National Library of Energy BETA

Sample records for monorail system manufacturing

  1. Chapter 12 - HOISTS JIB CRANES AND MONORAILS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0 - HOISTS, JIB CRANES, AND MONORAIL SYSTEMS January 4, 2016 Rev 1 Page 1 CHAPTER 12.0 TABLE OF CONTENTS 12.0 HOISTS, JIB CRANES, AND MONORAIL SYSTEMS ............................................................ 3 12.1 SCOPE ......................................................................................................................................... 3 12.2 GENERAL REQUIREMENTS ................................................................................................. 3 12.3

  2. Manufacturing High Temperature Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing and Scale Up Challenges Joseph Hartvigsen Ceramatec, Inc. National Renewable Energy Laboratory Golden, CO February 28, 2014 Antipode Assertions * Electric power generation is not the limitation - To misquote Jay Leno "Use all you want, we'll make more" - http://atomicinsights.com/2013/02/use-all-the-electricity-you-want-well-make-more.html * High electric costs come from working the demand curve from below rather than above * "Grid Storage" is a misleading

  3. NREL: Energy Systems Integration - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Manufacturing capabilities at NREL support the production of components for fuel cells and electrochemical cells and the development of methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their production to meet national goals. Fuel cells cleanly and efficiently convert hydrogen into electricity through an electrochemical process. Fuel cells offer promise in a wide range of

  4. Manufacturing

    Office of Environmental Management (EM)

    Flow of Materials through Industry / Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 1 5 1.1 Supply chain and material flow analysis ....................................................................................... 1 6 2. Technology Assessment and Potential

  5. Low Cost Manufacturable Microchannel Systems for Passive PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Part of a 100 million...

  6. Low-Cost Manufacturable Microchannel Systems for Passive PEM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management This presentation, which...

  7. Flow Battery System Design for Manufacturability.

    SciTech Connect (OSTI)

    Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

    2014-10-01

    Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

  8. Real time PV manufacturing diagnostic system

    SciTech Connect (OSTI)

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  9. NREL: Energy Systems Integration Facility - Manufacturing and Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diagnostics Manufacturing and Material Diagnostics Manufacturing and material diagnostics help manufacturers of clean energy technologies scale up production to volumes that meet U.S. Department of Energy and industry targets. The Energy Systems Integration Facility provides an array of instrumentation and diagnostic tools that allows highly skilled researchers to perform novel experimentation that would be cost- and time-prohibitive for most institutions. Currently, manufacturing activities

  10. Low Cost Manufacturable Microchannel Systems for Passive PEM Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management | Department of Energy Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 5_pnnl.pdf More Documents & Publications Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management Fuel Cells For Transportation - 2001 Annual Progress Report Fuel Cells For

  11. Low-Cost Manufacturable Microchannel Systems for Passive PEM Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Management | Department of Energy Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management This presentation, which focuses on passive PEM water management, was given by Susie Stenkamp of PNNL at a February 2007 meeting on new fuel cell projects. PDF icon new_fc_stenkamp_pnnl.pdf More Documents & Publications Low Cost Manufacturable Microchannel Systems for Passive PEM Water Management Fuel

  12. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt027apepeaslee2012p.pdf More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component...

  13. Electric Drive Component Manufacturing: Magna E-Car Systems of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt027apethomas2011p.pdf More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component...

  14. Material Design, Selection, and Manufacturing Methods for System Sustainment

    SciTech Connect (OSTI)

    David Sowder, Jim Lula, Curtis Marshall

    2010-02-18

    This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energys National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

  15. Force Modulation System for Vehicle Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Force Modulation System for Vehicle Manufacturing Force Modulation System for Vehicle Manufacturing Novel Technology Enables Energy-Efficient Production of High-Strength Steel Automotive Parts Recent U.S. automobile sales show a growing demand for more fuel-efficient and environmentally-friendly vehicles, including hybrids. The U.S. auto industry is pursuing at least two parallel paths to address these market evolutions. The first path involves design changes in the engine plant, such as

  16. System level analysis and control of manufacturing process variation

    DOE Patents [OSTI]

    Hamada, Michael S.; Martz, Harry F.; Eleswarpu, Jay K.; Preissler, Michael J.

    2005-05-31

    A computer-implemented method is implemented for determining the variability of a manufacturing system having a plurality of subsystems. Each subsystem of the plurality of subsystems is characterized by signal factors, noise factors, control factors, and an output response, all having mean and variance values. Response models are then fitted to each subsystem to determine unknown coefficients for use in the response models that characterize the relationship between the signal factors, noise factors, control factors, and the corresponding output response having mean and variance values that are related to the signal factors, noise factors, and control factors. The response models for each subsystem are coupled to model the output of the manufacturing system as a whole. The coefficients of the fitted response models are randomly varied to propagate variances through the plurality of subsystems and values of signal factors and control factors are found to optimize the output of the manufacturing system to meet a specified criterion.

  17. Monitoring system for the quality assessment in additive manufacturing

    SciTech Connect (OSTI)

    Carl, Volker

    2015-03-31

    Additive Manufacturing (AM) refers to a process by which a set of digital data -representing a certain complex 3dim design - is used to grow the respective 3dim real structure equal to the corresponding design. For the powder-based EOS manufacturing process a variety of plastic and metal materials can be used. Thereby, AM is in many aspects a very powerful tool as it can help to overcome particular limitations in conventional manufacturing. AM enables more freedom of design, complex, hollow and/or lightweight structures as well as product individualisation and functional integration. As such it is a promising approach with respect to the future design and manufacturing of complex 3dim structures. On the other hand, it certainly calls for new methods and standards in view of quality assessment. In particular, when utilizing AM for the design of complex parts used in aviation and aerospace technologies, appropriate monitoring systems are mandatory. In this respect, recently, sustainable progress has been accomplished by joining the common efforts and concerns of a manufacturer Additive Manufacturing systems and respective materials (EOS), along with those of an operator of such systems (MTU Aero Engines) and experienced application engineers (Carl Metrology), using decent know how in the field of optical and infrared methods regarding non-destructive-examination (NDE). The newly developed technology is best described by a high-resolution layer by layer inspection technique, which allows for a 3D tomography-analysis of the complex part at any time during the manufacturing process. Thereby, inspection costs are kept rather low by using smart image-processing methods as well as CMOS sensors instead of infrared detectors. Moreover, results from conventional physical metallurgy may easily be correlated with the predictive results of the monitoring system which not only allows for improvements of the AM monitoring system, but finally leads to an optimisation of the quality and insurance of material security of the complex structure being manufactured. Both, our poster and our oral presentation will explain the data flow between the above mentioned parties involved. A suitable monitoring system for Additive Manufacturing will be introduced, along with a presentation of the respective high resolution data acquisition, as well as the image processing and the data analysis allowing for a precise control of the 3dim growth-process.

  18. Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportation Applications Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. PDF icon ...

  19. Continuous Nanofiber/Nanotube Manufacturing System - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Continuous Nanofiber/Nanotube Manufacturing System Integrated Electrospinning - IR Heating and Pneumatic Collection System (EIPC) Argonne National Laboratory Contact ANL About This Technology Publications: PDF Document Publication Presentation Slide (206 KB) 1st Generation Proof of Concept 10KW 0.001 mg/h 1st Generation Proof of Concept 10KW 0.001 mg/h 2nd

  20. Image change detection systems, methods, and articles of manufacture

    DOE Patents [OSTI]

    Jones, James L.; Lassahn, Gordon D.; Lancaster, Gregory D.

    2010-01-05

    Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

  1. Manufacturing R&D for systems that will produce and distribute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing R&D for systems that will produce and distribute hydrogen Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. PDF icon mfgwkshpproduction.pd...

  2. Manufacturing R&D for systems that will produce and distribute hydrogen |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy for systems that will produce and distribute hydrogen Manufacturing R&D for systems that will produce and distribute hydrogen Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. PDF icon mfg_wkshp_production.pdf More Documents & Publications Manufacturing R&D of PEM Fuel Cells Roadmap on Manufacturing R&D for the Hydrogen Economy 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell

  3. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative

    Energy Savers [EERE]

    Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact manufacturing R&D to improve natural gas system efficiency and reduce leaks with the goal of establishing an advanced manufacturing initiative. This will include a formal request for information, public workshops, and technical analysis and will leverage technology development areas already in progress through DOE's

  4. Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Onboard Hydrogen Storage Systems for Transportation Applications Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportation Applications Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. PDF icon mfg_wkshp_storage.pdf More Documents & Publications Status & Direction for Onboard Hydrogen Storage US DRIVE Hydrogen Storage Technical Team Roadmap

  5. Compressed Air System Enhancement Increase Efficiency and Provides Energy Savings at a Circuit Board Manufacturer

    SciTech Connect (OSTI)

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the circuit board manufacturer (Sanmina Plant) project.

  6. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Combined Heat and Power Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial

  7. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Natural Gas Systems Manufacturing R&D Initiative Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative The following fact sheet outlines one of the Department of Energy's series of actions, partnerships, and stakeholder commitments to help modernize the nation¹s natural gas transmission and distribution systems and reduce methane emissions. DOE will launch a collaborative effort with industry to evaluate and scope high-impact

  8. Electric Drive Component Manufacturing: Magna E-Car Systems of America,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt027_ape_peaslee_2012_p.pdf More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine

  9. Electric Drive Component Manufacturing: Magna E-Car Systems of America,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt027_ape_thomas_2011_p.pdf More Documents & Publications Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Electric Drive Component Manufacturing: Magna E-Car Systems of America, Inc. Workplace Charging Challenge Summit 2014: Session 2, Track B

  10. Compressed Air System Optimization Saves Energy and Improves Production at a Textile Manufacturing Mill (Peerless Division, Thomastown Mills, Inc.)

    SciTech Connect (OSTI)

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the textile manufacturing mill project.

  11. Appendices: Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE P A R T M E N U E N I T E D S T A T S O F A E R IC A M Office of Energy Efficency and Renewable Energy U.S. Department of Energy Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Appendices Appendices (This page intentionally left blank.) Steam System Opportunity Assessment for the Pulp and Paper, Chemical

  12. Estimated costs of ventilation systems complying with the HUD ventilation standard for manufactured homes

    SciTech Connect (OSTI)

    Miller, J.D.; Conner, C.C.

    1993-11-01

    At the request of the US Department of Housing and Urban Development (HUD), the Pacific Northwest Laboratory estimated the material, labor, and operating costs for ventilation equipment needed for compliance with HUD`s proposed revision to the ventilation standard for manufactured housing. This was intended to bound the financial impacts of the ventilation standard revision. Researchers evaluated five possible prototype ventilation systems that met the proposed ventilation requirements. Of those five, two systems were determined to be the most likely used by housing manufacturers: System 1 combines a fresh air duct with the existing central forced-air system to supply and circulate fresh air to conditioned spaces. System 2 uses a separate exhaust fan to remove air from the manufactured home. The estimated material and labor costs for these two systems range from $200 to $300 per home. Annual operating costs for the two ventilation systems were estimated for 20 US cities. The estimated operating costs for System 1 ranged from $55/year in Las Vegas, Nevada, to $83/year in Bismarck, North Dakota. Operating costs for System 2 ranged from a low of $35/year in Las Vegas to $63/year in Bismarck. Thus, HUD`s proposed increase in ventilation requirements will add less than $100/year to the energy cost of a manufactured home.

  13. Sustainable Manufacturing

    Energy Savers [EERE]

    Principal Investigator (Presenter): Dr. Troy D. Marusich , CTO Washington, D.C. May 6-7, 2014 Third Wave Systems Inc. U.S. DOE Advanced Manufacturing Office Peer Review Meeting This presentation does not contain any proprietary, confidential, or otherwise restricted information. o Project Objective  What are you trying to do?  Develop and demonstrate a new manufacturing-informed design paradigm to dramatically improve manufacturing productivity, quality, and costs of machined components

  14. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Energy Efficency and Renewable Energy U.S. Department of Energy Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Main Report Main Report Download CD-ROM Zip File (27.3 MB) Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System

  15. Manufacturing Industrial Development for the Alternative Energy Systems-Final Report

    SciTech Connect (OSTI)

    Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

    2013-01-30

    NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality, welds on joints with gaps and mismatches typical of those seen in heavy manufacturing. Wind towers utilize varying thicknesses of steel throughout their structures to meet the mechanical load requirements while keeping material costs low. A typical tower might have as many as twelve different material thicknesses. Joining each thickness requires a unique joint design and welding approach to enable the management of quality, productivity, and mechanical properties. In this program, laser joining of materials with thicknesses ranging from 12mm to 35mm were evaluated against the standard quality and mechanical requirements for General Electric wind tower components. The joining processes demonstrated showed the ability to meet key requirements with the appropriate process controls in place.

  16. Advanced Manufacturing Office: Case Study - The Challenge: Improving Sewage Pump System Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Sewage System Process: Sewage Pumping System: Pump System Technology: Downsized pump, direct on-line pump controls Project Profile SIC: 4952 Products: Sewage Pumping Location: Trumbull, Connecticut Showcase Team Leaders: Paul Kallmeyer, Town of Trumbull Three employees in the wastewater treatment department. Town of Trumbull U.S. Department of Energy - Energy Efficiency and Renewable Energy Advanced Manufacturing Office Case Study - The Challenge: Improving Sewage Pump System

  17. Advanced Manufacturing Office: Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cotton Fabric Process: Facility Ventilation System: Ventilation Fans Technology: Variable Frequency Drives (VFDs) Project Profile U.S. Department of Energy - Energy Efficiency and Renewable Energy Advanced Manufacturing Office Case Study - The Challenge: Improving Ventilation System Energy Efficiency in a Textile Plant Summary Company Background Project Overview Project Team The Systems Approach Project Implementation Results Lessons Learned Summary In an effort to improve ventilation system

  18. Improving Steam System Performance: A Sourcebook for Industry, Second Edition (Book) (Revised), Advanced Manufacturing Office (AMO)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam System Performance: A Sourcebook for Industry Second Edition The Office of Energy Efficiency and Renewable Energy (EERE) invests in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. IMPROVING STEAM SYSTEM PERFORMANCE: A SOURCEBOOK FOR INDUSTRY ACKNOWLEDGMENTS Improving Steam System Performance: A Sourcebook for Industry was developed for the U.S. Department of Energy's (DOE) Advanced Manufacturing Office (AMO), formerly

  19. Real time intelligent process control system for thin film solar cell manufacturing

    SciTech Connect (OSTI)

    George Atanasoff

    2010-10-29

    This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStratas fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process on-the-fly in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

  20. EA-1851: Delphi Automotive Systems Electric Drive Vehicle Battery and Component Manufacturing Initiative

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to provide a financial assistance grant under the American Recovery and Reinvestment Act of 2009 (ARRA) to Delphi Automotive Systems, Limited Liability Corporation (LLC) (Delphi). Delphi proposes to construct a laboratory referred to as the Delphi Kokomo, IN Corporate Technology Center (Delphi CTC Project) and retrofit a manufacturing facility. The project would advance DOEs Vehicle Technology Program through manufacturing and testing of electric-drive vehicle components as well as assist in the nations economic recovery by creating manufacturing jobs in the United States. The Delphi CTC Project would involve the construction and operation of a 10,700 square foot (ft2) utilities building containing boilers and heaters and a 70,000 ft2 engineering laboratory, as well as site improvements (roads, parking, buildings, landscaping,and lighting).

  1. Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems

    Broader source: Energy.gov [DOE]

    Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

  2. Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems

    SciTech Connect (OSTI)

    Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

    2006-04-01

    In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

  3. Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture

    DOE Patents [OSTI]

    Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

    2013-01-08

    Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

  4. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Direct Thermal Energy Conversion Materials, Devices, and Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  5. Automated design synthesis of robotic/human workcells for improved manufacturing system design in hazardous environments

    SciTech Connect (OSTI)

    Williams, Joshua M.

    2012-06-12

    Manufacturing tasks that are deemed too hazardous for workers require the use of automation, robotics, and/or other remote handling tools. The associated hazards may be radiological or nonradiological, and based on the characteristics of the environment and processing, a design may necessitate robotic labor, human labor, or both. There are also other factors such as cost, ergonomics, maintenance, and efficiency that also effect task allocation and other design choices. Handling the tradeoffs of these factors can be complex, and lack of experience can be an issue when trying to determine if and what feasible automation/robotics options exist. To address this problem, we utilize common engineering design approaches adapted more for manufacturing system design in hazardous environments. We limit our scope to the conceptual and embodiment design stages, specifically a computational algorithm for concept generation and early design evaluation. In regard to concept generation, we first develop the functional model or function structure for the process, using the common 'verb-noun' format for describing function. A common language or functional basis for manufacturing was developed and utilized to formalize function descriptions and guide rules for function decomposition. Potential components for embodiment are also grouped in terms of this functional language and are stored in a database. The properties of each component are given as quantitative and qualitative criteria. Operators are also rated for task-relevant criteria which are used to address task compatibility. Through the gathering of process requirements/constraints, construction of the component database, and development of the manufacturing basis and rule set, design knowledge is stored and available for computer use. Thus, once the higher level process functions are defined, the computer can automate the synthesis of new design concepts through alternating steps of embodiment and function structure updates/decomposition. In the process, criteria guide function allocation of components/operators and help ensure compatibility and feasibility. Through multiple function assignment options and varied function structures, multiple design concepts are created. All of the generated designs are then evaluated based on a number of relevant evaluation criteria: cost, dose, ergonomics, hazards, efficiency, etc. These criteria are computed using physical properties/parameters of each system based on the qualities an engineer would use to make evaluations. Nuclear processes such as oxide conversion and electrorefining are utilized to aid algorithm development and provide test cases for the completed program. Through our approach, we capture design knowledge related to manufacturing and other operations in hazardous environments to enable a computational program to automatically generate and evaluate system design concepts.

  6. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    SciTech Connect (OSTI)

    Weimar, Mark R.; Chick, Lawrence A.; Gotthold, David W.; Whyatt, Greg A.

