Powered by Deep Web Technologies
Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Manufacturing Office: Motor Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Motor Systems to Motor Systems to someone by E-mail Share Advanced Manufacturing Office: Motor Systems on Facebook Tweet about Advanced Manufacturing Office: Motor Systems on Twitter Bookmark Advanced Manufacturing Office: Motor Systems on Google Bookmark Advanced Manufacturing Office: Motor Systems on Delicious Rank Advanced Manufacturing Office: Motor Systems on Digg Find More places to share Advanced Manufacturing Office: Motor Systems on AddThis.com... Quick Links Energy Resource Center Technical Publications by Energy System Energy-Efficient Technologies Incentives & Resources by Zip Code Better Plants Superior Energy Performance Contacts Motor Systems Photo of Man Checking Motor Performance Motor-driven equipment accounts for 54% of manufacturing electricity use. Dramatic energy and cost savings can be achieved in motor systems by

2

The Brennan Mono-Rail System  

Science Journals Connector (OSTI)

... on one of the sharp curves. In this illustration may be noticed the radiators for cooling the circulating water required for the petrol motors, these radiators being secured to the ... car platform at the other, so as to extend the inclined plane of the platform down to ground-level. The packing cases were then easily shoved off without the assistance ...

1910-03-03T23:59:59.000Z

3

Manufacturing  

Office of Environmental Management (EM)

Flow of Materials through Industry Sustainable 1 Manufacturing 2 Technology Assessment 3 Contents 4 1. Introduction to the TechnologySystem ......

4

Steam System Improvements at a Manufacturing Plant  

E-Print Network (OSTI)

BWX Technologies, Naval Nuclear Fuel Division (NNFD) is a manufacturing company with a steam system consisting of two Babcock & Wilcox boilers and approximately 350 steam traps. The steam system is used to produce and distribute steam for space...

Compher, J.; Morcom, B.

5

Flow Battery System Design for Manufacturability.  

SciTech Connect

Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

2014-10-01T23:59:59.000Z

6

Sustainable Manufacturing – Greening Processes, Systems and Products  

E-Print Network (OSTI)

mittels Sustainable Manufacturing - Greening Processes,Sustainable for manufacturing Manufacturing Cambridge, accessed processes,processes due to energy awareness and environmental consciousness create many opportunities for sustainable

Dornfeld, David

2010-01-01T23:59:59.000Z

7

Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering  

E-Print Network (OSTI)

Simultaneous Tolerance Synthesis for Manufacturing and Quality B. Ye, Department of Industrial and Manufacturing Systems Engineering University of Windsor F.A. Salustri, Department of Mechanical, Aerospace, and Industrial Engineering, Ryerson University To appear, Research in Engineering Design, Springer

Salustri, Filippo A.

8

Roadmap: Applied Engineering Manufacturing Systems Bachelor of Science  

E-Print Network (OSTI)

Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT 15000 Introduction to Human Communication 3 Fulfills Kent Core Additional Kent Core Requirement 3 See #12;Roadmap: Applied Engineering ­ Manufacturing Systems ­ Bachelor of Science [AT

Sheridan, Scott

9

Process systems engineering of continuous pharmaceutical manufacturing  

E-Print Network (OSTI)

Continuous manufacturing offers a number of operational and financial benefits to pharmaceutical companies. This research examines the critical blending step for continuous pharmaceutical manufacturing and the characteristics ...

Abel, Matthew J

2010-01-01T23:59:59.000Z

10

A flexible control system for flexible manufacturing systems  

E-Print Network (OSTI)

in developing nations. The current efforts in automation are identified as flexible manufacturing systems (FMSs) if they are limited to the shop floor or computer integrated manufacturing (CIM) if they include front office functions including computer aided... Unfortunately, CIM systems are ?virtually out of reach of most of the small companies that could most benefit from CIM,? because no commercial software is available to perform integrated control over the individual shop floor components (Smith and Joshi, 1995...

Scott, Wesley Dane

2004-09-30T23:59:59.000Z

11

Collaborative composition of processes in holonic manufacturing systems  

Science Journals Connector (OSTI)

Although it provides a flexible architecture to deal with changes and uncertainties, holonic manufacturing systems (HMS) also pose challenges in design and implementation. A challenge is to design a problem solving environment to guide the holons in ... Keywords: Contract net, Holonic manufacturing system, Multi-agent system, Petri net, Workflow

Fu-Shiung Hsieh; Chih Yi Chiang

2011-01-01T23:59:59.000Z

12

Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Manufacturing of Products Containing Depleted Uranium Discussion of risks and possible impacts associated with fabrication of representative products containing depleted uranium. Beneficial Uses Risk Evaluation The Department has initiated the Depleted Uranium Uses Research and Development Program to explore the potential beneficial uses of the depleted uranium (DU), fluorine, and empty carbon steel DUF6 storage cylinders for effective use of resources and to achieve cost savings to the government. A number of tasks have been initiated related to uses of DU as a shielding material, catalyst, and as a semi-conductor material in electronic devices. An evaluation of the risks associated with the release

13

A flexible information management system for supporting manufacturing activities  

Science Journals Connector (OSTI)

The lack of seamless information interchange hinders the accomplishment of manufacturing activities, which are related to the efficient bi-directional flow of information, coordination of decisions and enhancement of assimilation of practices within ... Keywords: data exchange, flexibility, information flow, information management, information sharing, information systems, manufacturing activities, object technology

G. T. S. Ho; H. C. W. Lau; C. K. M. Lee; A. W. H. Ip

2007-04-01T23:59:59.000Z

14

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Natural Gas Systems Manufacturing R&D Initiative Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D Initiative The following fact sheet outlines one of the...

15

Low-Cost Manufacturable Microchannel Systems for Passive  

E-Print Network (OSTI)

for use in fuel cell systems need development in order to achieve cost targets. Low-cost, highLow-Cost Manufacturable Microchannel Systems for Passive PEM Water Management IIPS Number 16910 LowLow--CostCost;2 Project objective: Create a low cost and passive PEM water management system Project objective

16

Viable System Model approach for holonic product-driven manufacturing systems  

E-Print Network (OSTI)

Viable System Model approach for holonic product-driven manufacturing systems Carlos Herrera , Sana Control Systems (PDCS) dealing with production planning and control. The framework is based on Viable approach. Keywords: Product-driven systems, intelligent manufacturing systems, viable system model

Boyer, Edmond

17

Advanced Initiation Systems Manufacturing Level 2 Milestone Completion Summary  

SciTech Connect

Milestone Description - Advanced Initiation Systems Detonator Design and Prototype. Milestone Grading Criteria - Design new generation chip slapper detonator and manufacture a prototype using advanced manufacturing processes, such as all-dry chip metallization and solvent-less flyer coatings. The advanced processes have been developed for manufacturing detonators with high material compatibility and reliability to support future LEPs, e.g. the B61, and new weapons systems. Perform velocimetry measurements to determine slapper velocity as a function of flight distance. A prototype detonator assembly and stripline was designed for low-energy chip slappers. Pictures of the prototype detonator and stripline are shown. All-dry manufacturing processes were used to address compatibility issues. KCP metallized the chips in a physical vapor deposition system through precision-aligned shadow masks. LLNL deposited a solvent-less polyimide flyer with a processes called SLIP, which stands for solvent-less vapor deposition followed by in-situ polymerization. LANL manufactured the high-surface-area (HSA) high explosive (HE) pellets. Test fires of two chip slapper designs, radius and bowtie, were performed at LLNL in the High Explosives Application Facility (HEAF). Test fires with HE were conducted to establish the threshold firing voltages. pictures of the chip slappers before and after test fires are shown. Velocimetry tests were then performed to obtain slapper velocities at or above the threshold firing voltages. Figure 5 shows the slapper velocity as a function of distance and time at the threshold voltage, for both radius and bowtie bridge designs. Both designs were successful at initiating the HE at low energy levels. Summary of Accomplishments are: (1) All-dry process for chip manufacture developed; (2) Solventless process for slapper materials developed; (3) High-surface area explosive pellets developed; (4) High performance chip slappers developed; (5) Low-energy chip slapper detonator designs; and (6) Low-voltage threshold chip slapper detonator demonstrated.

Chow, R; Schmidt, M

2009-10-01T23:59:59.000Z

18

Dimensional metrology interoperability and standardization in manufacturing systems  

Science Journals Connector (OSTI)

Dimensional metrology is an important part of any manufacturing system. It consists of distinct components and requires a large, diverse, and interconnected knowledge base. How to pass information seamlessly with minimal cost and minimal data loss between ... Keywords: DMIS, Dimensional metrology, Interoperability, STEP, Standard development

Yaoyao Zhao; Xun Xu; Tom Kramer; Fred Proctor; John Horst

2011-11-01T23:59:59.000Z

19

Materials/manufacturing element of the Advanced Turbine System Program  

SciTech Connect

One of the supporting elements of the Advanced Turbine Systems (ATS) Program is the materials/manufacturing technologies task. The objective of this element is to address critical materials issues for both industrial and utility gas turbines. DOE Oak Ridge Operations Office (ORO) will manage this element of the program, and a team from DOE-ORO and Oak Ridge National Laboratory is coordinating the planning for the materials/manufacturing effort. This paper describes that planning activity which is in the early stages.

Karnitz, M.A.; Devan, J.H.; Holcomb, R.S.; Ferber, M.K.; Harrison, R.W.

1994-08-01T23:59:59.000Z

20

A vital component of modern manufacturing systems is the scheduling and control system, which determines com-  

E-Print Network (OSTI)

264 Abstract A vital component of modern manufacturing systems is the scheduling and control system" to the unexpected system changes. Keywords: Scheduling and Control, Simulation Methods and Models Introduction iterative simulation-based scheduling mechanisms for manufacturing systems that operate in dynamic

Kutanoglu, Erhan

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Dimensional metrology interoperability and standardization in manufacturing systems  

Science Journals Connector (OSTI)

Dimensional metrology is an important part of any manufacturing system. It consists of distinct components and requires a large, diverse, and interconnected knowledge base. How to pass information seamlessly with minimal cost and minimal data loss between different components of a dimensional metrology system is a major issue that concerns software and hardware vendors, standards developers, and customers. This paper focuses on the four main elements of a dimensional metrology system: product definition, measurement process plan definition, measurement process execution, and analysis and reporting of quality data. The activities and software modules that are involved in these elements are discussed. Key issues that cause interoperability problems are identified. These issues are discussed as they relate to the current situation in dimensional metrology standards development. The STEP (ISO 10303) standards are the product of an international effort to achieve interoperability for manufacturing systems. Extending STEP is an appropriate way to solve the interoperability problem within dimensional metrology systems. Further development of STEP standards is proposed so that Geometric Dimensioning and Tolerancing (GD&T) information already available in STEP can be linked with manufacturing feature information, measurement technology, and measurement results. The proposed STEP data model is an attempt to provide a standard that will support automatic measurement process plan generation for in-process on-machine measurement. Some case studies are under way to test the model.

Yaoyao Zhao; Xun Xu; Tom Kramer; Fred Proctor; John Horst

2011-01-01T23:59:59.000Z

22

Streamlining the additive manufacturing digital spectrum: A systems approach  

Science Journals Connector (OSTI)

Abstract Additive manufacturing (AM) promises great potential benefits for industrial manufacturers who require low volume and functional, highly complex, end-use products. Commercial adoption of AM has been slow due to factors such as quality control, production rates, and repeatability. However, given AM's potential, numerous research efforts are underway to improve the quality of the product realization process. A major area of opportunity is to complement existing efforts with advancements in end-to-end digital implementations of AM processes. New paradigms are needed to support more efficient and consistent design-to-product transformations. Systematically configured digital implementations would facilitate informational transformations through standard interfaces, streamlining the AM digital spectrum. Here, we propose the development of a federated, information systems architecture for additive manufacturing. We establish an information requirements workflow for streamlining information throughput during product realization. The architecture is delivered through the development of a solution stack, including the identification of areas where advancements in information representations will have the highest impact. The architecture will specify the stages of the product realization process, and the interfaces needed to link those stages together. Common data structures and interfaces will allow developers and end users of additive manufacturing technologies to simplify, coordinate, validate, and verify end-to-end digital implementations.

Duck Bong Kim; Paul Witherell; Robert Lipman; Shaw C. Feng

2014-01-01T23:59:59.000Z

23

STATEMENT OF CONSIDERATIONS REQUEST BY MOTOROLA MANUFACTURING SYSTEMS FOR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17 '97 12:42PM US DOE OAK LEGAL P.2/12 17 '97 12:42PM US DOE OAK LEGAL P.2/12 ( * STATEMENT OF CONSIDERATIONS REQUEST BY MOTOROLA MANUFACTURING SYSTEMS FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER LBNL SUBCONTRACT NO. 6443828-CHANGE ORDER NO. 1; DOE WAIVER NO. W(A)-97-006; SAN-671 The Petitioner, Motorola Manufacturing Systems (MMS), has requested an Advance Waiver of the Government's domestic and foreign rights to inventions made under the above cited Change Order (Contract Modification) to research and development Contract No. 6443828 (R&D Contract). An Advance Waiver W(C)-97-027; SAN- 670 has been granted for the underlying R&D Contract on December 30, 1996. However, that-Advance Waiver was not to be applied "to a modification or extension of the contract where, through such modification or extension, the

24

STATEMENT OF CONSIDERATIONS REQUEST BY MOTOROLA MANUFACTURING SYSTEMS FOR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19 '96 12:04PM DOE/SF LEGAL OFFICE P.2 19 '96 12:04PM DOE/SF LEGAL OFFICE P.2 * * STATEMENT OF CONSIDERATIONS REQUEST BY MOTOROLA MANUFACTURING SYSTEMS FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER LBNL SUBCONTRACT NO. 6443828: DOE WAIVER NO. W(A)-96-027; SAN-670 The Petitioner, Motorola Manufacturing Systems (MMS), has requested an Advance Waiver of the Government's domestic and foreign rights to inventions made under the above cited research and development contract (R&D Contract). The objective of the R&D Contract, which is issued by the Lawrence Berkeley National Laboratory (LBNL) on behalf of DOE's Office of Health and Environmental Research (ER-70), is to provide consulting services to support planning activities toward the eventual creation of a next generation DNA sequencing facility. More

25

CALL FOR PAPERS Stochastic Models of Manufacturing and Service System Operations  

E-Print Network (OSTI)

CALL FOR PAPERS Stochastic Models of Manufacturing and Service System Operations Special volume in the area of stochastic models of manufacturing and service system operations. A number of new results to the editors. The main theme of this volume is manufacturing system operations. The term "service system

26

A decomposition-based approach for the integration of product development and manufacturing system design  

E-Print Network (OSTI)

Using a structured approach to understand the interaction between product design decisions and manufacturing system design is critical to reflect manufacturing system issues early in the product development process. Early ...

Kim, Yong-Suk, 1975-

2002-01-01T23:59:59.000Z

27

Energy-Aware Manufacturing Using Information Technology Tools: A Knowledge Based System Approach  

Science Journals Connector (OSTI)

This manuscript discusses the implementation of information technology tools; specifically, computerized Knowledge Based Systems (KBS), in managing the energy flows, conversions, and expenditures within manufacturing environments; including renewable ... Keywords: Energy Auditing, Energy Management, Energy Optimization, Knowledge Based Systems, Sustainable Manufacturing

Mohammed A. Omar, Ahmad Mayyas, Qilun Zhou

2014-01-01T23:59:59.000Z

28

Understanding Manufacturing Systems with a Learning Historian for User-Directed Experimentation  

E-Print Network (OSTI)

a wide variety of important problems in manufacturing and other complex systems. In addition, simulation1 Understanding Manufacturing Systems with a Learning Historian for User-Directed Experimentation to improve user-directed experimentation with discrete event simulation models of manufacturing systems

Golbeck, Jennifer

29

Understanding Manufacturing Systems with a Learning Historian for UserDirected Experimentation  

E-Print Network (OSTI)

a wide variety of important problems in manufacturing and other complex systems. In addition, simulation1 Understanding Manufacturing Systems with a Learning Historian for User­Directed Experimentation to improve user­directed experimentation with discrete event simulation models of manufacturing systems

Golbeck, Jennifer

30

SYSTEM APPROACH-BASED BAYESIAN NETWORK TO AID MAINTENANCE OF MANUFACTURING PROCESS  

E-Print Network (OSTI)

for manufacturing systems. In addition, recent works on system safety and Bayesian Networks (BNs) are developedSYSTEM APPROACH-BASED BAYESIAN NETWORK TO AID MAINTENANCE OF MANUFACTURING PROCESS Weber P., Suhner explores a new methodology to develop Bayesian Network-based diagnosis and prognosis aids for manufacturing

Paris-Sud XI, Université de

31

A screening model to explore planning decisions in automotive manufacturing systems under demand uncertainty  

E-Print Network (OSTI)

Large-scale, complex engineering systems, as for automotive manufacturing, often require significant capital investment and resources for systems configuration. Furthermore, these systems operate in environments that are ...

Yang, Yingxia

2009-01-01T23:59:59.000Z

32

Pollution Control in a Manufacturing System Stochastic Models for Analysis and Control of Air Pollution  

E-Print Network (OSTI)

Pollution Control in a Manufacturing System Stochastic Models for Analysis and Control of Air models that can be used for controlling pollution in a manufacturing system. The models are developed. Introduction Pollution of air resulting from toxic wastes emitted by large manufacturing plants and power

Gosavi, Abhijit

33

Developing a 3D colour image reproduction system for additive manufacturing of facial prostheses  

Science Journals Connector (OSTI)

In this study, a new 3D colour image reproduction system is proposed for the automated and accurate additive manufacturing of soft tissue facial prostheses. A framework ... show that the protocol used in the 3D manufacturing

Kaida Xiao; Faraedon Zardawi…

2014-02-01T23:59:59.000Z

34

Additive Manufacturing Methodology and System for Fabrication of Porous Structures with Functionally Graded Properties.  

E-Print Network (OSTI)

??The focus of this dissertation is on the development of an additive manufacturing system and methodology for fabricating structures with functionally graded porous internal properties… (more)

Vlasea, Mihaela

2014-01-01T23:59:59.000Z

35

Degeneracy and networked buffering: principles for supporting emergent evolvability in agile manufacturing systems  

Science Journals Connector (OSTI)

This article introduces new principles for improving upon the design and implementation of agile manufacturing and assembly systems. It focuses particularly on challenges that arise when dealing with novel conditions and the associated requirements of ... Keywords: Agile manufacturing, Assembly systems, Complexity, Degeneracy, Evolvability, Multi-agent systems, Networked buffering, Robotics

Regina Frei; James Whitacre

2012-09-01T23:59:59.000Z

36

Research on an Intelligent Manufacturing System for Tokamak Machine  

Science Journals Connector (OSTI)

With the concept of Internet of Things (IoT) being proposed, more and more fields are involved in order to improve their development. This paper studies basic architecture of IoT for optimizing manufacture pro...

Ruonan Zhang; Xinbao Liu; Lin Liu; Xiazi Zhang

2014-12-01T23:59:59.000Z

37

ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton GIT 2010  

E-Print Network (OSTI)

and Systems Prof. J.S. Colton © GIT 2010 5 Tool Wear (e)(d) (a) (b) (c) Rake Flank #12;ME 6222: Manufacturing Overview · Failure mechanisms · Wear mechanisms · Wear of ceramic tools · Tool life · Machining conditions selection #12;ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2010 3 Tool Wear Zones

Colton, Jonathan S.

38

F i W ldi PFusion Welding -Processes ME 6222: Manufacturing Processes and Systems  

E-Print Network (OSTI)

Overview · Types of fusion welding ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 3 #12Summary · Types of fusion welding ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 25 #12.S. Colton © GIT 2009 1 #12;Fusion weldingFusion welding · Intimate interfacial contact by using a liquid

Colton, Jonathan S.

39

A simulation study integrated with analytic hierarchy process (AHP) in an automotive manufacturing system  

Science Journals Connector (OSTI)

A variety of circumstances, such as developing a new product, changing the design of an existing product, changing the production volume, or changing the product mix, can drive the need for a manufacturing system redesign. Simulation technology has been ... Keywords: analytic hierarchy process, automotive, manufacturing system design, simulation, transmission

Te Xu; Dug Hee Moon; Seung Geun Baek

2012-04-01T23:59:59.000Z

40

A study of the Mighty Motors operating system : making sustainable improvements at a powertrain manufacturing facility  

E-Print Network (OSTI)

Many manufacturing companies are developing their own production or operating system, particularly in an effort to duplicate the widely renowned Toyota Production System. Toyota has demonstrated its potential for improving ...

Dibb, Gregory David, 1974-

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturable Manufacturable Microchannel Systems for Passive PEM Water Management IIPS Number 16910 Low Low - - Cost Cost Manufacturable Manufacturable Microchannel Systems for Passive Microchannel Systems for Passive PEM Water Management PEM Water Management IIPS Number 16910 IIPS Number 16910 Ward TeGrotenhuis, Susie Stenkamp, Curt Lavender Pacific Northwest National Laboratories Richland, WA HFCIT Kick Off Meeting February 2007 2 Project objective: Create a low cost and passive PEM water management system Project objective: Project objective: Create a low cost Create a low cost and passive PEM water management system and passive PEM water management system Specific Targets Addressed for 3.4.2 Automotive-Scale: 80 kWe Integrated Transportation Fuel Cell Power Systems Operating on Direct Hydrogen

42

A Unique Ductless H and V System for Manufacturing Plants  

E-Print Network (OSTI)

The 33 year-old Ford plant at Sandusky, Ohio, had been expanded many times over the years and presently manufactures a variety of metal and plastic automotive parts such as plastic heater housings. As more plastic extruders were added, the plant...

McReynolds, C.J.

43

EL Program: Systems Integration for Manufacturing and Construction Applications (SIMCA)  

E-Print Network (OSTI)

is the problem? The Third Industrial Revolution is underway and it is driven by digital information1 . This Third Industrial Revolution is fundamentally changing manufacturing by enabling a transformation to digitized, improve time to market, and reduce costs. 1 "The Third Industrial Revolution," The Economist, April 21

Bentz, Dale P.

44

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems  

Energy.gov (U.S. Department of Energy (DOE))

Advanced Manufacture of Second-Surface, Silvered Glass Reflectors for High-Performance, Low-Cost CSP Collector Systems

45

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative  

Energy Savers (EERE)

Fact Sheet: Advanced Natural Gas Systems Manufacturing R&D initiative 1 of 1 Summary: DOE will launch a collaborative effort with industry to evaluate and scope high- impact...

46

Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries  

Energy.gov (U.S. Department of Energy (DOE))

This report assesses steam generation and use in the pulp and paper, chemical manufacturing, and the petroleum refining industries. The report also estimates the energy savings potential available from implementing steam system performance and efficiency improvements.

47

FROM PLANT AND LOGISTICS CONTROL TO MULTI-ENTERPRISE COLLABORATION: Milestone report of the Manufacturing & Logistics Systems Coordinating Committee  

E-Print Network (OSTI)

, product life cycles shrink, and profit margins decrease. In addition, the capital costs of manufacturing of the Manufacturing & Logistics Systems Coordinating Committee S.Y. Nofa* , G. Morelb , L. Monostoric , A. Molinad , F-765-494-1299 Abstract: Current and emerging manufacturing and logistics systems are posing new challenges

Boyer, Edmond

48

Field Measurements of Heating System Efficiency in Nine Electrically-Heated Manufactured Homes.  

SciTech Connect

This report presents the results of field measurements of heating efficiency performed on nine manufactured homes sited in the Pacific Northwest. The testing procedure collects real-time data on heating system energy use and heating zone temperatures, allowing direct calculation of heating system efficiency.

Davis, Bob; Siegel, J.; Palmiter, L.; Baylon, D.

1996-07-01T23:59:59.000Z

49

Metrics for Sustainable Manufacturing  

E-Print Network (OSTI)

a system or process in maintaining a sustainable level of afor manufacturing processes to achieve truly sustainablesustainable phase of the automobile manufacturing process

Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

2008-01-01T23:59:59.000Z

50

Manufacturing Industrial Development for the Alternative Energy Systems-Final Report  

SciTech Connect

NCMS identified and developed critical manufacturing technology assessments vital to the affordable manufacturing of alternative-energy systems. NCMS leveraged technologies from other industrial sectors and worked with our extensive member organizations to provide DOE with two projects with far-reaching impact on the generation of wind energy. In the response for a call for project ideas, 26 project teams submitted ideas. Following a detailed selection criteria, two projects were chosen for development: Advanced Manufacturing for Modular Electro-kinetic (E-K) Wind Energy Conversion Technology - The goal of this project was to demonstrate that a modular wind energy technology based on electrohydrodynamic wind energy principles and employing automotive heritage high volume manufacturing techniques and modular platform design concepts can result in significant cost reductions for wind energy systems at a range of sizes from 100KW to multi-MW. During this program, the Accio/Boeing team made major progress on validating the EHD wind energy technology as commercially viable in the wind energy sector, and moved along the manufacturing readiness axis with a series of design changes that increased net system output. Hybrid Laser Arc Welding for Manufacture of Wind Towers - The goal of this research program was to reduce the cost of manufacturing wind towers through the introduction of hybrid laser arc welding (HLAW) into the supply chain for manufacturing wind towers. HLAW has the potential to enhance productivity while reducing energy consumption to offset the foreign low-cost labor advantage and thereby enhance U.S. competitiveness. HLAW technology combines laser welding and arc welding to produce an energy efficient, high productivity, welding process for heavy manufacturing. This process leverages the ability of a laser to produce deep weld penetration and the ability of gas metal arc welding (GMAW) to deposit filler material, thereby producing stable, high quality, welds on joints with gaps and mismatches typical of those seen in heavy manufacturing. Wind towers utilize varying thicknesses of steel throughout their structures to meet the mechanical load requirements while keeping material costs low. A typical tower might have as many as twelve different material thicknesses. Joining each thickness requires a unique joint design and welding approach to enable the management of quality, productivity, and mechanical properties. In this program, laser joining of materials with thicknesses ranging from 12mm to 35mm were evaluated against the standard quality and mechanical requirements for General Electric wind tower components. The joining processes demonstrated showed the ability to meet key requirements with the appropriate process controls in place.

Dr. Chuck Ryan, National Center for Manufacturing Sciences; Dr. Dawn White, Accio Energy; Mr. Duncan Pratt, General Electric Global Research

2013-01-30T23:59:59.000Z

51

Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code 0. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 40. U.S. Coal Stocks at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 NAICS Code June 30, 2013 March 31, 2013 June 30, 2012 Percent Change (June 30) 2013 versus 2012 311 Food Manufacturing 875 926 1,015 -13.9 312 Beverage and Tobacco Product Mfg. 26 17 19 35.8 313 Textile Mills 22 22 25 -13.9 315 Apparel Manufacturing w w w w 321 Wood Product Manufacturing w w w w 322 Paper Manufacturing 570 583

52

Neural network based design of cellular manufacturing systems  

E-Print Network (OSTI)

systems do". The simple elements are called processing units [PU) and are the parallel of the neurons of the nervous system. A simple PU is shown in Figure 3. Between two PU's there is a dzrected interconnection which is the parallel of the synapses... connecting the neurons in the nervous system. The direction of the interconnection between two PU's decide which unit receives input from the other. The inputs to the PU j is the output from other PU's along the interconnections directed towards j or input...

