Sample records for monochromator vls-pgm calculated

  1. Monochromator Crystal Glitch Library

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    SSRL's Monochromator Crystal Glitch Library allows users to view glitch spectra online, list specific crystal orientations, and download PDF files of the glitch spectra. (Specialized Interface)

  2. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  3. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01T23:59:59.000Z

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  4. Microprocessor–based monochromator controller

    E-Print Network [OSTI]

    Dalle-Molle, Richard; Defreese, James D.

    1980-04-01T23:59:59.000Z

    Microprocessor-based monochromator controller Richard Dalle-Molle and James D. Defreese* University of Kansas, Department of Chemistry, Lawrence, Kansas 66045, USA. Introduction The modular nature of the EU-700 series spectrometers (GCA... put under the control of another computer. The microprocessor was chosen in preference to other types of "hardware" controllers for a number of reasons; it is easier to implement, easier to modify the design and it is more adaptable to changing...

  5. Fabrication and Evaluation of a Multilayer Laminar-Type Holographic Grating and Its Application to a High Efficiency Grazing Incidence Monochromator for the 1-8 keV Region

    SciTech Connect (OSTI)

    Koike, Masato; Ishino, Masahiko; Imazono, Takashi [Japan Atomic Energy Agency, 8-1 Umemidai, Kizu, Kyoto 619-0215 (Japan); Heimann, Phil A.; Gullikson, Eric H. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Takenaka, Hisataka; Hatayama, Masatoshi [NTT Advanced Technology Corp., 2-1-1, Nishi-shinjuku, Shinjuku-ku, Tokyo, 163-0431 (Japan); Sasai, Hiroyuki [Shimadzu Corp., 1 Nishinokyo-Kuwabaramachi, Nakagyo-ku, Kyoto, 614-0051 (Japan); Sano, Kazuo [Shimadzu Emit Co., Ltd., 2-5-23, Kitahama, Chuo-ku, Osaka 541-0041 (Japan)

    2007-01-19T23:59:59.000Z

    A W/C multilayer laminar-type holographic grating was fabricated and its diffraction efficiency was evaluated in the 1-8 keV region. Taking advantage of its high diffraction efficiency a monochromator equipped with a multilayer varied-line-spacing plane grating was designed. The throughput of the monochromator based on the experimental diffraction efficiency of the multilayer grating and resolving power were calculated in comparison with those of a monochromator equipped with a Au coated grating.

  6. High resolution EUV monochromator/spectrometer

    DOE Patents [OSTI]

    Koike, Masako (Moraga, CA)

    1996-01-01T23:59:59.000Z

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution.

  7. High resolution EUV monochromator/spectrometer

    DOE Patents [OSTI]

    Koike, Masako

    1996-06-18T23:59:59.000Z

    This invention is related to a monochromator which employs a spherical mirror, a traveling plane mirror with simultaneous rotation, and a varied spacing plane grating. The divergent beam from the entrance slit is converged by the spherical mirror located at the various positions in the monochromator depending of the inventive system. To provide the meaningful diffraction efficiencies and to reduce unwanted higher order lights, the deviation angle subtending the incidence and diffraction beams for the plane grating is varied with the position of the traveling plane mirror with simultaneous rotation located in the front or back of the plane grating with wavelength scanning. The outgoing beam from the monochromator goes through the fixed exit slit and has same beam direction regardless of the scanning wavelength. The combination of properly designed motions of the plane mirror and novel varied-spacing parameters of the inventive plane grating corrects the aberrations and focuses the monochromatic spectral image on the exit slit, enabling measurements at high spectral resolution. 10 figs.

  8. Asymmetric-cut variable-incident-angle monochromator

    SciTech Connect (OSTI)

    Smither, R. K.; Fernandez, P. B.; Mills, D. M. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Graber, T. J. [Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637 (United States)

    2012-03-15T23:59:59.000Z

    A novel asymmetric-cut variable-incident-angle monochromator was constructed and tested in 1997 at the Advanced Photon Source of Argonne National Laboratory. The monochromator was originally designed as a high heat load monochromator capable of handling 5-10 kW beams from a wiggler source. This was accomplished by spreading the x-ray beam out on the surface an asymmetric-cut crystal and by using liquid metal cooling of the first crystal. The monochromator turned out to be a highly versatile monochromator that could perform many different types of experiments. The monochromator consisted of two 18 deg. asymmetrically cut Si crystals that could be rotated about 3 independent axes. The first stage ({Phi}) rotates the crystal around an axis perpendicular to the diffraction plane. This rotation changes the angle of the incident beam with the surface of the crystal without changing the Bragg angle. The second rotation ({Psi}) is perpendicular to the first and is used to control the shape of the beam footprint on the crystal. The third rotation ({Theta}) controls the Bragg angle. Besides the high heat load application, the use of asymmetrically cut crystals allows one to increase or decrease the acceptance angle for crystal diffraction of a monochromatic x-ray beam and allows one to increase or decrease the wavelength bandwidth of the diffraction of a continuum source like a bending-magnet beam or a normal x-ray-tube source. When the monochromator is used in the doubly expanding mode, it is possible to expand the vertical size of the double-diffracted beam by a factor of 10-15. When this was combined with a bending magnet source, it was possible to generate an 8 keV area beam, 16 mm wide by 26 mm high with a uniform intensity and parallel to 1.2 arc sec that could be applied in imaging experiments.

  9. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, Ercan E. (Bolingbrook, IL); Mooney, Timothy M. (Westmont, IL); Toellner, Thomas (Green Bay, WI)

    1996-06-04T23:59:59.000Z

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

  10. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, E.E.; Mooney, T.M.; Toellner, T.

    1996-06-04T23:59:59.000Z

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

  11. Multilayers and Crystal for a Multi-bandpass Monochromator

    SciTech Connect (OSTI)

    Feng, Renfei [Canadian Light Source, Saskatoon, Canada; Platonov, Yuriy [Rigaku Innovative Technologies, Inc., Auburn Hills, Michigan; Broadway, David [Rigaku Innovative Technologies, Inc., Auburn Hills, Michigan; Ice, Gene E [ORNL; Gerson, Andrea [University of South Australia; McIntyre, Stewart [University of Western Ontario, The

    2008-01-01T23:59:59.000Z

    VESPERS beamline is a hard X-ray microprobe beamline dedicated to micro-diffraction and micro-fluorescence analysis at the Canadian Light Source; it requires multi-bandpass X-ray beams for different types of samples and experiments. A specially designed double crystal/multilayer monochromator was built for this purpose with three different bandpasses: 0.01%, 1.6% and 10%. The diffraction elements used for the monochromator have a triple-stripe design using Si(111) crystal as a single substrate with two differing stripes of Mo/B4C multilayers deposited thereon. The uncovered Si(111) section provides a 0.01% bandpass, while the periodic and depth-graded Mo/B4C multilayers provide 1.6% and 10% bandpasses, respectively. This paper outlines the requirements and specifications of the diffracting elements as well as the design, deposition and optimization of the multilayers. The performance of the deposited multilayer structures has been tested using Cu-Ka radiation line with a Huber diffractometer.

  12. Finite element analysis of the distortion of a crystal monochromator from synchrotron radiation thermal loading

    SciTech Connect (OSTI)

    Edwards, W.R.; Hoyer, E.H.; Thompson, A.C.

    1985-10-01T23:59:59.000Z

    The first crystal of the Brown-Hower x-ray monochromator of the LBL-EXXON 54 pole wiggler beamline at Stanford Synchrotron Radiation Laboratory (SSRL) is subjected to intense synchrotron radiation. To provide an accurate thermal/structural analysis of the existing monochromator design, a finite element analysis (FEA) was performed. A very high and extremely localized heat flux is incident on the Si (220) crystal. The crystal, which possesses pronouncedly temperature-dependent orthotropic properties, in combination with the localized heat load, make the analysis ideally suited for finite element techniques. Characterization of the incident synchrotron radiation is discussed, followed by a review of the techniques employed in modeling the monochromator and its thermal/structural boundary conditions. The results of the finite element analysis, three-dimensional temperature distributions, surface displacements and slopes, and stresses, in the area of interest, are presented. Lastly, the effects these results have on monochromator output flux and resolution are examined.

  13. Inclined monochromator for high heat-load synchrotron x-ray radiation

    DOE Patents [OSTI]

    Khounsary, A.M.

    1994-02-15T23:59:59.000Z

    A double crystal monochromator is described including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced. 11 figures.

  14. Component/OEM XC-HR50 High Frame Rate Monochrome Camera

    E-Print Network [OSTI]

    Demoulin, Pascal

    Monochrome Camera B/W Progressive Scan Cameras #12;These new cameras expand the range of products in Sony's progressive scan and high-frame rate, compact camera line up! Introducing the newest additions to Sony's B/sec. for compatibility with slower vision systems using Sony XC-55 cameras. The XC-HR50 and XC-HR70 cameras incorporate

  15. Current Status of the Synchrotron Radiation Center

    SciTech Connect (OSTI)

    Kinraide, R.; Moore, C.J.; Jacobs, K.D.; Severson, M.; Bissen, M.J.; Frazer, B.; Bisognano, J.J.; Bosch, R.A.; Eisert, D.; Fisher, M.; Green, M.A.; Gundelach, C.T.; Hansen, R.W.C.; Hochst, H.; Julian, R.L.; Keil, R.; Kleman, K.; Kubala, T.; Legg, R.A.; Pedley, B. [Synchrotron Radiation Center (United States)] [and others

    2004-05-12T23:59:59.000Z

    The Synchrotron Radiation Center (SRC) operates the Aladdin electron storage ring at energies of 800 MeV or 1 GeV in support of a broad range of national and international research programs. A low emittance configuration is in routine operation during 800-MeV shifts and offers improved photon flux density with about the same beam lifetime. An improved undulator compensation algorithm and new optical beam position monitors have been implemented improving beam stability and maintaining vertical beam size variations to < 2% peak-to-peak during undulator scanning. Instrumentation initiatives include construction of a modified Wadsworth beamline (7.8 - 50 eV) and a variable-line-spacing plane-grating monochromator (VLS-PGM, 75 - 2000 eV) to utilize radiation from a permanent magnet undulator. The Wadsworth beamline is being commissioned for photoelectron spectroscopy (PES) experiments using high-resolution Scienta analyzers. The VLS-PGM is being constructed for experiments that require higher photon energies and high flux density such as x-ray photoemission electron microscopy (X-PEEM) and x-ray absorption spectroscopy (XAS). It is scheduled to be available in early 2004. Recent research at the SRC has produced exciting results in a variety of fields, culminating in eight articles published in Physical Review Letters and three in Nature since October 2002, in addition to articles in many other publications. An outreach program offers research experiences for undergraduates and provides the general public with an awareness of synchrotron radiation. Hands-on workshops and activities on FTIR microscopy and X-PEEM are offered for graduate students and scientists. SRC sponsors a summer Research Experience for Undergraduates (REU) program and offers opportunities to non-research universities and high schools. Tours and educational events are coordinated with local civic groups and schools. Open houses are offered that include tours, demonstrations, and family activities.

  16. Diffraction imaging for in-situ characterization of double-crystal x-ray monochromators

    E-Print Network [OSTI]

    Stoupin, Stanislav; Heald, Steve M; Brewe, Dale; Meron, Mati

    2015-01-01T23:59:59.000Z

    Imaging of the Bragg reflected x-ray beam is proposed and validated as an in-situ method for characterization of performance of double-crystal monochromators under the heat load of intense synchrotron radiation. A sequence of images is collected at different angular positions on the reflectivity curve of the second crystal and analyzed. The method provides rapid evaluation of the wavefront of the exit beam, which relates to local misorientation of the crystal planes along the beam footprint on the thermally distorted first crystal. The measured misorientation can be directly compared to results of finite element analysis. The imaging method offers an additional insight on the local intrinsic crystal quality over the footprint of the incident x-ray beam.

  17. Calculator Policy

    E-Print Network [OSTI]

    charlotb

    2014-08-24T23:59:59.000Z

    MA 16010 -- CALCULATOR POLICY. A ONE-LINE scientific calculator is REQUIRED. No other calculator is allowed. RECOMMENDED: TI-30Xa calculator

  18. Calculator Policy

    E-Print Network [OSTI]

    charlotb

    2014-06-10T23:59:59.000Z

    MA 15800 – Calculators – GOOD AND BAD. ONLY ONE-LINE scientific calculators are permitted. *RECOMMENDED CALCULATOR: TI-30XA(See Below).

  19. Calculator Policy

    E-Print Network [OSTI]

    charlotb

    2014-08-15T23:59:59.000Z

    MA 15300 Calculator Policy. ONLY a TI-30Xa scientific calculator is allowed on quizzes and exams. If you have questions, please email the course coordinator ...

  20. Calculator Policy

    E-Print Network [OSTI]

    charlotb

    2014-12-17T23:59:59.000Z

    MA 15910 Calculator Policy. ONLY a TI-30Xa scientific calculator is allowed on quizzes and exams. If you have questions, please email the course coordinator ...

  1. Efficiency and stray light measurements and calculations of diffraction gratings for the Advanced Light Source

    SciTech Connect (OSTI)

    McKinney, W.R.; Mossessian, D. (Accelerator and Fusion Research Division, Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Gullikson, E. (Materials Sciences Division, Center for X-ray Optics, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States)); Heimann, P. (Accelerator and Fusion Research Division, Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

    1995-02-01T23:59:59.000Z

    Water-cooled gratings manufactured for spherical grating monochromators of the Advanced Light Source beamlines 7.0, 8.0, and 9.0 were measured with the laser plasma source and reflectometer in the Center for X-ray Optics at Lawrence Berkeley Laboratory. The square-wave gratings are ion milled into the polished electroless nickel surface after patterning by holographic photolithography. Absolute efficiency data are compared with exact electromagnetic theory calculation. Interorder stray light and groove depths can be estimated from the measurements.

  2. Efficiency and stray light measurements and calculations of diffraction gratings for the ALS

    SciTech Connect (OSTI)

    McKinney, W.R.; Mossessian, D.; Gullikson, E.; Heimann, P.

    1994-07-01T23:59:59.000Z

    Water cooled gratings manufactured for spherical grating monochromators of the Advanced Light Source beamlines 7.0, 8.0 and 9.0 were measured with the laser plasma source and reflectometer in the Center for X-ray Optics at LBL. The square-wave gratings are ion-milled into the polished electroless nickel surface after patterning by holographic photolithography. Absolute efficiency data are compared with exact electromagnetic theory calculation. Inter-order stray light and groove depths can be estimated from the measurements.

  3. MA 22400 -- CALCULATOR POLICY

    E-Print Network [OSTI]

    OwenDavis

    2014-08-22T23:59:59.000Z

    MA 22400 -- CALCULATOR POLICY. A ONE-LINE scientific calculator is REQUIRED. No other calculator is allowed. RECOMMENDED: TI-30Xa calculator

  4. Analysis of Nitro-Polycyclic Aromatic Hydrocarbons in Conventional Diesel and Fischer--Tropsch Diesel Fuel Emissions Using Electron Monochromator-Mass Spectrometry

    SciTech Connect (OSTI)

    Havey, C. D.; McCormick, R. L.; Hayes, R. R.; Dane, A. J.; Voorhees, K. J.

    2006-01-01T23:59:59.000Z

    The presence of nitro-polycyclic aromatic hydrocarbons (NPAHs) in diesel fuel emissions has been studied for a number of years predominantly because of their contribution to the overall health and environmental risks associated with these emissions. Electron monochromator-mass spectrometry (EM-MS) is a highly selective and sensitive method for detection of NPAHs in complex matrixes, such as diesel emissions. Here, EM-MS was used to compare the levels of NPAHs in fuel emissions from conventional (petroleum) diesel, ultra-low sulfur/low-aromatic content diesel, Fischer-Tropsch synthetic diesel, and conventional diesel/synthetic diesel blend. The largest quantities of NPAHs were detected in the conventional diesel fuel emissions, while the ultra-low sulfur diesel and synthetic diesel fuel demonstrated a more than 50% reduction of NPAH quantities when compared to the conventional diesel fuel emissions. The emissions from the blend of conventional diesel with 30% synthetic diesel fuel also demonstrated a more than 30% reduction of the NPAH content when compared to the conventional diesel fuel emissions. In addition, a correlation was made between the aromatic content of the different fuel types and NPAH quantities and between the nitrogen oxides emissions from the different fuel types and NPAH quantities. The EM-MS system demonstrated high selectivity and sensitivity for detection of the NPAHs in the emissions with minimal sample cleanup required.

  5. Original Impact Calculations

    Broader source: Energy.gov [DOE]

    Original Impact Calculations, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  6. Multiphase flow calculation software

    DOE Patents [OSTI]

    Fincke, James R. (Idaho Falls, ID)

    2003-04-15T23:59:59.000Z

    Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

  7. Solar radiation intensity calculations

    E-Print Network [OSTI]

    Levine, Randolph Steven

    1978-01-01T23:59:59.000Z

    SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Submitted to the Graduate College of Texas A&M University in partia'l fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978 Major Subject...: Physics SOLAR RADIATION INTENSITY CALCULATIONS A Thesis by RANDOLPH STEVEN LEVINE Approved as to style and content by: (Chairman of Committee) (Member) (Member) ( member) (Head of Department) December 1978 f219 037 ABSTRACT Solar Radiation...

  8. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  9. Geothermal Life Cycle Calculator

    SciTech Connect (OSTI)

    Sullivan, John

    2014-03-11T23:59:59.000Z

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  10. Carbon Footprint Calculator

    Broader source: Energy.gov [DOE]

    This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.

  11. PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION

    E-Print Network [OSTI]

    PROPOSED RESIDENTIAL ALTERNATIVE CALCULATION MANUAL (ACM) APPROVAL METHOD for the 2013 2012 CEC400201200715DAY #12;201308 Residential ACM Approval Manual 2-2 1. Overview Minimum Modeling Capabilities 1. Overview This Manual explains the requirements for approval of residential Alternative

  12. Plutonium 239 Equivalency Calculations

    SciTech Connect (OSTI)

    Wen, J

    2011-05-31T23:59:59.000Z

    This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

  13. Steep Slope Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep Slope Calculator Estimates Cooling and Heating

  14. Two-axis sagittal focusing monochromator

    DOE Patents [OSTI]

    Haas, Edwin G; Stelmach, Christopher; Zhong, Zhong

    2014-05-13T23:59:59.000Z

    An x-ray focusing device and method for adjustably focusing x-rays in two orthogonal directions simultaneously. The device and method can be operated remotely using two pairs of orthogonal benders mounted on a rigid, open frame such that x-rays may pass through the opening in the frame. The added x-ray flux allows significantly higher brightness from the same x-ray source.

  15. CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR

    E-Print Network [OSTI]

    Bryan, Harvey J.

    2013-01-01T23:59:59.000Z

    Committee E-3.2, "Daylight: International RecommendationsCalculation of Natural Daylight," CIE PUBLICATION No. 16,Committee E-3.2, "Natural Daylight: Official Recommenda-

  16. CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR

    E-Print Network [OSTI]

    Bryan, Harvey J.

