrogen Viewer Requests!) Liquid Nitrogen Viewer Requests! How to Make Liquid Nitrogen Ice Cream What do you do if you need to make ice cream in a hurry? Liquid nitrogen to the rescue! [ Show Transcript ] Steve: Okay! So, We are here at Jefferson Lab and it's about 100 degrees outside and we though "Why not make a little bit of ice cream?" Now, of course we don't have a lot of ice cream on hand, but we do have half-and-half, sugar and vanilla and, since we are at Jefferson Lab where we have a superconductive accelerator, we have lots of liquid nitrogen. So, we're going to make ourselves some liquid nitrogen ice cream. So, Joanna

449

Plant growth is influenced by glutamine synthetase-catalyzed nitrogen metabolism  

DOE Green Energy (OSTI)

Ammonia assimilation has been implicated as participating in regulation of nitrogen fixation in free-living bacteria. In fact, these simple organisms utilize an integrated regulation of carbon and nitrogen metabolism; we except to observe an integration of nitrogen and carbon fixation in plants; how could these complex systems grow efficiently and compete in the ecosystem without coordinating these two crucial activities We have been investigating the role of ammonia assimilation regulating the complex symbiotic nitrogen fixation of legumes. Just as is observed in the simple bacterial systems, perturbation of ammonia assimilation in legumes results in increased overall nitrogen fixation. The perturbed plants have increased growth and total nitrogen fixation capability. Because we have targeted the first enyzme in ammonia assimilation, glutamine synthetase, this provides a marker that could be used to assist selection or screening for increased biomass yield. 45 refs., 4 tabs.

Langston-Unkefer, P.J.

1991-06-11T23:59:59.000Z

450

ARM - Instrument - tracegas  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentstracegas govInstrumentstracegas Documentation TRACEGAS : Instrument Mentor Monthly Summary (IMMS) reports TRACEGAS : Data Quality Assessment (DQA) reports ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Trace gas concentrations (TRACEGAS) Instrument Categories Aerosols Concentrations of trace gases important for atmospheric chemistry and aerosol particle formation (e.g., carbon monoxide, various nitrogen oxides, sulfur dioxide, and ozone) typically are measured by gas filter correlation, fluorescence, or chemiluminescence. The TRACEGAS is part of the Aerosol Observing System (AOS). Output Datastreams aosco : AOS: Carbon Monoxide Analyzer aosnox : AOS: Oxides of Nitrogen Analyzer

451

MOBILE6 Vehicle Emission Modeling Software | Open Energy Information  

Open Energy Info (EERE)

MOBILE6 Vehicle Emission Modeling Software MOBILE6 Vehicle Emission Modeling Software Jump to: navigation, search Tool Summary Name: MOBILE6 Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.epa.gov/oms/m6.htm Cost: Free References: http://www.epa.gov/oms/m6.htm MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon Dioxide (CO2), Particulate Matter (PM), and toxics from cars, trucks, and motorcycles under various conditions. MOBILE6 is an emission factor model for predicting gram per mile emissions of Hydrocarbons (HC), Carbon Monoxide (CO), Nitrogen Oxides (NOx), Carbon

452

Sulfidation of mixed metal oxides in a fluidized-bed reactor  

SciTech Connect

Mixed metal oxides were used for the removal of hydrogen sulfide from a hot gas stream. Sorbents were prepared according to the dry and wet impregnation techniques. The desulfurization performance of the metal oxide sorbents was experimentally tested in a fluidized-bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that the preparation procedure and technique, the type and the amount of the impregnated metal oxide, the type of the solid carrier, and the size of the solid reactant affect the H[sub 2]S removal capacity of the sorbents. The pore structure of fresh and sulfided sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electron microscopy.

Christoforou, S.C.; Efthimiadis, E.A.; Vasalos, I.A. (Aristotelian Univ. of Thessaloniki (Greece))

1995-01-01T23:59:59.000Z

453

Prepulse effect on laser-induced water-window radiation from a liquid nitrogen jet  

E-Print Network (OSTI)

is schematically shown in Fig. 1. A high-purity nitrogen gas was cooled and liquefied through the cooling stagesPrepulse effect on laser-induced water-window radiation from a liquid nitrogen jet J. Son,a M. Cho.3­4.4 nm x ray from a liquid nitrogen jet. It is observed that a prepulse of only 2 mJ enhances

