Powered by Deep Web Technologies
Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Maglift Monorail  

DOE Green Energy (OSTI)

In the 1990s, significant experience has been gained with high-speed passenger rail technologies. On the one hand, high speed versions of conventional-configuration trains, such as the French TGV, have proven themselves in service; on the other hand, magnetic levitation (maglev) trains such as the German Transrapid, which some expected to supplant conventional trains in some high speed applications, have not yet proven themselves and face a problematic future. This is because of maglev's high capital cost, the magnetic drag which it introduces, and the high development risks associated with this complex technology. This paper examines a new form of high-speed train expected to be capable of speeds of 300 mph, the Maglift Monorail. The Maglift Monorail was developed by simplifying and improving two well-understood technologies--wheelsets and LIMs--and then integrating them. The solution is a vehicle with flangeless wheels mounted in two axes, powered by a high-efficiency and light-weight LIM, positioned to give magnetic lift (maglift), i.e., electromagnetic force in the vertical direction which reduces the vehicle weight on the suspension, and thereby reduces static and rolling drag. Maglift can be considered a form of maglev as it uses the same electromagnetic forces to lift and propel the vehicle. This solution is presented in a Spanish-designed monorail system which has a unique suspension designed to minimize friction while giving great stability and turning capability. This monorail vehicle is propelled by the Seraphim motor (Segmented Rail Phased Induction Motor) which virtually eliminates magnetic drag and provides significant maglift. The Maglift Monorail achieves lower operating costs and a greater overall reduction in drag than conventional noncontact maglev does, and it does so without incurring maglev's high capital costs or its technology development risks.

Hopkins, Tom; Kelley, Bruce; Marder, Barry; Silva, Julio Pinto; Turman, Bob

1999-06-10T23:59:59.000Z

2

Manufacturing Skills Certification System  

Science Conference Proceedings (OSTI)

... system to their business so that they utilize the skills certification system ... provide input to The Manufacturing Institute about aggregate skill needs of ...

2012-09-20T23:59:59.000Z

3

Advanced Manufacturing Office: Pump Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Pump Systems on Twitter Bookmark Advanced Manufacturing Office: Pump Systems on Google Bookmark Advanced Manufacturing Office: Pump Systems on Delicious Rank Advanced...

4

Advanced Manufacturing Office: Motor Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

5

EL Program: Systems Integration for Manufacturing and ...  

Science Conference Proceedings (OSTI)

... Strategic Goal: Smart Manufacturing, Construction, and Cyber-Physical Systems ... changing manufacturing by enabling a transformation to digitized ...

2013-01-03T23:59:59.000Z

6

Manufacturing System Design Framework Manual  

E-Print Network (OSTI)

Previous Lean Aerospace Initiative research in factory operations had indicated that the greatest performance gains are realized when the manufacturing system is designed from the top down and from supplier to the customer. ...

Vaughn, Amanda

2002-01-01T23:59:59.000Z

7

Manufacturing Systems Integration News  

Science Conference Proceedings (OSTI)

... NIST Cooperative Agreement with University of Maryland Supports Research on 21st Century Smart Systems Release Date: 10/13/2011 ...

2011-12-01T23:59:59.000Z

8

Solar energy systems for manufactured housing  

DOE Green Energy (OSTI)

The opportunities for solar energy utilization in manufactured housing such as mobile homes and modular homes are discussed. The general characteristics of the manufactured housing industry are described including market and prices. Special problems of the utilization of liquid heating collectors, air heating collectors, or passive types of solar heating systems in manufactured housing are considered. The market situation for solar energy in manufactured housing is discussed. The design of the Los Alamos Scientific Laboratory mobile/modular home is described.

Balcomb, J.D.

1976-01-01T23:59:59.000Z

9

Applying Remote Handling Attributes to the ITER Neutral Beam Cell Monorail Crane  

E-Print Network (OSTI)

The maintenance requirements for the equipment in the ITER Neutral Beam Cell requires components to be lifted and transported within the cell by remote means. To meet this requirement, the provision of an overhead crane with remote handling capabilities has been initiated. The layout of the cell has driven the design to consist of a monorail crane that travels on a branched monorail track attached to the cell ceiling. This paper describes the principle design constraints and how the remote handling attributes were applied to the concept design of the monorail crane, concentrating on areas where novel design solutions have been required and on the remote recovery requirements and solutions.

Crofts, O; Raimbach, J; Tesini, A; Choi, C-H; Damiani, C; Van Uffelen, M

2013-01-01T23:59:59.000Z

10

2.852 Manufacturing Systems Analysis, Spring 2004  

E-Print Network (OSTI)

This course deals with the following topics: Models of manufacturing systems, including transfer lines and flexible manufacturing systems; Calculation of performance measures, including throughput, in-process inventory, ...

Gershwin, Stanley

11

Sustainable Manufacturing in the Systems Integration Division  

Science Conference Proceedings (OSTI)

... Sustainability Modeling and Optimization Project. Sustainability of Unit Manufacturing Processes Project. Sustainable Manufacturing Program. ...

2011-12-23T23:59:59.000Z

12

Green Manufacturing Programs/Projects for the Systems ...  

Science Conference Proceedings (OSTI)

Green Manufacturing Programs/Projects for the Systems Integration Division. Production Network Supplier Characterization Project. ...

2011-12-23T23:59:59.000Z

13

Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science  

E-Print Network (OSTI)

Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Kent Core Requirement 3 See #12;Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT

Sheridan, Scott

14

An applied manufacturing system for highly-complex assembly factory  

E-Print Network (OSTI)

This thesis focuses on a manufacturing system at a semiconductor equipment manufacturing company (SEMC). The company faces highly variable demand for its products that require highly-complex assembly within the factory. ...

Umeda, Koji

2008-01-01T23:59:59.000Z

15

Soap Manufacturing TechnologyChapter 10 Soap Drying Systems  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 10 Soap Drying Systems Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 10 Soap Drying Systems from ...

16

Plastics and Extrusion - Manufacturing Facilities, Systems and Equipment  

Science Conference Proceedings (OSTI)

This PQ TechWatch presents steps to improving power quality (PQ) in plastics manufacturing facilities, systems, and equipment. The following sections are included: PQ and EMC for Plastics Manufacturing and Facility Equipment Financial Implications of PQ and EMC Problems Standards Distributed Generation and Energy Storage Power Conditioning in the Plastics Manufacturing Environment Mini Cases in Power Quality

2003-12-31T23:59:59.000Z

17

Systems Integration for Manufacturing and Construction ...  

Science Conference Proceedings (OSTI)

... test methods and tools to prove correctness do not exist ... The National Strategic Plan doe Advanced Manufacturing identifies NIST as a key ...

2013-01-03T23:59:59.000Z

18

MANUFACTURING  

Science Conference Proceedings (OSTI)

... Energy Efficiency in Buildings: Solid State Climate Control ... TE materials is green job creation, as Table ... can provide 21,454 US jobs in manufacturing ...

2011-08-01T23:59:59.000Z

19

Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. The Energy Department has supported the development...

20

A Temporal Neuro-Fuzzy Monitoring System to Manufacturing Systems  

E-Print Network (OSTI)

Fault diagnosis and failure prognosis are essential techniques in improving the safety of many manufacturing systems. Therefore, on-line fault detection and isolation is one of the most important tasks in safety-critical and intelligent control systems. Computational intelligence techniques are being investigated as extension of the traditional fault diagnosis methods. This paper discusses the Temporal Neuro-Fuzzy Systems (TNFS) fault diagnosis within an application study of a manufacturing system. The key issues of finding a suitable structure for detecting and isolating ten realistic actuator faults are described. Within this framework, data-processing interactive software of simulation baptized NEFDIAG (NEuro Fuzzy DIAGnosis) version 1.0 is developed. This software devoted primarily to creation, training and test of a classification Neuro-Fuzzy system of industrial process failures. NEFDIAG can be represented like a special type of fuzzy perceptron, with three layers used to classify patterns and failures....

Mahdaoui, Rafik; Mouss, Mohamed Djamel; Chouhal, Ouahiba

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Manufacturing of Products Containing Depleted Uranium Discussion of risks and possible impacts associated with fabrication of representative products containing depleted uranium. Beneficial Uses Risk Evaluation The Department has initiated the Depleted Uranium Uses Research and Development Program to explore the potential beneficial uses of the depleted uranium (DU), fluorine, and empty carbon steel DUF6 storage cylinders for effective use of resources and to achieve cost savings to the government. A number of tasks have been initiated related to uses of DU as a shielding material, catalyst, and as a semi-conductor material in electronic devices. An evaluation of the risks associated with the release

22

Material Design, Selection, and Manufacturing Methods for System Sustainment  

Science Conference Proceedings (OSTI)

This paper describes a material selection and validation process proven to be successful for manufacturing high-reliability long-life product. The National Secure Manufacturing Center business unit of the Kansas City Plant (herein called KCP) designs and manufactures complex electrical and mechanical components used in extreme environments. The material manufacturing heritage is founded in the systems design to manufacturing practices that support the U.S. Department of Energys National Nuclear Security Administration (DOE/NNSA). Material Engineers at KCP work with the systems designers to recommend materials, develop test methods, perform analytical analysis of test data, define cradle to grave needs, present final selection and fielding. The KCP material engineers typically will maintain cost control by utilizing commercial products when possible, but have the resources and to develop and produce unique formulations as necessary. This approach is currently being used to mature technologies to manufacture materials with improved characteristics using nano-composite filler materials that will enhance system design and production. For some products the engineers plan and carry out science-based life-cycle material surveillance processes. Recent examples of the approach include refurbished manufacturing of the high voltage power supplies for cockpit displays in operational aircraft; dry film lubricant application to improve bearing life for guided munitions gyroscope gimbals, ceramic substrate design for electrical circuit manufacturing, and tailored polymeric materials for various systems. The following examples show evidence of KCP concurrent design-to-manufacturing techniques used to achieve system solutions that satisfy or exceed demanding requirements.

David Sowder, Jim Lula, Curtis Marshall

2010-02-18T23:59:59.000Z

23

Integrated manufacturing system of high-pressure FRP pipes  

Science Conference Proceedings (OSTI)

In order to realise industrialised manufacturing of epoxy FRP pipes, the manufacturing system which can accomplish winding, internal heating curing and extraction processes by only one machine tool was developed. The winding motion control is undertaken ... Keywords: FEM, FRP pipes, blowing control, cooling control, curing control, embedded controllers, fibreglass reinforced plastics, finite element method, high-pressure pipes, integrated manufacturing, internal heating curing, motion control, simulation, thermochemical modelling, winding

Bo You; Jiazhong Xu; Xiongjian Wang

2007-11-01T23:59:59.000Z

24

2.854 Manufacturing Systems I (SMA 6304), Fall 2004  

E-Print Network (OSTI)

As the first in a sequence of four half-term courses, this course will provide the fundamental building blocks for conceptualizing, understanding and optimizing manufacturing systems and supply chains. These building blocks ...

Gershwin, Stanley

25

A methodology of availability assessment for complex manufacturing systems  

Science Conference Proceedings (OSTI)

The degree in which a system is operational in a given horizon of time is the key indicator of service quality perceived by business users. The availability of critical systems is a function of the system reliability, maintainability and accessibility ... Keywords: assessment, availability, complex manufacturing system, operational and reserve parts, simulation, structures

Gabriela Tont; Mihaiela Iliescu; Dan George Tont

2008-06-01T23:59:59.000Z

26

Advanced Manufacturing Office: Compressed Air Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

training and other resources Training Calendar Events Calendar Tools Tools to Assess Your Energy System AIRMaster+ Tool Scorecards and Simple Calculators Compressed Air Scorecard...

27

Project: Systems Engineering for Smart Manufacturing  

Science Conference Proceedings (OSTI)

... [2] Systems-2020 Study, Final Report, Booz Allen Hamilton, 16 August 2010. Available at http://www.acq.osd.mil/ se/docs ...

2013-01-03T23:59:59.000Z

28

Advanced Manufacturing Office: Training: Fan Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

the tool and presents the basics-and the benefits-of using it to target opportunities for energy savings in your plant. Fan System Assessment - self-paced workshop Availability:...

29

Manufacturing Research & Development for Systems that will  

E-Print Network (OSTI)

Advanced Plasma Energy Research Section 36 Advanced Energy Research Section 46 Advanced Energy Conversion Advanced Energy Storage Research Section 64 Complex Plasma Systems Research Section 74 Clean EnergyRadiationEnergy ResearchSection AdvancedAtomicEnergy ResearchSection AdvancedParticleBeamEnergy ResearchSection AdvancedPlasma

30

Materials/manufacturing element of the Advanced Turbine System Program  

SciTech Connect

One of the supporting elements of the Advanced Turbine Systems (ATS) Program is the materials/manufacturing technologies task. The objective of this element is to address critical materials issues for both industrial and utility gas turbines. DOE Oak Ridge Operations Office (ORO) will manage this element of the program, and a team from DOE-ORO and Oak Ridge National Laboratory is coordinating the planning for the materials/manufacturing effort. This paper describes that planning activity which is in the early stages.

Karnitz, M.A.; Devan, J.H.; Holcomb, R.S.; Ferber, M.K.; Harrison, R.W.

1994-08-01T23:59:59.000Z

31

Mining of flexible manufacturing system using work event logs and petri nets  

Science Conference Proceedings (OSTI)

One of buzzwords for modern manufacturing industry are flexible manufacturing systems (FMS), in which several machines are interlinked by an automated information and material flow system. Description and control upon these systems are of prominent significance. ...

Hesuan Hu; Zhiwu Li; Anrong Wang

2006-08-01T23:59:59.000Z

32

STATEMENT OF CONSIDERATIONS REQUEST BY MOTOROLA MANUFACTURING SYSTEMS FOR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17 '97 12:42PM US DOE OAK LEGAL P.2/12 17 '97 12:42PM US DOE OAK LEGAL P.2/12 ( * STATEMENT OF CONSIDERATIONS REQUEST BY MOTOROLA MANUFACTURING SYSTEMS FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER LBNL SUBCONTRACT NO. 6443828-CHANGE ORDER NO. 1; DOE WAIVER NO. W(A)-97-006; SAN-671 The Petitioner, Motorola Manufacturing Systems (MMS), has requested an Advance Waiver of the Government's domestic and foreign rights to inventions made under the above cited Change Order (Contract Modification) to research and development Contract No. 6443828 (R&D Contract). An Advance Waiver W(C)-97-027; SAN- 670 has been granted for the underlying R&D Contract on December 30, 1996. However, that-Advance Waiver was not to be applied "to a modification or extension of the contract where, through such modification or extension, the

33

STATEMENT OF CONSIDERATIONS REQUEST BY MOTOROLA MANUFACTURING SYSTEMS FOR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19 '96 12:04PM DOE/SF LEGAL OFFICE P.2 19 '96 12:04PM DOE/SF LEGAL OFFICE P.2 * * STATEMENT OF CONSIDERATIONS REQUEST BY MOTOROLA MANUFACTURING SYSTEMS FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER LBNL SUBCONTRACT NO. 6443828: DOE WAIVER NO. W(A)-96-027; SAN-670 The Petitioner, Motorola Manufacturing Systems (MMS), has requested an Advance Waiver of the Government's domestic and foreign rights to inventions made under the above cited research and development contract (R&D Contract). The objective of the R&D Contract, which is issued by the Lawrence Berkeley National Laboratory (LBNL) on behalf of DOE's Office of Health and Environmental Research (ER-70), is to provide consulting services to support planning activities toward the eventual creation of a next generation DNA sequencing facility. More

34

Manufactured residential utility wall system (ResCore), overview  

SciTech Connect

This paper provides an overview of the design and development of a manufactured residential utility wall system referred to as ResCore. ResCore is a self-contained, manufactured, residential utility wall that provides complete rough-in of utilities (power, gas, water, and phone) and other functions (exhaust, combustion make-up air, refrigerant lines, etc.) to serve the residential kitchen, bath, utility, and laundry rooms. Auburn University, Department of Industrial Design faculty and students, supported by a team of graduate student researchers and the project`s advisory team, developed the ResCore. The project was accomplished through a research subcontract from the US Department of Energy administered by the Oak Ridge National Laboratory. The ResCore wall system features a ``layered`` manufacturing technique that allows each major component group--structural, cold water, hot water, drain, gas, electric, etc.--to be built as a separate subassembly and easily brought together for final assembly. The two structural layers are reinforced with bridging that adds strength and also permits firm attachment of plumbing pipes and other systems to the wall frame.

Wendt, R. [Oak Ridge National Lab., TN (United States); Lundell, C.; Lau, T.M. [Auburn Univ., AL (United States)

1997-05-01T23:59:59.000Z

35

Manufactured Residential Utility Wall System (ResCore),  

SciTech Connect

This paper describes the design and development of a manufactured residential utility wall system referred to as ResCore. ResCore is a self contained, manufactured, residential utility wall that provides complete rough-in of utilities (power, gas, water, and phone) and other functions (exhaust, combustion make-up air, refrigerant lines, etc.) to serve the kitchen, bath, utility, and laundry rooms. Auburn University, Department of Industrial Design faculty, students, supported by a team of graduate student researchers and the project`s advisory team, developed the ResCore. The project was accomplished through a research subcontract from the U.S. Department of Energy administered by the Oak Ridge National Laboratory. The ResCore wall system features a layered manufacturing technique that allows each major component group: structural, cold water, hot water, drain, gas, electric, etc. to be built as a separate subassembly and easily brought together for final assembly. The two structural layers are reinforced with bridging that adds strength and also permits firm attachment of plumbing pipes and other systems to the wall frame.

Wendt, Robert [Oak Ridge National Lab., TN (United States); Lundell, Clark; Lau, Tin Man [Auburn Univ., AL (United States)

1997-12-31T23:59:59.000Z

36

Distributed sensor system for fault detection and isolation in multistage manufacturing systems  

Science Conference Proceedings (OSTI)

With rapid innovations in sensing technology and the rising complexity in manufacturing processes, increasingly less expensive and smart devices with multiple heterogeneous on-board sensors, networked through wired or wireless links and deployable ... Keywords: DSS, MMS, data management, decision making, distributed control, distributed sensor systems, fault detection, fault isolation, industrial automation, information processing, multistage manufacturing systems, optimal design, sensor networks

Du Shi-Chang; Xi Li-Feng; Shi Jian-Jun

2006-03-01T23:59:59.000Z

37

Materials/manufacturing element of the Advanced Turbine Systems Program  

SciTech Connect

The technology based portion of the Advanced Turbine Systems Program (ATS) contains several subelements which address generic technology issues for land-based gas-turbine systems. One subelement is the Materials/ Manufacturing Technology Program which is coordinated by DOE Oak Ridge Operations and Oak Ridge National Laboratory (ORNL). The work in this subelement is being performed predominantly by industry with assistance from universities and the national laboratories. Projects in this sub-element are aimed toward hastening the incorporation of new materials and components in gas turbines.

Karnitz, M.A.; Holcomb, R.S.; Wright, I.G.; Ferber, M.K. [Oak Ridge National Lab., TN (United States); Hoffman, E.E. [USDOE Oak Ridge Operations Office, TN (United States)

1995-12-31T23:59:59.000Z

38

Image change detection systems, methods, and articles of manufacture  

DOE Patents (OSTI)

Aspects of the invention relate to image change detection systems, methods, and articles of manufacture. According to one aspect, a method of identifying differences between a plurality of images is described. The method includes loading a source image and a target image into memory of a computer, constructing source and target edge images from the source and target images to enable processing of multiband images, displaying the source and target images on a display device of the computer, aligning the source and target edge images, switching displaying of the source image and the target image on the display device, to enable identification of differences between the source image and the target image.

Jones, James L. (Idaho Falls, ID); Lassahn, Gordon D. (Idaho Falls, ID); Lancaster, Gregory D. (Idaho Falls, ID)

2010-01-05T23:59:59.000Z

39

Design of an instrumented multifunctional foot for application to a heavy duty mobile robot manufacturing system  

E-Print Network (OSTI)

The design of a multifunctional foot for application to a mobile robotic system for heavy duty manufacturing is presented. The requirements for a target manufacturing task are presented and translated into requirements for ...

Menon, Manas Chandran

2008-01-01T23:59:59.000Z

40

A Physical Description of Additive Manufacturing for Metallic Systems  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials, Processes and Applications for Additive Manufacturing ... Lubricants in Deposition and Machining of Wire and Arc Additive...

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced manufacturing by spray forming: Aluminum strip and microelectromechanical systems  

SciTech Connect

Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. INEL is developing a unique spray-forming method based on de Laval (converging/diverging) nozzle designs to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Properties of the spray-formed material are tailored by controlling the characteristics of the spray plume and substrate. Two examples are described: high-volume production of aluminum alloy strip, and the replication of micron-scale features in micropatterned polymers during the production of microelectromechanical systems.

McHugh, K.M.

1994-12-31T23:59:59.000Z

42

Application of analytic hierarchy process in just-in-time manufacturing systems: a review  

Science Conference Proceedings (OSTI)

Because of globalisation and an associated global manufacturing environment, cost competitiveness has become necessary. In order to survive, the manufacturing firms have to provide a high level of service to the customers and a high level of throughput ... Keywords: AHP, JIT techniques, analytical hierarchy process, just-in-, manufacturing systems, performance measures, pull production, time

Sanjay Sharma; Narayan Agrawal

2010-07-01T23:59:59.000Z

43

Particle dispersing system and method for testing semiconductor manufacturing equipment  

DOE Patents (OSTI)

The system and method prepare a gas stream comprising particles at a known concentration using a particle disperser for moving particles from a reservoir of particles into a stream of flowing carrier gas. The electrostatic charges on the particles entrained in the carrier gas are then neutralized or otherwise altered, and the resulting particle-laden gas stream is then diluted to provide an acceptable particle concentration. The diluted gas stream is then split into a calibration stream and the desired output stream. The particles in the calibration stream are detected to provide an indication of the actual size distribution and concentration of particles in the output stream that is supplied to a process chamber being analyzed. Particles flowing out of the process chamber within a vacuum pumping system are detected, and the output particle size distribution and concentration are compared with the particle size distribution and concentration of the calibration stream in order to determine the particle transport characteristics of a process chamber, or to determine the number of particles lodged in the process chamber as a function of manufacturing process parameters such as pressure, flowrate, temperature, process chamber geometry, particle size, particle charge, and gas composition.

Chandrachood, Madhavi (Sunnyvale, CA); Ghanayem, Steve G. (Sunnyvale, CA); Cantwell, Nancy (Milpitas, CA); Rader, Daniel J. (Albuquerque, NM); Geller, Anthony S. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

44

Soap Manufacturing TechnologyChapter 8 Continuous Saponification and Neutralization Systems  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 8 Continuous Saponification and Neutralization Systems Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 8 Continuous Saponifica

45

Critical success factors for successful implementation of enterprise resource planning systems in manufacturing organisations  

Science Conference Proceedings (OSTI)

This study examines the impact of the Critical Success Factors (CSFs) on the successful implementation of Enterprise Resource Planning (ERP) systems in Malaysian manufacturing organisations. The ERP system is an integrated package of ... Keywords: ERP implementation, Malaysia, business information systems, critical success factors, enterprise resource planning, implementation success, manufacturing organisations, moderating effect, organisational resistance, pre-determined goals, resistance to change, user satisfaction

T. Ramayah; Matthew H. Roy; Sawaridass Arokiasamy; Imad Zbib; Zafar U. Ahmed

2007-11-01T23:59:59.000Z

46

Evaluation of control systems for automated aircraft wing manufacturing  

E-Print Network (OSTI)

The Boeing Company is looking to bring aircraft manufacturing technology into the 21st century. As part of this process, several projects have been started to develop the technologies required to achieve Boeing's vision ...