    2013-09-30

    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  7. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    DOE Patents [OSTI]

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  8. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    DOE Patents [OSTI]

    McCown, Steven H. (Rigby, ID); Derr, Kurt W. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID)

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  9. Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Year to Date NAICS Code April - June 2014 January - March 2014

  10. Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 NAICS Code June 30, 2014 March 31, 2014 June 30, 2013 Percent Change (June

  11. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 15, System design description. Volume 1

    SciTech Connect (OSTI)

    1995-09-22

    This System Design Description, prepared in accordance with the TPX Project Management Plan provides a summary or TF Magnet System design features at the conclusion of Phase I, Preliminary Design and Manufacturing Research. The document includes the analytical and experimental bases for the design, and plans for implementation in final design, manufacturing, test, and magnet integration into the tokamak. Requirements for operation and maintenance are outlined, and references to sources of additional information are provided.

  12. Measured heating system efficiency retrofits in eight manufactured (HUD-code) homes

    SciTech Connect (OSTI)

    Siegel, J.; Davis, B.; Francisco, P.; Palmiter, L.

    1998-07-01

    This report presents the results of field measurements of heating efficiency performed on eight all-electric manufactured homes sited in the Pacific Northwest with forced-air distribution systems. These homes, like more than four million existing manufactured homes in the US, were constructed to thermal specifications that were mandated by the US Department of Housing and Urban Development in 1976. The test protocol compares real-time measurements of furnace energy usage with energy usage during periods when zonal heaters heat the homes to the same internal temperature. By alternating between the furnace and zonal heaters on 2 hour cycles, a short-term coheat test is performed. Additional measurements, including blower door and duct tightness tests, are conducted to measure and characterize the home's tightness and duct leakage so that coheat test results might be linked to other measures of building performance. The testing was done at each home before and after an extensive duct sealing retrofit was performed. The average pre-retrofit system efficiency for these homes was 69%. After the retrofit, the average system efficiency increased to 83%. The average simple payback period for the retrofits ranges from 1 to 5 years in Western Oregon and 1 to 3 years in colder Eastern Oregon.

  13. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST » MST Research Programs » Additive Manufacturing Additive Manufacturing A method allowing unparalleled manufacturing control, data visualization, and high-value parts repair. Through additive manufacturing, Los Alamos is developing materials for the future. Taking complex manufacturing challenges from design to fabrication. A science and engineering approach for additive manufacturing solutions. Get Expertise John Carpenter Technical Staff Member Metallurgy Email Division Leader Materials

  14. Life cycle cost study for coated conductor manufacture by electron beam and pulsed laser deposition systems

    SciTech Connect (OSTI)

    Chapman, J.N.

    1999-04-14

    The results of this study establish a framework for evaluation of the cost impact of many performance parameters in coated conductor manufacturing systems. Since the cost and concepts are based on early developmental results and engineering judgment, the study should be updated periodically based on latest data to enhance its usefulness. The study should be expanded to include other promising processes under consideration or development for manufacture of coated conductors. Review of this study by as wide a group of experts from industry, national laboratories and universities as possible is desirable to facilitate improving accuracy of the estimates and communication on the issues involved. The results for the case of achieving the $10/kA-m goal at a J{sub c} of 10{sup 5} a/cm{sup 2} applicable to applications requiring a magnetic field perpendicular to the direction of current flow may be viewed as somewhat discouraging. However, there is ample margin for improvement due to continued development and engineering that could enable meeting the goal of $10/kA-m.

  15. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  16. Computer-implemented security evaluation methods, security evaluation systems, and articles of manufacture

    DOE Patents [OSTI]

    Muller, George; Perkins, Casey J.; Lancaster, Mary J.; MacDonald, Douglas G.; Clements, Samuel L.; Hutton, William J.; Patrick, Scott W.; Key, Bradley Robert

    2015-07-28

    Computer-implemented security evaluation methods, security evaluation systems, and articles of manufacture are described. According to one aspect, a computer-implemented security evaluation method includes accessing information regarding a physical architecture and a cyber architecture of a facility, building a model of the facility comprising a plurality of physical areas of the physical architecture, a plurality of cyber areas of the cyber architecture, and a plurality of pathways between the physical areas and the cyber areas, identifying a target within the facility, executing the model a plurality of times to simulate a plurality of attacks against the target by an adversary traversing at least one of the areas in the physical domain and at least one of the areas in the cyber domain, and using results of the executing, providing information regarding a security risk of the facility with respect to the target.

  17. Methods of defining ontologies, word disambiguation methods, computer systems, and articles of manufacture

    DOE Patents [OSTI]

    Sanfilippo, Antonio P [Richland, WA; Tratz, Stephen C [Richland, WA; Gregory, Michelle L [Richland, WA; Chappell, Alan R [Seattle, WA; Whitney, Paul D [Richland, WA; Posse, Christian [Seattle, WA; Baddeley, Robert L [Richland, WA; Hohimer, Ryan E [West Richland, WA

    2011-10-11

    Methods of defining ontologies, word disambiguation methods, computer systems, and articles of manufacture are described according to some aspects. In one aspect, a word disambiguation method includes accessing textual content to be disambiguated, wherein the textual content comprises a plurality of words individually comprising a plurality of word senses, for an individual word of the textual content, identifying one of the word senses of the word as indicative of the meaning of the word in the textual content, for the individual word, selecting one of a plurality of event classes of a lexical database ontology using the identified word sense of the individual word, and for the individual word, associating the selected one of the event classes with the textual content to provide disambiguation of a meaning of the individual word in the textual content.

  18. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing 1 Technology Assessment 2 1. Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1 Introduction to Additive Manufacturing ....................................................................................... 2 5 1.2 Additive Manufacturing Processes ............................................................................................... 2 6 1.3 Benefits of Additive

  19. Additive Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacturing and national security To realize additive manufacturing's potential as a disruptive technology for Los Alamos National Laboratory's national security missions,...

  20. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    SciTech Connect (OSTI)

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  1. Manufacturing Innovation Institute for Smart Manufacturing: Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart...

  2. Sustainable Manufacturing

    Energy Savers [EERE]

    Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR DOE Workshop on Sustainable Manufacturing January 6-7, 2016 Portland, OR Sustainable Manufacturing: Definitions  Numerous definitions and descriptions exist for sustainable manufacturing: * US Department of Commerce, 2009 * NACFAM, 2009 * NIST, 2010 * US-EPA, 2012 * ASME, 2011, 2013 * NSF 2013 * ISM, 2014  Sustainable manufacturing offers a new way of producing functionally superior products using innovative sustainable

  3. High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing

    SciTech Connect (OSTI)

    Henry DeLima; Joe Akin; Joseph Pietsch

    2008-09-14

    Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

  4. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications Michael Ulsh National Renewable Energy Laboratory Douglas Wheeler DJW Technology Peter Protopappas Sentech Technical Report NREL/TP-5600-52125 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole

  5. Manufacturing Glossary

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing...

  6. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  7. Updated Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008 Govind Ramu, 1 Masaaki Yamamichi, 2 Wei Zhou, 3 Alex Mikonowicz, 4 Sumanth Lokanath, 5 Yoshihito Eguchi, 6 Paul Norum, 7 and Sarah Kurtz 8 1 SunPower 2 National Institute of Advanced Industrial Science and Technology (AIST) 3 Trina Solar 4 Powermark 5 First Solar 6 Mitsui Chemical 7 Amonix 8 National Renewable Energy Laboratory Technical Report NREL/TP-5J00-63742 March

  8. Energy Intensity Indicators: Manufacturing Energy Intensity

    Broader source: Energy.gov [DOE]

    The manufacturing sector comprises 18 industry sectors, generally defined at the three-digit level of the North American Industrial Classification System (NAICS). The manufacturing energy data...

  9. Modeling and performance evaluation of flexible manufacturing systems using Petri nets

    SciTech Connect (OSTI)

    Callotta, M.P.; Cimenez, C.; Tazza, M.

    1996-12-31

    A timed Petri net approach is used to model resource allocation-utilization-release patterns for performance evaluation. First, simple resource utilization sequences are derived from a directed graph representing the process plan of parts. Second, the place-transitions sequences are connected introducing places whose marking models the resources needed to perform the manufacturing operation indicated in the process plan. Time is introduced as a permanence time of tokens at the place-transition sequence, modeling the utilization time of resources. The corresponding model leads to a simultaneous resource possession problem. Finally, flow equations for the description of the quantitative behavior of the resulting timed Petri net are presented. A major conclusion of the paper is that performance evaluation can be adequately abstracted and analytically solved, in a simple way, even in presence of complicating factors like resource sharing and routing flexibility in process plans.

  10. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Buildings Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Buildings Use 40% of U.S. Energy Close Americans spend $400 billion annually to power homes and commercial buildings. An estimated $80 billion could be saved through energy efficiency. Close NREL's net-zero-energy Research Support Facility employs cutting-edge energy efficiency

  11. Out of bounds additive manufacturing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Holshouser, Chris; Newell, Clint; Palas, Sid; Love, Lonnie J.; Kunc, Vlastimil; Lind, Randall F.; Lloyd, Peter D.; Rowe, John C.; Blue, Craig A.; Duty, Chad E.; et al

    2013-03-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  12. Out of Bounds Additive Manufacturing

    SciTech Connect (OSTI)

    Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

    2013-01-01

    Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

  13. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Additive Manufacturing Technology Assessment

    Office of Environmental Management (EM)

    6: Innovating Clean Energy Technologies in Advanced Manufacturing Technology Assessments Additive Manufacturing Advanced Materials Manufacturing Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials

  14. Evaluation of Manufacturability of Embedded Sensors and Controls with Canned Rotor Pump System

    SciTech Connect (OSTI)

    Kisner, Roger A; Fugate, David L; Melin, Alexander M; Holcomb, David Eugene; Wilson, Dane F; Silva, Pamela C; Cruz Molina, Carola

    2013-07-01

    This report documents the current status of fabrication and assembly planning for the magnetic bearing, canned rotor pump being used as a demonstration platform for deeply integrating I&C into nuclear power plant components. The report identifies material choices and fabrication sequences for all of the required parts and the issues that need to be either resolved or accommodated during the manufacturing process. Down selection between material options has not yet been performed. Potential suppliers for all of the necessary materials have also been identified. The assembly evaluation begins by logically subdividing the pump into modules, which are themselves decomposed into individual parts. Potential materials and fabrication processes for each part in turn are then evaluated. The evaluation process includes assessment of the environmental compatibility requirements and the tolerances available for the selected fabrication processes. A description of the pump power/control electronics is also provided. The report also includes exploded views of the modules that show the integration of the various parts into modules that are then assembled to form the pump. Emphasis has been placed on thermal environment compatibility and the part dimensional changes during heat-up. No insurmountable fabrication or assembly challenges have been identified.

  15. Compressed Air System Optimization Improves Production and saves energy at a Satellite Manufacturer

    SciTech Connect (OSTI)

    2002-05-01

    In 2001, a compressed air improvement project was implemented following an audit on the compressed air system at Boeing Satellite Systems (formerly Hughes Space & Communications Company) in Los Angeles, California.

  16. Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    complex engineered systems in the world. With 2.5 million miles of pipeline, the natural gas system provides a vital backbone to our economy by reliably providing feedstock and ...

  17. NREL: Innovation Impact - Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy...

  18. Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office (AMO) | Department of Energy Day, Advanced Manufacturing Office (AMO) Innovative Manufacturing Initiative Recognition Day, Advanced Manufacturing Office (AMO) PDF icon imi_recogitionday_leo_june2012.pdf More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry

  19. Microsoft Word - Manufacturing Solicitation_2010 08 10_final...

    Broader source: Energy.gov (indexed) [DOE]

    solar photovoltaic (PV) component or system manufacturing facilities; c) concentrated solar power component or system manufacturing facilities; d) hydropower component or system...

  20. Manufacturing Innovation Institute for Smart Manufacturing: Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensors, Controls, Platforms, and Modeling for Manufacturing | Department of Energy Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing Manufacturing Innovation Institute for Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing September 23, 2015 - 2:38pm Addthis Posted Date: Sep 15, 2015 Original Closing Date for Applications: Jan 29, 2016 A mandatory Concept Paper is due

  1. Green Manufacturing

    SciTech Connect (OSTI)

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  2. Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

  3. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2012-08-01

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  4. Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008 (Revised)

    SciTech Connect (OSTI)

    Norum, P.; Sinicco, I.; Eguchi, Y.; Lokanath, S.; Zhou, W.; Brueggemann, G.; Mikonowicz, A.; Yamamichi, M.; Kurtz, S.

    2013-09-01

    This technical specification provides a guideline for photovoltaic module manufacturers to produce modules that, once the design has proven to meet the quality and reliability requirements, replicate such design in an industrial scale without compromising its consistency with the requirements.

  5. Advanced Manufacturing Office: Smart Manufacturing Industry Day...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Smart Manufacturing is a network data-driven process that combines innovative automation ... Smart Manufacturing is a network data-driven process that combines innovative automation ...

  6. Manufacturing Energy and Carbon Footprints Scope

    Office of Environmental Management (EM)

    Manufacturing Energy and Carbon Footprint Scope The footprint analysis looks at a large subset of U.S. manufacturing, with the objective of capturing the bulk share of energy consumption and carbon emissions. Table 1 lists the fifteen manufacturing sectors selected for analysis; a sixteenth footprint has also been prepared for the entire manufacturing sector. Manufacturing sectors are listed by their respective NAICS (North American Industry Classification System) codes. NAICS descriptions of

  7. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency » Manufacturing Success Stories Manufacturing Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing technologies and processes for more efficient energy management systems create big opportunities for energy savings and new jobs in manufacturing. Explore EERE's manufacturing success stories below. November 17, 2015 Manufacturing Success Stories ORNL Unveils 3D-Printed Home and Vehicle with the Unique Ability to Power One

  8. Updated Proposal for a Guide for Quality Management Systems for PV Manufacturing. Supplemental Requirements to ISO 9001-2008

    SciTech Connect (OSTI)

    Ramu, Govind; Yamamichi, Masaaki; Zhou, Wei; Mikonowicz, Alex; Lokanath, Sumanth; Eguchi, Yoshihito; Norum, Paul; Kurtz, Sarah

    2015-03-01

    The goal of this Technical Specification is to provide a guideline for manufacturers of photovoltaic (PV) modules to produce modules that, once the design is proven to meet the quality and reliability requirements, replicate the design on an industrial scale without compromising its consistency with the requirements.

  9. Clean Energy Manufacturing Initiative: Technology Research and...

    Energy Savers [EERE]

    manufacturers take advantage of this lower-priced fuel by modernizing the nations natural gas transmission and distribution systems and improving natural gas system efficiency....

  10. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets Doug Wheeler DJW Technology Michael Ulsh National Renewable Energy Laboratory Technical Report NREL/TP-5600-53046 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013

  11. Metal and Glass Manufacturers Reduce Costs by Increasing Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

  12. Manufacturing Demonstration Facility

    Office of Environmental Management (EM)

    ORNL is managed by UT-Battelle for the US Department of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and Environmental Sciences Directorate May 6-7, 2014 Washington, DC This presentation does not include proprietary, confidential, or otherwise restricted information. Outline * Manufacturing Demonstration Facility * Impacts with Industry - Metal additive manufacturing - Polymer additive

  13. Manufacturing R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D The Manufacturing R&D program in the Fuel Cell Technologies Office (FCTO) aims to improve processes and reduce the cost of manufacturing components and systems for hydrogen production and delivery, hydrogen storage, and fuel cells for transportation, stationary, and portable applications. Industry will have to overcome significant challenges to scale up production of today's hydrogen and fuel cell related components and systems, currently built using laboratory-scale fabrication

  14. Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing ADVANCED MANUFACTURING OFFICE Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Development of an Open Architecture, Widely Applicable Smart Manufacturing Platform While many U.S. manufacturing operations utilize optimization for individual unit processes, smart manufacturing (SM) systems that integrate manufacturing intelligence in real time across an entire production operation are rare in large companies and virtually

  15. 2014 Manufacturing Energy and Carbon Footprints: Scope

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scope The energy and carbon footprint analysis examines fifteen individual manufacturing sectors that together consume 95% of U.S. manufacturing primary energy consumption and account for 94% of U.S. manufacturing combustion greenhouse gas (GHG) emissions. Manufacturing sectors are defined by their respective NAICS (North American Industry Classification System) codes. i Individual sectors were selected for analysis based on their relative energy intensities, contribution to the U.S. economy,

  16. HPC4Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab capabilities Manufacturing domain expertise National mission and guidance Bringing HPC to U.S. Manufacturers Energy Efficient Processes Energy Efficient Products...

  17. Manufacturing Demonstration Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop broad dissemination of additive manufacturing Industry Collaborations * ... 5 DOE-AMO 2015 Peer Review Understanding Additive Manufacturing Mainstream applications ...

  18. Next Generation Manufacturing Processes

    Broader source: Energy.gov [DOE]

    New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high...

  19. Additive Manufacturing: Technology and Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Manufacturing: Technology and Applications Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Ryan Dehoff, Ph.D. Research Scientist MDF Metal Additive Manufacturing Lead Oak Ridge National Laboratory November 12, 2014 2 Presentation name World-leading neutron science capability World's most powerful scientific computing complex Nation's largest advanced materials research program Focused resources for systems biology and environmental sustainability Nation's

  20. Revitalizing American Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revitalizing American Manufacturing Revitalizing American Manufacturing September 13, 2010 - 5:30pm Addthis A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer

  1. Advanced Manufacturing Office News

    SciTech Connect (OSTI)

    2013-08-08

    News stories about advanced manufacturing, events, and office accomplishments. Subscribe to receive updates.

  2. Advanced Manufacturing Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Manufacturing Production Technician; Electro-Mechanical Technician; Electronics Maintenance Technician

  3. Advanced Manufacturing Office Small Business Innovation Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office Small Business Innovation Research Small Business Technology ... in thermal and degradation resistance, high-performance, and lower-cost for energy systems. ...

  4. Clean Energy Manufacturing Initiative: Increasing American Competitive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The SunShot Initiative's efforts to improve manufacturing of solar energy systems; The Wind Program's work on taller wind energy towers; and The Vehicle Technologies Office's ...