Ramachandran, Satheesh

1990-01-01T23:59:59.000Z

53

Toward an integrated computational system for describing the additive manufacturing process for metallic materials  

Science Journals Connector (OSTI)

Abstract The ability to simulate the thermal, mechanical, and material response in additive manufacturing offers tremendous utility for gaining a deeper understanding of the process, while also having significant practical application. The approach and progress in establishing an integrated computational system for simulating additive manufacturing of metallic components are discussed, with the primary focus directed at the computational intensive components, which include the process and material models. The ability to experimentally measure key characteristics for verification of the models is also presented and is seen as critical in the development of the integrated computational system. Two examples are also presented that utilize the current features of the analyses techniques for exploring and applying additive manufacturing technology.

Richard Martukanitz; Pan Michaleris; Todd Palmer; Tarasankar DebRoy; Zi-Kui Liu; Richard Otis; Tae Wook Heo; Long-Qing Chen

2014-01-01T23:59:59.000Z

54

Multi-criteria decision support for sustainability assessment of manufacturing system reuse  

Science Journals Connector (OSTI)

A common practice in developing countries is to import used manufacturing systems, and reuse them for further production periods. Sustainability assessment of manufacturing system reuse is the research focus of this paper. A multi criteria decision approach is developed to assess the benefits of reusing a manufacturing system in a developing country from the point of view of the three pillars of sustainability; namely economical, environmental, and societal. Low cost of labour and energy in developing countries makes reuse of manufacturing systems more feasible from a sustainability point of view. A survey conducted to this end shows that economic sustainability is the main focus of decision makers in these regions, while environment has the least significance. These findings warn legislators and policy makers and should be taken as a warning signal to put more pressure and stricter regulations to promote environmental sustainability. The proposed model was verified through a case study; decision arrived at using the model agrees with common industrial practice in the region.

A. Ziout; A. Azab; S. Altarazi; W.H. ElMaraghy

2013-01-01T23:59:59.000Z

55

Design of an interrelated quality system for a single product manufacturing process with assembly  

Science Journals Connector (OSTI)

The design of a single product manufacturing system with assembly is considered. The processing is on a lot-by-lot basis with the lot size fixed. The decision variables include interrelated single sampling plans, manufacturing process quality levels, incoming raw material quality levels and assembly process quality levels. A solution procedure is given to minimize the expected total of the costs associated with the quality of the finished product subject to a limit on the Average Outgoing Quality Limit of the finished product. An example is provided.

Thomas W. Knowles; M.Zia Hassan

1981-01-01T23:59:59.000Z

56

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

Process heating plays a key role in producing steel, aluminum, and glass and in manufacturing products made from these materials. Faced with regulatory and competitive pressures to control emissions and reduce operating costs, metal and glass manufacturers are considering a variety of options for reducing overall energy consumption. As 38% of the energy used in U.S. industrial plants is consumed for process heating applications, metal and glass manufacturers are discovering that process heating technologies provide significant opportunities for improving industrial productivity, energy efficiency, and global competitiveness. This fact sheet is the first in a series to describe such opportunities that can be realized in industrial systems by conducting plant-wide assessments (PWA).

57

Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,256 2,561 1,864 4,817 4,343 10.9 312 Beverage and Tobacco Product Mfg. 38 50 48 88 95 -7.7 313 Textile Mills 31 29 21 60 59 2.2 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w

58

The International Journal of Flexible Manufacturing Systems, 16, 1144, 2004 c 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.  

E-Print Network (OSTI)

multistage assembly processes (MAP) such as the automotive, aerospace, appliance, and electronics industries a characteristic feature of modern manufacturing and new product development in automotive, aerospace, and other-based-competition--New paradigm and challenges The US automotive industry has dominated world auto markets for years. The mass

Zhou, Shiyu

59

Design of passive/hybrid solar systems for gulf states manufactured metal building systems. Phase I. Final report  

SciTech Connect

The analysis, design, and market assessment of a proposed prototype solar-heated manufactured metal building has been developed. Energy collection is effected through the vertical wall solar collector system designed as a integral part of the structural system. Heat storage is effected by a floor slab. Other designs such as direct gain and Trombe wall with moveable insulation were evaluated. System economics and life cycle costs were examined and the costs of the design options were compared. (LEW)

Not Available

1980-09-15T23:59:59.000Z

60

Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture  

DOE Patents (OSTI)

Image portion identification methods, image parsing methods, image parsing systems, and articles of manufacture are described. According to one embodiment, an image portion identification method includes accessing data regarding an image depicting a plurality of biological substrates corresponding to at least one biological sample and indicating presence of at least one biological indicator within the biological sample and, using processing circuitry, automatically identifying a portion of the image depicting one of the biological substrates but not others of the biological substrates.

Lassahn, Gordon D.; Lancaster, Gregory D.; Apel, William A.; Thompson, Vicki S.

2013-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Work-piece alignment for a hybrid multi-axis laser-aided manufacturing system .  

E-Print Network (OSTI)

??"The Laser Aided Manufacturing Process (LAMP) is a multi-axis hybrid manufacturing process comprised of both an additive process, laser deposition, and a subtractive process, CNC… (more)

Panackal, Ajay

2006-01-01T23:59:59.000Z

62

Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach  

E-Print Network (OSTI)

discharge machining and additive manufacturing processes,conventional manufacturing processes. For additive processesmanufacturing processes are laser cutting as a subtractive process, the Selective Laser Sintering as an additive

2012-01-01T23:59:59.000Z

63

Automated design synthesis of robotic/human workcells for improved manufacturing system design in hazardous environments  

SciTech Connect

Manufacturing tasks that are deemed too hazardous for workers require the use of automation, robotics, and/or other remote handling tools. The associated hazards may be radiological or nonradiological, and based on the characteristics of the environment and processing, a design may necessitate robotic labor, human labor, or both. There are also other factors such as cost, ergonomics, maintenance, and efficiency that also effect task allocation and other design choices. Handling the tradeoffs of these factors can be complex, and lack of experience can be an issue when trying to determine if and what feasible automation/robotics options exist. To address this problem, we utilize common engineering design approaches adapted more for manufacturing system design in hazardous environments. We limit our scope to the conceptual and embodiment design stages, specifically a computational algorithm for concept generation and early design evaluation. In regard to concept generation, we first develop the functional model or function structure for the process, using the common 'verb-noun' format for describing function. A common language or functional basis for manufacturing was developed and utilized to formalize function descriptions and guide rules for function decomposition. Potential components for embodiment are also grouped in terms of this functional language and are stored in a database. The properties of each component are given as quantitative and qualitative criteria. Operators are also rated for task-relevant criteria which are used to address task compatibility. Through the gathering of process requirements/constraints, construction of the component database, and development of the manufacturing basis and rule set, design knowledge is stored and available for computer use. Thus, once the higher level process functions are defined, the computer can automate the synthesis of new design concepts through alternating steps of embodiment and function structure updates/decomposition. In the process, criteria guide function allocation of components/operators and help ensure compatibility and feasibility. Through multiple function assignment options and varied function structures, multiple design concepts are created. All of the generated designs are then evaluated based on a number of relevant evaluation criteria: cost, dose, ergonomics, hazards, efficiency, etc. These criteria are computed using physical properties/parameters of each system based on the qualities an engineer would use to make evaluations. Nuclear processes such as oxide conversion and electrorefining are utilized to aid algorithm development and provide test cases for the completed program. Through our approach, we capture design knowledge related to manufacturing and other operations in hazardous environments to enable a computational program to automatically generate and evaluate system design concepts.

Williams, Joshua M. [Los Alamos National Laboratory

2012-06-12T23:59:59.000Z

64

System dynamics analysis of energy usage: case studies in automotive manufacturing  

Science Journals Connector (OSTI)

Our life is strongly linked with the usage of natural resources. With increase in world population and welfare there is an increasing global demand for raw material. Energy is a necessity in everyday life and is often generated using non-renewable natural resources which are finite. Manufacturing is one of the largest energy and material resource consumers. There is great concern about minimising consumption of energy in manufacturing industry to sustain the natural carrying capacity of the ecosystem. This is one of the challenges in today's industrial world. The paper presents the application of system dynamics theory for modelling and simulation of complex manufacturing processes. The simulations help to understand the intricate nature of the interrelation of process parameter and to make sound decision about minimising the energy losses. Two case studies are presented, one in cylinder head casting processes and the other in crankshaft machining. The developed models provide an insight into how to select critical operations and to identify the effect of various parameters on the energy consumption. Also, the models help to understand how changes of parameters over time affect the behaviour of energy changes. The outcome of this research enables the company to identify potential avenues to minimise energy usage and offers a decision support tool. [Received 3 June 2013; Revised 31 August 2013; Accepted 13 October 2013

Tigist Fetene Adane; Mihai Nicolescu

2014-01-01T23:59:59.000Z

65

Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems  

SciTech Connect

Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

Weimar, Mark R.; Chick, Lawrence A.; Gotthold, David W.; Whyatt, Greg A.

2013-09-30T23:59:59.000Z

66

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network (OSTI)

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

67

Dal-Tile: Optimized Compressed Air System Improves Performance and Saves Energy at a Tile Manufacturing Plant  

SciTech Connect

This DOE Industrial Technologies Program case study describes the significant energy and costs savings resulting from compressed air system improvements at Dal-Tile, a Texas tile manufacturing plant.

Not Available

2005-08-01T23:59:59.000Z

68

Design of a demand driven multi-item-multi-stage manufacturing system : production scheduling, WIP control and Kanban implementation  

E-Print Network (OSTI)

The project is conducted in a multi-item-multi-stage manufacturing system with high volume products. The objectives are to optimize the inventory structure and improve production scheduling process. The stock building plan ...

Zhou, Xiaoyu, M. Eng Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

69

Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 15, System design description. Volume 1  

SciTech Connect

This System Design Description, prepared in accordance with the TPX Project Management Plan provides a summary or TF Magnet System design features at the conclusion of Phase I, Preliminary Design and Manufacturing Research. The document includes the analytical and experimental bases for the design, and plans for implementation in final design, manufacturing, test, and magnet integration into the tokamak. Requirements for operation and maintenance are outlined, and references to sources of additional information are provided.

NONE

1995-09-22T23:59:59.000Z

70

Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 28. U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 2,214 2,356 1,994 4,570 4,353 5.0 312 Beverage and Tobacco Product Mfg. 48 37 53 85 90 -5.6 313 Textile Mills 31 29 22 59 63 -6.1 315 Apparel Manufacturing w w w w w w 321 Wood Product Manufacturing w w w w w w 322 Paper Manufacturing

71

Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture  

DOE Patents (OSTI)

Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

McCown, Steven H. (Rigby, ID); Derr, Kurt W. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID)

2012-05-08T23:59:59.000Z

72

Development of a Reverse Logistics Performance Measurement System for a Battery Manufacturer  

Science Journals Connector (OSTI)

Abstract In this contribution, the case of a leading Lead Acid Battery manufacturer in India is studied with respect to the essential reverse logistics operations of the company, due to the statutory requirements regarding toxic components in the product. The critical parameters are ascertained by a methodology interviews with the company's management and further consolidated using the taxonomy as suggested by the Balanced Scorecard approach. Then, a performance measurement system vis-à-vis the industry benchmark, over a sustained period, is proposed, using Fuzzy Analytical Hierarchical Process.

Milind Bansia; Jayson K. Varkey; Saurabh Agrawal

2014-01-01T23:59:59.000Z

73

Leveraging Manufacturing for a Sustainable Future  

E-Print Network (OSTI)

2010): “Sustainable Manufacturing – Greening Processes,processes and systems) can play in creating a sustainablesustainable manufacturing as “the creation of manufacturing products that use materials and processes

Dornfeld, David

2011-01-01T23:59:59.000Z

74

Laser Technology: Additive Manufacturing  

Science Journals Connector (OSTI)

Selective Laser Sintering, and in general Additive Manufacturing Processes are becoming mature technologies; in the ... systems that are even utilized for direct parts manufacturing. However, the parts final user...

Srichand Hinduja; Lin Li

2013-01-01T23:59:59.000Z

75

Experimental studying on development of slurry-layer casting system for additive manufacturing of ceramics  

Science Journals Connector (OSTI)

Compared with powder-based process of additive manufacturing, slurry-based process can fabricate the ceramic ... the slurry with different formation used in the additive manufacturing of ceramic products, this st...

Hsiao Chuan Yen

2014-10-01T23:59:59.000Z

76

Analyzing and improving throughput of Automated Storage and Retrieval Systems in personal computer manufacturing  

E-Print Network (OSTI)

The content of this thesis draws heavily on work completed during a 6.5 month MIT Leaders for Manufacturing (LFM) internship at Dell Corporation's personal computer manufacturing facility in Lebanon, Tennessee (EG1) from ...

Heaps-Nelson, G. Thomas

2005-01-01T23:59:59.000Z

77

* corresponding author: Antonio.Giovannini@univ-lorraine.fr Ontology-Based System for supporting Manufacturing Sustainability  

E-Print Network (OSTI)

and the use of manufacturing processes to obtain the sustainable manufacturing goals (in the three sustainability pillars, economic, social and environmental). In this vision, the most effective way for infusing Manufacturing Sustainability Antonio Giovannini1,2,3,* , Alexis Aubry1,2 , Hervé Panetto1,2 , Michele Dassisti4

Paris-Sud XI, Université de

78

Life cycle cost study for coated conductor manufacture by electron beam and pulsed laser deposition systems  

SciTech Connect

The results of this study establish a framework for evaluation of the cost impact of many performance parameters in coated conductor manufacturing systems. Since the cost and concepts are based on early developmental results and engineering judgment, the study should be updated periodically based on latest data to enhance its usefulness. The study should be expanded to include other promising processes under consideration or development for manufacture of coated conductors. Review of this study by as wide a group of experts from industry, national laboratories and universities as possible is desirable to facilitate improving accuracy of the estimates and communication on the issues involved. The results for the case of achieving the $10/kA-m goal at a J{sub c} of 10{sup 5} a/cm{sup 2} applicable to applications requiring a magnetic field perpendicular to the direction of current flow may be viewed as somewhat discouraging. However, there is ample margin for improvement due to continued development and engineering that could enable meeting the goal of $10/kA-m.

Chapman, J.N.

1999-04-14T23:59:59.000Z

79

Manufacturing Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 EOT_RT_Sub_Template.ppt | 1/6/2009 | 1 BOEING is a trademark of Boeing Management Company. Copyright © 2009 Boeing. All rights reserved. Compressed Hydrogen Storage Workshop Manufacturing Perspective Karl M. Nelson (karl.m.nelson@boeing.com) Boeing Research & Technology Engineering, Operations & Technology | Boeing Research & Technology Materials & Fabrication Technology EOT_RT_Sub_Template.ppt | 1/12/2009 | Structural Tech 2 Copyright © 2009 Boeing. All rights reserved. DOE Hydrogen Program Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels Mark Leavitt, Alex Ly Quantum Fuel Systems Technologies Worldwide Inc. Karl Nelson, Brice Johnson The Boeing Company Ken Johnson, Kyle Alvine, Stan Pitman, Michael Dahl, Daryl Brown

80

EXERGY BASED METHOD FOR SUSTAINABLE ENERGY UTILIZATION ANALYSIS OF A NET SHAPE MANUFACTURING SYSTEM.  

E-Print Network (OSTI)

??The approach advocated in this work implements energy/exergy analysis and indirectly an irreversibility evaluation to a continuous manufacturing process involving discrete net shape production of… (more)

SANKARA, JAYASANKAR

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Process planning for an Additive/Subtractive Rapid Pattern Manufacturing system.  

E-Print Network (OSTI)

??This dissertation presents a rapid manufacturing process for sand casting patterns using a hybrid additive/subtractive approach. This includes three major areas of research that will… (more)

Luo, Xiaoming

2009-01-01T23:59:59.000Z

82

Electrolyzer Manufacturing Progress and Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Manufacturing Electrolyzer Manufacturing Progress and Challenges John Torrance, Director of Manufacturing DOE Manufacturing Workshop 8/12/11 Outline * Proton Commercialization Status: PEM Electrolysis * Current Manufacturing Limitations: Stack - Cost Breakdown - Approaches * Current Manufacturing Limitations: System - Cost Breakdown - Approaches * Potential Impact * Summary and Conclusions 2 3 * World leader in Proton Exchange Membrane (PEM) electrolyzer technology * Founded in 1996 - changed name from Proton Onsite in April 2011 to reflect product expansion. * ISO 9001:2008 registered * Over 1,500 systems operating in 62 different countries. Cell Stacks Complete Systems Turnkey Solutions Military Applications Proton Energy Proton Onsite Headquarters in Wallingford, CT Capabilities * Complete product development, manufacturing & testing

83

CIMplementation™: Evaluating Manufacturing Automation  

E-Print Network (OSTI)

in the manufacturing organization if CIMplementation~* is to succeed. 1.0 INTRODUCTION There is much discussion today about Com puter Integrated Manufacturing (CIM). Automation tools like Computer Aided Design (CAD) systems, robots, automated material handling...~ Pressing the frontier of technology in one's own manufactur ing facility will not be without its pitfalls. Second, while automation engineers may be able to piece together the technological pieces of a CIM system, they cannot and do not evaluate...

Krakauer, J.

84

AFFORDABLE MULTI-LAYER CERAMIC (MLC) MANUFACTURING FOR POWER SYSTEMS (AMPS)  

SciTech Connect

McDermott Technology, Inc. (MTI) is attempting to develop high-performance, cost-competitive solid oxide fuel cell (SOFC) power systems. Recognizing the challenges and limitations facing the development of SOFC stacks comprised of electrode-supported cells and metallic interconnects, McDermott Technology, Inc. (MTI) has chosen to pursue an alternate path to commercialization. MTI is developing a multi-layer, co-fired, planar SOFC stack that will provide superior performance and reliability at reduced costs relative to competing designs. The MTI approach combines state-of-the-art SOFC materials with the manufacturing technology and infrastructure established for multi-layer ceramic (MLC) packages for the microelectronics industry. The rationale for using MLC packaging technology is that high quality, low-cost manufacturing has been demonstrated at high volumes. With the proper selection of SOFC materials, implementation of MLC fabrication methods offers unique designs for stacks (cells and interconnects) that are not possible through traditional fabrication methods. The MTI approach eliminates use of metal interconnects and ceramic-metal seals, which are primary sources of stack performance degradation. Co-fired cells are less susceptible to thermal cycling stresses by using material compositions that have closely matched coefficients of thermal expansion between the cell and the interconnect. The development of this SOFC stack technology was initiated in October 1999 under the DOE cosponsored program entitled ''Affordable Multi-layer Ceramic Manufacturing for Power Systems (AMPS)''. The AMPS Program was conducted as a two-phase program: Phase I--Feasibility Assessment (10/99--9/00); and Phase II--Process Development for Co-fired Stacks (10/00-3/02). This report provides a summary of the results from Phase I and a more detailed review of the results for Phase II. Phase I demonstrated the feasibility for fabricating multi-layer, co-fired cells and interconnects and resulted in selection of the most promising configuration for high-performance, low-cost SOFC stacks. During Phase II, the MTI Team successfully refined the fabrication processes and achieved low-rate production of cells and interconnects (about 100 per month). Short stacks (3-10 cells) using co-fired cells and interconnects were assembled and tested to validate the MTI multi-layer SOFC design. The team successfully demonstrated co-fired repeat units, comprised of a cell and the interconnect layers. Development of co-fired cells and multi-layer interconnects based on the new stack design was completed; all component fabrication and stack testing efforts were redirected to the new design toward the end of Phase II. Finally, low-cost alternate materials for the interconnect body and conductors within the interconnect were identified. At the end of Phase II, the MTI Team successfully transitioned the multi-layer SOFC stack development effort to the Solid State Energy Conversion Alliance (SECA) program.

E.A. Barringer, Ph.D.

2002-11-27T23:59:59.000Z

85

COURSE DEGREE PAGE ADVANCED MANUFACTURE: TECHNOLOGY & SYSTEMS MSc/PgDip/PgCert 35  

E-Print Network (OSTI)

MANUFACTURING & CRYSTALISATION MSc 108 COUNSELLING/COUNSELLING SKILLS MSc/PgDip/PGCERT 85 CREATIVE WRITING MRes, PALAEOGRAPHIC & HERALDIC STUDIES MSc/PgDip/PgCert 66 GEOENVIRONMENTAL ENGINEERING MRes 29 GLOBAL ENERGY

Strathclyde, University of

86

Feature-based investment cost estimation based on modular design of a continuous pharmaceutical manufacturing system  

E-Print Network (OSTI)

Previous studies of continuous manufacturing processes have used equipment-factored cost estimation methods to predict savings in initial plant investment costs. In order to challenge and validate the existing methods of ...

Collins, Donovan (Donovan Scott)

2011-01-01T23:59:59.000Z

87

Out of Bounds Additive Manufacturing Christopher  

E-Print Network (OSTI)

#12;Out of Bounds Additive Manufacturing Christopher Holshouser, Clint Newell, and Sid Palas, Tenn. The Big Area Additive Manufacturing system has the potential to manufacture parts completely) are working on an additive manufacturing (AM) system (Big Area Additive Manufacturing, or BAAM) capable

Pennycook, Steve

88

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network (OSTI)

that convert hydrogen into electric energy, (2) hydrogen storage systems, and (3) large-scale hydrogen and prioritize topics for public-private R&D on manufacturing hydrogen storage system components. ScopeManufacturing for the Hydrogen Economy Manufacturing Research & Development of Onboard Hydrogen

89

Manufacturing News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency & news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute http://energy.gov/articles/factsheet-next-generation-power-electronics-manufacturing-innovation-institute manufacturing-innovation-institute" class="title-link">FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute

90

The use of a simulation model to test scheduling techniques for flexible manufacturing systems  

E-Print Network (OSTI)

that dispatching rules have been chosen to help in this study of scheduling parts through the highly automated flexible manufacturing facility of Harris Graphics Corporation in Ft. Worth, Texas using a SIMAN simulation model of the facility. In previous... studies, dispatching rules~have been tested under various assumptions, two of which are deterministic setup and run times and no order splitting. In order to show a more realistic picture of the manufac- turing floor, these two assumptions have been...

Ingalls, Ricki Gene

1984-01-01T23:59:59.000Z

91

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Information Integration & Infrastructure Manufacturing Information Integration & Infrastructure PDF format (47 kb) The Information Infrastructure Team in the Computer Applications for Manufacturing organization can provide programming and analysis support for information applications for manufacturing. The Team works closely with customers to help them define their requirements. The Team's experience and expertise can help your manufacturing information needs. Capabilities Provide computer hardware and software standards that directly support the seamless manufacturing initiative. Develop graphical user interfaces (GUI) for applications using the proprietary Windows environment or an open system design using Web servers and client browsers. Provide computer hardware support, including all personal computer

92

Manufacturing Initiative | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Areas Research Areas Buildings Climate & Environment Manufacturing Fossil Energy Sensors & Measurement Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Manufacturing SHARE Manufacturing Initiative Titanium robotic hand holding sphere fabricated using additive manufacturing Oak Ridge National Laboratory is supporting the DOE's Office of Energy Efficiency and Renewable Energy (EERE) Clean Energy Manufacturing Initiative focusing on American competitiveness in clean energy manufacturing. The DOE Initiative has two primary objectives-increase US competitiveness in the production of clean energy products (e.g., wind turbines, solar panels, energy efficient appliances, light bulbs, vehicles and automotive

93

Discrete Event Dynamic Systems: Theory and Applications, 13, 79110, 2003 # 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.  

E-Print Network (OSTI)

Publishers. Manufactured in The Netherlands. Least Squares Policy Evaluation Algorithms with Linear Function

Powell, Warren B.

94

Studies on the Applicability of Biomarkers in Estimating the Systemic Bioavailability of Polynuclear Aromatic Hydrocarbons from Manufactured Gas Plant Tar-Contaminated Soils  

Science Journals Connector (OSTI)

The systemic bioavailability of polynuclear aromatic hydrocarbons (PAH) from ingested soils containing manufactured gas plant (MGP) tar was evaluated in mice. Soil and organic extract of each soil were incorporated into a diet and fed to mice for two ...

Aruna Koganti; Deborah A. Spina; Kimberly Rozett; Bing-Li Ma; Eric H. Weyand; Barbara B. Taylor; David M. Mauro

1998-08-25T23:59:59.000Z

95

Manufacturing technology  

SciTech Connect

The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

Blaedel, K.L.

1997-02-01T23:59:59.000Z

96

Assessment of Lean and Green Strategies by Simulation of Manufacturing Systems in Discrete Production Environments  

E-Print Network (OSTI)

2012) Valuation of Increased Production System Performanceby Integrated Production Systems. Production Engineeringing Energy-Ef?cient Production Systems. Annals of the CIRP

Diaz-Elsayed, Nancy; Jondral, Annabel; Greinacher, Sebastian; Dornfeld, David; Lanza, Gisela

2013-01-01T23:59:59.000Z

97

Additive Manufacturing: Implications on Research and Manufacturing  

E-Print Network (OSTI)

Additive Manufacturing: Implications on Research and Manufacturing With recent developments, etc.), additive manufacturing (AM) has the potential to become a transformative technology in innovation-based manufacturing. Agencies such as the Department of Defense, the National Science Foundation

Crawford, T. Daniel

98

Additive Manufacturing : Changing the Rules of Manufacturing  

Science Journals Connector (OSTI)

Aspects of 3D printing and additive or layer manufacturing can be treated as modular manufacturing or modular components of manufacturing in the contemporary sense. Such modular manufacturing involves specialized...

2014-06-01T23:59:59.000Z

99

FACILITIES ENGINEER WEST CHICAGO Execute capital projects for manufacturing facilities and utilities systems: scope development, cost  

E-Print Network (OSTI)

facilities and utilities systems: scope development, cost estimation, system design, equipment sizing ENGINEERING: Lead capital project design, development and execution for facility and utility capital Utilities systems (Vacuum, Hydraulics, Waste Water treatment, etc.) o Buildings and grounds, including

Heller, Barbara

100

Manufacturing Science and Technology: Organizations  

NLE Websites -- All DOE Office Websites (Extended Search)

Machining Operations Machining Operations Machining Services Electronic Fabrication Manufacturing Process Science & Technology Thin Film, Vacuum, & Packaging Organic Materials Ceramic & Glass Meso Manufacturing & Systems Development Visiting Us AMTTP Center Organizational chart Organizations Our Business areas Manufacturing Science and Technology David Plummer, Director Manufacturing Enterprise Joe M. Harris, Senior Manager Machining Operations Mathew Donnelly, Manager Machining Services Daryl Reckaway, Acting Manager Electronic Fabrication Phillip L. Gallegos, Manager Manufacturing Process Science and Technology Mark F. Smith, Senior Manager Thin Film, Vacuum, and Packaging Mark F. Smith, Acting Manager Organic Materials Mike Kelly, Manager Ceramic and Glass Alex Roesler, Manager

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems  

SciTech Connect

Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.

Menapace, J A

2010-10-27T23:59:59.000Z

102

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network (OSTI)

s pilot-scale PEM fuel cell manufactunng cost, and theproductaon, PEM fuel cell systems could cost $35 - 90/kW,is how PEM fuel cell system manufactunng costs might evolve

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

103

Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach  

E-Print Network (OSTI)

Thermoelectric Generator Systems for Industrial Waste Heatthermoelectric generator (TEG) can be considered as another possibility in recovering industrial waste heat [

2012-01-01T23:59:59.000Z

104

Real-Time Systems, 27, 97113, 2004 # 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.  

E-Print Network (OSTI)

in The Netherlands. Diagnostics and Surveillance Methods in Nuclear Systems for Real-Time Applications I. PAÃ? ZSIT

Pázsit, Imre

105

Innovations in Manufacturing  

Science Journals Connector (OSTI)

...competition from steam engines and water...Century ofthe Steam Engine is a classic...of the American System of Manufactures...general-purpose machine tools, interchangeable...spe-cialized machine tools, and were con-fined...note that if the system was con-fined...Nel-son provides an assessment of working conditions...