    2013-01-01T23:59:59.000Z

    Committee E-3.2, "Daylight: International Recommendationsthe Calculation of Natural Daylight, 11 CIE PUBLICATION No.Committee E-3.2 1 "Natural Daylight: Official Recommenda-

  17. Computational Tools for Supersymmetry Calculations

    E-Print Network [OSTI]

    Howard Baer

    2009-12-16T23:59:59.000Z

    I present a brief overview of a variety of computational tools for supersymmetry calculations, including: spectrum generators, cross section and branching fraction calculators, low energy constraints, general purpose event generators, matrix element event generators, SUSY dark matter codes, parameter extraction codes and Les Houches interface tools.

  18. Calculation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.0

  19. SB EE Calculator | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculator Energy Efficiency Decision Support Calculator Argonne's Energy Efficiency Decision Support Calculator is a simple tool that small business owners can use to quickly...

  20. Building wall heat flux calculations

    SciTech Connect (OSTI)

    Park, J.E.; Kirkpatrick, J.R.; Tunstall, J.N.; Childs, K.W.

    1987-01-01T23:59:59.000Z

    Calculations of the heat transfer through the standard stud wall structure of a residential building are described. The wall cavity contains no insulation. Four of the five test cases represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using the Implicit Compressible Eulerian (ICE) algorithm. The fluid flow calculation is coupled to the radiation-conduction model for the solid portions of the system. Conduction through sill plates is about 4% of the total heat transferred through a composite wall.

  1. Monte Carlo calculations of nuclei

    SciTech Connect (OSTI)

    Pieper, S.C. [Argonne National Lab., IL (United States). Physics Div.

    1997-10-01T23:59:59.000Z

    Nuclear many-body calculations have the complication of strong spin- and isospin-dependent potentials. In these lectures the author discusses the variational and Green`s function Monte Carlo techniques that have been developed to address this complication, and presents a few results.

  2. Building wall heat flux calculations

    SciTech Connect (OSTI)

    Park, J.E.; Kirkpatrick, J.R.; Tunstall, J.N.; Childs, K.W.

    1987-06-01T23:59:59.000Z

    Calculations of the heat transfer through the standard stud wall structure of a residential building are described. The wall cavity contains no insulation. Four of the five test cases represent progressively more complicated approximations to the heat transfer through and within a hollow wall structure. The fifth adds the model components necessary to severely inhibit the radiative energy transport across the empty cavity. Flow within the wall cavity is calculated from the Navier-Stokes equations and the energy conservation equation for an ideal gas using the Implicit Compressible Eulerian (ICE) algorithm. The fluid flow calculation is coupled to the radiation-conduction model for the solid portions of the system. Conduction through sill plates is about 4% of the total heat transferred through a composite wall. All of the other model elements (conduction through wall board, sheathing, and siding; convection from siding and wallboard to ambients; and radiation across the wall cavity) are required to accurately predict the heat transfer through a wall. Addition of a foil liner on one inner surface of the wall cavity reduces the total heat transferred by almost 50%.

  3. Harmonic Analysis Errors in Calculating Dipole,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to reduce the harmonic field calculation errors. A conformal transfor- mation of a multipole magnet into a dipole reduces these errors. Dipole Magnet Calculations A triangular...

  4. Cost Recovery Charge (CRC) Calculation Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost Recovery Charge (CRC) Calculation Table Updated: March 20, 2015 FY 2016 February 2015 CRC Calculation Table (pdf) Final FY 2015 CRC Letter & Table (pdf) Note: The Cost...

  5. NERSC Calculations Provide Independent Confirmation of Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9,...

  6. Calculate viscosities for 355 liquids

    SciTech Connect (OSTI)

    Yaws, C.L.; Lin, Xiaoyan; Li Bu (Lamar Univ., TX (United States))

    1994-04-01T23:59:59.000Z

    Liquid viscosities are important factors in process design and operation. The viscosity of a liquid determines its flow properties, such as velocity and pressure drop. In addition, the heat- and mass-transfer characteristics of a liquid are affected by its viscosity. An equation can be used to calculate liquid viscosities as a function of temperature. In the accompanying table, regression coefficients are included for 355 compounds with five, six or seven carbon atoms--generally the most-widely used in the chemical and petroleum industries. To calculate the viscosity of a liquid at any temperature between its melting and critical points (T[sub min] and T[sub max]), use the following equation: log[sub 10] [eta][sub liq] = A + B/T + CT + DT[sup 2] where [eta][sub liq] = viscosity, cP, A,B,C and D = regression coefficients, and T = liquid temperature, K. Insert the temperature into the equation along with the corresponding regression coefficients from the table. The chemical formulae are listed by the number of carbon atoms.

  7. FLAG-SGH Sedov calculations

    SciTech Connect (OSTI)

    Fung, Jimmy [Los Alamos National Laboratory; Schofield, Sam [LLNL; Shashkov, Mikhail J. [Los Alamos National Laboratory

    2012-06-25T23:59:59.000Z

    We did not run with a 'cylindrically painted region'. However, we did compute two general variants of the original problem. Refinement studies where a single zone at each level of refinement contains the entire internal energy at t=0 or A 'finite' energy source which has the same physical dimensions as that for the 91 x 46 mesh, but consisting of increasing numbers of zones with refinement. Nominal mesh resolution: 91 x 46. Other mesh resolutions: 181 x 92 and 361 x 184. Note, not identical to the original specification. To maintain symmetry for the 'fixed' energy source, the mesh resolution was adjusted slightly. FLAG Lagrange or full (Eulerian) ALE was used with various options for each simulation. Observation - for either Lagrange or ALE, point or 'fixed' source, calculations converge on density and pressure with mesh resolution, but not energy, (not vorticity either).

  8. RTU Comparison Calculator Enhancement Plan

    SciTech Connect (OSTI)

    Miller, James D.; Wang, Weimin; Katipamula, Srinivas

    2014-03-31T23:59:59.000Z

    Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.

  9. Building Technologies Office: 179D DOE Calculator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    179D DOE Calculator EERE Building Technologies Office 179D DOE Calculator Printable Version Bookmark and Share What is the 179D federal tax deduction? Section 179D of the...

  10. Calculator Tips for TI-30XA

    E-Print Network [OSTI]

    Owen Davis

    2013-01-04T23:59:59.000Z

    TI-30XA Calculator Tips. Calculator Memory. - To use the memory function, hit the STO key to store a number in either memory 1, 2, or 3. o To store the product of ...

  11. Quantum transport calculations using periodic boundaryconditions

    SciTech Connect (OSTI)

    Wang, Lin-Wang

    2004-06-15T23:59:59.000Z

    An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal groundstate calculations, thus is makes accurate quantum transport calculations for large systems possible.

  12. Calculating Evolutionary Dynamics in Structured Populations

    E-Print Network [OSTI]

    Nowak, Martin A.

    Calculating Evolutionary Dynamics in Structured Populations Charles G. Nathanson1. , Corina E. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured) Calculating Evolutionary Dynamics in Structured Populations. PLoS Comput Biol 5(12): e1000615. doi:10

  13. Some Calculations for Cold Fusion Superheavy Elements

    E-Print Network [OSTI]

    Zhong, X H; Ning, P Z

    2004-01-01T23:59:59.000Z

    The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

  14. Some Calculations for Cold Fusion Superheavy Elements

    E-Print Network [OSTI]

    X. H. Zhong; L. Li; P. Z. Ning

    2004-10-18T23:59:59.000Z

    The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

  15. What is the GREET Fleet Footprint Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    fuels and advanced vehicles (AFVs). The Greenhouse gases, Regulated Emis- sions, and Energy use in Transportation (GREET) Fleet Foot- print Calculator can help fleets decide on...

  16. Cooling airflow design calculations for UFAD

    E-Print Network [OSTI]

    Bauman, Fred; Webster, Tom; Benedek, Corinne

    2007-01-01T23:59:59.000Z

    written permission. Cooling Airflow Design Calculations form) height. Table 2: Design cooling airflow performance fortool predictions of UFAD cooling airflow rates and associ-

  17. Calculators and Science and Engineering Calculus Occasionally ...

    E-Print Network [OSTI]

    1910-10-51T23:59:59.000Z

    on examinations and quizzes. These courses do spend some class time discussing the use of graphing calculators, and some of the pitfalls into which graphing ...

  18. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation Of Chemical...

  19. Filter diagonalization of shell-model calculations

    SciTech Connect (OSTI)

    Mizusaki, Takahiro [Institute of Natural Sciences, Senshu University, Tokyo 101-8425 (Japan); Kaneko, Kazunari [Department of Physics, Kyushu Sangyo University, Fukuoka 813-8503 (Japan); Honma, Michio [Center for Mathematical Sciences, University of Aizu, Aizu-Wakamatsu, 965-8580 (Japan); Sakurai, Tetsuya [Department of Computer Science, University of Tsukuba, Tsukuba, 305-8573 (Japan)

    2010-08-15T23:59:59.000Z

    We present a method of filter diagonalization for shell-model calculations. This method is based on the Sakurai and Sugiura (SS) method, but extended with the help of the shifted complex orthogonal conjugate gradient (COCG) method. A salient feature of this method is that it can calculate eigenvalues and eigenstates in a given energy interval. We show that this method can be an alternative to the Lanczos method for calculating ground and excited states, as well as spectral strength functions. With an application to the M-scheme shell-model calculations we demonstrate that several inherent problems in the widely used Lanczos method can be removed or reduced.

  20. SPREADSHEET DESCRIPTION DOCUMENT FOR SATURATION TEMPERATURE CALCULATION

    SciTech Connect (OSTI)

    JO J

    2008-08-29T23:59:59.000Z

    This document describes the methodology for determining the saturation temperature in waste tanks. The saturation temperature is used to calculate neutral buoyancy ratio.

  1. Calculating Plutonium and Praseodymium Structural Transformations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculating Plutonium and Praseodymium Structural Transformations A newly-developed hybrid computational method has computed, for the first time, plutonium's exotic crystal...

  2. Multipole Electrostatics in Hydration Free Energy Calculations

    E-Print Network [OSTI]

    Ponder, Jay

    Multipole Electrostatics in Hydration Free Energy Calculations YUE SHI,1 CHUANJIE WU,2 JAY W Acceptance Ratio method. We have compared two approaches to derive the atomic multipoles from quantum mechanical calculations: one directly from the new distributed multipole analysis and the other involving

  3. Calculating Highly Oscillatory Integrals by Quadrature Methods

    E-Print Network [OSTI]

    Thapa, Krishna 1989-

    2012-04-24T23:59:59.000Z

    are found by requiring Z b a m (x) sin(!x)dx = 2 +2X i= wim (xi) The calculation of the wi therefore hinges on calculating the moments R b a x nei!g(x)dx. Unlike traditional approximation methods, the accuracy of the function increases...

  4. PVWatts (R) Calculator India (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    The PVWatts (R) Calculator for India was released by the National Renewable Energy Laboratory in 2013. The online tool estimates electricity production and the monetary value of that production of grid-connected roof- or ground-mounted crystalline silicon photovoltaics systems based on a few simple inputs. This factsheet provides a broad overview of the PVWatts (R) Calculator for India.

  5. First principles calculations for analysis martensitic transformations

    SciTech Connect (OSTI)

    Harmon, B.N.; Zhao, G.L.; Ho, K.M.; Chan, C.T.; Ye, Y.Y.; Ding, Y.; Zhang, B.L.

    1993-10-01T23:59:59.000Z

    The change in crystal energy is calculated for atomic displacements corresponding to phonons, elastic shears, and lattice transformations. Anomalies in the phonon dispersion curves of NiAl and NiTi are analyzed and recent calculations for TiPd alloys are presented.

  6. URANIUM MILL TAILINGS RADON FLUX CALCULATIONS

    E-Print Network [OSTI]

    URANIUM MILL TAILINGS RADON FLUX CALCULATIONS PIÃ?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Inc. (Golder) was commissioned by EFRC to evaluate the operations of the uranium mill tailings storage in this report were conducted using the WISE Uranium Mill Tailings Radon Flux Calculator, as updated on November

  7. Quark model calculation of the EMC effect

    SciTech Connect (OSTI)

    Benesh, C.J.; Goldman, T.; Stephenson, G.J. Jr. [Los Alamos National Laboratory, NM (United States)

    1993-10-01T23:59:59.000Z

    Using a potential model, we calculate quark distributions for a six-quark quasi-deuteron, including the effects of the Pauli Principle and quark tunneling between nuclei. Using a phenomenological sea distribution, the EMC ratio is calculated and found to be in qualitative agreement with experiment.

  8. AUXILIARY RATE CALCULATION The Budget Office

    E-Print Network [OSTI]

    Weston, Ken

    AUXILIARY RATE CALCULATION The Budget Office #12;AGENDA Guiding Principles Rate Proposal Building Office supplies for budget manager reconciliationOffice supplies for budget manager reconciliation: Equipment Compensated Leave #12;CALCULATING A RATE Budgeted Expenses Budgeted Usage BaseBudgeted Usage Base

  9. Relativistic QRPA calculation of muon capture rates

    E-Print Network [OSTI]

    T. Marketin; N. Paar; T. Niksic; D. Vretenar

    2009-03-30T23:59:59.000Z

    The relativistic proton-neutron quasiparticle random phase approximation (PN-RQRPA) is applied in the calculation of total muon capture rates on a large set of nuclei from $^{12}$C to $^{244}$Pu, for which experimental values are available. The microscopic theoretical framework is based on the Relativistic Hartree-Bogoliubov (RHB) model for the nuclear ground state, and transitions to excited states are calculated using the PN-RQRPA. The calculation is fully consistent, i.e., the same interactions are used both in the RHB equations that determine the quasiparticle basis, and in the matrix equations of the PN-RQRPA. The calculated capture rates are sensitive to the in-medium quenching of the axial-vector coupling constant. By reducing this constant from its free-nucleon value $g_A = 1.262$ by 10% for all multipole transitions, the calculation reproduces the experimental muon capture rates to better than 10% accuracy.

  10. Use of computers for multicomponent distillation calculations

    E-Print Network [OSTI]

    Sullivan, Samuel Lane

    1959-01-01T23:59:59.000Z

    The corrected values for the b 's are best cal- i culated by multiplying (b. /d ) by (d. ) The compositions for each component in the vapor and liquid streams leaving plate j are calculated by use of the following equations. ('i/ i)ca ( i)co y. ji c Z (v... . . /b. ) (b. ) ji i ca i co i=1 , f a j x N+1 C (47-b) A temperature profile may be calculated by making either bubble or dew point calculations based on the compositions obtained by use of Equations (46) and (47). The specified distillate rate must...

  11. Assessment of seismic margin calculation methods

    SciTech Connect (OSTI)

    Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.

    1989-03-01T23:59:59.000Z

    Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.

  12. Calculated structures and fluoride affinities for fluorides

    SciTech Connect (OSTI)

    O'Keeffe, M.

    1986-07-23T23:59:59.000Z

    It is shown that SCF-MO calculations provide good estimates of the energies of the processes MF/sub n/ ..-->.. M/sup n+/ + nF/sup -/ where M/sup n+/ is an ion of a first- or second-row element in a closed-shell or s/sup 2/ configuration. The fluoride ion affinities are then calculated for a number of molecules and ions. Where comparison with experiment is possible, the agreement is generally good when allowance is made for experimental uncertainties. In favorable cases, accurate heats of formation may be calculated from fluoride affinities.

  13. Calculation of external dose from distributed source

    SciTech Connect (OSTI)

    Kocher, D.C.

    1986-01-01T23:59:59.000Z

    This paper discusses a relatively simple calculational method, called the point kernel method (Fo68), for estimating external dose from distributed sources that emit photon or electron radiations. The principles of the point kernel method are emphasized, rather than the presentation of extensive sets of calculations or tables of numerical results. A few calculations are presented for simple source geometries as illustrations of the method, and references and descriptions are provided for other caluclations in the literature. This paper also describes exposure situations for which the point kernel method is not appropriate and other, more complex, methods must be used, but these methods are not discussed in any detail.

  14. INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS YOU KNOW WHAT THE TUITION, STIPEND AND EQUIPMENT COSTS ARE YOU KNOW WHAT THE TOTAL COST IS CALCULATION IS USING THE 2010 FED F&A RATE FOR WSU OF 52% (.52) [ DIRECT COST ­ TUITION ­ STIPEND ­ EQUIPMENT] (.52 ) + DIRECT

  15. Medical physics calculations with MCNP: a primer

    E-Print Network [OSTI]

    Lazarine, Alexis D

    2006-10-30T23:59:59.000Z

    of Medical Internal Radiation Dose (MIRD) specific absorbed fraction (SAF) values using the ORNL MIRD phantom, x-ray phototherapy effectiveness, prostate brachytherapy lifetime dose calculations, and a radiograph of the head using the Zubal head phantom. Also...

  16. Essential Value, Pmax, and Omax Automated Calculator

    E-Print Network [OSTI]

    Kaplan, Brent A.; Reed, Derek D.

    2014-08-21T23:59:59.000Z

    Behavioral economic measures of demand are often calculated in sophisticated spreadsheet programs. Unfortunately, no closed form models for exact pmax (point of unit elasticity) and omax (response output at pmax) can be ...

  17. Medical physics calculations with MCNP: a primer 

    E-Print Network [OSTI]

    Lazarine, Alexis D

    2006-10-30T23:59:59.000Z

    of Medical Internal Radiation Dose (MIRD) specific absorbed fraction (SAF) values using the ORNL MIRD phantom, x-ray phototherapy effectiveness, prostate brachytherapy lifetime dose calculations, and a radiograph of the head using the Zubal head phantom. Also...

  18. Historical river flow rates for dose calculations

    SciTech Connect (OSTI)

    Carlton, W.H.

    1991-06-10T23:59:59.000Z

    Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

  19. Available Energy Calculations for Process Engineers 

    E-Print Network [OSTI]

    Parker, A. L.

    1982-01-01T23:59:59.000Z

    Brief reviews of available energy and of the application of available energy analysis to chemical processes are given. Two alternative methods for performing available energy calculations are discussed and contrasted. The first method relies...

  20. Signal probability calculations using partial functional manipulation

    E-Print Network [OSTI]

    Kodavarti, Ravishankar

    1992-01-01T23:59:59.000Z

    CALCULATIONS IV THE CUTTING ALGORITHM 14 V RESULTS 17 VI CONCLUSIONS . . REFERENCES APPENDIX A 32 35 LIST OF TABLES TABLE Page I Characteristic table of all ISCAS combinational benchmarks II Number of ambiguous lines using the single best ordering... heuristics can be used to generate orderings, in a few cpu seconds [17]. These heuristics have a very low cost of generation, as compared to that of the best ordering. Iterative OPDD calculations with difFerent variable orderings were made, and the best...

  1. Calculator programs for pipe stress engineering

    SciTech Connect (OSTI)

    Morgan, K.S.

    1985-01-01T23:59:59.000Z

    This book contains a collection of programs for solving a wide variety of stress problems using both the TI-59 and HP-41CV calculators. Each program is prefaced with a description of the problem to be solved, nomenclature, code restrictions and program limitations. Solutions are explained analytically and then followed by the complete program listing, documentation and checklists. Topics include calculations for pipewall thickness, pressure vessel analysis, reinforcement pads, allowable span, vibration, stress, and two-anchor piping systems.

  2. Calculator program speeds rod pump design

    SciTech Connect (OSTI)

    Engineer, R.; Davis, C.L.