Herrera, Jason (Jason Richard)

2013-01-01T23:59:59.000Z

47

FACILITIES ENGINEER WEST CHICAGO Execute capital projects for manufacturing facilities and utilities systems: scope development, cost  

E-Print Network (OSTI)

improvements, including all stages of project engineering: scope development, cost estimation, system designFACILITIES ENGINEER ­ WEST CHICAGO OVERVIEW: Execute capital projects for manufacturing facilities and utilities systems: scope development, cost estimation, system design, equipment sizing

Heller, Barbara

48

A revised electromagnetism-like mechanism for layout design of reconfigurable manufacturing system  

Science Conference Proceedings (OSTI)

The layout design problem is one of the most important issues for manufacturing system design and control. A revised electromagnetism-like mechanism (REM) is proposed in this paper for the layout design of reconfigurable manufacturing systems utilizing ... Keywords: Automated guided vehicle, Electromagnetism-like mechanism, Layout design, Variable neighbourhood search

Xianping Guan; Xianzhong Dai; Baijing Qiu; Jun Li

2012-08-01T23:59:59.000Z

49

Impacts of internal and interorganizational information systems on the outsourcing of manufacturing  

Science Conference Proceedings (OSTI)

Drawing on transaction cost economics, this paper looks at the relationship of IT use to the outsourcing of manufacturing using survey data from US manufacturers. We find that greater use of interorganizational systems (IOS) is associated with greater ... Keywords: Build-to-order, Customization, Hierarchies, Internal IT, Internet, Interorganizational information systems, Markets, Outsourcing, Procurement, Transaction cost

Jason Dedrick; Kenneth L. Kraemer

2010-06-01T23:59:59.000Z

50

Soap Manufacturing TechnologyChapter 9 Semi-Boiled Soap Production Systems  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 9 Semi-Boiled Soap Production Systems Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 9 Semi-Boiled Soap Production Systems fr

51

A study of the Mighty Motors operating system : making sustainable improvements at a powertrain manufacturing facility  

E-Print Network (OSTI)

Many manufacturing companies are developing their own production or operating system, particularly in an effort to duplicate the widely renowned Toyota Production System. Toyota has demonstrated its potential for improving ...

Dibb, Gregory David, 1974-

2004-01-01T23:59:59.000Z

52

Forecast-driven tactical planning models for manufacturing systems  

E-Print Network (OSTI)

Our work is motivated by real-world planning challenges faced by a manufacturer of industrial products. In the first part of the thesis, we study a multi-product serial-flow production line that operates in a low-volume, ...

Chhaochhria, Pallav

2011-01-01T23:59:59.000Z

53

Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturable Manufacturable Microchannel Systems for Passive PEM Water Management IIPS Number 16910 Low Low - - Cost Cost Manufacturable Manufacturable Microchannel Systems for Passive Microchannel Systems for Passive PEM Water Management PEM Water Management IIPS Number 16910 IIPS Number 16910 Ward TeGrotenhuis, Susie Stenkamp, Curt Lavender Pacific Northwest National Laboratories Richland, WA HFCIT Kick Off Meeting February 2007 2 Project objective: Create a low cost and passive PEM water management system Project objective: Project objective: Create a low cost Create a low cost and passive PEM water management system and passive PEM water management system Specific Targets Addressed for 3.4.2 Automotive-Scale: 80 kWe Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen

54

Fuzzy theory applied in quality management of distributed manufacturing system: A literature review and classification  

Science Conference Proceedings (OSTI)

Fuzzy theory has been regarded as a very important technique for quality management (QM) of distributed manufacturing system and attracts the attentions of academic and industry; however, there is a lack of a comprehensive literature review and a classification ... Keywords: Classification, Clustering analysis, Distributed manufacturing network, Fuzzy theory, Quality management

Lv Yaqiong; Lee Ka Man; Wu Zhang

2011-03-01T23:59:59.000Z

55

US manufacturers of commercially available stand-alone photovoltaic lighting systems  

DOE Green Energy (OSTI)

This report introduces photovoltaic (PV) lighting systems, gives some specifications for ordering these systems, and provides a list of some of the manufacturers of these systems in the United States. These PV lighting systems are all commercially available. They are stand-alone systems because they are not tied to the electric utility power grid.

McNutt, P.

1994-05-01T23:59:59.000Z

56

A study on 'branded servicisation' of manufacturers in the Japanese institutional systems a conceptual base for empirical studies  

Science Conference Proceedings (OSTI)

This paper first attempts to clarify the backdrops where 'service' has come to light and the 'branded servicisation' of manufacturers has become a necessity, critically reviews the issue of what service is partly by looking at the history ... Keywords: Japan, Japanese manufacturers, branded services, brandisation, manufacturing industry, service branding, service system suppliers, servicisation, systemic service, systemic service design

Takashi Kikuchi; Akira Kamoshida

2009-03-01T23:59:59.000Z

57

A Wireless Sensor for Tool Temperature Measurement and its Integration within a Manufacturing System  

E-Print Network (OSTI)

and networking influence CIM at bide (WC+12%TiC+7%cobalt).Flexible Machining Cells, CIM/PED- 8, ASME, 1984, pp. 19-Integrated Manufacturing (CIM) Systems. The final section of

Wright, Paul K; Dornfeld, David; Hillaire, R. G; Ota, Nathan K

2006-01-01T23:59:59.000Z

58

Electronic systems and design manufacturing in India: opportunities and challenges - a policy perspective  

Science Conference Proceedings (OSTI)

India has become a global power house in software and software services sector. However, it lags behind in electronics systems design and manufacturing (ESDM) capabilities. However, it is important for India to develop this sector both because of the ...

Ajay Kumar

2011-12-01T23:59:59.000Z

59

Facility location for a hybrid manufacturing/remanufacturing system with carbon costs.  

E-Print Network (OSTI)

??This thesis addresses inventory management and facility location for a hybrid manufacturing/remanufacturing system where remanufacturing lead-time is different from production lead-time. We also investigate the (more)

Kim, Yusuk

2013-01-01T23:59:59.000Z

60

Manufacturing R&D of Onboard Hydrogen Storage Systems for Transportati...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems for Transportation Applications Background Material for the Manufacturing R&D Workshop to be held July 13-14, 2005 Washington, DC July 7, 2005 Introduction In his...

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

2.853 Manufacturing Systems I: Analytical Methods and Flow Models, Fall 2002  

E-Print Network (OSTI)

Provides ways to conceptualize and analyze manufacturing systems and supply chains in terms of material flow, information flow, capacities, and flow times. Fundamental building blocks: Inventory and Queuing Models, Forecasting ...

Gershwin, S. B.

62

Soap Manufacturing TechnologyChapter 4 Formulation of Traditional Soap Cleansing Systems  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 4 Formulation of Traditional Soap Cleansing Systems Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 4 Formulation of Tradition

63

Summary of Research Conducted by the Manufacturing Systems Team 1994-2002  

E-Print Network (OSTI)

The Manufacturing Systems team was one of the research teams within the Lean Aerospace Initiative (LAI) whose goal was to document, analyze and communicate the design attributes and relationships that lead to significant ...

Vaughn, Mandy

2002-01-01T23:59:59.000Z

64

FROM PLANT AND LOGISTICS CONTROL TO MULTI-ENTERPRISE COLLABORATION: Milestone report of the Manufacturing & Logistics Systems Coordinating Committee  

E-Print Network (OSTI)

, product life cycles shrink, and profit margins decrease. In addition, the capital costs of manufacturing of the Manufacturing & Logistics Systems Coordinating Committee S.Y. Nofa* , G. Morelb , L. Monostoric , A. Molinad , F-765-494-1299 Abstract: Current and emerging manufacturing and logistics systems are posing new challenges

Paris-Sud XI, Université de

65

A collaborative and integrated platform to support distributed manufacturing system using a service-oriented approach based on cloud computing paradigm  

Science Conference Proceedings (OSTI)

Today's manufacturing enterprises struggle to adopt cost-effective manufacturing systems. Overview of the recent manufacturing enterprises shows that successful global manufacturing enterprises have distributed their manufacturing capabilities over the ... Keywords: Cloud computing, Collaborative product development, Distributed product development, Modularity, STEP standard, Service-oriented manufacturing, XML

Omid Fatahi Valilai; Mahmoud Houshmand

2013-02-01T23:59:59.000Z

66

Field Measurements of Heating System Efficiency in Nine Electrically-Heated Manufactured Homes.  

Science Conference Proceedings (OSTI)

This report presents the results of field measurements of heating efficiency performed on nine manufactured homes sited in the Pacific Northwest. The testing procedure collects real-time data on heating system energy use and heating zone temperatures, allowing direct calculation of heating system efficiency.

Davis, Bob; Siegel, J.; Palmiter, L.; Baylon, D.

1996-07-01T23:59:59.000Z

67

Virtual prototyping of automated manufacturing systems with Geometry-driven Petri nets  

Science Conference Proceedings (OSTI)

The design process of automated manufacturing systems typically involves physical prototypes to validate the interactions between hardware and software components. However, physical prototyping is expensive and time consuming, which often leads to insufficient ... Keywords: Early testing, Geometry-driven Petri nets, Robotic systems, Simulation, Virtual prototyping

Jens H. Weber-Jahnke; Jochen Stier

2009-12-01T23:59:59.000Z

68

The economics of hybrid manufacturing systems in a closed-loop supply chain  

Science Conference Proceedings (OSTI)

This paper deals with the economics of a closed-loop supply chain and the decision-making in a hybrid manufacturing system. We develop analytic models and quantify the potential profits gain generated by such a hybrid system that collects, remanufactures, ... Keywords: Closed-loop supply chain, Competition, Newsvendor, Remanufacturing, Reverse logistics

Jen-Ming Chen; Chia-I Chang

2012-07-01T23:59:59.000Z

69

A risk mitigation framework for integrated-enterprise systems implementation for the manufacturing environment  

Science Conference Proceedings (OSTI)

Companies today are faced with the constant challenge to reinvent and reengineer themselves and to actively collaborate with business partners and customers in order to stay competitive and survive in the market. This has mandated the need for companies ... Keywords: enterprise integration, information systems frameworks, integrated enterprise systems, manufacturing industry, risk mitigation

Lip Tse Ho; Grier Lin; Sev Nagalingam

2009-03-01T23:59:59.000Z

70

Manufacturing Industrial Development for the Alternative Energy Systems-Final Report  

SciTech Connect

NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality, welds on joints with gaps and mismatches typical of those seen in heavy manufacturing. Wind towers utilize varying thicknesses of steel throughout their structures to meet the mechanical load requirements while keeping material costs low. A typical tower might have as many as twelve different material thicknesses. Joining each thickness requires a unique joint design and welding approach to enable the management of quality, productivity, and mechanical properties. In this program, laser joining of materials with thicknesses ranging from 12mm to 35mm were evaluated against the standard quality and mechanical requirements for General Electric wind tower components. The joining processes demonstrated showed the ability to meet key requirements with the appropriate process controls in place.

Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

2013-01-30T23:59:59.000Z

71

Building flexible manufacturing systems based on peer-its  

Science Conference Proceedings (OSTI)

Peer-to-peer computing principles have started to pervade into mechanical control systems, inducing a paradigm shift from centralized to autonomic control. We have developed a self-contained, miniaturized, universal and scalable peer-to-peer based hardware-software ...

A. Ferscha; M. Hechinger; M. dos Santos Rocha; R. Mayrhofer; A. Zeidler; A. Riener; M. Franz

2008-04-01T23:59:59.000Z

72

Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 NAICS Code June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 311 Food Manufacturing 875 926 1,015 -13.9 312 Beverage and Tobacco Product Mfg. 26 17 19 35.8 313 Textile Mills 22 22 25 -13.9 315 Apparel Manufacturing w w w w 321 Wood Product Manufacturing w w w w 322 Paper Manufacturing 570 583

73

An Automatic Control System for a Manufacturing Process in an Explosive Environment  

SciTech Connect

The authors describe a state-of-the-art automatic control system as it is used to control a manufacturing process in an explosive environment. Compact, explosion proof sensing devices and a custom designed interface to a controller input are discussed.

Page, D. O; Draut, C. F.

1973-06-01T23:59:59.000Z

74

Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems  

DOE Green Energy (OSTI)

This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

Peters, E.M.; Masso, J.D. [AOtec, Southbridge, MA (United States)

1995-10-01T23:59:59.000Z

75

Real time intelligent process control system for thin film solar cell manufacturing  

SciTech Connect

This project addresses the problem of lower solar conversion efficiency and waste in the typical solar cell manufacturing process. The work from the proposed development will lead toward developing a system which should be able to increase solar panel conversion efficiency by an additional 12-15% resulting in lower cost panels, increased solar technology adoption, reduced carbon emissions and reduced dependency on foreign oil. All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStratas fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process on-the-fly in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

George Atanasoff

2010-10-29T23:59:59.000Z

76

Improving Energy Efficiency in Pharmaceutical ManufacturingOperations -- Part I: Motors, Drives and Compressed Air Systems  

Science Conference Proceedings (OSTI)

In Part I of this two-part series, we focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Pharmaceutical manufacturing plants in the U.S. spend nearly $1 billion each year for the fuel and electricity they need to keep their facilities running (Figure 1, below). That total that can increase dramatically when fuel supplies tighten and oil prices rise, as they did last year. Improving energy efficiency should be a strategic goal for any plant manager or manufacturing professional working in the drug industry today. Not only can energy efficiency reduce overall manufacturing costs, it usually reduces environmental emissions, establishing a strong foundation for a corporate greenhouse-gas-management program. For most pharmaceutical manufacturing plants, Heating, Ventilation and Air Conditioning (HVAC) is typically the largest consumer of energy, as shown in Table 1 below. This two-part series will examine energy use within pharmaceutical facilities, summarize best practices and examine potential savings and return on investment. In this first article, we will focus on efficient use of motors, drives and pumps, both for process equipment and compressed air systems. Part 2, to be published in May, will focus on overall HVAC systems, building management and boilers.

Galitsky, Christina; Chang, Sheng-chien; Worrell, Ernst; Masanet,Eric

2006-04-01T23:59:59.000Z

77

Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,256 2,561 1,864 4,817 4,343 10.9 312 Beverage and Tobacco Product Mfg. 38 50 48 88 95 -7.7 313 Textile Mills 31 29 21 60 59 2.2 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w

78

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

precision machining technology, automated machining and manufacturing technology, welding, photonics technology, microelectromechanical systems (MEMS), and testing and...

79

Real time intelligent process control system for thin film solar cell manufacturing  

DOE Green Energy (OSTI)

All solar cell manufacturing processes today suffer from manufacturing inefficiencies that currently lead to lower product quality and lower conversion efficiency, increased product cost and greater material and energy consumption. This results in slower solar energy adoption and extends the time solar cells will reach grid parity with traditional energy sources. The thin film solar panel manufacturers struggle on a daily basis with the problem of thin film thickness non-uniformity and other parameters variances over the deposited substrates, which significantly degrade their manufacturing yield and quality. Optical monitoring of the thin films during the process of the film deposition is widely perceived as a necessary step towards resolving the non-uniformity and non-homogeneity problem. In order to enable the development of an optical control system for solar cell manufacturing, a new type of low cost optical sensor is needed, able to acquire local information about the panel under deposition and measure its local characteristics, including the light scattering in very close proximity to the surface of the film. This information cannot be obtained by monitoring from outside the deposition chamber (as traditional monitoring systems do) due to the significant signal attenuation and loss of its scattering component before the reflected beam reaches the detector. In addition, it would be too costly to install traditional external in-situ monitoring systems to perform any real-time monitoring over large solar panels, since it would require significant equipment refurbishing needed for installation of multiple separate ellipsometric systems, and development of customized software to control all of them simultaneously. The proposed optical monitoring system comprises AccuStratas fiber optics sensors installed inside the thin film deposition equipment, a hardware module of different components (beyond the scope of this project) and our software program with iterative predicting capability able to control material bandgap and surface roughness as films are deposited. Our miniature fiber optics monitoring sensors are installed inside the vacuum chamber compartments in very close proximity where the independent layers are deposited (an option patented by us in 2003). The optical monitoring system measures two of the most important parameters of the photovoltaic thin films during deposition on a moving solar panel - material bandgap and surface roughness. In this program each sensor array consists of two fiber optics sensors monitoring two independent areas of the panel under deposition. Based on the monitored parameters and their change in time and from position to position on the panel, the system is able to provide to the equipment operator immediate information about the thin films as they are deposited. This DoE Supply Chain program is considered the first step towards the development of intelligent optical control system capable of dynamically adjusting the manufacturing process on-the-fly in order to achieve better performance. The proposed system will improve the thin film solar cell manufacturing by improving the quality of the individual solar cells and will allow for the manufacturing of more consistent and uniform products resulting in higher solar conversion efficiency and manufacturing yield. It will have a significant impact on the multibillion-dollar thin film solar market. We estimate that the financial impact of these improvements if adopted by only 10% of the industry ($7.7 Billion) would result in about $1.5 Billion in savings by 2015 (at the assumed 20% improvement). This can b

George Atanasoff

2010-10-29T23:59:59.000Z

80

Automated design synthesis of robotic/human workcells for improved manufacturing system design in hazardous environments  

SciTech Connect

Manufacturing tasks that are deemed too hazardous for workers require the use of automation, robotics, and/or other remote handling tools. The associated hazards may be radiological or nonradiological, and based on the characteristics of the environment and processing, a design may necessitate robotic labor, human labor, or both. There are also other factors such as cost, ergonomics, maintenance, and efficiency that also effect task allocation and other design choices. Handling the tradeoffs of these factors can be complex, and lack of experience can be an issue when trying to determine if and what feasible automation/robotics options exist. To address this problem, we utilize common engineering design approaches adapted more for manufacturing system design in hazardous environments. We limit our scope to the conceptual and embodiment design stages, specifically a computational algorithm for concept generation and early design evaluation. In regard to concept generation, we first develop the functional model or function structure for the process, using the common 'verb-noun' format for describing function. A common language or functional basis for manufacturing was developed and utilized to formalize function descriptions and guide rules for function decomposition. Potential components for embodiment are also grouped in terms of this functional language and are stored in a database. The properties of each component are given as quantitative and qualitative criteria. Operators are also rated for task-relevant criteria which are used to address task compatibility. Through the gathering of process requirements/constraints, construction of the component database, and development of the manufacturing basis and rule set, design knowledge is stored and available for computer use. Thus, once the higher level process functions are defined, the computer can automate the synthesis of new design concepts through alternating steps of embodiment and function structure updates/decomposition. In the process, criteria guide function allocation of components/operators and help ensure compatibility and feasibility. Through multiple function assignment options and varied function structures, multiple design concepts are created. All of the generated designs are then evaluated based on a number of relevant evaluation criteria: cost, dose, ergonomics, hazards, efficiency, etc. These criteria are computed using physical properties/parameters of each system based on the qualities an engineer would use to make evaluations. Nuclear processes such as oxide conversion and electrorefining are utilized to aid algorithm development and provide test cases for the completed program. Through our approach, we capture design knowledge related to manufacturing and other operations in hazardous environments to enable a computational program to automatically generate and evaluate system design concepts.

Williams, Joshua M. [Los Alamos National Laboratory

2012-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Dal-Tile: Optimized Compressed Air System Improves Performance and Saves Energy at a Tile Manufacturing Plant  

SciTech Connect

This DOE Industrial Technologies Program case study describes the significant energy and costs savings resulting from compressed air system improvements at Dal-Tile, a Texas tile manufacturing plant.

2005-08-01T23:59:59.000Z

82

Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 15, System design description. Volume 1  

Science Conference Proceedings (OSTI)

This System Design Description, prepared in accordance with the TPX Project Management Plan provides a summary or TF Magnet System design features at the conclusion of Phase I, Preliminary Design and Manufacturing Research. The document includes the analytical and experimental bases for the design, and plans for implementation in final design, manufacturing, test, and magnet integration into the tokamak. Requirements for operation and maintenance are outlined, and references to sources of additional information are provided.

NONE

1995-09-22T23:59:59.000Z

83

Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture  

SciTech Connect

Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

McCown, Steven H. (Rigby, ID); Derr, Kurt W. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID)

2012-05-08T23:59:59.000Z

84

Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture  

DOE Patents (OSTI)

Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

2011-02-01T23:59:59.000Z

85

Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,214 2,356 1,994 4,570 4,353 5.0 312 Beverage and Tobacco Product Mfg. 48 37 53 85 90 -5.6 313 Textile Mills 31 29 22 59 63 -6.1 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w w w w 322 Paper Manufacturing

86

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network (OSTI)

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different outdoor temperatures are obtained, and the heating load of the manufactured space is analyzed. The relationship between the envelope internal surface temperature and the workspace temperature is also analyzed in this paper. CFD simulation software is used to simulate the temperature field and the envelope's internal surface temperature of the manufacture space with hot-air heating system. Comparison and analysis of heating loads are done between the manufactured spaces with convection heating and radiant heating systems.

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

87

Analyzing and improving throughput of Automated Storage and Retrieval Systems in personal computer manufacturing  

E-Print Network (OSTI)

The content of this thesis draws heavily on work completed during a 6.5 month MIT Leaders for Manufacturing (LFM) internship at Dell Corporation's personal computer manufacturing facility in Lebanon, Tennessee (EG1) from ...

Heaps-Nelson, G. Thomas

2005-01-01T23:59:59.000Z

88

Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

Ulsh, M.; Wheeler, D.; Protopappas, P.

2011-08-01T23:59:59.000Z

89

Methods of defining ontologies, word disambiguation methods, computer systems, and articles of manufacture  

Science Conference Proceedings (OSTI)

Methods of defining ontologies, word disambiguation methods, computer systems, and articles of manufacture are described according to some aspects. In one aspect, a word disambiguation method includes accessing textual content to be disambiguated, wherein the textual content comprises a plurality of words individually comprising a plurality of word senses, for an individual word of the textual content, identifying one of the word senses of the word as indicative of the meaning of the word in the textual content, for the individual word, selecting one of a plurality of event classes of a lexical database ontology using the identified word sense of the individual word, and for the individual word, associating the selected one of the event classes with the textual content to provide disambiguation of a meaning of the individual word in the textual content.

Sanfilippo, Antonio P. (Richland, WA); Tratz, Stephen C. (Richland, WA); Gregory, Michelle L. (Richland, WA); Chappell, Alan R. (Seattle, WA); Whitney, Paul D. (Richland, WA); Posse, Christian (Seattle, WA); Baddeley, Robert L. (Richland, WA); Hohimer, Ryan E. (West Richland, WA)

2011-10-11T23:59:59.000Z

90

EXERGY BASED METHOD FOR SUSTAINABLE ENERGY UTILIZATION ANALYSIS OF A NET SHAPE MANUFACTURING SYSTEM.  

E-Print Network (OSTI)

??The approach advocated in this work implements energy/exergy analysis and indirectly an irreversibility evaluation to a continuous manufacturing process involving discrete net shape production of (more)

SANKARA, JAYASANKAR

2005-01-01T23:59:59.000Z

91

Process planning for an Additive/Subtractive Rapid Pattern Manufacturing system.  

E-Print Network (OSTI)

??This dissertation presents a rapid manufacturing process for sand casting patterns using a hybrid additive/subtractive approach. This includes three major areas of research that will (more)

Luo, Xiaoming

2009-01-01T23:59:59.000Z

92

Manufacturing Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE Hydrogen Program Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels Mark Leavitt, Alex Ly Quantum Fuel Systems Technologies Worldwide Inc. Karl Nelson, Brice Johnson The Boeing Company Ken Johnson, Kyle Alvine, Stan Pitman, Michael Dahl, Daryl Brown

93

Determining manufacturing parameters to suppress system variance using linear and non-linear models  

Science Conference Proceedings (OSTI)

Determining manufacturing parameters for a new product is fundamentally a difficult problem, because there has little suggestion information. There are several researches on this topic, and most of them focus on single specific model or the engineer's ... Keywords: Engineering problem, Manufacturing, TFT-LCD

Der-Chiang Li; Wen-Chih Chen; Chiao-Wen Liu; Che-Jung Chang; Chien-Chih Chen

2012-03-01T23:59:59.000Z

94

GT MENTOR: A High School Education Program in Systems Engineering and Additive Manufacturing  

E-Print Network (OSTI)

-manufacturing infrastructure will be developed that integrates CAD, CAE, design-for-manufacturing, and CAM software tools, and to ensure that high school-age youths are exposed to the principles of modern prize-based design and foundry of user-friendly, open-source tools to enable the utilization of conventional social network media (e

95

Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)  

SciTech Connect

EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

Goodrich, A. C.; Woodhouse, M.; James, T.

2011-02-01T23:59:59.000Z

96

Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)  

DOE Green Energy (OSTI)

EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

Goodrich, A. C.; Woodhouse, M.; James, T.

2011-02-01T23:59:59.000Z

97

Multiple-part-type systems in high volume manufacturing : Kanban System design for automatic production scheduling  

E-Print Network (OSTI)

A Kanban Production System is designed to help a factory line meet fluctuating demands for multiple part types. Based on the parameter settings of the Control-Point Policy, the optimum Kanban levels are obtained. The ...