THOMAS WEISS

1983-05-20T23:59:59.000Z

106

Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach  

E-Print Network (OSTI)

Power, and Recovering Waste Heat with ThermoelectricSystems for Industrial Waste Heat Recovery, Industrialenergetic emissions (waste heat, waste air, mechanical

2012-01-01T23:59:59.000Z

107

Proceedings of the International Electronics Packaging Education Conference (at the ECTC), May 30, 2006 Using Teardown Analysis as a Vehicle to Teach Electronic Systems Manufacturing Cost Modeling  

E-Print Network (OSTI)

, 2006 Using Teardown Analysis as a Vehicle to Teach Electronic Systems Manufacturing Cost Modeling Peter product teardowns and reverse engineering ideas has proven to be an effective vehicle for educating engineers involved in the design of electronic systems did not concern themselves with the cost

Sandborn, Peter

108

FACULTY POSITION ANNOUNCEMENT Manufacturing and/or Logistics The Industrial & Systems Engineering Department in the College of Engineering at the University of  

E-Print Network (OSTI)

must have a Ph.D. in Industrial Engineering, Systems Engineering and/or Operations Research Engineering Department has research and teaching areas in manufacturing systems, operations research. The annual research volume of our faculty is currently over $2 million. Our faculty conduct interdisciplinary

Kaminsky, Werner

109

Fuel Cell Manufacturing: American Energy and Manufacturing Competitive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit Presentation on...

110

Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code  

U.S. Energy Information Administration (EIA) Indexed Site

Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 29. Average Price of U.S. Coal Receipts at Manufacturing Plants by North American Industry Classification System (NAICS) Code (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date NAICS Code April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change 311 Food Manufacturing 51.17 49.59 50.96 50.35 50.94 -1.2 312 Beverage and Tobacco Product Mfg. 111.56 115.95 113.47 113.49 117.55 -3.5 313 Textile Mills 115.95 118.96 127.41 117.40 128.07 -8.3 315 Apparel Manufacturing

111

Manufacturing Energy and Carbon Footprints Scope  

Energy.gov (U.S. Department of Energy (DOE))

List of manufacturing sectors selected for analysis along with North American Industry Classification System (NAICS) code descriptions

112

Green Manufacturing  

SciTech Connect

Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

Patten, John

2013-12-31T23:59:59.000Z

113

Faculty Position in Ultra High Precision Robotics & Manufacturing  

E-Print Network (OSTI)

, manipulation and metrology systems targeting additive manufacturing; · New kinematics, quasi-perfect guidings, actuators, transmission systems, sensors and methods targeting ultra-high precision additive manufacturingFaculty Position in Ultra High Precision Robotics & Manufacturing at the Ecole Polytechnique

Candea, George

114

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Readiness Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Material Handling Equipment Markets Doug Wheeler DJW Technology Michael Ulsh National Renewable Energy Laboratory Technical Report NREL/TP-5600-53046 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power

115

Department of Industrial & Manufacturing Engineering Fall 2009 Central Scheduling System for Charles Cole Memorial Hospital  

E-Print Network (OSTI)

for Charles Cole Memorial Hospital Overview There is little unity between facilities in the Charles Cole Memorial Hospital network. Each location acts as its own office instead of being part of a clinic hospital procedures. Analyzed the LSS system and different appointment techniques performed by schedulers

Demirel, Melik C.

116

Acceptance Test Report for the Modular Automation System (MAS) Manufactured by Honeywell Inc.  

SciTech Connect

This document details the performance of the acceptance test of the Honeywell MAS Control System for equipment to be installed in gloveboxes HA-20MB and HA-211 at a later date. Equipment that was anticipated included 6 stabilization furnaces, only three and their associated equipment were installed.

ANDERSON, D.L.

2000-02-01T23:59:59.000Z

117

Manufacturing modeling architectures: architectural concepts for a system simulator for concurrent prototypng of equipment and controls  

Science Journals Connector (OSTI)

AutoMod® is a leading discrete-event simulation package widely applied in the modeling and analysis of distribution systems. Included in the AutoMod software suite is the Model Communications Module (MCM), which allows an executing simulation to ...

K. Preston White; Ryan Fritz; Stephen Horvath; Carlos Orellana; Jonathan Wohlers; Richard G. Fairbrother; William S. Terry

2002-12-01T23:59:59.000Z

118

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network (OSTI)

fuel cell stacks (Savote (1998)) Estimating manufactunng costfuel cell stacks, $20/kWfor fuel processors, and $20/kWfor "balance of plant" auxlhary components These costCosts of Automotive PEM Fuel Cell Systems (PEM)fuel cell stack

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

119

Deadlock Avoidance Policies for Automated Manufacturing Systems Using Finite State Automata  

E-Print Network (OSTI)

Automata Spyros Reveliotis and Ahmed Nazeem1 1S. Reveliotis is with the School of Industrial & Systems product lines and more customized product offerings [22]. Indeed, since the beginning of the industrial revolution, automation has been at the core of the mass-production concept and practices, enabling activities

Reveliotis, Spiridon "Spyros"

120

Direct and precise measurement of displacement and velocity of flexible web in roll-to-roll manufacturing systems  

SciTech Connect

Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 ?m and the velocity error of 1? was about 0.25%, while the grating scale moved 30 mm.

Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min [Advanced Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of)] [Advanced Manufacturing Systems Research Division, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Duk Young [Nano-Opto-Mechatronics Lab., Dept. of Mechanical Eng., KAIST, 335 Gwahangno, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of)] [Nano-Opto-Mechatronics Lab., Dept. of Mechanical Eng., KAIST, 335 Gwahangno, Yuseong-Gu, Daejeon 305-701 (Korea, Republic of); Kim, Dongmin [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of)] [Korea Research Institute of Standards and Science, 267 Gajeong-Ro, Yuseong-Gu, Daejeon 305-340 (Korea, Republic of)

2013-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Manufacturing Glossary  

Gasoline and Diesel Fuel Update (EIA)

Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Energy Efficiency Web Site. If you need assistance in viewing this page, please call (202) 586-8800 Home > Energy Users > Energy Efficiency Page > Glossary for the Manufacturing Sector Glossary For the Manufacturing Sector Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to metallic iron. It is commonly used as a fuel within the steel works. Boiler Fuel: An energy source to produce heat that is transferred to the boiler vessel in order to generate steam or hot water. Fossil fuels are the primary energy sources used to produce heat for boilers.

122

2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets  

SciTech Connect

In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

Wheeler, D.; Ulsh, M.

2012-08-01T23:59:59.000Z

123

Gas Turbine Manufacturers Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Viability and Experience of IGCC From a Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective ASME - IGCC ASME - IGCC Turbo Turbo Expo Expo June 2001 June 2001 GE Power Systems g Klaus Brun, Ph.D. - Manager Process Power Plant Product & Market Development Robert M. Jones - Project Development Manager Process Power Plants Power Systems Power Systems General Electric Company General Electric Company ABSTRACT GE Power Systems g Economic Viability and Experience of IGCC From a Gas Turbine Manufacturers Perspective High natural gas fuel gas prices combined with new technology developments have made IGCC a competitive option when compared to conventional combined cycle or coal steam turbine cycles. Although the initial investment costs for an IGCC plant are still comparatively high, the low

124

Fast methods for scheduling with applications to real-time systems and large-scale, robotic manufacturing of aerospace structures  

E-Print Network (OSTI)

Across the aerospace and automotive manufacturing industries, there is a push to remove the cage around large, industrial robots and integrate right-sized, safe versions into the human labor force. By integrating robots ...

Gombolay, Matthew C. (Matthew Craig)

2013-01-01T23:59:59.000Z

125

2012 EL Project Title and Number: Model-Based Engineering Program Title: Systems Integration for Manufacturing and Construction  

E-Print Network (OSTI)

for Manufacturing and Construction Applications Principal Investigator: Joshua Lubell, 734 Project Staff Name Josh Lubell Robert Lipman Allison Barnard Feeney Simon Frechette Chris Brown Kenway Chen Albert Jones Craig

Perkins, Richard A.

126

Proposal for a Guide for Quality Management Systems for PV Manufacturing: Supplemental Requirements to ISO 9001-2008 (Revised)  

SciTech Connect

This technical specification provides a guideline for photovoltaic module manufacturers to produce modules that, once the design has proven to meet the quality and reliability requirements, replicate such design in an industrial scale without compromising its consistency with the requirements.

Norum, P.; Sinicco, I.; Eguchi, Y.; Lokanath, S.; Zhou, W.; Brueggemann, G.; Mikonowicz, A.; Yamamichi, M.; Kurtz, S.

2013-09-01T23:59:59.000Z

127

A Review of Engineering Research in Sustainable Manufacturing  

E-Print Network (OSTI)

focused on sustainable processes and systems. Despite recentto make their processes more sustainable, evaluating theirManufacturing Process Design for Sustainable Manufacturing,”

2013-01-01T23:59:59.000Z

128

Metal and Glass Manufacturers Reduce Costs by Increasing Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in Process Heating Systems Metal and Glass Manufacturers Reduce Costs by Increasing Energy Efficiency in...

129

Understanding Life Cycle Social Impacts in Manufacturing: A processed-based approach  

E-Print Network (OSTI)

socially sustainable manufacturing processes, software toolsc t Developing sustainable products and processes is growingsustainable manufacturing systems and production processes

Hutchins, Margot J.; Robinson, Stefanie L.; Dornfeld, David

2013-01-01T23:59:59.000Z

130

Explore Careers in Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Careers in Manufacturing Careers in Manufacturing Explore Careers in Manufacturing About the Advanced Manufacturing Office The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous improvement in corporate energy management to bring about a transformation in U.S. manufacturing. Image of scientists examining an experiment. back to top What types of jobs are available? Innovation Process Design & Development Engineers Mechanical Electrical Chemical Biochemical Health Safety Environmental Scientists Materials Computer Automation Software Energy Storage Production Engineers Industrial systems Process Materials Equipment Controls Supply Chain Logistics Quality Control Maintenance, Installation & Repair Machinists Efficient Use

131

Secure Manufacturing | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Secure Secure Manufacturing Secure Manufacturing The depth and breadth of Y-12's manufacturing capabilities and expertise enable Y-12 to address current and emerging national security challenges by providing leadership and direction to perform the following activities: solving unique, high-risk manufacturing problems; eliminating the most difficult manufacturability and development obstacles; protecting classified and proprietary materials, components, and information; developing unique technologies to optimize manufacturing and systems performance; and executing projects cost effectively and with timeliness. Y-12 accomplishes this mission to meet the national security challenges of today and those of the future, with capability and expertise in the following areas:

132

MST: Organizations: Manufacturing Processes & Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Processing Manufacturing Processing Manufacturing Process, Science, and Technology Mark Smith Mark Smith, Senior Manager Manufacturing Process Science and Technology conducts research and development on advanced manufacturing process and materials technologies. It provides manufacturing process development, technical consulting, and technology transfer to support Sandia product realization needs. This organization also provides prototype fabrication and specialized production services, as required, to support Sandia missions. Departments Dianna Blair Mike Kelly Alex Roesler Paul C. McKey Thin Film, Vacuum, and Packaging Organic Materials Ceramics and Glass Meso Mfg. and System Development Dianna Blair, Manager Mike Kelly, Manager Alex Roesler, Manager Paul C. McKey,

133

Photovoltaics Manufacturing in Developing Countries  

Science Journals Connector (OSTI)

The need for energy sources in the developing countries might be partially satisfied by using photovoltaic power systems in addition to conventional means. A review of photovoltaic manufacturing in developing ...

G. Darkazalli; S. Hogan

1991-01-01T23:59:59.000Z

134

System for non-contact ultrasonic study of mediums and materials intended for embedding into automated manufacturing systems  

Science Journals Connector (OSTI)

The main feature of ultrasound waves is their high frequency, allowing to be broadcast in the form of a narrow beam of rays and their distribution to be examined by the methods of geometrical optics. This allows ultrasound to be used for scientific and ... Keywords: computer systems and technologies, microprogramming unit for operation control, model

Stanimir Yordanov; Raycho Ilarionov; Ivan Simeonov; Hristo Kilifarev; Nikolay Shopov; Hristo Ibrishimov

2010-06-01T23:59:59.000Z

135

Department of Industrial and Manufacturing Engineering Fall 2011 The Center for Integrated Healthcare Delivery Systems (CIHDS) Academy  

E-Print Network (OSTI)

PENNSTATE Department of Industrial and Manufacturing Engineering Fall 2011 The Center is to educate young adults about the field of Industrial Engineering through learning modules and examples that focus on the healthcare industry. The learning modules shall utilize Industrial Engineering concepts

Demirel, Melik C.

136

The President's Manufacturing Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

The President's The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the Hydrogen Economy Washington, D.C. Washington, D.C. July 13, 2005 July 13, 2005 Dale Hall Dale Hall Acting Chair, Interagency Working Group on Acting Chair, Interagency Working Group on Manufacturing Research and Development Manufacturing Research and Development National Science and Technology Council National Science and Technology Council and and Director, Manufacturing Engineering Laboratory Director, Manufacturing Engineering Laboratory National Institute of Standards and Technology National Institute of Standards and Technology U.S. Department of Commerce U.S. Department of Commerce

137

Advanced Manufacturing Office Overview  

Energy.gov (U.S. Department of Energy (DOE))

Overview presentation by the Advanced Manufacturing Office for the Microwave (MW) and Radio Frequency (RF) as Enabling Technologies for Advanced Manufacturing

138

Additive Manufacturing Technology Assessment  

Office of Environmental Management (EM)

subtractive manufacturing 41 methods 1. Additive manufacturing is also called as 3D printing, 42 additive fabrication, or freeform fabrication. These new 43 techniques, while...

139

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Thin Films Thin Films PDF format (189 kb) Multi Layer Thin Films Multi Layer Thin Films Planetary Sputtering SystemsPlanetary Sputtering Systems Planetary Sputtering Systems The Thin Film laboratory within Manufacturing Science & Technology provides a variety of vapor deposition processes and facilities for cooperative research and development. Available capabilities include electron beam evaporation, sputter deposition, reactive deposition processes, atomic layer deposition (ALD) and specialized techniques such as focused ion beam induced chemical vapor deposition. Equipment can be reconfigured for prototyping or it can be dedicated to long-term research, development and manufacturing. Most sputter and evaporative deposition systems are capable of depositing multiple materials.

140

Additive Manufacturing Technologies  

Science Journals Connector (OSTI)

Rapid Prototyping is the construction of complex three-dimensional parts using additive manufacturing technology.

Jürgen Stampfl; Markus Hatzenbichler

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation » Energy Efficiency » Manufacturing Science & Innovation » Energy Efficiency » Manufacturing Manufacturing Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. Manufacturing is the lifeblood of the American economy -- providing jobs for hard working American families and helping increase U.S. competitiveness in the global marketplace. The Energy Department is committed to growing America's manufacturing industry by helping companies become leaders in the production of clean energy technologies like electric vehicles, LED bulbs and solar panels. The

142

The Advanced Manufacturing Partnership  

E-Print Network (OSTI)

;ve Manufacturing Technologies (led by Dow, Honeywell and MIT) Manufacturing Ins;tutes (led, Honeywell and MIT GOALS § To launch public-private ini:a:ves to advance transforma

Das, Suman

143

Manufacturing Innovation Topics Workshop  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Manufacturing Office (AMO) and the Office of the Secretary of Defense Manufacturing Technology Program (OSD ManTech) will host a workshop to discuss AMO's recent Request for Information (RFI) on Clean Energy Manufacturing Topic Areas as well as the recent areas of interest announced by OSD ManTech for a new Manufacturing Innovation Institute on October 8-9, 2014 in Fort Worth, TX.

144

Passage Simulation of Monorail Suspension Conveyors  

E-Print Network (OSTI)

Th. Wunderlich, Th. Schäfer, St. Auer* Chair of Geodesy June 24-26, 2008 ETH Zurich Chair of Geodesy ETH Zurich #12;2 ...along narrow passages Z+F June 24-26, 2008 ETH Zurich Contents · specific-26, 2008 ETH Zurich the result: KOSIMU #12;3 Transport and Assembly Lines June 24-26, 2008 ETH Zurich Task

145

PEM Stack Manufacturing: Industry Status  

NLE Websites -- All DOE Office Websites (Extended Search)

© 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED © 2009 BALLARD POWER SYSTEMS INC. ALL RIGHTS RESERVED JULY 2009 B U I L D I N G A C L E A N E N E R G Y G R O W T H C O M P A N Y B A L L A R D P O W E R S Y S T E M S PEM Stack Manufacturing: Industry Status Duarte R. Sousa, PE August 11, 2011 AUGUST 2009 P A G E 2 Overview of PEM Stack Manufacturing MEA Manufacturing Plate Manufacturing Stack Assembly Stack Conditioning and Testing Package and Ship For each of the four main processes, the following will be provided: 1. A brief history of where we have been; 2. Where we are today; 3. Where we would like to transition to; 4. Gaps and proposals. AUGUST 2009 P A G E 3 PEM Stack Manufacturing: Cost Overview * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA.

146

Revitalizing American Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalizing American Manufacturing Revitalizing American Manufacturing Revitalizing American Manufacturing September 13, 2010 - 5:30pm Addthis A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | A123 Systems' President David Vieau speaks with Energy Secretary Steven Chu and Michigan Governor Jennifer Granholm at the opening of their Livonia, MI plant. The plant will develop and manufacture advanced batteries systems for electric vehicles. | Department of Energy Photo | Secretary Chu Secretary Chu Former Secretary of Energy "The Department of Energy has long been charged with accelerating energy

147

Fuel Cell Manufacturing: American Energy and Manufacturing Competitiveness Summit  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on fuel cell manufacturing by Sunita Satyapal at the American Energy and Manufacturing Competitiveness Summit on December 12, 2013.

148

Advanced Manufacturing Office: MotorMaster+  

NLE Websites -- All DOE Office Websites (Extended Search)

MotorMaster+ to MotorMaster+ to someone by E-mail Share Advanced Manufacturing Office: MotorMaster+ on Facebook Tweet about Advanced Manufacturing Office: MotorMaster+ on Twitter Bookmark Advanced Manufacturing Office: MotorMaster+ on Google Bookmark Advanced Manufacturing Office: MotorMaster+ on Delicious Rank Advanced Manufacturing Office: MotorMaster+ on Digg Find More places to share Advanced Manufacturing Office: MotorMaster+ on AddThis.com... MotorMaster+ This photo shows the inner workings of an industrial electric motor with gears. In the lower left hand corner are the words "MotorMaster+" and underneath are the words "Motor-Driven Systems." Download MotorMaster+ now! Version: 4.01.01 Release Date: September 21, 2010 Release Notes Metric Unit Measurements: No

149

Abstract Increasingly, automation and computer-based control play key roles in the operation of manufacturing systems. These  

E-Print Network (OSTI)

support rapid development of detailed simulation models to assess system performance. The fundamental idea tools and methodologies which support rapid development of simulation models to assess system with more detailed simulation models developed using commercial simulation languages, it is difficult

150

Enabling Manufacturing Research through Interoperability  

E-Print Network (OSTI)

sustainable or environmentally benign manufacturing processes andAND SUSTAINABLE FIGURE 8: LIFE-CYCLE OF MANUFACTURING PROCESSES (

Dornfeld, David; Wright, Paul; Helu, Moneer; Vijayaraghavan, Athulan

2009-01-01T23:59:59.000Z

151

Biologically inspired mutual synchronization of manufacturing machines  

E-Print Network (OSTI)

Biologically inspired mutual synchronization of manufacturing machines Erjen Lefeber,a,1 , Herman machine is developed. This control system is based on a synchronization mechanism of enzymes replacing of a single turnover cycle. In manufacturing, batch machines serve several jobs simultaneously, e.g., heat

Armbruster, Dieter

152

Manufacturing Success Stories  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers http:energy.goveeresuccess-storiesarticles...

153

Acoustics by additive manufacturing:.  

E-Print Network (OSTI)

??This study focuses on exploring the merging field of additive manufacturing and acoustics and introduces a new type of sound absorber which is regulating performance… (more)

Setaki, F.

2012-01-01T23:59:59.000Z

154

Contribution to Nanotechnology Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

shares Nano 50 award for directed assembly September 3, 2008 Contribution to Nanotechnology Manufacturing LOS ALAMOS, New Mexico, September 3, 2008-A team of scientists spanning...

155

Manufacturing Demonstration Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is key to stroke recovery * Additive manufacturing allows custom fit glove device using brain machine interface to retrain movement * Gloves are light-weight, low cost and...

156

SSL Manufacturing Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

Report detailing DOE Solid-State Lighting Program activities to accelerate manufacturing improvements that reduce costs and enhance the quality of SSL products.

157

Clean Energy Manufacturing Initiative  

Energy.gov (U.S. Department of Energy (DOE))

Manufacturing technologies for cleaner energy generation, distribution, and use represents an important opportunity for U.S. economic growth, energy security, and accelerated innovation. Likewise,...

158

Lean manufacturing system design and value stream management in a high-mix, low-volume environment  

E-Print Network (OSTI)

Value Stream Mapping is a powerful tool for identifying sources of waste and for creating the vision for the future state of a production system. As a management tool, however, it lacks in specific focus of roles, ...

Gates, Matthew David, 1973-

2004-01-01T23:59:59.000Z

159

Mechanics and energetics in tool manufacture and use: a synthetic approach  

Science Journals Connector (OSTI)

...150-170C. The robot employs an additive manufacturing technique for making tools...structure [47,48] and average manufacturing speed, while power consumption...systems. In the case of additive manufacturing, the size influences the...

2014-01-01T23:59:59.000Z

160

Printing 3D Electrical Traces in Additive Manufactured Parts via Low Melting Temperature  

E-Print Network (OSTI)

Printing 3D Electrical Traces in Additive Manufactured Parts via Low where commercial Additive Manufacturing (AM) techniques can be used to concurrently construct quality and robustness of systems produced using additive manufacturing (AM) techniques is beginning

Dollar, Aaron M.

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Worldwide Energy and Manufacturing USA Inc formerly Worldwide Manufacturing  

Open Energy Info (EERE)

Manufacturing USA Inc formerly Worldwide Manufacturing Manufacturing USA Inc formerly Worldwide Manufacturing USA Jump to: navigation, search Name Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) Place San Bruno, California Zip 94066 Product Worldwide Manufacturing USA is an engineering company based in San Bruno, California. References Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA) is a company located in San Bruno, California . References ↑ "Worldwide Energy and Manufacturing USA Inc (formerly Worldwide Manufacturing USA)"

162

Catalyst Manufacturing Science and  

E-Print Network (OSTI)

Catalyst Manufacturing Science and Engineering Consortium (CMSEC) Rutgers University New Jersey, U, automotive, and energy industries makes and/or uses catalysts, there has been no academic program focusing on the operations required to make catalytic materials. Thus, catalyst manufacturing processes are often designed

163

4D printing : towards biomimetic additive manufacturing  

E-Print Network (OSTI)

Inherent across all scales in Nature's material systems are multiple design dimensions, the existences of which are products of both evolution and environment. In human manufacturing where design must be preconceived and ...

Tsai, Elizabeth Yinling

2013-01-01T23:59:59.000Z

164

DOE Hydrogen Analysis Repository: PEMFC Manufacturing Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

PEMFC Manufacturing Cost PEMFC Manufacturing Cost Project Summary Full Title: Manufacturing Cost of Stationary Polymer Electrolyte Membrane (PEM) Fuel Cell Systems Project ID: 85 Principal Investigator: Brian James Keywords: Costs; fuel cells; stationary Performer Principal Investigator: Brian James Organization: Directed Technologies, Inc. (DTI) Address: 3601 Wilson Blvd., Suite 650 Arlington, VA 22201 Telephone: 703-243-3383 Email: brian_james@directedtechnologies.com Period of Performance End: November 1999 Project Description Type of Project: Analysis Category: Cross-Cutting Objectives: Estimate the cost of the fuel cell system using the Directed Technologies, Inc. cost database built up over the several years under U.S. Department of Energy and Ford Motor Company contracts.

165

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) Summit Manufacturing: Noncompliance Determination (2010-SE-0303) May 28, 2010 DOE issued a Notice of Noncompliance Determination to Summit Manufacturing, Inc. finding that 4SHP13LE136P + 15001+CA042A964+TDR basic model, a split-system air conditioning heat pump with a heat pump coil, does not comport with the energy conservation standards. DOE determined the product was noncompliant based on the company's own testing. Summit must immediately notify each person (or company) to whom Summit distributed the noncompliant products that the product does not meet Federal standards. In addition, Summit must provide to DOE documents and records showing the number of units Summit distributed and to whom. The manufacturer and/or

166

Digital Additive Manufacturing: From Rapid Prototyping to Rapid Manufacturing  

Science Journals Connector (OSTI)

The emergence of stereolithography in 1998 is a milestone for an entirely new class of layer-based manufacturing processes. This new manufacturing approach which allows direct digital manufacturing from CAD to a ...

K. K. B. Hon

2007-01-01T23:59:59.000Z

167

Demand Activated Manufacturing Architecture  

SciTech Connect

Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts per month based on more than 50 manually-created document types. The fact that DAMA and FM&T desired to move from paper-based manual architectures to digitally based computer architectures gave further incentive for the partnership to grow. FM&T's greatest strength was its knowledge of NWC-wide scheduling and planning with its role as the NWC leader in manufacturing logistics. DAMA's asset was its new knowledge gained in the research and development of advanced architectures and tools for supply chain management in the textiles industry. These complimentary strengths allowed the two parties to provide both the context and the tools for the pilot. Bender: Honeywell FM&T participated in a four-site supply chain project, also referred to as an Inter-Enterprise Pipeline Evaluation. The MSAD project was selected because it involves four NWC sites: FM&T, Pantex, Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). FM&T had previously participated with Los Alamos National Laboratory in FY98 to model a two-site supply chain project, between FM&T and LANL. Evaluation of a Supply Chain Methodology is a subset of the DAMA project for the AMTEX consortium. LANL organization TSA-7, Enterprise Modeling and Simulation, has been involved in AMTEX and DAMA through development of process models and simulations for LANL, the NWC, and others. The FY 1998 and this FY 1999 projects directly involved collaboration between Honeywell and the Enterprise Modeling and Simulation (TSA-7) and Detonation Science and Technology (DX1) organizations at LANL.

Bender, T.R.; Zimmerman, J.J.

2001-02-07T23:59:59.000Z

168

Solar Manufacturing Technology 2  

Energy.gov (U.S. Department of Energy (DOE))

The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. The first round of the SolarMat program was launched in September 2013 supporting five projects. The second round, announced on October 22, 2014, funds ten photovoltaics (PV) and concentrating solar power (CSP) projects that focus on driving down the cost of manufacturing and implementing efficiency-increasing technology in manufacturing processes.

169

Innovative Manufacturing Initiative Project Selections  

Office of Energy Efficiency and Renewable Energy (EERE)

The Department announced nearly $23 million for 12 projects across the country to advance technologies aimed at helping American manufacturers dramatically increase the energy efficiency of their manufacturing facilities, lower costs, and develop new manufacturing technologies.

170

Laser Additive Manufacturing of Metals  

Science Journals Connector (OSTI)

Laser Additive Manufacturing (LAM) is based on a repeating layer wise manufacturing process which uses a laser beam to ... ) geometries into simpler two-dimensional (2D) manufacturing steps [1, 2...]. Thus LAM of...