    1984-02-01T23:59:59.000Z

    Matching sucker rod pump characteristics to a specific application is greatly simplified with this program, intended for use with an HP-41CV hand-held computer. The user inputs application data and the program calculates all necessary design criteria, including Mill's acceleration factor, peak and minimum polish rod loads and horsepower required. Sample calculations are provided, together with a thorough discussion of special design considerations involved in huff-and-puff applications.

  3. Calculation of rotordynamic forces on labyrinth seals

    E-Print Network [OSTI]

    Hensel, Steve John

    1986-01-01T23:59:59.000Z

    CALCULATION OF ROTORDYNAMIC FORCES ON LABYRINTH SEALS A Thesis STEVE JOHN HENSEL Submitted to the Graduate College of Texas AkM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1986 Major... Subject: Mechanical Engineering CALCULATION OF ROTORDYNAMIC FORCES ON LABYRINTH SEALS A Thesis by STEVE JOHN HENSEL Approved as to style snd content by: David Rhode (Chairman of Committee) Erian Baskharone Leel and Garison (Member) +, gg, W. D...

  4. A demonstration of variance and covariance calculations using MAVARIC (Materials Accounting VARIance Calculator) and PROFF (PROcessing and Fuel Facilities calculator)

    SciTech Connect (OSTI)

    Barlich, G.L.; Nasseri, S.S.

    1990-01-01T23:59:59.000Z

    Good decision-making in materials accounting requires a valid calculation of control limits and detection sensitivity for facilities handling special nuclear materials (SNM). A difficult aspect of this calculation is determining the appropriate variance and covariance values for the terms in the materials balance (MB) equation. Computer software such as MAVARIC (Materials Accounting VARIance Calculator) and PROFF (PROcessing and Fuel Facilities calculator) can efficiently select and combine variance terms. These programs determine the variance and covariance of an MB equation by first obtaining relations for the variance and covariance of each term in the MB equation through propagating instrument errors and then substituting the measured quantities and their uncertainties into these relations. MAVARIC is a custom spreadsheet used with the second release of LOTUS 1-2-3.** PROFF is a stand-alone menu-driven program requiring no commercial software. Programs such as MAVARIC and PROFF facilitate the complex calculations required to determine the detection sensitivity of an SNM facility. These programs can also be used to analyze materials accounting systems.

  5. acceptance crystal monochromator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    newest additions to Sony's Bsec. for compatibility with slower vision systems using Sony XC-55 cameras. The XC-HR50 and XC-HR70 cameras incorporate Demoulin, Pascal 20 Angular...

  6. Improved Calculation of Thermal Fission Energy

    E-Print Network [OSTI]

    Ma, X B; Wang, L Z; Chen, Y X; Cao, J

    2013-01-01T23:59:59.000Z

    Thermal fission energy is one of the basic parameters needed in the calculation of antineutrino flux for reactor neutrino experiments. It is useful to improve the precision of the thermal fission energy calculation for current and future reactor neutrino experiments, which are aimed at more precise determination of neutrino oscillation parameters. In this article, we give new values for thermal fission energies of some common thermal reactor fuel iso-topes, with improvements on two aspects. One is more recent input data acquired from updated nuclear databases. The other, which is unprecedented, is a consideration of the production yields of fission fragments from both thermal and fast incident neutrons for each of the four main fuel isotopes. The change in calculated antineutrino flux due to the new values of thermal fission energy is about 0.33%, and the uncertainties of the new values are about 30% smaller.

  7. Dose calculations for severe LWR accident scenarios

    SciTech Connect (OSTI)

    Margulies, T.S.; Martin, J.A. Jr.

    1984-05-01T23:59:59.000Z

    This report presents a set of precalculated doses based on a set of postulated accident releases and intended for use in emergency planning and emergency response. Doses were calculated for the PWR (Pressurized Water Reactor) accident categories of the Reactor Safety Study (WASH-1400) using the CRAC (Calculations of Reactor Accident Consequences) code. Whole body and thyroid doses are presented for a selected set of weather cases. For each weather case these calculations were performed for various times and distances including three different dose pathways - cloud (plume) shine, ground shine and inhalation. During an emergency this information can be useful since it is immediately available for projecting offsite radiological doses based on reactor accident sequence information in the absence of plant measurements of emission rates (source terms). It can be used for emergency drill scenario development as well.

  8. LCEs for Naval Reactor Benchmark Calculations

    SciTech Connect (OSTI)

    W.J. Anderson

    1999-07-19T23:59:59.000Z

    The purpose of this engineering calculation is to document the MCNP4B2LV evaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories. The objective of this analysis is to quantify the MCNP4B2LV code system's ability to accurately calculate the effective neutron multiplication factor (k{sub eff}) for various critical configurations. These LCE evaluations support the development and validation of the neutronics methodology used for criticality analyses involving Naval reactor spent nuclear fuel in a geologic repository.

  9. Quantum Monte Carlo calculations for light nuclei

    SciTech Connect (OSTI)

    Wiringa, R.B.

    1998-08-01T23:59:59.000Z

    Quantum Monte Carlo calculations of ground and low-lying excited states for nuclei with A {le} 8 are made using a realistic Hamiltonian that fits NN scattering data. Results for more than 30 different (j{sup {prime}}, T) states, plus isobaric analogs, are obtained and the known excitation spectra are reproduced reasonably well. Various density and momentum distributions and electromagnetic form factors and moments have also been computed. These are the first microscopic calculations that directly produce nuclear shell structure from realistic NN interactions.

  10. Giant magnetoresistance calculated from first principles

    SciTech Connect (OSTI)

    Butler, W.H. [Oak Ridge National Lab., TN (United States); MacLaren, J.M. [Tulane Univ., New Orleans, LA (United States). Dept. of Physics; Zhang, X.G. [Univ. of Kentucky, Lexington, KY (United States). Center for Computational Sciences

    1994-09-01T23:59:59.000Z

    The Layer Korringa Kohn Rostoker-Coherent Potential Approximation technique was used to calculate the low temperature Giant Magnetoresistance from first principles for Co{vert_bar}Cu and permalloy{vert_bar}Cu superlattices. Our calculations predict large giant magnetoresistance ratios for Co{vert_bar}Cu and extremely large ratios for permalloy{vert_bar}Cu for current perpendicular to the layers. Mechanisms such as spin-orbit coupling which mix spin channels are expected to greatly reduce the GMR effect for permalloy{vert_bar}Cu.

  11. Calculation method for safe ?* in the LHC

    E-Print Network [OSTI]

    Bruce, R; Herr, W; Wollmann, D

    2011-01-01T23:59:59.000Z

    One way of increasing the peak luminosity in the LHC is to decrease the beam size at the interaction points by squeezing to smaller values of ?*. The LHC is now in a regime where safety and stability determines the limit on ?*, as opposed to traditional optics limits. In this paper, we derive a calculation model to determine the safe ?*-values based on collimator settings and operational stability of the LHC. This model was used to calculate the settings for the LHC run in 2011. It was found that ?* could be decreased from 3.5 m to 1.5 m, which has now successfully been put into operation.

  12. Nonperturbative calculations in light-front QED

    SciTech Connect (OSTI)

    Chabysheva, Sophia S. [Department of Physics, University of Minnesota-Duluth, Duluth, Minnesota 55812 (United States)

    2010-12-22T23:59:59.000Z

    The methods of light-front quantization and Pauli-Villars regularization are applied to a nonperturbative calculation of the dressed-electron state in quantum electrodynamics. This is intended as a test of the methods in a gauge theory, as a precursor to possible methods for the nonperturbative solution of quantum chromodynamics. The electron state is truncated to include at most two photons and no positrons in the Fock basis, and the wave functions of the dressed state are used to compute the electrons's anomalous magnetic moment. A choice of regularization that preserves the chiral symmetry of the massless limit is critical for the success of the calculation.

  13. Fully Automated Calculations in the complex MSSM

    E-Print Network [OSTI]

    T. Hahn; S. Heinemeyer; F. von der Pahlen; H. Rzehak; C. Schappacher

    2014-07-01T23:59:59.000Z

    We review recent progress towards automated higher-order calculations in the MSSM with complex parameters (cMSSM). The consistent renormalization of all relevant sectors of the cMSSM and the inclusion into the FeynArts/FormCalc framework has recently been completed. Some example calculations applying this framework are briefly discussed. These include two-loop corrections to cMSSM Higgs boson masses as well as partial decay widths of electroweak supersymmetric particles decaying into a Higgs boson and another supersymmetric particle.

  14. Heat Exchanger Support Bracket Design Calculations

    SciTech Connect (OSTI)

    Rucinski, Russ; /Fermilab

    1995-01-12T23:59:59.000Z

    This engineering note documents the design of the heat exchanger support brackets. The heat exchanger is roughly 40 feet long, 22 inches in diameter and weighs 6750 pounds. It will be mounted on two identical support brackets that are anchored to a concrete wall. The design calculations were done for one bracket supporting the full weight of the heat exchanger, rounded up to 6800 pounds. The design follows the American Institute of Steel Construction (AISC) Manual of steel construction, Eighth edition. All calculated stresses and loads on welds were below allowables.

  15. A PROCEDURE FOR CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH A PROGRAMMABLE HAND CALCULATOR

    E-Print Network [OSTI]

    Bryan, H.J.

    2010-01-01T23:59:59.000Z

    FOR CALCULATING INTERIOR DAYLIGHT ILLUMINATION WITH ACommittee E-3.2, "Daylight: International RecommendationsCalcula- tion of Natural Daylight," CIE PUBLICATION No. 16,

  16. Oberseminar -ICP Temperature Calculation for Tribological

    E-Print Network [OSTI]

    Harting, Jens

    and passing to third parties. 0 #12;Overview Where to calculate the heat: diesel injection pump First focus: journal bearings DS/ETI2 Vortrag 24.01.05.tex 24.01.05 c Robert Bosch GmbH reserves all rights even;Approach Some assessments: Heat diffuses 30µm in diesel in the time of one rotation of the shaft

  17. New correlation calculates reliable paraffin solubilities

    SciTech Connect (OSTI)

    Yaws, C.L.; Pan, X. (Lamar Univ., Beaumont, TX (US))

    1991-04-08T23:59:59.000Z

    A new correlation based on boiling point has been developed which accurately calculates paraffin solubilities in water. The correlation provides reliable solubility values down to very low concentrations (parts per million and less), for which the API correlation is not accurate. It can be used for initial engineering studies, including those involving health, safety, and environmental considerations.

  18. Spin Contamination in Inorganic Chemistry Calculations

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    R EVISED PAG E PR O O FS ia617 Spin Contamination in Inorganic Chemistry Calculations Jason L . In such cases, 0 is said to be spin contaminated owing to incorporation of higher spin state character of Iron­Sulfur ia618 Clusters). It is important to note that while spin-contaminated and broken

  19. Calculation of a coaxial microwave torch

    SciTech Connect (OSTI)

    Gritsinin, S. I.; Kossyi, I. A. [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation); Kulumbaev, E. B.; Lelevkin, V. M. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2006-10-15T23:59:59.000Z

    Parameters of an equilibrium microwave discharge in an atmospheric-pressure argon flow in a coaxial waveguide with a truncated inner electrode are calculated numerically by using a self-consistent two-dimensional MHD model. The results obtained agree satisfactorily with the experimental data.

  20. Damien Allain Ingnieur recherche, dveloppement, calcul scientifique

    E-Print Network [OSTI]

    , 5 articles publiés. · Administration du parc de machines de calculs Linux. 01/2003­03/2003 Ingénieur données, la réparation de code source en C/C++, de téléchargement de patch et de conversion d'image pour

  1. CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR

    E-Print Network [OSTI]

    Su, Xiao

    CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY By: Yasser Dessouky #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply chain for a single

  2. 2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION 2004 NET SYSTEM POWER CALCULATION COMMISSIONREPORT April 2005 CEC-300 on net system power [Senate Bill 1305, (Sher), Chapter 796, Statute of 1997]1 . Net system power in California. Net system power plays a role in California's retail disclosure program, which requires every

  3. Consanguine Calculations Input File: blood.in

    E-Print Network [OSTI]

    California at Berkeley, University of

    1 of 20 Problem A+ Consanguine Calculations Input File: blood.in Every person's blood has 2 markers in a particular ABO blood type for that person. Combination ABO Blood Type AA A AB AB AO A BB B BO B OO O Likewise, every person has two alleles for the blood Rh factor, represented by the characters + and -. Someone who

  4. Program performs vapor-liquid equilibrium calculations

    SciTech Connect (OSTI)

    Rice, V.L.

    1982-06-28T23:59:59.000Z

    A program designed for the Hewlett-Packard HP-41CV or 41C calculators solves basic vapor-liquid equilibrium problems, including figuring the dewpoint, bubblepoint, and equilibrium flash. The algorithm uses W.C. Edmister's method for predicting ideal-solution K values.

  5. FIRST PRINCIPLES CALCULATIONS OF TOKAMAK ENERGY TRANSPORT

    E-Print Network [OSTI]

    Hammett, Greg

    energy losses have prevented the experimental demonstration of net fusion energy production fromFIRST PRINCIPLES CALCULATIONS OF TOKAMAK ENERGY TRANSPORT M. KOTSCHENREUTHER, W. DORLAND, Q.P. LIU Institute for Fusion Studies, University of Texas, Austin, Texas, United States of America G.W. HAMMETT, M

  6. Calculation of Kinetics Parameters for the NBSR

    SciTech Connect (OSTI)

    Hanson A. L.; Diamond D.

    2012-03-06T23:59:59.000Z

    The delayed neutron fraction and prompt neutron lifetime have been calculated at different times in the fuel cycle for the NBSR when fueled with both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. The best-estimate values for both the delayed neutron fraction and the prompt neutron lifetime are the result of calculations using MCNP5-1.60 with the most recent ENDFB-VII evaluations. The best-estimate values for the total delayed neutron fraction from fission products are 0.00665 and 0.00661 for the HEU fueled core at startup and end-of-cycle, respectively. For the LEU fuel the best estimate values are 0.00650 and 0.00648 at startup and end-of-cycle, respectively. The present recommendations for the delayed neutron fractions from fission products are smaller than the value reported previously of 0.00726 for the HEU fuel. The best-estimate values for the contribution from photoneutrons will remain as 0.000316, independent of the fuel or time in the cycle.The values of the prompt neutron lifetime as calculated with MCNP5-1.60 are compared to values calculated with two other independent methods and the results are in reasonable agreement with each other. The recommended, conservative values of the neutron lifetime for the HEU fuel are 650 {micro}s and 750 {micro}s for the startup and end-of-cycle conditions, respectively. For LEU fuel the recommended, conservative values are 600 {micro}s and 700 {micro}s for the startup and end-of-cycle conditions, respectively. In all three calculations, the prompt neutron lifetime was determined to be longer for the end-of-cycle equilibrium condition when compared to the startup condition. The results of the three analyses were in agreement that the LEU fuel will exhibit a shorter prompt neutron lifetime when compared to the HEU fuel.

  7. CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2005-04-07T23:59:59.000Z

    This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

  8. Validation of Dose Calculation Codes for Clearance

    SciTech Connect (OSTI)

    Menon, S.; Wirendal, B.; Bjerler, J.; Studsvik; Teunckens, L.

    2003-02-27T23:59:59.000Z

    Various international and national bodies such as the International Atomic Energy Agency, the European Commission, the US Nuclear Regulatory Commission have put forward proposals or guidance documents to regulate the ''clearance'' from regulatory control of very low level radioactive material, in order to allow its recycling as a material management practice. All these proposals are based on predicted scenarios for subsequent utilization of the released materials. The calculation models used in these scenarios tend to utilize conservative data regarding exposure times and dose uptake as well as other assumptions as a safeguard against uncertainties. None of these models has ever been validated by comparison with the actual real life practice of recycling. An international project was organized in order to validate some of the assumptions made in these calculation models, and, thereby, better assess the radiological consequences of recycling on a practical large scale.

  9. HP-41 Calculates Dykstra-Parsons permeability

    SciTech Connect (OSTI)

    Bixler, B.

    1983-07-01T23:59:59.000Z

    A new program for the HP-41 programmable calculator has been written which will calculate the often used Dykstra-Parsons permeability variation factor, V. No longer must numerous individual permeability values be plotted on log probability paper as a first step in determining V. Input is simply these same permeability values selected at equal spacing along the interval in question. For most core analysis this spacing will be 1 ft. This program is labeled ''KVAR'' (for permeability variation) and is listed here, along with its bar code for those with optical wands. It requires only nine registers for program storage (since it uses HP built-in statistical functions) and eight registers for data storage. Also, it can be stored on one track of the standard two-track magnetic card. Data entry is terminated by entering ''O''. Lastly, it will run with or without a printer.

  10. Calculations of Heat-Capacities of Adsorbates

    E-Print Network [OSTI]

    LAWRENCE, WR; Allen, Roland E.

    1976-01-01T23:59:59.000Z

    PHYSICAL REVIEW B VOLUME 14, NUMBER 7 1 OCTOBER 1976 Calculations of heat capacities of adsorbates W. R. Lawrence and R. E. Allen Department of Physics, Texas A& M University, College Station, Texas 77843 (Received 2 September 1975) The phonon... the substrate has a perfect (100) surface and the adsorbate goes down as a solid monolayer in registry with the substrate. The quasiharmonic approximation was used, and the results for Ne adsorbates were considerably different from those obtained...

  11. Analytic calculation of properties of holographic superconductors

    E-Print Network [OSTI]

    George Siopsis; Jason Therrien

    2010-03-22T23:59:59.000Z

    We calculate analytically properties of holographic superconductors in the probe limit. We analyze the range $1/2 3/2$. We also obtain the frequency dependence of the conductivity by solving analytically the wave equation of electromagnetic perturbations. We show that the real part of the DC conductivity behaves as $e^{-\\Delta_g /T}$ and estimate the gap $\\Delta_g$ analytically. Our results are in good agreement with numerical results.

  12. Free Energy Calculation in MD Simulation

    E-Print Network [OSTI]

    Nielsen, Steven O.

    Free Energy Calculation in MD Simulation #12;Basic Thermodynamics Helmoholtz free energy A = U ­ TS + i Ni dA = wrev (reversible, const N V T) eq (22.9) McQuarrie & Simon Gibbs free energy G = U;Implication of Free Energy A B Keq = [A]/[B] Keq = exp (-G0 /RT) G0 = -RT ln Keq G = G0 + RT ln Q G > 0

  13. Diffusion Simulation and Lifetime Calculation at RHIC

    SciTech Connect (OSTI)

    Abreu,N.P.; Fischer, W.; Luo, Y.; Robert-Demolaize, G.

    2009-01-02T23:59:59.000Z

    The beam lifetime is an important parameter for any storage ring. For protons in RHIC it is dominated by the non-linear nature of the head-on collisions that causes the particles to diffuse outside the stable area in phase space. In this report we show results from diffusion simulation and lifetime calculation for the 2006 and 2008 polarized proton runs in RHIC.

  14. Criticality calculations for Step-2 GPHS modules.

    SciTech Connect (OSTI)

    Hensen, Danielle Lynn; Lipinski, Ronald J.