  5. Advanced Manufacturing Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Workshop: Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing Venue: The 2nd Global Congress on Microwave Energy Applications (2GCMEA) July 25, 2012 Long Beach Hilton Long Beach, CA Advanced Manufacturing Office U.S. Department of Energy Rob Ivester Acting Deputy Program Manager, Advanced Manufacturing Office Advanced Manufacturing Office Advanced Manufacturing Office Agenda Time Activity 2:00-2:30 PM Opening Session - AMO o Presentation of Industry

  6. Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Additive manufacturing, also know as 3D printing, has helped spark a creative manufacturing renaissance, allowing companies to create products in new ways while also reducing material waste, saving energy and shortening the time needed to bring products to market. Learn more about this game-changing technology. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families

  7. Additive Manufacturing: Pursuing the Promise

    Broader source: Energy.gov [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing.

  8. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Ludtka, Gail Mackiewicz-; Chourey, Aashish

    2010-08-01

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  9. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    SciTech Connect (OSTI)

    Ritschel, A.J.; White, W.L.

    1985-05-01

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices.

  10. Advanced Manufacturing Office: Case Study - The Challenge: Saving Energy at a Sewage Lift Station Through Pump System Modificat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sewage System Process: Sewage Pumping System: Pump System Technology: Booster Pump, Energy-Efficient Motor Project Profile SIC: 4952 Products: Sewage Pumping Location: Milford, Connecticut Employees: 26 Showcase Team Leader: Art Berube Company Energy Philosophy: Changes in energy conservation must take place without any detrimental effects on system reliability. Conservation and reliability go hand in hand in the wastewater field. City of Milford, Connecticut U.S. Department of Energy - Energy

  11. Wellbore manufacturing processes for in situ heat treatment processes

    DOE Patents [OSTI]

    Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

    2012-12-11

    A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

  12. Solid Oxide Fuel Cell Manufacturing Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Overview Solid Oxide Fuel Cell Manufacturing Overview Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Solid Oxide Fuel Cell Manufacturing Overview More Documents & Publications Progress on the Development of Reversible SOFC Stack Technology Reversible Fuel Cells Workshop Summary Report Materials and System Issues with Reversible SOFC

  13. Energy Use in Manufacturing

    Reports and Publications (EIA)

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  14. Manufacturing Day 2015

    Broader source: Energy.gov [DOE]

    All over the country, manufacturing companies and other organizations are preparing to host an anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On...

  15. Manufacturing Innovation Topics Workshop

    Broader source: Energy.gov [DOE]

    The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

  16. Advanced Methods for Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientists Computational Resources and Multi- Physics Modeling & Simulation Knowledge & ... Manufacturing Methods R&D Test Bed ... loops, process development...

  17. Photovoltaic manufacturing technology, Phase 1

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

  18. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    SciTech Connect (OSTI)

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  19. New Sensor Network Technology Increases Manufacturing Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sensor Network Technology Increases Manufacturing Efficiency New Sensor Network Technology Increases Manufacturing Efficiency April 11, 2013 - 12:00am Addthis EERE supported Eaton Corporation in the development and successful deployment of an electric motor overload and monitoring solid-state relay. Eaton's relay, called Motor Insight(tm), can reduce installation and infrastructure costs for manufacturers by up to 84% compared with conventionally wired systems. Motor

  20. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect (OSTI)

    Lutdka, G. M.; Chourey, A.

    2010-05-12

    As the original magnet designer and manufacturer of ORNLs 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNLs Materials Processing Groups and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  1. Heat treating of manufactured components

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN)

    2012-05-22

    An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

  2. Manufacturing R&D Fact Sheet | Department of Energy

    Energy Savers [EERE]

    R&D Fact Sheet Manufacturing R&D Fact Sheet This fact sheet describes the Fuel Cell Technologies Office's Manufacturing Research and Development (R&D) program, which aims to improve processes and reduce the cost of manufacturing components and systems for hydrogen production and delivery, hydrogen storage, and fuel cells for transportation, stationary, and portable applications (August 2014). PDF icon Manufacturing R&D More Documents & Publications Manufacturing R&D of

  3. Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

  4. Metrology for Fuel Cell Manufacturing

    SciTech Connect (OSTI)

    Stocker, Michael; Stanfield, Eric

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  5. SUSTAINABLE MANUFACTURING WORKSHOP

    Broader source: Energy.gov (indexed) [DOE]

    SUSTAINABLE MANUFACTURING WORKSHOP JANUARY 6-7, 2016 University Place Hotel & Conference Center, Portland, OR Overall Workshop Purpose To gather input from stakeholders on future opportunities and technical challenges facing development and scale-up of transformative technologies, processes, and equipment for sustainable manufacturing. The Department of Energy's Advanced Manufacturing Office (AMO) also seeks individual input on performance metrics and identification of key problem sets to be

  6. SUSTAINABLE MANUFACTURING WORKSHOP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUSTAINABLE MANUFACTURING WORKSHOP JANUARY 6-7, 2016 University Place Hotel & Conference Center, Portland, OR 1 | P a g e Overall Workshop Purpose To gather input from stakeholders on future opportunities and technical challenges facing development and scale-up of transformative technologies, processes, and equipment for sustainable manufacturing. The Department of Energy's Advanced Manufacturing Office (AMO) also seeks individual input on performance metrics and identification of key

  7. Roll to Roll Manufacturing

    SciTech Connect (OSTI)

    Daniel, Claus

    2015-06-09

    ORNL researchers are developing roll to roll technologies for manufacturing, automotive, and clean energy applications in collaboration with industry partners such as Eastman Kodak.

  8. Additive Manufacturing: Going Mainstream

    Broader source: Energy.gov [DOE]

    Additive manufacturing, or 3D printing, is receiving attention from media, investment communities and governments around the world transforming it from obscurity to something to be talked about.

  9. Manufacturing | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The Department is also working with manufacturers to increase their energy...

  10. Wind Manufacturing Facilities

    Broader source: Energy.gov [DOE]

    America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

  11. Additive Manufacturing Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Munich, November 2013. Available at 761 http:www.rolandberger.commediapdfRolandBergerAdditiveManufacturing20131129. 762 pdf. 763 46. Industrial Tools, Dies, and Molds - ...

  12. TekSun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    TekSun PV Manufacturing Inc Jump to: navigation, search Name: TekSun PV Manufacturing Inc Place: Austin, Texas Zip: 78701 Product: US-based installer of PV systems; rportedly...

  13. Clean Energy Manufacturing Initiative

    SciTech Connect (OSTI)

    2013-04-01

    The initiative will strategically focus and rally EEREs clean energy technology offices and Advanced Manufacturing Office around the urgent competitive opportunity for the United States to be the leader in the clean energy manufacturing industries and jobs of today and tomorrow.

  14. Manufacturing Innovation in the DOE

    Office of Environmental Management (EM)

    Manufacturing Innovation in the DOE January 13, 2014 Mark Johnson Director Advanced Manufacturing Office manufacturing.energy.gov Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 What is Advanced Manufacturing? A family of activities that: * Depend on the use and coordination of information, automation, computation, software, sensing, and networking; and/or * Make use of cutting edge materials and emerging capabilities. Advanced Manufacturing involves both: * New ways to

  15. Sustainable Manufacturing via Multi-Scale Physics-Based Process Modeling and Manufacturing-Informed Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Principal Investigator (Presenter): Dr. Troy D. Marusich , CTO Third Wave Systems Inc. U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  What are you trying to do?  Develop and demonstrate a new manufacturing-informed design paradigm to dramatically improve manufacturing productivity, quality, and costs of machined components

  16. Renewable Energy Tax Credit for Manufacturers (Personal)

    Broader source: Energy.gov [DOE]

    SB 1484 of 2014 provides a tax credit for new renewable energy systems that produce energy for self-consumption and are used primarily for manufacturing. HB 2670 of 2015 expanded this credit to i...

  17. Renewable Energy Tax Credit for Manufacturers (Corporate)

    Broader source: Energy.gov [DOE]

    SB 1484 of 2014 provides a tax credit for new renewable energy systems that produce energy for self-consumption and are used primarily for manufacturing. HB 2670 of 2015 expanded this credit to i...

  18. Breaking Barriers in Polymer Additive Manufacturing

    SciTech Connect (OSTI)

    Love, Lonnie J; Duty, Chad E; Post, Brian K; Lind, Randall F; Lloyd, Peter D; Kunc, Vlastimil; Peter, William H; Blue, Craig A

    2015-01-01

    Additive Manufacturing (AM) enables the creation of complex structures directly from a computer-aided design (CAD). There are limitations that prevent the technology from realizing its full potential. AM has been criticized for being slow and expensive with limited build size. Oak Ridge National Laboratory (ORNL) has developed a large scale AM system that improves upon each of these areas by more than an order of magnitude. The Big Area Additive Manufacturing (BAAM) system directly converts low cost pellets into a large, three-dimensional part at a rate exceeding 25 kg/h. By breaking these traditional barriers, it is possible for polymer AM to penetrate new manufacturing markets.

  19. Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems; Industrial Technologies Program (ITP) BestPractices: Process Heating (Fact sheet)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process heating plays a key role in the production of basic materials such as steel, aluminum, and glass and in the manufacture of value-added products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating appli- cations, metal and glass

  20. Advanced Vehicles Manufacturing Projects | Department of Energy

    Energy Savers [EERE]

    Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects Advanced Vehicles Manufacturing Projects DOE-LPO_ATVM-Economic-Growth_Thumbnail.png DRIVING ECONOMIC GROWTH: ADVANCED TECHNOLOGY VEHICLES

  1. Manufacturing Perspective | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective Manufacturing Perspective Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011. PDF icon compressed_hydrogen2011_5_nelson.pdf More Documents & Publications BCA Perspective on Fuel Cell APUs Energy Storage Systems 2006 Peer Review - Day 1 morning presentations 2015 SSL R&D WORKSHOP PRESENTATIONS - DAY 3

  2. Bio-Manufacturing: A Strategic clean energy manufacturing opportunity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Bio-Manufacturing: A Strategic clean energy manufacturing opportunity Breakout Session 1: New Developments and Hot Topics Session 1-A: Biomass and the U.S. Competitive Advantages for Manufacturing Clean Energy Products Libby Wayman, Director, EERE Clean Energy Manufacturing Initiative PDF icon b13_wayman_1-a.pdf More Documents & Publications Amped Up! Volume 1, No.2 NREL/DOE EERE QC/Metrology

  3. The Advanced Manufacturing Partnership and the Advanced Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Workshop Manufacturing Demonstration Facilities Workshop, March 12, 2012 Report to the President on Capturing Domestic Competitive Advantage in Advanced Manufacturing...

  4. Innovative Manufacturing Initiative Project Selections

    Broader source: Energy.gov [DOE]

    The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

  5. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance, Low-Cost CSP Collector Systems | Department of Energy Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems PDF icon csp_review_meeting_042313_angel.pdf More Documents &

  6. Federal Loan Guarantees for Projects that Manufacture Commercial Technology

    Office of Environmental Management (EM)

    Renewable Energy Systems and Components: August 10, 2010 | Department of Energy Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010 Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010 PDF icon Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010 More

  7. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cell Manufacturing Photo of scientific equipment in laboratory setting. NREL's in-line diagnostics help industry identify defects in fuel cell components. This small-scale manufacturing line at NREL's Energy Systems Integration Facility can convey fuel cell component materials at speeds of 100 feet per minute. NREL's fuel cell manufacturing R&D focuses on improving quality-inspection practices for high-volume manufacturing processes to enable higher production volumes, increased reliability,

  8. DOE Manufacturing Pre-Solicitation Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Pre-Solicitation Workshop DOE Manufacturing Pre-Solicitation Workshop The U.S. Department of Energy (DOE) held a Manufacturing Pre-Solicitation Workshop in Arlington, Va., on May 18, 2007. Workshop participants reviewed the application process and discussed proposed topics for a research and development funding opportunity to advance manufacturing technologies for hydrogen and fuel cell systems. The workshop was held in conjunction with the DOE Hydrogen Program's 2007 Annual Merit

  9. Upcoming Funding Opportunity for Water Power Manufacturing | Department of

    Energy Savers [EERE]

    Energy Water Power Manufacturing Upcoming Funding Opportunity for Water Power Manufacturing March 24, 2014 - 12:00pm Addthis On March 24, 2014, the U.S. Department of Energy (DOE) announced a Notice of Intent to issue a funding opportunity titled "Water Power Manufacturing." The goal of this funding opportunity is to design an integrated hydropower turbine generator system that applies advanced materials and /or additive manufacturing techniques and produce a prototype unit at an

  10. Fuel Cell Technologies Manufacturing Research and Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy You are here Home » Fuel Cell Technologies Manufacturing Research and Development Fuel Cell Technologies Manufacturing Research and Development Fuel Cell Technologies Manufacturing Research and Development Within the Office of Energy Efficiency and Renewable Energy (EERE), the Fuel Cell Technologies Office (FCTO) supports manufacturing research and development (R&D) activities to improve processes and reduce the cost of components and systems for hydrogen production, delivery,

  11. Transformational Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery...

  12. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  13. Innovative Manufacturing Initiative Recognition Day

    Broader source: Energy.gov [DOE]

    The Innovative Manufacturing Initiative (IMI) Recognition Day (held in Washington, DC on June 20, 2012) showcased IMI projects selected by the Energy Department to help American manufacturers...

  14. Innovative Manufacturing Initiative Recognition Day, Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Innovative Manufacturing Initiative Recognition Day Advanced Manufacturing Office Overview Unlocking the Potential of Additive Manufacturing in the ...

  15. Advanced Manufacture of Reflectors

    SciTech Connect (OSTI)

    Angel, Roger

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square a unique capability. The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test and alignment of trough or dish reflectors. Ten full size (2.5 m2) cylindrically curved reflectors, molded in 950 seconds and measured with the laser test facility, show shape repeatability to 0.5 mrad rms. These replicas met the Phase I Go/No-Go targets for speed (1000 sec), accuracy (< 5 mrad) and reproducibility (< 2 mrad). Our research and tests show that the hoped-for improvements in mirror reflectivity achievable with titania antisoil coatings are not very effective in dry climates and are therefore unlikely to be economically worthwhile, and that glass with iron in the Fe+3 state to achieve very low absorption cannot be made economically by the float process.

  16. Advanced Manufacture of Reflectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

  17. Property Tax Abatement for Production and Manufacturing Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Qualifying renewable energy manufacturing facilities are those that (1) produce materials, components or systems to convert solar, wind, geothermal, biomass, biogas or waste heat resources into...

  18. Upcoming Funding Opportunity for Tower Manufacturing and Installation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The funding opportunity, tentatively titled "U.S. Wind Manufacturing: Taller Hub Heights ... constraints affecting the deployment of taller utility-scale wind turbine systems with ...

  19. Advanced Sensors, Controls and Platforms for manufacturing (ASCPM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and government For more information about AMP, visit http:www.manufacturing.govamp.html 5 What is ASCPM? Advanced networked systems that combine sensors, data, models, and ...

  20. Advanced Manufacture of Second-Surface, Silvered Glass Reflectors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems PDF icon cspreviewmeeting042313angel.pdf More Documents & ...

  1. Drug development and manufacturing

    DOE Patents [OSTI]

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.

    2015-10-13

    X-ray fluorescence (XRF) spectrometry has been used for detecting binding events and measuring binding selectivities between chemicals and receptors. XRF may also be used for estimating the therapeutic index of a chemical, for estimating the binding selectivity of a chemical versus chemical analogs, for measuring post-translational modifications of proteins, and for drug manufacturing.

  2. Manufacturing Innovation and Scale-up | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » Manufacturing Innovation and Scale-up Manufacturing Innovation and Scale-up The SunShot Initiative funds cutting-edge research and development that will help the solar industry to reach specific manufacturing-related cost goals and supports cost-cutting advances in the solar supply chain, across system components, and in manufacturing processes. SunShot works to de-risk both near and long-term innovations in the private sector as well as manufacturing-oriented consortia.

  3. Advanced Materials Manufacturing and Innovative Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...) - Challenges: * Manufacturing Methodology MUST be Able to Deliver Required ... Research Opportunities & Challenges Advanced Materials Manufacturing & Innovative ...

  4. Microsoft Word - DOE-ID-INL-15-027.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 SECTION A. Project Title: Materials and Fuel Complex (MFC)-785 Monorail System Upgrade SECTION B. Project Description: The proposed project would install a longitudinal support system on the north and south monorails along with a trolley and chain hoist in MFC- 785. The monorail sits in the walkway above the main cell (117) and decon cell (118) in the Hot Fuel Examination Facility (HFEF). The support system is needed to reinforce the monorail system so that it can handle the additional load

  5. All Manufacturing Footprint, October 2012 (MECS 2006)

    SciTech Connect (OSTI)

    2012-10-17

    Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released as a result of manufacturing energy use. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high- level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The principle energy use data source is the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), for consumption in the year 2006, when the survey was last completed.

  6. Revitalize American Manufacturing Act

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revitalize American Manufacturing Act - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  7. HPC4Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Deborah May, Lawrence Livermore National Laboratory U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 LLNL-PRES-792637 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information. * Energy intensive processes and

  8. Contribution to Nanotechnology Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning three institutions, including Los Alamos National Laboratory, has discovered a more efficient way of fusing charge-carrying electrical contacts to tiny "nanowires" of silicon to create the nanotechnology at the heart of potential future advances in modern electronics, sensing, and energy collection. Nanotech

  9. National Electrical Manufacturers Association

    Office of Environmental Management (EM)

    July 24, 2014 VIA EMAIL TO: Regulatory.Review@hq.doe.gov Steven Croley, General Counsel Office of the General Counsel U.S. Department of Energy 1000 Independence Avenue SW., Washington, DC 20585 NEMA Comments on DOE Reducing Regulatory Burden RFI 79 Fed.Reg. 28518 (July 3, 2014) Dear Mr. Croley, The National Electrical Manufacturers Association (NEMA) thanks you for the opportunity to provide comments on the Department of Energy's efforts to make its regulatory program more effective and less

  10. Manufactured Homes Tool

    Energy Science and Technology Software Center (OSTI)

    2005-03-09

    The MH Tool software is designed to evaluate existing and new manufactured homes for structural adequacy in high winds. Users define design elements of a manufactured home and then select the hazard(s) for analysis. MH Tool then calculates and reports structural analysis results for the specified design and hazard Method of Solution: Design engineers input information (geometries, materials, etc.) describing the structure of a manufactured home, from which the software automatically creates a mathematical model.more » Windows, doors, and interior walls can be added to the initial design. HUD Code loads (wind, snow loads, interior live loads, etc.) are automatically applied. A finite element analysis is automatically performed using a third party solver to find forces and stresses throughout the structure. The designer may then employ components of strength (and cost) most appropriate for the loads that must be carried at each location, and then re-run the analysis for verification. If forces and stresses are still within tolerable limits (such as the HUD requirements), construction costs would be reduced without sacrificing quality.« less

  11. Manufacturing R&D of PEM Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PEM Fuel Cells Manufacturing R&D of PEM Fuel Cells Background paper prepared for the 2005 Hydrogen Manufacturing R&D workshop. PDF icon mfg_wkshp_fuelcell.pdf More Documents & Publications Manufacturing R&D for the Hydrogen Economy Workshop Summary Manufacturing R&D for systems that will produce and distribute hydrogen

  12. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  13. Additive Manufacturing for Fuel Cells

    Broader source: Energy.gov [DOE]

    Blake Marshall, AMO's lead for Additive Manufacturing Technologies, will provide an overview of current R&D activities in additive manufacturing and its application to fuel cell prototyping and...