Kim, Jae-Hoon

454

Catalyst Additives to Enhance Mercury Oxidation and Capture  

SciTech Connect

Preliminary research has shown that SCR catalysts employed for nitrogen-oxide reduction can effectively oxidize mercury. This report discusses initial results from fundamental investigations into the behavior of mercury species in the presence of SCR catalysts at Southern Research Institute. The testing was performed at Southern Research's Catalyst Test Facility, a bench-scale reactor capable of simulating gas-phase reactions occurring in coal-fired utility pollution-control equipment. Three different SCR catalysts are currently being studied in this project--honeycomb-type, plate-type, and a hybrid-type catalyst. The catalysts were manufactured and supplied by Cormetech Inc., Hitachi America Ltd., and Haldor-Topsoe Inc., respectively. Parametric testing was performed to investigate the contribution of flue-gas chemistry on mercury oxidation via SCR catalysts. Methods and procedures for experimental testing continue to be developed to produce the highest quality mercury-oxidation data. During this past quarter, it was discovered that long periods (12 - 24 hours) are required to equilibrate the catalysts in the system. In addition, after the system has been equilibrated, operational changes to temperature, gas concentration, or flow rate shifts the equilibrium, and steady-state must be reestablished, which can require as much as twelve additional hours per condition change. In the last quarter of testing, it was shown that the inclusion of ammonia had a strong effect on the oxidation of mercury by SCR catalysts, both in the short-term (a transitional period of elemental and oxidized mercury off gassing) and the long-term (less steady-state mercury oxidation). All experiments so far have focused on testing the catalysts in a simulated Powder River Basin (PRB) flue-gas environment, which contains lower sulfur and chlorine than produced by other coals. In the next quarter, parametric testing will be expanded to include flue gases simulating power plants burning Midwestern and Eastern coals, which are higher in sulfur and chlorine. Also, the isolation of such gases as hydrogen chloride (HCl), ammonia (NH{sub 3}), and sulfur trioxide (SO{sub 3}) will be investigated. All of these efforts will be used to examine the kinetics of mercury oxidation across the SCR catalysts with respect to flue gas composition, temperature, and flow rate.

Jared W. Cannon; Thomas K. Gale

2005-06-30T23:59:59.000Z

455

Nitrogen Removal in Aerobic Granular Sludge SBR: Real?time Control Strategies  

Science Conference Proceedings (OSTI)

A sequencing batch reactor (SBR) with aerobic granules was operated to determine the effect of different DO concentration on biological nitrogen removal for synthetic sewage treatment

Xiangjuan Yuan; Dawen Gao

2010-01-01T23:59:59.000Z

456

Global GHG abatement potential for the nitrogen fertlizer industry up to 2030.  

E-Print Network (OSTI)

??This dissertation studies the global GHG abatement potential of nitrogen fertilizer industry up to 2030. In order to acknowledge it, a data base of the… (more)

Rangel Campos, M.

2011-01-01T23:59:59.000Z

457

Nitrogen Management and the Effects of Compost Tea on Organic Irish Potato and Sweet Corn.  

E-Print Network (OSTI)

??Supply and synchronization of plant-available nitrogen (N) to the soil is a major challenge for organic farmers, especially when growing crops in soils that are… (more)

Stevens, Paul Thomas

2008-01-01T23:59:59.000Z

458

Corn and weed interactions with nitrogen in dryland and irrigated environments.  

E-Print Network (OSTI)

??Corn yield potential is limited by water deficit stress and limited soil nitrogen. Field and greenhouse experiments were conducted near Manhattan, KS in 2005 and… (more)

Ruf, Ella Kathrene

2007-01-01T23:59:59.000Z

459

Annulation strategies for the synthesis of azulenes and polycyclic nitrogen heterocycles  

E-Print Network (OSTI)

Highly convergent annulation strategies have been developed for the synthesis of azulenes and polycyclic nitrogen heterocycles. Specifically, substituted azulenes have been synthesized via a ring expansion-annulation ...

Crombie, Aimee Lynn, 1977-

2004-01-01T23:59:59.000Z

460

ESS 2012 Peer Review - Nitrogen-Oxygen Battery for Large Scale...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 Frank Delnick, David Ingersoll, Karen Waldrip, Peter Feibelman NitrogenOxygen Battery A Transformational Architecture for Large Scale Energy Storage Power Sources...

Note: This page contains sample records for the topic "monoxide nitrogen oxides" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.