    2007-08-01T23:59:59.000Z

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

  15. Criticality Calculations for Step-2 GPHS Modules

    SciTech Connect (OSTI)

    Lipinski, Ronald J. [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Hensen, Danielle L. [Risk and Reliability Department Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States)

    2008-01-21T23:59:59.000Z

    The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

  16. Cosmology calculations almost without general relativity

    E-Print Network [OSTI]

    Thomas F. Jordan

    2004-12-08T23:59:59.000Z

    The Friedmann equation is derived for a Newtonian universe. Changing mass density to energy density gives exactly the Friedmann equation of general relativity. Accounting for work done by pressure then yields the two Einstein equations that govern the expansion of the universe. Descriptions and explanations of radiation pressure and vacuum pressure are added to complete a basic kit of cosmology tools. It provides a basis for teaching cosmology to undergraduates in a way that quickly equips them to do basic calculations. This is demonstrated with calculations involving: characteristics of the expansion for densities dominated by radiation, matter, or vacuum; the closeness of the density to the critical density; how much vacuum energy compared to matter energy is needed to make the expansion accelerate; and how little is needed to make it stop. Travel time and luninosity distance are calculated in terms of the redshift and the densities of matter and vacuum energy, using a scaled Friedmann equation with the constant in the curvature term determined by matching with the present values of the Hubble parameter and energy density. General relativity is needed only for the luminosity distance, to describe how the curvature of space, determined by the energy density, can change the intensity of light by changing the area of the sphere to which the light has spread. Thirty-one problems are included.

  17. Agriculture-related radiation dose calculations

    SciTech Connect (OSTI)

    Furr, J.M.; Mayberry, J.J.; Waite, D.A.

    1987-10-01T23:59:59.000Z

    Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.

  18. NSRD-2015-TD01, Technical Report for Calculations of Atmospheric...

    Office of Environmental Management (EM)

    NSRD-2015-TD01, Technical Report for Calculations of Atmospheric Dispersion at Onsite Locations for DOE Nuclear Facilities NSRD-2015-TD01, Technical Report for Calculations of...

  19. First-principles calculations of the electronic structure, phase...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    calculations of the electronic structure, phase transition and properties of ZrSiO4 polymorphs. First-principles calculations of the electronic structure, phase transition and...

  20. Building America Webinar: HVAC Right-Sizing Part 1-Calculating...

    Energy Savers [EERE]

    HVAC Right-Sizing Part 1-Calculating Loads Building America Webinar: HVAC Right-Sizing Part 1-Calculating Loads During this webinar, Building America Research Team IBACOS...

  1. Measurement and Verification Plan and Savings Calculations Methods...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8) Measurement and Verification Plan and Savings Calculations Methods Outline (IDIQ...

  2. Excited state contamination in nucleon structure calculations

    E-Print Network [OSTI]

    Jeremy Green; Stefan Krieg; John Negele; Andrew Pochinsky; Sergey Syritsyn

    2011-11-28T23:59:59.000Z

    Among the sources of systematic error in nucleon structure calculations is contamination from unwanted excited states. In order to measure this systematic error, we vary the operator insertion time and source-sink separation independently. We compute observables for three source-sink separations between 0.93 fm and 1.39 fm using clover-improved Wilson fermions and pion masses as low as 150 MeV. We explore the use of a two-state model fit to subtract off the contribution from excited states.

  3. Calculation of Neutral Beam Injection into SSPX

    SciTech Connect (OSTI)

    Pearlstein, L D; Casper, T A; Hill, D N; LoDestro, L L; McLean, H S

    2006-06-13T23:59:59.000Z

    The SSPX spheromak experiment has achieved electron temperatures of 350eV and confinement consistent with closed magnetic surfaces. In addition, there is evidence that the experiment may be up against an operational beta limit for Ohmic heating. To test this barrier, there are firm plans to add two 0.9MW Neutral Beam (NB) sources to the experiment. A question is whether the limit is due to instability. Since the deposited Ohmic power in the core is relatively small the additional power from the beams is sufficient to significantly increase the electron temperature. Here we present results of computations that will support this contention. We have developed a new NB module to calculate the orbits of the injected fast fast-ions. The previous computation made heavy use of tokamak ordering which fails for a tight-aspect-ratio device, where B{sub tor} {approx} B{sub pol}. The model calculates the deposition from the NFREYA package [1]. The neutral from the CX deposition is assumed to be ionized in place, a high-density approximation. The fast ions are then assumed to fill a constant angular momentum orbit. And finally, the fast ions immediately assume the form of a dragged down distribution. Transfer rates are then calculated from this distribution function [2]. The differential times are computed from the orbit times and the particle weights in each flux zone (the sampling bin) are proportional to the time spent in the zone. From this information the flux-surface-averaged profiles are obtained and fed into the appropriate transport equation. This procedure is clearly approximate, but accurate enough to help guide experiments. A major advantage is speed: 5000 particles can be processed in under 4s on our fastest LINUX box. This speed adds flexibility by enabling a ''large'' number of predictive studies. Similar approximations, without the accurate orbit calculation presented here, had some success comparing with experiment and TRANSP [3]. Since our procedure does not have multiple CX and relies on disparate time scales, more detailed understanding requires a ''complete'' NB package such as the NUBEAM [4] module, which follows injected fast ions along with their generations until they enter the main thermal distribution.

  4. Calculator program trilogy characterizes comingled gas streams

    SciTech Connect (OSTI)

    Flowers, R.

    1985-08-26T23:59:59.000Z

    A series of programs has been developed for the HP-41CV that allows a quicker and more accurate approach to commingled stream calculations. This avoids the margin of error that the representative method introduces. The alpha-numeric capability of the HP-41CV will prompt for the inputs of an 11-component stream. The program series comprises: gas analysis; gas gathering/gas analysis; and flash vaporization. Each of these programs has its stand-alone use; but their true worth is in their integrated capability.

  5. Nucleotide capacitance calculation for DNA sequencing

    SciTech Connect (OSTI)

    Lu, Jun-Qiang [ORNL; Zhang, Xiaoguang [ORNL

    2008-01-01T23:59:59.000Z

    Using a first-principles linear response theory, the capacitance of the DNA nucleotides, adenine, cytosine, guanine and thymine, are calculated. The difference in the capacitance between the nucleotides is studied with respect to conformational distortion. The result suggests that although an alternate current capacitance measurement of a single-stranded DNA chain threaded through a nano-gap electrodes may not sufficient to be used as a stand alone method for rapid DNA sequencing, the capacitance of the nucleotides should be taken into consideration in any GHz-frequency electric measurements and may also serve as an additional criterion for identifying the DNA sequence.

  6. Simple method for calculating island widths

    SciTech Connect (OSTI)

    Cary, J.R.; Hanson, J.D.; Carreras, B.A.; Lynch, V.E.

    1989-01-01T23:59:59.000Z

    A simple method for calculating magnetic island widths has been developed. This method uses only information obtained from integrating along the closed field line at the island center. Thus, this method is computationally less intensive than the usual method of producing surfaces of section of sufficient detail to locate and resolve the island separatrix. This method has been implemented numerically and used to analyze the buss work islands of ATF. In this case the method proves to be accurate to at least within 30%. 7 refs.

  7. Simple method for calculating island widths

    SciTech Connect (OSTI)

    Cary, J.R. (Department of Astrophysical, Planetary, and Atmospheric Sciences, and Department of Physics, University of Colorado, Boulder, Colorado 80309-0391 (USA)); Hanson, J.D. (Department of Physics, Auburn University, Auburn, Alabama 36849 (USA))

    1991-04-01T23:59:59.000Z

    A simple method for calculating magnetic island widths has been developed. This method uses only that information obtained from integrating along the closed field line at the island center. Thus, this method is computationally less intensive than the usual method of producing surfaces of section of sufficient detail to locate and resolve the island separatrix. This method has been implemented numerically and used to analyze the buss work islands of ATF (Fusion Technol. {bold 10}, 179 (1986)). In this case the method proves to be accurate to at least within 20% even though the islands are within a factor of 2 of overlapping.

  8. Hybrid Car Calculator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California:Project JumpHyEnergy Systems IncCar Calculator

  9. Distributed Energy Calculator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDaytonDestilariaDirectDirectCalculator Jump to:

  10. Cool Roof Calculator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew| Exploration Technique:Illinois: EnergyRoof Calculator

  11. Sensitivity analysis of coupled criticality calculations

    SciTech Connect (OSTI)

    Perko, Z.; Kloosterman, J. L.; Lathouwers, D. [Delft Univ. of Technology, Faculty of Applied Physics, Dept. of Radiation, Radionuclides and Reactors, Mekelweg 15, 2629 JB, Delft (Netherlands)

    2012-07-01T23:59:59.000Z

    Perturbation theory based sensitivity analysis is a vital part of todays' nuclear reactor design. This paper presents an extension of standard techniques to examine coupled criticality problems with mutual feedback between neutronics and an augmenting system (for example thermal-hydraulics). The proposed procedure uses a neutronic and an augmenting adjoint function to efficiently calculate the first order change in responses of interest due to variations of the parameters describing the coupled problem. The effect of the perturbations is considered in two different ways in our study: either a change is allowed in the power level while maintaining criticality (power perturbation) or a change is allowed in the eigenvalue while the power is constrained (eigenvalue perturbation). The calculated response can be the change in the power level, the reactivity worth of the perturbation, or the change in any functional of the flux, the augmenting dependent variables and the input parameters. To obtain power- and criticality-constrained sensitivities power- and k-reset procedures can be applied yielding identical results. Both the theoretical background and an application to a one dimensional slab problem are presented, along with an iterative procedure to compute the necessary adjoint functions using the neutronics and the augmenting codes separately, thus eliminating the need of developing new programs to solve the coupled adjoint problem. (authors)

  12. Multicavity SCRF calculation of ion hydration energies

    SciTech Connect (OSTI)

    Diercksen, B.H.F. [Max-Planck-Institut Fuer Astrophysik, Muenchen (Germany); Karelson, M. [Univ. of Tartu (Estonia); Tamm, T. [Univ. of Florida, Gainesville, FL (United States)

    1994-12-31T23:59:59.000Z

    The hydration energies of the proton, hydroxyl ion, and several inorganic ions were calculated using the multicavity self-consistent reaction field (MCa SCRF) method developed for the quantum-mechanical modeling of rotationally or flexible systems in dielectric media. The ionic complexes H{sub 3}O{sup +}(H2O){sub 4}, OH{sup {minus}}(H2O){sub 4}, NH{sup +}{sub 4}(H2O){sub 4}, and Hal{sup {minus}}(H2O){sub 4}, where Hal = F, Cl, or Br, have been studied. Each complex was divided between five spheres, corresponding to the central ion and four water molecules in their first coordination sphere, respectively. Each cavity was surrounded by a polarizable medium with the dielectric permittivity of water at room temperature (80). The ionic hydration energies of ions were divided into specific and nonspecific parts. After accounting for the cavity-formation energy using scaled particle theory, good agreement between the total calculated and experimental hydration energies was obtained for all ions studied.

  13. Calculations of composition boundaries of saturated phases

    SciTech Connect (OSTI)

    Brewer, L.; Hahn, S.

    1983-09-27T23:59:59.000Z

    A program for the HP-41CV calculator is presented for calculating the equilibrium composition boundaries of pairs of saturating solids, liquids, or a combination of a solid and liquid. The activity coefficients must be represented in the form ln ..gamma../sub 1/ = (b/sub h//T - b/sub s/)x/sub 2//sup 2/ + (c/sub h//T - c/sub x/)x/sub 2//sup 3/ where h refers to an enthalpy contribution and s refers to an excess entropy contribution. For solid-liquid equilibria, enthalpies and entropies of fusion are required. For all equilibria, provision is made for use of hypothetical standard states such as the Henry's Law standard states. For example, in treating solid solutions of molybdenum in face-centered cubic metals such as Ni, Rh, or Pt, it is sometimes convenient to use a hypothetical fcc standard state of Mo which represents the limiting Henry's Law behavior of Mo in the fcc metal and has much different properties than a real fcc molybdenum solid.

  14. Electron mobility calculation for graphene on substrates

    SciTech Connect (OSTI)

    Hirai, Hideki; Ogawa, Matsuto [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan); Tsuchiya, Hideaki, E-mail: tsuchiya@eedept.kobe-u.ac.jp [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan); Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Kamakura, Yoshinari; Mori, Nobuya [Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)

    2014-08-28T23:59:59.000Z

    By a semiclassical Monte Carlo method, the electron mobility in graphene is calculated for three different substrates: SiO{sub 2}, HfO{sub 2}, and hexagonal boron nitride (h-BN). The calculations account for polar and non-polar surface optical phonon (OP) scatterings induced by the substrates and charged impurity (CI) scattering, in addition to intrinsic phonon scattering in pristine graphene. It is found that HfO{sub 2} is unsuitable as a substrate, because the surface OP scattering of the substrate significantly degrades the electron mobility. The mobility on the SiO{sub 2} and h-BN substrates decreases due to CI scattering. However, the mobility on the h-BN substrate exhibits a high electron mobility of 170?000?cm{sup 2}/(V·s) for electron densities less than 10{sup 12?}cm{sup ?2}. Therefore, h-BN should be an appealing substrate for graphene devices, as confirmed experimentally.

  15. ANALYTICAL APPROACH TO TRANSIENT HEAT CONDUCTION IN COOLING LOAD CALCULATIONS

    E-Print Network [OSTI]

    Michal Duška; Martin Barták; František Drkal; Jan Hensen

    equation in cooling load calculations. The performance of nine different procedures (the four methods and

  16. Calculating LHC Tuning Knobs using Various Methods

    E-Print Network [OSTI]

    Wittmer, W; Zimmermann, Frank

    2004-01-01T23:59:59.000Z

    By measuring and adjusting the beta-functions at the IP the luminosity is being optimized. In LEP this was done with the two closest doublet magnets. This approach is not applicable for the LHC due to the asymmetric lattice and common beam pipe through the triplet magnets. To control and change the beta-functions quadrupole groups situated on both sides further away from the IP have to be used where the two beams are already separated. The quadrupoles are excited in specific linear combinations, forming the socalled “tuning knobs” for the IP beta functions. We compare the performance of such knobs calculated by different methods: (1) matching in MAD, (2) inversion of the response matrix and singular value decomposition inversion and conditioning and (3) conditioning the response matrix by multidimensional minimization using an Adapted Moore Penrose Method.

  17. Numerical calculations of ultrasonic fields. [STEALTH

    SciTech Connect (OSTI)

    Johnson, J.A.

    1982-02-01T23:59:59.000Z

    A code for calculating ultrasonic fields has been developed by revisng the thermal-hydraulics code STEALTH. This code may be used in a wide variety of situations in which a detailed knowledge of a propagating wave field is required. Among the potential used are: interpretation of pulse-echo or pitch-catch ultrasonic signals in complicated geometries; ultrasonic transducer modeling and characterization; optimization and evaluation of transducer design; optimization and reliability of inspection procedures; investigation of the response of different types of reflectors; flaw modeling; and general theoretical acoustics. The code is described, and its limitations and potential are discussed. A discussion of the required input and of the general procedures for running the code is presented. Three sample problems illustrate the input and the use of the code.

  18. Random number stride in Monte Carlo calculations

    SciTech Connect (OSTI)

    Hendricks, J.S.

    1990-01-01T23:59:59.000Z

    Monte Carlo radiation transport codes use a sequence of pseudorandom numbers to sample from probability distributions. A common practice is to start each source particle a predetermined number of random numbers up the pseudorandom number sequence. This number of random numbers skipped between each source particles the random number stride, S. Consequently, the jth source particle always starts with the j{center dot}Sth random number providing correlated sampling'' between similar calculations. A new machine-portable random number generator has been written for the Monte Carlo radiation transport code MCNP providing user's control of the random number stride. First the new MCNP random number generator algorithm will be described and then the effects of varying the stride will be presented. 2 refs., 1 fig.

  19. On the calculation of mutual information

    E-Print Network [OSTI]

    Duncan, Tyrone E.

    1970-07-01T23:59:59.000Z

    as follows: (1) d Yt Zt dt + dBt, where the n-dimensional process Z is independent of the n-dimensional standard Brownian motion B, [0, 1], Yo =- 0 and (2) f,f ZTt Zt dP dr< where the superscript T denotes transpose. We wish to calculate the amount... was supported by the United States Air Force under Grant AF-AFOSR 814-66. 215 D ow nl oa de d 09 /1 0/ 14 to 1 29 .2 37 .4 6. 10 0. R ed ist rib ut io n su bje ct to SIA M lic en se or co py rig ht; se e h ttp ://w ww .si am .or g/j ou rna ls/ ojs a...

  20. A primer for criticality calculations with DANTSYS

    SciTech Connect (OSTI)

    Busch, R.D. [Univ. of New Mexico, Albuquerque, NM (United States). Nuclear Criticality Safety Group

    1997-08-01T23:59:59.000Z

    With the closure of many experimental facilities, the nuclear safety analyst has to rely on computer calculations to identify safe limits for the handling and storage of fissile materials. Although deterministic methods often do not provide exact models of a system, a substantial amount of reliable information on nuclear systems can be obtained using these methods if the user understands their limitations. To guide criticality specialists in this area, the Nuclear Criticality Safety Group at the University of New Mexico (UNM) in cooperation with the Radiation Transport Group at Los Alamos National Laboratory (LANL) has designed a primer to help the analyst understand and use the DANTSYS deterministic transport code for nuclear criticality safety analyses. DANTSYS is the new name of the group of codes formerly known as: ONEDANT, TWODANT, TWOHEX, TWOGQ, and THREEDANT. The primer is designed to teach bu example, with each example illustrating two or three DANTSYS features useful in criticality analyses. Starting with a Quickstart chapter, the primer gives an overview of the basic requirements for DANTSYS input and allows the user to quickly run a simple criticality problem with DANTSYS. Each chapter has a list of basic objectives at the beginning identifying the goal of the chapter and the individual DANTSYS features covered in detail in the chapter example problems. On completion of the primer, it is expected that the user will be comfortable doing criticality calculations with DANTSYS and can handle 60--80% of the situations that normally arise in a facility. The primary provides a set of input files that can be selective modified by the user to fit each particular problem.

  1. Recent PQCD calculations of heavy quark production

    E-Print Network [OSTI]

    Vitev, I

    2006-01-01T23:59:59.000Z

    We summarize the results of a recent study of heavy quark production and attenuation in cold nuclear matter. In p+p collisions, we investigate the relative contribution of partonic sub-processes to $D$ meson production and $D$ meson-triggered inclusive di-hadrons to lowest order in perturbative QCD. While gluon fusion dominates the creation of large angle $D\\bar{D}$ pairs, charm on light parton scattering determines the yield of single inclusive $D$ mesons. The distinctly different non-perturbative fragmentation of $c$ quarks into $D$ mesons versus the fragmentation of quarks and gluons into light hadrons results in a strong transverse momentum dependence of anticharm content of the away-side charm-triggered jet. In p+A reactions, we calculate and resum the coherent nuclear-enhanced power corrections from the final-state partonic scattering in the medium. We find that single and double inclusive open charm production can be suppressed as much as the yield of neutral pions from dynamical high-twist shadowing. ...

  2. Development of a Roof Savings Calculator

    SciTech Connect (OSTI)

    New, Joshua Ryan [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Desjarlais, Andre Omer [ORNL] [ORNL; Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); Huang, Joe [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01T23:59:59.000Z

    A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide estimated annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers, and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of building materials, ceiling and deck insulation, and other parameters can be compared side-by-side to generate an energy/cost savings estimate between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft. Irwin, CA.