  14. Advanced Materials Manufacturing (AMM) Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eric Miller Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cells Technology Office (FTCO) DOE and DoD Multi-topic Workshop Advanced Materials Manufacturing (AMM) Session Fort Worth, TX October 9, 2014 Advanced Materials Manufacturing (AMM) Institute Stakeholders Workshop Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 WELCOME & THANK YOU! from your friendly support staff: Eric Miller, David Forrest, Fred Crowson, Jessica Savell...

  15. MECS 2006 - All Manufacturing | Department of Energy

    Office of Environmental Management (EM)

    All Manufacturing MECS 2006 - All Manufacturing Manufacturing Energy and Carbon Footprint - Sector: All Manufacturing (NAICS 31-33) with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon All Manufacturing (NAICS 31-33) More Documents & Publications All Manufacturing (2010 MECS) MECS 2006 - Alumina and Aluminum MECS 2006 - Cement

  16. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy...

  17. Additive Manufacturing: Pursuing the Promise | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Fact sheet overviewing additive manufacturing techniques that are projected to exert a profound impact on manufacturing. Additive Manufacturing: Pursuing the Promise More Documents...

  18. FHP Manufacturing Company Geothermal | Open Energy Information

    Open Energy Info (EERE)

    FHP Manufacturing Company Geothermal Jump to: navigation, search Name: FHP Manufacturing Company: Geothermal Place: Florida Sector: Geothermal energy Product: FHP Manufacturing...

  19. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  20. Secure Manufacturing | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure Manufacturing Secure Manufacturing The depth and breadth of Y-12's manufacturing capabilities and expertise enable Y-12 to address current and emerging national security...

  1. MANUFACTURED TO AIIM STANOAROS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .,+++_ _+++ +..++,+ + ++++_. _+ ,++p + +% ++ + +_++ +_,/x+'_ MANUFACTURED TO AIIM STANOAROS _ ..+ ++ BY APPLIED IMAGE, INC, _+ + .DK3E/NV/11482..139 DOE/NV/11..4_L2-139 National Emission Standards forHazardousAir Pollutant_ Submittal 993 Stuart B_.Black June 1994 Work Pe_ Under Contract No, DE-AC08-94NV11432 PreparedbY: Reynolds Electrical & EnglneerlngCo., Inc, Post Office Bo_(98521 Los Vegas. Nevada 89193-8521 MA,TER II_OT/lOg DFTItI,_ DOCUMENT f$ UNLIMITED TABLE OF CONTENTS List of

  2. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W.

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  3. Out of bounds additive manufacturing (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Out of bounds additive manufacturing Citation Details In-Document Search Title: Out of bounds additive manufacturing Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size. Authors: Holshouser, Chris [1] ; Newell, Clint [1] ; Palas, Sid [1] ; Love,

  4. Roadmap on Manufacturing R&D for the Hydrogen Economy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy on Manufacturing R&D for the Hydrogen Economy Roadmap on Manufacturing R&D for the Hydrogen Economy Draft Roadmap on Manufacturing R&D for the Hydrogen Economy prepared for public comment. PDF icon roadmap_manufacturing_hydrogen_economy.pdf More Documents & Publications Manufacturing R&D of PEM Fuel Cells Manufacturing R&D for the Hydrogen Economy Workshop Summary Manufacturing R&D for systems that will produce and distribute hydrogen

  5. Advanced Manufacturing Office Peer Review Final Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MAY 28-29, 2015 Washington Marriott Wardman Park 2660 Woodley Road NW Washington, DC 20008 FINAL AGENDA Day 1 (May 28) 8:00 - 8:45 am Peer Reviewer Briefing Breakfast Mark Johnson, Isaac Chan, Mark Shuart, and Jay Wrobel, DOE-AMO 8:45 - 9:00 am BREAK 8:00 - 9:00 am REGISTRATION FOR ATTENDEES 9:00 - 9:30 am Welcome and AMO Overview Mark Johnson, DOE-AMO 9:30 - 9:50 am Sustainable Manufacturing via Multi-Scale Third Wave Systems Inc. Physics-Based Process

  6. All Manufacturing Footprint, December 2010 (MECS 2006)

    SciTech Connect (OSTI)

    none,

    2010-06-01

    Manufacturing energy and carbon footprints map fuel energy consumption and losses, as well as greenhouse gas emissions from fuel consumption, for fifteen individual U.S. manufacturing sectors (representing 94% of all manufacturing energy use) and for the entire manufacturing industry sector. By providing energy consumption and emissions figures broken down by end use, the footprints allow for comparisons of energy use and emissions sources both within and across sectors. The footprints portray a large amount of information for each sector, including: * Comparison of the energy generated offsite and transferred to facilities versus that generated onsite * Nature and amount of energy consumed by end use within facilities * Magnitude of the energy lost both outside and inside facility boundaries * Magnitude of the greenhouse gas emissions released due to the combustion of fuel. Energy losses indicate opportunities to improve efficiency by implementing energy management best practices, upgrading energy systems, and developing new technologies. Footprints are available below for each sector. Data is presented in two levels of detail. The first page provides a high-level snapshot of the offsite and onsite energy flow, and the second page shows the detail for onsite generation and end use of energy. The energy data is primarily provided by the U.S. Department of Energy (DOE) Energy Information Administration's (EIA's) Manufacturing Energy Consumption Survey (MECS), and therefore reflects consumption in the year 2006, when the survey was last completed.

  7. Oak Ridge Centers for Manufacturing Technology - The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  8. Oak Ridge Centers for Manufacturing Technology ? The Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manufacturing Skills Campus Another of the inputs came from Garry Whitley, President of the Atomic Trades and Labor Council, since retired. Garry and I have worked together...

  9. Advanced Manufacturing Office (Formerly Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office (Formerly Industrial Technologies Program) Advanced Manufacturing Office (Formerly Industrial Technologies Program) Presented at the NREL Hydrogen and Fuel...

  10. Semiconductor Manufacturing International Corp SMIC | Open Energy...

    Open Energy Info (EERE)

    Manufacturing International Corp SMIC Jump to: navigation, search Name: Semiconductor Manufacturing International Corp (SMIC) Place: Shanghai, Shanghai Municipality, China Zip:...

  11. Performance, Market and Manufacturing Constraints relevant to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices Performance, Market and Manufacturing Constraints relevant to the...

  12. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scale Demonstration of Smart Manufacturing Achieving Transformational Energy Productivity Gains Industrial Scale Demonstration of Smart Manufacturing Achieving Transformational...

  13. Clean Energy Manufacturing Initiative Midwest Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop Multimaterial Joining Workshop Manufacturing Innovation ...

  14. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - ...

  15. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Surfaces with Nanoscale and Microscale Features ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features PDF icon...

  16. Nakagawa Electric Machinery Manufacturer | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Nakagawa Electric Machinery Manufacturer Place: Saku, Nagano, Japan Product: A company engages in electrical equipment manufacture. Coordinates:...

  17. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  18. clean energy manufacturing | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Manufacturing Initiative The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the DOE Office of Energy Efficiency & Renewable Energy's (EERE's) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. Clean Energy Manufacturing Initiative: http://www1.eere.energy.gov/energymanufacturing

  19. Smart Manufacturing Institute Industry Day Workshop Proceedings |

    Office of Environmental Management (EM)

    Department of Energy Workshops » Smart Manufacturing Institute Industry Day Workshop Proceedings Smart Manufacturing Institute Industry Day Workshop Proceedings Workshop Proceedings PDF icon Smart Manufacturing Industry Day: Workshop Proceedings PDF icon Final Agenda PDF icon NNMI Industry Day: Smart Manufacturing AMO Overview, Mark Johnson, Director, DOE Advanced Manufacturing Office PDF icon Smart Manufacturing Innovation Institute: Overview, Goals and Activities, Isaac Chan, Program

  20. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  1. Revolutionizing Manufacturing | Department of Energy

    Energy Savers [EERE]

    Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy

  2. Advanced Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers

  3. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

  4. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified...

  5. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Sustainable Nanomaterials Workshop Nanocomposite Materials for Lithium-Ion Batteries Advanced Manufacturing Office, U.S. Department of Energy...

  6. High Pressure Hydrogen Tank Manufacturing

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  7. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by ensuring critical feedback from the production phase to invention and discovery. Additive manufacturing is just one of several technologies advanced by the Energy...

  8. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information AdministrationManufacturing Consumption of Energy 1994 SIC Residual...

  9. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    the CM, the ASM contains two components. The first component is the mail portion, a probability sample of manufacturing establishments selected from the list of establishments...

  10. Manufacturing Demonstration Facility Workshop Videos

    Broader source: Energy.gov [DOE]

    Session recordings from the Manufacturing Demonstration Facility Workshop held in Chicago, Illinois, on March 12, 2012, and simultaneously broadcast as a webinar.

  11. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE OPPORTUNITY OF CLEAN ENERGY MANUFACTURING By 2030, the global market for new energy ... and Counterintelligence, National Nuclear Security Administration, Fossil Energy, ...

  12. The Clean Energy Manufacturing Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    around strategic priorities to increase U.S. clean energy manufacturing competitiveness. ... energy technologies toward commercial production. www.cyclotronroad.org Small Business ...

  13. Manufacturing Spotlight: Boosting American Competitiveness

    Broader source: Energy.gov [DOE]

    Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient.

  14. Manufacturing Supply Chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Health Monitoring Offshore Wind High-Resolution ...

  15. Solar Manufacturing Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects Solar Manufacturing Projects SOLAR MANUFACTURING 1 PROJECT in 1 LOCATION 1,000 MW GENERATION CAPACITY 1,927,000 MWh PROJECTED ANNUAL GENERATION * 1,100,000 METRIC TONS OF CO2 EMISSIONS PREVENTED ANNUALLY ALL FIGURES AS OF MARCH 2015 * Calculated using the project's and NREL Technology specific capacity factors. For cases in which NREL's capacity factors

  16. The President's Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The President's Manufacturing Initiative The President's Manufacturing Initiative Presentation prepared by Dale Hall for the Roadmap Workshop on Manufacturing R&D for the Hydrogen Economy. PDF icon mfg_wkshp_hall.pdf More Documents & Publications The Advanced Manufacturing Partnership and the Advanced Manufacturing National Program Office Roadmap on Manufacturing R&D for the Hydrogen Economy Manufacturing R&D for the Hydrogen Economy Roadmap Workshop

  17. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Leadership Perspectives: The Opportunity for Clean Energy Manufacturing Leadership Perspectives: The Opportunity for Clean Energy Manufacturing There is a tremendous opportunity for the United States to manufacture clean energy and energy efficiency products. Watch this video to learn more about industry and DOE leaders' vision for a clean energy manufacturing future. Read more Energy 101: Clean Energy Manufacturing Energy 101: Clean Energy Manufacturing

  18. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, Kenny C.; Laug, Matthew T.

    1996-01-01

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

  19. Method and apparatus for manufacturing gas tags

    DOE Patents [OSTI]

    Gross, K.C.; Laug, M.T.

    1996-12-17

    For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

  20. Deaerators in Industrial Steam Systems, Energy Tips: STEAM, Steam Tip Sheet #18 (Fact Sheet), Advanced Manufacturing Office (AMO), Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Deaerators in Industrial Steam Systems Deaerators are mechanical devices that remove dissolved gases from boiler feedwater. Deaeration protects the steam system from the effects of corrosive gases. It accomplishes this by reducing the concentration of dissolved oxygen and carbon dioxide to a level where corrosion is minimized. A dissolved oxygen level of 5 parts per billion (ppb) or lower is needed to prevent corrosion in most high- pressure (>200 pounds per square inch) boilers. While

  1. Advanced Technology Vehicles Manufacturing Incentive Program | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles manufacturing incentive program. PDF icon Advanced Technology Vehicles Manufacturing Incentive Program More Documents & Publications Advanced Technology Vehicles Manufacturing Incentive Program MEMA: Comments MEMA: Letter

  2. With low projected manufacturing costs, high ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low projected manufacturing costs, high ion conductivities, reduced cross-over, chemical and thermal stability in both acidic and alkaline environments, the Sandia membrane technology is positioned to lower the cost of many energy-water systems. Poly (phenylene)-based Hydrocarbon Membrane Separators With a larger component of our electricity generation coming from intermittent and variable sources, stationary energy storage and local power generation will be essential for continued growth of the

  3. Innovative local manufacturer brings jobs to Rio Arriba County

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative local manufacturer brings jobs to Rio Arriba County Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Innovative local manufacturer brings jobs to Rio Arriba County No experience needed for some core positions September 1, 2014 FLUTe technician installs the company's Water Flute system. FLUTe technician installs the company's Water Flute system. Contact Community Programs Director Kurt

  4. Manufacturing's Wake-Up Call

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing's Wake-Up Call Prepared by: Booz & Company and Tauber Institute for Global Operations, University of Michigan features operations & manufacturing 30 A new study shows how the decisions made today by goods producers and policymakers will shape U.S. competitiveness tomorrow. by Arvind Kaushal, Thomas Mayor, and Patricia Riedl A debate over the future of U.S. manufacturing is offshoring and neglect, and that it might never return to its role as the linchpin of the U.S.

  5. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Manufacturing at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Laser Manufacturing at GE Global Research Learn how laser sintering, an additive laser manufacturing process practiced at GE Global Research, makes parts from metal powder. You Might Also Like Munich_interior_V 10 Years ON: From

  6. Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  7. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect (OSTI)

    Hewes, Tom; Peeks, Brady

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50% over typical manufactured homes produced in the northwest.

  8. Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development

    SciTech Connect (OSTI)

    Hewes, T.; Peeks, B.

    2013-11-01

    The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

  9. Manufacturer Voluntarily Reports Noncompliance

    Broader source: Energy.gov [DOE]

    Cooper Power Systems, LLC (“Cooper”), a wholly-owned subsidiary of Cooper Industries notified the U.S. Department of Energy’s (“DOE”) Office of Enforcement that it had distributed three...

  10. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of...

  11. Alternative Energy Manufacturing Tax Credit

    Broader source: Energy.gov [DOE]

    The Alternative Energy Manufacturing Tax Credit is a nonrefundable tax credit for up to 100% of new state tax revenues (including state, corporate, sales, and withholding taxes) over the life of a...

  12. CFL Manufacturers: ENERGY STAR Letters

    Broader source: Energy.gov [DOE]

    DOE issued letters to 25 manufacturers of compact fluorescent lamps (CFLs) involving various models after PEARL Cycle 9 testing indicated that the models do not meet the ENERGY STAR specification and, therefore, are disqualified from the ENERGY STAR Program.

  13. Advanced Manufacturing Office Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Overview Advanced Manufacturing Office Overview PDF icon mw_rf_workshop_july2012.pdf More Documents & Publications Microwave and Radio Frequency Workshop Manufacturing Demonstration Facility Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

  14. All Manufacturing (2010 MECS) | Department of Energy

    Energy Savers [EERE]

    All Manufacturing (2010 MECS) All Manufacturing (2010 MECS) Manufacturing Energy and Carbon Footprint for All Manufacturing Sector (NAICS 31-33) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: June 2015 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon All Manufacturing More Documents & Publications Cement (2010 MECS) Chemicals (2010 MECS) Computers, Electronics and Electrical Equipment

  15. References and Appendices: U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis, November 2012

    Energy Savers [EERE]

    4 U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis REFERENCES AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012a. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators. U.S. Department of Energy. http://www1.eere.energy.gov/manufacturing/tech_deployment/pdfs/steam22_backpressure.pdf AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012b. Improving Steam System Performance: A

  16. U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis The Global Wind Network (GLWN) assessed the key factors that determine wind energy component manufacturing costs and pricing on a global basis in order to provide a better understanding of the factors that will help enhance the competitiveness of U.S. manufacturers, and reduce installed system costs. GLWN Cover

  17. Natural Fiber Composites: Retting, Preform Manufacture & Molding...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Fiber Composites: Retting, Preform Manufacture & Molding Natural Fiber Composites: Retting, Preform Manufacture & Molding 2009 DOE Hydrogen Program and Vehicle Technologies ...

  18. Upcoming Clean Energy Manufacturing Initiative (CEMI) Southeast...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Showcase innovations in clean energy technology manufacturing and advanced manufacturing ... The Southeast Regional Summit is free of charge and open to the public. Register to attend ...

  19. Processing and Manufacturing Equipment | Open Energy Information

    Open Energy Info (EERE)

    Processing and Manufacturing Equipment Jump to: navigation, search TODO: Add description List of Processing and Manufacturing Equipment Incentives Retrieved from "http:...

  20. Technologies Enabling Agile Manufacturing (TEAM) ? an ORCMT...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Enabling Agile Manufacturing (TEAM) - An ORCMT success story Technologies Enabling Agile Manufacturing (TEAM) was one of the larger programs to come from the...