Claus Emmelmann; Jannis Kranz; Dirk Herzog; Eric Wycisk

2013-01-01T23:59:59.000Z

171

Metal Additive Manufacturing: A Review  

Science Journals Connector (OSTI)

This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, o...

William E. Frazier

2014-06-01T23:59:59.000Z

172

Alternative Energy Product Manufacturers Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Product Manufacturers Tax Credit Product Manufacturers Tax Credit Alternative Energy Product Manufacturers Tax Credit < Back Eligibility Commercial Industrial Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Maximum Rebate 5% of taxpayer's qualified expenditures Program Info Start Date 7/1/2006 State New Mexico Program Type Industry Recruitment/Support Rebate Amount Determined by New Mexico Department of Taxation and Revenue Provider New Mexico Energy, Minerals and Natural Resources Department The Alternative Energy Product Manufacturers tax credit may be claimed for manufacturing alternative energy products and components, including renewable energy systems, fuel cell systems, and electric and hybrid-electric vehicles. Alternative energy components include parts,

173

Innovations in Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Gov. Haslam Cuts Ribbon at Carbon Fiber Facility Governor Bill Haslam along with David Danielson, EERE's Assistant Secretary, celebrate the opening of the Carbon Fiber Technology Facility. The 390-ft. long processing line is capable of custom unit operation configuration and has a capacity of up to 25 tons per year, allowing industry to validate conversion of their carbon fiber precursors at semi-production scale. Manufacturing Demonstration Facility Manufacturing Demonstration Facility Processing Technologies Advanced Materials Automation and Controls Brochure News Manufacturing Engineering Advanced Materials & Processes Materials for Aerospace On the cover, plus, read ORNL's feature articles on additive manufacturing and its momentum for aerospace applications.

174

Development of Additive Manufacturing Technology  

Science Journals Connector (OSTI)

Additive Manufacturing (AM) technology came about as a ... of different technology sectors. Like with many manufacturing technologies, improvements in computing power and reduction...

Dr. Ian Gibson; Dr. David W. Rosen…

2010-01-01T23:59:59.000Z

175

Additive Manufacturing for Mass Customization  

Science Journals Connector (OSTI)

Additive manufacturing (AM) is a disruptive manufacturing technology that requires no tooling for production....additively build parts from numerous materials, including polymers, metals and ceramics. Within this...

Phil Reeves; Chris Tuck; Richard Hague

2011-01-01T23:59:59.000Z

176

Additive Manufacturing for Large Products.  

E-Print Network (OSTI)

?? This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the… (more)

Leirvåg, Roar Nelissen

2013-01-01T23:59:59.000Z

177

Sandia National Laboratories: wind manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the...

178

SunShot Initiative: Advanced Manufacture of Reflectors  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Manufacture of Advanced Manufacture of Reflectors to someone by E-mail Share SunShot Initiative: Advanced Manufacture of Reflectors on Facebook Tweet about SunShot Initiative: Advanced Manufacture of Reflectors on Twitter Bookmark SunShot Initiative: Advanced Manufacture of Reflectors on Google Bookmark SunShot Initiative: Advanced Manufacture of Reflectors on Delicious Rank SunShot Initiative: Advanced Manufacture of Reflectors on Digg Find More places to share SunShot Initiative: Advanced Manufacture of Reflectors on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

179

KMC Controls Inc Kreuter Manufacturing Company | Open Energy Information  

Open Energy Info (EERE)

KMC Controls Inc Kreuter Manufacturing Company KMC Controls Inc Kreuter Manufacturing Company Jump to: navigation, search Name KMC Controls, Inc. (Kreuter Manufacturing Company) Place New Paris, Indiana Zip IN 46553 Product Manufacturer of building management control products and systems. References KMC Controls, Inc. (Kreuter Manufacturing Company)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. KMC Controls, Inc. (Kreuter Manufacturing Company) is a company located in New Paris, Indiana . References ↑ "KMC Controls, Inc. (Kreuter Manufacturing Company)" Retrieved from "http://en.openei.org/w/index.php?title=KMC_Controls_Inc_Kreuter_Manufacturing_Company&oldid=348127" Categories:

180

Global manufacturing model and case studies  

E-Print Network (OSTI)

chain network. 3. 7 Level of firm's global manufacturing competitiveness. . . . 3. 8 A typical unit-cost curve. . 3. 9 Ford Fiesta production network in Western Europe. . . . . . . 35 38 39 42 3. 10 Integrated information system, 51 3. 11 World..., Japan, and Europe. 4. 1 Hofstede's scores of USA and Mexico. 91 4. 2 Average daily wage plus benefits and taxes by occupation. . . . 94 CHAPTER I INTRODUCTION Black & Decker, a $5 billion U. S. -based manufacturer of hand tools, provides an example...

Kijtawesataporn, Komsun

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Manufacturing Environment in the Year 2000  

E-Print Network (OSTI)

-l's Advanced Technical Planning Committee and the major companies they represent have evaluated the content and direction. Leading professionals in the CIM field have endorsed this paper as well as contributed to its content. Companies such as Hughes... have been eliminated; the walls between manufacturing; engineering, ma ket ing and finance have been replaced with one cohesive system that works ...CIM ...Computer Inte grated Manufacturing. I i Numerous architectures have been designed :hat...

Slautterback, W. H.

182

Federal Loan Guarantees for Projects that Manufacture Commercial...  

Energy Savers (EERE)

Federal Loan Guarantees for Projects that Manufacture Commercial Technology Renewable Energy Systems and Components: August 10, 2010 Federal Loan Guarantees for Projects that...

183

Yatu Yangjiang Fengdian Equipment Manufacturing Co Ltd | Open...  

Open Energy Info (EERE)

Sector: Wind energy Product: Mainly involved in the manufacture of large-scale wind turbines, blades, and control systems. Coordinates: 21.846979, 111.949898 Show Map...

184

Assessment of the Current Level of Automation in the Manufacture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications Michael Ulsh National Renewable Energy Laboratory...

185

Technology Solutions for New Manufactured Homes, Idaho, Oregon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of readily available, cost-effective, high performance building assemblies and mechanical systems not commonly deployed in the manufactured home sector. The package was given...

186

Advanced Manufacture of Reflectors  

SciTech Connect

The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors <1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants. During the first year a custom batch furnace was built to develop the method with high power radiative heating to simulate transfer of glass into a hot slumping zone in a production line. To preserve the original high polish of the float glass on both front and back surfaces, as required for a second surface mirror, the mold surface is machined to the required shape as grooves which intersect the glass at cusps, reducing the mold contact area to significantly less than 1%. The mold surface is gold-plated to reflect thermal radiation. Optical metrology of glass replicas made with the system has been carried out with a novel, custom-built test system. This test provides collimated, vertically-oriented parallel beams from a linear array of co-aligned lasers translated in a perpendicular direction across the reflector. Deviations of each reflected beam from the paraboloid focus give a direct measure of surface slope error. Key findings • A gravity sag method for large (2.5 m2) second surface glass solar reflectors has been developed and demonstrated to a uniquely high level of accuracy. Mirror surface slope accuracy of 0.65 mrad in one dimension, 0.85 mrad in 2 dimensions (point focus) has been demonstrated by commercial partner REhnu using this process. This accuracy exceeds by a factor of two current solar reflector accuracy. Our replicas meet the Sunshot accuracy objective of 2 mrad optical, which requires better than 1 mrad rms slope error. • Point-focus as well as line-focus mirrors have been demonstrated at 1.65 m x 1.65 m square – a unique capability. • The new process using simple molds is economical. The molds for the 1.65 m square reflectors are bent and machined steel plates on a counter-weighted flotation support. To minimize thermal coupling by radiative heat transfer, the mold surface is grooved and gilded. The molds are simple to manufacture, and have minimal thermal stresses and distortion in use. Lapping and bending techniques have been developed to obtain better than 1 mrad rms surface mold accuracy. Float glass is sagged into the molds by rapid radiative heating, using a custom high power (350 kW) furnace. The method of manufacture is well suited for small as well as large volume production, and as it requires little capital investment and no high technology, it could be used anywhere in the world to make solar concentrating reflectors. • A novel slope metrology method for full 1.65 aperture has been demonstrated, with 25 mm resolution across the face of the replicas. The method is null and therefore inherently accurate: it can easily be reproduced without high-tech equipment and does not need sophisticated calibration. We find by cross calibration with reference trough reflectors from RioGlass that our null-test laser system yields a measurement accuracy better than 0.4 mrad rms slope error. Our system is inexpensive and could have broad application for test

Angel, Roger [University of Arizona

2014-12-17T23:59:59.000Z

187

High Pressure Hydrogen Tank Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

188

Advanced Manufacture of Reflectors  

Energy.gov (U.S. Department of Energy (DOE))

The Advance Manufacture of Reflectors fact sheet describes a SunShot Initiative project being conducted research team led by the University of Arizona, which is working to develop a novel method for shaping float glass. The technique developed by this research team can drastically reduce the time required for the shaping step. By enabling mass production of solar concentrating mirrors at high speed, this project should lead to improved performance and as much as a 40% reduction in manufacturing costs for reflectors made in very high volume.

189

Beryllium Manufacturing Processes  

SciTech Connect

This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61 cm high), may be cut or machined into parts or be thermomechanically processed to develop the desired microstructure, properties, and shapes. Vacuum hot-isostatic pressing and cold-isostatic pressing (CIP) followed by sintering and possibly by a final HIP'ing (CIP/Sinter/HIP) are important in their use for the production of near net-shaped parts. For the same starting powder, a HIP'ed product will have less anisotropy than that obtained for a VHP'ed product. A schematic presentation illustrating the difference between VHP'ing and HIP'ing is shown in Figure I-1. The types of powders and the various beryllium grades produced from the consolidated powders and their ambient-temperature mechanical properties were presented in the consolidation report referred to above. Elevated-temperature properties and the effect of processing variables on mechanical properties are described in the mechanical properties report. Beryllium can also be deposited as coatings as well as freestanding forms. The microstructure, properties, and various methods used that are related to the deposition of beryllium are discussed in the report on beryllium coatings.

Goldberg, A

2006-06-30T23:59:59.000Z

190

Advanced Drivetrain Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) supports advanced manufacturing techniques that are leading to the "next-generation" of more reliable, affordable, and efficient wind turbine drivetrains. As turbines continue to increase in size, each and every component must also be scaled to meet the demands for renewable energy.

191

Transformational Manufacturing | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformational Manufacturing Transformational Manufacturing Argonne's new Advanced Battery Materials Synthesis and Manufacturing R&D Program focuses on scalable process R&D to produce advanced battery materials in sufficient quantity for industrial testing. The U.S. manufacturing industry consumes more than 30 quadrillion Btu of energy per year, directly employs about 12 million people and generates another 7 million jobs in related businesses. Argonne is working with industry to develop innovative and transformational technology to improve the efficiency and competitiveness of domestic manufacturing while reducing its carbon footprint. The lab's efforts concentrate on sustainable manufacturing, applied nanotechnology and distributed energy, with an emphasis on transitioning science discoveries to the market.

192

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

193

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS January 15, 2014 FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute The Obama Administration announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. November 22, 2013 In Cleveland, Alcoa and ArcelorMittal Recognized for Leadership in Energy Efficiency As Part of Obama Administration's Better Plants Program, U.S. Manufacturers Cut Energy Waste and Save Money October 21, 2013 FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking

194

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

195

Manufacturing News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing News Manufacturing News RSS August 3, 2011 Department of Energy Announces Philips Lighting North America as Winner of L Prize Competition Philips Product Delivers on Department's Challenge to Replace Common Light Bulb with Energy-Saving Lighting Alternative August 2, 2011 Department of Energy to Invest $50 Million to Advance Domestic Solar Manufacturing Market, Achieve SunShot Goal SUNPATH Program Will Boost American Competitiveness, Lower Cost of Solar Energy June 29, 2011 Department of Energy Announces New Partnerships to Support Manufacturing Job Training National Training and Education Resource (NTER) Offers Tools to Train Workers June 24, 2011 Department of Energy Announces $120 Million to Support Development of Innovative Manufacturing Processes

196

Fuel Oil Use in Manufacturing  

Annual Energy Outlook 2012 (EIA)

of fuel oil relative to other fuels is that manufacturers must maintain large storage tanks. This can prove to be an added expense beyond the price of the fuel. Manufacturers...

197

High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

TEMPERATURE FUEL CELL TEMPERATURE FUEL CELL (PHOSPHORIC ACID) MANUFACTURING R&D Sridhar Kanuri Manager, Phosphoric acid fuel cells & fuel processing August 10 th , 2011 PAFC MANUFACTURING R&D Agenda PAFC cost challenge Manufacturing Cost reduction opportunities Summary PAFC SYSTEM OVERVIEW Overview Heaters Reactant manifolds Manifold adaptors Axial load system Pressure Plates Power take-off Coolant manifolds Insulation H frame Coolant hoses Cell stack Assembly Fuel Processing System Thermal Management System / Water Treatment System Power Supply System (CSA's) Electrical System Module Blower Skid Powerplant modules Cost reduction is being accomplished by incremental changes in technology and manufacturing Closing commercialization gap Continuous manufacturing

198

Graduate Programs in Industrial and Manufacturing Engineering The industrial and manufacturing (IME) department at WSU  

E-Print Network (OSTI)

systems, ergonomics/human factors, or manufacturing systems engineering. In order to be admitted to the Ph. Ergonomics/Human Factors. Emphases include industrial ergonomics; bio-mechanics; human-machine systems; occupational safety and other industrial hygiene issues; and ergonomics and human factors issues in aviation

199

Establishing Greener Products and Manufacturing Processes  

E-Print Network (OSTI)

D. , “Sustainable Manufacturing - Greening Processes,Avoid) Increase process efficiency Most sustainable (Improvesustainable manufacturing. 2 They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Huang, Yu-Chu; Dornfeld, David

2012-01-01T23:59:59.000Z

200

Establishing Greener Products and Manufacturing Processes  

E-Print Network (OSTI)

D. , Sustainable Manufacturing – Greening Processes, Systemsor impact low Most  sustainable Increase process efficiencysustainable manufacturing [1]. They highlighted research needs in four categories: i) manufacturing processes and

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Climate VISION: Private Sector Initiatives: Automobile Manufacturers...  

Office of Scientific and Technical Information (OSTI)

Industry Associations Alliance of Automobile Manufacturers The Alliance of Automobile Manufacturers, Inc. is a trade association composed of 10 car and light truck manufacturers...

202

Precision and Energy Usage for Additive Manufacturing  

E-Print Network (OSTI)

Sustainability of additive manufacturing: measuring theCommittee F42 on Additive Manufacturing Technologies," TheASTM Committee F42 on Additive Manufacturing Technologies. -

Clemon, Lee; Sudradjat, Anton; Jaquez, Maribel; Krishna, Aditya; Rammah, Marwan; Dornfeld, David

2013-01-01T23:59:59.000Z

203

Energy Use in Manufacturing ? 1998 to 2002  

U.S. Energy Information Administration (EIA) Indexed Site

Use in Manufacturing - 1998 to 2002 Energy Use in Manufacturing provides information related to energy consumption changes within the U.S. manufacturing sector between 1998 and...

204

Automated Part Tracking and Metrology Applied to a Manufacturing Process  

E-Print Network (OSTI)

This paper presents a case study in the design of an automated part tracking and metrology systems for an industrial manufacturing system. A major productivity challenge of this facility is managing each batch of parts as it is formed, treated...

Morelli, F.; Halbert, T.; Hignight, M.; Kell, Z.; Lacy, J.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

205

Revolutionizing Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revolutionizing Manufacturing Revolutionizing Manufacturing Revolutionizing Manufacturing Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy Department's Manufacturing Demonstration Facility at Oak Ridge National Laboratory includes an array of state-of-the-art additive manufacturing capabilities, allowing researchers and industry to develop innovative manufacturing solutions. | Photo courtesy of Oak Ridge National

206

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Sector Overview 1991-1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 xiii Why Do We Investigate Energy Use in the Manufacturing Sector? What Data Do EIA Use To Investigate Energy Use in the Manufacturing Sector? In 1991, output in the manufactur- ing sector fell as the country went into a recession. After 1991, however, output increased as the country slowly came out of the recession. Between 1991 and 1994, manufacturers, especially manu- facturers of durable goods such as steel and glass, experienced strong growth. The industrial production index for durable goods during the period increased by 21 percent. Real gross domestic product for durable goods increased a corre- sponding 16 percent. The growth of nondurables was not as strong-- the production index increased by only 9 percent during this time period.

207

Faculty of Engineering Industrial and Manufacturing  

E-Print Network (OSTI)

Faculty of Engineering Industrial and Manufacturing Systems Engineering Industrial engineers answer the needs of organizations to operate efficiently and cost effectively. As an industrial engineer, you may of Windsor is one of only a few institutions in Ontario to offer industrial engineering. Your education

208

Company Name Tax Credit* Manufacturing Facility's  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Company Company Name Tax Credit* Manufacturing Facility's City & State Project Description Carrier Corporation $5.1 million Indianapolis, IN Carrier, a part of UTC Building & Industrial Systems and a subsidiary of United Technologies Corporation, was selected for a $5.1 million dollar 48C Advanced Energy Manufacturing Tax Credit to expand production at its Indianapolis facility to meet increasing demand for its eco-friendly condensing gas furnace product line. The new line includes the most energy efficient gas furnaces on the market-all with at least 92% annual fuel utilization efficiency-and exemplifies Carrier's commitment to economical and environmentally sustainable solutions for achieving improved energy efficiency and performance.

209

A new DFM approach to combine machining and additive manufacturing  

E-Print Network (OSTI)

Design For Manufacturing (DFM) approaches aim to integrate manufacturability aspects during the design stage. Most of DFM approaches usually consider only one manufacturing process, but products competitiveness may be improved by designing hybrid modular products, in which products are seen as 3-D puzzles with modules realized aside by the best manufacturing process and further gathered. A new DFM system is created in order to give quantitative information during the product design stage of which modules will benefit in being machined and which ones will advantageously be realized by an additive process (such as Selective Laser Sintering or laser deposition). A methodology for a manufacturability evaluation in case of a subtractive or an additive manufacturing process is developed and implemented in a CAD software. Tests are carried out on industrial products from automotive industry.

Kerbrat, Olivier; Hascoët, Jean-Yves; 10.1016/j.compind.2011.04.003

2011-01-01T23:59:59.000Z

210

LightManufacturing | Open Energy Information  

Open Energy Info (EERE)

LightManufacturing LightManufacturing Jump to: navigation, search Logo: LightManufacturing Name LightManufacturing Address 855 4th Street Place California Zip 93449 Sector Solar Product heliostat, helisotats, sun trackers, solar thermal manufacturing systems. Year founded 2009 Number of employees 11-50 Company Type For Profit Phone number 415 796-6475 Website http://www.lightmanufacturings Coordinates 35.135012°, -120.6228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.135012,"lon":-120.6228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Faculty Position in Mechanical Engineering Additive Manufacturing  

E-Print Network (OSTI)

Faculty Position in Mechanical Engineering Additive Manufacturing University of Kansas of additive manufacturing. Exceptional candidates with outstanding qualifications could be considered using additive manufacturing in applications such as, but not limited to the net shape manufacture of

212

Manufacturer Voluntarily Reports Noncompliance | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturer Voluntarily Reports Noncompliance Manufacturer Voluntarily Reports Noncompliance Manufacturer Voluntarily Reports Noncompliance June 28, 2012 - 9:05am Addthis Cooper Power Systems, LLC ("Cooper"), a wholly-owned subsidiary of Cooper Industries notified the U.S. Department of Energy's ("DOE") Office of Enforcement that it had distributed three noncompliant basic models (five total units) of liquid-immersed distribution transformers in U.S. commerce. Each of these models failed to meet the minimum level of efficiency required by DOE regulations. Cooper discovered that it had distributed the noncompliant basic models when preparing its first certification report under new DOE regulations. Cooper immediately notified DOE of the noncompliance and requested guidance on corrective

213

Seminar Title: Additive Manufacturing Advanced Manufacturing of Polymer and Composite Components  

E-Print Network (OSTI)

Seminar Title: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Functionally Integrated Composite Structures, Augsburg, Germany ME Faculty Candidate Abstract: Additive Manufacturing ­ Advanced Manufacturing of Polymer and Composite Components Additive manufacturing technologies

Wisconsin at Madison, University of

214

Plumbing Manufacturer's Institute Ex Parte Communication Regarding...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Plumbing Manufacturer's Institute Ex Parte Communication Regarding Showerheads Letter to Department...

215

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program A fact sheet detailling the advanced technology vehicles...

216

Microsoft Word - DOE-ID-INL-12-011.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 SECTION A. Project Title: Advanced Test Reactor (ATR) Primary Coolant System (PCS) Relief Valves Monorail System SECTION B. Project Description: The purpose of this project is to provide a monorail system to aid maintenance personnel in the hoisting and transporting of the Advanced Test Reactor (ATR) Primary Coolant System (PCS) Safety Relief Valves, SF-A-1-71 and SF-A-1-72, in support of the 2 year replacement. The monorail system would consist of two independent monorail assemblies installed in the concrete ceiling of the ATR Nozzle Trench Area. The proposed monorail system would provide the ability to hoist and transport the ATR PCS Relief Valves, SF-A-1-71 and SF-A-1-72, from their installed location on the north side of the Nozzle Trench Area to areas free of floor obstructions. This project would require two separate monorail systems due to several ceiling

217

Microsoft Word - DOE-ID-INL-12-011.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 SECTION A. Project Title: Advanced Test Reactor (ATR) Primary Coolant System (PCS) Relief Valves Monorail System SECTION B. Project Description: The purpose of this project is to provide a monorail system to aid maintenance personnel in the hoisting and transporting of the Advanced Test Reactor (ATR) Primary Coolant System (PCS) Safety Relief Valves, SF-A-1-71 and SF-A-1-72, in support of the 2 year replacement. The monorail system would consist of two independent monorail assemblies installed in the concrete ceiling of the ATR Nozzle Trench Area. The proposed monorail system would provide the ability to hoist and transport the ATR PCS Relief Valves, SF-A-1-71 and SF-A-1-72, from their installed location on the north side of the Nozzle Trench Area to areas free of floor obstructions. This project would require two separate monorail systems due to several ceiling

218

Design of multifunctional paired robots engaged across a thin plate for aircraft manufacturing and maintenance  

E-Print Network (OSTI)

The aircraft industry lacks an automated system for wing box manufacturing and maintenance. Currently workers assemble and inspect thousands of fasteners in the wing structure by hand. This manufacturing process consumes ...

Karasic, Geoffrey Ian

2011-01-01T23:59:59.000Z

219

A finishing cutter selection algorithm for additive/subtractive rapid pattern manufacturing  

Science Journals Connector (OSTI)

The additive/subtractive rapid pattern manufacturing (RPM) process sequentially deposits thick material ... layer-by-layer manner. Although most rapid manufacturing systems mainly intend to increase flexibility i...

Xiaoming Luo; Ye Li; Matthew C. Frank

2013-12-01T23:59:59.000Z

220

Design of a cluster analysis heuristic for the configuration and capacity management of manufacturing cells  

E-Print Network (OSTI)

This dissertation presents the configuration and capacity management of manufacturing cells using cluster analysis. A heuristic based on cluster analysis is developed to solve cell formation in cellular manufacturing systems (CMS). The clustering...

Shim, Young Hak

2007-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Manufacturing consumption of energy 1994  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

NONE

1997-12-01T23:59:59.000Z

222

Manufacturing consumption of energy 1991  

SciTech Connect

This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

Not Available

1994-12-01T23:59:59.000Z

223

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Machining Machining PDF format (236 kb) MS&T's machining group consists of two departments: Manufacturing Processing, and Manufacturing Processes and Services. The two departments team to build, procure, and assemble unique prototype and production hardware with diverse quality requirements. The in-house capability can manufacture hardware ranging from microscopic to proportions measured in feet and tons. The group's outside contacts and resources are almost boundless. This team's expertise includes: precision machining, welding, fabrication and assembly, aircraft quality sheet metal construction, and explosives machining and assembly. The department can manage a variety of activities: design modifications, in-house fabrication, outside shop selection and surveillance and manufacturing records management.

224

High Pressure Hydrogen Tank Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

225

ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Sustainable Nanomaterials Workshop Advanced Manufacturing Office, U.S. Department of Energy Nanocomposite Materials for Lithium-Ion Batteries...

226

Electrolyzer Manufacturing Progress and Challenges  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

227

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

228

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

1 Energy Information AdministrationManufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas...

229

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network (OSTI)

Manufacturing for the Hydrogen Economy Manufacturing Research & Development of PEM Fuel Cell of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

230

Computers in Manufacturing  

Science Journals Connector (OSTI)

...establishing factory simulation techniques, ICAM...manage-ment, modeling tools, software integra-tion simulation, automated systems engi-neering...systems. Looking at automated systems generally...constraining the rapid utilization of...

C. A. Hudson

1982-02-12T23:59:59.000Z

231

Petrick Technology Trends Of Manufacturing  

E-Print Network (OSTI)

#12;323 Petrick Technology Trends chapter 9 The Future Of Manufacturing Irene Petrick Technology Trends This chapter is a story about the future of manufacturing based on three predictions: � that firms sophisticated modeling and simulation of both new products and production processes; � that additive

232

Design for manufacturability Design verification  

E-Print Network (OSTI)

ITRS Design #12;Design · Design for manufacturability · Design verification #12;Design for Manufacturability · Architecture challenges · Logic and circuit challenges · Layout and physical design challenges · Expected to be the source of multiple DFM challenges · Invest in variability reduction or design

Patel, Chintan

233

Manufacturing Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Manufacturing Blog Manufacturing Blog RSS January 15, 2014 Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. January 6, 2014 Manufacturing Spotlight: Boosting American Competitiveness Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. November 15, 2013 Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory Secretary Moniz and President Obama toured a high-strength steel plant in

234

Advanced Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Advanced Manufacturing Advanced Manufacturing EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency — promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which we work, shop, and lead our everyday lives. EERE leads a robust network of researchers and other partners to continually develop cost-effective energy-saving solutions that help make our country run better through increased efficiency - promoting better plants, manufacturing processes, and products; more efficient new homes and improved older homes; and other solutions to enhance the buildings in which

235

Manufacturing Fuel Cell Manhattan Project  

NLE Websites -- All DOE Office Websites (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

236

Manufacturing Data | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Data Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Manufacturing Data These Federal datasets contain a wealth of information for manufacturing - either from information in a single dataset or by combining data from more than one place. This site will be enhanced with the addition of new datasets, and new apps using these datasets, as they are developed. Search Terms Category -Any- Geospatial Items per page 25 50 100 Apply Name Downloads Rating TradeStats Express TradeStats Express provides statistics on U.S. merchandise trade at the national and state levels. Data can also be displayed in maps, graphs, tables, or as exports, imports, and trade balances.... Data Extraction

237

Improving energy efficiency in a pharmaceutical manufacturing environment -- production facility  

E-Print Network (OSTI)

The manufacturing plant of a pharmaceutical company in Singapore had low energy efficiency in both its office buildings and production facilities. Heating, Ventilation and Air-Conditioning (HVAC) system was identified to ...

Zhang, Endong, M. Eng. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

238

Method and apparatus for manufacturing gas tags  

DOE Patents (OSTI)

For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases.