  3. Development of a Roof Savings Calculator

    SciTech Connect (OSTI)

    New, Joshua Ryan [ORNL] [ORNL; Miller, William A [ORNL] [ORNL; Huang, Joe [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); Erdem, Ender [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01T23:59:59.000Z

    A web-based Roof Savings Calculator (RSC) has been deployed for the Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors, contractors and researchers easily run complex roof and attic simulations. This tool employs the latest web technologies and usability design to provide an easy input interface to an annual simulation of hour-by-hour, whole-building performance using the world-class simulation tools DOE-2.1E and AtticSim. Building defaults were assigned and can provide annual energy and cost savings after the user selects nothing more than building location. In addition to cool reflective roofs, the RSC tool can simulate multiple roof types at arbitrary inclinations. There are options for above sheathing ventilation, radiant barriers and low-emittance surfaces. The tool also accommodates HVAC ducts either in the conditioned space or in the attic with custom air leakage rates. Multiple layers of thermal mass, ceiling insulation and other parameters can be compared side-by-side to generate energy/cost savings between two buildings. The RSC tool was benchmarked against field data for demonstration homes in Ft Irwin, CA.

  4. Visual Analytics for Roof Savings Calculator Ensembles

    SciTech Connect (OSTI)

    Jones, Chad [University of California, Davis] [University of California, Davis; New, Joshua Ryan [ORNL] [ORNL; Sanyal, Jibonananda [ORNL] [ORNL; Ma, Kwan-Liu [University of California, Davis] [University of California, Davis

    2012-01-01T23:59:59.000Z

    The Roof Savings Calculator (RSC) has been deployed for DOE as an industry-consensus, web-based tool for easily running complex building energy simulations. These simulations allow both homeowners and experts to determine building-specific cost and energy savings for modern roof and attic technologies. Using a database of over 3 million RSC simulations for different combinations of parameters, we have built a visual analytics tool to assist in the exploration and identification of features in the data. Since the database contains multiple variables, both categorical and continuous, we employ a coordinated multi-view approach that allows coordinated feature exploration through multiple visualizations at once. The main component of our system, a parallel coordinates view, has been adapted to handle large-scale, mixed data types as are found in RSC simulations. Other visualizations include map coordinated plots, high dynamic range (HDR) line plot rendering, and an intuitive user interface. We demonstrate these techniques with several use cases that have helped identify software and parametric simulation issues.

  5. Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study

    SciTech Connect (OSTI)

    Pajunen, A. J.; Tedeschi, A. R.

    2012-09-18T23:59:59.000Z

    This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

  6. Normalizing Weather Data to Calculate Energy Savings Peer Exchange...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Normalizing Weather Data to Calculate Energy Savings Peer Exchange Call Normalizing Weather Data to Calculate Energy Savings Peer Exchange Call February 26, 2015 3:00PM to 4:3...

  7. TDHF fusion calculations for spherical+deformed systems

    E-Print Network [OSTI]

    A. S. Umar; V. E. Oberacker

    2006-04-04T23:59:59.000Z

    We outline a formalism to carry out TDHF calculations of fusion cross sections for spherical + deformed nuclei. The procedure incorporates the dynamic alignment of the deformed nucleus into the calculation of the fusion cross section. The alignment results from multiple E2/E4 Coulomb excitation of the ground state rotational band. Implications for TDHF fusion calculations are discussed. TDHF calculations are done in an unrestricted three-dimensional geometry using modern Skyrme force parametrizations.

  8. STORM in Monte Carlo reactor physics calculations KAUR TUTTELBERG

    E-Print Network [OSTI]

    Haviland, David

    STORM in Monte Carlo reactor physics calculations KAUR TUTTELBERG Master of Science Thesis Carlo reactor physics criticality calculations. This is achieved by optimising the number of neutron for more efficient Monte Carlo reactor physics calculations, giving results with errors that can

  9. The melting lines of model systems calculated from coexistence simulations

    E-Print Network [OSTI]

    Song, Xueyu

    rapidly as a function of the potential cutoff, indicating that long-range corrections to the free energies of the solid and liquid phases very nearly cancel. This approach provides an alternative to traditional methods them. Tradition- ally, these calculations have been made using free energy calculations: by calculating

  10. Full Core, Heterogeneous, Time Dependent Neutron Transport Calculations with the 3D Code DeCART

    E-Print Network [OSTI]

    Hursin, Mathieu

    2010-01-01T23:59:59.000Z

    for multi- dimensional reactor calculation." Atomkernenergiein Light Water Reactor calculations, which are processedlight water reactor diffusion calculations." Nuclear Science

  11. CRC handbook of nuclear reactors calculations. Vol. III

    SciTech Connect (OSTI)

    Ronen, Y.

    1986-01-01T23:59:59.000Z

    This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume III: Control Rods and Burnable Absorber Calculations. Perturbation Theory for Nuclear Reactor Analysis. Thermal Reactors Calculations. Fast Reactor Calculations. Seed-Blanket Reactors. Index.

  12. Calculation of molecular free energies in classical potentials

    E-Print Network [OSTI]

    Farhi, Asaf

    2015-01-01T23:59:59.000Z

    Free energy calculations in molecular simulations are used to predict the strength of molecular processes such as binding and solvation. We present an accurate and complete calculation of molecular free energies in standard classical potentials. In this method we transform the molecule by relaxing potential terms that depend on the coordinates of a group of atoms in that molecule and calculate the free energy difference associated with the transformation. Then, since the transformed molecule can be treated as non interacting systems, the free energy associated with these atoms is analytically or numerically calculated. We suggest the potential application of free energy calculation of chemical reactions in classical molecular simulations.

  13. Binding Energies in Benzene Dimers: Nonlocal Density Functional Calculations

    E-Print Network [OSTI]

    Aaron Puzder; Maxime Dion; David C. Langreth

    2005-09-15T23:59:59.000Z

    The interaction energy and minimum energy structure for different geometries of the benzene dimer has been calculated using the recently developed nonlocal correlation energy functional for calculating dispersion interactions. The comparison of this straightforward and relatively quick density functional based method with recent calculations can elucidate how the former, quicker method might be exploited in larger more complicated biological, organic, aromatic, and even infinite systems such as molecules physisorbed on surfaces, and van der Waals crystals.

  14. Calculation of sensitivity coefficients for a neutron well logging tool

    E-Print Network [OSTI]

    Chen, Chien-Hsiang

    1993-01-01T23:59:59.000Z

    OF SCIENCE August 1993 Major Subject: Nuclear Engineering CALCULATION OF SENSITIVITY COEFFICIENTS FOR A NEUTRON WELL LOGGING TOOL A Thesis by CHIEN-HSIANG CHEN Approved as to style and content by: Theodore A. Parish (Chair of Committee) Ron R. Hart... to calculate sensitivity coefficients. A benchmark problem for a neutron porosity logging tool was set up to test the methodology mentioned above. Through several tests and calculations of sensitivity coefficients, it was found that the response...

  15. A Cosmology Calculator for the World Wide Web

    E-Print Network [OSTI]

    Edward L. Wright

    2006-10-10T23:59:59.000Z

    A cosmology calculator that computes times and distances as a function of redshift for user-defined cosmological parameters is available on the World Wide Web. This note gives the formulae used by the cosmology calculator and discusses some of its implementation. A version of the calculator that allows one to specify the equation of state parameter w and w' and neutrino masses, and a version for converting the light travel times usually given in the popular press into redshifts are also available.

  16. Calculation of the compressibility factor and thermodynamic properties for methane

    E-Print Network [OSTI]

    Dowling, Dennis William

    1966-01-01T23:59:59.000Z

    of Saturated Vapor Volumes Reported by Bloomer and Parent (5) and Those Calculated in This Work Thermodynamic Properties Calculated by Use of Berlin Equation Thermodynamic Properties Calculated by Use of Benedict-Webb-Rubin Equation 35 36 39 40 48..., and Smith (15), Gardoso (7), and Bloomer and Parent (5) have reported experimental vapor pressure data and values for the saturated liquid density. Cardoso (7) and Bloomer and Parent (5) have also reported values for saturated vapor densities. A critical...

  17. Calculation of tunneling rates across a barrier with continuous potential

    E-Print Network [OSTI]

    Sina Khorasani

    2011-04-10T23:59:59.000Z

    Here, approximate, but accurate expressions for calculation of wavefunctions and tunneling rates are obtained using the method of uniform asymptotic expansion.

  18. First Principles Calculations and NMR Spectroscopy of Electrode...

    Broader source: Energy.gov (indexed) [DOE]

    First Principles Calculations and NMR Spectroscopy of Electrode Materials G. Ceder Massachusetts Institute of technology and C. P Grey Cambridge University and Stony Brook...

  19. Burnup calculation methodology in the serpent 2 Monte Carlo code

    SciTech Connect (OSTI)

    Leppaenen, J. [VTT Technical Research Centre of Finland, P.O.Box 1000, FI-02044 VTT (Finland); Isotalo, A. [Aalto Univ., Dept. of Applied Physics, P.O.Box 14100, FI-00076 AALTO (Finland)

    2012-07-01T23:59:59.000Z

    This paper presents two topics related to the burnup calculation capabilities in the Serpent 2 Monte Carlo code: advanced time-integration methods and improved memory management, accomplished by the use of different optimization modes. The development of the introduced methods is an important part of re-writing the Serpent source code, carried out for the purpose of extending the burnup calculation capabilities from 2D assembly-level calculations to large 3D reactor-scale problems. The progress is demonstrated by repeating a PWR test case, originally carried out in 2009 for the validation of the newly-implemented burnup calculation routines in Serpent 1. (authors)

  20. Energy Cost Savings Calculator for Commercial Boilers: Closed...

    Office of Environmental Management (EM)

    Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only This cost...

  1. Cascade calculation of subthreshold. pi. sup 0 production

    SciTech Connect (OSTI)

    Gavron, A.; Yariv, Y. (Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (US))

    1990-05-01T23:59:59.000Z

    Intranuclear cascade calculations are found to provide a good description of the various features of subthreshold {pi}{sup 0} production in nucleon-nucleus collisions.

  2. Formation enthalpies by mixing GGA and GGA + U calculations

    E-Print Network [OSTI]

    Jain, Anubhav

    Standard approximations to the density functional theory exchange-correlation functional have been extraordinary successful, but calculating formation enthalpies of reactions involving compounds with both localized and ...

  3. Examen de calcul matriciel Licence MASHS -MI -SPC, semestre 2

    E-Print Network [OSTI]

    Lafont, Yves

    Examen de calcul matriciel Licence MASHS - MI - SPC, semestre 2 14 juin 2007 Durée de l'épreuve : 3

  4. assessment calculations related: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chi values surrounding the common rotameric states of leucine and valine. Relative free enegy slices were calculated from the biased trajectories using the weighted histogram...

  5. First Principles Calculations and NMR Spectroscopy of Electrode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calculations and NMR Spectroscopy of Electrode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

  6. Optimization Online - Calculating optimal conditions for alloy and ...

    E-Print Network [OSTI]

    Aimen E. Gheribi

    2010-12-21T23:59:59.000Z

    Dec 21, 2010 ... Calculating optimal conditions for alloy and process design using thermodynamic and property databases, the FactSage software ... is maximized or minimized during annealing or rolling; other calculated functions such as ... which the objectives and constraints are typically outputs of computer simulations.

  7. CALCULATION OF THE NEUTRON NOISE INDUCED BY SHELL-MODE

    E-Print Network [OSTI]

    Demazière, Christophe

    CALCULATION OF THE NEUTRON NOISE INDUCED BY SHELL-MODE FISSION REACTORS CORE-BARREL VIBRATIONS-REGION SLAB REACTOR MODEL CARL SUNDE,* CHRISTOPHE DEMAZI�RE, and IMRE PÁZSIT Chalmers University of Technology for Publication October 12, 2005 The subject of this paper is the calculation of the in-core neutron noise induced

  8. Overview of `classical' or `standardized' DPA calculation stemming from the

    E-Print Network [OSTI]

    McDonald, Kirk

    Overview of `classical' or `standardized' DPA calculation stemming from the reactor world. Colin English, NNL 7 April 2014 #12;2 Purpose · Overview of `classical' or `standardized' DPA calculation stemming from the reactor world. · Current Status · Details of accepted Methodology · Known Limitations

  9. Calculating reactor transfer functions by Pade approximation via Lanczos algorithm

    E-Print Network [OSTI]

    Pázsit, Imre

    Calculating reactor transfer functions by PadeÃ? approximation via Lanczos algorithm Zhifeng Kuang a function of a reactor, i.e. the neutron noise induced by a localised perturbation is calculated in one, *,1 , Imre PaÃ? zsit a , Axel Ruhe b a Department of Reactor Physics, Chalmers University of Technology

  10. Independent review of SCDAP/RELAP5 natural circulation calculations

    SciTech Connect (OSTI)

    Martinez, G.M.; Gross, R.J.; Martinez, M.J.; Rightley, G.S.

    1994-01-01T23:59:59.000Z

    A review and assessment of the uncertainties in the calculated response of reactor coolant system natural circulation using the SCDAP/RELAP5 computer code were completed. The SCDAP/RELAP5 calculation modeled a station blackout transient in the Surry nuclear power plant and concluded that primary system depressurization from natural circulation induced primary system failure is more likely than previously thought.

  11. General calculations using graphics hardware, with application to interactive caustics

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    General calculations using graphics hardware, with application to interactive caustics Chris Trendall and A. James Stewart iMAGIS­GRAVIR/IMAG and University of Toronto Abstract. Graphics hardware has general computation. This paper shows that graphics hardware can perform general calculations, which

  12. Model calculations of nuclear data for biologically-important elements

    SciTech Connect (OSTI)

    Chadwick, M.B.; Blann, M.; Reffo, G. [Lawrence Livermore National Lab., CA (United States); Young, P.G. [Los Alamos National Lab., NM (United States)

    1994-05-01T23:59:59.000Z

    We describe calculations of neutron-induced reactions on carbon and oxygen for incident energies up to 70 MeV, the relevant clinical energy in radiation neutron therapy. Our calculations using the FKK-GNASH, GNASH, and ALICE codes are compared with experimental measurements, and their usefulness for modeling reactions on biologically-important elements is assessed.

  13. Computing Partial Eigenvalue Sum in Electronic Structure Calculations

    E-Print Network [OSTI]

    Bai, Zhaojun

    and CPU time. In the application of electronic structure calculations in molecular dynamics, the newComputing Partial Eigenvalue Sum in Electronic Structure Calculations Z. Bai M. Faheyy G. Golubz M where computation of the total energy of an electronic structure requires the evaluation of partial

  14. Dynamic Algorithm Selection in Parallel GAMESS Calculations Nurzhan Ustemirov

    E-Print Network [OSTI]

    Sosonkina, Masha

    and Molecular Electronic Structure System (GAMESS) used for ab initio molecular quantum chemistry calculationsDynamic Algorithm Selection in Parallel GAMESS Calculations Nurzhan Ustemirov Masha Sosonkina, network, or disk I/O. For large-scale scientific applications, dynamic adjustments to a computationally

  15. IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION

    E-Print Network [OSTI]

    IMPROVEMENTS TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE By BEREKET, Australia 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial TO THE RADIANT TIME SERIES METHOD COOLING LOAD CALCULATION PROCEDURE Dissertation Approved: Dr. Jeffrey D

  16. RETI Resource Valuation Methodology Cost of Generation Calculator

    E-Print Network [OSTI]

    ) · Cost of equity investment in capital · Cost of financing capital · Taxes, including investmentRETI Resource Valuation Methodology Cost of Generation Calculator The Cost of Generation Calculator determines the levelized cost of generating power over the life of the resource, and is an input

  17. Processus communicants Communication synchrone CSP/CCS/-calcul

    E-Print Network [OSTI]

    Grigoras, .Romulus

    Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Huitième partie Processus communicants CSP/Ada Systèmes concurrents 2 / 44 #12;Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Principes Synchronisation Désignation

  18. Benchmark problems and results for verifying resonance calculation methodologies

    SciTech Connect (OSTI)

    Wu, H.; Yang, W.; Qin, Y.; He, L.; Cao, L.; Zheng, Y.; Liu, Q. [NECP Laboratory, School of Nuclear Science and Technology, Xi'An Jiaotong Univ., 710049 (China)

    2012-07-01T23:59:59.000Z

    Resonance calculation is one of the most important procedures for the multi-group neutron transport calculation. With the development of nuclear reactor concepts, many new types of fuel assembly are raised. Compared to the traditional designs, most of the new fuel assemblies have different fuel types either with complex isotopes or with complicated geometry. This makes the traditional resonance calculation method invalid. Recently, many advanced resonance calculation methods are proposed. However, there are few benchmark problems for evaluating those methods with a comprehensive comparison. In this paper, we design 5 groups of benchmark problems including 21 typical cases of different geometries and fuel contents. The reference results of the benchmark problems are generated based on the sub-group method, ultra-fine group method, function expanding method and Monte Carlo method. It is shown that those benchmark problems and their results could be helpful to evaluate the validity of the newly developed resonance calculation method in the future work. (authors)

  19. Calculation of Heating Values for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Peterson, Joshua L [ORNL] [ORNL; Ilas, Germina [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Calculating the amount of energy released by a fission reaction (fission Q value) and the heating rate distribution in a nuclear reactor is an important part of the safety analysis. However, these calculations can become very complex. One of the codes that can be used for this type of analyses is the Monte Carlo transport code MCNP5. Currently it is impossible to calculate the Q value and heating rate disposition for delayed beta and delayed gamma particles directly from MCNP5. The purpose of this paper is to outline a rigorous method for indirectly calculating the Q values and heating rates in the High Flux Isotope Reactor (HFIR), based on previous similar studies carried out for very high-temperature reactor configurations. This method has been applied in this study to calculate heating rates for the beginning of cycle (BOC) and end-of-cycle (EOC) states of HFIR. In addition, the BOC results obtained for HFIR are compared with corresponding results for the Advanced Test Reactor. The fission Q value for HFIR was calculated as 200.2 MeV for the BOC and 201.3 MeV for the EOC. It was also determined that 95.1% and 95.4% of the heat was deposited within the HFIR fuel plates for the BOC and EOC models, respectively. This methodology can also be used for heating rate calculations for HFIR experiments.

  20. IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS

    SciTech Connect (OSTI)

    D.M. Jolley

    2001-12-18T23:59:59.000Z

    The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.

  1. CRC handbook of nuclear reactors calculations. Vol. II

    SciTech Connect (OSTI)

    Ronen, Y.

    1986-01-01T23:59:59.000Z

    This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described. Volume II: Monte Carlo Calculations for Nuclear Reactors. In-Core Management of Four Reactor Types. In-Core Management in CANDU-PHW Reactors. Reactor Dynamics. The Theory of Neutron Leakage in Reactor Lattices. Index.

  2. Practical calculation of amplitudes for electron-impact ionization

    SciTech Connect (OSTI)

    McCurdy, C. William; Horner, Daniel A.; Rescigno, Thomas N.

    2001-02-01T23:59:59.000Z

    An integral expression that is formally valid only for short-range potentials is applied to the problem of calculating the amplitude for electron-impact ionization. It is found that this expression provides a practical and accurate path to the calculation of singly differential cross sections for electron-impact ionization. Calculations are presented for the Temkin-Poet and collinear models for ionization of hydrogen by electron impact. An extension of the finite-element approach using the discrete-variable representation, appropriate for potentials with discontinuous derivatives like the Temkin-Poet interaction, is also presented.