Lee, Kaizhao

2008-01-01T23:59:59.000Z

98

AFFORDABLE MULTI-LAYER CERAMIC (MLC) MANUFACTURING FOR POWER SYSTEMS (AMPS)  

DOE Green Energy (OSTI)

McDermott Technology, Inc. (MTI) is attempting to develop high-performance, cost-competitive solid oxide fuel cell (SOFC) power systems. Recognizing the challenges and limitations facing the development of SOFC stacks comprised of electrode-supported cells and metallic interconnects, McDermott Technology, Inc. (MTI) has chosen to pursue an alternate path to commercialization. MTI is developing a multi-layer, co-fired, planar SOFC stack that will provide superior performance and reliability at reduced costs relative to competing designs. The MTI approach combines state-of-the-art SOFC materials with the manufacturing technology and infrastructure established for multi-layer ceramic (MLC) packages for the microelectronics industry. The rationale for using MLC packaging technology is that high quality, low-cost manufacturing has been demonstrated at high volumes. With the proper selection of SOFC materials, implementation of MLC fabrication methods offers unique designs for stacks (cells and interconnects) that are not possible through traditional fabrication methods. The MTI approach eliminates use of metal interconnects and ceramic-metal seals, which are primary sources of stack performance degradation. Co-fired cells are less susceptible to thermal cycling stresses by using material compositions that have closely matched coefficients of thermal expansion between the cell and the interconnect. The development of this SOFC stack technology was initiated in October 1999 under the DOE cosponsored program entitled ''Affordable Multi-layer Ceramic Manufacturing for Power Systems (AMPS)''. The AMPS Program was conducted as a two-phase program: Phase I--Feasibility Assessment (10/99--9/00); and Phase II--Process Development for Co-fired Stacks (10/00-3/02). This report provides a summary of the results from Phase I and a more detailed review of the results for Phase II. Phase I demonstrated the feasibility for fabricating multi-layer, co-fired cells and interconnects and resulted in selection of the most promising configuration for high-performance, low-cost SOFC stacks. During Phase II, the MTI Team successfully refined the fabrication processes and achieved low-rate production of cells and interconnects (about 100 per month). Short stacks (3-10 cells) using co-fired cells and interconnects were assembled and tested to validate the MTI multi-layer SOFC design. The team successfully demonstrated co-fired repeat units, comprised of a cell and the interconnect layers. Development of co-fired cells and multi-layer interconnects based on the new stack design was completed; all component fabrication and stack testing efforts were redirected to the new design toward the end of Phase II. Finally, low-cost alternate materials for the interconnect body and conductors within the interconnect were identified. At the end of Phase II, the MTI Team successfully transitioned the multi-layer SOFC stack development effort to the Solid State Energy Conversion Alliance (SECA) program.

E.A. Barringer, Ph.D.

2002-11-27T23:59:59.000Z

99

Measuring the leanness of manufacturing systems-A case study of Ford Motor Company and General Motors  

Science Conference Proceedings (OSTI)

In spite of the vast research published on lean manufacturing systems in several disciplines in the last decade, the concept remains underdeveloped for two reasons. First, it lacks a generally accepted definition. Different authors define lean in terms ... Keywords: Benchmarking, Fuzzy-logic leanness, L62, Lean, Leanness, M41, Systematic measures

M. E. Bayou; A. de Korvin

2008-12-01T23:59:59.000Z

100

Electrolyzer Manufacturing Progress and Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Manufacturing Electrolyzer Manufacturing Progress and Challenges John Torrance, Director of Manufacturing DOE Manufacturing Workshop 8/12/11 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack - Cost Breakdown - Approaches * Current Manufacturing Limitations: System - Cost Breakdown - Approaches * Potential Impact * Summary and Conclusions 2 3 * World leader in Proton Exchange Membrane (PEM) electrolyzer technology * Founded in 1996 - changed name from Proton Onsite in April 2011 to reflect product expansion. * ISO 9001:2008 registered * Over 1,500 systems operating in 62 different countries. Cell Stacks Complete Systems Turnkey Solutions Military Applications Proton Energy Proton Onsite Headquarters in Wallingford, CT Capabilities * Complete product development, manufacturing & testing

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Results of a field test of heating system efficiency and thermal distribution system efficiency in a manufactured home  

SciTech Connect

A two-day test using electric coheating was performed on a manufactured home in Watertown, New York. The main objective of the test was to evaluate planned procedures for measuring thermal distribution system efficiency. (Thermal distribution systems are the ductwork or piping used to transport heat or cooling effect from the equipment that produces it to the building spaces in which it is used.) These procedures are under consideration for a standard method of test now being prepared by a special committee of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers. The ability of a coheating test to give a credible and repeatable value for the overall heating system efficiency was supported by the test data. Distribution efficiency is derived from system efficiency by correcting for energy losses from the equipment. Alternative means for achieving this were tested and assessed. The best value for system efficiency in the Watertown house was 0.53, while the best value for distribution efficiency was 0.72.

Andrews, J.W.; Krajewski, R.F.; Strasser, J.J. [Brookhaven National Lab., Upton, NY (United States); Kinney, L.; Lewis, G. [Synertech Systems Corp., Syracuse, NY (United States)

1995-05-01T23:59:59.000Z

102

Digital factory : real time information system implementation in a traditional manufacturing environment  

E-Print Network (OSTI)

The Internet and emerging technologies such as RFID have been making profound impacts on operations of traditional manufacturing companies. Advances in these fields have opened up possibilities for significant improvements ...

Shao, Min, 1975-

2006-01-01T23:59:59.000Z

103

Feature-based investment cost estimation based on modular design of a continuous pharmaceutical manufacturing system  

E-Print Network (OSTI)

Previous studies of continuous manufacturing processes have used equipment-factored cost estimation methods to predict savings in initial plant investment costs. In order to challenge and validate the existing methods of ...

Collins, Donovan (Donovan Scott)

2011-01-01T23:59:59.000Z

104

Materials/manufacturing support element for the Advanced Turbine Systems Program  

DOE Green Energy (OSTI)

In 1993, DOE initiated a program to develop advanced gas turbines for power generation in utility and industrial applications. A materials/manufacturing plan was developed in several stages with input from gas turbine manufacturers, materials suppliers, universities, and government laboratories. This plan was developed by a small advanced materials and turbine technology team over a 6-month period. The technology plan calls for initiation of several high priority projects in FY 1995. The technical program for the materials/manufacturing element focuses on generic materials issues, components, and manufacturing processes. Categories include coatings and process development, turbine airfoil development, ceramics adaptation, directional solidification and single crystal airfoils manufactoring technology, materials characterization, catalytic combustor materials, and technology information exchange.

Karnitz, M.A.; Hoffman, E.E.; Parks, W.P.

1994-12-31T23:59:59.000Z

105

A Review of Manufacturing Uses for Gypsum Produced by Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

Gypsum is widely used as a source material to manufacture products for building construction applications8212primarily wallboard, cement, and concrete8212and has a number of other commercial applications. The mineral is mined throughout the world (natural gypsum) and also is produced as a result of various industrial processes (synthetic gypsum). The largest source of synthetic gypsum used for manufacturing applications is flue gas desulfurization (FGD) gypsum, the product of wet flue gas desulfurization...

2006-03-07T23:59:59.000Z

106

About Manufacturing  

Science Conference Proceedings (OSTI)

... reflects the changes in prices that manufacturers ... Petroleum Electricity Natural Gas Coal Emissions ... Position Abroad on a Historical Cost Basis ...

2013-07-25T23:59:59.000Z

107

Manufacturing Portal  

Science Conference Proceedings (OSTI)

... datasets. Manufacturers of more. In Situ Characterization of Nanoscale Gas-Solid Interactions by TEM Observing and ...

2013-09-09T23:59:59.000Z

108

Manufacturing News  

Science Conference Proceedings (OSTI)

... Two New MEP Centers Will Serve Kentucky and South Dakota Manufacturers Release Date: 01/24/2013 Small and mid ...

2010-09-22T23:59:59.000Z

109

High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing  

SciTech Connect

Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

Henry DeLima; Joe Akin; Joseph Pietsch

2008-09-14T23:59:59.000Z

110

NIST Additive Manufacturing Test Artifact  

Science Conference Proceedings (OSTI)

NIST Additive Manufacturing Test Artifact. Summary. ... The test artifact is to be built using the AM system under investigation. ...

2013-04-26T23:59:59.000Z

111

A model-driven ontology approach for manufacturing system interoperability and knowledge sharing  

Science Conference Proceedings (OSTI)

The requirements for the interoperability of semantics and knowledge have become increasingly important in Product Lifecycle Management (PLM), in the drive towards knowledge-driven decision support in the manufacturing industry. This article presents ... Keywords: Knowledge sharing, Model Driven Architecture, Ontologies, Product Lifecycle Management

Nitishal Chungoora; Robert I. Young; George Gunendran; Claire Palmer; Zahid Usman; Najam A. Anjum; Anne-FranOise Cutting-Decelle; Jennifer A. Harding; Keith Case

2013-05-01T23:59:59.000Z

112

The Manufacture of Potable Water: Case Analyses of Electric System Alternatives  

Science Conference Proceedings (OSTI)

Potable water within significant areas of the nations of the Arabian Gulf region is most frequently manufactured (cogenerated) along with electricity. The most economic process has been Multi-Stage Flash whereby the surplus thermal energy of the power ... Keywords: desalination, cogeneration, Saudi Arabia

Richard D. Tabors; Siddarth Nagendraprasad; Ayoob Hussain; Mounir Ayntrazi; Jonathan A. Brant

2012-01-01T23:59:59.000Z

113

ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton GIT 2009  

E-Print Network (OSTI)

­ Air (oxygen), vacuum, inert gas (argon) · Heating ­ External - electric, gas, oil ­ Internal · Pressure · Vacuum · Die · Centrifugal · Squeeze · Semi-solid · Single crystal · Directional solidification mold casting ­ 11% · Centrifugal casting ­ 7% · Shell mold casting ­ 6% #12;ME 6222: Manufacturing

Colton, Jonathan S.

114

Green Manufacturing Portal  

Science Conference Proceedings (OSTI)

NIST Home > Green Manufacturing Portal. Green Manufacturing Portal. ... see all Green Manufacturing programs and projects ... ...

2012-12-27T23:59:59.000Z

115

Green Manufacturing Events  

Science Conference Proceedings (OSTI)

NIST Home > Green Manufacturing Events. Green Manufacturing Events. (showing 1 - 1 of 1). Manufacturing Innovations ...

2011-06-20T23:59:59.000Z

116

Manufacturing Energy Portal  

Science Conference Proceedings (OSTI)

NIST Home > Manufacturing Energy Portal. Manufacturing Energy Portal. ... see all Manufacturing Energy programs and projects ... ...

2013-11-07T23:59:59.000Z

117

Manufacturing News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute http://energy.gov/articles/factsheet-next-generation-power-electronics-manufacturing-innovation-institute manufacturing-innovation-institute" class="title-link">FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute

118

Manufacturing Growth  

Science Conference Proceedings (OSTI)

... report, even the lithium-ion batteries used in Chevy's much anticipated electric car, the Volt, are supplied by South Korean battery manufacturer LG ...

2013-07-31T23:59:59.000Z

119

Advanced Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy funds the research, development, and demonstration of highly efficient and innovative manufacturing technologies. The Energy Department has supported the development...

120

Manufacturing Extension Partnership, Manufacturing Data and ...  

Science Conference Proceedings (OSTI)

... Manufacturing Data & Trends. Manufacturing is a dynamic and changing industry. In this ... Voytek. DATA RESOURCES. Capacity ...

2013-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Manufacturing Its Evolution and Future  

E-Print Network (OSTI)

of the Computer Integrated Manufacturing (CIM) System.CIMs potential capability to integrate former bits andto develop and implement CIM system technology and reap its

Merchant, M. Eugene; Dornfeld, David; Wright, Paul K

2005-01-01T23:59:59.000Z

122

Manufacturing technologies  

SciTech Connect

The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

NONE

1995-09-01T23:59:59.000Z

123

Manufacturing Laboratory (Fact Sheet), NREL (National Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

303-275-4311 Manufacturing Laboratory The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will...

124

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Information Integration & Infrastructure Manufacturing Information Integration & Infrastructure PDF format (47 kb) The Information Infrastructure Team in the Computer Applications for Manufacturing organization can provide programming and analysis support for information applications for manufacturing. The Team works closely with customers to help them define their requirements. The Team's experience and expertise can help your manufacturing information needs. Capabilities Provide computer hardware and software standards that directly support the seamless manufacturing initiative. Develop graphical user interfaces (GUI) for applications using the proprietary Windows environment or an open system design using Web servers and client browsers. Provide computer hardware support, including all personal computer

125

Manufacturing Initiative | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

126

Manufacturing technology  

SciTech Connect

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

127

Out of Bounds Additive Manufacturing  

Science Conference Proceedings (OSTI)

Lockheed Martin and Oak Ridge National Laboratory are working on an additive manufacturing (AM) system capable of manufacturing components measured not in terms of inches or feet, but multiple yards in all dimensions with the potential to manufacture parts that are completely unbounded in size.

Holshouser, Chris [Lockheed Martin Corporation; Newell, Clint [Lockheed Martin Corporation; Palas, Sid [Lockheed Martin Corporation; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Lind, Randall F [ORNL; Lloyd, Peter D [ORNL; Rowe, John C [ORNL; Blue, Craig A [ORNL; Duty, Chad E [ORNL; Peter, William H [ORNL; Dehoff, Ryan R [ORNL

2013-01-01T23:59:59.000Z

128

Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system  

E-Print Network (OSTI)

The rapid manufacture of complex three-dimensional micro-scale components has eluded researchers for decades. Several additive manufacturing options have been limited by either speed or the ability to fabricate true ...

Lee, Howon

129

Advanced Manufacturing Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Office: News on Twitter Bookmark Advanced Manufacturing Office: News on Google Bookmark Advanced Manufacturing Office: News on Delicious Rank Advanced Manufacturing...

130

Evaluation of Manufacturability of Embedded Sensors and Controls with Canned Rotor Pump System  

SciTech Connect

This report documents the current status of fabrication and assembly planning for the magnetic bearing, canned rotor pump being used as a demonstration platform for deeply integrating I&C into nuclear power plant components. The report identifies material choices and fabrication sequences for all of the required parts and the issues that need to be either resolved or accommodated during the manufacturing process. Down selection between material options has not yet been performed. Potential suppliers for all of the necessary materials have also been identified. The assembly evaluation begins by logically subdividing the pump into modules, which are themselves decomposed into individual parts. Potential materials and fabrication processes for each part in turn are then evaluated. The evaluation process includes assessment of the environmental compatibility requirements and the tolerances available for the selected fabrication processes. A description of the pump power/control electronics is also provided. The report also includes exploded views of the modules that show the integration of the various parts into modules that are then assembled to form the pump. Emphasis has been placed on thermal environment compatibility and the part dimensional changes during heat-up. No insurmountable fabrication or assembly challenges have been identified.

Kisner, Roger A [ORNL; Fugate, David L [ORNL; Melin, Alexander M [ORNL; Holcomb, David Eugene [ORNL; Wilson, Dane F [ORNL; Silva, Pamela C [ORNL; Cruz Molina, Carola [ORNL

2013-07-01T23:59:59.000Z

131

Analysis and design of manufacturing systems with multiple-loop structures  

E-Print Network (OSTI)

Kanban means card or token. A kanban-controlled production system is one where the flow of material is controlled by the presence or absence of a kanban, and where kanbans travel in the system according to certain rules. ...

Zhang, Zhenyu, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

132

Manufacturing Science and Technology: Organizations  

NLE Websites -- All DOE Office Websites (Extended Search)

Machining Operations Machining Operations Machining Services Electronic Fabrication Manufacturing Process Science & Technology Thin Film, Vacuum, & Packaging Organic Materials Ceramic & Glass Meso Manufacturing & Systems Development Visiting Us AMTTP Center Organizational chart Organizations Our Business areas Manufacturing Science and Technology David Plummer, Director Manufacturing Enterprise Joe M. Harris, Senior Manager Machining Operations Mathew Donnelly, Manager Machining Services Daryl Reckaway, Acting Manager Electronic Fabrication Phillip L. Gallegos, Manager Manufacturing Process Science and Technology Mark F. Smith, Senior Manager Thin Film, Vacuum, and Packaging Mark F. Smith, Acting Manager Organic Materials Mike Kelly, Manager Ceramic and Glass Alex Roesler, Manager

133

Manufacturing Extension Partnership Homepage  

Science Conference Proceedings (OSTI)

... The Manufacturing Extension Partnership (MEP) is a catalyst for strengthening American manufacturing accelerating its ongoing transformation ...

2013-08-23T23:59:59.000Z

134

Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 51.17 49.59 50.96 50.35 50.94 -1.2 312 Beverage and Tobacco Product Mfg. 111.56 115.95 113.47 113.49 117.55 -3.5 313 Textile Mills 115.95 118.96 127.41 117.40 128.07 -8.3 315 Apparel Manufacturing

135

Manufacturing technology  

SciTech Connect

This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L. [eds.

1993-08-01T23:59:59.000Z

136

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Readiness Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets Doug Wheeler DJW Technology Michael Ulsh National Renewable Energy Laboratory Technical Report NREL/TP-5600-53046 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power

137

Smart Manufacturing, Construction, and Cyber-Physical ...  

Science Conference Proceedings (OSTI)

Strategic Goal:Smart Manufacturing, Construction, and Cyber-Physical Systems. Enable the next generation of innovative ...

2013-01-03T23:59:59.000Z

138

Methods to Manufacture Cermets  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacture Cermets Methods to Manufacture Cermets There are many methods to manufacture cermets. One option is shown here. DU dioxide and steel powder are mixed, the mixture is...

139

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Advanced Manufacturing Trades Training Program Business Program Lead Yvonne Baros Advanced Manufacturing Trades Training Program Tom Souther Advanced Technology Academy...

140

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Skills Standards The Academic and Employability Skills Standards align Sandia's training efforts in advanced manufacturing with the recommendations of the Manufacturing Skill...

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Manufacturing Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

Not Available

2011-10-01T23:59:59.000Z

142

A framework for multi-resolution modeling of sustainable manufacturing  

Science Conference Proceedings (OSTI)

This paper proposes a multi-resolution framework for application of system dynamics modeling to sustainable manufacturing. Sustainable manufacturing involves interaction of four complex systems namely manufacturing, environmental, financial, and social ...

Sanjay Jain; Deogratias Kibira

2010-12-01T23:59:59.000Z

143

Manufacturing Glossary  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing Sector Glossary For the Manufacturing Sector Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. Boiler Fuel: An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers.

144

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets  

DOE Green Energy (OSTI)

In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

Wheeler, D.; Ulsh, M.

2012-08-01T23:59:59.000Z

145

ATS materials/manufacturing  

SciTech Connect

The Materials/Manufacturing Technology subelement is a part of the base technology portion of the Advanced Turbine Systems (ATS) Program. The work in this subelement is being performed predominantly by industry with assistance from national laboratories and universities. The projects in this subelement are aimed toward hastening the incorporation of new materials and components in gas turbines. Work is currently ongoing on thermal barrier coatings (TBCs), the scale-up of single crystal airfoil manufacturing technologies, materials characterization, and technology information exchange. This paper presents highlights of the activities during the past year. 12 refs., 24 figs., 4 tabs.

Karnitz, M.A.; Wright, I.G.; Ferber, M.K. [and others

1997-11-01T23:59:59.000Z

146

Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008  

SciTech Connect

This technical specification provides a guideline for photovoltaic module manufacturers to produce modules that, once the design has proven to meet the quality and reliability requirements, replicate such design in an industrial scale without compromising its consistency with the requirements.

Norum, P.; Sinicco, I.; Eguchi, Y.; Lokanath, S.; Zhou, W.; Brueggemann, G.; Mikonowicz, A.; Yamamichi, M.; Kurtz, S.

2013-06-01T23:59:59.000Z

147

Materials Processing & Manufacturing Division  

Science Conference Proceedings (OSTI)

In its broadest scope, the Materials Processing & Manufacturing Division (MPMD) covers manufacturing from product design to production, integrating process...

148

Advanced Manufacturing Office: Solicitations  

NLE Websites -- All DOE Office Websites (Extended Search)

Solicitations on Twitter Bookmark Advanced Manufacturing Office: Solicitations on Google Bookmark Advanced Manufacturing Office: Solicitations on Delicious Rank Advanced...

149

Advanced Manufacturing Office: Webcasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Webcasts on Twitter Bookmark Advanced Manufacturing Office: Webcasts on Google Bookmark Advanced Manufacturing Office: Webcasts on Delicious Rank Advanced...

150

Advanced Manufacturing Office: Subscribe  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Subscribe on Twitter Bookmark Advanced Manufacturing Office: Subscribe on Google Bookmark Advanced Manufacturing Office: Subscribe on Delicious Rank Advanced...

151

Advanced Manufacturing Office: Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: Workshops on Twitter Bookmark Advanced Manufacturing Office: Workshops on Google Bookmark Advanced Manufacturing Office: Workshops on Delicious Rank Advanced...

152

Additive Manufacturing - TMS  

Science Conference Proceedings (OSTI)

WEB RESOURCES: Research Groups for the Additive Manufacturing of Superalloys Compilation of groups involved in additive manufacturing, 0, 1118, Lynette...

153

2010 Georgia Manufacturing Survey  

Science Conference Proceedings (OSTI)

... Linked to Innovation Manufacturing Wages by Percentages of Respondents ... Manufacturing Strategies by Industry Group (Percentage of firms ...

2013-07-31T23:59:59.000Z

154

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

155

Posted 7/24/12 Manufacturing Engineer  

E-Print Network (OSTI)

, starters, and generators for the commercial transportation, hybrid electric vehicle and aerospace of technologically advanced aerospace and industrial products. We design and manufacture aerospace systems Prairie, WI 53158 Electromagnetic Enterprises (EME) designs and manufactures specialized electric motors

Heller, Barbara

156

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network (OSTI)

-volume production, and to direct future public-private partnerships that will facilitate transfer of technology will identify and prioritize topics for public-private R&D on manufacturing of PEM fuel cells. Fuel Cell System

157

Explore Careers in Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Careers in Manufacturing Careers in Manufacturing Explore Careers in Manufacturing About the Advanced Manufacturing Office The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. Image of scientists examining an experiment. back to top What types of jobs are available? Innovation Process Design & Development Engineers Mechanical Electrical Chemical Biochemical Health Safety Environmental Scientists Materials Computer Automation Software Energy Storage Production Engineers Industrial systems Process Materials Equipment Controls Supply Chain Logistics Quality Control Maintenance, Installation & Repair Machinists Efficient Use

158

Secure Manufacturing | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Secure Secure Manufacturing Secure Manufacturing The depth and breadth of Y-12's manufacturing capabilities and expertise enable Y-12 to address current and emerging national security challenges by providing leadership and direction to perform the following activities: solving unique, high-risk manufacturing problems; eliminating the most difficult manufacturability and development obstacles; protecting classified and proprietary materials, components, and information; developing unique technologies to optimize manufacturing and systems performance; and executing projects cost effectively and with timeliness. Y-12 accomplishes this mission to meet the national security challenges of today and those of the future, with capability and expertise in the following areas:

159

MST: Organizations: Manufacturing Processes & Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Processing Manufacturing Processing Manufacturing Process, Science, and Technology Mark Smith Mark Smith, Senior Manager Manufacturing Process Science and Technology conducts research and development on advanced manufacturing process and materials technologies. It provides manufacturing process development, technical consulting, and technology transfer to support Sandia product realization needs. This organization also provides prototype fabrication and specialized production services, as required, to support Sandia missions. Departments Dianna Blair Mike Kelly Alex Roesler Paul C. McKey Thin Film, Vacuum, and Packaging Organic Materials Ceramics and Glass Meso Mfg. and System Development Dianna Blair, Manager Mike Kelly, Manager Alex Roesler, Manager Paul C. McKey,

160

Open Manufacturing  

Science Conference Proceedings (OSTI)

... Other requests for this document shall be referred to DARPA DSO. Page 2. 1.Need to Maintain Legacy Systems longer ... Page 13. www.darpa.mil 13 ...

2013-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The President's Manufacturing Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

The President's The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the Hydrogen Economy Washington, D.C. Washington, D.C. July 13, 2005 July 13, 2005 Dale Hall Dale Hall Acting Chair, Interagency Working Group on Acting Chair, Interagency Working Group on Manufacturing Research and Development Manufacturing Research and Development National Science and Technology Council National Science and Technology Council and and Director, Manufacturing Engineering Laboratory Director, Manufacturing Engineering Laboratory National Institute of Standards and Technology National Institute of Standards and Technology U.S. Department of Commerce U.S. Department of Commerce

162

Manufacturing Day 2012  

Science Conference Proceedings (OSTI)

... City, I had the opportunity to visit GAL Manufacturing Corp., an elevator parts manufacturer in the Bronx, right down the road from Yankee Stadium. ...