Gross, Kenny C. (Bolingbrook, IL); Laug, Matthew T. (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

239

Method and apparatus for manufacturing gas tags  

DOE Patents (OSTI)

For use in the manufacture of gas tags employed in a gas tagging failure detection system for a nuclear reactor, a plurality of commercial feed gases each having a respective noble gas isotopic composition are blended under computer control to provide various tag gas mixtures having selected isotopic ratios which are optimized for specified defined conditions such as cost. Using a new approach employing a discrete variable structure rather than the known continuous-variable optimization problem, the computer controlled gas tag manufacturing process employs an analytical formalism from condensed matter physics known as stochastic relaxation, which is a special case of simulated annealing, for input feed gas selection. For a tag blending process involving M tag isotopes with N distinct feed gas mixtures commercially available from an enriched gas supplier, the manufacturing process calculates the cost difference between multiple combinations and specifies gas mixtures which approach the optimum defined conditions. The manufacturing process is then used to control tag blending apparatus incorporating tag gas canisters connected by stainless-steel tubing with computer controlled valves, with the canisters automatically filled with metered quantities of the required feed gases. 4 figs.

Gross, K.C.; Laug, M.T.

1996-12-17T23:59:59.000Z

240

...  

NLE Websites -- All DOE Office Websites (Extended Search)

monorail, the qualified person installing the trolley shall ensure by actual operational verification or measurement that the installed trolley stops on the system are compatible...

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Renewable Energy Manufacturing Tax Credit (South Carolina) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Tax Credit (South Carolina) Manufacturing Tax Credit (South Carolina) Renewable Energy Manufacturing Tax Credit (South Carolina) < Back Eligibility Industrial Savings Category Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate $500,000 for any year and $5 million total for all years Program Info Start Date 01/01/2010 Expiration Date 12/31/2015 State South Carolina Program Type Industry Recruitment/Support Rebate Amount 10% South Carolina offers a ten percent income tax credit to the manufacturers of renewable energy operations* for tax years 2010 through 2015. In order to qualify, a business must: *manufacture renewable energy systems and components in South Carolina for solar, wind, geothermal, or other renewable energy uses

242

Stronger Manufacturers' Energy Efficiency Standards for Residential Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stronger Manufacturers' Energy Efficiency Standards for Residential Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today Stronger Manufacturers' Energy Efficiency Standards for Residential Air Conditioners Go Into Effect Today January 23, 2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing standards that go into effect today, January 23, 2006, for products manufactured in, or imported into, the United States. "Homeowners who choose to buy more energy-efficient air conditioning systems after today will realize significant savings in their energy bills and greatly reduce their energy use," said Secretary of Energy Samuel W. Bodman. "These new energy efficiency standards are the first of several

243

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive and Optoelectronics Industries  

E-Print Network (OSTI)

The Impact of Manufacturing Offshore on Technology Development Paths in the Automotive Systems and Civil and Environmental Engineering #12;The Impact of Manufacturing Offshore on Technology of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks

de Weck, Olivier L.

244

INT. J. PROD. RES., 2000, VOL. 38, NO. 5, 1109 1131 A generic Petri net model for exible manufacturing systems and its use  

E-Print Network (OSTI)

by a material handling system capable of enabling jobs to follow diverse routes through the system, monitored. In developing control software in these cases, programming is carried out using a ladder diagram or a decision

Zhang, WJ "Chris"

245

The International Journal of Time-Critical Computing Systems, 20, 2749, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.  

E-Print Network (OSTI)

specifications by translating them into timed transition systems. A shutdown system in Korean nuclear power-time systems, formal specifications, timing constraints 1. Introduction The Software Cost Reduction (SCR), and the nuclear power plants in Canada (van Schouwen, Par- nas, and Madey, 1993), and Belgium (Courtois and Parnas

246

Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development  

SciTech Connect

The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

Hewes, T.; Peeks, B.

2013-11-01T23:59:59.000Z

247

Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)  

SciTech Connect

The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in the manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.

Not Available

2013-11-01T23:59:59.000Z

248

Advanced Manufacturing Policies and Paradigms for Innovation  

Science Journals Connector (OSTI)

...2013 ). 4 About the Advanced Manufacturing Partnership 2.0; www.manufacturing.gov/amp.html. 5 For example , www1.eere.energy.gov/manufacturing/; www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__%28AVM...

William B. Bonvillian

2013-12-06T23:59:59.000Z

249

MST: Organizations: Precision Meso Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Precision Meso Manufacturing Precision Meso Manufacturing Many engineers and product realization teams at Sandia National Laboratories are currently engaged in efforts to create revolutionary national security products that feature unprecedented functionality in ever-smaller, more portable configurations. In the course of development, the Sandia technology community has realized the need for manufacturing capabilities that expand upon what traditional microfabrication provides. The term “meso,” derived from the Greek mesos, meaning “intermediate” or “in the middle,” describes operations on a length scale that typically ranges from hundreds of micrometers to one centimeter. Meso Manufacturing involves a suite of innovative fabrication and metrology tools that compliment each other to make these products a reality. The Meso

250

Prototype Design, Manufacturing, and Testing  

Science Journals Connector (OSTI)

Prototyping describes the practical realization of the theoretical concept of the nonimaging Fresnel lens. The steps that are to be taken in order to get a working prototype of the lens manufactured are as fol...

Dr. Ralf Leutz; Dr. Akio Suzuki

2001-01-01T23:59:59.000Z

251

Laser Additive Manufacturing in GE  

Science Journals Connector (OSTI)

There has been an increasing interest given to laser additive manufacturing (LAM) in recent years from across the global. GE has been one of the leading industries engaging in this...

Peng, Henry; Li, Yanmin; Guo, Rui; Wu, Zhiwei

252

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

S Y M n i 1 y 2 i (W i ) (W i 1) , Energy Information Administration, Manufacturing Energy Consumption Survey: Methodological Report 1985. Although this report describes 44...

253

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Survey Design, Survey Design, Implementation, and Estimates 411 Energy Information Administration/Manufacturing Consumption of Energy 1994 Overview of Changes from Previous Surveys Sample Design. The MECS has increased its sample size by roughly 40 percent since the 1991 survey, increasing the designed sample size from 16,054 establishments to 22,922. This increase in size and change in sampling criteria required a departure from using the Annual Survey of Manufactures (ASM) as the MECS sampling frame. For 1994, establishments were selected directly from the 1992 Census of Manufactures (CM) mail file, updated by 1993 ASM. Sample Frame Coverage. The coverage in the 1994 MECS is 98 percent of the manufacturing population as measured in total payroll. The sampling process itself provided that level of coverage, and no special adjustments were

254

Fenner acquires PTFE seal manufacturer  

Science Journals Connector (OSTI)

Fenner Plc has announced the acquisition of substantially all of the operating assets and liabilities of EGC, a Houston-based manufacturer of fluoroplastic seals and other related fluoroplastic precision components.

2006-01-01T23:59:59.000Z

255

Funding Opportunity Announcement for Water Power Manufacturing...  

Energy Savers (EERE)

Funding Opportunity Announcement for Water Power Manufacturing Funding Opportunity Announcement for Water Power Manufacturing April 11, 2014 - 11:23am Addthis On April 11, 2014,...

256

Additive manufacturing: technology, applications and research needs  

Science Journals Connector (OSTI)

Additive manufacturing (AM) technology has been researched and ... complexities that could not be produced by subtractive manufacturing processes. Through intensive research over the past...

Nannan Guo; Ming C. Leu

2013-09-01T23:59:59.000Z

257

A Management Strategy for Additive Manufacturing:.  

E-Print Network (OSTI)

??The thesis is about a Management Strategy for Additive Manufacturing - how engineering change influences the NPD process through the adoption of new manufacturing technology.… (more)

Zahn, N.Z.

2014-01-01T23:59:59.000Z

258

Advanced Manufacturing Initiative Improves Turbine Blade Productivity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Manufacturing Initiative Improves Turbine Blade Productivity Advanced Manufacturing Initiative Improves Turbine Blade Productivity May 20, 2011 - 2:56pm Addthis This is an...

259

Request for Information (RFI): Advanced Manufacturing Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Manufacturing Office (AMO) Software Tools Request for Information (RFI): Advanced Manufacturing Office (AMO) Software Tools July 25, 2014 - 1:00pm Addthis Funding: This...

260

Solar Manufacturing Technology 2 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization...

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Autogenic Pressure Reactions for Battery Materials Manufacture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture A one-step, solvent-free reaction for producing unique...

262

2014 American Energy & Manufacturing Competitiveness Summit in...  

Office of Environmental Management (EM)

Council on Competitiveness 9 of 10 Advanced Manufacturing Office Director Mark Johnson delivers the lunch keynote during the American Energy & Manufacturing Competitiveness...

263

National Electrical Manufacturers Association (NEMA) Response...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

264

Explore Careers in Manufacturing | Department of Energy  

Office of Environmental Management (EM)

in U.S. manufacturing. The Advanced Manufacturing Office (AMO) invests in public-private research and development partnerships and encourages a culture of continuous...

265

Advanced Technology Vehicles Manufacturing Loan Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Manufacturing Loan Program Advanced Technology Vehicles Manufacturing Loan Program ATVM-Program-Application-Overview.pdf More Documents & Publications ATVM...

266

Advanced Technology Vehicles Manufacturing Incentive Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

267

Mother nature as a wire manufacturer | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Mother nature as a wire manufacturer Mother nature as a wire manufacturer With computational models, scientists see how microbe directs electrons New research shows how electrons...

268

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor  

E-Print Network (OSTI)

Mechanical and Manufacturing Engineering Mechatronics Engineering Minor Students pursuing a BSc in mechanical or manufacturing engineering have experience and entrepreneurship. Mechatronics is the synergistic combination of mechanical

Calgary, University of

269

Understanding Manufacturing Energy and Carbon Footprints, October...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Understanding the 2010 Manufacturing Energy and Carbon Footprints U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis U.S....

270

Manufacturing-Industrial Energy Consumption Survey(MECS) Historical  

U.S. Energy Information Administration (EIA) Indexed Site

> Historical Publications > Historical Publications Manufacturing Establishments reports, data tables and questionnaires Released: May 2008 The Manufacturing Energy Consumption Survey (MECS) is a periodic national sample survey devoted to measuring energy consumption and related issues in the manufacturing sector. The MECS collects data on energy consumption, purchases and expenditures, and related issues and behaviors. Links to previously published documents are given below. Beginning in 1998, reports were only issued electronically. Additional electronic releases are available on the MECS Homepage. The basic unit of data collection for this survey is the manufacturing establishment. Industries are selected according to definitions found in the North American Industry Classification System (NAICS), which replace the earlier Standard Industrial Classification (SIC) system.

271

Rapid response manufacturing (RRM). Final CRADA report  

SciTech Connect

US industry is fighting to maintain its competitive edge in the global market place. Markets fluctuate rapidly. Companies have to be able to respond quickly with improved, high quality, cost efficient products. Because companies and their suppliers are geographically distributed, rapid product realization is dependent on the development of a secure integrated concurrent engineering environment operating across multiple business entities. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies implemented in a secure environment. This documents the work done under this CRADA to develop capabilities, which permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process. Lockheed Martin Energy Systems (LMES), through a CRADA with the National Center for Manufacturing Sciences (NCMS), worked within a consortium of major industrial firms--Ford, General Motors, Texas Instruments, United Technologies, and Eastman Kodak--and several small suppliers of advanced manufacturing technology--MacNeal-Schwendler Corp., Teknowledge Corp., Cimplex Corp., Concentra, Spatial Technology, and Structural Dynamics Research Corp. (SDRC)--to create infrastructure to support the development and implementation of secure engineering environments for Rapid Response Manufacturing. The major accomplishment achieved under this CRADA was the demonstration of a prototypical implementation of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined parts in a secure NWC compliant environment. Specifically, methods needed to permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process were developed and demonstrated. An important aspect of this demonstration was the implementation of a Product Information Management System that supports secure concurrent engineering in an open environment.

Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

1998-02-10T23:59:59.000Z

272

Clean Energy Manufacturing Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative Clean Energy Manufacturing Initiative July 10, 2013 - 1:52pm Addthis Boosting U.S. competitiveness in clean energy manufacturing Boosting U.S. competitiveness in clean energy manufacturing The Clean Energy Manufacturing Initiative is a strategic integration and commitment of manufacturing efforts across the Office of Energy Efficiency & Renewable Energy's (EERE) clean energy technology offices and Advanced Manufacturing Office, focusing on American competitiveness in clean energy manufacturing. alex was here Addthis Related Articles Manufacturing is the bedrock of the American economy, representing nearly 12 percent of our gross domestic product and providing good, high-paying jobs for middle class families. That's why the Energy Department is working to boost U.S. manufacturing competitiveness. | Photo courtesy of Alcoa.

273

Capacity analysis, cycle time optimization, and supply chain strategy in multi-product biopharmaceutical manufacturing operations  

E-Print Network (OSTI)

Application of system optimization theory, supply chain principles, and capacity modeling are increasingly valuable tools for use in pharmaceutical manufacturing facilities. The dynamics of the pharmaceutical industry - ...

Fetcho-Phillips, Kacey L. (Kacey Lynn)

2011-01-01T23:59:59.000Z

274

Relating Additive and Subtractive Processes Teleologically For Hybrid Design and Manufacturing.  

E-Print Network (OSTI)

??This research proposes a methodology for hybrid design and manufacturing  – connecting processes, and silos of information, in a shared system that maximizes the strengths… (more)

Townsend, Victoria

2010-01-01T23:59:59.000Z

275

Performance, Market and Manufacturing Constraints relevant to the Industrialization of Thermoelectric Devices  

Energy.gov (U.S. Department of Energy (DOE))

Market pricing of thermoelectric raw materials and processing, cost of manufacture of devices and systems constraints on the viability of a mass market thermoelectric product are discussed

276

Oak Ridge Manufacturing Demonstration Facility (MDF)  

Office of Energy Efficiency and Renewable Energy (EERE)

The Manufacturing Demonstration Facility (MDF) is a collabora­tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber.

277

Designing a National Network for Manufacturing Innovation  

E-Print Network (OSTI)

Designing a National Network for Manufacturing Innovation NNMI and The Additive Manufacturing Pilot Introduction · NNMI principles · Public NMMI Design · Pilot Institute on Additive Manufacturing #12;IMI Mission Process, such as Additive Manufacturing An Advanced Material ­ e.g. lightweight, low cost carbon fiber

278

1 - Honeywell Bull in manufacturing automation  

Science Journals Connector (OSTI)

economy, the manufacturing industry has undergone great changes over the past 25 years. Now, with the expansion of computerised manufacturing control applications, computer manufacturers can meet the specialised needs of the manufacturing community. This paper also examines the CIM architecture at all levels, looks at current standards and at Honeywell Bull as a supplier.

R. Anderson

1988-01-01T23:59:59.000Z

279

Manufacturing Spotlight: Boosting American Competitiveness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 - 1:06pm Addthis Libby Wayman Clean Energy Manufacturing Initiative Director Advancing the nation's clean energy manufacturing industry helps to capture the value of U.S. innovation in clean energy technologies, fosters further innovation right here in America, and makes U.S. manufacturers more competitive by reducing their energy costs - all while creating jobs and building a more sustainable planet for future generations. Industry and government are working together to expand American leadership in this sector by bringing new clean energy technologies to the marketplace and making manufacturing processes more energy efficient.

280

Manufacturing Consumption of Energy 1994  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration/Manufacturing Consumption of Energy 1994 Energy Information Administration/Manufacturing Consumption of Energy 1994 Introduction The market for natural gas has been changing for quite some time. As part of natural gas restructuring, gas pipelines were opened to multiple users. Manufacturers or their representatives could go directly to the wellhead to purchase their natural gas, arrange the transportation, and have the natural gas delivered either by the local distribution company or directly through a connecting pipeline. More recently, the electricity markets have been undergoing change. When Congress passed the Energy Policy Act of 1992, requirements were included not only to open access to the ownership of electricity generation, but also to open access to the transmission lines so that wholesale trade in electricity would be possible. Now several States, including California and

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Manufacture Ion Beam Manufacture PDF format (113 kb) Example sine wave FIB sputtered into initially planar Si substrate Example sine wave FIB sputtered into initially planar Si substrate Sandia Manufacturing Science & Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are developing methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geometrically-complex features and substrates. This includes the ability to sputter predetermined curved shapes of various symmetries and

282

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

Manufacturing Manufacturing Energy Consumption Survey Forms Form EIA-846A (4-6-95) U.S. Department of Commerce Bureau of the Census Acting as Collecting and Compiling Agent For 1994 MANUFACTURING ENERGY CONSUMPTION SURVEY Public reporting burden for this collection of information is estimated to average 9 hours per response, including the time of reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to the Energy Information Administration, Office of Statistical Standards, EI-73, 1707 H-Street, NW, Washington, DC 20585; and to the Office of Information and Regulatory Affairs, Office of

283

Manufacturing Services | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Services Do you have a new idea? You may need to file a patent to both develop it and protect it. Find out more below. Search for existing patents Apply for a patent Business Owners Getting a business started, established, and growing is difficult. We want to make that easier. Check out the government services below that are available to businesses, and find out more about what's coming with StartUp America. Start a business Access financing Find opportunities to sell products and services to the government Grow your business Help with exporting for beginners and for experts. Shared Facilities Facilities can be a huge factor in whether you create a new product or

284

Manufacturing Energy and Carbon Footprints (2006 MECS)  

Energy.gov (U.S. Department of Energy (DOE))

Energy and Carbon Footprints provide a mapping of energy from supply to end use in manufacturing. They show us where energy is used and lost—and where greenhouse gases (GHGs) are emitted. Footprints are available below for 15 manufacturing sectors (representing 94% of all manufacturing energy use) and for U.S. manufacturing as a whole. Analysis of these footprints is also available in the U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis report.

285

Power Quality from the Manufacturer’s Standpoint  

E-Print Network (OSTI)

Power quality is an unstable field (if you'll pardon the double meaning). It's in its infancy; there isn't general agreement on much, not even terminology. As an instrument manufacturer in the field, I'm particularly concerned with two philosophical...

McEachern, A.

286

Advanced Battery Manufacturing (VA)  

SciTech Connect

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

287

Big Efficieny for Small Manufacturing  

E-Print Network (OSTI)

Big Efficiency for Small Manufacturing Daniel Trombley American Council for an Energy-Efficient Economy Presented to: Industrial Energy Technology Conference New Orleans, LA May 21, 2014 ESL-IE-14-05-10 Proceedings of the Thrity-Sixth Industrial...-Sized Manufacturers http://www.aceee.org/research-report/ie1401 Daniel Trombley dtrombley@aceee.org www.aceee.org ESL-IE-14-05-10 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 ...

Trombley, D.

2014-01-01T23:59:59.000Z

288

TekSun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

TekSun PV Manufacturing Inc TekSun PV Manufacturing Inc Jump to: navigation, search Name TekSun PV Manufacturing Inc Place Austin, Texas Zip 78701 Product US-based installer of PV systems; rportedly planning to buy a 120MW amorphous silicon PV manufacturing line from Applied Materials. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

East Penn Manufacturing Co. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

Manufacturing Co. Smart Grid Demonstration Project Manufacturing Co. Smart Grid Demonstration Project Jump to: navigation, search Project Lead East Penn Manufacturing Co. Country United States Headquarters Location Lyon Station, Pennsylvania Recovery Act Funding $2,245,523.00 Total Project Value $4,491,046.00 References ARRA Smart Grid Demonstration Projects[1] This article is a stub. You can help OpenEI by expanding it. The East Penn Manufacturing Co. Smart Grid Demonstration Project is a U.S. Department of Energy Smart Grid Demonstration Project which is based in Lyon Station, Pennsylvania. Overview Demonstrate the economic and technical viability of a 3MW grid-scale, advanced energy storage system using the lead-carbon UltraBattery technology to regulate frequency and manage energy demand. This project

290

DOE Research Grant Leads to Gas Turbine Manufacturing Improvements |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Grant Leads to Gas Turbine Manufacturing Improvements Research Grant Leads to Gas Turbine Manufacturing Improvements DOE Research Grant Leads to Gas Turbine Manufacturing Improvements August 16, 2011 - 1:00pm Addthis Washington, DC - Research sponsored by the U.S. Department of Energy's Office of Fossil Energy (FE) has led to a new licensing agreement that will improve the performance of state-of-the-art gas turbines, resulting in cleaner, more reliable and affordable energy. The collaborative technology license agreement, penned by Mikro Systems Inc. and Siemens Energy Inc., reflects growth in U.S.-based manufacturing know-how and leadership in cutting-edge technology development and rapid implementation. Gas turbines, which are used to produce electricity for industrial or central power generation applications, consist sequentially of compressor,

291

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Hydrogen and Fuel Cells Technologies Manufacturing Sub-program Nancy L. Garland, Ph.D. U.S Department of Energy NREL H 2 /FC Manufacturing R&D Workshop Washington, D.C. August 11-12, 2011 * Goal: Research, develop and demonstrate technologies and processes that reduce the cost of components and systems for fuel cells, and hydrogen production, delivery, and storage; grow the domestic supplier base. * Challenge: Move hydrogen and fuel cells from laboratory-scale production into high-volume, low-cost manufacturing. 2 Goal of Manufacturing sub-program U.S. DOE 8/10/11 3 Budget EMPHASIS  Develop novel, robust, ultrasonic bonding processes for MEAs to reduce MEA-pressing cycle time  Develop real-time, online measurement tools to reduce/eliminate ex situ

292

Optical manufacturing requirements for an AVLIS plant  

SciTech Connect

A uranium enrichment plant utilizing Atomic Vapor Laser Isotope Separation (AVLIS) technology is currently being planned. Deployment of the Plant will require tens of thousands of commercial and custom optical components and subsystems. The Plant optical system will be expected to perform at a high level of optical efficiency and reliability in a high-average-power-laser production environment. During construction, demand for this large number of optics must be coordinated with the manufacturing capacity of the optical industry. The general requirements and approach to ensure supply of optical components is described. Dynamic planning and a closely coupled relationship with the optics industry will be required to control cost, schedule, and quality.

Primdahl, K.; Chow, R.; Taylor, J.R.

1997-07-14T23:59:59.000Z

293

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013  

Energy.gov (U.S. Department of Energy (DOE))

Sustainable Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design

294

Manufacturing Energy and Carbon Footprints  

E-Print Network (OSTI)

Significant opportunities exist for improving energy efficiency in U.S. manufacturing. A first step in realizing these opportunities is to identify how industry is using energy. Where does it come from? What form is it in? Where is it used? How much...

Brueske, S.; Lorenz, T.

2012-01-01T23:59:59.000Z

295

Additive manufacturing method of producing  

E-Print Network (OSTI)

Additive manufacturing method of producing silver or copper tracks on polyimide film Problem/stripping) using an additive process support by a novel bio- degradable photo-initiator package. technology. Building on previous work by Hoyd- Gigg Ng et al. [1,2], Heriot-Watt has developed an additive film

Painter, Kevin

296

Manufacturers' View on Benchmarking and Disclosure  

U.S. Energy Information Administration (EIA) Indexed Site

Association of Electrical and Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax Incentives Shaheen- Portman Benchmarking and Disclosure Bullitt Center Seattle, Washington The Association of Electrical Equipment and Medical Imaging Manufacturers Energy Savings Performance Contracts ESPCs pay for efficiency upgrades with

297

Batteries - Materials Processing and Manufacturing Breakout session  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Processing and Manufacturing Materials Processing and Manufacturing Breakout Session #1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the Targets * PHEV40 and AEV 100 possible with success in current R&D * Achievable with Li-ion manufacturing improvements and advanced chemistries in current Li-ion R&D * AEV300 more challenging * Requires manufacturing improvements and materials and chemistry improvements * Quantify benefits/ drawbacks of fast charging vs. increased electrode cost Barriers Interfering with Reaching the Targets * Materials cost * Need: Material synthesis in large quantities/ with increased impurities and broader size distributions or advanced manufacturing * Electrode thickness - manufacturing and performance * Separator cost/ performance/ safety

298

Advanced Manufacturing Office: Industrial Assessment Centers (IACs)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Assessment Industrial Assessment Centers (IACs) to someone by E-mail Share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Facebook Tweet about Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Twitter Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Google Bookmark Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Delicious Rank Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on Digg Find More places to share Advanced Manufacturing Office: Industrial Assessment Centers (IACs) on AddThis.com... Industrial Assessment Centers (IACs) Learn More Learn how companies have benefited from IAC assessments. Search the IAC Database for recommendations and savings achieved.

299

List of Manufacturing Groups Displayed in the 1998 Manufacturing Energy  

U.S. Energy Information Administration (EIA) Indexed Site

21 manufacturing subsectors (3-digit NAICS codes); 21 manufacturing subsectors (3-digit NAICS codes); 311 Food 312 Beverage and Tobacco Products 313 Textile Mills 314 Textile Product Mills 315 Apparel 316 Leather and Allied Products 321 Wood Products 322 Paper 323 Printing and Related Support 324 Petroleum and Coal Products 325 Chemicals 326 Plastics and Rubber Products 327 Nonmetallic Mineral Products 331 Primary Metals 332 Fabricated Metal Products 333 Machinery 334 Computer and Electronic Products 335 Electrical Equip., Appliances, and Components 336 Transportation Equipment 337 Furniture and Related Products 339 Miscellaneous 6 industry groups (4-digit NAICS codes); 3212 Veneer, Plywood, and Engineered Woods 3219 Other Wood Products 3272 Glass and Glass Products 3312 Steel Products from Purchased Steel 3313 Alumina and Aluminum

300

Sustainable manufacturing: evaluation and modeling of environmental impacts in additive manufacturing  

Science Journals Connector (OSTI)

Cleaner production and sustainability are of crucial importance in the field of manufacturing processes where great amounts of energy and materials are being consumed. Nowadays, additive manufacturing technologie...

Florent Le Bourhis; Olivier Kerbrat…

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANUFACTURING MANUFACTURING CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Industrial Gas Manufacturing 325120 All Other Basic Inorganic Chemical Manufacturing 325188 Plastics Material and Resin Manufacturing 325211 Explosives Manufacturing 325920 All Other Plastics Product Manufacturing 326199 Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding 331491 Fabricated Structural Metal Manufacturing 332312 Metal Tank (Heavy Gauge) Manufacturing 332420 Other Metal Container Manufacturing 332439 Machine Shops 332710 Electroplating, Plating, Polishing, Anodizing, and Coloring 332813 Industrial valve Manufacturing 332911 Other Ordnance and Accessories Manufacturing 332995 All Other Miscellaneous Fabricated Metal Product Manufacturing

302

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Meso-Machining Meso-Machining PDF format (182 kb) Sandia's Micro-Electro Discharge Machine (Micro-EDM) (above). On the upper right inset is the Micro-EDM electode in copper that was made with the LIGA (electroforming) process. On the lower right inset is a screen fabricated into .006 inch kovar sheet using the Micro-EDM electrode. The walls of the screen are .002 inch wide by .006 inch deep. Meso-machining technologies being developed at Sandia National Laboratories will help manufacturers improve a variety of production processes, tools, and components. Meso-machining will benefit the aerospace, automotive, biomedical, and defense industries by creating feature sizes from the 1 to 50 micron range. Sandia's Manufacturing Science and Technology Center is developing the

303

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

2(94) 2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. ii Energy Information Administration/Manufacturing Consumption of Energy 1994 Contacts This publication was prepared by the Energy Information Administration (EIA) under the general direction of W. Calvin

304

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. energy data used in this report do not reflect adjustments for losses in electricity generation or transmission. 1 The manufacturing sector is composed of establishments classified in Standard Industrial Classification 20 through 39 of the U.S. economy as defined 2 by the Office of Management and Budget. The manufacturing sector is a part of the industrial sector, which also includes mining; construction; and agriculture, forestry, and fishing. The EIA also conducts energy consumption surveys in the residential, commercial buildings, and residential transportation sectors: the Residential Energy 3 Consumption Survey (RECS); the Commercial Buildings Energy Consumption Survey (CBECS); and, until recently, the Residential Transportation Energy Consumption Survey (RTECS).