  3. Relativistic mean field calculations in neutron-rich nuclei

    SciTech Connect (OSTI)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14T23:59:59.000Z

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  4. First-principles Calculation of Excited State Spectra in QCD

    SciTech Connect (OSTI)

    Dudek, Jozef J. [Jefferson Laboratory, 12000 Jefferson Avenue Suite 1, Newport News, VA 23606 (United States); Department of Physics, Old Dominion University, Norfolk, VA 23529 (United States); Edwards, Robert G.; Richards, David G.; Thomas, Christopher E. [Jefferson Laboratory, 12000 Jefferson Avenue Suite 1, Newport News, VA 23606 (United States); Peardon, Michael J. [School of Mathematics, Trinity College, Dublin 2 (Ireland)

    2011-05-24T23:59:59.000Z

    Recent progress at understanding the excited state spectra of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum of QCD, and then present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I emphasise the need to extend the calculation to encompass multi-hadron contributions, and describe a recent calculation of the I = 2{pi}{pi} energy-dependent phase shifts as a precursor to the study of channels with resonant behavior. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.

  5. The Use of Graphics Calculator in a Matriculation Statistics Classroom: A Malaysian Perspective

    E-Print Network [OSTI]

    Krishnan, Saras; Idris, Noraini

    2013-01-01T23:59:59.000Z

    mathematics: Why graphics calculator? Proceedings of the 2Learning statistics with graphics calculator: A case study.Learning statistics with graphics calculator: Students’

  6. Calculating the hyperWiener index of benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Calculating the hyper­Wiener index of benzenoid hydrocarbons Petra Zigert1 , Sandi Klavzar1) is not easy, especially in the case of large polycyclic molecules, such as benzenoid hydrocarbons. Some time

  7. Calculating the hyper--Wiener index of benzenoid hydrocarbons

    E-Print Network [OSTI]

    Klavzar, Sandi

    Calculating the hyper--Wiener index of benzenoid hydrocarbons Petra Ÿ Zigert 1 , Sandi KlavŸ zar 1. (1) is not easy, especially in the case of large polycyclic molecules, such as benzenoid hydrocarbons

  8. Reactor physics calculation of BWR fuel bundles containing gadolinia

    E-Print Network [OSTI]

    Morales, Diego

    1977-01-01T23:59:59.000Z

    A technique for the calculation of the neutronic behavior of BWR fuel bundles has been developed and applied to a Vermont Yankee fuel bundle. The technique is based on a diffusion theory treatment of the bundle, with ...

  9. Universal calculation formula and calibration method in Fourier transform profilometry

    SciTech Connect (OSTI)

    Wen Yongfu; Li Sikun; Cheng Haobo; Su Xianyu; Zhang Qican

    2010-12-01T23:59:59.000Z

    We propose a universal calculation formula of Fourier transform profilometry and give a strict theoretical analysis about the phase-height mapping relation. As the request on the experimental setup of the universal calculation formula is unconfined, the projector and the camera can be located arbitrarily to get better fringe information, which makes the operation flexible. The phase-height calibration method under the universal condition is proposed, which can avoid measuring the system parameters directly. It makes the system easy to manipulate and improves the measurement velocity. A computer simulation and experiment are conducted to verify its validity. The calculation formula and calibration method have been applied to measure an object of 22.00 mm maximal height. The relative error of the measurement result is only 0.59%. The experimental results prove that the three-dimensional shape of tested objects can be reconstructed exactly by using the calculation formula and calibration method, and the system has better universality.

  10. CRAC calculations for accident sections of environmental statements

    SciTech Connect (OSTI)

    Johnson, J.D.; Ritchie, L.T.

    1983-03-01T23:59:59.000Z

    The CRAC2 computer code was adapted to the calculation requirements of Draft/Final Environmental Impact Statement (DES/FES) casework analysis for the Nuclear Regulatory Commission. CRAC is a revised version of the CRAC (Calculation of Reactor Accident Consequences) computer code developed in support of the Reactor Safety Study, WASH-1400. A graphical output package was developed for displaying CRAC2 computed results. All phases of the casework analysis calculations from initial data formatting to plotting of calculated results are executed through the use of procedure files on the Idaho National Engineering Laboratory (INEL) computing system at Idaho Falls, Idaho. The INEL computing system operates under the Control Data Corporation (CDC) NOS/BE Operating System (Level 518) and Intercom Version 5.

  11. Calculation of Accurate Hexagonal Discontinuity Factors for PARCS

    SciTech Connect (OSTI)

    Pounders. J., Bandini, B. R. , Xu, Y, and Downar, T. J.

    2007-11-01T23:59:59.000Z

    In this study we derive a methodology for calculating discontinuity factors consistent with the Triangle-based Polynomial Expansion Nodal (TPEN) method implemented in PARCS for hexagonal reactor geometries. The accuracy of coarse-mesh nodal methods is greatly enhanced by permitting flux discontinuities at node boundaries, but the practice of calculating discontinuity factors from infinite-medium (zero-current) single bundle calculations may not be sufficiently accurate for more challenging problems in which there is a large amount of internodal neutron streaming. The authors therefore derive a TPEN-based method for calculating discontinuity factors that are exact with respect to generalized equivalence theory. The method is validated by reproducing the reference solution for a small hexagonal core.

  12. Calculating Horsepower Requirements and Sizing Supply Pipelines for Irrigation 

    E-Print Network [OSTI]

    Fipps, Guy

    1995-09-05T23:59:59.000Z

    Pumping costs are often one of the largest single expenses in irrigated agriculture. This publication explains how to lower pumping costs by calculating horsepower requirements and sizing supply pipelines correctly. Examples take the reader through...

  13. Protein Thermostability Calculations Using Alchemical Free Energy Simulations

    E-Print Network [OSTI]

    de Groot, Bert

    Protein Thermostability Calculations Using Alchemical Free Energy Simulations Daniel Seeliger by alterations in the free energy of folding. Growing computational power, however, increasingly allows us to use alchem- ical free energy simulations, such as free energy perturbation or thermodynamic integration

  14. Guidelines for the analysis of free energy calculations

    E-Print Network [OSTI]

    Klimovich, PV; Shirts, MR; Mobley, DL; Mobley, DL

    2015-01-01T23:59:59.000Z

    Efficient estimation of free energy differ- ences from Montenumerical instabilities in free energy calculations based onD.L. , DiCapua, F.M. : Free energy via molecular simulation:

  15. Is Ring breaking feasible in relative binding free energy calculations?

    E-Print Network [OSTI]

    Liu, S; Wang, L; Mobley, DL

    2015-01-01T23:59:59.000Z

    Essex, J. W. Rigorous Free Energy Calculations in Structure-of Hydration Free Energies for SAMPL. J. Comput. -Aided Mol.Basic Ingredients of Free Energy Calcula- tions: A Review.

  16. A computer program for HVDC converter station RF noise calculations

    SciTech Connect (OSTI)

    Kasten, D.G.; Caldecott, R.; Sebo, S.A. (Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering); Liu, Y. (Virginia Polytechnic Inst. State Univ., Blacksburg, VA (United States). Bradley Dept. of Electrical Engineering)

    1994-04-01T23:59:59.000Z

    HVDC converter station operations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. A generic Radio Frequency Computer Analysis Program (RAFCAP) for calculating the EM noise generated by valve ignition of a converter station has been developed as part of a larger project. The program calculates RF voltages, currents, complex power, ground level electric field strength and magnetic flux density in and around an HVDC converter station. The program requires the converter station network to be represented by frequency dependent impedance functions. Comparisons of calculated and measured values are given for an actual HVDC station to illustrate the validity of the program. RAFCAP is designed to be used by engineers for the purpose of calculating the RF noise produced by the igniting of HVDC converter valves.

  17. Automating journey fare calculation for transport for London

    E-Print Network [OSTI]

    Maciejewski, Joshua J. (Joshua John)

    2008-01-01T23:59:59.000Z

    This thesis develops a method to automate journey fare calculation for Transport for London. Today, fares for every possible origin-destination station pair within the London Underground are prepared manually based on the ...

  18. Process and Intermediate Calculations User AccessInputs Outputs

    E-Print Network [OSTI]

    Process and Intermediate Calculations User AccessInputs Outputs Fire Behavior & Probability STARFire System Flow Valuation Processing Temporal Schedules Smoke · Zones · Zone impact · Emissions Fire and compare Valuation (Structured Elicit Process) 1) Value Layers: · Point (housing, cultural trees, etc

  19. CRC handbook of nuclear reactors calculations. Vol. I

    SciTech Connect (OSTI)

    Ronen, Y.

    1986-01-01T23:59:59.000Z

    This handbook breaks down the complex field of nuclear reactor calculations into major steps. Each step presents a detailed analysis of the problems to be solved, the parameters involved, and the elaborate computer programs developed to perform the calculations. This book bridges the gap between nuclear reactor theory and the implementation of that theory, including the problems to be encountered and the level of confidence that should be given to the methods described.

  20. Improved load models for multi-area reliability calculations

    E-Print Network [OSTI]

    Pathak, Sanjesh

    1992-01-01T23:59:59.000Z

    IMPROVED LOAD MODELS FOR MULTI-AREA RELIABILITY CALCULATIONS A Thesis by SANJESH PATHAK Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1992 Major Subject: Electrical Engineering IMPROVED LOAD MODELS FOR MULTI-AREA RELIABILITY CALCULATIONS A Thesis by SAN JESH PATHAK Approved as to style and content by: Chanan Singh (Chair of Committee) Prasad Enjeti (Member) Ces . Mal, e...

  1. Scoping calculations of power sources for nuclear electric propulsion

    SciTech Connect (OSTI)

    Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1994-05-01T23:59:59.000Z

    This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

  2. Strategy Guideline: Accurate Heating and Cooling Load Calculations

    SciTech Connect (OSTI)

    Burdick, A.

    2011-06-01T23:59:59.000Z

    This guide presents the key criteria required to create accurate heating and cooling load calculations and offers examples of the implications when inaccurate adjustments are applied to the HVAC design process. The guide shows, through realistic examples, how various defaults and arbitrary safety factors can lead to significant increases in the load estimate. Emphasis is placed on the risks incurred from inaccurate adjustments or ignoring critical inputs of the load calculation.

  3. Reservoir rock-property calculations from thin section measurements

    E-Print Network [OSTI]

    Sneed, David Richard

    1988-01-01T23:59:59.000Z

    RESERVOIR ROCK-PROPERTY CALCULATIONS FROM THIN SECTION MEASUREMENTS A Thesis by DAVID RICHARD SNEED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 1988 Major Subject: Geology RESERVOIR ROCK-PROPERTY CALCULATIONS FROM THIN SECTION MEASUREMENTS A Thesis by DAVID RICHARD SNEED Approved as to style and content by: Robert R. Berg (Chair of Committee) ~ c(. Thomas T. Tieh (Member...

  4. Global variance reduction for Monte Carlo reactor physics calculations

    SciTech Connect (OSTI)

    Zhang, Q.; Abdel-Khalik, H. S. [Department of Nuclear Engineering, North Carolina State University, P.O. Box 7909, Raleigh, NC 27695-7909 (United States)

    2013-07-01T23:59:59.000Z

    Over the past few decades, hybrid Monte-Carlo-Deterministic (MC-DT) techniques have been mostly focusing on the development of techniques primarily with shielding applications in mind, i.e. problems featuring a limited number of responses. This paper focuses on the application of a new hybrid MC-DT technique: the SUBSPACE method, for reactor analysis calculation. The SUBSPACE method is designed to overcome the lack of efficiency that hampers the application of MC methods in routine analysis calculations on the assembly level where typically one needs to execute the flux solver in the order of 10{sup 3}-10{sup 5} times. It places high premium on attaining high computational efficiency for reactor analysis application by identifying and capitalizing on the existing correlations between responses of interest. This paper places particular emphasis on using the SUBSPACE method for preparing homogenized few-group cross section sets on the assembly level for subsequent use in full-core diffusion calculations. A BWR assembly model is employed to calculate homogenized few-group cross sections for different burn-up steps. It is found that using the SUBSPACE method significant speedup can be achieved over the state of the art FW-CADIS method. While the presented speed-up alone is not sufficient to render the MC method competitive with the DT method, we believe this work will become a major step on the way of leveraging the accuracy of MC calculations for assembly calculations. (authors)

  5. ESTIMATING THE UNCERTAINTY IN REACTIVITY ACCIDENT NEUTRONIC CALCULATIONS

    SciTech Connect (OSTI)

    DIAMOND,D.J.; YANG,C.Y.; ARONSON,A.L.

    1998-10-26T23:59:59.000Z

    A study of the uncertainty in calculations of the rod ejection accident in a pressurized water reactor is being carried out for the US Nuclear Regulatory Commission. This paper is a progress report on that study. Results are presented for the sensitivity of core energy deposition to the key parameters: ejected rod worth, delayed neutron fraction, Doppler reactivity coefficient, and fuel specific heat. These results can be used in the future to estimate the uncertainty in local fuel enthalpy given some assumptions about the uncertainty in the key parameters. This study is also concerned with the effect of the intra-assembly representation in calculations. The issue is the error that might be present if assembly-average power is calculated, and pin peaking factors from a static calculation are then used to determine local fuel enthalpy. This is being studied with the help of a collaborative effort with Russian and French analysts who are using codes with different intra-assembly representations. The US code being used is PARCS which calculates power on an assembly-average basis. The Russian code being used is BARS which calculates power for individual fuel pins using a heterogeneous representation based on a Green's Function method.

  6. Estimating the uncertainty in reactivity accident neutronic calculations

    SciTech Connect (OSTI)

    Diamond, D.J.; Yang, C.Y.; Aronson, A.L.

    1998-12-31T23:59:59.000Z

    A study of the uncertainty in calculations of the rod ejection accident in a pressurized water reactor is being carried out for the US Nuclear Regulatory Commission. This paper is a progress report on that study. Results are presented for the sensitivity of core energy deposition to the key parameters: ejected rod worth, delayed neutron fraction, Doppler reactivity coefficient, and fuel specific heat. These results can be used in the future to estimate the uncertainty in local fuel enthalpy given some assumptions about the uncertainty in the key parameters. This study is also concerned with the effect of the intra-assembly representation in calculations. The issue is the error that might be present if assembly-average power is calculated, and pin peaking factors from a static calculation are then used to determine local fuel enthalpy. This is being studied with the help of a collaborative effort with Russian and French analysts who are using codes with different intra-assembly representations. The US code being used is PARCS which calculates power on an assembly-average basis. The Russian code being used is BARS which calculates power for individual fuel pins using a heterogeneous representation based on a Green`s Function method.

  7. Iterative acceleration methods for Monte Carlo and deterministic criticality calculations

    SciTech Connect (OSTI)

    Urbatsch, T.J.

    1995-11-01T23:59:59.000Z

    If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

  8. Formal Management Review of the Safety Basis Calculations Noncompliance

    SciTech Connect (OSTI)

    Altenbach, T J

    2008-06-24T23:59:59.000Z

    In Reference 1, LLNL identified a failure to adequately implement an institutional commitment concerning administrative requirements governing the documentation of Safety Basis calculations supporting the Documented Safety Analysis (DSA) process for LLNL Hazard Category 2 and Category 3 nuclear facilities. The AB Section has discovered that the administrative requirements of AB procedure AB-006, 'Safety Basis Calculation Procedure for Category 2 and 3 Nuclear Facilities', have not been uniformly or consistently applied in the preparation of Safety Basis calculations for LLNL Hazard Category 2 and 3 Nuclear Facilities. The SEP Associated Director has directed the AB Section to initiate a formal management review of the issue that includes, but is not necessarily limited to the following topics: (1) the basis establishing Ab-006 as a required internal procedure for Safety Basis calculations; (2) how requirements for Safety Basis calculations flow down in the institutional DSA process; (3) the extent to which affected Laboratory organizations have explicitly complied with the requirements of Procedure AB-006; (4) what alternative approaches LLNL organizations has used for Safety Basis calculations and how these alternate approaches compare with Procedure AB-006 requirements; and (5) how to reconcile Safety Basis calculations that were performed before Procedure AB-006 came into existence (i.e., August 2001). The management review2 also includes an extent-of-condition evaluation to determine how widespread the discovered issue is throughout Laboratory organizations responsible for operating nuclear facilities, and to determine if implementation of AB procedures other than AB-006 has been similarly affected. In Reference 2, Corrective Action 1 was established whereby the SEP Directorate will develop a plan for performing a formal management review of the discovered condition, including an extent-of condition evaluation. In Reference 3, a plan was provided to prepare a formal management review, satisfying Corrective Action 1. An AB-006 Working Group was formed,led by the AB Section, with representatives from the Nuclear Materials Technology Program (NMTP), the Radioactive and Hazardous Waste Management (RHWM) Division, and the Packaging and Transportation Safety (PATS) Program. The key action of this management review was for Working Group members to conduct an assessment of all safety basis calculations referenced in their respective DSAs. Those assessments were tasked to provide the following information: (1) list which safety basis calculations correctly follow AB-006 and therefore require no additional documentation; (2) identify and list which safety basis calculations do not strictly follow AB-006, these include NMTP Engineering Notes, Engineering Safety Notes, and calculations by organizations external to the nuclear facilities (such as Plant Engineering), subcontractor calculations, and other internally generated calculations. Each of these will be reviewed and listed on a memorandum with the facility manager's (or designee's) signature accepting that calculation for use in the DSA. If any of these calculations are lacking the signature of a technical reviewer, they must also be reviewed for technical content and that review documented per AB-006.

  9. 514 ASHRAE Transactions: Symposia Design cooling load calculation methods are, by the

    E-Print Network [OSTI]

    Handbook--Fundamentals (ASHRAE 1997) and the Cooling and Heating Load Calculation Manual (Mc514 ASHRAE Transactions: Symposia ABSTRACT Design cooling load calculation methods are Load Calculation Methods (942-RP)" are also given. INTRODUCTION Design cooling load calculation

  10. Investigation of the Accuracy of Calculation Methods for Conduction Transfer Functions of Building Construction 

    E-Print Network [OSTI]

    Chen, Y.; Li, X.; Zhang, Q.; Spitler, J.; Fisher, D.

    2006-01-01T23:59:59.000Z

    Conduction transfer functions (CTFs) are widely used to calculate conduction heat transfer in building cooling load and energy calculations. They can conveniently fit into any load and energy calculation techniques to perform conduction calculations...

  11. Solar Reflectance Index Calculation Worksheet Instructions The purpose of this calculator is to enable contractors and homeowners to quickly and accurately

    E-Print Network [OSTI]

    Solar Reflectance Index Calculation Worksheet Instructions Usage: The purpose of this calculator is to enable contractors and homeowners to quickly and accurately calculate the solar reflectance product exceeds the Building Energy Efficiency Standards requirement for either the aged solar

  12. Benchmark calculations for elastic fermion-dimer scattering

    E-Print Network [OSTI]

    Shahin Bour; H. -W. Hammer; Dean Lee; Ulf-G. Meißner

    2012-06-08T23:59:59.000Z

    We present continuum and lattice calculations for elastic scattering between a fermion and a bound dimer in the shallow binding limit. For the continuum calculation we use the Skorniakov-Ter-Martirosian (STM) integral equation to determine the scattering length and effective range parameter to high precision. For the lattice calculation we use the finite-volume method of L\\"uscher. We take into account topological finite-volume corrections to the dimer binding energy which depend on the momentum of the dimer. After subtracting these effects, we find from the lattice calculation kappa a_fd = 1.174(9) and kappa r_fd = -0.029(13). These results agree well with the continuum values kappa a_fd = 1.17907(1) and kappa r_fd = -0.0383(3) obtained from the STM equation. We discuss applications to cold atomic Fermi gases, deuteron-neutron scattering in the spin-quartet channel, and lattice calculations of scattering for nuclei and hadronic molecules at finite volume.