  1. Bio Solutions Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Solutions Manufacturing Inc Jump to: navigation, search Name: Bio Solutions Manufacturing Inc Place: Las Vegas, Nevada Zip: 89103 Product: Waste-to-energy bioremediation developer....

  2. Chung Hsin Electric Machinery Manufacturing Corporation CHEM...

    Open Energy Info (EERE)

    Chung Hsin Electric Machinery Manufacturing Corporation CHEM Jump to: navigation, search Name: Chung Hsin Electric & Machinery Manufacturing Corporation (CHEM) Place: Taoyuan...

  3. Tag: manufacturing | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacturing Tag: manufacturing Displaying 1 - 8 of 8... Category: News Tool of tomorrow today Y-12 and other Nuclear Security Enterprise sites investigate industry's next...

  4. Leitner Shriram Manufacturing Ltd | Open Energy Information

    Open Energy Info (EERE)

    Manufacturing Ltd Jump to: navigation, search Name: Leitner Shriram Manufacturing Ltd Place: Chennai, Tamil Nadu, India Zip: 600095 Sector: Wind energy Product: Chennai-based JV...

  5. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies....

  6. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015...

  7. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Manufacturing Jump to: navigation, search Name: Aurora Photovoltaics Manufacturing Place: Lawrenceville, New Jersey Zip: 8648 Sector: Solar Product: A subsidiary of...

  8. Understanding Manufacturing Energy and Carbon Footprints, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis MECS 2006 - ...

  9. American Wind Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind...

  10. Batteries - Materials Processing and Manufacturing Breakout session

    Broader source: Energy.gov (indexed) [DOE]

    the Other Technical Areas Being Discussed * Li metal manufacturing * Variability in cell manufacturing -intrinsic reduction and aging differences in pack? * Understanding of...

  11. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt002esflicker2012p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  12. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt002esflicker2011p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing...

  13. Autogenic Pressure Reactions for Battery Materials Manufacture...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Autogenic Pressure Reactions for Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free...

  14. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D ...

  15. Clean Energy Manufacturing Initiative Southeast Regional Summit...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative Southeast Regional Summit Clean Energy Manufacturing Initiative Southeast Regional Summit July 9, 2015 8:30AM to 6:00PM EDT Renaissance...

  16. Manufacturing Consumption of Energy 1991--Combined Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  17. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics...

  18. Industrial Activities at DOE: Efficiency, Manufacturing, Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Industrial Activities at DOE: Efficiency, Manufacturing, Process, and Materials R&D More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop ...

  19. Clean Energy Manufacturing Initiative: Technology Research and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Initiative: Technology Research and Development Clean Energy ... The Office of Nuclear Energy's Advanced Methods for Manufacturing subprogram accelerates ...

  20. Cincinnati Big Area Additive Manufacturing (BAAM) (Technical...

    Office of Scientific and Technical Information (OSTI)

    Cincinnati Big Area Additive Manufacturing (BAAM) Citation Details In-Document Search Title: Cincinnati Big Area Additive Manufacturing (BAAM) Oak Ridge National Laboratory (ORNL) ...

  1. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Activity between 2002 and 2010 Released: March 19, 2013 Total energy consumption in the manufacturing sector decreased by 17% from 2002 to 2010, according to data...

  2. China Shandong Penglai Electric Power Equipment Manufacturing...

    Open Energy Info (EERE)

    Penglai Electric Power Equipment Manufacturing Jump to: navigation, search Name: China Shandong Penglai Electric Power Equipment Manufacturing Place: Penglai, Shandong Province,...

  3. Energy Department Invests in Innovative Manufacturing Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Innovative Manufacturing Technologies Energy Department Invests in Innovative Manufacturing Technologies June 13, 2012 - 12:00am Addthis The Energy Department announced on June...

  4. National Network for Manufacturing Innovation: A Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Network for Manufacturing Innovation: A Preliminary Design National Network for Manufacturing Innovation: A Preliminary Design The Federal investment in the National Network for...

  5. Miraial formerly Kakizaki Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Miraial (formerly Kakizaki Manufacturing) Place: Tokyo, Japan Zip: 171-0021 Product: Manufacturer of wafer handling products and other components...

  6. Wind Energy & Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, will be delivered to wind farms across the United...

  7. Worldwide Energy and Manufacturing USA Inc formerly Worldwide...

    Open Energy Info (EERE)

    and Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name: Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)...

  8. Clean Energy Manufacturing Initiative Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Events Clean Energy Manufacturing Initiative Events

  9. Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC

    SciTech Connect (OSTI)

    1998-11-17

    International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

  10. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 11:30am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides Mercedes with complete axle systems. |

  11. Project Profile: Advanced Manufacture of Reflectors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacture of Reflectors Project Profile: Advanced Manufacture of Reflectors University of Arizona logo The University of Arizona and its partners, under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are developing technology to improve the optical accuracy and reflectivity of the self-supporting glass mirrors used in CSP collector systems. Approach The research team is working to optimize and validate a novel glass-molding technique that

  12. Biodiesel Outlook - An Engine Manufacturer's Perspective | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Outlook - An Engine Manufacturer's Perspective Biodiesel Outlook - An Engine Manufacturer's Perspective The engine's fuel systems and the fuels they deliver are increasingly critical to the overall performance as engines change to reduce levels of both regulated and non-regulated emissions. PDF icon deer08_gault.pdf More Documents & Publications Biodiesel ASTM Update and Future Technical Needs Recent Research to Address Technical Barriers to Increased Use of Biodiesel

  13. Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and

    Office of Environmental Management (EM)

    Increase Profits | Department of Energy Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8, 2014 - 11:30am Addthis ZF North America used Alabama E3 funding to create a recycling program that saves more than $100,000 a year in trash pickup and landfill fees. Pictured here are workers in the Tuscaloosa location, which provides Mercedes with complete axle systems. |

  14. Advanced Battery Manufacturing (VA)

    SciTech Connect (OSTI)

    Stratton, Jeremy

    2012-09-30

    LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATTs products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATTs work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

  15. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Broader source: Energy.gov [DOE]

    Agenda for the Manufacturing Demonstration Facilities Workshop on March 12, 2012 outlining objectives and times

  16. Oak Ridge Manufacturing Demonstration Facility (MDF)

    Broader source: Energy.gov [DOE]

    The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

  17. Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing- Informed Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing ADVANCED MANUFACTURING OFFICE Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing- Informed Design Improving Product and Manufacturing Process Design through a More Accurate and Widely Applicable Modeling Framework. This project aims to fll the knowledge gap between upstream design and downstream manufacturing processes by developing a manufacturing-informed design framework enabled by multi-scale, physics-based process models. This framework

  18. Laser Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Advanced Laser Manufacturing Tools Deliver Higher Performance Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Advanced Laser Manufacturing Tools Deliver Higher Performance In a research lab looking far, far into the future, a team of scientists and engineers from GE are developing next-generation

  19. Manufacturing Energy and Carbon Footprint

    Office of Environmental Management (EM)

    All Manufacturing (NAICS 31-33) Process Energy Electricity and Steam Generation Losses Process Losses 1,416 Nonprocess Losses 19,237 4,368 Steam Distribution Losses 870 574 Nonprocess Energy 10,903 Electricity Generation Steam Generation 19,237 731 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 1,434 10,350 2,430 Generation and Transmission Losses Generation and Transmission Losses 284 4,889 11,785 8,599 5,465 14,064 7,319 1,015 4,055 64.5

  20. New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor

    Broader source: Energy.gov [DOE]

    Production scale, not lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department...

  1. Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices

    Broader source: Energy.gov [DOE]

    Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and systems constraints on the viability of a mass market thermoelectric product are discussed

  2. Manufacturing Energy and Carbon Footprints (2006 MECS)

    Broader source: Energy.gov [DOE]

    Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

  3. Clean Energy Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Industrial efficiency and low-cost energy resources are key components to increasing U.S. energy productivity and makes the U.S. manufacturing sector more competitive. Companies find a competitive advantage in implementing efficiency technologies and

  4. Explore Careers in Manufacturing | Department of Energy

    Office of Environmental Management (EM)

    Manufacturing Explore Careers in Manufacturing The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a

  5. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  6. Solar Manufacturing Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » Solar Manufacturing Technology Solar Manufacturing Technology The SunShot Solar Manufacturing Technology (SolarMat) program funds the development of innovative manufacturing technologies that can achieve a significant market impact in one to four years. Launched in September 2013, the SolarMat program is supporting five projects working in two topic areas: photovoltaics (PV) and concentrating solar power (CSP). Both topics focus on driving down the cost of manufacturing

  7. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1996-01-02

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

  8. Process for manufacturing multilayer capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1996-01-01

    The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

  9. Advanced ceramic manufacturing of SiAlON exhaust valves

    SciTech Connect (OSTI)

    Bright, E.; Eckalbar, J.F.; McEntire, B.J.; Pujari, V.K.; Tricard, M.

    1996-09-01

    Norton Advanced Ceramic`s (NAC) is performing ceramic manufacturing development as part of the DOE-sponsored Advanced Ceramic Manufacturing Technology (ACMT) Program. NAC`s ACMT effort is focused on developing a cost effective manufacturing process for a ceramic exhaust valve. An industry team has been assembled to address cost reduction for this ceramic component. Technical progress made by NAC`s ACMT industry team in reducing the cost of ceramic valves is summarized within this communication. Particular emphasis is placed on describing progress in the development of intelligent processing systems for the powder processing, spray drying, and forming operations. Ceramic valve manufacturing process enhancements including continuous sintering, high-speed diamond grinding, and cost effective proof testing are summarized as well.

  10. SUSTAINABLE MANUFACTURING VIA MULTI-SCALE PHYSICS-BASED PROCESS MODELING AND MANUFACTURING-INFORMED DESIGN

    Broader source: Energy.gov [DOE]

    Micro-structural modeling tools for metals are being developed and used to demonstrate a design framework to improve the understanding of dynamic response and statistical variability. This project will enable design engineers to evaluate the effects of design changes and material selection; anticipate quality and cost prior to implementation on the factory floor; and enable low-waste, low-cost manufacturing. Third Wave Systems, Inc. - Minneapolis, MN

  11. Optical manufacturing requirements for an AVLIS plant

    SciTech Connect (OSTI)

    Primdahl, K.; Chow, R.; Taylor, J.R.

    1997-07-14

    A uranium enrichment plant utilizing Atomic Vapor Laser Isotope Separation (AVLIS) technology is currently being planned. Deployment of the Plant will require tens of thousands of commercial and custom optical components and subsystems. The Plant optical system will be expected to perform at a high level of optical efficiency and reliability in a high-average-power-laser production environment. During construction, demand for this large number of optics must be coordinated with the manufacturing capacity of the optical industry. The general requirements and approach to ensure supply of optical components is described. Dynamic planning and a closely coupled relationship with the optics industry will be required to control cost, schedule, and quality.

  12. K Basins floor sludge retrieval system knockout pot basket fuel burn accident

    SciTech Connect (OSTI)

    HUNT, J.W.

    1998-11-11

    The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool.

  13. Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Gruber, P., P. Medina, G. Keoleian, S. Kesler, M. Everson, and T. Wallington. 2011. ... Nike, Inc., Beaverton, OR. 668 http:msi.apparelcoalition.org. 669 NRC. 2007. ...

  14. Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Manufacturing Office (AMO) manufacturing.energy.gov 3 Morning Agenda 9:00am - 9:05am Welcome Mark Johnson Director, Advanced Manufacturing Office 9:05am - 9:20am Clean Energy Manufacturing Initiative David Danielson Assistant Secretary Energy Efficiency and Renewable Energy 9:20am - 9:50am Advanced Manufacturing Office Overview and Review of RFI Results Mark Johnson Director, Advanced Manufacturing Office 9:50am - 10:30am Panel Discussion: DOE Perspectives Mark Shuart, Advanced

  15. Advanced Manufacturing Office and Potential Technologies for Clean Energy Manufacturing Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Energy Efficiency and Renewable Energy eere.energy.gov Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov Advanced Manufacturing Office and Potential Technologies for Clean Energy Manufacturing Innovation October 8, 2014 DOE/DOD Planning Workshop- Fort Worth, TX 2 1. Background on DOE and Manufacturing 2. Technical Assistance 3. R & D Projects 4. Manufacturing R & D Facilities 5. Workshop Meta-Questions and Ground Rules Status Quo: Products invented here,

  16. enhance US composites manufacturing competitiveness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enhance US composites manufacturing competitiveness - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  17. Manufacturing of Plutonium Tensile Specimens

    SciTech Connect (OSTI)

    Knapp, Cameron M

    2012-08-01

    Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

  18. Energy Efficient Thermoplastic Composite Manufacturing

    Broader source: Energy.gov (indexed) [DOE]

    Boeing Research & Technology (Marc Matsen) U.S. DOE Advanced Manufacturing Office Program Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective  The objective of the project is to establish an effective and affordable method to lay- up and consolidate/join large thermoplastic composite aerospace structure with cycle times measured in minutes rather than hours.  Composite

  19. Electric Drive Component Manufacturing Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Component Manufacturing Facilities Jon Lutz - Presenter Luke Bokas - Principal Investigator Organization: UQM Technologies, Inc. Email: jlutz@uqm.com Phone: (303) 682-4900 Project ID: ARRAVT026 Project Duration: FY09 to FY15 DOE Vehicle Technologies Program Advanced Power Electronics and Electric Motors R&D FY13 Kickoff Meeting May 2013 Annual Merit Review This presentation does not contain any proprietary or confidential information DOE APEEM FY13 Kickoff Meeting 2 The

  20. Vibration control for precision manufacturing at Sandia National Laboratories

    SciTech Connect (OSTI)

    Hinnerichs, T.; Martinez, D.

    1995-04-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ``smart`` structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics.

  1. Clean Energy Manufacturing Incentive Grant Program

    Broader source: Energy.gov [DOE]

    "Clean energy manufacturer" is defined as a biofuel producer, a manufacturer of renewable energy or nuclear equipment/products, or "products used for energy conservation, storage, or grid efficie...

  2. FACT SHEET: 48C MANUFACTURING TAX CREDITS

    Broader source: Energy.gov [DOE]

    The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment.On February 7,...

  3. Goodman Manufacturing: Order (2012-CE-1509)

    Broader source: Energy.gov [DOE]

    DOE ordered Goodman Manufacturing Company L.P. to pay an $8,000 civil penalty after finding Goodman Manufacturing had failed to certify that certain room air conditioners comply with the applicable energy conservation standard.

  4. Energy & Manufacturing Workforce Training Topics List - Version...

    Office of Environmental Management (EM)

    & Manufacturing Workforce Training Topics List - Version 1.7 (02.11.14) Energy & Manufacturing Workforce Training Topics List - Version 1.7 (02.11.14) View this searchable list of...

  5. Imperial Manufacturing: Order (2013-CE-5322)

    Broader source: Energy.gov [DOE]

    DOE ordered Imperial Manufacturing, Inc. to pay a $8,000 civil penalty after finding Imperial Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  6. USA Manufacturing: Order (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE ordered USA Manufacturing to pay a $8,000 civil penalty after finding USA Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  7. AMO Hosted Workshop on Composite Manufacturing

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Advanced Manufacturing Office will host a workshop on Fiber Reinforced Polymer Composite Manufacturing on January 13, 2014 at the Hilton Crystal City in Arlington, VA.

  8. Advanced Methods for Manufacturing Newslettter- Issue 3

    Broader source: Energy.gov [DOE]

    The Advanced Methods for Manufacturing newsletter includes information about selected projects pertaining to additive manufacturing, concrete technologies, welding innovations and imaging techniques for design reconstruction currently funded by the Department of Energy's Office of Nuclear Energy.

  9. Artisan Manufacturing: Order (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE ordered Artisan Manufacturing Company, Inc., to pay a $5,000 civil penalty after finding Artisan Manufacturing had failed to certify that certain models of faucets comply with the applicable water conservation standard.

  10. Refrigerator Manufacturers: Order (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  11. National Manufacturing Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    anticipated 400,000 people who want to experience U.S. manufacturing up close and in person. On October 2, the U.S. Department of Commerce's fourth annual Manufacturing Day will...

  12. Summit Manufacturing: Case Closure (2010-SE-0303)

    Broader source: Energy.gov [DOE]

    DOE closed this case against Summit Manufacturing, Inc. without civil penalty after Summit Manufacturing provided information that the non-compliant products were not sold in the United States.

  13. Goodman Manufacturing: Proposed Penalty (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Goodman Manufacturing manufactured and distributed noncompliant basic model CPC180* commercial package air conditioners in the U.S.

  14. Manufacturing Demonstration Facilities Workshop, March 12, 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Office New materials and manufacturing methods can change the landscape of energy solutions In 1884, the price of aluminum was 1oz and the price of gold was 20oz. ...

  15. QTR Webinar: Chapter 8- Industry and Manufacturing

    Broader source: Energy.gov [DOE]

    The DOE EERE Advanced Manufacturing Office hosted a QTR webinar to obtain input from Leaders in Academia, Industry, and Government on Chapter 8, Industry and Manufacturing, and the associated Technology Assessments.

  16. advanced manufacturing office | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Manufacturing Office The U.S. Department of Energy (DOE) funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. DOE has supported the development of more than 250 energy-saving industrial technologies that have been commercialized since 1976. DOE is also working to create a network of Manufacturing Innovation Institutes, each of which will create collaborative communities to target a unique technology in advanced manufacturing.

  17. Manufacturing Demonstration Facilities Workshop Agenda, March 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Demonstration Facilities Workshop Marriott Springhill Suites O'Hare - Chicago, IL March 12, 2012 Objectives  Introduce the manufacturing community to the U.S. DOE Advanced Manufacturing Office (AMO) program vision and its goals.  Explain the proposed mechanics of the Manufacturing Demonstration Facility (MDF) concept and the objectives of this particular anticipated effort.  Encourage discussion among potential organizations that have the relevant expertise, facilities and

  18. Clean Energy Manufacturing Analysis Center Webinar

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy offers a webinar to address clean energy manufacturing on April 5. Register today!

  19. Stronger Manufacturers' Energy Efficiency Standards for Residential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners...