305

Electromagnetic compatibility in semiconductor manufacturing  

SciTech Connect

Electromagnetic Interference (EMI) causes problems in semiconductor manufacturing facilities that range from nuisances to major disruptions of production. In many instances, these issues are addressed in a reactionary rather than proactive manner by individuals who do not have the experience or the equipment necessary to combat EMI problems in a timely, cost effective manner. This approach leads to expensive retrofits, reduced equipment availability, long recovery times, and in some cases, line yield impacts. The goal of electromagnetic compatibility (EMC) in semiconductor manufacturing is to ensure that semiconductor process, metrology, and support equipment operate as intended without being affected by electromagnetic disturbances either transmitted through air (radiated interference), or transferred into the equipment via a conductive media (conducted interference). Rather than being neglected until serious issues arise, EMC should be considered in the early stages of facility design, in order to gain the most benefit at the lowest cost.

Montoya, J.A. [Intel Corp., Hillsboro, OR (United States)

1995-12-31T23:59:59.000Z

306

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

E E U.S. Census Regions and Divisions 489 Energy Information Administration/Manufacturing Consumption of Energy 1994 Source: U.S. Department of Commerce, Bureau of the Census, Statistical Abstract of the United States,1996 (Washington, DC, October 1996), Figure 1. Appendix E U.S. Census Regions and Divisions Appendix F Descriptions of Major Industrial Groups and Selected Industries Executive Office of the President, Office of Management and Budget, Standard Industrial Classification Manual, 1987, pp. 67-263. 54 493 Energy Information Administration/Manufacturing Consumption of Energy 1994 Appendix F Descriptions of Major Industrial Groups and Selected Industries This appendix contains descriptions of industrial groups and selected industries taken from the Standard Industrial

307

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

(MECS) > MECS 1994 Combined Consumption and Fuel Switching (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption Logo Full Report - (file size 5.4 MB) pages:531 Selected Sections (PDF format) Contents (file size 56 kilobytes, 10 pages). Overview (file size 597 kilobytes, 11 pages). Chapters 1-3 (file size 265 kilobytes, 9 pages). Chapter 4 (file size 1,070 kilobytes, 15 pages). Appendix A - Detailed Tables Tables A1 - A8 (file size 1,031 kilobytes, 139 pages). Tables A9 - A23 (file size 746 kilobytes, 119 pages). Tables A24 - A29 (file size 485 kilobytes, 84 pages). Tables A30 - A44 (file size 338 kilobytes, 39 pages). Appendix B (file size 194 kilobytes, 24 pages). Appendix C (file size 116 kilobytes, 16 pages).

308

Fact Sheet: 48C Manufacturing Tax Credits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

48C Manufacturing Tax Credits 48C Manufacturing Tax Credits In order to foster investment and job creation in clean energy manufacturing, the American Recovery and Reinvestment Act of 2009 included a tax credit for investments in manufacturing facilities for clean energy technologies. The Section 48C Advanced Manufacturing Tax Credit originally provided a 30% investment tax credit to 183 domestic clean energy manufacturing facilities valued at $2.3 billion. Today the IRS has announced the availability of additional 48C allocations, utilizing $150 million remaining tax credits that were never fully monetized by previous awardees. This tax credit program will help build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. These manufacturing facilities will also

309

Manufacturing Demonstration Facility (MDF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) October 11, 2013 - 9:44am Addthis The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber. Fostering Collaboration to Accelerate Progress Work conducted by MDF partners and users provides real data that is used to reduce the technical risk associated with full commercialization of promising foundational manufacturing process and materials innovations. The

310

Objective assessment of manufacturing technology investments  

E-Print Network (OSTI)

Amgen is a biotechnology company with manufacturing plants throughout the world. New manufacturing technologies are constantly being developed and implemented in order to address cost, quality, regulation, and competitive ...

Rothman, Craig Jeremy

2012-01-01T23:59:59.000Z

311

FACT SHEET: 48C MANUFACTURING TAX CREDITS  

Office of Energy Efficiency and Renewable Energy (EERE)

The Advanced Energy Manufacturing Tax Credit Program is helping build a robust U.S. manufacturing capacity to supply clean energy projects with American-made parts and equipment. On February 7,...

312

Upcoming Funding Opportunity for Water Power Manufacturing |...  

Energy Savers (EERE)

Water Power Manufacturing Upcoming Funding Opportunity for Water Power Manufacturing March 24, 2014 - 12:00pm Addthis On March 24, 2014, the U.S. Department of Energy (DOE)...

313

Creation and sustainment of manufacturing technology roadmaps  

E-Print Network (OSTI)

Manufacturing technology roadmaps align manufacturing capability development to product development and the driving business need. Roadmaps allow an executable business strategy to be communicated to all levels of an ...

Grillon, Louis S

2012-01-01T23:59:59.000Z

314

Benefits and Barriers of Smart Manufacturing  

E-Print Network (OSTI)

Decision makers in the industrial sector have only recently started to realize the potential of smart manufacturing to transform manufacturing. The potential gains in efficiency at the process and supply-chain level are still largely unknown...

Trombley, D.; Rogers, E.

2014-01-01T23:59:59.000Z

315

Refrigerator Manufacturers: Order (2013-CE-5341)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered Refrigerator Manufacturers, LLC to pay a $8,000 civil penalty after finding Refrigerator Manufacturers had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards.

316

Building Blocks for the Future of Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

for the Future of Manufacturing Building Blocks for the Future of Manufacturing Scott Smith 2011.05.04 Even though we grew up on opposite sides of the world, my colleague...

317

SunShot Initiative: Solar Manufacturing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Manufacturing Technology to Solar Manufacturing Technology to someone by E-mail Share SunShot Initiative: Solar Manufacturing Technology on Facebook Tweet about SunShot Initiative: Solar Manufacturing Technology on Twitter Bookmark SunShot Initiative: Solar Manufacturing Technology on Google Bookmark SunShot Initiative: Solar Manufacturing Technology on Delicious Rank SunShot Initiative: Solar Manufacturing Technology on Digg Find More places to share SunShot Initiative: Solar Manufacturing Technology on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment Physics of Reliability: Evaluating Design Insights for Component

318

QTR Webinar: Chapter 8- Industry and Manufacturing  

Energy.gov (U.S. Department of Energy (DOE))

The DOE EERE Advanced Manufacturing Office hosted a QTR webinar to obtain input from Leaders in Academia, Industry, and Government on Chapter 8, Industry and Manufacturing, and the associated Technology Assessments.

319

Manufacturing of Plutonium Tensile Specimens  

SciTech Connect

Details workflow conducted to manufacture high density alpha Plutonium tensile specimens to support Los Alamos National Laboratory's science campaigns. Introduces topics including the metallurgical challenge of Plutonium and the use of high performance super-computing to drive design. Addresses the utilization of Abaqus finite element analysis, programmable computer numerical controlled (CNC) machining, as well as glove box ergonomics and safety in order to design a process that will yield high quality Plutonium tensile specimens.

Knapp, Cameron M [Los Alamos National Laboratory

2012-08-01T23:59:59.000Z

320

Clean Energy Manufacturing Initiative Industrial Efficiency and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Efficiency and Energy Productivity Video Clean Energy Manufacturing Initiative Industrial Efficiency and Energy Productivity Video Addthis Description Industrial...

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Webinar: Additive Manufacturing for Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Video recording and text version of the webinar titled "Additive Manufacturing for Fuel Cells," originally presented on February 11, 2014.

322

Honda: North American Manufacturing Facilities | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities From October, 2008 Honda: North American Manufacturing Facilities More Documents & Publications Johnson Controls: EISA Presentation MEMA: Comments AZ Automotive...

323

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

application of customized sensor driven modeling, measurement simulation technologies, energy management dashboards and a variety of manufacturing metrics for individual...

324

Property:WindTurbineManufacturer | Open Energy Information  

Open Energy Info (EERE)

WindTurbineManufacturer WindTurbineManufacturer Jump to: navigation, search This is a property of type Page. Pages using the property "WindTurbineManufacturer" Showing 25 pages using this property. (previous 25) (next 25) 3 3-D Metals + Northern Power Systems + A AB Tehachapi Wind Farm + Vestas + AFCEE MMR Turbines + GE Energy + AG Land 1 + GE Energy + AG Land 2 + GE Energy + AG Land 3 + GE Energy + AG Land 4 + GE Energy + AG Land 5 + GE Energy + AG Land 6 + GE Energy + AVTEC + Northern Power Systems + Adair Wind Farm I + Vestas + Adair Wind Farm II + Siemens + Adams Wind Project + Alstom + Aeroman Repower Wind Farm + GE Energy + Affinity Wind Farm + Suzlon Energy Company + Agassiz Beach Wind Farm + Vestas + Agriwind Wind Farm + Suzlon Energy Company + Ainsworth Wind Energy Facility + Vestas +

325

Sustainable Manufacturing – Greening Processes, Systems and Products  

E-Print Network (OSTI)

University, Germany Edited by Prof. Dr. -lng. habil. Prof.E. h. Dr. -lng. E. h. Dr. h.c. Reimund Neugebauer Prof. T.

Dornfeld, David

2010-01-01T23:59:59.000Z

326

Thermal Protection Systems Materials and Manufacturing  

E-Print Network (OSTI)

, the Rocketdyne division of Rockwell International was awarded a contract to design, develop, and produce the m

327

Manufacturing Research & Development for Systems that will  

E-Print Network (OSTI)

to move the United States toward a future hydrogen economy. While many scientific, technical, and institutional challenges must be overcome to realize the vision of a hydrogen energy economy, moving from today potential roadblock to a future hydrogen economy. The Workshop The Federal Interagency Working Group

328

Low Temperature PEM Fuel Cell Manufacturing Needs  

E-Print Network (OSTI)

Low Temperature PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project #12; Cost drivers were identified for the following: · MEA · Plates · Balance of Plant (BOP) · Fuel Processing Manufacturing Fuel Cell Project ­ Phase 1 Note that this presentation

329

Additive manufacturing of metallic tracks on  

E-Print Network (OSTI)

Additive manufacturing of metallic tracks on green ceramic/dielectrics Problem this technology (note: may require additional tooling/ set up time) · Rapid Prototyping & small scale manufacture microelectronics such as manufacture of LTCC ceramic/ Dielectric antenna and rapid PCB prototyping or repair

Painter, Kevin

330

Pseudomonas fluorescens -A robust manufacturing platform  

E-Print Network (OSTI)

Pseudomonas fluorescens -A robust manufacturing platform Reprinted from July/August 2004 Speciality at efficient- ly transporting single chain antibodies and other mammalian-derived proteins. In addition production. Dowpharma, a contract manufacturing services unit of Dow Chemical, has developed a manufacturing

Lebendiker, Mario

331

e! Science News Semiconductor manufacturing technique holds  

E-Print Network (OSTI)

arsenide chips manufactured in multilayer stacks: light sensors, high-speed transistors and solar cellse! Science News Semiconductor manufacturing technique holds promise for solar energy Published semiconductor manufacturing method pioneered at the University of Illinois, the future of solar energy just got

Rogers, John A.

332

EFFECTIVE STRUCTURAL HEALTH MONITORING WITH ADDITIVE MANUFACTURING  

E-Print Network (OSTI)

will be presented for components that can be processed by additive manufacturing (AM) or 3D printing. The origin structures. KEYWORDS : structural health monitoring methodology, 3D printing, additive manufacturing, fatigue, intelligent structure INTRODUCTION Additive manufacturing (AM), also known as 3D Printing or Rapid

Boyer, Edmond

333

Impacts of the Manufacturing and Recycling Stages on Battery Life Cycles  

NLE Websites -- All DOE Office Websites (Extended Search)

IMPACTS OF THE MANUFACTURING AND RECYCLING STAGES ON BATTERY IMPACTS OF THE MANUFACTURING AND RECYCLING STAGES ON BATTERY LIFE CYCLES J. B. Dunn 1 , L. Gaines 1 , M. Barnes 2 , and J.L. Sullivan 1 1 Argonne National Laboratory, Energy Systems Division 9700 South Cass Avenue, Building 362 Argonne, IL 60439-4815, USA 2 Department of Mechanical Engineering The Pennsylvania State University 157E Hammond Building University Park, PA 16802 Keywords: battery, materials, manufacturing, life cycle, recycling Abstract

334

Sustainable Manufacturing via Multi-Scale, Physics-Based Process...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing via Multi-Scale, Physics-Based Process Modeling and Manufacturing-Informed Design, April 2013 Sustainable Manufacturing via Multi-Scale, Physics-Based Process...

335

Request for Information (RFI): Specific Clean Energy Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Focus Areas Suitable for a Manufacturing Innovation Institute Request for Information (RFI): Specific Clean Energy Manufacturing Focus Areas Suitable for a Manufacturing...

336

Request for Information (RFI): Clean Energy Manufacturing Topics...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Request for Information (RFI): Clean Energy Manufacturing Topics Suitable for a Manufacturing Innovation Institute Request for Information (RFI): Clean Energy Manufacturing Topics...

337

U.S. Advanced Manufacturing and Clean Energy Technology Challenges  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing and Clean Energy Technology Challenges May 6, 2014 AMO Peer Review Mark Johnson Director Advanced Manufacturing Office www.manufacturing.energy.gov This presentation...

338

Private-Public Partnerships for U.S. Advanced Manufacturing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polymer Composite Manufacturing Workshop Crystal City January 13, 2014 Private-Public Partnerships for U.S. Advanced Manufacturing Dr. Frank W. Gayle Advanced Manufacturing...

339

NREL Manufacturing R&D Workshop NREL H2/FC Manufacturing R&D Workshop  

E-Print Network (OSTI)

&D Workshop Fuel Cell Proton Exchange Membrane (PEM) and Solid Oxide Fuel Cell (SOFC) Manufacturing Lines and driving down the cost of fuel cell manufacturing through automation. What are the key technical Membrane Electrode Assembly Manufacturing Hypothetical Fuel Cell Manufacturing Platforms August 11, 2011

340

American Wind Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Wind Manufacturing American Wind Manufacturing American Wind Manufacturing Addthis 1 of 9 Nordex USA -- a global manufacturer of wind turbines -- delivered and installed turbine components for the Power County Wind Farm, shown here, in Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 14:38 2 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-07 16:16 3 of 9 Power County Wind Farm - Power County, Idaho. Image: Nordex USA, Inc. Date taken: 2012-03-05 17:14 4 of 9 Nordex USA manufacturing facility - Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 13:55 5 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas. Image: Nordex USA, Inc. Date taken: 2011-05-02 14:11 6 of 9 Nordex USA flagship manufacturing facility in Jonesboro, Arkansas.

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Recent progress in the photovoltaic manufacturing technology project (PVMaT)  

SciTech Connect

The Photovoltaic Manufacturing Technology (PVMaT) Project was initiated in 1990 to help the US photovoltaic (PV) industry extend its world leadership role in manufacturing and commercially developing PV modules and systems. It is being conducted in several phases, staggered to support industry progress. The four most recently awarded subcontracts (Phase 2B) are now completing their first year of research. They include two subcontracts on CdTe, one on Spheral Solar[trademark] Cells, and one on cast polysilicon. These subcontracts represent new technology additions to the PVMaT Project. Subcontracts initiated in earlier phases are nearing completion, and their progress is summarized. An additional phase of PVMaT, Phase 4A, is being initiated which will emphasize product-driven manufacturing research and development. The intention of Phase 4A is to emphasize improvement and cost reduction in the manufacture of full-system PV products. The work areas may include, but are not limited to, issues such as improvement of module manufacturing processes; system and system component packaging, integration, manufacturing, and assembly; product manufacturing flexibility; and balance-of-system development with the goal of product manufacturing improvements.

Witt, C.E.; Mitchell, R.L.; Thomas, H. (National Renewable Energy Lab., Golden, CO (United States)); Herwig, L.O. (USDOE, Washington, DC (United States)); Ruby, D.S. (Sandia National Labs., Albuquerque, NM (United States)); Sellers, R.

1994-12-09T23:59:59.000Z

342

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing  

E-Print Network (OSTI)

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel for integrated module including in-tank regulator · Developed high efficiency H2 fuel storage systems for DOE tank efficiency, the highest weight efficiency ever demonstrated, in partnership with Lawrence

343

Journal of Manufacturing Processes Vol. 5/No. 1  

E-Print Network (OSTI)

to Grinding of Shafts Rajkumar Palanna, Manufacturing and Quality Engineering Manager, Honeywell Aerospace of air bearings used in aircraft environ- mental control systems (ECS)--a core competency of Honeywell to aerospace companies such as Honeywell.Air bearings allow machines to reach speeds of more than 100,000 rpm

Bukkapatnam, Satish T.S.

344

Three/1998 19 Shape Deposition Manufacturing (SDM) is a solid  

E-Print Network (OSTI)

-numerically-controlled (CNC) milling and electrical discharge machining (EDM) machines. Shape Deposition Manufacturing (SDM-numerically-controlled (CNC) milling machine (i.e., a material removal process). Such an implementation is a cost-effective way to create high-quality SFF machines. 1. Introduction Most solid freeform fabrication (SFF) systems

Weiss, Lee E.

345

Cooling Semiconductor Manufacturing Facilities with Chilled Water Storage  

E-Print Network (OSTI)

This paper examines the 5.2 million gallon chilled water storage system installed at TI's Expressway manufacturing complex in Dallas, Texas. During the peak cooling season ending September 30, 1994, it provided 3,750 tons of additional peak cooling...

Fiorino, D. P.

346

Vibration Analysis of Wiresaw Manufacturing Processes and Wafer Surface Measurements  

E-Print Network (OSTI)

Vibration Analysis of Wiresaw Manufacturing Processes and Wafer Surface Measurements I. Kao (PI), S the yield per crystal and to reduce the cost. In this paper, the vibration model of wiresaw system of vibration indicate the interference of excitation and natural frequencies in the vibration patterns

Kao, Imin

347

Implementing SPC in a Simulation Model for Manufacturing Transitions  

E-Print Network (OSTI)

- ~(~-;::;: Implementing SPC in a Simulation Model for Manufacturing Transitions Harriet Black of resources utilization, and optimization of system re- sources. Although discrete-event simulation modeling the design and development of an integrated SPC and simulation model. Figure 1 shows a screen snapshot

Nembhard, Harriet Black

348

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Molding, Thermoforming & Compounding Molding, Thermoforming & Compounding PDF format (89 kb) The Manufacturing Science & Technology Center helps customers choose the best materials and techniques for their product by providing a variety of conformal coatings, thermoforming, and compounding materials using established or custom designed processes. The department provides consulting services for injection molding and rubber compounding projects. Capabilities: Thermoforming: Processing thermoplastics such as polycarbonate, polymethyl methacrylate, polypropylene polystyrene, and ABS; producing holding trays, protective caps, and custom covers Injection Molding Consultation: Designing your part to be injection molded, helping you choose the best material for your application, and supporting your interface with injection molding companies

349

New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Shows Solar Manufacturing Costs Not Driven Primarily by Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor September 5, 2013 - 12:00pm Addthis Production scale, not lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Although the prevailing belief is that low labor costs and direct government subsidies for PV manufacturing in China account for that country's dominance in PV manufacturing, the NREL/MIT study shows that a majority of the region's competitive advantage comes from production scale-enabled, in part, through preferred access to capital (indirect

350

New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Study Shows Solar Manufacturing Costs Not Driven Primarily by New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor New Study Shows Solar Manufacturing Costs Not Driven Primarily by Labor September 5, 2013 - 12:00pm Addthis Production scale, not lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Although the prevailing belief is that low labor costs and direct government subsidies for PV manufacturing in China account for that country's dominance in PV manufacturing, the NREL/MIT study shows that a majority of the region's competitive advantage comes from production scale-enabled, in part, through preferred access to capital (indirect

351

Analytic network process model for sustainable lean and green manufacturing performance indicator  

Science Journals Connector (OSTI)

Sustainable manufacturing is regarded as the most complex manufacturing paradigm to date as it holds the widest scope of requirements. In addition its three major pillars of economic environment and society though distinct have some overlapping among each of its elements. Even though the concept of sustainability is not new the development of the performance indicator still needs a lot of improvement due to its multifaceted nature which requires integrated approach to solve the problem. This paper proposed the best combination of criteria en route a robust sustainable manufacturing performance indicator formation via Analytic Network Process (ANP). The integrated lean green and sustainable ANP model can be used to comprehend the complex decision system of the sustainability assessment. The finding shows that green manufacturing is more sustainable than lean manufacturing. It also illustrates that procurement practice is the most important criteria in the sustainable manufacturing performance indicator.

2014-01-01T23:59:59.000Z

352

Green Energy Manufacturing Tax Credit (Manitoba, Canada) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Energy Manufacturing Tax Credit (Manitoba, Canada) Green Energy Manufacturing Tax Credit (Manitoba, Canada) Green Energy Manufacturing Tax Credit (Manitoba, Canada) < Back Eligibility Commercial Industrial Savings Category Buying & Making Electricity Solar Wind Program Info Funding Source Government of Manitoba State Manitoba Program Type Corporate Tax Incentive Provider Manitoba Finance This refundable income tax credit will be equal to 10% of the value of qualifying property produced in Manitoba and sold before 2019 for residential or commercial use in Manitoba. Qualifying property includes equipment for wind power, solar energy, geothermal energy, hydrogen fuel cells, geothermal ground source heating systems and solar thermal heating equipment. In the 2011 Budget, the total Green Energy Equipment Tax Credit on

353

Tax Abatement for Solar Manufacturers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Tax Abatement for Solar Manufacturers Tax Abatement for Solar Manufacturers < Back Eligibility Industrial Savings Category Solar Buying & Making Electricity Maximum Rebate None Program Info Start Date 7/1/2005 State District of Columbia Program Type Industry Recruitment/Support Rebate Amount 43% reduction of state's business and occupation (B&O) tax Provider Washington State Department of Revenue Senate Bill [http://www.leg.wa.gov/pub/billinfo/2005-06/Pdf/Bills/Session%20Law%20200... 5111], signed by Washington's governor in May 2005, created a reduced business and occupation (B&O) tax rate for Washington manufacturers of solar-electric (photovoltaic) modules or silicon components of those systems. In May 2009, Washington enacted

354

Facts controllers and HVDC enhance power transmission (A manufacturer`s perspective)  

SciTech Connect

Various types of FACTS as well as HVDC have been available for some time. New ones have been developed recently. Their respective benefits are well proven and have been made known. System studies have to be done to make full use of FACTS and HVDC problem solving capabilities. Siemens is offering digital models for correct representation of several FACTS devices and HVDC in widely used time-based simulation study programs. The manufacturers are doing their homework. It is up to the utility industry to make use of it now!

Juette, G. [Siemens Energy & Automation, Atlanta, GA (United States); Renz, K. [Siemens AG, Erlangen (Germany)

1995-12-31T23:59:59.000Z

355

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Processing and Manufacturing Breakout Session Report EV Everywhere Batteries Workshop - Materials Processing and Manufacturing Breakout Session Report Breakout session...

356

U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis  

Energy.gov (U.S. Department of Energy (DOE))

The Global Wind Network (GLWN) assessed the key factors that determine wind energy component manufacturing costs and pricing on a global basis in order to provide a better understanding of the factors that will help enhance the competitiveness of U.S. manufacturers, and reduce installed system costs.

357

1 Copyright 2014 by ASME Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference  

E-Print Network (OSTI)

to "a crowdsourcing-based design model that leverages cloud computing, service-oriented architecture and manufacturing (CBDM) refers to "a service-oriented product development model in which service consumers are able to configure products or services as well as reconfigure manufacturing systems through Infrastructure-as-a-Service

358

3-D Nano-Fiber Manufacturing by Controlled Pulling of Liquid Polymers using Nano-Probes  

E-Print Network (OSTI)

3-D Nano-Fiber Manufacturing by Controlled Pulling of Liquid Polymers using Nano-Probes Amrinder S) nano-scale manufacturing tools in this paper. Commercially available Atomic Force Microscope (AFM) systems are mainly limited to 1-D or 2-D manipulation tasks, and advanced 3-D nano

Sitti, Metin

359

Energy Information Administration (EIA)- Manufacturing Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

Chemical Industry Analysis Brief Change Topic: Steel | Chemical Chemical Industry Analysis Brief Change Topic: Steel | Chemical JUMP TO: Introduction | Energy Consumption | Energy Expenditures | Producer Prices and Production | Energy Intensity | Energy Management Activities | Fuel Switching Capacity Introduction The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals into thousands of various products. Chemicals are key materials for producing an extensive assortment of consumer goods. They are also crucial materials in creating many resources that are essential inputs to the numerous industries and sectors of the U.S. economy.1 The manufacturing sector is classified by the North American Industry Classification System (NAICS) of which the chemicals sub-sector is NAICS

360

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Software Tools DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will address this need and enable an engineer assigned to a plant utility to better understand (a) the cost of all energy sources supplied to the plant, (b) how much energy each individual utility service or energy-consuming equipment consumes, and, (c) where opportunities to realize savings exist.

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Climate VISION: Private Sector Initiatives: Chemical Manufacturing:  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Software Tools Chemical Industry of the Future Tools & Publications The Industrial Technologies Program offers a wide array of publications, videos, software, and other information products for improving energy efficiency in the chemical industry. DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air, motor, and process heating systems. DOE Plant Energy Profiler Industry experience has shown that many plant utility personnel do not have an adequate understanding of their energy cost structure and where the major focus should be for any energy savings program. This tool will address this need and enable an engineer assigned to a plant utility to

362

Climate VISION: Private Sector Initiatives: Automobile Manufacturers:  

Office of Scientific and Technical Information (OSTI)

Plant Assessments Plant Assessments Plant-Wide Assessments Plant-wide assessments are one way to work with the DOE Industrial Technologies Program—most companies realize a minimum of $1 million in annual energy savings after just one assessment. Plants are selected through a competitive solicitation process, and agree to a minimum 50% cost-share for implementing the assessment. An industry-defined team conducts an on-site analysis of total energy use and identifies opportunities to save energy in your overall operations and in motor, steam, compressed air, and process heating systems. The recommendations could include implementing emerging technologies that would be particularly effective in your operation. These emerging technologies, although on the forefront of industrial manufacturing, are successful and commercially

363

Nanoscience to nanotechnology to manufacturing transition  

Science Journals Connector (OSTI)

The primary focus of this review is on the transition of nanoscience to nanotechnology to manufacturing, specifically related to nanostructuring of materials for next-generation systems having superior performance. We start with the discussion of intrinsic advantages of nanoscale materials and systematic approach for transition into systems. As the feature (grain) size of solid-state materials decreases, the defect content reduces and below a critical size material can be defect-free. Since these critical sizes for most materials lie in 5-100 nm, there is a fundamental advantage and an unprecedented opportunity to realise the property of a perfect material. Along with this opportunity, there is a major challenge with respect to the large fraction of atoms at the interfaces, which must be engineered to realise the advantages of nanotechnology-based systems. We specifically address nanosystems based upon nanodots and nanolayered materials synthesised by thin film deposition techniques, where recurring themes include nanostructuring of materials to improve performance; thin film epitaxy across the misfit scale for orientation controls; control of defects, interfaces and strains; and integration of nanoscale devices with (100) silicon based microelectronics and nanoelectronics. The systems of interest are based upon strong novel structural materials, nanomagnetics for information storage, nanostructured or Nano Pocket LEDs, variety of smart structures based upon vanadium oxide and novel perovskites integrated with Si(100), and nanotechnology based solutions to enhance fuel efficiency and reduce environmental pollution.