2013-02-28T23:59:59.000Z

163

Microelectronics Manufacturing Infrastructure  

Science Conference Proceedings (OSTI)

... But the manufacturing infrastructure is aging. ... to create an integrated infrastructure for manufacturing ... will enhance the value and utility of portable ...

2011-10-19T23:59:59.000Z

164

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

165

Locating Chicago Manufacturing  

E-Print Network (OSTI)

and engineering.3 The Chicago Manufacturing Renaissance Council itself is a unique public-private partnership

Illinois at Chicago, University of

166

Topic: Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

... Project. Sustainable Manufacturing Program. Sustainability Characterization for Product Assembly Processes Project. Testbed ...

2012-09-19T23:59:59.000Z

167

Manufacturing Simulation Portal  

Science Conference Proceedings (OSTI)

... in planning by robots in scenarios relevant to more. ... SUSTAINABLE MANUFACTURING PROCESS ANALYSIS APPLICATIONS DEVELOPMENT. ...

2012-12-27T23:59:59.000Z

168

Mechanical Properties of Additive Manufactured Materials and ...  

Science Conference Proceedings (OSTI)

Oct 18, 2011 ... Recently, ONR started a basic research program, cyber-enabled manufacturing systems (CeMS), that adds a computational architecture layer...

169

Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

170

Heliostat manufacturing analysis  

DOE Green Energy (OSTI)

Results of a manufacturing cost analysis of heliostats are presented. The two primary objectives are: (1) providing a base for uniform cost analysis, and (2) providing facility and manufacturing cost estimates for planning purposes in the development of a heliostat industry. The manufacturing analysis provides materials, labor, equipment, and facility costs for each step in the manufacturing process. Detailed procedures are presented for cost estimates. These include estimating worksheets for each component of the manufacturing costs.

Drumheller, K.

1978-10-01T23:59:59.000Z

171

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Recognition Awards The AMTTP won Sandia's Silver President's Quality Award and the Manufacturing Science and Technology Center's Gold Recognition and Team Award. Letters of...

172

Advanced Manufacturing Office: Advanced Manufacturing Partnership  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the national...

173

Manufacturing Science and Technology: Advanced Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

MEST & SIT Skills Standard Technical Institute Partners Training Areas Program Recognition Partners Contacts News Articles Advanced Manufacturing Trades Training Program (AMTTP)...

174

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network (OSTI)

that convert hydrogen into electric energy, (2) hydrogen storage systems, and (3) large-scale hydrogen of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high and prioritize topics for public-private R&D on manufacturing hydrogen storage system components. Scope

175

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration  

DOE Green Energy (OSTI)

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

176

Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration  

SciTech Connect

The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

ASHWILL, THOMAS D.

2003-05-01T23:59:59.000Z

177

Steam Champions in Manufacturing  

E-Print Network (OSTI)

Traditionally, industrial steam system management has focused on operations and maintenance. Competitive pressures, technology evolution, and increasingly complex regulations provide additional management challenges. The practice of operating a steam system demands the managerial expertise of a "Steam Champion," which will be described in this paper. Briefly, the steam champion is a facility professional who embodies the skills, leadership, and vision needed to maximize the effectiveness of a plant's steam system. Perhaps more importantly, the steam champion's definitive role is that of liaison between the manufacturer's boardroom and the plant floor. As such, the champion is able to translate the functional impacts of steam optimization into equivalent corporate rewards, such as increased profitability, reliability, workplace safety, and other benefits. The prerequisites for becoming a true steam champion will include engineering, business, and management skills.

Russell, C.

2001-05-01T23:59:59.000Z

178

Wellbore manufacturing processes for in situ heat treatment processes  

DOE Patents (OSTI)

A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.

Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles

2012-12-11T23:59:59.000Z

179

The Impact of Product, Market, and Relationship Characteristics on Interorganizational System Integration in Manufacturer-Supplier Dyads  

Science Conference Proceedings (OSTI)

Firms are increasingly using collaborative systems to enhance supply-chain visibility. A key emphasis of these interorganizational systems (IOS) is to improve the coordination between buyers and suppliers through electronic integration. While such IOS ... Keywords: Collaborative Systems, Electronic Integration, Interorganizational Systems, Supply Chains, Survey Research

Varun Grover; Khawaja Saeed

2007-05-01T23:59:59.000Z

180

Soap Manufacturing Technology  

Science Conference Proceedings (OSTI)

Soap producers as well as anyone with an interest in soap technology will benefit from the new AOCS Press Soap Manufacturing Technology book. Soap Manufacturing Technology Surfactants and Detergents aocs articles Detergents division divisions fabric

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Use in Manufacturing  

Reports and Publications (EIA)

This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

William Gifford

2006-08-14T23:59:59.000Z

182

Green Manufacturing News  

Science Conference Proceedings (OSTI)

... New MEP Advisory Board White Paper Assesses the Present and Future of American Manufacturing Release Date: 04/13/2010 ...

2010-10-27T23:59:59.000Z

183

Technology Development and Manufacturing ...  

Science Conference Proceedings (OSTI)

... Manufacturing Tax Credits; Loan Guarantees Renewable Energy FY 11 Budget- Univ. ... Products China Philippines Czech Republic 25 30 35 ...

2013-06-11T23:59:59.000Z

184

Sustainable Manufacturing Briefing  

Science Conference Proceedings (OSTI)

... enhance their brands. Is sustainability an opportunity or cost? There is no ... demonstrate, deploy, and accredit new sustainable manufacturing ...

2012-08-29T23:59:59.000Z

185

Manufacturing Extension Partnership  

Science Conference Proceedings (OSTI)

... research and development programs with manufacturing and military applications including robotic deburring, automated lay up of thermoplastic ...

2009-08-25T23:59:59.000Z

186

Manufacturing Modeling and Simulation  

Science Conference Proceedings (OSTI)

... An integrated data model for manufacturing activities will be defined ... Measurement science techniques, including classic statistics, will be applied ...

2013-01-04T23:59:59.000Z

187

Testimonials from Manufacturing  

Science Conference Proceedings (OSTI)

... The economic environment is difficult for Cargill Corn Milling, as it is difficult for many manufacturing companies today. ...

2013-01-30T23:59:59.000Z

188

Section 2  

Science Conference Proceedings (OSTI)

... into temporary service following repairs that could ... Dynamic Monorail Weighing Systems) For equipment ... 1. Power Supply, Voltage and Frequency. ...

2012-11-15T23:59:59.000Z

189

PEM Stack Manufacturing: Industry Status  

NLE Websites -- All DOE Office Websites (Extended Search)

© 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED © 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED JULY 2009 B U I L D I N G A C L E A N E N E R G Y G R O W T H C O M P A N Y B A L L A R D P O W E R S Y S T E M S PEM Stack Manufacturing: Industry Status Duarte R. Sousa, PE August 11, 2011 AUGUST 2009 P A G E 2 Overview of PEM Stack Manufacturing MEA Manufacturing Plate Manufacturing Stack Assembly Stack Conditioning and Testing Package and Ship For each of the four main processes, the following will be provided: 1. A brief history of where we have been; 2. Where we are today; 3. Where we would like to transition to; 4. Gaps and proposals. AUGUST 2009 P A G E 3 PEM Stack Manufacturing: Cost Overview * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA.

190

Photovoltaic manufacturing technology, Phase 1  

DOE Green Energy (OSTI)

This report describes subcontracted research by the Chronar Corporation, prepared by Advanced Photovoltaic Systems, Inc. (APS) for Phase 1 of the Photovoltaic Manufacturing Technology Development project. Amorphous silicon is chosen as the PV technology that Chronar Corporation and APS believe offers the greatest potential for manufacturing improvements, which, in turn, will result in significant cost reductions and performance improvements in photovoltaic products. The APS Eureka'' facility was chosen as the manufacturing system that can offer the possibility of achieving these production enhancements. The relationship of the Eureka'' facility to Chronar's batch'' plants is discussed. Five key areas are also identified that could meet the objectives of manufacturing potential that could lead to improved performance, reduced manufacturing costs, and significantly increased production. The projected long-term potential benefits of these areas are discussed, as well as problems that may impede the achievement of the hoped-for developments. A significant number of the problems discussed are of a generic nature and could be of general interest to the industry. The final section of this document addresses the cost and time estimates for achieving the solutions to the problems discussed earlier. Emphasis is placed on the number, type, and cost of the human resources required for the project.

Not Available

1992-10-01T23:59:59.000Z

191

Revitalizing American Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalizing American Manufacturing Revitalizing American Manufacturing Revitalizing American Manufacturing September 13, 2010 - 5:30pm Addthis A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | Secretary Chu Secretary Chu Former Secretary of Energy "The Department of Energy has long been charged with accelerating energy

192

Heat treating of manufactured components  

DOE Patents (OSTI)

An apparatus for heat treating manufactured components using microwave energy and microwave susceptor material is disclosed. The system typically includes an insulating vessel placed within a microwave applicator chamber. A moderating material is positioned inside the insulating vessel so that a substantial portion of the exterior surface of each component for heat treating is in contact with the moderating material.

Ripley, Edward B. (Knoxville, TN)

2012-05-22T23:59:59.000Z

193

Method for manufacturing glass frit  

SciTech Connect

A method of manufacturing a glass frit for use in the manufacture of uniform glass microspheres to serve as containers for laser fusion fuel to be exposed to laser energy which includes the formation of a glass gel which is then dried, pulverized, and very accurately sized to particles in a range of, for example, 125 to 149 micrometers. The particles contain an occluded material such as urea which expands when heated. The sized particles are washed, dried, and subjected to heat to control the moisture content prior to being introduced into a system to form microspheres.

Budrick, Ronald G. (Ann Arbor, MI); King, Frank T. (Hillsboro, OR); Nolen, Jr., Robert L. (Ann Arbor, MI); Solomon, David E. (Ann Arbor, MI)

1977-01-01T23:59:59.000Z

194

A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology  

SciTech Connect

As the original magnet designer and manufacturer of ORNLs 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNLs Materials Processing Groups and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

Lutdka, G. M.; Chourey, A. (American Magnetics, Inc.)

2010-05-12T23:59:59.000Z

195

Lean manufacturing system design and value stream management in a high-mix, low-volume environment  

E-Print Network (OSTI)

Value Stream Mapping is a powerful tool for identifying sources of waste and for creating the vision for the future state of a production system. As a management tool, however, it lacks in specific focus of roles, ...

Gates, Matthew David, 1973-

2004-01-01T23:59:59.000Z

196

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report  

Science Conference Proceedings (OSTI)

This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

Not Available

2002-10-01T23:59:59.000Z

197

Advanced Manufacturing Office: MotorMaster+  

NLE Websites -- All DOE Office Websites (Extended Search)

MotorMaster+ to MotorMaster+ to someone by E-mail Share Advanced Manufacturing Office: MotorMaster+ on Facebook Tweet about Advanced Manufacturing Office: MotorMaster+ on Twitter Bookmark Advanced Manufacturing Office: MotorMaster+ on Google Bookmark Advanced Manufacturing Office: MotorMaster+ on Delicious Rank Advanced Manufacturing Office: MotorMaster+ on Digg Find More places to share Advanced Manufacturing Office: MotorMaster+ on AddThis.com... MotorMaster+ This photo shows the inner workings of an industrial electric motor with gears. In the lower left hand corner are the words "MotorMaster+" and underneath are the words "Motor-Driven Systems." Download MotorMaster+ now! Version: 4.01.01 Release Date: September 21, 2010 Release Notes Metric Unit Measurements: No

198

Advanced Manufacturing Office: Technical Assistance  

NLE Websites -- All DOE Office Websites (Extended Search)

Assistance on Twitter Bookmark Advanced Manufacturing Office: Technical Assistance on Google Bookmark Advanced Manufacturing Office: Technical Assistance on Delicious Rank...

199

Advanced Manufacturing Office: Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Advanced Manufacturing Office: Financial Opportunities on Google Bookmark Advanced Manufacturing Office: Financial Opportunities on Delicious Rank...

200

DESIGN AND MANUFACTURE OF A FORMULA SAE INTAKE SYSTEM USING FUSED DEPOSITION MODELING AND FIBER-REINFORCED COMPOSITE  

E-Print Network (OSTI)

in the composite fabric occur during layup, there is no need to restart the process as the ABS shell provides's resistivity to heat. The final manifold, featuring the completed composite layup and assembly of all mounts. Figure 7. Completed intake system, following the composite layup process and final assembly of sensors

Senger, Ryan S.

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Wind Manufacturing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

202

Locating American Manufacturing:  

Science Conference Proceedings (OSTI)

... future of manufacturing in America but also ... as defined in the North American Industry Classification ... about two thirds of American metropolitan areas ...

2013-07-31T23:59:59.000Z

203

Manufacturing Portal Overview  

Science Conference Proceedings (OSTI)

... The manufacturing sector is an important source of US innovation, accounting for about 70 percent of US industry R&D. ...

2012-05-09T23:59:59.000Z

204

Acoustics by additive manufacturing.  

E-Print Network (OSTI)

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance (more)

Setaki, F.

2012-01-01T23:59:59.000Z

205

Manufacturing Research & Reports  

Science Conference Proceedings (OSTI)

... Regulatory and Policy Recommendations. The impact of regulations and policies on the manufacturing industry in areas such as tax, energy, trade ...

2013-08-27T23:59:59.000Z

206

US Manufacturing in Context  

Science Conference Proceedings (OSTI)

... manufacturing firms lead the Nation in exports: The $1.3 ... 86% of all US goods exported in 2011 ... growing production of domestic natural gas, and the ...

207

Baldrige by Sector: Manufacturing  

Science Conference Proceedings (OSTI)

Can a manufacturer facing global competition, increased pressure on costs, and the need to show quarterly profits benefit from the Baldrige process ...

2013-08-07T23:59:59.000Z

208

Innovations in Additive Manufacturing  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... Additive Manufacturing's Role in Fabrication and Repair of Aerospace Components: James Sears1; 1South Dakota School of Mines &...

209

Applicability of lean manufacturing and quick response manufacturing in a high-mix low-volume environment  

E-Print Network (OSTI)

As today's manufacturers face increasing pressure to improve costs and compete globally, many are turning to the philosophy of Lean Manufacturing as exemplified by the Toyota Production System. Lean is most successful when ...

Joing, Matthew J. (Matthew John), 1972-

2004-01-01T23:59:59.000Z

210

Data Standards and Tools to Monitor and Improve Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

applying MTConnect at System Insights in building software and hardware tools that use big data analytics to improve energy and production efficiency in manufacturing systems...

211

Manufacturing research strategic plan  

SciTech Connect

This plan provides an overall strategic roadmap for the DOE-defense programs advanced manufacturing research program which supports the national science based stockpile stewardship program. This plan represents a vision required to develop the knowledge base needed to ensure an enduring national capability to rapidly and effectively manufacture nuclear weapons.

1995-11-01T23:59:59.000Z

212

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

213

Knowledge sharing between design and manufacture  

Science Conference Proceedings (OSTI)

The aim of this research is to develop a representation method that allows knowledge to be readily shared between collaborating systems (agents) in a design/manufacturing environment. Improved mechanisms for interpreting the terms used to describe knowledge ...

Sean D. Cochrane; Keith Case; Robert I. Young; Jenny A. Harding; Samir Dani

2005-09-01T23:59:59.000Z

214

DOE Hydrogen Analysis Repository: PEMFC Manufacturing Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

PEMFC Manufacturing Cost PEMFC Manufacturing Cost Project Summary Full Title: Manufacturing Cost of Stationary Polymer Electrolyte Membrane (PEM) Fuel Cell Systems Project ID: 85 Principal Investigator: Brian James Keywords: Costs; fuel cells; stationary Performer Principal Investigator: Brian James Organization: Directed Technologies, Inc. (DTI) Address: 3601 Wilson Blvd., Suite 650 Arlington, VA 22201 Telephone: 703-243-3383 Email: brian_james@directedtechnologies.com Period of Performance End: November 1999 Project Description Type of Project: Analysis Category: Cross-Cutting Objectives: Estimate the cost of the fuel cell system using the Directed Technologies, Inc. cost database built up over the several years under U.S. Department of Energy and Ford Motor Company contracts.

215

Advanced Manufacturing Office: U.S. Manufacturer Going Above...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Manufacturer Going Above and Beyond with Superior Energy Performance to someone by E-mail Share Advanced Manufacturing Office: U.S. Manufacturer Going Above and Beyond with...

216

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) May 28, 2010 DOE issued a Notice of Noncompliance Determination to Summit Manufacturing, Inc. finding that 4SHP13LE136P + 15001+CA042A964+TDR basic model, a split-system air conditioning heat pump with a heat pump coil, does not comport with the energy conservation standards. DOE determined the product was noncompliant based on the company's own testing. Summit must immediately notify each person (or company) to whom Summit distributed the noncompliant products that the product does not meet Federal standards. In addition, Summit must provide to DOE documents and records showing the number of units Summit distributed and to whom. The manufacturer and/or

217

Agent-based distributed manufacturing control: A state-of-the-art survey  

Science Conference Proceedings (OSTI)

Manufacturing has faced significant changes during the last years, namely the move from a local economy towards a global and competitive economy, with markets demanding for highly customized products of high quality at lower costs, and with short life ... Keywords: Distributed manufacturing control, Holonic manufacturing systems, Intelligent manufacturing systems, Multi-agent systems

Paulo Leito

2009-10-01T23:59:59.000Z

218

Standardization and improvement of processes and practices using XP, FDD and RUP in the systems information area of a mexican steel manufacturing company  

Science Conference Proceedings (OSTI)

This work focuses on standardization and improvement of processes and practices using a combination of methodologies including Agile Methodologies (AM). It was implemented at a Mexican steel manufacturing company using FDD, XP and RUP. The main goal ...

Luis Carlos Aceves Gutirrez; Enrique Sebastin Canseco Castro; Mauricio Ruanova Hurtado

2005-06-01T23:59:59.000Z

219

Manufacturing Renaissance: Return of manufacturing to western countries.  

E-Print Network (OSTI)

??Manufacturing Renaissance, i.e. return of manufacturing to west, has been recently observed. This paper analyzes the patterns observed within each of the four main drivers (more)

Kianian, Babak; Larsson, Tobias

2013-01-01T23:59:59.000Z

220

Advanced Manufacturing Office: Steam Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

a Condensing Economizer PDF , January 2012 Consider Installing High-Pressure Boilers with Backpressure Turbine-Generators PDF , January 2012 Consider Installing...

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Smart Manufacturing and Construction Systems  

Science Conference Proceedings (OSTI)

... with staff expertise in electrical engineering, mechanical ... will develop the measurement science that informs ... Pratt & Whitney and General Electric. ...

2013-01-09T23:59:59.000Z

222

Innovations in Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Governor Bill Haslam along with David Danielson, EERE's Assistant Secretary, celebrate the opening of the Carbon Fiber Technology Facility. The 390-ft. long processing line is capable of custom unit operation configuration and has a capacity of up to 25 tons per year, allowing industry to validate conversion of their carbon fiber precursors at semi-production scale. Manufacturing Demonstration Facility Manufacturing Demonstration Facility Processing Technologies Advanced Materials Automation and Controls Brochure News Manufacturing Engineering Advanced Materials & Processes Materials for Aerospace On the cover, plus, read ORNL's feature articles on additive manufacturing and its momentum for aerospace applications.

223

Manufacturer: Panasonic Battery Type: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Specifi cations Manufacturer: Panasonic Battery Type: Nickel Metal Hydride Rated Capacity: 5.5 Ahr Rated Power: Not Available Nominal Pack Voltage: 158.4 VDC Nominal Cell...

224

Solar Thermal Manufacturing Activities  

Reports and Publications (EIA)

This report, Solar Thermal Collector Manufacturing Activities, providesan overview and tables with historical data spanning 2000-2009. These tables willcorrespond to similar tables to be presented in the Renewable Energy Annual 2009 andare numbered accordingly.

Michele Simmons

2010-12-01T23:59:59.000Z

225

Advanced Manufacturing Partnership  

Energy.gov (U.S. Department of Energy (DOE))

AMO leads DOE's participation in the national interagency Advanced Manufacturing Partnership (AMP). AMO joins with other Federal agencies investing in innovation and cost-shared R&D projects, supporting manufacturing infrastructure, and facilitating job creation. These actions save energy and provide benefits to U.S. industry and the national economy. AMO contributes more broadly to the AMP with activities in Technology Development, Shared Infrastructure and Facilities, Education and Workforce Development.

226

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA)

How Did Manufacturers Use Natural Gas? Manufacturers used natural gas in processes, in boilers, for nonprocess uses, and as feedstock. In 1991 and 1994, ...

227

Additive Manufacturing for Large Products.  

E-Print Network (OSTI)

?? This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the (more)

Leirvg, Roar Nelissen

2013-01-01T23:59:59.000Z

228

Manufacturing Demonstration Facility Technology Collaborations...  

NLE Websites -- All DOE Office Websites (Extended Search)

advanced manufacturing and materials technologies for commercial applications related to additive manufacturing or carbon fiber and composites will have the highest likelihood of...

229

EERE: Advanced Manufacturing Office - Webmaster  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative March 26, 2013 New Energy Department Funding to Establish...

230

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

3. Energy Consumption in the Manufacturing Sector, 1991 In 1991, the amount of energy consumed in the manufacturing sector was as follows: * Primary Consumption of Energy for All...

231

Advanced Manufacturing Office: Better Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Plants on Twitter Bookmark Advanced Manufacturing Office: Better Plants on Google Bookmark Advanced Manufacturing Office: Better Plants on Delicious Rank Advanced...

232

Alternative Energy Product Manufacturers Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Product Manufacturers Tax Credit Product Manufacturers Tax Credit Alternative Energy Product Manufacturers Tax Credit < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Maximum Rebate 5% of taxpayer's qualified expenditures Program Info Start Date 7/1/2006 State New Mexico Program Type Industry Recruitment/Support Rebate Amount Determined by New Mexico Department of Taxation and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing alternative energy products and components, including renewable energy systems, fuel cell systems, and electric and hybrid-electric vehicles. Alternative energy components include parts,

233

SunShot Initiative: Advanced Manufacture of Reflectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Manufacture of Advanced Manufacture of Reflectors to someone by E-mail Share SunShot Initiative: Advanced Manufacture of Reflectors on Facebook Tweet about SunShot Initiative: Advanced Manufacture of Reflectors on Twitter Bookmark SunShot Initiative: Advanced Manufacture of Reflectors on Google Bookmark SunShot Initiative: Advanced Manufacture of Reflectors on Delicious Rank SunShot Initiative: Advanced Manufacture of Reflectors on Digg Find More places to share SunShot Initiative: Advanced Manufacture of Reflectors on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

234

KMC Controls Inc Kreuter Manufacturing Company | Open Energy Information  

Open Energy Info (EERE)

KMC Controls Inc Kreuter Manufacturing Company KMC Controls Inc Kreuter Manufacturing Company Jump to: navigation, search Name KMC Controls, Inc. (Kreuter Manufacturing Company) Place New Paris, Indiana Zip IN 46553 Product Manufacturer of building management control products and systems. References KMC Controls, Inc. (Kreuter Manufacturing Company)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. KMC Controls, Inc. (Kreuter Manufacturing Company) is a company located in New Paris, Indiana . References ↑ "KMC Controls, Inc. (Kreuter Manufacturing Company)" Retrieved from "http://en.openei.org/w/index.php?title=KMC_Controls_Inc_Kreuter_Manufacturing_Company&oldid=348127" Categories:

235

High Pressure Hydrogen Tank Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

236

Request for Information Manufacturing Technology ...  

Science Conference Proceedings (OSTI)

... Page 4. Confidential. All Rights Reserved. ... o The energy sector is representing significant opportunities for manufacturers. ...

2013-08-06T23:59:59.000Z

237

Manufacturing in Milwaukee: An Interview with the CEO of Helios...  

NLE Websites -- All DOE Office Websites (Extended Search)

photo Solar startup to manufacture in Milwaukee Milwaukee solar installers putting in a rooftop solar energy system on Dr. Paula Papanek's home. | Photo courtesy of Dr. Paula...

238

Fuel Cell Technologies Office: Manufacturing Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

and Development on AddThis.com... Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards Education Systems...