  20. Advanced Manufacturing Initiative Improves Turbine Blade Productivity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. The Advanced Manufacturing Initiative (AMI) at DOE's Sandia National Laboratories is working with industry to improve manufacturing processes and create U.S. jobs by improving labor productivity in wind turbine blade

  1. Clean Energy Manufacturing Innovation Institute for Composite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides Fiber Reinforced Polymer Composite Manufacturing Workshop

  2. Innovative Manufacturing Initiatives Recognition Day Agenda

    Broader source: Energy.gov [DOE]

    Agenda for Innovative Manufacturing Initiatives Recognition Day held in Washington, D.C. on June 20, 2012

  3. American Energy and Manufacturing Competitiveness Summit Introduction |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy American Energy and Manufacturing Competitiveness Summit Introduction American Energy and Manufacturing Competitiveness Summit Introduction Addthis Description Introduction video for the American Energy and Manufacturing Competitiveness Summit. Text Version Below is the text version for the American Energy and Manufacturing Competetitiveness Summit Introduction video. The video opens with an aerial city view as the sun rises, then cuts to time lapse photos of a highway

  4. Manufactured Home Testing in Simulated and Naturally Occurring High Winds

    SciTech Connect (OSTI)

    W. D. Richins; T. K. Larson

    2006-08-01

    A typical double-wide manufactured home was tested in simulated and naturally occurring high winds to understand structural behavior and improve performance during severe windstorms. Seven (7) lateral load tests were conducted on a double-wide manufactured home at a remote field test site in Wyoming. An extensive instrumentation package monitored the overall behavior of the home and collected data vital to validating computational software for the manufactured housing industry. The tests were designed to approach the design load of the home without causing structural damage, thus allowing the behavior of the home to be accessed when the home was later exposed to high winds (to 80-mph). The data generally show near-linear initial system response with significant non-linear behavior as the applied loads increase. Load transfer across the marriage line is primarily compression. Racking, while present, is very small. Interface slip and shear displacement along the marriage line are nearly insignificant. Horizontal global displacements reached 0.6 inch. These tests were designed primarily to collect data necessary to calibrate a desktop analysis and design software tool, MHTool, under development at the Idaho National Laboratory specifically for manufactured housing. Currently available analysis tools are, for the most part, based on methods developed for stick built structures and are inappropriate for manufactured homes. The special materials utilized in manufactured homes, such as rigid adhesives used in the connection of the sheathing materials to the studs, significantly alter the behavior of manufactured homes under lateral loads. Previous full scale tests of laterally loaded manufactured homes confirm the contention that conventional analysis methods are not applicable. System behavior dominates the structural action of manufactured homes and its prediction requires a three dimensional analysis of the complete unit, including tiedowns. This project was sponsored by the US Department of Energy, US Department of Housing and Urban Development, and the Manufactured Housing Institute. The results of this research can lead to savings in annual losses of life and property by providing validated information to enable the advancement of code requirements and by developing engineering software that can predict and optimize wind resistance.

  5. Manufacturing Demonstration Facilities Workshop, March 12, 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Demonstration Facilities Workshop, March 12, 2012 Manufacturing Demonstration Facilities Workshop, March 12, 2012 PDF icon mdf_workshop_presentation_march2012.pdf More Documents & Publications Manufacturing Demonstration Facility Workshop Microwave and Radio Frequency Workshop Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

  6. Industrial & Manufacturing Processes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial & Manufacturing Processes Developing technologies, processes for optimal manufacturing As the world increasingly demands technological goods, companies are strained to optimize their manufacturing processes and manage waste and materials recycling. As part of Argonne's mission to contribute to a sustainable world, our scientists are creating next-generation catalysts, processes, coatings and technologies that will advance industrial development and output without compromising

  7. Clean Energy Manufacturing Initiative Midwest Regional Summit:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Breakout Session Summary | Department of Energy Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary Clean Energy Manufacturing Initiative Midwest Regional Summit: Lightweighting Breakout Session Summary June 21, 2013 PDF icon Lightweighting Breakout Session Summary More Documents & Publications Fiber Reinforced Polymer

  8. MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen

    Office of Environmental Management (EM)

    MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge)

  9. Ohio Advanced Energy Manufacturing Center

    SciTech Connect (OSTI)

    Kimberly Gibson; Mark Norfolk

    2012-07-30

    The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI has recently commercialized.

  10. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  11. 1991 Manufacturing Consumption of Energy 1991 Executive Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Summary The Manufacturing Consumption of Energy 1991 report presents statistics about the energy consumption of the manufacturing sector, based on the 1991 Manufacturing Energy...

  12. Webtrends Archives by Fiscal Year - Advanced Manufacturing Office...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Manufacturing Office, Webtrends archives by fiscal year. Microsoft Office document icon Advanced Manufacturing FY09 Microsoft Office document icon Advanced Manufacturing ...

  13. Notice of Intent (NOI): Clean Energy Manufacturing Innovation...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms, and Modeling for Manufacturing" (DE-FOA-0001263). This is a Notice of...

  14. Manufacturing method of photonic crystal

    DOE Patents [OSTI]

    Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

    2013-01-29

    A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

  15. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

    1993-02-02

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  16. Process for manufacturing tantalum capacitors

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

    1993-01-01

    A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

  17. 2014 Manufacturing Energy Consumption Survey

    Gasoline and Diesel Fuel Update (EIA)

    U S C E N S U S B U R E A U 2014 Manufacturing Energy Consumption Survey Sponsored by the Energy Information Administration U.S. Department of Energy Administered and Compiled by the Bureau of the Census U.S. Department of Commerce Form EIA-846 (mm-dd-yy) OMB Approval No. xxxx-xxxx Expires: mm/dd/yyyy Report Electronically: www.census.gov/ econhelp/mecs Username: Password: Reporting electronically allows you to save your work as you go through the form and could save you time If you need

  18. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  19. Microsoft Word - DOE-ID-INL-12-011.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 SECTION A. Project Title: Advanced Test Reactor (ATR) Primary Coolant System (PCS) Relief Valves Monorail System SECTION B. Project Description: The purpose of this project is to provide a monorail system to aid maintenance personnel in the hoisting and transporting of the Advanced Test Reactor (ATR) Primary Coolant System (PCS) Safety Relief Valves, SF-A-1-71 and SF-A-1-72, in support of the 2 year replacement. The monorail system would consist of two independent monorail assemblies installed

  20. New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor NREL, MIT take an in-depth look at national competitiveness in PV manufacturing September 5, 2013 Production scale, not lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Although

  1. Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture

    Office of Scientific and Technical Information (OSTI)

    of Customized Electric Vehicles (Technical Report) | SciTech Connect Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles Citation Details In-Document Search Title: Utility of Big Area Additive Manufacturing (BAAM) For The Rapid Manufacture of Customized Electric Vehicles This Oak Ridge National Laboratory (ORNL) Manufacturing Development Facility (MDF) technical collaboration project was conducted in two phases as a CRADA with Local

  2. PROJECT PROFILE: Additively Manufactured Photovoltaic Inverter (SuNLaMP)

    Broader source: Energy.gov [DOE]

    Integrating hundreds of gigawatts of photovoltaic (PV) solar power onto our country’s electric grid requires transformative power conversion system designs that find a balance between performance, reliability, functionality and cost. The National Renewable Energy Laboratory (NREL) will lead this project to develop a unique PV inverter design that combines the latest wide bandgap high-voltage Silicon Carbide (SiC) semiconductor devices with new technologies, such as additive manufacturing and multi-objective magnetic design optimization. By developing an additively manufactured PV inverter (AMPVI), NREL researchers aim to significantly reduce the cost of PV power electronics.

  3. Northwest Energy Efficient Manufactured Housing Program Specification Development

    SciTech Connect (OSTI)

    Hewes, Tom; Peeks, Brady

    2013-02-01

    The DOE research team Building America Partnership for Improved Residential Construction (BA-PIRC), Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Home Program (NEEM) program administrator, collaborated to research a new specification that would reduce the energy requirements of a NEEM home.This research identified and developed combinations of cost-effective high performance building assemblies and mechanical systems that can readily can be deployed in the manufacturing setting that reduce energy used for space conditioning, water heating and lighting by 50% over the present NEEM specifications.

  4. Understanding Manufacturing Energy and Carbon Footprints, October 2012

    Broader source: Energy.gov (indexed) [DOE]

    Understanding Manufacturing Energy and Carbon Footprints The Manufacturing Energy and Carbon Footprints map energy use and carbon emissions from energy supply to end use. Footprints are published for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. These sectors are described in more detail in the document Manufacturing Energy and Carbon Footprint Scope. Manufacturing Energy and Carbon Footprint Sectors: All Manufacturing

  5. Manufacturing Energy and Carbon Footprint Definitions and Assumptions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Understanding Manufacturing Energy and Carbon Footprints, October 2012 2010 Manufacturing Energy and Carbon Footprints:...

  6. EV Everywhere Batteries Workshop - Materials Processing and Manufactur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session...

  7. President Obama Announces New Public-Private Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department's manufacturing innovation institute for next generation power electronics. ... to lead a manufacturing innovation institute for next generation power electronics. ...

  8. Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on

    Energy Savers [EERE]

    Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing | Department of Energy Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing Notice of Intent (NOI): Clean Energy Manufacturing Innovation Institute on Smart Manufacturing: Advanced Sensors, Controls, Platforms and Modeling for Manufacturing December 11, 2014 - 11:30am Addthis The purpose of

  9. Means of manufacturing annular arrays

    DOE Patents [OSTI]

    Day, R.A.

    1985-10-10

    A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

  10. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  11. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  12. USCAR LEP ESST Advanced Manufacturing

    SciTech Connect (OSTI)

    Lazarus, L.J.

    2000-09-25

    The objective of this task was to provide processing information data summaries on powder metallurgy (PM) alloys that meet the partner requirements for the production of low mass, highly accurate, near-net-shape powertrain components. This required modification to existing ISO machinability test procedures and development of a new drilling test procedure. These summaries could then be presented in a web page format. When combined with information generated from the USCAR CRADA this would allow chemical, metallurgical, and machining data on PM alloys to be available to all engineering and manufacturing personnel that have access to in-house networks. The web page format also allows for the additions of other wrought materials, making this a valuable tool to the technical staffs.

  13. Method for manufacturing magnetohydrodynamic electrodes

    DOE Patents [OSTI]

    Killpatrick, Don H. (Orland Park, IL); Thresh, Henry R. (Palos Heights, IL)

    1982-01-01

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.

  14. Advanced manufacturing: Technology and international competitiveness

    SciTech Connect (OSTI)

    Tesar, A.

    1995-02-01

    Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

  15. PRESENTATION: BRIEFING ON CLEAN ENERGY MANUFACTURING | Department of Energy

    Energy Savers [EERE]

    PRESENTATION: BRIEFING ON CLEAN ENERGY MANUFACTURING PRESENTATION: BRIEFING ON CLEAN ENERGY MANUFACTURING A briefing to the Secretary's Energy Advisory Board on the clean energy manufacturing delivered by David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy. PDF icon Briefing on Clean Energy Manufacturing More Documents & Publications National Network for Manufacturing Innovation: A Preliminary Design National Network for Manufacturing Innovation: A Preliminary

  16. U.S. Wind Energy Manufacturing & Supply Chain: A Competitive Analysis

    SciTech Connect (OSTI)

    Fullenkamp, Patrick

    2014-06-15

    The Global Wind Network (GLWN) assessed the key factors that determine wind energy component manufacturing costs and pricing on a global basis in order to provide a better understanding of the factors that will help enhance the competitiveness of U.S. manufacturers, and reduce installed system costs.

  17. Manufacturing Demonstration Facility Workshop | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    March 12, 2012 The Manufacturing Demonstration Facility Workshop (held in Chicago, IL, on March 12, 2012, and simultaneously broadcast as a webinar) invited stakeholders to discuss key foundational aspects of planning a series of Manufacturing Demonstration Facilities (MDFs). MDFs will create a collaborative, shared infrastructure around targeted technical areas that will develop, use, and promote energy efficient, rapid, flexible manufacturing technologies. Work at the MDFs will target specific

  18. Project Profile: Improved Large Aperture Collector Manufacturing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Improved Large Aperture Collector Manufacturing Project Profile: Improved Large Aperture Collector Manufacturing Abengoa logo Abengoa Solar, under the Solar Manufacturing Technology (SolarMat) program, will be investigating the use of an automotive-style high-rate fabrication and automated assembly techniques to achieve a substantial reduction in the deployment cost of their new SpaceTube advanced large aperture parabolic trough collector. Approach Abengoa is developing

  19. Manufacturing Barriers to High Temperature PEM Commercialization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Manufacturing Barriers to High Temperature PEM Commercialization More Documents & Publications PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update MCFC and PAFC R&D Workshop Summary Report 2012 Pathways to

  20. National Electrical Manufacturers Association Comment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Comment National Electrical Manufacturers Association Comment The National Electrical Manufacturers Association (NEMA) appreciates the opportunity to provide the attached comments on the Request for Information to Reduce Regulatory Burden as announced in the U.S. Federal Register Vol. 80, No. 127, beginning on page 38019. PDF icon Regulatory Burden RFI NEMA Comments regarding small motor regulations 17July2015 v5_1 More Documents & Publications National Electrical Manufacturers

  1. Agenda Advanced Methods for Manufacturing Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda Advanced Methods for Manufacturing Workshop September 29, 2015 Lockheed Martin 2021 Crystal Drive Arlington, Virginia 8:30 Safety, Security and Housekeeping Dr. Scott Anderson 8:45 - 10:45 2012 Projects, 30 minutes with questions Lockheed Martin - Direct manufacturing of Nuclear Power components EPRI - Innovative Manufacturing Process for Nuclear power Plant Components Purdue - Modular Connection Technologies for SC Walls INL - Monitoring and Control of Hybrid Laser-GMAW Process 10:45 -

  2. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Advanced Qualification of Additive Manufacturing Materials (AM) Workshop Our goal is to define opportunities and research gaps within additive manufacturing (AM) and to engage the broader scientific/engineering community to discuss future research directions. thumbnail of thumbnail of Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science

  3. Clean Energy Manufacturing Initiative | Department of Energy

    Energy Savers [EERE]

    Clean Energy Manufacturing Initiative Energy Materials Network Energy Materials Network The Energy Materials Network (EMN) is an enduring national lab-led initiative that aims to dramatically decrease the time-to-market for advanced materials innovations critical to many clean energy technologies. Read more Leadership Perspectives: The Opportunity for Clean Energy Manufacturing Leadership Perspectives: The Opportunity for Clean Energy Manufacturing There is a tremendous opportunity for the

  4. Advanced Blade Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blade Manufacturing Advanced Blade Manufacturing While the blades of a turbine may be one of the most recognizable features of any wind installation, they also represent one of the largest physical challenges in the manufacturing process. Turbine blades can reach up to 75 meters (250 feet) in length, and will continue to increase in size as the demand for renewable energy grows and as wind turbines are deployed offshore. Because of their size and aerodynamic complexity, wind turbine blades are

  5. Advanced Drivetrain Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drivetrain Manufacturing Advanced Drivetrain Manufacturing The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy. What is the Drivetrain? The drivetrain of a wind turbine is composed of the gearbox and the generator, the

  6. Advanced Methods for Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and

  7. Articles about Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Articles about Manufacturing RSS Below are stories about manufacturing featured by the U.S. Department of Energy (DOE) Wind Program. September 17, 2015 Statistics Show Bearing Problems Cause the Majority of Wind Turbine Gearbox Failures In the past, the wind energy industry has been relatively conservative in terms of data sharing, especially with the general public, which has inhibited the research community's efforts to identify and mitigate the premature failures of wind turbine

  8. FACTSHEET: Next Generation Power Electronics Manufacturing Innovation

    Office of Environmental Management (EM)

    Institute | Department of Energy Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a

  9. Fiber Reinforced Polymer Composite Manufacturing Workshop

    Office of Environmental Management (EM)

    Fiber Reinforced Polymer Composite Manufacturing Workshop January 13, 2014 Participant Provided Discussion Starter Presentations Advanced Manufacturing Office (AMO) manufacturing.energy.gov 2 Disclaimer This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the

  10. Solar Manufacturing Technology 2 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. The first round of the SolarMat program was launched in September 2013 supporting five projects. The second round, announced on October 22, 2014, funds nine photovoltaics

  11. Driving Economic Growth: Advanced Technology Vehicles Manufacturing |

    Office of Environmental Management (EM)

    Department of Energy Driving Economic Growth: Advanced Technology Vehicles Manufacturing Driving Economic Growth: Advanced Technology Vehicles Manufacturing With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of

  12. Clean Energy Manufacturing Reports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reports Clean Energy Manufacturing Reports The Clean Energy Manufacturing Initiative develops competitiveness analysis and strategies that inform R&D investments and other efforts needed to address key barriers to growing U.S. clean energy manufacturing competitiveness. This unprecedented competitiveness analysis evaluates the costs of producing clean energy products in the U.S. compared to competitor nations to understand factory location decisions and identify key drivers to U.S. clean

  13. Clean Energy Manufacturing Resources - Technology Feasibility | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource

  14. EI Summary of All Manufacturing SIC

    U.S. Energy Information Administration (EIA) Indexed Site

    try... Energy Consumption Use of Energy Electricity Manufacturing Floorspace Prices Energy Storage Energy and Operating Ratios Energy-Management Activities Technology...

  15. Manufacturing Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Advanced Manufacturing Office; John Dennis, Mayor of West Lafayette; Mitch Daniels, President of Purdue University; R. Byron Pipes, John Leighton Bray Distinguished...

  16. Building Blocks for the Future of Manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMmachine-500x333 Prabhjot's technical background focused on manufacturing technology. In ... The transducers use a dense array of elements, each converting electrical signals into ...

  17. Advanced Manufacturing Office | Department of Energy

    Energy Savers [EERE]

    Advanced Manufacturing Office ISO 50001SEP Pilot Program - Applications Due 182016 ISO 50001SEP Pilot Program - Applications Due 182016 The U.S. DOE invites applications for...

  18. Clean Energy Manufacturing Innovation Institute for Composites...

    Broader source: Energy.gov (indexed) [DOE]

    Date: 06192014 Full applications are due. Funding Organization: The Advanced Manufacturing Office of the Office of Energy Efficiency and Renewable Energy Funding Number:...