Jagdish Narayan

2012-01-01T23:59:59.000Z

364

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Sol-Gel Glasses Sol-Gel Glasses PDF format (74 kb) Sol Gel Sol Gel Coating with Sol-Gel Glasses Coating with Sol-Gel Glasses The Manufacturing Science & Technology Center conducts process development and scale-up of ceramic and glass materials prepared by the sol-gel process. Sol-gel processing uses solutions prepared at low temperature rather than high temperature powder processing to make materials with controlled properties. A precursor sol-gel solution (sol) is either poured into a mold and allowed to gel or is diluted and applied to a substrate by spinning, dipping, spraying, electrophoresis, inkjet printing or roll coating. Controlled drying of the wet gel results in either a ceramic or glass bulk part or a thin film on a glass, plastic, ceramic or metal substrate.

365

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Electro Microfluidic Dual In-line Package (EMDIP) Electro Microfluidic Dual In-line Package (EMDIP) PDF format (115 kb) EMDIP diagram EMDIP Diagram Microfluidics is experiencing explosive growth in new product developments. Already there are many commercial applications for electro microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of surface micromachined microfluidic devices is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. In order to realize applications for these devices, an efficient method for packaging microfluidic devices is needed. Responding to this need, researchers at Sandia developed the Electro Microfluidic Dual In-Line Package (EMDIP) and the Fluidic Printed Wiring Board (FPWB).

366

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A24. A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994: Part 1 (Estimates in Trillion Btu) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 285 SIC Management Any Type of Sponsored Self-Sponsored Sponsored Sponsored Code Industry Group and Industry Program Sponsorship Involvement Involvement Involvement Involvement a No Energy Electric Utility Government Third Party Type of Sponsorship of Management Programs (1992 through 1994) RSE Row Factors Federal, State, or Local RSE Column Factors: 0.7 1.1 1.0 0.7 1.9 0.9 20-39 ALL INDUSTRY GROUPS Participation in One or More of the Following Types of Programs . .

367

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

A9. A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at end of table. Energy Information Administration/Manufacturing Consumption of Energy 1994 166 End-Use Categories (trillion Btu) kWh) (1000 bbl) (1000 bbl) cu ft) (1000 bbl) tons) (trillion Btu) Total (million Fuel Oil Diesel Fuel (billion LPG (1000 short Other Net Distillate Natural and Electricity Residual Fuel Oil and Gas Breeze) a b c Coal (excluding Coal Coke d RSE Row Factors Total United States RSE Column Factors: NF 0.5 1.3 1.4 0.8 1.2 1.2 NF TOTAL INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16,515 778,335 70,111 26,107 5,962 25,949 54,143 5,828 2.7 Indirect Uses-Boiler Fuel . . . . . . . . . . . . . . . . . . . . . . . --

368

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Welding, Fabrication, & Metal Forming Welding, Fabrication, & Metal Forming PDF format (159 kb) The department consists of three trades: welding; fabrication and assembly; and precision metal forming. These interrelated groups use similar equipment and rely on each other's skills. One stop will get you the service of three reliable trades. The team manufactures and assembles prototype hardware and has the in-house capability of producing hardware with sizes ranging from thumbnail to rail-car. Expertise includes aircraft quality sheet metal construction, certified welding, and assembly. The staff has experience managing a variety of activities: design modification assistance; in-house fabrication; and project management and can work with your engineers to transform sketches and ideas into working prototypes.

369

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 Energy Information Administration/Manufacturing Consumption of Energy 1994 Glossary Anthracite: A hard, black, lustrous coal containing a high percentage of fixed carbon and a low percentage of volatile matter. Often referred to as hard coal. Barrel: A volumetric unit of measure equivalent to 42 U.S. gallons. Biomass: Organic nonfossil material of biological origin constituting a renewable energy source. Bituminous Coal: A dense, black coal, often with well-defined bands of bright and dull material, with a moisture content usually less than 20 percent. Often referred to as soft coal. It is the most common coal. Blast Furnace: A shaft furnace in which solid fuel (coke) is burned with an air blast to smelt ore in a continuous operation. Blast Furnace Gas: The waste combustible gas generated in a blast furnace when iron ore is being reduced with coke to

370

Manufacturing Science and Technology: Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LTCC multi-chip module LTCC multi-chip module A high density LTCC multi-chip module Electronic Packaging PDF format (150 kb) The Electronic Packaging technologies in the Thin Film, Vacuum, & Packaging Department are a resource for all aspects of microelectronic packaging. From design and layout to fabrication of prototype samples, the staff offers partners the opportunity for concurrent engineering and development of a variety of electronic packaging concepts. This includes assistance in selecting the most appropriate technology for manufacturing, analysis of performance characteristics and development of new and unique processes. Capabilities: Network Fabrication Low Temperature Co-Fired Ceramic (LTCC) Thick Film Thin Film Packaging and Assembly Chip Level Packaging MEMs Packaging

371

Wind Turbine Manufacturing Process Monitoring  

SciTech Connect

To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

2012-04-26T23:59:59.000Z

372

Manufacturing Consumption of Energy 1994  

U.S. Energy Information Administration (EIA) Indexed Site

0. 0. Number of Establishments that Actually Switched Fuels from Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information Administration/Manufacturing Consumption of Energy 1994 SIC Residual Fuel Oil Total Code Industry Group and Industry (billion cu ft) Factors (counts) (counts) (percents) (counts) (percents) a Natural Gas Switchable to Establishments RSE Row Able to Switch Actually Switched RSE Column Factors: 1.3 0.1 1.4 1.7 1.6 1.8 20 Food and Kindred Products . . . . . . . . . . . . . . . . . . . . . . . . . 81 14,698 702 4.8 262 1.8 5.6 2011 Meat Packing Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 759 23 3.0 10 1.3 9.0 2033 Canned Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . 9 531 112 21.2 33 6.2 11.6 2037 Frozen Fruits and Vegetables . . . . . . . . . . . . . . . . . . . . . . 5 232 Q 5.3

373

Clean Energy Manufacturing Resources - Technology Feasibility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Feasibility Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Clean Energy Manufacturing Resources - Technology Feasibility Find resources to help you evaluate the feasibility of your idea for a new clean energy technology or product. For determining feasibility, areas to consider include U.S. Department of Energy (DOE) priorities, licensing, R&D funding, and strategic project partnerships. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Learn About U.S. Department of Energy Priorities Advanced Manufacturing Office Plans - features information on analysis, plan implementations, and commercial outcomes. Bioenergy Technologies Office Plans - includes technology roadmaps, multiyear program plans, analysis, and more.

374

Advanced Manufacturing Jobs and Innovation Accelerator Challenge |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assistance » Advanced Manufacturing Jobs and Innovation Technical Assistance » Advanced Manufacturing Jobs and Innovation Accelerator Challenge Advanced Manufacturing Jobs and Innovation Accelerator Challenge October 10, 2013 - 12:01pm Addthis The Advanced Manufacturing Jobs and Innovation Accelerator Challenge (Accelerator) is a multi-agency sponsored competition established to enhance existing regional networks of firms and institutions that accelerate technology-related innovation, business formation, and job creation. Funding provided to these regional networks (also called clusters) help academia, utilities, local governments, and private industry and investors expand partnerships, share strategic information more efficiently, and reduce costs by leveraging existing assets and resources (like physical facilities and equipment).

375

Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify...

376

Moving towards green and sustainable manufacturing  

Science Journals Connector (OSTI)

The pressing needs of energy, water and other resource conservation worldwide is ... a major engineering challenge. In manufacturing, developing green technologies (from process and tooling to the ... manufacturi...

David Alan Dornfeld

2014-01-01T23:59:59.000Z

377

Oak Ridge Centers for Manufacturing Technology - Partnership...  

NLE Websites -- All DOE Office Websites (Extended Search)

in result from Jack Cook making contacts with some of the people who experienced the Oak Ridge Centers for Manufacturing Technology firsthand. Here is his introduction...

378

Oak Ridge National Laboratory Manufacturing Demonstration Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge National Laboratory Manufacturing Demonstration Facility Technology Collaborations | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single...

379

Oak Ridge Centers for Manufacturing Technology ? testimonials  

NLE Websites -- All DOE Office Websites (Extended Search)

testimonials The first testimonial for the successful Oak Ridge Centers for Manufacturing Technology came from Mitchell Burnett. Mitch was among the first hourly paid employees, an...

380

Fiber Reinforced Polymer Composite Manufacturing Workshop  

Office of Energy Efficiency and Renewable Energy (EERE)

A workshop on Fiber Reinforced Polymer (FRP) Composite Manufacturing (held January 13, 2014, in Arlington, VA) brought together stakeholders from industry and academia to discuss manufacturing of composites. The workshop explored emerging FRP composite market applications in clean energy and barriers to the development and widespread commercial use of these lightweight, high-strength and high-stiffness materials. Improving the manufacturing speed and quality-and reducing their manufacturing costs-could accelerate their use in automotive, wind, compressed gas storage and other clean energy and industrial applications.

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Manufacturing Success Stories | Department of Energy  

Office of Environmental Management (EM)

Colorado State University Industrial Assessment Center Saves Manufacturers Money and Trains the Next Generation of Engineers Assessment center has helped Colorado companies save...

382

Federal Energy and Manufacturing Workforce Training Programs...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

manufacturing related workforce training programs. Funded by the National Science Foundation, the Department of Labor and the Department of Energy these programs provide...

383

Establishing Greener Products and Manufacturing Processes  

E-Print Network (OSTI)

Precision Manufacturing, LCA, Machining, SustainabilityNOMENCLATURE API = CMOS = GWP = LCA = LCI = Mfg = MRR = RoHSLife Cycle Assessment (LCA). The following sections will

Linke, Barbara; Dornfeld, David; Huang, Yu-Chu

2011-01-01T23:59:59.000Z

384

Industrial Scale Demonstration of Smart Manufacturing Achieving...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

TX National Center for Manufacturing Sciences Ann Arbor, MI Nimbis Services McLean, VA Praxair Tonawanda, NY Rockwell Automation Milwaukee, WI For additional information, please...

385

Agenda: Fiber Reinforced Polymer Composite Manufacturing Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blue Team B (Washington II & III) - Manufacturing Process Technology Facilitators - Kelly Visconti and Steve Sikirica; Note taker - Theresa Miller Red Team (Madison Room) -...

386

Advanced Manufacturing Office (Formerly Industrial Technologies Program)  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

387

PRESENTATION: BRIEFING ON CLEAN ENERGY MANUFACTURING  

Energy.gov (U.S. Department of Energy (DOE))

A briefing to the Secretary's Energy Advisory Board on the clean energy manufacturing delivered by David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy.

388

National Network for Manufacturing Innovation: A Preliminary...  

Energy Savers (EERE)

capabilities from all the partners to build the proving grounds where innovations flourish and to help advance American domestic manufacturing. nstcnnmiprelimdesignfinal.pdf...

389

Composite Tube Trailer Design/Manufacturing Needs  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

390

Manufacturing Barriers to High Temperature PEM Commercialization  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

391

Supplemental Comments of the Plumbing Manufacturers Instititute...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supplemental Comments of the Plumbing Manufacturers Instititute Regarding the Economic Impacts of the Proposed Definition of "Showerhead," Docket No. EERE-2010-BT-NOA-0016...

392

American Energy and Manufacturing Competitiveness Summit  

Energy.gov (U.S. Department of Energy (DOE))

The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

393

Laser and Intelligent Energy Field Manufacturing  

Science Journals Connector (OSTI)

Laser has demonstrated many important applications, including machining, welding, surface treating, additive manufacturing etc. Multiple hybrid processes had been developed, including...

Zhang, Wenwu

394

Fiber Reinforced Polymer Composite Manufacturing Workshop: Summary...  

Energy Savers (EERE)

for carbon fiber, including bio-based materials or natural gas; lower energy conversion of white fiber to carbon fiber; and composite manufacturing. Dr. Johnson then...

395

Manufacturing Ecosystems and Keystone Technologies (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

396

Additive Manufacturing: Current Status and Future Prospects  

Science Journals Connector (OSTI)

The potential implications of additive manufacturing or 3D printing technology are being recognized across a number ... wider adoption of and greater business value from 3D printing.

Jyotirmoyee Bhattacharjya; Sonali Tripathi…

2014-01-01T23:59:59.000Z

397

Solar Manufacturing Incentive Grant (SMIG) Program  

Energy.gov (U.S. Department of Energy (DOE))

Created in 1995 and administered jointly by the Virginia Department of Mines, Minerals and Energy, and the Virginia Economic Development Partnership, the Solar Manufacturing Incentive Grant (SMIG)...

398

Green Manufacturing Initiative Annual Report 2010  

E-Print Network (OSTI)

Green Manufacturing Initiative Annual Report 2010 Dr. John Patten Dr. David Meade May 3, 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Herman Miller Energy Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

de Doncker, Elise

399

A National Strategic Plan For Advanced Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

across hundreds of sites and thousands of users through conventional social network media and (2) deploy digitally programmable manufacturing equipment to 1,000 high schools....

400

Low Energy Ion Implantationin Semiconductor Manufacturing | U...  

Office of Science (SC) Website

Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

2014 Manufacturing Energy and Carbon Footprints: Definitions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Assumptions A number of key terms are used to interpret the manufacturing energy and carbon footprints. The terms associated with the energy footprint analysis are...

402

Advanced Materials and Manufacturing | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

and characterization of ceramic materials for energy-related applications Process Development and Scale-up Program Argonne's Materials Synthesis and Manufacturing Research and...

403

Manufacturing Licenses Available | Tech Transfer | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Manufacturing SHARE Manufacturing 200401490 Production of Materials with Superior Properties Utilizing High Magnetic Field (Related ID # 200501531, 200701867, 200802085, 200902312, 201002455, 201102675) 200701900 Robust Digital Valve for Prosthetic Finger, Microsurgery, Robotics (Related ID # 200701983, 200802088) 200701972 Manufacturing Biodiesel from Triglycerides (Related ID # 200702012, 200802186) 200701983 Meso-scale Fluidic Digital Valve 200802083 A Hydraulic Flow Control Device by Means of a Digital Poppet Valve 200802088 Miniature shape memory alloy fluid control valve 200902224 Glass Drawing for Wire Arrays 200902231 Nano/Micro Vacuum Triodes Using Glass Fiber Drawing Methods 200902291 Method of Machining Carbon and Graphite foams 200902309 Multi-Winding Homopolar Electric Machine Offers

404

U.S. Department of Energy integrated manufacturing & processing predoctoral fellowships. Final Report  

SciTech Connect

The objective of this program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design. This is the final report to close out the contract.

Petrochenkov, Margaret

2003-03-31T23:59:59.000Z

405

Execution of rapid prototyping technology - an Indian manufacturing industry's perspective  

Science Journals Connector (OSTI)

Since independence, India has endeavoured to bring economic and social change through science and technology. While India's economic growth in the recent years has been impressive, many challenges remain to be met to create a strong and vibrant innovation eco-system. This requires a culture and value system which supports both basic and applied research and technology development. One of those technologies, rapid prototyping (RP) technology, is the automatic construction of physical objects using additive manufacturing technology. It can be defined as an automated and patternless process which allows solid physical parts to be made directly from computer data in a short time. RP acts as the 'manufacturing middle' to link up the computer-aided design (CAD) process and manufacturing processes. It includes the making of prototypes for design verification and even the making of tooling for production. With the trend towards concurrent engineering and the widespread use of CAD, RP has quickly become a booming business in the past few years. This paper aims to provide a comprehensive overview of the execution of RP technology in India and the critical decision factors in executing RP for the Indian manufacturing industry.

Rajesh Kumar; Rupinder Singh; I.P.S. Ahuja

2013-01-01T23:59:59.000Z

406

Development of Advanced Manufacturing Technologies for Renewable Energy Applications, excerpt from 2007 DOE Hydrogen Program Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

65 65 FY 2007 Annual Progress Report DOE Hydrogen Program Objectives This project will address selected key manufacturability issues needing solution in two hydrogen technology areas: storage and the production of components. NCMS will evaluate, identify, and develop manufacturing technologies vital to affordable hydrogen-powered systems. NCMS will leverage manufacturing technologies from other industrial sectors and work with its extensive industrial membership to do feasibility projects on those technologies identified as key to reducing production cost by rendering a system component or subcomponent of the targeted hydrogen-powered systems producible in volume. Technical Barriers This project addresses the following technical barriers from the Manufacturing R&D section of the

407

Manufacturer-To-Retailer versus Manufacturer-To-Consumer Rebates in a Supply Chain  

Science Journals Connector (OSTI)

Starting with a newsvendor model (single-product, single-period, stochastic demand), we build a single-retailer, single-manufacturer supply chain with endogenous manufacturer rebates and retail pricing. The deman...

Goker Aydin; Evan L. Porteus

2009-01-01T23:59:59.000Z

408

Modeling of additive manufacturing process relevant feature in layer based manufacturing process planning  

Science Journals Connector (OSTI)

Compared with general machining processes, additive manufacturing (AM) process has stabler planning route ... approach is applied to the process planning of additive manufacturing in this paper. The concept of “....

Xi-juan Liu ???

2012-04-01T23:59:59.000Z

409

A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels A Vehicle Manufacturer’s Perspective on Higher-Octane Fuels Tom Leone, Technical Expert, Powertrain Evaluation and Analysis, Ford Motor Company

410

Energy Management System Implementation ? First Webinar- Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

W1-1 | Advanced Manufacturing Office eere.energy.gov ADVANCED MANUFACTURING OFFICE Energy Management System Implementation - First Webinar- Overview Deann Desai and Ed Hardison 4...

411

Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain  

E-Print Network (OSTI)

Manufacturer-to-Retailer versus Manufacturer-to-Consumer Rebates in a Supply Chain Goker Aydin rebates and retail pricing. The demand uncertainty is multiplicative, and the expected demand depends on the effective (retail) price of the product. A retailer rebate goes from the manufacturer to the retailer

Aydin, Goker

412

Watfactory Virtual Manufacturing Process Varying Inputs  

E-Print Network (OSTI)

with the virtual process: · Allows quick exploration (i.e. during a short course) of process improvement ideasWatfactory Virtual Manufacturing Process Machine 1 Machine 2 Machine 3 Stream 1 Machine B Stream 2 Inputs Can be Set by Stream z19, ..., z24 The Watfactory virtual process simulates a manufacturing

Zhu, Mu

413

A Global Assessment of Manufacturing: Economic  

E-Print Network (OSTI)

A Global Assessment of Manufacturing: Economic Development, Energy Use, Carbon Emissions Keywords production, materials, closed loop, China, emerging economies Abstract We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon

Gutowski, Timothy

414

Mechanical and Manufacturing Engineering Petroleum Engineering Minor  

E-Print Network (OSTI)

Mechanical and Manufacturing Engineering Petroleum Engineering Minor The Department of Mechanical and Manufacturing Engineering offers a minor in petroleum engineering within the mechanical engineering major program. This minor builds on the fundamentals provided by a basis in mechanical engineering and adds

Calgary, University of

415

Evaluating Energy Efficiency Improvements in Manufacturing Processes  

E-Print Network (OSTI)

and increasing awareness of "green" customers have brought energy efficient manufacturing on top of the agendaEvaluating Energy Efficiency Improvements in Manufacturing Processes Katharina Bunse1 , Julia Sachs kbunse@ethz.ch, sachsj@student.ethz.ch, mvodicka@ethz.ch Abstract. Global warming, rising energy prices

Boyer, Edmond

416

Simulation Model Driven Engineering for Manufacturing Cell  

E-Print Network (OSTI)

Simulation Model Driven Engineering for Manufacturing Cell Hironori Hibino1 , Toshihiro Inukai2 Abstract. In our research, the simulation model driven engineering for manufacturing cell (SMDE on the simulation model and to extend the range of control applications and simulation applications using the PC

Paris-Sud XI, Université de

417

Low Temperature PEM Fuel Cell Manufacturing Needs  

NLE Websites -- All DOE Office Websites (Extended Search)

PEM Fuel Cell PEM Fuel Cell Manufacturing Needs Presented by Duarte Sousa, PE Manufacturing Fuel Cell Manhattan Project  Cost drivers were identified for the following: * MEA * Plates * Balance of Plant (BOP) * Fuel Processing Manufacturing Fuel Cell Project - Phase 1 Note that this presentation will be MEA centric as this is the working group I represent...  MEA Cost Drivers Identified: Identifying MEA Cost Drivers * The MEA was readily identified as the major cost driver in a 10 kW stationary stack. * The precious metal catalyst electrode is the major cost driver for the MEA. Thus, focus cost reduction efforts on MEA manufacturing methods. Identify gaps in MEA manufacturing technology: How much better can we do? Note: Cost reductions realized from both material price reduction

418

Manufacturing News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing News and Blog Manufacturing News and Blog Manufacturing News and Blog Blog Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 3:53 PM From unleashing more powerful and energy-efficient laptops, cell phones and motors, to shrinking utility-scale inverters from 8,000 pound substations to the size of a suitcase, wide bandgap semiconductors could be one of the keys to our clean energy future. Read The Full Story Manufacturing Spotlight: Boosting American Competitiveness January 6, 2014 1:06 PM Find out how the Energy Department is helping bring new clean energy technologies to the marketplace and make manufacturing processes more energy efficient. Read The Full Story Secretary Moniz Joins President Obama in Visit to Cleveland High-Strength Steel Factory

419

Clean Energy Manufacturing Resources - Technology Prototyping | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide Home » Clean Energy Manufacturing Resources - Technology Guide Home » Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Clean Energy Manufacturing Resources - Technology Prototyping Find resources to help you design and refine a prototype of a new clean energy technology or product. For prototyping, areas to consider include materials characterization; models and tools; intellectual property protection; small-scale production; R&D funding; and regional, state, and local resources. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Characterize Materials Shared Research Equipment User Facility - a facility at Oak Ridge National Laboratory that provides access to advanced instruments and scientists for the scale characterization of materials.

420

FACTSHEET: Next Generation Power Electronics Manufacturing Innovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACTSHEET: Next Generation Power Electronics Manufacturing FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute FACTSHEET: Next Generation Power Electronics Manufacturing Innovation Institute January 15, 2014 - 9:20am Addthis The Obama Administration today announces the selection of North Carolina State University to lead a public-private manufacturing innovation institute for next generation power electronics. Supported by a $70 million Energy Department investment over five years as well as a matching $70 million in non-federal cost-share, the institute will bring together over 25 companies, universities and state and federal organizations to invent and manufacture wide bandgap (WBG) semiconductor-based power electronics that are cost-competitive and 10 times more powerful than current

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Logistics implications of electric car manufacturing  

Science Journals Connector (OSTI)

The increasingly important role of electric cars manufacturing needs to develop new logistics concepts in automotive industry. This article analyses critical issues in logistics operations of electric cars based on the in-house perspective of the car manufacturer. The purpose of this paper is two-fold. Firstly, to verify existing research about the impact of electric car manufacturing on logistics operations. Secondly, to investigate concrete logistics implications based on different electric car operations models. Therefore, we use manufacturing phenotypes, which can be applied to separate and classify configuration and coordination principles and helps to reach a better understanding of relationships with their logistics implications. The presented model is based on real case study data of global auto industry and supports the academic study of cross-site comparisons. A holistic and consistent understanding of different operations types in electric car manufacturing will be necessary, which will help in evaluating the actual and future supply chain forms in the car industry.

Florian Klug

2014-01-01T23:59:59.000Z

422

Manufacturing Innovation Multi-Topic Workshop  

Energy.gov (U.S. Department of Energy (DOE))

DOE’s Advanced Manufacturing Office (AMO) and the Office of Secretary of Defense Manufacturing Technology Program (OSD ManTech) held a joint workshop October 8 and 9, 2014 in Fort Worth, TX. This workshop identified mid-Technology Readiness Level (TRL) research and development (R&D) needs, market and supply chain challenges, and shared facility needs for advanced manufacturing. The workshop complemented a recently released AMO Request for Information (RFI) and a recently amended OSD ManTech RFI. AMO and OSD ManTech sought to know more about the challenges associated with advanced manufacturing technology that potentially could be overcome by pre-competitive collaboration as part of a Manufacturing Innovation Institute.

423

A measurement infrastructure for sustainable manufacturing  

Science Journals Connector (OSTI)

Global resource degradation, climate change, and environmental pollution are worsening due to increasing globalised industrialisation. Manufacturing industries have thus been put under pressure to cope with these problems while maintaining competitiveness. Sustainable manufacturing has been proposed to meet these challenges. The measurement of sustainability in manufacturing enables the quantitative measure of sustainability performance in specific manufacturing processes that will support decision-making for more sustainable processes and products. This paper describes a proposed sustainable manufacturing measurement infrastructure. The centre piece of this infrastructure is a sustainability performance management component that will effectively manage a sustainable indicator repository, measurement process guidelines, and sustainability performance analysis, evaluation, and reporting. The sustainability measurement infrastructure provides a foundation for decision-making tools development and enables users to create a tight integration into business strategy development processes. Examples in this paper are on carbon emissions and energy consumption.

Shaw C. Feng; Che B. Joung

2011-01-01T23:59:59.000Z

424

EI Summary of All Manufacturing SIC  

U.S. Energy Information Administration (EIA) Indexed Site

All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) All (20-39) Food (20) Textiles (22) Apparel (23) Lumber (24) Furniture (25) Paper (26) Printing (27) Chemicals (28) Refineries (29) Rubber (30) Stone, Clay & Glass(32) Primary Metals (33) Fabricated Metals (34) Machinery (35) Electronic Equipment (36) Instruments (38) Miscellaneous Manufacturing (39) The manufacturing sector includes establishments engaged in the mechanical or chemical transformation of materials or substances into new products. These operations are generally conducted in facilities described as plants, factories, or mills, while characteristically using power-driven machines and material-handling equipment. Manufacturing also includes such activities as the assembly of components of manufactured products and the blending of materials, such as lubricating oil, plastics, resins, or liquors.

425

Energy-Related Carbon Emissions in Manufacturing  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Energy-Related Carbon Emissions Energy Energy-Related Carbon Emissions Detailed Energy-Related Carbon Emissions All Industry Groups 1994 emissions Selected Industries Petroleum refining Chemicals Iron & Steel Paper Food Stone, clay and glass Methodological Details Estimation methods Glossary Return to: Energy and GHG Analysis Efficiency Page Energy Use in Manufacturing Energy-Related Carbon Emissions in Manufacturing Manufacturing, which accounts for about 80 percent of industrial energy consumption, also accounts for about 80 percent of industrial energy-related carbon emissions. (Agriculture, mining, forestry, and fisheries account for the remaining 20 percent.) In 1994, three industries, petroleum, chemicals, and primary metals, emitted almost 60 percent of the energy-related carbon in manufacturing. The next three largest emitters (paper, food, and the stone, glass, and clay products industry) produced an additional 22 percent of the energy-related manufacturing emissions (Figure 1).

426

The Case for Casein Fiber: Local Design Solutions for Sustainability in Manufacturing  

E-Print Network (OSTI)

and apparel manufacturing, this paper examines the problem of environmental harm caused by the creation, use, and disposal of garments inherent in the current global system. Localizing the production of textiles using casein fiber sourced from waste milk...