239

Photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. (Solarex Corp., Frederick, MD (United States))

1991-12-01T23:59:59.000Z

240

Characteristics of Manufacturing Processes  

Science Conference Proceedings (OSTI)

Table 2   Rating of characteristics for common manufacturing processes...AHB, Vol 4 CVD/PVD All 1 5 5 4 3 AHB, Vol 13, p 456 Rating scheme: 1, poorest; 5, best. Ratings from Ref 5 . AHB, ASM Handbook ; EMH, Engineered

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Turbine airfoil manufacturing technology  

DOE Green Energy (OSTI)

The specific goal of this program is to define manufacturing methods that will allow single crystal technology to be applied to complex-cored airfoils components for power generation applications. Tasks addressed include: alloy melt practice to reduce the sulfur content; improvement of casting process; core materials design; and grain orientation control.

Kortovich, C. [PCC Airfoils, Inc., Beachwood, OH (United States)

1995-12-31T23:59:59.000Z

242

Transformational Manufacturing | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

243

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

244

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS January 15, 2014 FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S. Manufacturers Cut Energy Waste and Save Money October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

245

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

246

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition Philips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal SUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy June 29, 2011 Department of Energy Announces New Partnerships to Support Manufacturing Job Training National Training and Education Resource (NTER) Offers Tools to Train Workers June 24, 2011 Department of Energy Announces $120 Million to Support Development of Innovative Manufacturing Processes

247

PV Manufacturing R&D Accomplishments and Status  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) PV Manufacturing Research and Development Project has worked for 11 years in partnership with the U.S. photovoltaic industry to reduce manufacturing costs while significantly scaling up production capacity. Over this period, the PV Manufacturing R&D Project has issued seven solicitations for partnerships that have resulted in over 50 cost-shared R&D subcontracts that addressed the cost and capacity goals of the Project, including 10 that are currently active. The previous and current contracts have typically focused on addressing Project goals in one of two areas: module manufacturing and balance-of-systems (BOS)/systems work. The majority of the DOE investment has been targeted toward module manufacturing. The partnerships have resulted in a significant and measurable increase in PV module/systems production capacity, a decrease in PV manufacturing costs, and a subsequent return on the joint public and private investments facilitated by the Project.

Mooney, D.; Mitchell, R.; Witt, E.; King, R.; Ruby, D.

2003-11-01T23:59:59.000Z

248

Materials Standards for Additive Manufacturing  

Science Conference Proceedings (OSTI)

... ASTM F2924 Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium with Powder Bed Fusion) except for standards ...

2013-06-04T23:59:59.000Z

249

Implementation of Sustainable Manufacturing Standards  

Science Conference Proceedings (OSTI)

... Manufacturing Standards Kathi Futornick, LEED AP Global Sustainability Practice URS Corporation NIST Workshop October 13-15, 2009 ...

2009-10-20T23:59:59.000Z

250

NIST Workshop on Sustainable Manufacturing  

Science Conference Proceedings (OSTI)

... Day1: 15:15 15:30. Kathi Futornick. URS Corporation. Standards Opportunity in Sustainable Product Development and Manufacturing. ...

2009-12-01T23:59:59.000Z

251

Why Manufacturing Matters to California  

Science Conference Proceedings (OSTI)

... Sources: Bureau of Labor Statistics, IHS Global Insight. Manufacturing employment (left) ... Sources: Bureau of Labor Statistics, IHS Global Insight. ...

2012-10-01T23:59:59.000Z

252

Project: Manufacturing Services Network Models  

Science Conference Proceedings (OSTI)

... expressivity of a pattern library for manufacturing service capability information, by demonstrating the target information retrieval behavior enabled ...

2013-01-03T23:59:59.000Z

253

Integrating Materials and Manufacturing Innovation  

Science Conference Proceedings (OSTI)

Jun 13, 2012 ... 06/13 - TMS Launches New Open Access Journal: Integrating Materials and Manufacturing Innovation. Patti Dobranski Communication...

254

Additive Manufacturing: Pursuing the Promise  

NLE Websites -- All DOE Office Websites (Extended Search)

capability have captured the imaginations of investors. Revolutionary Speed, Efficiency, Optimization Additive manufacturing has the potential to vastly accelerate innovation,...

255

Manufacturing Glossary - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Propylene (C 3 H 6): A normally gaseous olefinic hydrocarbon recovered from refinery processes or petrochemical processes. In the manufacturing ...

256

Report on Toyota/Prius Motor Design and Manufacturing Assessment  

Science Conference Proceedings (OSTI)

In today's hybrid vehicle market the Toyota Prius drive system is currently considered the leader in electrical, mechanical, and manufacturing innovations. It is significant that in today's marketplace Toyota is able to manufacture and sell the vehicle for a profit. This project's objective is to analyze and study the Prius drive system to understand the design and manufacturing mechanisms Toyota utilized to achieved their performance and cost goals. During the course of this research effort ORNL has dissected both the 2003 and 2004 Toyota/Prius drive motors. This study is focused primarily on motor design considerations and an assessment of manufacturing issues.

Hsu, J.S.

2004-07-28T23:59:59.000Z

257

High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

TEMPERATURE FUEL CELL TEMPERATURE FUEL CELL (PHOSPHORIC ACID) MANUFACTURING R&D Sridhar Kanuri Manager, Phosphoric acid fuel cells & fuel processing August 10 th , 2011 PAFC MANUFACTURING R&D Agenda PAFC cost challenge Manufacturing Cost reduction opportunities Summary PAFC SYSTEM OVERVIEW Overview Heaters Reactant manifolds Manifold adaptors Axial load system Pressure Plates Power take-off Coolant manifolds Insulation H frame Coolant hoses Cell stack Assembly Fuel Processing System Thermal Management System / Water Treatment System Power Supply System (CSA's) Electrical System Module Blower Skid Powerplant modules Cost reduction is being accomplished by incremental changes in technology and manufacturing Closing commercialization gap Continuous manufacturing

258

Additive manufacturing capabilities expanding | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Additive manufacturing capabilities expanding January 01, 2013 Large-scale polymer additive manufacturing equipment located at the Manufacturing Demonstration Facility. Additive...

259

EERE: Clean Energy Manufacturing Initiative Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Manufacturing Initiative Search Search Help Clean Energy Manufacturing Initiative EERE Clean Energy Manufacturing Initiative Printable Version Share this resource Send a...

260

Energy Use in Manufacturing ? 1998 to 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Use in Manufacturing - 1998 to 2002 Energy Use in Manufacturing provides information related to energy consumption changes within the U.S. manufacturing sector between 1998 and...

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Revolutionizing Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revolutionizing Manufacturing Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy Department's Manufacturing Demonstration Facility at Oak Ridge National Laboratory includes an array of state-of-the-art additive manufacturing capabilities, allowing researchers and industry to develop innovative manufacturing solutions. | Photo courtesy of Oak Ridge National

262

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

263

International photovoltaic products and manufacturers directory, 1995  

DOE Green Energy (OSTI)

This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

Shepperd, L.W. [ed.] [Florida Solar Energy Center, Cocoa, FL (United States)] [ed.; Florida Solar Energy Center, Cocoa, FL (United States)

1995-11-01T23:59:59.000Z

264

Company Name Tax Credit* Manufacturing Facility's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company Company Name Tax Credit* Manufacturing Facility's City & State Project Description Carrier Corporation $5.1 million Indianapolis, IN Carrier, a part of UTC Building & Industrial Systems and a subsidiary of United Technologies Corporation, was selected for a $5.1 million dollar 48C Advanced Energy Manufacturing Tax Credit to expand production at its Indianapolis facility to meet increasing demand for its eco-friendly condensing gas furnace product line. The new line includes the most energy efficient gas furnaces on the market-all with at least 92% annual fuel utilization efficiency-and exemplifies Carrier's commitment to economical and environmentally sustainable solutions for achieving improved energy efficiency and performance.

265

LightManufacturing | Open Energy Information  

Open Energy Info (EERE)

LightManufacturing LightManufacturing Jump to: navigation, search Logo: LightManufacturing Name LightManufacturing Address 855 4th Street Place California Zip 93449 Sector Solar Product heliostat, helisotats, sun trackers, solar thermal manufacturing systems. Year founded 2009 Number of employees 11-50 Company Type For Profit Phone number 415 796-6475 Website http://www.lightmanufacturings Coordinates 35.135012°, -120.6228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.135012,"lon":-120.6228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Solar collector manufacturing activity, 1992  

DOE Green Energy (OSTI)

This report presents data provided by US-based manufacturers and importers of solar collectors. Summary data on solar thermal collector shipments are presented for the years 1974 through 1992. Summary data on photovoltaic cell and module shipments are presented for the years 1982 through 1992. Detailed information for solar thermal collectors and photovoltaic cells and modules are presented for 1992. Appendix A describes the survey methodology. Appendix B contains the 1992 survey forms and instructions. Appendices C and D list the companies that responded to the 1992 surveys and granted permission for their names and addresses to appear in the report. Appendix E provides selected tables from this report with data shown in the International System of Units (SI) metric units. Appendix F provides an estimate of installed capacity and energy production from solar collectors for 1992.

Not Available

1993-11-09T23:59:59.000Z

267

Manufacturer Voluntarily Reports Noncompliance | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturer Voluntarily Reports Noncompliance Manufacturer Voluntarily Reports Noncompliance Manufacturer Voluntarily Reports Noncompliance June 28, 2012 - 9:05am Addthis Cooper Power Systems, LLC ("Cooper"), a wholly-owned subsidiary of Cooper Industries notified the U.S. Department of Energy's ("DOE") Office of Enforcement that it had distributed three noncompliant basic models (five total units) of liquid-immersed distribution transformers in U.S. commerce. Each of these models failed to meet the minimum level of efficiency required by DOE regulations. Cooper discovered that it had distributed the noncompliant basic models when preparing its first certification report under new DOE regulations. Cooper immediately notified DOE of the noncompliance and requested guidance on corrective

268

Developing the Manufacturing Process for Hylene MP Curing Agent  

SciTech Connect

This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

Eastwood, Eric

2009-02-16T23:59:59.000Z

269

Solder technology in the manufacturing of electronic products  

SciTech Connect

The electronics industry has relied heavily upon the use of soldering for both package construction and circuit assembly. The solder attachment of devices onto printed circuit boards and ceramic microcircuits has supported the high volume manufacturing processes responsible for low cost, high quality consumer products and military hardware. Defects incurred during the manufacturing process are minimized by the proper selection of solder alloys, substrate materials and process parameters. Prototyping efforts are then used to evaluate the manufacturability of the chosen material systems. Once manufacturing feasibility has been established, service reliability of the final product is evaluated through accelerated testing procedures.

Vianco, P.T.

1993-08-01T23:59:59.000Z

270

A new DFM approach to combine machining and additive manufacturing  

E-Print Network (OSTI)

Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

Kerbrat, Olivier; Hascot, Jean-Yves; 10.1016/j.compind.2011.04.003

2011-01-01T23:59:59.000Z

271

Renewable Energy Equipment Manufacturer Tax Credit | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturer Tax Credit Renewable Energy Equipment Manufacturer Tax Credit Eligibility Commercial Industrial Savings For Bioenergy Biofuels Alternative Fuel Vehicles Commercial...

272

Autogenic Pressure Reactions for Battery Materials Manufacture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Autogenic Pressure Reactions for Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture autogenicpressurereactions...

273

NIST Sustainable Manufacturing Indicators Repository (SMIR)  

Science Conference Proceedings (OSTI)

... manufacturing strongly influence a product's life cycle impacts on the environment and the company's sustainability. Sustainable manufacturing ...

274

Energy Efficiency Standards for Manufactured Housing | Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulations Determinations Federal Buildings Manufactured Housing Resource Center Energy Efficiency Standards for Manufactured Housing Section 413 of the Energy...

275

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

276

Reclaiming Fibrous Material in Manufacturing Processes  

Science Conference Proceedings (OSTI)

Abstract Scope, In the manufacture of faced fiberglass insulation, defects may ... There are approximately 29 fiberglass insulation manufacturing plants across...

277

Microstructure and Properties and Manufacturing Technologies  

Science Conference Proceedings (OSTI)

Oct 29, 2013 ... Advances in Hydroelectric Turbine Manufacturing and Repair: Microstructure and Properties and Manufacturing Technologies Sponsored by:...

278

Optimisation-based scheduling: A discrete manufacturing case study  

Science Conference Proceedings (OSTI)

This work presents the development and implementation of a production scheduling system for an electrical appliance manufacturer. Based on recent advances in optimisation-based scheduling approaches, two different software architectures based on two ... Keywords: Discrete manufacturing, Electrical appliances, Mixed-integer linear programming, Optimization-based scheduling

Michael C. Georgiadis; Aaron A. Levis; Panagiotis Tsiakis; Ioannis Sanidiotis; Constantinos C. Pantelides; Lazaros G. Papageorgiou

2005-08-01T23:59:59.000Z

279

Microsoft Word - DOE-ID-INL-12-011.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 SECTION A. Project Title: Advanced Test Reactor (ATR) Primary Coolant System (PCS) Relief Valves Monorail System SECTION B. Project Description: The purpose of this project is to provide a monorail system to aid maintenance personnel in the hoisting and transporting of the Advanced Test Reactor (ATR) Primary Coolant System (PCS) Safety Relief Valves, SF-A-1-71 and SF-A-1-72, in support of the 2 year replacement. The monorail system would consist of two independent monorail assemblies installed in the concrete ceiling of the ATR Nozzle Trench Area. The proposed monorail system would provide the ability to hoist and transport the ATR PCS Relief Valves, SF-A-1-71 and SF-A-1-72, from their installed location on the north side of the Nozzle Trench Area to areas free of floor obstructions. This project would require two separate monorail systems due to several ceiling

280

Microsoft Word - DOE-ID-INL-12-011.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 SECTION A. Project Title: Advanced Test Reactor (ATR) Primary Coolant System (PCS) Relief Valves Monorail System SECTION B. Project Description: The purpose of this project is to provide a monorail system to aid maintenance personnel in the hoisting and transporting of the Advanced Test Reactor (ATR) Primary Coolant System (PCS) Safety Relief Valves, SF-A-1-71 and SF-A-1-72, in support of the 2 year replacement. The monorail system would consist of two independent monorail assemblies installed in the concrete ceiling of the ATR Nozzle Trench Area. The proposed monorail system would provide the ability to hoist and transport the ATR PCS Relief Valves, SF-A-1-71 and SF-A-1-72, from their installed location on the north side of the Nozzle Trench Area to areas free of floor obstructions. This project would require two separate monorail systems due to several ceiling

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

1994-12-01T23:59:59.000Z

282

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Machining Machining PDF format (236 kb) MS&T's machining group consists of two departments: Manufacturing Processing, and Manufacturing Processes and Services. The two departments team to build, procure, and assemble unique prototype and production hardware with diverse quality requirements. The in-house capability can manufacture hardware ranging from microscopic to proportions measured in feet and tons. The group's outside contacts and resources are almost boundless. This team's expertise includes: precision machining, welding, fabrication and assembly, aircraft quality sheet metal construction, and explosives machining and assembly. The department can manage a variety of activities: design modifications, in-house fabrication, outside shop selection and surveillance and manufacturing records management.

283

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

at the extent to which manufacturers exercised their ability to choose the mix of energy sources at their discretion. Nonswitchable Minimum Requirements Generally, a...

284

Solar collector manufacturing activity 1993  

DOE Green Energy (OSTI)

The report presents national and State-level data on the U.S. solar thermal collector and photovoltaic cell and module manufacturing industry.

Not Available

1994-08-15T23:59:59.000Z

285

NIST SBIR Manufacturing Related Emphasis  

Science Conference Proceedings (OSTI)

... the mission of that department or agency, to give high priority within the SBIR programs to manufacturing-related research and development (R&D). ...

2012-09-11T23:59:59.000Z

286

Implications for the Manufacturing Industry  

Science Conference Proceedings (OSTI)

Plus, Quality and Response Time are Competitive. In Summary, China has ... Significant offshore demand and manufacturing base established by American and...

287

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

includes descriptions of the 30 groups that comprise the strata of the Manufacturing Energy Consumption Survey. These are the 20 major industrial groups (two-digit SIC) and...

288

Advanced Manufacturing Office: Closed Solicitations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production EE-2E 08112008 09192008 Manufacturing- Industrial Distributed Energy FuelFeedstock Flexibility and Combined Heat and Power U.S. Department of Energy- Industrial...

289

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Courtesy of ZCorp The Rapid Prototyping Laboratory (RPL) supports internal design, manufacturing, and process development with three rapid prototyping (RP) technologies:...

290

Advanced Manufacturing Office: Information Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

incentives, tools, and training to help companies of all sizes identify energy saving projects and chart a path toward continuous energy improvement. Advanced Manufacturing...

291

Advanced Manufacturing Office: Financial Opportunities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

organizations offer ways to help manufacturers identify and implement energy-saving projects at their plants. Search the State Incentives and Resource Database to find rebates,...

292

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

B Survey Design, Implementation, and Estimates Introduction The 1991 Manufacturing Energy Consumption Survey (MECS) has been designed by the Energy Information Administration...

293

Manufacturing Consumption of Energy 1991  

U.S. Energy Information Administration (EIA) Indexed Site

J Related EIA Publications on Energy Consumption Energy Information AdministrationManufacturing Consumption of Energy 1991 526 Appendix J Related EIA Publications on Energy...

294

Wireless technology for integrated manufacturing  

SciTech Connect

This paper describes the ground breaking work in Oak Ridge facilities that now leads us to the brink of the wireless revolution in manufacturing. The focus is on solving tough technological problems necessary for success and addressing the critical issues of throughput, security, reliability, and robustness in applying wireless technology to manufacturing processes. Innovative solutions to these problems are highlighted through detailed designs and testbed implementations that demonstrate key concepts. The DOE-Oak Ridge complex represented by the Oak Ridge Centers for Manufacturing Technologies (ORCMT) continues to develop these technologies and will continue to focus on solving tough manufacturing problems.

Manges, W.W.; Allgood, G.O.; Shourbaji, A.A.

1996-08-01T23:59:59.000Z

295

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

296

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

297

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF |...

298

Solar and Wind Manufacturing Incentive  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturers of solar or wind equipment or components in Kansas may be eligible for financing through the Kansas Department of Commerce to support research, development, engineering or...

299

Smart Manufacturing Processes and Equipment  

Science Conference Proceedings (OSTI)

... on testing machine tool capability for batch production (ISO 26303 ... NC Manufacturing Group (KTH, Step Tools, Sandvik, GE Energy, University of ...

2013-01-02T23:59:59.000Z

300

MANUFACTURING NIST Impact Verification Program  

Science Conference Proceedings (OSTI)

... manufactured from structural steel such as oil and gas ... both in the US and around the world. ... of proficiency test data available for production lots.

2013-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

IT/Automation Cost Reduction in Intels Manufacturing Environment  

E-Print Network (OSTI)

Intel manufacturing relies heavily on IT and Factory Automation during the manufacturing processes. At Intel, everything from scheduling products on the floor and product delivery systems to statistical process control is ...

Subirana, Brian

2004-03-05T23:59:59.000Z

302

A roadmap for a methodology to assess, improve and sustain intra- and inter-enterprise system performance with respect to technology-product life cycle in small and medium manufacturers: Research Article  

Science Conference Proceedings (OSTI)

Increased manufacturing costs are forcing U.S. manufacturing firms to send their operations off shore. Such business practices are greatly impacting the vitality of small and medium manufacturers (SMMs) in the U.S. economy. This article intends to advance ...

Ash Genaidy; Waldemar Karwowski

2008-01-01T23:59:59.000Z

303

K Basins floor sludge retrieval system knockout pot basket fuel burn accident  

SciTech Connect

The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool.

HUNT, J.W.

1998-11-11T23:59:59.000Z

304

Manufacturing Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing Blog Manufacturing Blog RSS January 15, 2014 Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. January 6, 2014 Manufacturing Spotlight: Boosting American Competitiveness Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. November 15, 2013 Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory Secretary Moniz and President Obama toured a high-strength steel plant in

305

Advanced Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

306

Manufacturing Data | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Data Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Manufacturing Data These Federal datasets contain a wealth of information for manufacturing - either from information in a single dataset or by combining data from more than one place. This site will be enhanced with the addition of new datasets, and new apps using these datasets, as they are developed. Search Terms Category -Any- Geospatial Items per page 25 50 100 Apply Name Downloads Rating TradeStats Express TradeStats Express provides statistics on U.S. merchandise trade at the national and state levels. Data can also be displayed in maps, graphs, tables, or as exports, imports, and trade balances.... Data Extraction

307

Manufacturing Fuel Cell Manhattan Project  

NLE Websites -- All DOE Office Websites (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

308

Method and apparatus for manufacturing gas tags  

DOE Patents (OSTI)

For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

Gross, K.C.; Laug, M.T.

1996-12-17T23:59:59.000Z

309

Method and apparatus for manufacturing gas tags  

DOE Patents (OSTI)

For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

Gross, Kenny C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

310

Scheduling and shop floor control in commercial airplane manufacturing  

E-Print Network (OSTI)

Boeing is the premier manufacturer of commercial jetliners and a leader in defense and space systems. Competition in commercial aircraft production is increasing and in order to retain their competitive position, Boeing ...

Sahney, Vikram Neal

2005-01-01T23:59:59.000Z

311

The business case for continuous manufacturing of pharmaceuticals  

E-Print Network (OSTI)

Manufacturing in the pharmaceutical industry is presently characterized as a batch production system, which has existed in its current form for decades. This structure is the result of historical regulatory policy as well ...

Wilburn, Kristopher Ray

2010-01-01T23:59:59.000Z

312

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network (OSTI)

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

313

Renewable Energy Manufacturing Tax Credit (South Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Tax Credit (South Carolina) Manufacturing Tax Credit (South Carolina) Renewable Energy Manufacturing Tax Credit (South Carolina) < Back Eligibility Industrial Savings Category Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate $500,000 for any year and $5 million total for all years Program Info Start Date 01/01/2010 Expiration Date 12/31/2015 State South Carolina Program Type Industry Recruitment/Support Rebate Amount 10% South Carolina offers a ten percent income tax credit to the manufacturers of renewable energy operations* for tax years 2010 through 2015. In order to qualify, a business must: *manufacture renewable energy systems and components in South Carolina for solar, wind, geothermal, or other renewable energy uses

314

Stronger Manufacturers' Energy Efficiency Standards for Residential Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stronger Manufacturers' Energy Efficiency Standards for Residential Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today January 23, 2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing standards that go into effect today, January 23, 2006, for products manufactured in, or imported into, the United States. "Homeowners who choose to buy more energy-efficient air conditioning systems after today will realize significant savings in their energy bills and greatly reduce their energy use," said Secretary of Energy Samuel W. Bodman. "These new energy efficiency standards are the first of several

315

The International Journal of Time-Critical Computing Systems, 20, 2749, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.  

E-Print Network (OSTI)

/3/4 in Korea (AECL CANDU, 1993). SDS2 is a software-based emergency shutdown system whose purposeMiddle*, and *FlinHigh* as *FL*, *FM*, and *FH*. References AECL CANDU. 1993. Program functional specification, SDS2

Cha, Sung-Deok "Steve"

316

An application reference model for layered manufacturing  

SciTech Connect

The Intelligent Manufacturing Systems (IMS) Test Case 6 project (Rapid Product Development) was set up to demonstrate rapid product development and 3D measurement techniques where the agencies performing the work were distributed over different countries. Test Case 6 provided a unique opportunity to examine the process by which an application protocol (AP) of the Standard for Exchange of Product Data is prepared. The test case had a well defined scope, the production of simple parts by means of layered manufacturing techniques. The information concerned with this manufacture was similarly well defined, due to the requirement that the information be transmitted among the organizations participating in the test case. STEP is an international standard specifying the data content and format for storage and exchange of product data throughout the product`s life cycle. STEP has been under development since 1984 and is just now emerging as an International Standard. STEP is specified as a series of information models using the EXPRESS computer language. For purposes of data exchange, a mapping to a physical file format is specified. Informally, product data can be defined as all the data about a product which one might wish to save. This definition implies some variation in the amount of data to be saved in any one instance. In the case of Test Case 6, one would certainly wish to save the IGES files describing the part. One may or may not wish to save the manufacturing parameters. While there are many parts of STEP with different purposes, the important series of parts for the purposes of standardizing product data are those dealing with application protocols. An application protocol specifies the details of product data within the context of a single application (in this case, layered manufacturing). Other APs deal with such subjects as configuration-managed solid parts and associated drafting.

Kennicott, P.R.

1994-02-01T23:59:59.000Z

317

Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development  

SciTech Connect

The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

Hewes, T.; Peeks, B.