  19. Fiber Reinforced Polymer Composite Manufacturing Workshop | Department...

    Broader source: Energy.gov (indexed) [DOE]

    A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss...

  20. Clean Energy Manufacturing Initiative Industrial Efficiency and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis An error occurred. Try...

  1. Welcome and Advanced Manufacturing Partnership (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Welcome and Advanced Manufacturing Partnership video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  2. Advanced Manufacturing Office At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Computing for Manufacturing R&D assists U.S. industry with their most ... Innovation that includes more than 100 industry, SME, and academic partners and members. ...

  3. 2010 Manufacturing Energy and Carbon Footprints: Definitions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Carbon Footprints (MECS 2010) More Documents & Publications U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis MECS 2006 - Computer, ...

  4. 2014 Manufacturing Energy and Carbon Footprints: Definitions...

    Broader source: Energy.gov (indexed) [DOE]

    Definitions and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are ...

  5. Solid State Lighting LED Manufacturing Roundtable Summary

    SciTech Connect (OSTI)

    none,

    2010-03-31

    Summary of a meeting of LED experts to develop proposed priority tasks for the Manufacturing R&D initiative, including task descriptions, discussion points, recommendations, and presentation highlights.

  6. Manufacturing Ecosystems and Keystone Technologies (Text Version)

    Broader source: Energy.gov [DOE]

    This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

  7. Manufacturing Energy and Carbon Footprint References

    Broader source: Energy.gov (indexed) [DOE]

    References AMO (Advanced Manufacturing Office), EERE (Energy Efficiency and Renewable Energy). 2012. Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators. ...

  8. 2014 American Energy & Manufacturing Competitiveness Summit in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit. Image: John Harrington, Council on Competitiveness 6 of 10 Local Motors CEO Jay Rogers demonstrates the 3D-printed car during the American Energy & Manufacturing...

  9. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify ...

  10. Breaking Barriers in Polymer Additive Manufacturing (Conference...

    Office of Scientific and Technical Information (OSTI)

    barriers, it is possible for polymer AM to penetrate new manufacturing markets. ... Resource Relation: Conference: SAMPE, Baltimore, MD, USA, 20150518, 20150521 Research Org: ...

  11. Microstructural Properties of Gamma Titanium Aluminide Manufactured...

    Office of Scientific and Technical Information (OSTI)

    COMPOUNDS In recent years, Electron Beam Melting (EBM) has matured as a technology for additive manufacturing of dense metal parts. The parts are built by additive consolidation...

  12. Bandwidth Study U.S. Chemical Manufacturing

    Broader source: Energy.gov [DOE]

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study...

  13. Energy-Related Carbon Emissions in Manufacturing

    Reports and Publications (EIA)

    2000-01-01

    Energy-related carbon emissions in manufacturing analysis and issues related to the energy use, energy efficiency, and carbon emission indicators.

  14. Derived Annual Estimates of Manufacturing Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This...

  15. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science ...

  16. Manufacturing Process for OLED Integrated Substrate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Market Impact: * PPG is working with OLED lighting manufacturers for evaluation of early stage products. 11 Project Integration: * PPG Glass Business and Development Center (GBDC) ...

  17. Advanced Battery Manufacturing Facilities and Equipment Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  18. National Electrical Manufacturers Association (NEMA) Response...

    Energy Savers [EERE]

    icon National Electrical Manufacturers Association (NEMA) More Documents & Publications City Utilities of Springfield Missouri Comments on Smart Grid RFI: Addressing Policy and...

  19. Advanced Manufacturing Office (Formerly Industrial Technologies Program)

    Broader source: Energy.gov [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

  20. LightManufacturing | Open Energy Information

    Open Energy Info (EERE)

    greenhouse gas emissions resulting from rotational molding. 6 Unlike concentrated solar power firms which focus on utility-scale electric production 7 , LightManufacturing...

  1. NNMI Industry Day: Smart Manufacturing AMO Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 | Energy Efficiency and Renewable Energy eere.energy.gov Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov NNMI Industry Day: Smart Manufacturing AMO Overview February 25, 2015 Atlanta, GA Status Quo: Products invented here, and made elsewhere 2 Significance of U.S. Manufacturing 12% of U.S. GDP, 12 million U.S. jobs, 60% of U.S. Exports U.S. Trade Balance of Advanced Technology Swung to historic deficit, lost 1/3 rd of workforce 3 Clean Energy: Nexus of

  2. Battery Manufacturing Processes Improved by Johnson Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Johnson Controls Project Improving battery manufacturing processes can help make plug-in electric vehicles more affordable and convenient. This will help meet the government's EV...

  3. Partnering for Clean Energy Manufacturing Competitiveness

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Libby Wayman Director, Clean Energy Manufacturing Initiative Partnering for Clean Energy ... Increase U.S. competitiveness in the production of clean energy products 2. Increase ...

  4. Industrial Assessment Centers Small Manufacturers Reduce Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOEEE-1278 Industrial Assessment Centers Small Manufacturers Reduce Energy & Increase Productivity Since 1976, the Industrial Assessment Centers (IACs), administered by the US...

  5. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

  6. 2015 American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The 2015 American Energy & Manufacturing Competitiveness (AEMC) Summit is a gathering of preeminent leaders from industry, academia, labor, the national laboratories, government and media to:

  7. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Materials for Harsh Service Conditions Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  8. Manufacturers in U.S. Energy Department's Better Plants Program Save More

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Than $2 Billion in Energy Costs; Program Expands to Help America's Water Systems | Department of Energy Manufacturers in U.S. Energy Department's Better Plants Program Save More Than $2 Billion in Energy Costs; Program Expands to Help America's Water Systems Manufacturers in U.S. Energy Department's Better Plants Program Save More Than $2 Billion in Energy Costs; Program Expands to Help America's Water Systems September 30, 2015 - 9:03am Addthis NEWS MEDIA CONTACT (202) 586-4940

  9. East Penn Manufacturing Co Grid-Scale Energy Storage Demonstration Using

    Office of Environmental Management (EM)

    East Penn Manufacturing Co Grid-Scale Energy Storage Demonstration Using UltraBattery(tm) Technology Project Description East Penn Manufacturing will design and construct an energy storage facility consisting of an array of UltraBattery(tm) modules integrated in a turnkey Battery Energy Storage System (BESS). In addition to the UltraBatteries(tm), the BESS will include a power conditioning system, a master programmable controller, and a battery monitoring system. The UltraBattery(tm) is a

  10. Fuel Cell Technologies Office American Energy and Manufacturing Competitiveness Parternship: Fuel Cell Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2/19/2013 eere.energy.gov Fuel Cell Technologies Office American Energy & Manufacturing Competitiveness Partnership http://www.aemcsummit.compete.org/ Fuel Cell Manufacturing Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Dr. Nancy Garland Technology Development Manager, Manufacturing R&D, Fuel Cell Technologies Office 2 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov The Future of Fuel Cell Manufacturing Panel Session * Federal program: DOE Fuel

  11. Increasing U.S. Manufacturing Competitiveness The Clean Energy Manufacturing Initia-

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing U.S. Manufacturing Competitiveness The Clean Energy Manufacturing Initia- tive (CEMI) is a U.S. Department of Energy (DOE)-wide commitment to innovation and breaking down market barriers in order to enhance U.S. manufacturing competitiveness while advancing the nation's energy goals. As a part of this initiative, DOE is committing resources across technol- ogy areas to catalyze clean energy manufacturing research and development (R&D), as well as to catalyze greater energy

  12. U.S. Department of Energy integrated manufacturing & processing predoctoral fellowships. Final Report

    SciTech Connect (OSTI)

    Petrochenkov, Margaret

    2003-03-31

    The objective of this program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design. This is the final report to close out the contract.

  13. Photonic crystal scintillators and methods of manufacture

    DOE Patents [OSTI]

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  14. Clean Energy Manufacturing Analysis Center (CEMAC)

    SciTech Connect (OSTI)

    2015-12-01

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  15. Smart Manufacturing Institute Industry Day Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing. The workshop was held on February 25, 2015 at the Georgia Tech Hotel & Conference Center in Atlanta, GA.

  16. ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 | Department of Energy Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 PDF icon nanomanufacturing_portfolio.pdf More Documents & Publications Sustainable

  17. Innovative Manufacturing Initiative Recognition Day - Final Participant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Listing | Department of Energy Day - Final Participant Listing Innovative Manufacturing Initiative Recognition Day - Final Participant Listing PDF icon imi_recogitionday_participants.pdf More Documents & Publications Innovative Manufacturing Initiative Recognition Day 2015 AMO Peer Review Agenda CX-100154 Categorical Exclusion Determination

  18. Advanced Manufacturing Office Update, July 2015

    Broader source: Energy.gov [DOE]

    Institute for Advanced Composites Manufacturing Innovation Launched The Institute for Advanced Composites Manufacturing Innovation (IACMI) was officially launched last week with the signature of a Cooperative Agreement with the not-for-profit organization established by the University of Tennessee Research Foundation. IACMI, The Composites Institute hosted an initial meeting with Consortium Members in mid-June in Knoxville, Tennessee.

  19. Plumbing Manufacturer's Institute Ex Parte Communication Regarding

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Showerheads | Department of Energy Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department of Energy - August 31, 2010 Memorandum Regarding DOE's Draft Interpretive Rule - August 31, 2010 Declaration of Charles Wodrich in Support of Supplemental Comments- August 30, 2010 Supplemental Comments

  20. Duracold Refrigeration Manufacturing: Order (2013-CE-5342)

    Broader source: Energy.gov [DOE]

    DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

  1. Clean Energy Manufacturing Resources - Technology Maturation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the

  2. Manufacturing Innovation Multi-Topic Workshop

    Broader source: Energy.gov [DOE]

    DOE’s Advanced Manufacturing Office (AMO) and the Office of Secretary of Defense Manufacturing Technology Program (OSD ManTech) held a joint workshop October 8 and 9, 2014 in Fort Worth, TX. This workshop identified mid-Technology Readiness Level (TRL) research and development (R&D) needs, market and supply chain challenges, and shared facility needs for advanced manufacturing. The workshop complemented a recently released AMO Request for Information (RFI) and a recently amended OSD ManTech RFI. AMO and OSD ManTech sought to know more about the challenges associated with advanced manufacturing technology that potentially could be overcome by pre-competitive collaboration as part of a Manufacturing Innovation Institute.

  3. PEM Stack Manufacturing: Industry Status | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stack Manufacturing: Industry Status PEM Stack Manufacturing: Industry Status Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon PEM Stack Manufacturing: Industry Status More Documents & Publications Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Low Temperature PEM Fuel Cell Manufacturing Needs A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and

  4. Low Temperature PEM Fuel Cell Manufacturing Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PEM Fuel Cell Manufacturing Needs Low Temperature PEM Fuel Cell Manufacturing Needs Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Low Temperature PEM Fuel Cell Manufacturing Needs More Documents & Publications Manufacturing Fuel Cell Manhattan Project PEM Stack Manufacturing: Industry Status 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report

  5. Static Sankey Diagram Full Sector Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Sector Manufacturing Static Sankey Diagram Full Sector Manufacturing The U.S. Manufacturing Sector Static Sankey diagram shows how total primary energy is used by U.S. manufacturing plants. Click on the Onsite Generation, Process Energy or Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the manufacturing Sankey data and compare energy consumption across

  6. Fact #570: May 11, 2009 Automotive Manufacturing Employment Declining |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0: May 11, 2009 Automotive Manufacturing Employment Declining Fact #570: May 11, 2009 Automotive Manufacturing Employment Declining The number of people employed by automotive manufacturing has been decreasing since 2000. Although nearly three times as many people are employed by motor vehicle parts manufacturing as motor vehicle manufacturing, parts manufacturing has experienced a sharper decline in employment since 2000. Automotive Manufacturing Employment, 1990-2008

  7. Composite Tube Trailer Design/Manufacturing Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Tube Trailer Design/Manufacturing Needs Composite Tube Trailer Design/Manufacturing Needs Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Composite Tube Trailer Design/Manufacturing Needs More Documents & Publications Tank Manufacturing, Testing, Deployment and Field Performance Fuel Tank Manufacturing, Testing, Field Performance, and Certification High Pressure Hydrogen Tank Manufacturing

  8. Understanding the 2014 Manufacturing Energy and Carbon Footprints

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding the 2010 Manufacturing Energy and Carbon Footprints The Manufacturing Energy and Carbon Footprints map energy use and combustion greenhouse gas (GHG) emissions from energy supply to end use. Footprints are published for 15 manufacturing sectors (representing 95% of all manufacturing energy use and 94% of U.S. manufacturing combustion GHG emissions) and for U.S. manufacturing as a whole (NAICS 31 - 33). These sectors are described in more detail in the document 2010 Manufacturing

  9. Clean Energy Manufacturing Funding Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunities Clean Energy Manufacturing Funding Opportunities To accomplish the goals of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy (DOE) supports increased funding for manufacturing research and development across the board, specifically with the goal of growing the clean energy manufacturing industry in the United States. Examples include: Photo of carbon fiber rolls being manufactured. Solar Manufacturing Technology Solar Manufacturing Technology

  10. Manufacturing fuel-switching capability, 1988

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Historically, about one-third of all energy consumed in the United States has been used by manufacturers. About one-quarter of manufacturing energy is used as feedstocks and raw material inputs that are converted into nonenergy products; the remainder is used for its energy content. During 1988, the most recent year for which data are available, manufacturers consumed 15.5 quadrillion British thermal units (Btu) of energy to produce heat and power and to generate electricity. The manufacturing sector also has widespread capabilities to switch from one fuel to another for either economic or emergency reasons. There are numerous ways to define fuel switching. For the purposes of the Manufacturing Energy Consumption Survey (MECS), fuel switching is defined as the capability to substitute one energy source for another within 30 days with no significant modifications to the fuel-consuming equipment, while keeping production constant. Fuel-switching capability allows manufacturers substantial flexibility in choosing their mix of energy sources. The consumption of a given energy source can be maximized if all possible switching into that energy source takes place. The estimates in this report are based on data collected on the 1988 Manufacturing Energy Consumption Survey (MECS), Forms 846 (A through C). The EIA conducts this national sample survey of manufacturing energy consumption on a triennial basis. The MECS is the only comprehensive source of national-level data on energy-related information for the manufacturing industries. The MECS was first conducted in 1986 to collect data for 1985. This report presents information on the fuel-switching capabilities of manufacturers in 1988. This report is the second of a series based on the 1988 MECS. 8 figs., 31 tabs.

  11. DOE Hydrogen Program Manufacturing R&D Pre-Solicitation Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Fuel Cell Manufacturing R&D Topics PEM Fuel Cell Pre-Solicitation Workshop Questions & Answers Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs (Presentation)...

  12. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    central thermal fluid system. 1436 1437 1438 1439 1440 1441 1442 Multi-effect falling-film evaporators for black liquor evaporation and concentration Part F - SPECIFIC...

  13. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. PDF icon Manufacturing Fuel Cell Manhattan Project More Documents & Publications Manufacturing Fuel Cell Manhattan Project 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report Low Temperature PEM Fuel Cell Manufacturing Needs

  14. WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW WORKSHOP: SUSTAINABILITY IN MANUFACTURING AGENDA AND OVERVIEW PDF icon Sustainable Manufacturing Workshop Agenda.pdf PDF icon AMO Sustainable Manufacturing Workshop Overview.pdf More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop ITP Chemicals: Industrial Feedstock Flexibility Workshop Results, December 2009 Process Intensification Workshop - September 29-30, 2015 Advanced

  15. A National Strategic Plan For Advanced Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Strategic Plan For Advanced Manufacturing A National Strategic Plan For Advanced Manufacturing PDF icon nstc_feb2012.pdf More Documents & Publications Report to the President on Ensuring American Leadership in Advanced Manufacturing National Network for Manufacturing Innovation: A Preliminary Design National Network for Manufacturing Innovation: A Preliminary Design

  16. National Network for Manufacturing Innovation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Network for Manufacturing Innovation National Network for Manufacturing Innovation Image of Energy Department's Assistant Secretary David Danielson standing at podium speaking in front of workshop participants. The National Network for Manufacturing Innovation (NNMI) is an interagency initiative made up of public/private partnerships devoted to manufacturing excellence. Under the NNMI, each institute will bring together innovative manufacturers, university engineering schools, community

  17. Manufacturing of Profiles for Lightweight Structures

    SciTech Connect (OSTI)

    Chatti, Sami; Kleiner, Matthias

    2007-04-07

    The paper shows some investigation results about the production of straight and curved lightweight profiles for lightweight structures and presents their benefits as well as their manufacturing potential for present and future lightweight construction. A strong emphasis is placed on the manufacturing of straight and bent profiles by means of sheet metal bending of innovative products, such as tailor rolled blanks and tailored tubes, and the manufacturing of straight and curved profiles by the innovative procedures curved profile extrusion and composite extrusion, developed at the Institute of Forming Technology and Lightweight Construction (IUL) of the University of Dortmund.

  18. About Additive Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Introducing Additive Manufacturing at GE Global Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Introducing Additive Manufacturing at GE Global Research Prabhjot Singh, manager of the Additive Manufacturing Lab at GE Global Research, describes the technology used in his lab. You Might Also Like DirectWrite_V

  19. Laser Additive Manufacturing | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revolutionizing the Age-Old Rules of Manufacturing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Revolutionizing the Age-Old Rules of Manufacturing Learn how additive manufacturing, a 3D-printing technology, frees engineers to design the perfect jet engine. You Might Also Like IMG_0475 Innovation 24/7: We're Always

  20. Advanced Manufacturing Office Update, July 2014 | Department...

    Office of Environmental Management (EM)

    ... The winner, Michele Ano of Italy, will receive a 5,000 cash prize and see his concept built from scratch at the International Manufacturing Technology Show in September 2014. ...

  1. GE's Digital Marketplace to Revolutionize Manufacturing | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE's Digital Marketplace to Revolutionize Manufacturing Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  2. Researching NDE, Additive Manufacturing |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in NDE and Additive Manufacturing Provides Life-Changing Experience for GE Intern Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  3. Specific Manufacturing Capability Project presented with special...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Specific Manufacturing Capability Project presented with special thank-you note From left, DOE-ID's Ray Furstenau, INL's Riley Chase, SMC's Joel Duling, Army's Ltc. Evans and Mike...