  13. Born-series approach to the calculation of Casimir forces

    E-Print Network [OSTI]

    Robert Bennett

    2014-07-01T23:59:59.000Z

    The Casimir force between two objects is notoriously difficult to calculate in anything other than parallel-plate geometries due to its non-additive nature. This means that for more complicated, realistic geometries one usually has to resort to approaches such as making the crude proximity force approximation (PFA). Another issue with calculation of Casimir forces in real-world situations (such as with realistic materials) is that there are continuing doubts about the status of the standard Lifshitz treatment as a true quantum theory. Here we demonstrate an alternative approach to calculation of Casimir forces for arbitrary geometries which sidesteps both these problems. Our calculations are based upon a Born expansion of the Green's function of the quantised electromagnetic vacuum field, interpreted as multiple scattering, with the relevant coupling strength being the difference in the dielectric functions of the various materials involved. This allows one to consider arbitrary geometries in single or multiple scattering simply by integrating over the desired shape, meaning that extension beyond the PFA is trivial. This work is mostly dedicated to illustration of the method by reproduction of known parallel-slab results -- a process that turns out to be non-trivial and provides several useful insights. We also present a short example of calculation of the Casimir energy for a more complicated geometry, namely that of two finite slabs.

  14. Calculation of size for bound-state constituents

    E-Print Network [OSTI]

    Stanislaw D. Glazek

    2014-06-01T23:59:59.000Z

    Elements are given of a calculation that identifies the size of a proton in the Schroedinger equation for lepton-proton bound states, using the renormalization group procedure for effective particles (RGPEP) in quantum field theory, executed only up to the second order of expansion in powers of the coupling constant. Already in this crude approximation, the extraction of size of a proton from bound-state observables is found to depend on the lepton mass, so that the smaller the lepton mass the larger the proton size extracted from the same observable bound-state energy splitting. In comparison of Hydrogen and muon-proton bound-state dynamics, the crude calculation suggests that the difference between extracted proton sizes in these two cases can be a few percent. Such values would match the order of magnitude of currently discussed proton-size differences in leptonic atoms. Calculations using the RGPEP of higher order than second are required for a precise interpretation of the energy splittings in terms of the proton size in the Schroedinger equation. Such calculations should resolve the conceptual discrepancy between two conditions: that the renormalization group scale required for high accuracy calculations based on the Schroedinger equation is much smaller than the proton mass (on the order of a root of the product of reduced and average masses of constituents) and that the energy splittings due to the physical proton size can be interpreted ignoring corrections due to the effective nature of constituents in the Schr\\"odinger equation.

  15. Mesh size and code option effects of strength calculations

    SciTech Connect (OSTI)

    Kaul, Ann M [Los Alamos National Laboratory

    2010-12-10T23:59:59.000Z

    Modern Lagrangian hydrodynamics codes include numerical methods which allow calculations to proceed past the point obtainable by a purely Lagrangian scheme. These options can be employed as the user deems necessary to 'complete' a calculation. While one could argue that any calculation is better than none, to truly understand the calculated results and their relationship to physical reality, the user needs to understand how their runtime choices affect the calculated results. One step toward this goal is to understand the effect of each runtime choice on particular pieces of the code physics. This paper will present simulation results for some experiments typically used for strength model validation. Topics to be covered include effect of mesh size, use of various ALE schemes for mesh detangling, and use of anti-hour-glassing schemes. Experiments to be modeled include the lower strain rate ({approx} 10{sup 4} s{sup -1}) gas gun driven Taylor impact experiments and the higher strain rate ({approx} 10{sup 5}-10{sup 6} s{sup -1}) HE products driven perturbed plate experiments. The necessary mesh resolution and the effect of the code runtime options are highly dependent on the amount of localization of strain and stress in each experiment. In turn, this localization is dependent on the geometry of the experimental setup and the drive conditions.

  16. Monte Carlo reactor calculation with substantially reduced number of cycles

    SciTech Connect (OSTI)

    Lee, M. J.; Joo, H. G. [Seoul National Univ., 599 Gwanak-ro, Gwanak-gu, Seoul, 151-744 (Korea, Republic of); Lee, D. [Ulsan National Inst. of Science and Technology, UNIST-gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of); Smith, K. [Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2012-07-01T23:59:59.000Z

    A new Monte Carlo (MC) eigenvalue calculation scheme that substantially reduces the number of cycles is introduced with the aid of coarse mesh finite difference (CMFD) formulation. First, it is confirmed in terms of pin power errors that using extremely many particles resulting in short active cycles is beneficial even in the conventional MC scheme although wasted operations in inactive cycles cannot be reduced with more particles. A CMFD-assisted MC scheme is introduced as an effort to reduce the number of inactive cycles and the fast convergence behavior and reduced inter-cycle effect of the CMFD assisted MC calculation is investigated in detail. As a practical means of providing a good initial fission source distribution, an assembly based few-group condensation and homogenization scheme is introduced and it is shown that efficient MC eigenvalue calculations with fewer than 20 total cycles (including inactive cycles) are possible for large power reactor problems. (authors)

  17. Fully microscopic shell-model calculations with realistic effective hamiltonians

    E-Print Network [OSTI]

    L. Coraggio; A. Covello; A. Gargano; N. Itaco; T. T. S. Kuo

    2011-01-24T23:59:59.000Z

    The advent of nucleon-nucleon potentials derived from chiral perturbation theory, as well as the so-called V-low-k approach to the renormalization of the strong short-range repulsion contained in the potentials, have brought renewed interest in realistic shell-model calculations. Here we focus on calculations where a fully microscopic approach is adopted. No phenomenological input is needed in these calculations, because single-particle energies, matrix elements of the two-body interaction, and matrix elements of the electromagnetic multipole operators are derived theoretically. This has been done within the framework of the time-dependent degenerate linked-diagram perturbation theory. We present results for some nuclei in different mass regions. These evidence the ability of realistic effective hamiltonians to provide an accurate description of nuclear structure properties.

  18. Can fusion coefficients be calculated from the depth rule ?

    E-Print Network [OSTI]

    A. N. Kirillov; P. Mathieu; D. Senechal; M. Walton

    1992-09-28T23:59:59.000Z

    The depth rule is a level truncation of tensor product coefficients expected to be sufficient for the evaluation of fusion coefficients. We reformulate the depth rule in a precise way, and show how, in principle, it can be used to calculate fusion coefficients. However, we argue that the computation of the depth itself, in terms of which the constraints on tensor product coefficients is formulated, is problematic. Indeed, the elements of the basis of states convenient for calculating tensor product coefficients do not have a well-defined depth! We proceed by showing how one can calculate the depth in an `approximate' way and derive accurate lower bounds for the minimum level at which a coupling appears. It turns out that this method yields exact results for $\\widehat{su}(3)$ and constitutes an efficient and simple algorithm for computing $\\widehat{su}(3)$ fusion coefficients.

  19. Review of Axial Burnup Distribution Considerations for Burnup Credit Calculations

    SciTech Connect (OSTI)

    Wagner, J.C.; DeHart, M.D.

    2000-03-01T23:59:59.000Z

    This report attempts to summarize and consolidate the existing knowledge on axial burnup distribution issues that are important to burnup credit criticality safety calculations. Recently released Nuclear Regulatory Commission (NRC) staff guidance permits limited burnup credit, and thus, has prompted resolution of the axial burnup distribution issue. The reactivity difference between the neutron multiplication factor (keff) calculated with explicit representation of the axial burnup distribution and keff calculated assuming a uniform axial burnup is referred to as the ``end effect.'' This end effect is shown to be dependent on many factors, including the axial-burnup profile, total accumulated burnup, cooling time, initial enrichment, assembly design, and the isotopics considered (i.e., actinide-only or actinides plus fission products). Axial modeling studies, efforts related to the development of axial-profile databases, and the determination of bounding axial profiles are also discussed. Finally, areas that could benefit from further efforts are identified.

  20. Theory and calculations of synchrotron instabilities and feedback-mechanism

    SciTech Connect (OSTI)

    Meijssen, T.E.M.

    1981-08-12T23:59:59.000Z

    The properties of the phenomenon synchrotron radiation are given with general theory on the basic processes and betatron and synchrotron oscillations. A more extended theoretical view at transverse instabilities and the influence of a damping feedback system are discussed. The longitudinal case is covered. For the calculations on the longitudinal case with M equally spaced pointbunches, with N electrons each, in the storage ring, the parasitic modes of the radio-frequency cavity were measured. A description of this is given. The values of damping rates of the longitudinal feedback system found, are as expected, but too low to damp the longitudinal instabilities calculated. This might be caused by the input data. The calculated growth rates are very sensitive to changes in frequency and width of the parasitic modes, which were measured under conditions differing slightly from the operating conditions.

  1. Overview of TRAC-PD2 assessment calculations

    SciTech Connect (OSTI)

    Waterman, M E

    1985-11-01T23:59:59.000Z

    A summary of Transient Reactor Analysis Code Version PD2 (TRAC-PD2) calculations performed at the Idaho National Engineering Laboratory (INEL) is presented in this report as part of the US Nuclear Regulatory Commission's (NRCs) overall assessment program of TRAC-PD2. The calculated and measured parameters summarized in this report are break mass flow rate, primary coolant system pressure, reactor core flow rates, and fuel rod cladding temperatures. The data were obtained from seven tests that were performed at two test facilities. The tests were conducted to study the various aspects of cold leg break transients, including the effects of large and small beaks, and core reflood phenomena. User experience gained from the various calculations is also summarized. 42 figs., 10 tabs.

  2. Simple program calculates partial liquid volumes in vessels

    SciTech Connect (OSTI)

    Koch, P.

    1992-04-13T23:59:59.000Z

    This paper reports on a simple calculator program which solves problems of partial liquid volumes for a variety of storage and process vessels, including inclined cylindrical vessels and those with conical heads. Engineers in the oil refining and chemical industries are often confronted with the problem of estimating partial liquid volumes in storage tanks or process vessels. Cistern, the calculator program presented here, allows fast and accurate resolution of problems for a wide range of vessels without user intervention, other than inputting the problem data. Running the program requires no mathematical skills. Cistern is written for Hewlett-Packard HP 41CV or HP 41CX programmable calculators (or HP 41C with extended memory modules).

  3. Fully microscopic shell-model calculations with realistic effective hamiltonians

    E-Print Network [OSTI]

    Coraggio, L; Gargano, A; Itaco, N; Kuo, T T S

    2011-01-01T23:59:59.000Z

    The advent of nucleon-nucleon potentials derived from chiral perturbation theory, as well as the so-called V-low-k approach to the renormalization of the strong short-range repulsion contained in the potentials, have brought renewed interest in realistic shell-model calculations. Here we focus on calculations where a fully microscopic approach is adopted. No phenomenological input is needed in these calculations, because single-particle energies, matrix elements of the two-body interaction, and matrix elements of the electromagnetic multipole operators are derived theoretically. This has been done within the framework of the time-dependent degenerate linked-diagram perturbation theory. We present results for some nuclei in different mass regions. These evidence the ability of realistic effective hamiltonians to provide an accurate description of nuclear structure properties.

  4. Indoor design condition and the cooling load calculation

    SciTech Connect (OSTI)

    Sun, T.Y. [Sun (Tseng-Yao), Rancho Palos Verde, CA (United States)

    1997-12-01T23:59:59.000Z

    Cooling load calculation involves two steps. The first is to determine the basic building load. This consists of external loads through the building envelope and internal loads from people, lights, appliances, and other heat sources. The required supply air quantity for each conditioned space generally is determined in the first step. This is because each relates only to the coil leaving and required room dry bulb temperatures (unless reheat is required to control the humidity level in the conditioned space). The second step, after completing the above, is to calculate the system cooling load. This step adapts the selected air distribution system to the building load and involves the introduction of the required outdoor air volume into the air conditioning system for ventilation. Proper psychrometric analysis is required to calculate the entering and leaving wet bulb conditions of the air passing through the cooling coil. These, together with the corresponding dry bulb temperatures, will determine the system cooling load.

  5. On calculation of microlensing light curve by gravitational lens caustic

    E-Print Network [OSTI]

    M. B. Bogdanov

    2001-02-02T23:59:59.000Z

    For an analysis of microlensing observational data in case of binary gravitational lenses as well as for an interpretation of observations of high magnification events in multiple images of a lensed quasar it is necessary to calculate for a given source the microlensing light curve by a fold caustic. This problem comes to the numerical calculation of a singular integral. We formulated the sufficient condition of a convergence of the integral sum for this singular integral. The strictly approach to the problem of a comparison of model results with the unequally sampled observational data consists in calculation of the model light curve in equidistant points of the canonical dissection of the integration segment and a following interpolation of its values at the moments of observations.

  6. Excited State Effects in Nucleon Matrix Element Calculations

    SciTech Connect (OSTI)

    Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner

    2011-12-01T23:59:59.000Z

    We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.

  7. Equation calculates activated carbon's capacity for adsorbing pollutants

    SciTech Connect (OSTI)

    Yaws, C.L.; Bu, L.; Nijhawan, S. (Lamar Univ., Beaumont, TX (United States))

    1995-02-13T23:59:59.000Z

    Adsorption on activated carbon is an effective method for removing volatile organic compound (VOC) contaminants from gases. A new, simple equation has been developed for calculating activated carbon's adsorption capacity as a function of the VOC concentration in the gas. The correlation shows good agreement with experimental results. Results from the equation are applicable for conditions commonly encountered in air pollution control techniques (25 C, 1 atm). The only input parameters needed are VOC concentrations and a table of correlation coefficients for 292 C[sub 8]-C[sub 14] compounds. The table is suitable for rapid engineering usage with a personal computer or hand calculator.

  8. Recent Advances in Shell Evolution with Shell-Model Calculations

    E-Print Network [OSTI]

    Yutaka Utsuno; Takaharu Otsuka; Yusuke Tsunoda; Noritaka Shimizu; Michio Honma; Tomoaki Togashi; Takahiro Mizusaki

    2014-09-16T23:59:59.000Z

    Shell evolution in exotic nuclei is investigated with large-scale shell-model calculations. After presenting that the central and tensor forces produce distinctive ways of shell evolution, we show several recent results: (i) evolution of single-particle-like levels in antimony and cupper isotopes, (ii) shape coexistence in nickel isotopes understood in terms of configuration-dependent shell structure, and (iii) prediction of the evolution of the recently established $N=34$ magic number towards smaller proton numbers. In any case, large-scale shell-model calculations play indispensable roles in describing the interplay between single-particle character and correlation.

  9. Phenomenological method of calculating microwave longitudinal coupling impedances

    SciTech Connect (OSTI)

    Giordano, S.; Votruba, J.

    1980-05-01T23:59:59.000Z

    A previous paper described an investigation of the longitudinal coupling impedance of the TM/sub olm/ modes in the ISA vacuum chamber. A method was developed for calculating these impedances by using the data derived from pertubation measurements. This method gave accurate results between 2.6 and 2.8 GHz, but above 2.8 GHz measurements became difficult because of the mixing of the TM/sub olm/ modes with other modes. This paper presents a phenomenological approach for calculating these impedances based on previously developed concepts.

  10. A Parallel Orbital-Updating Approach for Electronic Structure Calculations

    E-Print Network [OSTI]

    Xiaoying Dai; Xingao Gong; Aihui Zhou; Jinwei Zhu

    2014-11-05T23:59:59.000Z

    In this paper, we propose an orbital iteration based parallel approach for electronic structure calculations. This approach is based on our understanding of the single-particle equations of independent particles that move in an effective potential. With this new approach, the solution of the single-particle equation is reduced to some solutions of independent linear algebraic systems and a small scale algebraic problem. It is demonstrated by our numerical experiments that this new approach is quite efficient for full-potential calculations for a class of molecular systems.

  11. Semiclassical framework for the calculation of transport anisotropies

    E-Print Network [OSTI]

    Vyborny, Karel; Kovalev, Alexey A.; Sinova, Jairo; Jungwirth, T.

    2009-01-01T23:59:59.000Z

    microscopic calculations and a simple physical model was recently found in the diluted magnetic semiconductor10,11 #1;Ga,Mn#2;As whose band structure is much simpler. Despite the long history of the AMR research, the ques- tion has not been answered... the main body of the paper by discussing the relevance of our model calculations for the AMR in magnetic semiconductors and by summarizing the key elements of the theoretical framework we have developed. Appendixes A?G contain de- tails of our...

  12. Calculation of the strange quark mass using domain wall fermions

    E-Print Network [OSTI]

    Tom Blum; Amarjit Soni; Matthew Wingate

    2000-09-18T23:59:59.000Z

    We present a first calculation of the strange quark mass using domain wall fermions. This paper contains an overview of the domain wall discretization and a pedagogical presentation of the perturbative calculation necessary for computing the mass renormalization. We combine the latter with numerical simulations to estimate the strange quark mass. Our final result in the quenched approximation is 95(26) MeV in the ${\\bar{MS}}$ scheme at a scale of 2 GeV. We find that domain wall fermions have a small perturbative mass renormalization, similar to Wilson quarks, and exhibit good scaling behavior.

  13. Heat Transfer Calculations for a Fixed CST Bed Column

    SciTech Connect (OSTI)

    Lee, S.Y.

    2001-03-28T23:59:59.000Z

    In support of the crystalline silicotitanate (CST) ion exchange project of High-Level Waste (HLW) Process Engineering, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the CST column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. The modeling and calculations were performed using a computational heat transfer approach.

  14. Hand-held calculator program gives economic evaluation

    SciTech Connect (OSTI)

    Jones, R.; Maxwell, R.L.

    1983-02-14T23:59:59.000Z

    This article presents a comprehensive oil and gas property written for the Hewlett-Packard 41CV handheld calculator (or an HP-41C equipped with 4 memory modules). The program allows the user to enter all of the required parameters at the beginning and calculates the results with a minimum of interruptions. This is accomplished by tieing an engineering projection of future production to the desired variations in the economic factors to be used in the evaluation process. The presented economic analysis program can be used for a variety of economic and reserve evaluations.

  15. GPA CALCULATION GPA = QUALITY POINTS DIVIDED BY QUALITY HOURS

    E-Print Network [OSTI]

    Lawrence, Rick L.

    . THIS IS THE TOTAL QUALITY POINTS THAT YOU THINK YOU WILL EARN THIS SEMESTER. TO PLAY WHAT IFGPA CALCULATION WORKSHEET GPA = QUALITY POINTS DIVIDED BY QUALITY HOURS #1 QUALITY HOURS (THROUGH LAST TERM) = __________ #2 QUALITY POINTS (THROUGH LAST TERM) = __________ #3 QUALTIY HOURS CURRENTLY

  16. Calculation of Extreme Wave Loads on Coastal Highway Bridges

    E-Print Network [OSTI]

    Meng, Bo

    2010-01-14T23:59:59.000Z

    force on bridge decks. 2D Model is a linear wave model, which has the capability of calculating wave velocity potential components in time domain based on wave parameters such as wave height, wave period and water depth, and complex structural geometries...