2013-11-01T23:59:59.000Z

318

Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)  

SciTech Connect

The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

Not Available

2013-11-01T23:59:59.000Z

319

MST: Organizations: Precision Meso Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Precision Meso Manufacturing Precision Meso Manufacturing Many engineers and product realization teams at Sandia National Laboratories are currently engaged in efforts to create revolutionary national security products that feature unprecedented functionality in ever-smaller, more portable configurations. In the course of development, the Sandia technology community has realized the need for manufacturing capabilities that expand upon what traditional microfabrication provides. The term “meso,” derived from the Greek mesos, meaning “intermediate” or “in the middle,” describes operations on a length scale that typically ranges from hundreds of micrometers to one centimeter. Meso Manufacturing involves a suite of innovative fabrication and metrology tools that compliment each other to make these products a reality. The Meso

320

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Manufacturing Energy and Carbon Footprints  

E-Print Network (OSTI)

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much is lost? Answering these questions is the focus of this paper and the analysis described herein. Manufacturing energy and carbon footprints map energy consumption and losses, as well as greenhouse gas emissions, for the fifteen most energy intensive manufacturing sectors, and for the entire U.S. manufacturing sector. Analysts and decision-makers utilize the footprints to better understand the distribution of energy use in energy-intensive industries and the accompanying energy losses. The footprints provide a benchmark from which to calculate the benefits of improving energy efficiency and for prioritizing opportunity analysis. A breakdown of energy consumption by energy type and end use allows for comparison both within and across sectors.

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

322

Manufacturing means jobs ? Mike Arms  

NLE Websites -- All DOE Office Websites (Extended Search)

investment in manufacturing since it was a sector generating not only high-paying direct jobs but also outstanding secondary jobs in supply-chain support and other related...

323

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

324

Vapor Degreasing  

Science Conference Proceedings (OSTI)

Table 6   Applications of vapor degreasing by vapor-spray-vapor systems...hardware Brass 2270 5000 Buffing compound; rouge Lacquer spray Racked work on continuous monorail Acoustic ceiling tile Steel 2720 6000 Light oil (stamping lubricant) Painting Monorail conveyor Gas meters Terneplate 4540 10,000 Light oil Painting Monorail conveyor Continuous strip, 0.25??4.1 mm...

325

Manufacturers use of business services  

SciTech Connect

This paper summarized findings from a Colorado and Utah survey of manufacturing and business service establishments which provided information on the use of business services among different types of firms in this interior region of the United States. The paper provides information which helps to shed light on various areas of inquiry on the relationship between manufacturers and producer services, but certainly calls for additional investigation. Most of the findings are consistent with those found by studies in other areas. Manufacturers are not a major source of sales for business service firms and the availability of business services is not cited as an important location consideration for manufacturers. Given the strong mining and agricultural sectors in these states, the fact that so little trade was with the primary sector may have been surprising. However, most of the responses in the surveys were from the urban areas of Denver and Salt Lake City. One of the hypotheses in the literature, as defined by Perry and Goe, concerns whether the growth in business services and the decline in manufacturing employment is a result of the trend toward the use of contracted services by manufacturers. The aggregate results of the study do not provide much evidence to support the proposition that this occurs. However, the results show that the larger firms internalize certain specialized business services more so than the smaller firms. The greater use company-provided legal services by the larger manufacturers is a case in point. This finding is consistent with Scott`s finding in the printed circuits industry in which larger establishments provided more functions internally than did the smaller establishments. In the case of engineering, architectural, and business management services it appears that many smaller manufacturers do not use such services at all, but that the larger establishments have more needs for professional services.

Calzonetti, F. [West Virginia Univ., Morgantown, WV (United States); Allison, T. [Argonne National Lab., IL (United States)

1992-12-31T23:59:59.000Z

326

2011 Next Generation Manufacturing Study 2011 Next ...  

Science Conference Proceedings (OSTI)

... well: 28% of manufacturers reported they were ... The NGM Study manufacturers report annual revenues ... 0.7% 0.5% Petroleum and Coal Products Mfg ...

327

NIST Workshop Seeks Manufacturers' Ideas on Using ...  

Science Conference Proceedings (OSTI)

... Workshop Seeks Manufacturers' Ideas on Using Multipurpose Robots. ... and where robots are used in manufacturing ... might make the best use of these ...

2013-05-15T23:59:59.000Z

328

Additive Manufacturing Cluster Strategy | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Additive Manufacturing Cluster Strategy SHARE Additive Manufacturing Cluster Strategy As the nation's premier research laboratory, ORNL is one of the world's most capable resources...

329

2012 Near Net Shape Manufacturing Workshop: Registration  

Science Conference Proceedings (OSTI)

Tours of the Quad City Manufacturing and Additive Laboratories and Rock Island Arsenal Joint Manufacturing and Technology Center (JMTC) Date: Thursday...

330

Advanced Manufacturing Office: State and Regional Partnerships  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Since 2002: EIA April 10, 2013 23.5 Million Investment in Innovative Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative March 26, 2013 More News...

331

Remarks at the Massachusetts Advanced Manufacturing ...  

Science Conference Proceedings (OSTI)

... After a decade of losses, more than half a ... to establish a National Network for Manufacturing ... on "Next Generation Power Electronics Manufacturing ...

2013-07-09T23:59:59.000Z

332

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Field Sites Power Marketing Administration Other Agencies You are here Home American Wind Manufacturing American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global...

333

China's Industrial Carbon Dioxide Emissions in Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and in Selected Provinces Title China's Industrial Carbon Dioxide Emissions in Manufacturing Subsectors and...

334

Advanced Manufacturing Office: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: NewsDetail on Twitter Bookmark Advanced Manufacturing Office: NewsDetail on Google Bookmark Advanced Manufacturing Office: NewsDetail on Delicious Rank Advanced...

335

Advanced Manufacturing Office: MotorMaster+ International  

NLE Websites -- All DOE Office Websites (Extended Search)

on Twitter Bookmark Advanced Manufacturing Office: MotorMaster+ International on Google Bookmark Advanced Manufacturing Office: MotorMaster+ International on Delicious Rank...

336

Fact Sheet: 48C Manufacturing Tax Credits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: 48C Manufacturing Tax Credits In order to foster investment and job creation in clean energy manufacturing, the American Recovery and Reinvestment Act of 2009 included...

337

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

338

Bio Solutions Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

search Name Bio Solutions Manufacturing Inc Place Las Vegas, Nevada Zip 89103 Product Waste-to-energy bioremediation developer. References Bio Solutions Manufacturing Inc1...

339

2012 Near Net Shape Manufacturing Workshop: Home  

Science Conference Proceedings (OSTI)

2012 Near Net Shape Manufacturing Workshop April 11-13, 2012, iWireless Center, Moline, Illinois USA. The 2012 Near Net Shape Manufacturing Workshop...

340

High Performance Windows Volume Purchase: For Manufacturers  

NLE Websites -- All DOE Office Websites (Extended Search)

For Manufacturers to someone by E-mail Share High Performance Windows Volume Purchase: For Manufacturers on Facebook Tweet about High Performance Windows Volume Purchase: For...

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report and Appendices (CD-ROM)  

SciTech Connect

The main report on this CD assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performace and efficiency improvements. The Appendices on this CD provide supporting information for the analyses and provides and recommendations for assessing the effectiveness of the U.S. Department of Energy BestPractices Steam Program.

Not Available

2002-10-01T23:59:59.000Z

342

Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects  

E-Print Network (OSTI)

Planning. UCLA. Motor Vehicles Manufacturers Association (Authority MVMA Motor Vehicle Manufacturers AssoemUon NaSneedsof electric vehicle manufacturers. Thesesectors include

Scott, Allen J.

1993-01-01T23:59:59.000Z

343

Clean Energy Manufacturing Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative July 10, 2013 - 1:52pm Addthis Boosting U.S. competitiveness in clean energy manufacturing Boosting U.S. competitiveness in clean energy manufacturing The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the Office of Energy Efficiency & Renewable Energy's (EERE) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. alex was here Addthis Related Articles Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa.

344

Manufacturing-Industrial Energy Consumption Survey(MECS) Historical  

U.S. Energy Information Administration (EIA) Indexed Site

> Historical Publications > Historical Publications Manufacturing Establishments reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring energy consumption and related issues in the manufacturing sector. The MECS collects data on energy consumption, purchases and expenditures, and related issues and behaviors. Links to previously published documents are given below. Beginning in 1998, reports were only issued electronically. Additional electronic releases are available on the MECS Homepage. The basic unit of data collection for this survey is the manufacturing establishment. Industries are selected according to definitions found in the North American Industry Classification System (NAICS), which replace the earlier Standard Industrial Classification (SIC) system.

345

Toyota production system.  

E-Print Network (OSTI)

??Background: There are various manufacturing methods and systems in automobile industries throughout the world. Of these, many practice lean manufacturing methods. The most effective and (more)

Vyas, Kewalkumar Chandrakant

2011-01-01T23:59:59.000Z

346

Distributed object environment for manufacturing. Final report  

DOE Green Energy (OSTI)

This project was initiated as a joint effort between the Department of Energy (DOE) and Ford to accelerate the development of integrated manufacturing systems through the use of emerging object-oriented software integration architectures and international product data standards. The project adopted the Object Management Group (OMG) Common Object Request Broker Architecture (CORBA) as the formal model for system integration and the ISO Standard for Exchange of Product Model Data (STEP) as the formal model for product data integration. No project at the time had brought the combined strengths of CORBA and STEP together to create an integrated system. Because CORBA technologies were just emerging when this project was started in September 1994, a reasonably high risk was assigned to this project. The first objective of this project was to build confidence in the STEP standard by exchanging a STEP description of a power steering pump with a Ford supplier and validating the exchange. This part was successfully exchanged. The second objective was the integration of the Ford in-house configuration management system with a STEP repository using CORBA-based technology. The repository chosen was the KCP Advanced Manufacturing Development System (AMDS), a development repository. This report will describe the power steering pump exchange and CORBA/STEP integration experiences.

Zimmerman, J. [AlliedSignal, Inc., Kansas City, MO (United States). Federal Mfg. and Technologies; Tocco, M. [Ford Powertrain Operations, Dearborn, MI (United States)

1996-10-01T23:59:59.000Z

347

Advanced Battery Manufacturing (VA)  

SciTech Connect

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATTs products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATTs work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

348

Manufacturing analysis of axisymmetric composite structures  

Science Conference Proceedings (OSTI)

Specific topics relating to the design, analysis, and manufacturing of three axisymmetric composite structures are investigated. The first study examines a graphite/epoxy pressure vessel designed to withstand 20 atmospheres pressure of xenon gas for use in an X-ray detection device. Design constraints dictate an oblate spherical pressure vessel manufactured using hand layup techniques. Experimental results compare favorably to predictions using finite-element analysis coupled with laminated-plate theory. The second topic deals with the design and manufacture of a stretched-membrane heliostat for solar-energy central-receiver systems. Based on theoretical predictions using laminated plate theory, a quasi-isotropic layup of (0/90{plus minus}45)s of E-glass/epoxy is recommended. Based on results of a characterization study, two one-meter diameter prototypes were designed, built, and tested. Finally, a centrifugal-casting technique for making seamless composite rings with continuous-fiber reinforcement is presented. A mathematical model of void transport in such centrifugally cast structures predicts that this approach could have significant advantages over existing composite-processing methods.

Alei, P.E.

1990-01-01T23:59:59.000Z

349

Overview of the Photovoltaic Manufacturing Technology (PVMaT) project  

SciTech Connect

The Photovoltaic Manufacturing Technology (PVMaT) project is a historic government/industry photovoltaic (PV) manufacturing R&D partnership composed of joint efforts between the federal government (through the US Department of Energy) and members of the US PV industry. The project`s ultimate goal is to ensure that the US industry retains and extends its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is designed to do this by helping the US PV industry improve manufacturing processes, accelerate manufacturing cost reductions for PV modules, improve commercial product performance, and lay the groundwork for a substantial scale-up of US-based PV manufacturing capacities. Phase 1 of the project, the problem identification phase, was completed in early 1991. Phase 2, the problem solution phase, which addresses process-specific problems of specific manufacturers, is now underway with an expected duration of 5 years. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. These ``generic`` problem areas are being addressed through a teamed research approach.

Witt, C.E.; Mitchell, R.L.; Mooney, G.D.

1993-08-01T23:59:59.000Z

350

Innovative Manufactured Housing Urban Design Demonstration Project  

Science Conference Proceedings (OSTI)

One quarter of the new houses sold in the United States in 1999 were manufactured homes, and manufactured housing represents an important and growing market for power producers. One niche market opportunity for manufactured homes is in urban areas. EPRI facilitated the completion of two limited demonstrations of energy efficient manufactured homes designed specifically for urban neighborhoods.

2000-10-05T23:59:59.000Z

351

The Advanced Manufacturing Jobs and Innovation Accelerator ...  

Science Conference Proceedings (OSTI)

Page 1. Advanced Manufacturing Jobs and Innovation Accelerator Challenge Application Guide & Document Checklist 1 of 4 ...

2012-06-26T23:59:59.000Z

352

Establishing Greener Products and Manufacturing Processes  

E-Print Network (OSTI)

energy monitoring of machine tools, CIRP Annals - Manufacturing INTERNATIONAL JOURNAL OF PRECISION ENGINEERING

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

353

Inverter Controlled Screw Air Compressor Manufacturers ...  

U.S. Energy Information Administration (EIA)

Inverter Controlled Screw Air Compressor, Inverter Controlled Screw Air Compressor Manufacturers & Suppliers Directory - Find here Inverter ...

354

Topic 2: Extremely Efficient & Effective Manufacturing  

Science Conference Proceedings (OSTI)

... without formal training in engineering. If (high performance computing is) shared throughout the entire manufacturing ...

2013-06-11T23:59:59.000Z

355

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

356

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Manufacture Ion Beam Manufacture PDF format (113 kb) Example sine wave FIB sputtered into initially planar Si substrate Example sine wave FIB sputtered into initially planar Si substrate Sandia Manufacturing Science & Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are developing methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geometrically-complex features and substrates. This includes the ability to sputter predetermined curved shapes of various symmetries and

357

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

358

Manufacturing Services | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Services Do you have a new idea? You may need to file a patent to both develop it and protect it. Find out more below. Search for existing patents Apply for a patent Business Owners Getting a business started, established, and growing is difficult. We want to make that easier. Check out the government services below that are available to businesses, and find out more about what's coming with StartUp America. Start a business Access financing Find opportunities to sell products and services to the government Grow your business Help with exporting for beginners and for experts. Shared Facilities Facilities can be a huge factor in whether you create a new product or

359

"S" Glass Manufacturing Technology Transfer  

SciTech Connect

A glass-ceramic-to metal sealing technology patented by Sandia National Laboratories, Albuquerque (SNLA) was developed by MRC-Mound for use in the manufacture of weapon components. Successful implementation attracted increasingly widespread weapon use of this technology. "S-glass" manufacturing technology was transferred to commercial vendors to ensure that weapons production schedules would be met in the coming years. Such transfer also provided sources of this fledgling technology for the Department of Defense (DOD), aerospace and other commercial uses. The steps involved in the technology transfer are described, from the initial cooperative development work of Sandia and Mound scientists and technologists to the final phase of qualifying commercial vendors for component manufacture.

Buckner, Dean, A.; McCollister, Howard, L.

1988-06-01T23:59:59.000Z

360

Environmental, Health and Safety Assessment: ATS 7H Program (Phase 3R) Test Activities at the GE Power Systems Gas Turbine Manufacturing Facility, Greenville, SC  

Science Conference Proceedings (OSTI)

International Technology Corporation (IT) was contracted by General Electric Company (GE) to assist in the preparation of an Environmental, Health and Safety (HI&3) assessment of the implementation of Phase 3R of the Advanced Turbine System (ATS) 7H program at the GE Gas Turbines facility located in Greenville, South Carolina. The assessment was prepared in accordance with GE's contractual agreement with the U.S. Department of Energy (GE/DOE Cooperative Agreement DE-FC21-95MC3 1176) and supports compliance with the requirements of the National Environmental Policy Act of 1970. This report provides a summary of the EH&S review and includes the following: General description of current site operations and EH&S status, Description of proposed ATS 7H-related activities and discussion of the resulting environmental, health, safety and other impacts to the site and surrounding area. Listing of permits and/or licenses required to comply with federal, state and local regulations for proposed 7H-related activities. Assessment of adequacy of current and required permits, licenses, programs and/or plans.

None

1998-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Process planning for rapid manufacturing of plastic injection mold for short run production.  

E-Print Network (OSTI)

??This thesis presents a process planning methodology for a rapid injection mold tool manufacturing system that involves additive and subtractive techniques, whereby slabs are sequentially (more)

Karthikeyan, Rajesh Kumar

2010-01-01T23:59:59.000Z

362

Relating Additive and Subtractive Processes Teleologically For Hybrid Design and Manufacturing.  

E-Print Network (OSTI)

??This research proposes a methodology for hybrid design and manufacturing connecting processes, and silos of information, in a shared system that maximizes the strengths (more)

Townsend, Victoria

2010-01-01T23:59:59.000Z

363

Manufacturing Spotlight: Boosting American Competitiveness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 - 1:06pm Addthis Libby Wayman Clean Energy Manufacturing Initiative Director Advancing the nation's clean energy manufacturing industry helps to capture the value of U.S. innovation in clean energy technologies, fosters further innovation right here in America, and makes U.S. manufacturers more competitive by reducing their energy costs - all while creating jobs and building a more sustainable planet for future generations. Industry and government are working together to expand American leadership in this sector by bringing new clean energy technologies to the marketplace and making manufacturing processes more energy efficient.

364

Advancing manufacturing through computational chemistry  

SciTech Connect

The capabilities of nanotechnology and computational chemistry are reaching a point of convergence. New computer hardware and novel computational methods have created opportunities to test proposed nanometer-scale devices, investigate molecular manufacturing and model and predict properties of new materials. Experimental methods are also beginning to provide new capabilities that make the possibility of manufacturing various devices with atomic precision tangible. In this paper, we will discuss some of the novel computational methods we have used in molecular dynamics simulations of polymer processes, neural network predictions of new materials, and simulations of proposed nano-bearings and fluid dynamics in nano- sized devices.

Noid, D.W.; Sumpter, B.G.; Tuzun, R.E.

1995-12-31T23:59:59.000Z

365

EVA for Small Manufacturing Companies  

E-Print Network (OSTI)

This paper examines introducing Economic Value Added as a performance measure for small manufacturing companies. Advantages and disadvantages of using Economic Value Added as a primary measure of performance as compared to sales, revenues, earnings, operating profit, profit after tax, and profit margin are investigated. The Economic Value Added calculation using data from a small companys income and balance sheet statements is illustrated. Necessary adjustments to these financial statements, that are typical for a small company, are demonstrated to prepare the data for the Economic Value Added determination. Finally, potential improvement opportunities resulting from using Economic Value Added as a performance measure in small manufacturing companies are discussed.

Narcyz Roztocki; Kim Lascola Needy

1999-01-01T23:59:59.000Z

366

Plastic Product Manufacturing (NAICS 3261)  

Science Conference Proceedings (OSTI)

The U.S. plastics product manufacturing industry (NAICS 3261), which consists of more than 12,000 firms with combined annual revenues of about $170 billion, is one of the ten largest manufacturing industries in the country in terms of sales. A large amount of electricity is consumed by the plastics products industry, with more than half of their usage going to machine drives; therefore, it is with motors and drives that the greatest opportunities for energy savings lie. Several electric technology option...

2012-01-31T23:59:59.000Z

367

TekSun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

TekSun PV Manufacturing Inc TekSun PV Manufacturing Inc Jump to: navigation, search Name TekSun PV Manufacturing Inc Place Austin, Texas Zip 78701 Product US-based installer of PV systems; rportedly planning to buy a 120MW amorphous silicon PV manufacturing line from Applied Materials. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

East Penn Manufacturing Co. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Manufacturing Co. Smart Grid Demonstration Project Manufacturing Co. Smart Grid Demonstration Project Jump to: navigation, search Project Lead East Penn Manufacturing Co. Country United States Headquarters Location Lyon Station, Pennsylvania Recovery Act Funding $2,245,523.00 Total Project Value $4,491,046.00 References ARRA Smart Grid Demonstration Projects[1] This article is a stub. You can help OpenEI by expanding it. The East Penn Manufacturing Co. Smart Grid Demonstration Project is a U.S. Department of Energy Smart Grid Demonstration Project which is based in Lyon Station, Pennsylvania. Overview Demonstrate the economic and technical viability of a 3MW grid-scale, advanced energy storage system using the lead-carbon UltraBattery technology to regulate frequency and manage energy demand. This project

369

DOE Research Grant Leads to Gas Turbine Manufacturing Improvements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Grant Leads to Gas Turbine Manufacturing Improvements Research Grant Leads to Gas Turbine Manufacturing Improvements DOE Research Grant Leads to Gas Turbine Manufacturing Improvements August 16, 2011 - 1:00pm Addthis Washington, DC - Research sponsored by the U.S. Department of Energy's Office of Fossil Energy (FE) has led to a new licensing agreement that will improve the performance of state-of-the-art gas turbines, resulting in cleaner, more reliable and affordable energy. The collaborative technology license agreement, penned by Mikro Systems Inc. and Siemens Energy Inc., reflects growth in U.S.-based manufacturing know-how and leadership in cutting-edge technology development and rapid implementation. Gas turbines, which are used to produce electricity for industrial or central power generation applications, consist sequentially of compressor,

370

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Hydrogen and Fuel Cells Technologies Manufacturing Sub-program Nancy L. Garland, Ph.D. U.S Department of Energy NREL H 2 /FC Manufacturing R&D Workshop Washington, D.C. August 11-12, 2011 * Goal: Research, develop and demonstrate technologies and processes that reduce the cost of components and systems for fuel cells, and hydrogen production, delivery, and storage; grow the domestic supplier base. * Challenge: Move hydrogen and fuel cells from laboratory-scale production into high-volume, low-cost manufacturing. 2 Goal of Manufacturing sub-program U.S. DOE 8/10/11 3 Budget EMPHASIS  Develop novel, robust, ultrasonic bonding processes for MEAs to reduce MEA-pressing cycle time  Develop real-time, online measurement tools to reduce/eliminate ex situ

371

Process for manufacturing multilayer capacitors  

DOE Patents (OSTI)

The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation.

Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

1996-01-01T23:59:59.000Z

372

Process for manufacturing multilayer capacitors  

DOE Patents (OSTI)

The invention is directed to a method of manufacture of multilayer electrical components, especially capacitors, and components made by such a method. High capacitance dielectric materials and low cost metallizations layered with such dielectrics may be fabricated as multilayer electrical components by sintering the metallizations and the dielectrics during the fabrication process by application of microwave radiation. 4 figs.

Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

1996-01-02T23:59:59.000Z

373

Infofrax: Cbr in fused cast refractory manufacture  

E-Print Network (OSTI)

Abstract. This paper describes a CBR application in manufacturing industry, a domain where CBR has by and large proved its applicability and success. The paper details a thorough understanding of the field of fused cast manufacturing basically seen from the perspective of glass furnace, where quality of glass produced is straightaway related to the refractory blocks used in furnace linings. The applicability of CBR paradigm is revisited in the present context. The CBR process needed is conceptualized and designed. The paper states in detail the evolution of the system starting from tackling hurdles of the knowledge acquisition and refining, facing a number of pitfalls in the prototype phase, to final implementation of InfoFrax, a CBR system specially devised for the project, and overall description of the same covering architecture, and usage. The paper also reports the immediate effects of the software in form of direct user feedback, expectations from the existing system and some directions of future work already underway in the project. 1

Deepak Khemani; Radhika Selvamani B; A Rabi Dhar; Michael S. M

2002-01-01T23:59:59.000Z

374

List of Manufacturing Groups Displayed in the 1998 Manufacturing Energy  

U.S. Energy Information Administration (EIA) Indexed Site

21 manufacturing subsectors (3-digit NAICS codes); 21 manufacturing subsectors (3-digit NAICS codes); 311 Food 312 Beverage and Tobacco Products 313 Textile Mills 314 Textile Product Mills 315 Apparel 316 Leather and Allied Products 321 Wood Products 322 Paper 323 Printing and Related Support 324 Petroleum and Coal Products 325 Chemicals 326 Plastics and Rubber Products 327 Nonmetallic Mineral Products 331 Primary Metals 332 Fabricated Metal Products 333 Machinery 334 Computer and Electronic Products 335 Electrical Equip., Appliances, and Components 336 Transportation Equipment 337 Furniture and Related Products 339 Miscellaneous 6 industry groups (4-digit NAICS codes); 3212 Veneer, Plywood, and Engineered Woods 3219 Other Wood Products 3272 Glass and Glass Products 3312 Steel Products from Purchased Steel 3313 Alumina and Aluminum

375

Sustainable Manufacturing Greening Processes, Systems and Products  

E-Print Network (OSTI)

59, 2010 plenary Papers: Energy and Resource Efficiencyresources. Plenary Papers: Energy and Resource Efficiency include: plenary Papers: Energy and Resource Efficiency

Dornfeld, David

2010-01-01T23:59:59.000Z

376

Advanced Manufacturing Office: Training: Compressed Air Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

determine different compressor control strategies, align the supply-side to demand-side operation, and gain an understanding of the value of heat recovery. Participants will...