  4. Artisan Manufacturing: Proposed Penalty (2010-CW-0712)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Artisan Manufacturing Company, Inc. failed to certify a variety of faucets as compliant with the applicable water conservation standards.

  5. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2.4 2.6 < 0.1 Manufacturing Energy and Carbon Footprint Sector: Transportation ... Steam Distribution Losses 1 3 23 1 3 7 6 23 16 0 3 0 275 44 132 0 1 2 Conventional Boilers ...

  6. Solid-State Lighting Manufacturing Workshop

    Broader source: Energy.gov [DOE]

    Nearly 200 lighting industry leaders, chip makers, fixture and component manufacturers, and others gathered in Fairfax, Virginia, on April 21 and 22, 2009, for the first-ever DOE Solid-State...

  7. USA Manufacturing: Proposed Penalty (2013-CE-5336)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that USA Manufacturing failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  8. Imperial Manufacturing: Proposed Penalty (2013-CE-5322)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Imperial Manufacturing, Inc. failed to certify walk-in cooler or freezer components as compliant with the energy conservation standards.

  9. Energy Department Supports Manufacturing Day | Department of...

    Energy Savers [EERE]

    he is discussing technologies such as additive manufacturing, better known as 3D-printing, an energy-efficient technology with potential to change the way we think about...

  10. Lane Electric Cooperative- Manufactured Homes Rebate Program

    Broader source: Energy.gov [DOE]

    Lane Electric Cooperative offers its customers an incentive for buying a new, permanent residence, EnergyStar manufactured home within service area. Qualifying customers may receive up to $500 if...

  11. Smart Manufacturing Institute Industry Day Workshop | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Intensification Workshop - September 29-30, 2015 WORKSHOP: HIGH VALUE ROLL TO ROLL (HV R2R) MANUFACTURING INNOVATION, DECEMBER 2-3, 2015 Fiber Reinforced Polymer Composite ...

  12. Energy Efficient Manufactured Homes Incentive Tax Credit

    Broader source: Energy.gov [DOE]

    To qualify for the nonrefundable $750 tax credit, an individual must purchase either: 1) a manufactured home that meets or exceeds the U.S. Environmental Protection Agency's and the U.S....

  13. Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

  14. Pend Oreille PUD- Manufactured Home Rebate Program

    Broader source: Energy.gov [DOE]

    Pend Oreille PUD offers cash incentives up to $800 to residential customers who purchase an ENERGY STAR-certified manufactured home. All program requirements must be met in order to receive rebate....

  15. Goodman Manufacturing: Noncompliance Determination (2011-SE-4301)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Goodman Manufacturing finding that model CPC180XXX3BXXXAA (CPC180*) of commercial package air conditioner does not comport with the energy conservation standards.

  16. Brighter Future for Kentucky Manufacturing Plants | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In a challenging economy, many companies are forced to lay off workers to keep doors open. ... Development to award four manufacturing companies up to 300,000 each to replace old, ...

  17. American Energy and Manufacturing Competitiveness Summit

    Broader source: Energy.gov [DOE]

    The 2015 American Energy and Manufacturing Competitiveness Summit will be hosted September 15–16; this gathering of preeminent leaders from industry, academia, labor, the national laboratories, government, and media aims to increase American competitiveness in clean energy and manufacturing. Bioenergy Technologies Office Technology Manager Jay Fitzgerald will be representing the Office, and the Lawrence Berkeley National Lab will be exhibiting a special hands-on demonstration of the latest bioenergy equipment, models, and other research, development, and demonstration tools.

  18. The Capital Intensity of Photovoltaics Manufacturing

    SciTech Connect (OSTI)

    Basore, Paul

    2015-10-19

    Factory capital expenditure (capex) for photovoltaic (PV) module manufacturing strongly influences the per-unit cost of a c-Si module. This provides a significant opportunity to address the U.S. DOE SunShot module price target through capex innovation. Innovation options to reduce the capex of PV manufacturing include incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. and financial approaches.

  19. Advanced Materials and Manufacturing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Manufacturing Argonne researchers prepare silicon wafers for full-scale deposition testing of dielectric coatings for large area detectors. Argonne researchers prepare silicon wafers for full-scale deposition testing of dielectric coatings for large area detectors. Argonne's award-winning expertise in the creation and analysis of novel materials contributes to wide-ranging advances that improve industrial processes and manufactured products, saving energy and reducing waste. Many

  20. Advanced Qualification of Additive Manufacturing Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additive Manufacturing Workshop Poster Abstract Submission - deadline July 10, 2015 Advanced Qualification of Additive Manufacturing Materials using in situ sensors, diagnostics and modeling Contact Institute Director Dr. Alexander V. Balatsky Institute for Materials Science (505) 665-0077 Email Deputy Director Dr. Jennifer S. Martinez Institute for Materials Science (505) 665-0045 Email Deputy Director Dr. Nathan A. Mara Institute for Materials Science (505) 667 8665 Email Institute

  1. Leading manufacturers in the Better Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    manufacturers in the Better Buildings, Better Plants Program are taking on bold commitments to improve energy efficiency across their operations. Building on President Obama's Better Buildings Initiative and the Administration's broader efforts to double energy productivity by 2030, the U.S. Department of Energy (DOE) works with manufacturers to set corporate-wide energy reduction goals, improve energy management, and track and report their progress. The industrial sector accounts for one-third

  2. Goodman Manufacturing Company Comment | Department of Energy

    Energy Savers [EERE]

    Goodman Manufacturing Company Comment Goodman Manufacturing Company Comment These comments are submitted by Goodman Global, Inc. ("Goodman") in response to the U.S. Department of Energy's (DOE) request for information (RFI) appearing in the Federal Register on July 3, 2014. PDF icon 07-18-2014 Goodman Comments on Regulatory Burden RFI.PDF More Documents & Publications 2014-06-25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule ISSUANCE 2015-08-21:

  3. Advanced Battery Manufacturing Facilities and Equipment Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt002_es_flicker_2012_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  4. Advanced Battery Manufacturing Facilities and Equipment Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt002_es_flicker_2011_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013)

  5. Advanced Battery Manufacturing Facilities and Equipment Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon esarravt002_flicker_2010_p.pdf More Documents & Publications Advanced Battery Manufacturing Facilities and Equipment Program Advanced Battery Manufacturing Facilities and Equipment Program AVTA: 2010 Honda Civic HEV with Experimental Ultra Lead Acid Battery Testing Results

  6. Clean Energy Manufacturing Initiative Southeast Regional Summit

    Broader source: Energy.gov [DOE]

    As part of the Clean Energy Manufacturing Initiative (CEMI), the U.S. Department of Energy (DOE) organizes regional summits around the country to expand its partnerships, share resources and successes, and refine its strategy to boost U.S. competitiveness in clean energy manufacturing. The CEMI Southeast Regional Summit, which will be held on July 9, 2015 at the Renaissance Atlanta Midtown Hotel in Atlanta, Georgia, is the third in this series.

  7. Advanced Qualification of Additive Manufacturing Materials Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July » Advanced Qualification of Additive Manufacturing Materials Workshop Advanced Qualification of Additive Manufacturing Materials Workshop WHEN: Jul 20, 2015 8:30 AM - Jul 21, 2015 7:30 PM WHERE: La Fonda on the Plaza Santa Fe, New Mexico SPEAKER: Multiple speakers CONTACT: Caryll Blount (505) 665-3950 CATEGORY: Science TYPE: Workshop INTERNAL: Calendar Login Event Description Invited speakers from universities and research centers, both US-based and Europe-based, will provide updates on

  8. Goodman Manufacturing Company Comment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Goodman Manufacturing Company Comment Goodman Manufacturing Company Comment These comments are submitted by Goodman Global, Inc. ("Goodman") in response to the U.S. Department of Energy's (DOE) request for information (RFI) appearing in the Federal Register on July 3, 2014. PDF icon 07-18-2014 Goodman Comments on Regulatory Burden RFI.PDF More Documents & Publications 2014-06-25 Issuance: Energy Conservation Standards for Residential Furnace Fans; Final Rule 2014-08-28 Issuance:

  9. Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs July 23, 2012 - 4:58pm Addthis Using its fiberglass technology expertise and a grant from the Energy Department's State Energy Program (SEP), Energetx Composites was able to shift its operations to producing wind turbine blades. | Photo courtesy of Energetx Composites. Using its fiberglass technology expertise and a grant from the

  10. Energetic additive manufacturing process with feed wire

    DOE Patents [OSTI]

    Harwell, Lane D. (Albuquerque, NM); Griffith, Michelle L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Pressly, Gary A. (Sandia Park, NM)

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  11. Clean Energy Manufacturing Resources - Technology Prototyping | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy

  12. Manufacturing laser glass by continuous melting

    SciTech Connect (OSTI)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  13. Teaming Up to Apply Advanced Manufacturing Methods to Wind Turbine

    Energy Savers [EERE]

    Production | Department of Energy Teaming Up to Apply Advanced Manufacturing Methods to Wind Turbine Production Teaming Up to Apply Advanced Manufacturing Methods to Wind Turbine Production February 1, 2016 - 4:13pm Addthis A view of the Big Area Additive Manufacturing machine that will 3D print molds used to manufacture wind turbine blades. Photo courtesy of Oak Ridge National Laboratory. A view of the Big Area Additive Manufacturing machine that will 3D print molds used to manufacture wind

  14. Manufacturing Energy and Carbon Footprints (2006 MECS) | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Manufacturing Energy and Carbon Footprints (2006 MECS) Manufacturing Energy and Carbon Footprints (2006 MECS) Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost-and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also

  15. 3 Reasons Why Advanced Manufacturing Institutes Matter | Department of

    Energy Savers [EERE]

    Energy Reasons Why Advanced Manufacturing Institutes Matter 3 Reasons Why Advanced Manufacturing Institutes Matter February 1, 2016 - 3:06pm Addthis Watch how manufacturing Institutes like the Institute for Advanced Composites Manufacturing Innovation are revolutionizing America's clean energy economy. Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs KEY FACTS National Network for Manufacturing Innovation aims to drive down the cost of advanced manufacturing

  16. Private-Public Partnerships for U.S. Advanced Manufacturing

    Energy Savers [EERE]

    Fiber Reinforced Polymer Composite Manufacturing Workshop Crystal City January 13, 2014 Private-Public Partnerships for U.S. Advanced Manufacturing Dr. Frank W. Gayle Advanced Manufacturing National Program Office www.manufacturing.gov U.S. Trade Balance of Advanced Technology 11% of U.S. GDP 12 million U.S. jobs * ~ half of U.S. Exports U.S. Trade Balance Advanced Technology Manufacturing Products ($ Billions) AMNPO Advanced Manufacturing National Program Office A White House chartered

  17. Goodman Manufacturing: Order (2011-SE-4301) | Department of Energy

    Office of Environmental Management (EM)

    Goodman Manufacturing: Order (2011-SE-4301) Goodman Manufacturing: Order (2011-SE-4301) March 2, 2012 DOE ordered Goodman Manufacturing Company, L.P., to pay a $14,800 civil penalty after finding Goodman had manufactured and distributed in commerce in the U.S. at least 74 units of commercial package air conditioner basic model CPC180*. PDF icon Goodman Manufacturing: Order (2011-SE-4301) More Documents & Publications Goodman Manufacturing: Proposed Penalty (2011-SE-4301) Goodman

  18. Fuel Cell Technologies Manufacturing Related Links | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing » Fuel Cell Technologies Manufacturing Related Links Fuel Cell Technologies Manufacturing Related Links The following resources provide details about U.S. Department of Energy (DOE)-funded fuel cell technologies manufacturing activities, other EERE and federal manufacturing activities and initiatives, research plans and roadmaps, workshops, and additional related links. DOE-Funded Fuel Cell Technologies Manufacturing Activities Each year, hydrogen and fuel cell projects funded by

  19. Indiana Manufacturing Institute Breaks Ground at Purdue University in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    support of Composites Manufacturing Research | Department of Energy Indiana Manufacturing Institute Breaks Ground at Purdue University in support of Composites Manufacturing Research Indiana Manufacturing Institute Breaks Ground at Purdue University in support of Composites Manufacturing Research July 14, 2015 - 1:16pm Addthis Left: Gary Bertoline, Dean of Purdue Polytechnic Institute; Kelly Visconti, Technology Manager for the U.S. Department of Energy Advanced Manufacturing Office; John

  20. Clean Energy Manufacturing Initiative: Technology Research and Development

    Office of Environmental Management (EM)

    | Department of Energy Clean Energy Manufacturing Initiative: Technology Research and Development Clean Energy Manufacturing Initiative: Technology Research and Development Through the Clean Energy Manufacturing Initiative, U.S. Department of Energy offices and programs have increased funding for manufacturing research and development (R&D) across the board with the goal of growing the clean energy manufacturing industry in the United States. The Advanced Manufacturing Office's R&D

  1. 2010 Manufacturing Energy and Carbon Footprints: References | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy References 2010 Manufacturing Energy and Carbon Footprints: References This five-page document provides the references to the Manufacturing Energy and Carbon Footprints (MECS 2010) PDF icon References for the Manufacturing Energy and Carbon Footprints (MECS 2010) More Documents & Publications Manufacturing Energy and Carbon Footprint References 2010 Manufacturing Energy and Carbon Footprints: Definitions and Assumptions Webtrends Archives by Fiscal Year - Advanced Manufacturing

  2. SunShot Photovoltaic Manufacturing Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Market » SunShot Photovoltaic Manufacturing Initiative SunShot Photovoltaic Manufacturing Initiative The SunShot Photovoltaic Manufacturing Initiative (PVMI) invests in manufacturing-focused research projects that strengthen the competitiveness of the U.S. PV module industry and supply chain. PVMI funding also establishes manufacturing development facilities that provide infrastructure for demonstrating, testing, optimizing, and manufacturing new technologies with reduced capital

  3. Energy 101: Clean Energy Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Manufacturing Energy 101: Clean Energy Manufacturing Addthis Description Most of us have a basic understanding of manufacturing. It's how we convert raw materials, components, and parts into finished goods that meet our essential needs and make our lives easier. But what about clean energy manufacturing? Clean energy and advanced manufacturing have the potential to rejuvenate the U.S. manufacturing industry and open pathways to increased American competitiveness. Text version Below

  4. Energy Department to Work with National Association of Manufacturers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to ...

  5. Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RFI DE-FOA-0000980: Summary of Responses Fiber Reinforced Polymer Composite Manufacturing ... More Documents & Publications Fiber Reinforced Polymer Composite Manufacturing Workshop ...

  6. Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives Large-Scale Manufacturing of Nanoparticle-Based Lubrication Additives PDF icon nanoparticulate-basedlubricati...

  7. Request for Information (RFI): Specific Clean Energy Manufacturing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (RFI): Specific Clean Energy Manufacturing Focus Areas Suitable for a Manufacturing Innovation Institute August 29, 2014 - 10:13am Addthis Funding: This RFI is not a Funding...

  8. KMC Controls Inc Kreuter Manufacturing Company | Open Energy...

    Open Energy Info (EERE)

    KMC Controls Inc Kreuter Manufacturing Company Jump to: navigation, search Name: KMC Controls, Inc. (Kreuter Manufacturing Company) Place: New Paris, Indiana Zip: IN 46553 Product:...

  9. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  10. Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yeelong Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Hebei Yeelong Wind Power Equipment Manufacturing Co Ltd Place: Hebei Province, China Sector:...

  11. Pihsiang Electric Vehicle Manufacturing Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Electric Vehicle Manufacturing Co Ltd Jump to: navigation, search Name: Pihsiang Electric Vehicle Manufacturing Co Ltd Place: Taiwan Sector: Vehicles Product: Taiwan-based maker of...

  12. Manufacturing R&D Initiative Lowers Costs and Boosts Quality...

    Energy Savers [EERE]

    Manufacturing R&D Initiative Lowers Costs and Boosts Quality Manufacturing R&D Initiative Lowers Costs and Boosts Quality PDF icon mfg-initiativefactsheetjun2015.pdf More...

  13. Taiwan Semiconductor Manufacturing Co Ltd TSMC | Open Energy...

    Open Energy Info (EERE)

    Manufacturing Co Ltd TSMC Jump to: navigation, search Name: Taiwan Semiconductor Manufacturing Co Ltd (TSMC) Place: Hsinchu, Taiwan Zip: 300 Sector: Solar Product: Taiwan-based...

  14. Category:Smart Grid Projects - Equipment Manufacturing | Open...

    Open Energy Info (EERE)

    Smart Grid Projects - Equipment Manufacturing Jump to: navigation, search Smart Grid Projects - Equipment Manufacturing category. Pages in category "Smart Grid Projects - Equipment...

  15. Shenyang Tianxiang Wind Equipments Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Tianxiang Wind Equipments Manufacturing Co Ltd Jump to: navigation, search Name: Shenyang Tianxiang Wind Equipments Manufacturing Co., Ltd Place: Shenyang, Liaoning Province, China...

  16. Proceedings from the Wind Manufacturing Workshop: Achieving 20...

    Office of Environmental Management (EM)

    Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind...

  17. Mingchuang Energy Manufacturing Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Mingchuang Energy Manufacturing Co Ltd Jump to: navigation, search Name: Mingchuang Energy Manufacturing Co Ltd Place: China Sector: Wind energy Product: Chinese wind turbine...

  18. Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd...

    Open Energy Info (EERE)

    Yinxing Energy PV Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd Place: Yinchuan, Ningxia...

  19. Nordex Yinchuan Wind Power Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yinchuan Wind Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Nordex (Yinchuan) Wind Power Equipment Manufacturing Co. Ltd Place: Yinchuan, Ningxia...

  20. Yatu Yangjiang Fengdian Equipment Manufacturing Co Ltd | Open...

    Open Energy Info (EERE)

    Yatu Yangjiang Fengdian Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Yatu (Yangjiang) Fengdian Equipment Manufacturing Co Ltd Place: Yangjiang, Guangdong...