McKenna, Kimberly Fisher

2012-05-31T23:59:59.000Z

427

Manufacturing and testing VLPC hybrids  

SciTech Connect

To insure that the manufacture of VLPC devices is a reliable, cost-effective technology, hybrid assembly procedures and testing methods suitable for large scale production have been developed. This technology has been developed under a contract from Fermilab as part of the D-Zero upgrade program. Each assembled hybrid consists of a VLPC chip mounted on an AlN substrate. The VLPC chip is provided with bonding pads (one connected to each pixel) which are wire bonded to gold traces on the substrate. The VLPC/AlN hybrids are mated in a vacuum sealer using solder preforms and a specially designed carbon boat. After mating, the VLPC pads are bonded to the substrate with an automatic wire bonder. Using this equipment we have achieved a thickness tolerance of {+-}0.0007 inches and a production rate of 100 parts per hour. After assembly the VLPCs are tested for optical response at an operating temperature of 7K. The parts are tested in a custom designed continuous-flow dewar with a capacity 15 hybrids, and one Lake Shore DT470-SD-11 calibrated temperature sensor mounted to an AlN substrate. Our facility includes five of these dewars with an ultimate test capacity of 75 parts per day. During the course of the Dzero program we have assembled more than 4,000 VLPC hybrids and have tested more than 2,500 with a high yield.

Adkins, L. R.; Ingram, C. M.; Anderson, E. J. [Guidance, Navigation and Sensors, Boeing (United States)

1998-11-09T23:59:59.000Z

428

A review of the Technologies Enabling Agile Manufacturing program  

SciTech Connect

Addressing a technical plan developed in consideration with major US manufacturers, software and hardware providers, and government representatives, the Technologies Enabling Agile Manufacturing (TEAM) program is leveraging the expertise and resources of industry, universities, and federal agencies to develop, integrate, and deploy leap-ahead manufacturing technologies. One of the TEAM program`s goals is to transition products from design to production faster, more efficiently, and at less cost. TEAM`s technology development strategy also provides all participants with early experience in establishing and working within an electronic enterprise that includes access to high-speed networks and high-performance computing and storage systems. The TEAM program uses the cross-cutting tools it collects, develops, and integrates to demonstrate and deploy agile manufacturing capabilities for three high-priority processes identified by industry: material removal, sheet metal forming, electro-mechanical assembly. This paper reviews the current status of the TEAM program with emphasis upon TEAM`s information infrastructure.

Gray, W.H.; Neal, R.E.; Cobb, C.K.

1996-10-01T23:59:59.000Z

429

Alternative Fuels Data Center: Clean Energy Manufacturing Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Energy Clean Energy Manufacturing Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Google Bookmark Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Delicious Rank Alternative Fuels Data Center: Clean Energy Manufacturing Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Energy Manufacturing Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Energy Manufacturing Grants The Clean Energy Manufacturing Incentive Grant Program provides financial

430

The Ceramic Manufacturability Center: A new partnership with US industry  

SciTech Connect

The Ceramic Manufacturability Center (CMC) is a new facility at the Oak Ridge National Laboratory (ORNL) established as a direct response to current US industry needs. It was created as part of a highly integrated program jointly funded by the US Department of Energy Defense Programs, Energy Efficiency and Renewable Energy, and Energy Research divisions. The CMC is staffed by personnel from ORNL and the Y-12 Plant, both managed by Martin Marietta Energy Systems, Inc. (Energy Systems). Its mission is to improve the technology needed to manufacture high-precision ceramic components inexpensively and reliably. This mission can be accomplished by strengthening the US machine tool industry and by joining with ceramic material suppliers and end users to provide a path to commercialization of these ceramic components.

Tennery, V.J. [Oak Ridge National Lab., TN (United States); Morris, T.O. [Oak Ridge Y-12 Plant, TN (United States)

1993-12-01T23:59:59.000Z

431

Managing a manufacturing company in a wired world  

Science Journals Connector (OSTI)

Under new conditions of unlimited access to information technology, the management of a manufacturing company will be changed to take advantage of new capabilities based on internet, intranet and computing and simulation technologies. A conceptual model of management system, applicable in small and medium size manufacturing companies (SMEs), has been developed. It integrates physical, information and knowledge value chains. Based on this concept, a managerial ''dashboard'' is proposed as a tool allowing a manager to access information from sources inside and outside the company, to check financial/economic conditions and to simulate alternative courses of actions. The tool operates as a hypertext system and includes modules representing the internal operations of company and its interfaces with suppliers and knowledge providers. It also includes a microworlds simulation module and a module of return-on-investment analysis.

A.B. Jambekar; K.I. Pelc

2002-01-01T23:59:59.000Z

432

U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis  

SciTech Connect

The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a customer order at the manufacturing plant; to the orders being forwarded by the manufacturing plant to the material suppliers; to the material being received at the manufacturing plant and processed through the system; to the final product being shipped to the Customer. 3. Competitiveness Scorecard: GLWN developed a Wind Industry Supply Chain Scorecard that reflects U.S. component manufacturers’ readiness to supply the next generation wind turbines, 3MW and 5MW, for land-based and offshore applications. 4. Wind Supply Chain Database & Map: Expand the current GLWN GIS Wind Supply Chain Map to include offshore elements. This is an on-line, free access, wind supply chain map that provides a platform for identifying active and emerging suppliers for the land-based and offshore wind industry, including turbine component manufacturers and wind farm construction service suppliers.

Fullenkamp, Patrick H; Holody, Diane S

2014-06-15T23:59:59.000Z

433

Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future  

E-Print Network (OSTI)

Growth. Every $1.00 in manufactured goods generates an additional $1.43 worth of additional economic© ATI 2006 Education for the ManufacturingEducation for the Manufacturing Industries of the FutureIndustries of the Future presented to thepresented to the 2006 MIT Manufacturing Summit:2006 MIT Manufacturing Summit

Brock, David

434

Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Workshop: A Summary of Research Directions  

E-Print Network (OSTI)

Proceedings of the 1998 NSF Design and Manufacturing Grantees Conferences Manufacturing Logistics Louis A. Martin-Vega Lehigh University Abstract: A workshop sponsored by NSF on Manufacturing Logistics for Manufacturing Logistics was defined. In this paper, we summarize future research directions in manufacturing

Wu, David

435

A process planning strategy for multi-axis hybrid manufacturing process  

Science Journals Connector (OSTI)

This paper outlines a process planning strategy for a multi-axis hybrid manufacturing process that includes a metal deposition system and a multi-axis CNC machining system to rapidly manufacture precision metal parts. Different from the current layered manufacturing processes of which build direction is fixed throughout the process, the orientation of the part can affect the non-support buildability in the multi-axis hybrid manufacturing process. However, each orientation that satisfies the buildability and other constraints may not be unique. In this case, the final optimal orientation is determined based on build time. The build time computation algorithm for multi-axis hybrid system is presented in this paper. To speed up the exhaustive search for the optimal orientation, a multi-stage algorithm is developed to reduce the search space. A case study is used as an example to show the process planning strategy.

Jun Zhang; Jianzhong Ruan; Frank Liou

2013-01-01T23:59:59.000Z

436

Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energetx Composites: Retooling Manufacturing, Creating Michigan Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs Energetx Composites: Retooling Manufacturing, Creating Michigan Jobs July 23, 2012 - 4:58pm Addthis Using its fiberglass technology expertise and a grant from the Energy Department's State Energy Program (SEP), Energetx Composites was able to shift its operations to producing wind turbine blades. | Photo courtesy of Energetx Composites. Using its fiberglass technology expertise and a grant from the Energy Department's State Energy Program (SEP), Energetx Composites was able to shift its operations to producing wind turbine blades. | Photo courtesy of Energetx Composites. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs What does this mean for me?

437

Clean Energy Manufacturing Resources - Technology Maturation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Maturation Clean Energy Manufacturing Resources - Technology Maturation Clean Energy Manufacturing Resources - Technology Maturation Find resources to help you commercialize and market your clean energy technology or product. For technology maturation, areas to consider include regulations and standards; exporting; product testing or demonstration; energy-efficient product qualifications; and energy efficiency and performance improvements for plants. For more resources, see the Clean Energy Manufacturing Federal Resource Guide. Comply With Regulations and Standards DOE Building Technologies Office: Appliance and Equipment Standards - minimum energy conservation standards for more than 50 categories of appliances and equipment. Implementation, Certification and Enforcement - explains DOE

438

Additive manufacturing of graded dielectrics  

Science Journals Connector (OSTI)

A method for the fabrication of graded dielectrics within a structural composite is presented. This system employs an ultrasonic powder deposition head to print high dielectric powders onto a woven fabric composite substrate. It is shown how this system can integrate 3D variations of dielectric properties at millimeter resolution within a mechanically rugged substrate. To conclude, the system's practical application is demonstrated with experimental results from a graded index lens.

David A Roper; Brandon L Good; Raymond McCauley; Shridhar Yarlagadda; Jared Smith; Austin Good; Peter Pa; Mark S Mirotznik

2014-01-01T23:59:59.000Z

439

Improving Green Manufacturing Education in China Universities and Colleges  

Science Journals Connector (OSTI)

Green manufacturing is the irresistible development trend of manufacturing industries throughout the world, and green manufacturing education plays an extremely significant part in the process of going green for ...

Li Chen; Qing-chun Xiang

2014-01-01T23:59:59.000Z

440

Research and Applications of Cloud Manufacturing in China  

Science Journals Connector (OSTI)

In order to improve the produce efficiency of enterprises, scholars put forward many manufacturing modes, such as agile manufacturing, gridding manufacturing, and industry 4.0, IPS2, and so on. These manufacturin...

Bo Hu Li; Lin Zhang; Xudong Chai; Fei Tao…

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Additive manufacturing and its societal impact: a literature review  

Science Journals Connector (OSTI)

Thirty years into its development, additive manufacturing has become a mainstream manufacturing process. Additive manufacturing build up parts by adding materials one ... parts on-demand. Its advantages over conv...

Samuel H. Huang; Peng Liu; Abhiram Mokasdar…

2013-07-01T23:59:59.000Z

442

Additive Manufacturing Technologies for Enhancing the Development Process of Biodevices  

Science Journals Connector (OSTI)

A new set of manufacturing techniques and technologies has appeared in the ... by the name of “rapid prototyping and manufacturing technologies.” They are usually based on “additive manufacturing processes” and a...

Andrés Díaz Lantada; Pilar Lafont Morgado…

2013-01-01T23:59:59.000Z

443

High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell (Phosphoric Acid) Manufacturing R&D High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop...

444

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION  

E-Print Network (OSTI)

MECH 502: Advanced/Additive Manufacturing Engineering COURSE DESCRIPTION In this course you product development and innovation. You will develop a rich knowledge of additive manufacturing processes enabling advanced/additive manufacturing and personal fabrication. You will have the opportunity

Schumacher, Russ

445

Wind Energy & Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Wind Energy & Manufacturing Wind Energy & Manufacturing Jump to: navigation, search Blades manufactured at Gamesa's factory in Ebensburg, Pennsylvania, await delivery for development of wind farms across the country in the United States. Photo from Gamesa, NREL 16001 Wind power creates new high-paying jobs in a wide variety of industries. This includes direct jobs installing, operating, and maintaining wind turbines, as well as jobs at manufacturing facilities that produce wind turbines, blades, electronic components, gearboxes, generators, towers, and other equipment. Indirect jobs in the industries that support these activities are also created.[1] In 2012, 72% of the wind turbine equipment (including towers, blades, and gears) installed in the United States during the year was made in

446

Summit Manufacturing: Noncompliance Determination (2010-SE-0303)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the the Matter of: Summit Manufacturing, Inc. Case Number 2010-SE-0303 NOTICE OF NONCOMPLIANCE DETERMINATION CERTIFICATION Manufacturers of certain covered products are required to certify compliance with the applicable energy conservation standards through submission of a compliance statement and a certification report. 10 CFR § 430.62. See 42 U.S.C. 6296 . The compliance statement is a legal statement by the manufacturer that the information provided in its certification reports is true , accurate and complete, that the basic models certified meet the applicable energy conservation standard, that the energy efficiency information report is the result of testing performed in conformance with the applicable test requirements in 10 CFR part 430, subpart B; and that the manufacturer is

447

Advanced Methods for Manufacturing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methods for Manufacturing Methods for Manufacturing Advanced Methods for Manufacturing The overall purpose of the AMM subprogram is to accelerate innovations that reduce the cost and schedule of constructing new nuclear plants and make fabrication of nuclear power plant components faster, cheaper, and more reliable. Based on past industry work and new stakeholder input, this effort will focus on opportunities that provide simplified, standardized, and labor-saving outcomes for manufacturing, fabrication, assembly, and construction processes (both technologies and methods) and show the most promise in shortening timelines and lowering overall deployment costs. The innovations selected for further development under the AMM program will collectively provide a major means of moving the U.S. nuclear industry from

448

Aurora Photovoltaics Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Aurora Photovoltaics Manufacturing Aurora Photovoltaics Manufacturing Jump to: navigation, search Name Aurora Photovoltaics Manufacturing Place Lawrenceville, New Jersey Zip 8648 Sector Solar Product A subsidiary of EPV solar, based in New Jersey, focused on manufacturing of PV cells. Coordinates 36.761678°, -77.845048° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.761678,"lon":-77.845048,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Leitner Shriram Manufacturing Ltd | Open Energy Information  

Open Energy Info (EERE)

Leitner Shriram Manufacturing Ltd Leitner Shriram Manufacturing Ltd Jump to: navigation, search Name Leitner Shriram Manufacturing Ltd Place Chennai, Tamil Nadu, India Zip 600095 Sector Wind energy Product Chennai-based JV between Leitwind and Shriram EPC with the purpose of manufacturing MW-class wind turbines. Coordinates 13.06397°, 80.24311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.06397,"lon":80.24311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Manufacturing Research & Technologies | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Research & Technologies Research & Technologies Manufacturing Data/Tools Research/Tech Services Apps Challenges Blogs Let's Talk Manufacturing You are here Data.gov » Communities » Manufacturing Research & Technologies It's clear that the government is working across a wide spectrum to help build the capabilities needed to support American manufacturers. Some agencies have very specific initiatives to help in this area. The National Science Foundation (NSF) Computer and Information Science and Engineering (CISE) Directorate supports research and education projects that (a) explore the foundations of computing and communication devices and their usage, (b) invent new computing and networking technologies and that explore new ways to make use of existing technologies and (c) explore the

451

Miraial formerly Kakizaki Manufacturing | Open Energy Information  

Open Energy Info (EERE)

Miraial formerly Kakizaki Manufacturing Miraial formerly Kakizaki Manufacturing Jump to: navigation, search Name Miraial (formerly Kakizaki Manufacturing) Place Tokyo, Japan Zip 171-0021 Product Manufacturer of wafer handling products and other components for the global semiconductor industry. Coordinates 35.670479°, 139.740921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.670479,"lon":139.740921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Cost modeling for monoclonal antibody manufacturing  

E-Print Network (OSTI)

The Novartis BioPharmOps division is responsible for manufacturing large molecule products, including monoclonal antibodies, for late stage clinical trials and commercial sales. The BioPharmOps site in Huningue, France is ...

Simpson, Christina M. (Christina Margaret)

2011-01-01T23:59:59.000Z

453

Exergy Efficiency Definitions for Manufacturing Processes  

Science Journals Connector (OSTI)

The original application of thermodynamic metrics for manufacturing processes has been under development throughout the last decade. The metrics are based on the second law of thermodynamics. Therefore, the exergy

Renald; Karel Kellens; Wim Dewulf…

2011-01-01T23:59:59.000Z

454

Clean Energy Technology Device Manufacturers' Credits (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

Qualified manufacturers can apply for a tax break equal to 75% of the corporation income tax. The incentive is an increase from the Investment and Employment Credit Against Corporation Income Tax,...

455

A haptic stencil for manufacturing applications  

E-Print Network (OSTI)

The haptic stencil consists of a 5 DOF haptic device and an anti-collision algorithm that acts as a geometric stencil and can be used for a variety of applications ranging from training to rapid prototyping and manufacturing. ...

Mansukhani, Kirti Ramesh, 1981-

2004-01-01T23:59:59.000Z

456

Level schedule implementation in unstable manufacturing environments  

E-Print Network (OSTI)

American Axle & Manufacturing Inc. (AAM), headquartered in Detroit (MI) is one of the major Tier 1 suppliers in the automotive industry. The main challenge in AAM plant 2 is production rate unstability due to downtime, ...

López de Haro, Santiago

2008-01-01T23:59:59.000Z

457

Solid-State Lighting Manufacturing Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Nearly 200 lighting industry leaders, chip makers, fixture and component manufacturers, and others gathered in Fairfax, Virginia, on April 21 and 22, 2009, for the first-ever DOE Solid-State...

458

American Energy and Manufacturing Competitiveness Summit Introduction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

costs. Our labor costs for manufacturing are lower than many other countries like Germany and Japan. And third we have a good technology infrastructure. We can put all of...

459

Requirements & Status for Volume Fuel Cell Manufacturing  

E-Print Network (OSTI)

Requirements & Status for Volume Fuel Cell Manufacturing DOE Hydrogen Program, Washington, DC July ­Eliminate components, parts and process steps ­Standardize core components across products ­Standardize non-core

460

Cost Effective Cooling Strategies for Manufacturing Facilities  

E-Print Network (OSTI)

Industrial plants are designed for a specific purpose of manufacturing products or a group of products in the most cost effective way. One factor which is often very poorly addressed is the environmental requirements for the workplace. Environmental...

Kumar, R.

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Industrial Activities at DOE: Efficiency, Manufacturing, Process...  

Energy Savers (EERE)

Process, and Materials R&D Overview of industrial activities at DOE by Joe Cresko, EERE Advanced Manufacturing Office, at the EERE QC Workshop held December 9-10, 2013, at the...

462

Stronger Manufacturers' Energy Efficiency Standards for Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing...

463

Association of Home Appliance Manufacturers Comment  

Energy.gov (U.S. Department of Energy (DOE))

The Association of Home Appliance Manufacturers (AHAM) respectfully submits the following comments to the Department of Energy (DOE) on its Regulatory Burden RFI, 79 Fed. Reg. 37963 (July 3, 2014).

464

Cycle to Cycle Manufacturing Process Control  

E-Print Network (OSTI)

Most manufacturing processes produce parts that can only be correctly measured after the process cycle has been completed. Even if in-process measurement and control is possible, it is often too expensive or complex to ...

Hardt, David E.

465

Sandia National Laboratories: Numerical Manufacturing And Design...  

NLE Websites -- All DOE Office Websites (Extended Search)

NuMAD (Numerical Manufacturing And Design) is an open-source software tool written in Matlab which simplifies the process of creating a three-dimensional model of a wind turbine...

466

Refrigerator Manufacturers: Proposed Penalty (2013-CE-5341)  

Energy.gov (U.S. Department of Energy (DOE))

DOE alleged in a Notice of Proposed Civil Penalty that Refrigerator Manufacturers, LLC failed to certify a variety of walk-in cooler or freezer components as compliant with the applicable energy conservation standards.

467

Pollution from drug manufacturing: review and perspectives  

Science Journals Connector (OSTI)

...19] and Europe [9,14] as pollution sources, with concentrations of...the picture of pharmaceutical pollution from manufacturing is still highly...for some drugs, possibly even air pollution. 2. Effect studies A number of...

2014-01-01T23:59:59.000Z

468

Photographic lens manufacturing and production technologies  

E-Print Network (OSTI)

An investigation was conducted to determine the methods and processes required for the manufacture of photographic objective lenses. Production of photographic lenses requires incredible precision in the melting, mixing, ...

Kubaczyk, Daniel Mark

2011-01-01T23:59:59.000Z

469

Analyzing sampling methodologies in semiconductor manufacturing  

E-Print Network (OSTI)

This thesis describes work completed during an internship assignment at Intel Corporation's process development and wafer fabrication manufacturing facility in Santa Clara, California. At the highest level, this work relates ...

Anthony, Richard M. (Richard Morgan), 1971-

2004-01-01T23:59:59.000Z

470

Advanced Technology Vehicles Manufacturing (ATVM) Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

The Advanced Technology Vehicles Manufacturing (ATVM) loan program was established in Section 136 of the Energy Independence and Security Act of 2007 to support the production of fuel-efficient,...

471

Energy Department Trains Veterans in Advanced Manufacturing  

Office of Energy Efficiency and Renewable Energy (EERE)

Today, the first 24 participants marked the successful completion of the Advanced Manufacturing Internship program, a pilot effort sponsored by the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE).

472

Validation of Gene Therapy Manufacturing Processes  

Science Journals Connector (OSTI)

Specific issues of concern in the validation of gene therapy viral vector manufacturing processes include quality of raw materials, safety testing of cell and viral banks, production and purification of the ve...

Dominick Vacante; Gail Sofer; Stephen Morris…

2002-01-01T23:59:59.000Z

473

Risk management practices in global manufacturing investment  

E-Print Network (OSTI)

the company of devout bring to a man.”(NITI SHATAKAM of Bhartrihari, Sanskrit Poet, 6th Century) ii ABSTRACT This thesis explores risk management practices in global manufacturing investment. It reflects the growing internationalisation of manufacturing... (Narula & Dunning, 2000). Many academic publications and global institutions’ reports reflect this an increase in globalisation. UNCTAD reports the positive impact of globalisation across the world. This report states “the difference in per capita...

Kumar, Mukesh

2010-07-06T23:59:59.000Z

474

Energetic additive manufacturing process with feed wire  

DOE Patents (OSTI)

A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

Harwell, Lane D. (Albuquerque, NM); Griffith, Michelle L. (Albuquerque, NM); Greene, Donald L. (Corrales, NM); Pressly, Gary A. (Sandia Park, NM)

2000-11-07T23:59:59.000Z

475

Duracold Refrigeration Manufacturing: Order (2013-CE-5342) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Duracold Refrigeration Manufacturing: Order (2013-CE-5342) Duracold Refrigeration Manufacturing: Order (2013-CE-5342) Duracold Refrigeration Manufacturing: Order (2013-CE-5342) April 25, 2013 DOE ordered Duracold Refrigeration Manufacturing Company, LLC to pay a $8,000 civil penalty after finding Duracold Refrigeration Manufacturing had failed to certify that certain models of walk-in cooler and freezer components comply with the applicable energy conservation standards. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Duracold Refrigeration Manufacturing. Duracold Refrigeration Manufacturing: Order (2013-CE-5342) More Documents & Publications Duracold Refrigeration Manufacturing: Proposed Penalty (2013-CE-5342) North Star Refrigerator: Order (2013-CE-5355) Schott Gemtron: Order (2013-CE-5358

476

Contact Manufacturing Demonstration Facility Craig Blue, Ph.D.  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing Demonstration Facility Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov/manufacturing Advanced Manufacturing Next-Generation Manufacturing As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future.

477

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits Local Program Helps Alabama Manufacturers Add Jobs, Reduce Waste and Increase Profits April 8,...

478

PEM Stack Manufacturing: Industry Status | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

American Energy and Manufacturing Competitiveness Summit Low Temperature PEM Fuel Cell Manufacturing Needs A Total Cost of Ownership Model for Low Temperature PEM Fuel...

479

Slice Contour Modification in Additive Manufacturing for Minimizing Part Errors.  

E-Print Network (OSTI)

??Additive Manufacturing (AM) is a process of manufacturing parts by combining layers of materials which are deposited on top of each other. AM processes have… (more)

Sharma, Kunal

2014-01-01T23:59:59.000Z

480

Webinar: Additive Manufacturing for Fuel Cells | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additive Manufacturing for Fuel Cells Webinar: Additive Manufacturing for Fuel Cells February 11, 2014 5:00PM to 6:00PM EST Online...

Note: This page contains sample records for the topic "monorail system manufacturing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Celgard US Manufacturing Facilities Initiative for Lithium-ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

482

Miracle Wind Power Components Manufacture Co Ltd | Open Energy...  

Open Energy Info (EERE)

Miracle Wind Power Components Manufacture Co Ltd Jump to: navigation, search Name: Miracle Wind Power Components Manufacture Co Ltd Place: Wuxi, Jiangsu Province, China Sector:...

483

EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn, MI EA-1834: Severstal Dearborn Advanced Technology Vehicle Manufacturing Project in Dearborn,...

484

U.S. Offshore Wind Manufacturing and Supply Chain Development...  

Office of Environmental Management (EM)

U.S. Offshore Wind Manufacturing and Supply Chain Development U.S. Offshore Wind Manufacturing and Supply Chain Development This report seeks to provide an organized, analytical...

485

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Joint Fuel Cell Technologies and Advanced Manufacturing Webinar Download the presentation slides from the "Joint...

486

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalys...

487

DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...  

Office of Environmental Management (EM)

Against 4 Showerhead Manufacturers (Notice of Proposed Civil Penalty and Requests for Test Data Issued) DOE Initiates Enforcement Actions Against 4 Showerhead Manufacturers...

488

Energy Department to Work with National Association of Manufacturers...  

Office of Environmental Management (EM)

to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase...

489

Design for manufacturability with regular fabrics in digital integrated circuits  

E-Print Network (OSTI)

Integrated circuit design is limited by manufacturability. As devices scale down, sensitivity to process variation increases dramatically, making design for manufacturability a critical concern. Designers must identify the ...

Gazor, Mehdi (Seyed Mehdi)

2005-01-01T23:59:59.000Z

490

Fiber Reinforced Polymer Composite Manufacturing - RFI DE-FOA...  

Energy Savers (EERE)

Polymer Composite Manufacturing - RFI Part 2 DE-FOA-0001056: Summary of Responses Clean Energy Manufacturing Innovation Institute for Composite Materials And Structures Webinar...

491

$23.5 Million Investment in Innovative Manufacturing Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Manufacturing Projects Supports the New Clean Energy Manufacturing Initiative March 26, 2013 - 9:56am Addthis As part of the President's effort "to guarantee that the next...

492

Manufacturing Pre-Solicitation Transcript | Department of Energy  

Office of Environmental Management (EM)

Transcript Manufacturing Pre-Solicitation Transcript Transcript from the US DOE Hydrogen Program Manufacturing R&D Pre-Solicitation Meeting presolicitationtranscript.pdf...

493

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...  

Office of Environmental Management (EM)

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program Presented at the NREL Hydrogen and Fuel Cell...

494

Preliminary Fuel Cell Manufacturing R&D Topics | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preliminary Fuel Cell Manufacturing R&D Topics Preliminary Fuel Cell Manufacturing R&D Topics Preliminary draft research topics subject to revision prior to a soliciatation being...

495

20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3: Manufacturing, Materials, and Resources Summary Slides 20% Wind Energy by 2030 - Chapter 3: Manufacturing, Materials, and Resources Summary Slides Summary Slides for Chapter 3:...

496

Proceedings from the Wind Manufacturing Workshop: Achieving 20...  

Office of Environmental Management (EM)

Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind...

497

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

498

Manufacturers of Noncompliant Products Agree to Civil Penalties...  

Energy Savers (EERE)

Air-Con Agrees to Pay Civil Penalty to Resolve Enforcement Action Showerhead Manufacturer Agrees to Civil Penalty to Resolve Enforcement Action Two Manufacturers Agree to...

499

Indian Wind Turbine Manufacturers Association | Open Energy Informatio...  

Open Energy Info (EERE)

Manufacturers Association Jump to: navigation, search Name: Indian Wind Turbine Manufacturers Association Place: Chennai, India Zip: 600 041 Sector: Wind energy Product:...

500

AMO Industry Day Workshop on Upcoming Smart Manufacturing FOA  

Energy.gov (U.S. Department of Energy (DOE))

AMO will host an Industry Day workshop to explain the concept, vision, and technology needs associated with support for a Clean Energy Manufacturing Innovation Institute on Smart Manufacturing.