377

Advanced Manufacturing Office: Process Heating Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Boiler Tune-Up Energy-Efficiency Opportunity Assessment Tool for Chemical Plants and Refineries Mechanical Insulation Assessment and Design Calculators Combined Heat and Power...

378

Soap Manufacturing TechnologyChapter 12 Manufacture of Multicolored and Multicomponent Soaps  

Science Conference Proceedings (OSTI)

Soap Manufacturing Technology Chapter 12 Manufacture of Multicolored and Multicomponent Soaps Surfactants and Detergents eChapters Surfactants - Detergents Press Downloadable pdf of\tChapter 12 Manufacture of Mult

379

Cost effective manufacturing of the SEA 10X concentrator array  

DOE Green Energy (OSTI)

This report describes a low-cost, mass-producible 10X concentrator system that has been claimed to produce electricity at $0.04/kWh. It details changes in manufacturing techniques that could produce a concentrator system at a selling price of $0.71/W. (A simple design and a minimum number of parts and manufacturing steps reduced production costs.) Present production techniques, changes to improve these techniques, impediments to changes, and solutions to the impediments are described. This 10X concentrator system uses available components and manufacturing processes and one-sun solar cells in conjunction with inexpensive plastic lenses to generate about eight times the amount of electricity normally produced by these cells.

Kaminar, N.; McEntee, J.; Curchod, D. (Solar Engineering Applications Corp., San Jose, CA (United States))

1991-11-01T23:59:59.000Z

380

Batteries - Materials Processing and Manufacturing Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Processing and Manufacturing Materials Processing and Manufacturing Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * PHEV40 and AEV 100 possible with success in current R&D * Achievable with Li-ion manufacturing improvements and advanced chemistries in current Li-ion R&D * AEV300 more challenging * Requires manufacturing improvements and materials and chemistry improvements * Quantify benefits/ drawbacks of fast charging vs. increased electrode cost Barriers Interfering with Reaching the Targets * Materials cost * Need: Material synthesis in large quantities/ with increased impurities and broader size distributions or advanced manufacturing * Electrode thickness - manufacturing and performance * Separator cost/ performance/ safety

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Manufacturers' View on Benchmarking and Disclosure  

U.S. Energy Information Administration (EIA) Indexed Site

Association of Electrical and Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax Incentives Shaheen- Portman Benchmarking and Disclosure Bullitt Center Seattle, Washington The Association of Electrical Equipment and Medical Imaging Manufacturers Energy Savings Performance Contracts ESPCs pay for efficiency upgrades with

382

Advanced Manufacturing Office: Industrial Assessment Centers (IACs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Assessment Industrial Assessment Centers (IACs) to someone by E-mail Share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Facebook Tweet about Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Twitter Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Google Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Delicious Rank Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Digg Find More places to share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on AddThis.com... Industrial Assessment Centers (IACs) Learn More Learn how companies have benefited from IAC assessments. Search the IAC Database for recommendations and savings achieved.

383

Networked Control Systems Group  

Science Conference Proceedings (OSTI)

... and deploys measurement science for sensor networks and control systems used in manufacturing, construction, and other cyber-physical systems ...

2012-08-30T23:59:59.000Z

384

Manufacturing  

Science Conference Proceedings (OSTI)

... Report 91-4626, June, 1991. - 15 - September 5, 1991 time_t(seconds) timeval(sec,usec) time gettimeofday OS localtime gmtimelocaltime ctime ...

1993-07-26T23:59:59.000Z

385

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

386

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

387

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

388

Photovoltaic manufacturing technology, Phase 1  

DOE Green Energy (OSTI)

This report examines manufacturing multiple-band-gap, multiple- junction solar cells and photovoltaic modules. Amorphous silicon alloy material is deposited (using microwave plasma-assisted chemical vapor deposition) on a stainless-steel substrate using a roll-to-roll process that is continuous and automated. Rapid thermal equilibration of the metal substrate allows rapid throughput of large-area devices in smaller production machines. Potential improvements in the design, deposition, and module fabrication process are described. Problems are also discussed that could impede using these potential improvements. Energy Conversion Devices, Inc. (ECD) proposes cost and time estimates for investigating and solving these problems. Manufacturing modules for less than $1.00 per peak watt and stable module efficiencies of greater than 10% are near-term goals proposed by ECD. 18 refs.

Izu, M. (Energy Conversion Devices, Inc., Troy, MI (United States))

1992-03-01T23:59:59.000Z

389

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

390

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

391

Air Exchange Rates in New Energy-Efficient Manufactured Housing  

E-Print Network (OSTI)

During the 1989-1990 heating season, Pacific Northwest Laboratory, for the Bonneville Power Administration, measured the ventilation characteristics of 139 newly constructed energy-efficient manufactured homes and a control sample of 35 newer manufactured homes. A standard door fan pressurization technique was used to estimate shell leakiness, and a passive perfluorocarbon tracer technique was used to estimate overall air exchange rates. A measurement of the designated whole-house exhaust system flow rate was taken as well as an occupant and structure survey. The energy-efficient manufactured homes have very low air exchange rates, significantly lower than either existing manufactured homes or site-built homes. The standard deviation of the effective leakage area for this sample of homes is small (25% to 30% of the mean), indicating that the leakiness of manufactured housing stock can be confidently characterized by the mean value. There is some indication of increased ventilation due to the energy-efficient whole-house ventilation specification, but not directly related to the operation of the wholehouse system. The mechanical systems as installed and operated do not provide the intended ventilation; consequently indoor air quality could possibly be adversely impacted and moisture/condensation in the living space is a potential problem.

Hadley, D. L.; Bailey, S. A.

1990-01-01T23:59:59.000Z

392

Manufacturing of Plutonium Tensile Specimens  

SciTech Connect

Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

Knapp, Cameron M [Los Alamos National Laboratory

2012-08-01T23:59:59.000Z

393

Metalworking Machinery Manufacturing (NAICS 3335)  

Science Conference Proceedings (OSTI)

The U.S. metalworking machinery manufacturing industry (NAICS 3335) consists of about 7,900 firms with combined annual revenues of about $29 billion. Many (75%) of these firms are small, having fewer than 20 employees. This industry consumes a large amount of electricity, with about half of their usage going to drives that are used for machine tools; therefore, it is with motors and drives that the greatest opportunities for energy savings lie. Several electric technology options are available and identi...

2012-01-31T23:59:59.000Z

394

Advancing Manufacturing Research Through Competitions  

SciTech Connect

Competitions provide a technique for building interest and collaboration in targeted research areas. This paper will present a new competition that aims to increase collaboration amongst Universities, automation end-users, and automation manufacturers through a virtual competition. The virtual nature of the competition allows for reduced infrastructure requirements while maintaining realism in both the robotic equipment deployed and the scenarios. Details of the virtual environment as well as the competitions objectives, rules, and scoring metrics will be presented.

Balakirsky, Stephen [National Institute of Standards and Technology (NIST); Madhavan, Raj [ORNL

2009-01-01T23:59:59.000Z

395

Manufacturing Technology bulletin, July 1994  

Science Conference Proceedings (OSTI)

Inside this issue: (1) Robotic cleaning safer, faster, more reliable; robots taught how to clean in seconds instead of days. (2) Microporous insulating films can boost microcircuit performance; films display improved dielectric constant, mechanical properties, (3) Life-cycle analysis: the big picture; cradle-to-grave environmental analysis tailored to the needs of defense manufacturing, (4) New simulation tool predicts properties of forged metal; internal state variable model improves design, speeds development time.

Not Available

1994-07-01T23:59:59.000Z

396

MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANUFACTURING MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge) Manufacturing 332420 Other Metal Container Manufacturing 332439 Machine Shops 332710 Electroplating, Plating, Polishing, Anodizing, and Coloring 332813 Industrial valve Manufacturing 332911 Other Ordnance and Accessories Manufacturing 332995 All Other Miscellaneous Fabricated Metal Product Manufacturing

397

Enterprise resource planning (ERP) selection for a medical devices manufacturing company  

Science Conference Proceedings (OSTI)

This project involved working with a medical device manufacturing company currently in the process of identifying a new ERP system. This research aims to help in the decision making process, selection and implementation of the new system. The methodology ... Keywords: AHP, ERP selection, TAM, TIE, analytical hierarchical process, enterprise resource planning, medical device manufacturing, medical devices, technology acceptance model, technology implementation envelope

Casey Zielsdorff; Chris McGinnis; Tugrul Daim; Nuri Basoglu

2010-08-01T23:59:59.000Z

398

Fact Sheet: 48C Manufacturing Tax Credits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

48C Manufacturing Tax Credits 48C Manufacturing Tax Credits In order to foster investment and job creation in clean energy manufacturing, the American Recovery and Reinvestment Act of 2009 included a tax credit for investments in manufacturing facilities for clean energy technologies. The Section 48C Advanced Manufacturing Tax Credit originally provided a 30% investment tax credit to 183 domestic clean energy manufacturing facilities valued at $2.3 billion. Today the IRS has announced the availability of additional 48C allocations, utilizing $150 million remaining tax credits that were never fully monetized by previous awardees. This tax credit program will help build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. These manufacturing facilities will also

399

Manufacturing Demonstration Facility (MDF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) October 11, 2013 - 9:44am Addthis The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber. Fostering Collaboration to Accelerate Progress Work conducted by MDF partners and users provides real data that is used to reduce the technical risk associated with full commercialization of promising foundational manufacturing process and materials innovations. The

400

SunShot Initiative: Solar Manufacturing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Manufacturing Technology to Solar Manufacturing Technology to someone by E-mail Share SunShot Initiative: Solar Manufacturing Technology on Facebook Tweet about SunShot Initiative: Solar Manufacturing Technology on Twitter Bookmark SunShot Initiative: Solar Manufacturing Technology on Google Bookmark SunShot Initiative: Solar Manufacturing Technology on Delicious Rank SunShot Initiative: Solar Manufacturing Technology on Digg Find More places to share SunShot Initiative: Solar Manufacturing Technology on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment Physics of Reliability: Evaluating Design Insights for Component

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Imperial Manufacturing: Order (2013-CE-5322)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Imperial Manufacturing, Inc. to pay a $8,000 civil penalty after finding Imperial Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

402

Creation and sustainment of manufacturing technology roadmaps  

E-Print Network (OSTI)

Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

Grillon, Louis S

2012-01-01T23:59:59.000Z

403

EERE: Advanced Manufacturing Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Site Map Printable Version Share this resource Send a link to EERE: Advanced Manufacturing Office Home Page to someone by E-mail Share EERE: Advanced Manufacturing Office...

404

Clean Energy Manufacturing Incentive Program (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

In April 2011, Virginia created the Clean Energy Manufacturing Incentive Grant Program. The program is meant to replace the [http://en.openei.org/wiki/Solar_Manufacturing_Incentive_Grant_%28SMIG%29...

405

Summit Manufacturing: Case Closure (2010-SE-0303)  

Energy.gov (U.S. Department of Energy (DOE))

DOE closed this case against Summit Manufacturing, Inc. without civil penalty after Summit Manufacturing provided information that the non-compliant products were not sold in the United States.

406

FACT SHEET: 48C MANUFACTURING TAX CREDITS  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment.On February 7,...

407

Climate VISION: Private Sector Initiatives: Automobile Manufacturers...  

Office of Scientific and Technical Information (OSTI)

The Alliance of Automobile Manufacturers, Inc. is a trade association composed of 10 car and light truck manufacturers with about 600,000 employees at more than 250 facilities...

408

Emerging Global Trends in Advanced Manufacturing  

Science Conference Proceedings (OSTI)

Page 1. Emerging Global Trends in Advanced Manufacturing Stephanie S. Shipp, Project Leader Nayanee Gupta Bhavya Lal ...

2013-07-31T23:59:59.000Z

409

3D Shape Searching for Manufacturing Apps.  

Science Conference Proceedings (OSTI)

3D Shape Searching for Manufacturing Applications. Principal Investigator: Afzal Godil (301) 975-4262 afzal.godil@nist.gov. ...

2010-10-05T23:59:59.000Z

410

Affordable Semi-Manufacturing: Implications for ...  

Science Conference Proceedings (OSTI)

... Dan Armbrust will review industry economics and trends, as well as manufacturing collaboration in the semiconductor and photovoltaic industries. ...

2011-10-25T23:59:59.000Z

411

Materials Processing & Manufacturing Division's Fourth ... - TMS  

Science Conference Proceedings (OSTI)

Mar 3, 2003 ... Increasing energy prices offer manufacturers an excellent incentive to .... Retrofitting Regenerative Burners on Aluminum Melting Furnaces that...

412

Arrayed Microchannel Manufacturing: Enabling a New ...  

Science Conference Proceedings (OSTI)

... Hydroprocessing USDA/DOE Biomass Program $2.4 million Work underway for upgrading pyrolysis oil Manufacturing Ohio Dept. ...

2011-08-02T23:59:59.000Z

413

National Network for Manufacturing Innovation (NNMI)  

Science Conference Proceedings (OSTI)

... Departments of Defense and Energy and other ... organizations from the Ohio-Pennsylvania-West ... manufacturing capabilities in companies large and ...

414

Data mining solves tough semiconductor manufacturing problems  

Science Conference Proceedings (OSTI)

Keywords: data mining, machine learning, manufacturing optimization, neural networks, pattern recognition, rule induction, self organizing maps, semiconductor yield enhancement

Mike Gardner; Jack Bieker

2000-08-01T23:59:59.000Z

415

Climate VISION: Private Sector Initiatives: Automobile Manufacturers...  

Office of Scientific and Technical Information (OSTI)

State Programs Technical Information Plant Assessments Training Calendar Software Tools Energy Management Results Technology Pathways Automobile Manufacturers - Results No...

416

The Advanced Manufacturing Technology Consortia (AMTech ...  

Science Conference Proceedings (OSTI)

... Advanced Manufacturing National Program Office National Institute of Standards ... Management (SAM) are required ... Clarifications to budget items ...

2013-08-21T23:59:59.000Z

417

NIST Workshop on Sustainable Manufacturing: Metrics ...  

Science Conference Proceedings (OSTI)

... ICT for Design, Manufacturing and Supply chain Optimization for sustainable ... Lifecycle Management) and LCA tools to support energy and material ...

2011-10-11T23:59:59.000Z

418

Manufacturing Day Gaining Momentum: More than 150 ...  

Science Conference Proceedings (OSTI)

... "Manufacturing is an essential contributor to ... More than 150 companies and educational facilities have already registered their participation at www ...

2013-02-28T23:59:59.000Z

419

Annual Survey of Manufactures | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

are measuring productivity, updating producer price indexes, evaluating and forecasting future industrial activity, benchmarking current data on manufacturing shipments...

420

Definitition of Manufacturing R&D  

Science Conference Proceedings (OSTI)

Definition of Scope - Manufacturing-related R&D. ... or cost reduction), or increased environmental efficiency (safety, energy efficiency, environmental ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Manufacturing Supplier Network Resources | IMCP Playbook  

Science Conference Proceedings (OSTI)

... is a strategic integration and commitment of manufacturing efforts across the Office of Energy Efficiency and Renewable Energy's clean energy ...

2013-12-09T23:59:59.000Z

422

Ceramics and Additive Manufacturing; Exploring Compatibility ...  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials, Processes and Applications for Additive Manufacturing ... Lubricants in Deposition and Machining of Wire and Arc Additive...

423

NIST and the Advanced Manufacturing Partnership National ...  

Science Conference Proceedings (OSTI)

... Increase private sector investment in ... Enhance manufacturing education at Community Colleges (CC). ... Federal funding to CCs to encourage ...

2012-09-08T23:59:59.000Z

424

Robust Capacity Planning in Semiconductor Manufacturing  

E-Print Network (OSTI)

Oct 3, 2001 ... Abstract: We present a stochastic programming approach to capacity planning under demand uncertainty in semiconductor manufacturing.

425

Wind Manufacturing Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

--Alternative Fuel Vehicles --Batteries --Biofuels --Clean Cities -Building Design --Solar Decathlon -Manufacturing Energy Sources -Renewables --Solar ---SunShot --Wind...

426

New Manufacturing Extension Centers Planned for Arizona ...  

Science Conference Proceedings (OSTI)

... of Standards and Technology's (NIST) Hollings Manufacturing Extension Partnership (MEP) program has awarded cooperative agreements to the ...

2013-05-01T23:59:59.000Z

427

Manufacturing Extension Partnership (MEP) Centers for South ...  

Science Conference Proceedings (OSTI)

Manufacturing Extension Partnership (MEP) Centers for South Dakota and Kentucky. ... South Dakota and Kentucky Competition Time-line: ...

2013-03-13T23:59:59.000Z

428

Transformational Research in Civil Infrastructure and Manufacturing ...  

Science Conference Proceedings (OSTI)

Feb 4, 2011 ... automation for manufacturing; technologies to enable a smart grid; technologies for personalized medicine; technologies for water availability;...

429

Virtual Reality for Manufacturing Case Studies  

Science Conference Proceedings (OSTI)

Virtual Reality for Manufacturing - Case Studies. Sandy Ressler National Institute of Standards and Technology sressler@nist.gov. ...

430

Advances in Hydroelectric Turbine Manufacturing and Repair  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2013. Symposium, Advances in Hydroelectric Turbine Manufacturing and Repair. Sponsorship...

431

Manufactured Home Testing in Simulated and Naturally Occurring High Winds  

SciTech Connect

A typical double-wide manufactured home was tested in simulated and naturally occurring high winds to understand structural behavior and improve performance during severe windstorms. Seven (7) lateral load tests were conducted on a double-wide manufactured home at a remote field test site in Wyoming. An extensive instrumentation package monitored the overall behavior of the home and collected data vital to validating computational software for the manufactured housing industry. The tests were designed to approach the design load of the home without causing structural damage, thus allowing the behavior of the home to be accessed when the home was later exposed to high winds (to 80-mph). The data generally show near-linear initial system response with significant non-linear behavior as the applied loads increase. Load transfer across the marriage line is primarily compression. Racking, while present, is very small. Interface slip and shear displacement along the marriage line are nearly insignificant. Horizontal global displacements reached 0.6 inch. These tests were designed primarily to collect data necessary to calibrate a desktop analysis and design software tool, MHTool, under development at the Idaho National Laboratory specifically for manufactured housing. Currently available analysis tools are, for the most part, based on methods developed for stick built structures and are inappropriate for manufactured homes. The special materials utilized in manufactured homes, such as rigid adhesives used in the connection of the sheathing materials to the studs, significantly alter the behavior of manufactured homes under lateral loads. Previous full scale tests of laterally loaded manufactured homes confirm the contention that conventional analysis methods are not applicable. System behavior dominates the structural action of manufactured homes and its prediction requires a three dimensional analysis of the complete unit, including tiedowns. This project was sponsored by the US Department of Energy, US Department of Housing and Urban Development, and the Manufactured Housing Institute. The results of this research can lead to savings in annual losses of life and property by providing validated information to enable the advancement of code requirements and by developing engineering software that can predict and optimize wind resistance.

W. D. Richins; T. K. Larson

2006-08-01T23:59:59.000Z

432

Needs assessment for manufacturing ceramic gas turbine components  

SciTech Connect

An assessment of needs for the manufacturing of ceramic gas turbine components was undertaken to provide a technical basis for planning R&D activities to support DOE`s gas turbine programs. The manufacturing processes for ceramic turbine engine components were examined from design through final inspection and testing. The following technology needs were identified: Concurrent engineering early in the design phase to develop ceramic components that are more readily manufacturable. Additional effort in determining the boundaries of acceptable design dimensions and tolerances through experimental and/or analytical means. Provision, by the designer, of a CAD based model of the component early in the design cycle. Standardization in the way turbine components are dimensioned and toleranced, and in the way component datum features are defined. Rapid means of fabricating hard tooling, including intelligent systems for design of tooling and rapid prototyping of tooling. Determination of process capabilities by manufacturing significant numbers of parts. Development of more robust ceramic manufacturing processes which are tolerant of process variations. Development of intelligent processing as a means of controlling yield and quality of components. Development of computer models of key manufacturing steps, such as green forming to reduce the number of iterations required to manufacture intolerance components. Development of creep feed or other low-damage precision grinding for finish machining of components. Improved means of fixturing components for finish machining. Fewer and lower-cost final inspection requirements. Standard procedures, including consistent terminology and analytical software for dimensional inspection of components. Uniform data requirements from the US turbine engine companies. An agreed-upon system of naming ceramic materials and updating the name when changes have been made.

Johnson, D.R.; McSpadden, S.B.; Morris, T.O.; Pasto, A.E.

1995-11-01T23:59:59.000Z

433

Property:WindTurbineManufacturer | Open Energy Information  

Open Energy Info (EERE)

WindTurbineManufacturer WindTurbineManufacturer Jump to: navigation, search This is a property of type Page. Pages using the property "WindTurbineManufacturer" Showing 25 pages using this property. (previous 25) (next 25) 3 3-D Metals + Northern Power Systems + A AB Tehachapi Wind Farm + Vestas + AFCEE MMR Turbines + GE Energy + AG Land 1 + GE Energy + AG Land 2 + GE Energy + AG Land 3 + GE Energy + AG Land 4 + GE Energy + AG Land 5 + GE Energy + AG Land 6 + GE Energy + AVTEC + Northern Power Systems + Adair Wind Farm I + Vestas + Adair Wind Farm II + Siemens + Adams Wind Project + Alstom + Aeroman Repower Wind Farm + GE Energy + Affinity Wind Farm + Suzlon Energy Company + Agassiz Beach Wind Farm + Vestas + Agriwind Wind Farm + Suzlon Energy Company + Ainsworth Wind Energy Facility + Vestas +

434

Energy Manufacturing Matthew Realff and Steven Danyluk  

E-Print Network (OSTI)

Energy Manufacturing Matthew Realff and Steven Danyluk Georgia Institute of Technology This white Foundation and held in Arlington VA, on March 24-25, 2009 on Energy Manufacturing. The workshop attendees participated in discussions and presented their views on energy manufacturing and the presentations

Das, Suman

435

Low Temperature PEM Fuel Cell Manufacturing Needs  

E-Print Network (OSTI)

Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation-kilowatt reformer based FC generators #12;Manufacturing Fuel Cell Project ­ Phase 2 Manufacturing Roadmap · Projects

436

Ohio Advanced Energy Manufacturing Center  

SciTech Connect

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

437

Ohio Advanced Energy Manufacturing Center  

Science Conference Proceedings (OSTI)

The program goal of the Ohio Advanced Energy Manufacturing Center (OAEMC) is to support advanced energy manufacturing and to create responsive manufacturing clusters that will support the production of advanced energy and energy-efficient products to help ensure the nation's energy and environmental security. This goal cuts across a number of existing industry segments critical to the nation's future. Many of the advanced energy businesses are starting to make the transition from technology development to commercial production. Historically, this transition from laboratory prototypes through initial production for early adopters to full production for mass markets has taken several years. Developing and implementing manufacturing technology to enable production at a price point the market will accept is a key step. Since these start-up operations are configured to advance the technology readiness of the core energy technology, they have neither the expertise nor the resources to address manufacturing readiness issues they encounter as the technology advances toward market entry. Given the economic realities of today's business environment, finding ways to accelerate this transition can make the difference between success and failure for a new product or business. The advanced energy industry touches a wide range of industry segments that are not accustomed to working together in complex supply chains to serve large markets such as automotive and construction. During its first three years, the Center has catalyzed the communication between companies and industry groups that serve the wide range of advanced energy markets. The Center has also found areas of common concern, and worked to help companies address these concerns on a segment or industry basis rather than having each company work to solve common problems individually. EWI worked with three industries through public-private partnerships to sew together disparate segments helping to promote overall industry health. To aid the overall advanced energy industry, EWI developed and launched an Ohio chapter of the non-profit Advanced Energy Economy. In this venture, Ohio joins with six other states including Colorado, Connecticut, Illinois, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont to help promote technologies that deliver energy that is affordable, abundant and secure. In a more specific arena, EWI's advanced energy group collaborated with the EWI-run Nuclear Fabrication Consortium to promote the nuclear supply chain. Through this project EWI has helped bring the supply chain up to date for the upcoming period of construction, and assisted them in understanding the demands for the next generation of facilities now being designed. In a more targeted manner, EWI worked with 115 individual advanced energy companies that are attempting to bring new technology to market. First, these interactions helped EWI develop an awareness of issues common to companies in different advanced energy sectors. By identifying and addressing common issues, EWI helps companies bring technology to market sooner and at a lower cost. These visits also helped EWI develop a picture of industry capability. This helped EWI provide companies with contacts that can supply commercial solutions to their new product development challenges. By providing assistance in developing supply chain partnerships, EWI helped companies bring their technology to market faster and at a lower cost than they might have been able to do by themselves. Finally, at the most granular level EWI performed dedicated research and development on new manufacturing processes for advanced energy. During discussions with companies participating in advanced energy markets, several technology issues that cut across market segments were identified. To address some of these issues, three crosscutting technology development projects were initiated and completed with Center support. This included reversible welds for batteries and high temperature heat exchangers. It also included a novel advanced weld trainer that EWI

Kimberly Gibson; Mark Norfolk

2012-07-30T23:59:59.000Z

438

Energy-Saving Homes, Buildings, and Manufacturing | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy-Saving Homes, Buildings, and Manufacturing Energy-Saving Homes, Buildings, and Manufacturing Buildings Homes Advanced Manufacturing Government Energy Management Buildings...

439

Impacts of the Manufacturing and Recycling Stages on Battery Life Cycles  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPACTS OF THE MANUFACTURING AND RECYCLING STAGES ON BATTERY IMPACTS OF THE MANUFACTURING AND RECYCLING STAGES ON BATTERY LIFE CYCLES J. B. Dunn 1 , L. Gaines 1 , M. Barnes 2 , and J.L. Sullivan 1 1 Argonne National Laboratory, Energy Systems Division 9700 South Cass Avenue, Building 362 Argonne, IL 60439-4815, USA 2 Department of Mechanical Engineering The Pennsylvania State University 157E Hammond Building University Park, PA 16802 Keywords: battery, materials, manufacturing, life cycle, recycling Abstract

440

Research on advanced photovoltaic manufacturing technology  

DOE Green Energy (OSTI)

This report outlines opportunities for significantly advancing the scale and economy of high-volume manufacturing of high-efficiency photovoltaic (PV) modules. We propose to pursue a concurrent effort to advance existing crystalline silicon module manufacturing technology and to implement thin film CuInSe{sub 2} (CIS) module manufacturing. This combination of commercial-scale manufacturing of high-efficiency crystalline silicon modules and of pilot-scale manufacturing of low-cost thin film CIS technology will support continued, rapid growth of the US PV industry.

Jester, T.; Eberspacher, C. (Siemens Solar Industries, Camarillo, CA (United States))

1991-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

442

Process for manufacturing tantalum capacitors  

DOE Patents (OSTI)

A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1,300 to 2,000 C by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO[sub 2]. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

Lauf, R.J.; Holcombe, C.E.; Dykes, N.L.

1993-02-02T23:59:59.000Z

443

Process for manufacturing tantalum capacitors  

DOE Patents (OSTI)

A process for manufacturing tantalum capacitors in which microwave energy is used to sinter a tantalum powder compact in order to achieve higher surface area and improved dielectric strength. The process comprises cold pressing tantalum powder with organic binders and lubricants to form a porous compact. After removal of the organics, the tantalum compact is heated to 1300.degree. to 2000.degree. C. by applying microwave radiation. Said compact is then anodized to form a dielectric oxide layer and infiltrated with a conductive material such as MnO.sub.2. Wire leads are then attached to form a capacitor to said capacitor is hermetically packaged to form the finished product.

Lauf, Robert J. (Oak Ridge, TN); Holcombe, Cressie E. (Knoxville, TN); Dykes, Norman L. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

444

Manufacturing method of photonic crystal  

DOE Patents (OSTI)

A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.

Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang

2013-01-29T23:59:59.000Z

445

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Wind Manufacturing American Wind Manufacturing American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind Farm, shown here, in Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 14:38 2 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-07 16:16 3 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 17:14 4 of 9 Nordex USA manufacturing facility - Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 13:55 5 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 14:11 6 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas.

446

Heat pumps and manufactured homes: Making the marriage work  

SciTech Connect

Manufactured homes make up over 7% of the US housing stock, including over 15% of the homes in North Carolina. As more of these homes are being equipped with heat pumps, it becomes important to figure out how to make these systems efficient. This article describes a number of ways of increasing the efficiency. The following topics are included: heat pump actual and rated capacity; heat pump sizing; air flow to the coil; indoor thermostat placement; outdoor thermostat; condensate; leaky ducts; pressure boundary breaches; pressure problems; what you should look for in heat pumps; manufactured housing - an evolutionary home.

Conlin, F.; Neal, C.L. [North Carolina Alternative Energy Corp., Raleigh, NC (United States)

1996-11-01T23:59:59.000Z

447

Recent progress in the photovoltaic manufacturing technology project (PVMaT)  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) Project was initiated in 1990 to help the US photovoltaic (PV) industry extend its world leadership role in manufacturing and commercially developing PV modules and systems. It is being conducted in several phases, staggered to support industry progress. The four most recently awarded subcontracts (Phase 2B) are now completing their first year of research. They include two subcontracts on CdTe, one on Spheral Solar[trademark] Cells, and one on cast polysilicon. These subcontracts represent new technology additions to the PVMaT Project. Subcontracts initiated in earlier phases are nearing completion, and their progress is summarized. An additional phase of PVMaT, Phase 4A, is being initiated which will emphasize product-driven manufacturing research and development. The intention of Phase 4A is to emphasize improvement and cost reduction in the manufacture of full-system PV products. The work areas may include, but are not limited to, issues such as improvement of module manufacturing processes; system and system component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements.

Witt, C.E.; Mitchell, R.L.; Thomas, H. (National Renewable Energy Lab., Golden, CO (United States)); Herwig, L.O. (USDOE, Washington, DC (United States)); Ruby, D.S. (Sandia National Labs., Albuquerque, NM (United States)); Sellers, R.

1994-12-09T23:59:59.000Z

448

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Chemical Industry Analysis Brief Change Topic: Steel | Chemical Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods. They are also crucial materials in creating many resources that are essential inputs to the numerous industries and sectors of the U.S. economy.1 The manufacturing sector is classified by the North American Industry Classification System (NAICS) of which the chemicals sub-sector is NAICS

449

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

Plant Assessments Plant Assessments Plant-Wide Assessments Plant-wide assessments are one way to work with the DOE Industrial Technologies Program—most companies realize a minimum of $1 million in annual energy savings after just one assessment. Plants are selected through a competitive solicitation process, and agree to a minimum 50% cost-share for implementing the assessment. An industry-defined team conducts an on-site analysis of total energy use and identifies opportunities to save energy in your overall operations and in motor, steam, compressed air, and process heating systems. The recommendations could include implementing emerging technologies that would be particularly effective in your operation. These emerging technologies, although on the forefront of industrial manufacturing, are successful and commercially

450

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Software Tools DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will address this need and enable an engineer assigned to a plant utility to better understand (a) the cost of all energy sources supplied to the plant, (b) how much energy each individual utility service or energy-consuming equipment consumes, and, (c) where opportunities to realize savings exist.

451

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Software Tools Chemical Industry of the Future Tools & Publications The Industrial Technologies Program offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the chemical industry. DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will address this need and enable an engineer assigned to a plant utility to

452

Green Energy Manufacturing Tax Credit (Manitoba, Canada) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Energy Manufacturing Tax Credit (Manitoba, Canada) Green Energy Manufacturing Tax Credit (Manitoba, Canada) Green Energy Manufacturing Tax Credit (Manitoba, Canada) < Back Eligibility Commercial Industrial Savings Category Buying & Making Electricity Solar Wind Program Info Funding Source Government of Manitoba State Manitoba Program Type Corporate Tax Incentive Provider Manitoba Finance This refundable income tax credit will be equal to 10% of the value of qualifying property produced in Manitoba and sold before 2019 for residential or commercial use in Manitoba. Qualifying property includes equipment for wind power, solar energy, geothermal energy, hydrogen fuel cells, geothermal ground source heating systems and solar thermal heating equipment. In the 2011 Budget, the total Green Energy Equipment Tax Credit on

453

Tax Abatement for Solar Manufacturers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Tax Abatement for Solar Manufacturers Tax Abatement for Solar Manufacturers < Back Eligibility Industrial Savings Category Solar Buying & Making Electricity Maximum Rebate None Program Info Start Date 7/1/2005 State District of Columbia Program Type Industry Recruitment/Support Rebate Amount 43% reduction of state's business and occupation (B&O) tax Provider Washington State Department of Revenue Senate Bill [http://www.leg.wa.gov/pub/billinfo/2005-06/Pdf/Bills/Session%20Law%20200... 5111], signed by Washington's governor in May 2005, created a reduced business and occupation (B&O) tax rate for Washington manufacturers of solar-electric (photovoltaic) modules or silicon components of those systems. In May 2009, Washington enacted

454

New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Shows Solar Manufacturing Costs Not Driven Primarily by Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor September 5, 2013 - 12:00pm Addthis Production scale, not lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Although the prevailing belief is that low labor costs and direct government subsidies for PV manufacturing in China account for that country's dominance in PV manufacturing, the NREL/MIT study shows that a majority of the region's competitive advantage comes from production scale-enabled, in part, through preferred access to capital (indirect

455

New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Study Shows Solar Manufacturing Costs Not Driven Primarily by New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor September 5, 2013 - 12:00pm Addthis Production scale, not lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Although the prevailing belief is that low labor costs and direct government subsidies for PV manufacturing in China account for that country's dominance in PV manufacturing, the NREL/MIT study shows that a majority of the region's competitive advantage comes from production scale-enabled, in part, through preferred access to capital (indirect

456

Manufacturing Energy Consumption Survey (MECS) - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline ... Manufacturing Energy Consumption Survey (MECS ... transportation, manufacturing, and a variety of consumer products. It is the ...

457

Sustainability in Additive Manufacturing and Energy Consumption in ...  

Science Conference Proceedings (OSTI)

Symposium, Green Technologies for Materials Manufacturing and Processing IV. Presentation Title, Sustainability in Additive Manufacturing and Energy...

458

On the Manufacturing of Lattice Structures by Electron Beam Melting  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Additive Manufacturing of Metals. Presentation Title, On the Manufacturing of...

459

NAMII Announces Second Call for Additive Manufacturing Projects  

Science Conference Proceedings (OSTI)

Sep 6, 2013 ... The National Additive Manufacturing Innovation Institute (NAMII) has announced its second call for additive manufacturing applied research...

460

Two Manufacturers, a Water Treatment Company and a Bank ...  

Science Conference Proceedings (OSTI)

... today announced two manufacturers, a water ... America's largest, independent manufacturer and marketer of ... heavy duty, and off-highway vehicles. ...

2011-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Connecting Small Manufacturers with the Capital Needed to ...  

Science Conference Proceedings (OSTI)

... the exception of vehicle or equipment ... Grant Advanced Technology Vehicles Loan Manufacturer ... Small Manufacturers Capital Access Inventory and ...

2013-07-31T23:59:59.000Z

462

A general framework for the manufacturing workstation design optimization: a combined ergonomic and operational approach  

Science Conference Proceedings (OSTI)

A general framework for the effective design, or re-design, of manufacturing workstations under a combined ergonomic and operational optimization approach is presented. This general framework must be regarded as a method for facilitating and supporting ... Keywords: digital human modelling and simulation (DHMS), production/ manufacturing systems, workstations design

David Del Rio Vilas, Francesco Longo, Nadia Rego Monteil

2013-03-01T23:59:59.000Z

463

Robust control strategies facing disturbances in manufacturing workshops with time constraints  

Science Conference Proceedings (OSTI)

Developments presented in this paper are devoted to the robustness control of manufacturing job-shops with time constraints and without assembling tasks. Such systems have robustness properties which allow them to face time disturbances. Three robust ... Keywords: Control strategies, Manufacturing, P-time Petri net, Robustness, Time disturbance

Anis Mhalla, Nabil Jerbi, Simon Collart Dutilleul, Etienne Craye, Mohamed Benrejeb

2013-06-01T23:59:59.000Z

464

3-D Nano-Fiber Manufacturing by Controlled Pulling of Liquid Polymers using Nano-Probes  

E-Print Network (OSTI)

3-D Nano-Fiber Manufacturing by Controlled Pulling of Liquid Polymers using Nano-Probes Amrinder S) nano-scale manufacturing tools in this paper. Commercially available Atomic Force Microscope (AFM) systems are mainly limited to 1-D or 2-D manipulation tasks, and advanced 3-D nano

Sitti, Metin

465

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sol-Gel Glasses Sol-Gel Glasses PDF format (74 kb) Sol Gel Sol Gel Coating with Sol-Gel Glasses Coating with Sol-Gel Glasses The Manufacturing Science & Technology Center conducts process development and scale-up of ceramic and glass materials prepared by the sol-gel process. Sol-gel processing uses solutions prepared at low temperature rather than high temperature powder processing to make materials with controlled properties. A precursor sol-gel solution (sol) is either poured into a mold and allowed to gel or is diluted and applied to a substrate by spinning, dipping, spraying, electrophoresis, inkjet printing or roll coating. Controlled drying of the wet gel results in either a ceramic or glass bulk part or a thin film on a glass, plastic, ceramic or metal substrate.

466

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Welding, Fabrication, & Metal Forming Welding, Fabrication, & Metal Forming PDF format (159 kb) The department consists of three trades: welding; fabrication and assembly; and precision metal forming. These interrelated groups use similar equipment and rely on each other's skills. One stop will get you the service of three reliable trades. The team manufactures and assembles prototype hardware and has the in-house capability of producing hardware with sizes ranging from thumbnail to rail-car. Expertise includes aircraft quality sheet metal construction, certified welding, and assembly. The staff has experience managing a variety of activities: design modification assistance; in-house fabrication; and project management and can work with your engineers to transform sketches and ideas into working prototypes.

467

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

468

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LTCC multi-chip module LTCC multi-chip module A high density LTCC multi-chip module Electronic Packaging PDF format (150 kb) The Electronic Packaging technologies in the Thin Film, Vacuum, & Packaging Department are a resource for all aspects of microelectronic packaging. From design and layout to fabrication of prototype samples, the staff offers partners the opportunity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropriate technology for manufacturing, analysis of performance characteristics and development of new and unique processes. Capabilities: Network Fabrication Low Temperature Co-Fired Ceramic (LTCC) Thick Film Thin Film Packaging and Assembly Chip Level Packaging MEMs Packaging

469

Means of manufacturing annular arrays  

DOE Patents (OSTI)

A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

Day, R.A.

1985-10-10T23:59:59.000Z

470

Optimizing Manufactured Housing Energy Use  

E-Print Network (OSTI)

In partnership with the Florida Solar Energy Center (FSEC), two manufactured homes were located on North Carolina A&T State University's campus in Greensboro, NC and used in a side-by-side energy consumption comparison. One of the homes was built to the basic HUD code standard and the other was constructed with features expected to produce a home that was 50% more energy efficient. FSEC and NCATSU began monitoring energy performance in both homes. In addition, the performance of each unit was evaluated using a DOE2 based computer energy analysis program developed by FSEC. A comparison of the performance of the units shows a measured energy savings in the more energy efficient unit of 52% for the Heating, cooling, and DHW energy use. This compares well with the energy savings predicted by the FSEC Energy Gauge program of 57%, even when accounting for the warmer than usual winter experienced during the testing period.

McGinley, W. M.; Jones, A.; Turner, C.; Chandra, S.; Beal, D.; Parker, D. S.; Moyer, N.; McIlvaine, J.

2004-01-01T23:59:59.000Z

471

Photovoltaic manufacturing technology, Phase 1  

DOE Green Energy (OSTI)

This report describes existing integrated processes for solar cell manufacturing and lists as the primary opportunity for improvement the following areas: low-cost silicon sheets with improved characteristics; improved large-scale and automated solar cell processes that can lead to cell efficiencies in the range of 14% (encapsulated) for direct-cast wafers; improved handling and lamination of large-area modules for the emerging utility market. The proposed solutions can lead to finished module costs on the order of $1.55 per square meter or a selling price of less than $2.00/Watt. The problems that may be considered generic to the industry and that have been addressed in this work are as follows: gettering and passivation of silicon wafers; spray-on passivation layers; dual antireflection coatings; ink-jet printing of metallizations; and automated handling of large-area modules and associated vertical lamination. 14 refs.

Somberg, H. (Global Photovoltaic Specialists, Inc., Canoga Park, CA (United States))

1991-11-01T23:59:59.000Z

472

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

473

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Electro Microfluidic Dual In-line Package (EMDIP) Electro Microfluidic Dual In-line Package (EMDIP) PDF format (115 kb) EMDIP diagram EMDIP Diagram Microfluidics is experiencing explosive growth in new product developments. Already there are many commercial applications for electro microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of surface micromachined microfluidic devices is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. In order to realize applications for these devices, an efficient method for packaging microfluidic devices is needed. Responding to this need, researchers at Sandia developed the Electro Microfluidic Dual In-Line Package (EMDIP) and the Fluidic Printed Wiring Board (FPWB).

474

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

475

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

476

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

477

Advanced manufacturing: Technology and international competitiveness  

SciTech Connect

Dramatic changes in the competitiveness of German and Japanese manufacturing have been most evident since 1988. All three countries are now facing similar challenges, and these challenges are clearly observed in human capital issues. Our comparison of human capital issues in German, Japanese, and US manufacturing leads us to the following key judgments: Manufacturing workforces are undergoing significant changes due to advanced manufacturing technologies. As companies are forced to develop and apply these technologies, the constituency of the manufacturing workforce (especially educational requirements, contingent labor, job content, and continuing knowledge development) is being dramatically and irreversibly altered. The new workforce requirements which result due to advanced manufacturing require a higher level of worker sophistication and responsibility.

Tesar, A.

1995-02-01T23:59:59.000Z

478

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

479

Advanced Manufacturing Jobs and Innovation Accelerator Challenge |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assistance » Advanced Manufacturing Jobs and Innovation Technical Assistance » Advanced Manufacturing Jobs and Innovation Accelerator Challenge Advanced Manufacturing Jobs and Innovation Accelerator Challenge October 10, 2013 - 12:01pm Addthis The Advanced Manufacturing Jobs and Innovation Accelerator Challenge (Accelerator) is a multi-agency sponsored competition established to enhance existing regional networks of firms and institutions that accelerate technology-related innovation, business formation, and job creation. Funding provided to these regional networks (also called clusters) help academia, utilities, local governments, and private industry and investors expand partnerships, share strategic information more efficiently, and reduce costs by leveraging existing assets and resources (like physical facilities and equipment).

480

Manufacturing Licenses Available | Tech Transfer | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing SHARE Manufacturing 200401490 Production of Materials with Superior Properties Utilizing High Magnetic Field (Related ID # 200501531, 200701867, 200802085, 200902312, 201002455, 201102675) 200701900 Robust Digital Valve for Prosthetic Finger, Microsurgery, Robotics (Related ID # 200701983, 200802088) 200701972 Manufacturing Biodiesel from Triglycerides (Related ID # 200702012, 200802186) 200701983 Meso-scale Fluidic Digital Valve 200802083 A Hydraulic Flow Control Device by Means of a Digital Poppet Valve 200802088 Miniature shape memory alloy fluid control valve 200902224 Glass Drawing for Wire Arrays 200902231 Nano/Micro Vacuum Triodes Using Glass Fiber Drawing Methods 200902291 Method of Machining Carbon and Graphite foams 200902309 Multi-Winding Homopolar Electric Machine Offers

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Designing a National Network for Manufacturing Innovation  

Science Conference Proceedings (OSTI)

... Advanced Manufacturing National Program Office (housed at DOC ... 20% of output of 3D printers is now ... By 2020 it may be 50%. The Economist ...

2013-10-30T23:59:59.000Z

482

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics....

483

Digital Manufacturing and Design Innovation (DMDI) Institute  

Science Conference Proceedings (OSTI)

... automation, sensing and control with a transformed manufacturing workforce at ... in the marketplace, and ensuring the cyber physical security of the ...

2013-05-08T23:59:59.000Z

484

Advanced Manufacturing Office: Workforce Development and Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Training Professional Development Enhance your career by developing skills in manufacturing energy efficiency. A variety of opportunities and certifications are...

485

STATEMENT OF CONSIDERATIONS REQUEST BY MOTOROLA MANUFACTURING...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and methods, such as production scheduling, automation, Computer Integrated Manufacture (CIM), quality control, materials inventory management and staffing that are necessary over...

486

Manufacturing Extension Partnership Awards Grant to Support ...  

Science Conference Proceedings (OSTI)

... Our region is home to a significant asset and ... SME manufacturers are true innovators and contribute substantial value to the region's economic ...

2010-09-28T23:59:59.000Z

487

Manufacturing Energy Consumption Survey (MECS) - Analysis ...  

U.S. Energy Information Administration (EIA)

The gross output for the petroleum and coal products subsector grew by about 3 percent, ... Manufacturing Energy Consumption Survey, MECS Definition of Fuel Use, ...

488

Solid Oxide Fuel Cell Manufacturing Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Technologies Manufacturing R&D Workshop August 11-12, 2011 Washington, DC Mark Richards, Eric Tang, Randy Petri Copyright 2011 Versa Power...

489

Data Analytics for Materials Science and Manufacturing  

Science Conference Proceedings (OSTI)

Surya R. Kalidindi, Georgia Institute of Technology ... and Manufacturing field in order to facilitate communication and collaboration among the various camps.

490

Upcoming Funding Opportunity for Tower Manufacturing and ...  

... and Lower Cost of Energy" intends to support partnerships leading to innovative designs and processes for wind turbine tower manufacturing and ...

491

Advanced Manufacturing Office: About the Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

collapse processing steps to lower the energy intensity of manufactured products. Next-Generation Materials cut energy use and provide new functional properties that enable...

492

Rationales and mechanisms for revitalizing US manufacturing ...  

Science Conference Proceedings (OSTI)

Page 1. Rationales and mechanisms for revitalizing US manufacturing R&D strategies Gregory Tassey US Government 2010 ... R&D R&D 30.2% ...

2013-07-31T23:59:59.000Z

493

Advanced Manufacturing Technologies - Programmaster.org  

Science Conference Proceedings (OSTI)

... manufacturing technologies have been researched to develop new, efficient, green and near-zero waste approaches convert novel ... Just click on the button.

494

Advanced Manufacturing Office: State and Regional Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

on State Policies that Impact Industrial Energy Efficiency In order to reduce industrial energy intensity and use, the Advanced Manufacturing Office (AMO) is forming partnerships...

495

The NIST Manufacturing Extension Partnership: Improving the ...  

Science Conference Proceedings (OSTI)

... his Report on Manufactures, the United States was an agricultural economy ... In 1867, when agriculture was the mainstay of the US economy, federal ...

2010-10-05T23:59:59.000Z

496

VIDEO: Manufacture and Casting of Superalloys - TMS  

Science Conference Proceedings (OSTI)

Apr 27, 2007 ... This video gives a basic look at the equipment and operations in the manufacture and casting of superalloys. CITATION: Dr. Alan Partridge,...

497

Solar Manufacturing Incentive Grant (SMIG) Program  

Energy.gov (U.S. Department of Energy (DOE))

Created in 1995 and administered jointly by the Virginia Department of Mines, Minerals and Energy, and the Virginia Economic Development Partnership, the Solar Manufacturing Incentive Grant (SMIG)...

498

Fundamentals in Laser Additive Manufacturing of Metals  

Science Conference Proceedings (OSTI)

Presentation Title, Fundamentals in Laser Additive Manufacturing of Metals. Author(s), Xinjin Cao, Yinan Zhang, Priti Wanjara, Mamoun Medraj. On-Site Speaker...

499

NIST Selects First Chief Manufacturing Officer  

Science Conference Proceedings (OSTI)

... Molnar has served as a federal fellow in ... Office of Science and Technology Policy, and was ... manufacturing engineer and a certified energy manager ...

2011-07-19T23:59:59.000Z

500

Manage energy use in manufacturing | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Manage energy use in manufacturing Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...