  17. Wind energy calculated from SAR and scatterometer satellite data

    E-Print Network [OSTI]

    Slide no. The WAsP icon #12;1 8 Slide no. Wind observations #12;1 9 Slide no. European Wind Atlas #121 Slide no. 4 Wind energy calculated from SAR and scatterometer satellite data Charlotte Bay, Italy, 23-24 June 2003 #12;2 Slide no. 4 Presentation · Risø National Laboratory/ Wind Energy Dept

  18. Atomic Structure Calculations from the Los Alamos Atomic Physics Codes

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cowan, R. D.

    The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.

  19. ELECTROMOTION 2009 3D Analytical Calculation of Forces between

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Co or NdFeB, the designers can use magnets owning a really rigid magnetization. They are the magnets whichELECTROMOTION 2009 1 3D Analytical Calculation of Forces between Linear Halbach-Type Permanent Magnet Arrays H. Allag1,2 , J-P. Yonnet1 and M. E. H. Latreche2 1- Laboratoire de Génie Electrique de

  20. Calculation Method of Permanent Magnet Pickups for Electric Guitars

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in the 1930s, when Rickenbacker fitted out a guitar with a magnet and coils, thus designing the first magnetic to look at the types of magnetic circuit for the guitar pickups. We consider in this paper the most usual1 Calculation Method of Permanent Magnet Pickups for Electric Guitars G. Lemarquand and V

  1. Bohr Model Calculations for Atoms and Ions Frank Rioux

    E-Print Network [OSTI]

    Rioux, Frank

    in doing energy audits, carrying out simple variational calculations and critically analyzing := V12 R1( ) 1 17 R1 := #12;The next step is to do an energy audit for the atom or ion under Department of Chemistry College of St. Benedict| St. Johns University

  2. Efficient Calculation of Statistical Moments for Structural Health Monitoring

    E-Print Network [OSTI]

    Sweetman, Bert

    Efficient Calculation of Statistical Moments for Structural Health Monitoring Myoungkeun Choi sen- sor packages have shown considerable promise in providing low-cost Structural Health Monitoring@tamu.edu, Telephone:(409) 740-4834, Fax:(409) 741-7153 1 Journal of Structural Health Monitoring, January 1, 2010, Vol

  3. Calculation of burnup of a black neutron absorber

    SciTech Connect (OSTI)

    Yudkevich, M. S., E-mail: umark@adis.vver.kiae.ru [Russian Research Centre Kurchatov Institute (Russian Federation)

    2011-12-15T23:59:59.000Z

    The procedure of calculation of burnup of fuel and strong neutron absorber in a nuclear reactor is described. The method proposed here makes it possible to avoid difficulties associated with heterogeneous blocking of the absorption cross section. The effectiveness of the method is demonstrated by an example.

  4. EQ6 Calculations for Chemical Degradation of Navy Waste Packages

    SciTech Connect (OSTI)

    S. LeStrange

    1999-11-15T23:59:59.000Z

    The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package. The water may gradually leach the fissile components and neutron absorbers out of the waste package. In addition, the accumulation of silica (SiO{sub 2}) in the waste package over time may further affect the neutronics of the system. This study presents calculations of the long-term geochemical behavior of waste packages containing the Enhanced Design Alternative (EDA) II inner shell, Navy canister, and basket components. The calculations do not include the Navy SNF in the waste package. The specific study objectives were to determine the chemical composition of the water and the quantity of silicon (Si) and other solid corrosion products in the waste package during the first million years after the waste package is breached. The results of this calculation will be used to ensure that the type and amount of criticality control material used in the waste package design will prevent criticality.

  5. Using Graphical Representations to Support the Calculation of Infusion Parameters

    E-Print Network [OSTI]

    Subramanian, Sriram

    Using Graphical Representations to Support the Calculation of Infusion Parameters Sandy J. J. Gould in which participants were asked to solve a num- ber of infusion parameter problems that were represented representations transfer to actual workplace settings. Keywords: Graphical reasoning, infusion pumps, re

  6. Calculating coherent pair production with Monte Carlo methods

    SciTech Connect (OSTI)

    Bottcher, C.; Strayer, M.R.

    1989-01-01T23:59:59.000Z

    We discuss calculations of the coherent electromagnetic pair production in ultra-relativistic hadron collisions. This type of production, in lowest order, is obtained from three diagrams which contain two virtual photons. We discuss simple Monte Carlo methods for evaluating these classes of diagrams without recourse to involved algebraic reduction schemes. 19 refs., 11 figs.

  7. RZ calculations for self shielded multigroup cross sections

    SciTech Connect (OSTI)

    Li, M.; Sanchez, R.; Zmijarevic, I.; Stankovski, Z. [Commissariat a l'Energie Atomique CEA, Direction de l'Energie Nucleaire, DEN/DM2S/SERMA/LENR, 91191 Gif-sur-Yvette Cedex (France)

    2006-07-01T23:59:59.000Z

    A collision probability method has been implemented for RZ geometries. The method accounts for white albedo, specular and translation boundary condition on the top and bottom surfaces of the geometry and for a white albedo condition on the outer radial surface. We have applied the RZ CP method to the calculation of multigroup self shielded cross sections for Gadolinia absorbers in BWRs. (authors)

  8. Ironless Permanent Magnet Motors: Three-Dimensional Analytical Calculation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the magnetic torque exerted between a tile permanent magnet radially magnetized and a winding in ironless structures. Such an expression can be used for calculating the magnetic torque transmitted between the stator or winding dimensions. The ironless structure we consider in this paper is commonly used for high speed

  9. Adaptive Calculation of Variable Coefficients Elliptic Differential Equations via Wavelets

    E-Print Network [OSTI]

    Averbuch, Amir

    Description Generating a "good" discrete representation for continuous operators is one of the basic problemsAdaptive Calculation of Variable Coefficients Elliptic Differential Equations via Wavelets Amir rather than in the original physical space can speed up the performance of the sparse solver by a factor

  10. AI A A-90-0688 Multigrid Euler Calculations

    E-Print Network [OSTI]

    Jameson, Antony

    the three-dimensional Euler equations is applied to cascade calculation. Test cases of a VKI turbine cascade on blade surfaces show good agreements with experimental data at design conditions, while dis- crepancy support the theory that the development of passage and horse-shoe vortices in cascades is, to a large

  11. Alternative similarity renormalization group generators in nuclear structure calculations

    E-Print Network [OSTI]

    Nuiok M. Dicaire; Conor Omand; Petr Navratil

    2014-08-22T23:59:59.000Z

    The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. With this choice, a fast convergence of many-body calculations can be achieved, but at the same time substantial three-body interactions are induced even if one starts from a purely two-nucleon (NN) Hamiltonian. Three-nucleon (3N) interactions can be handled by modern many-body methods. However, it has been observed that when including initial chiral 3N forces in the Hamiltonian, the SRG transformations induce a non-negligible four-nucleon interaction that cannot be currently included in the calculations for technical reasons. Consequently, it is essential to investigate alternative SRG generators that might suppress the induction of many-body forces while at the same time might preserve the good convergence. In this work we test two alternative generators with operators of block structure in the harmonic oscillator basis. In the no-core shell model calculations for 3H, 4He and 6Li with chiral NN force, we demonstrate that their performances appear quite promising.

  12. AIM: Web-Based, Residential Energy Calculator for Homeowners

    E-Print Network [OSTI]

    Marshall, K.; Moss, M.; Liu, B.; Culp, C.; Haberl, J.; Herbert, C.

    house using a minimum number of inputs. To accomplish this, AIM uses DOE-2 loads simulations and a simplified systems model. To simplify the use of the calculator, parameters such as window U-factor, roof and wall insulation, which are normally required...

  13. Revised Transition Probabilities for Fe XXV Relativistic CI Calculations

    E-Print Network [OSTI]

    Johnson, Walter R.

    Revised Transition Probabilities for Fe XXV Relativistic CI Calculations W. R. Johnson1 and U are provided for transition probabilities between fine-structure components of levels with n 6 in FeXXV. Earlier published data for transitions between fine-structure levels in FeXXV is found to in error

  14. Fuzzy-probabilistic calculations of water-balance uncertainty

    SciTech Connect (OSTI)

    Faybishenko, B.

    2009-10-01T23:59:59.000Z

    Hydrogeological systems are often characterized by imprecise, vague, inconsistent, incomplete, or subjective information, which may limit the application of conventional stochastic methods in predicting hydrogeologic conditions and associated uncertainty. Instead, redictions and uncertainty analysis can be made using uncertain input parameters expressed as probability boxes, intervals, and fuzzy numbers. The objective of this paper is to present the theory for, and a case study as an application of, the fuzzyprobabilistic approach, ombining probability and possibility theory for simulating soil water balance and assessing associated uncertainty in the components of a simple waterbalance equation. The application of this approach is demonstrated using calculations with the RAMAS Risk Calc code, to ssess the propagation of uncertainty in calculating potential evapotranspiration, actual evapotranspiration, and infiltration-in a case study at the Hanford site, Washington, USA. Propagation of uncertainty into the results of water-balance calculations was evaluated by hanging he types of models of uncertainty incorporated into various input parameters. The results of these fuzzy-probabilistic calculations are compared to the conventional Monte Carlo simulation approach and estimates from field observations at the Hanford site.

  15. Patent Citation Analysis: Calculating Science linkage based on Citing Motivation

    E-Print Network [OSTI]

    Menczer, Filippo

    1 Patent Citation Analysis: Calculating Science linkage based on Citing Motivation Rui Li used patent bibliometric indicator to measure patent linkage to scientific research based on the frequency of citations to scientific papers within the patent. Science linkage is also regarded as noisy

  16. Solution of Large Eigenvalue Problems in Electronic Structure Calculations \\Lambda

    E-Print Network [OSTI]

    Stathopoulos, Andreas

    Solution of Large Eigenvalue Problems in Electronic Structure Calculations \\Lambda Y. Saad y , A the structural and electronic properties of complex systems is one of the outstanding problems in condensed external perturbations. For example, it may be desirable in certain cases to follow the dynamics of atoms/electrons

  17. Calculation of dose to soft tisse from implanted beta sources

    E-Print Network [OSTI]

    Dauffy, Lucile

    1998-01-01T23:59:59.000Z

    for beta dose calculations are reported in the literature. Monte Carlo codes are very often used but are cumbersome. A Monte Carlo code can be used to model the exact path and energies that a particle assumes as it passes through a medium using random...

  18. Calculating Very Rough Market Share Using the Canadian Business Database

    E-Print Network [OSTI]

    Thompson, Michael

    Calculating Very Rough Market Share Using the Canadian Business Database If you cannot find market market share using the company information provided in the Canadian Business Database (CBD), an online - it should be considered a last resort for this information. STEP 1: ACCESS THE CANADIAN BUSINESS DATABASE 1a

  19. Semiclassical calculation of an induced decay of false vacuum

    E-Print Network [OSTI]

    A. Monin; M. B. Voloshin

    2010-04-12T23:59:59.000Z

    We consider a model where a scalar field develops a metastable vacuum state and weakly interacts with another scalar field. In this situation we find the probability of decay of the false vacuum stimulated by the presence and collisions of particles of the second field. The discussed calculation is an illustration of the recently suggested thermal approach to treatment of induced semiclassical processes.

  20. CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE

    E-Print Network [OSTI]

    Su, Xiao

    CALCULATING THE CARBON FOOTPRINT SUPPLY CHAIN FOR THE SEMICONDUCTOR INDUSTRY A LEARNING TOOL By a complete supply chain #12;Carbon Footprint Supply Chain Carbon Trust defines carbon footprint of a supply chain as follows: "The carbon footprint of a product is the carbon dioxide emitted across the supply

  1. Oxygen Toxicity Calculations by Erik C. Baker, P.E.

    E-Print Network [OSTI]

    Read, Charles

    1 Oxygen Toxicity Calculations by Erik C. Baker, P.E. Management of exposure to oxygen toxicity myself using the good ole' FORTRAN programming language, I found that incorporating oxygen toxicity for others. Background Two oxygen toxicity parameters are typically "tracked" in technical diving

  2. SEMIEMPIRICAL MOLECULAR ORBITAL CALCULATIONS OF BAND GAPS OF CONJUGATED POLYMERS

    E-Print Network [OSTI]

    Goddard III, William A.

    SEMI­EMPIRICAL MOLECULAR ORBITAL CALCULATIONS OF BAND GAPS OF CONJUGATED POLYMERS Tahir Cagin Research and Development Center, Materials Labarotory, Polymer Branch, Wright Patterson AFB, Ohio 45433 geometries and energy band gaps of conjugated polymers. In this study, we used a modified version of semi

  3. Quantum Monte Carlo calculations of symmetric nuclear matter

    E-Print Network [OSTI]

    Stefano Gandolfi; Francesco Pederiva; Stefano Fantoni; Kevin E. Schmidt

    2007-04-13T23:59:59.000Z

    We present an accurate numerical study of the equation of state of nuclear matter based on realistic nucleon--nucleon interactions by means of Auxiliary Field Diffusion Monte Carlo (AFDMC) calculations. The AFDMC method samples the spin and isospin degrees of freedom allowing for quantum simulations of large nucleonic systems and can provide quantitative understanding of problems in nuclear structure and astrophysics.

  4. Calculated Phonon Spectra of Plutonium at High Temperatures

    E-Print Network [OSTI]

    Savrasov, Sergej Y.

    Calculated Phonon Spectra of Plutonium at High Temperatures X. Dai,1 S. Y. Savrasov,2 * G. Kotliar dynamical proper- ties of plutonium using an electronic structure method, which incorporates correlation anharmonic and can be stabilized at high temperatures by its phonon entropy. Plutonium (Pu) is a material

  5. Benchmarking kinetic calculations of resistive wall mode stability

    SciTech Connect (OSTI)

    Berkery, J. W.; Sabbagh, S. A. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)] [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Liu, Y. Q. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Wang, Z. R.; Logan, N. C.; Park, J.-K.; Manickam, J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-05-15T23:59:59.000Z

    Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].

  6. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect (OSTI)

    Phillips, J.; Hauser, E.; Estrada, H. [Cameron, 1000 McClaren Woods Drive, Coraopolis, PA 15108 (United States)

    2012-07-01T23:59:59.000Z

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

  7. Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data

    SciTech Connect (OSTI)

    Zourari, K.; Peppa, V.; Papagiannis, P., E-mail: ppapagi@phys.uoa.gr [Medical Physics Laboratory, Medical School, University of Athens, 75 Mikras Asias, 11527 Athens (Greece); Ballester, Facundo [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain)] [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Siebert, Frank-André [Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel 24105 (Germany)] [Clinic of Radiotherapy, University Hospital of Schleswig-Holstein, Campus Kiel 24105 (Germany)

    2014-04-15T23:59:59.000Z

    Purpose: To provide a method for calculating the transmission of any broad photon beam with a known energy spectrum in the range of 20–1090 keV, through concrete and lead, based on the superposition of corresponding monoenergetic data obtained from Monte Carlo simulation. Methods: MCNP5 was used to calculate broad photon beam transmission data through varying thickness of lead and concrete, for monoenergetic point sources of energy in the range pertinent to brachytherapy (20–1090 keV, in 10 keV intervals). The three parameter empirical model introduced byArcher et al. [“Diagnostic x-ray shielding design based on an empirical model of photon attenuation,” Health Phys. 44, 507–517 (1983)] was used to describe the transmission curve for each of the 216 energy-material combinations. These three parameters, and hence the transmission curve, for any polyenergetic spectrum can then be obtained by superposition along the lines of Kharrati et al. [“Monte Carlo simulation of x-ray buildup factors of lead and its applications in shielding of diagnostic x-ray facilities,” Med. Phys. 34, 1398–1404 (2007)]. A simple program, incorporating a graphical user interface, was developed to facilitate the superposition of monoenergetic data, the graphical and tabular display of broad photon beam transmission curves, and the calculation of material thickness required for a given transmission from these curves. Results: Polyenergetic broad photon beam transmission curves of this work, calculated from the superposition of monoenergetic data, are compared to corresponding results in the literature. A good agreement is observed with results in the literature obtained from Monte Carlo simulations for the photon spectra emitted from bare point sources of various radionuclides. Differences are observed with corresponding results in the literature for x-ray spectra at various tube potentials, mainly due to the different broad beam conditions or x-ray spectra assumed. Conclusions: The data of this work allow for the accurate calculation of structural shielding thickness, taking into account the spectral variation with shield thickness, and broad beam conditions, in a realistic geometry. The simplicity of calculations also obviates the need for the use of crude transmission data estimates such as the half and tenth value layer indices. Although this study was primarily designed for brachytherapy, results might also be useful for radiology and nuclear medicine facility design, provided broad beam conditions apply.

  8. Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials

    E-Print Network [OSTI]

    J. E. Lynn; J. Carlson; E. Epelbaum; S. Gandolfi; A. Gezerlis; A. Schwenk

    2014-11-09T23:59:59.000Z

    We present the first Green's function Monte Carlo calculations of light nuclei with nuclear interactions derived from chiral effective field theory up to next-to-next-to-leading order. Up to this order, the interactions can be constructed in a local form and are therefore amenable to quantum Monte Carlo calculations. We demonstrate a systematic improvement with each order for the binding energies of $A=3$ and $A=4$ systems. We also carry out the first few-body tests to study perturbative expansions of chiral potentials at different orders, finding that higher-order corrections are more perturbative for softer interactions. Our results confirm the necessity of a three-body force for correct reproduction of experimental binding energies and radii, and pave the way for studying few- and many-nucleon systems using quantum Monte Carlo methods with chiral interactions.

  9. Bandgap calculations and trends of organometal halide perovskites

    SciTech Connect (OSTI)

    Castelli, Ivano E., E-mail: ivca@fysik.dtu.dk; Thygesen, Kristian S.; Jacobsen, Karsten W. [Center for Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, DK 2800 Kgs. Lyngby (Denmark); García-Lastra, Juan María [Center for Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, DK 2800 Kgs. Lyngby (Denmark); Department of Energy Conversion and Storage, Technical University of Denmark, DK 4000 Roskilde (Denmark)

    2014-08-01T23:59:59.000Z

    Energy production from the Sun requires a stable efficient light absorber. Promising candidates in this respect are organometal perovskites (ABX{sub 3}), which have been intensely investigated during the last years. Here, we have performed electronic structure calculations of 240 perovskites composed of Cs, CH{sub 3}NH{sub 3}, and HC(NH{sub 2}){sub 2} as A-cation, Sn and Pb as B-ion, and a combination of Cl, Br, and I as anions. The calculated gaps span over a region from 0.5 to 5.0 eV. In addition, the trends over bandgaps have been investigated: the bandgap increases with an increase of the electronegativities of the constituent species, while it reduces with an increase of the lattice constants of the system.

  10. Variational calculations of the HT{sup +} rovibrational energies

    SciTech Connect (OSTI)

    Bekbaev, A. K. [Al Farabi Kazakh National University, 050012 Almaty (Kazakhstan); Korobov, V. I. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dineykhan, M. [Al Farabi Kazakh National University, 050012 Almaty (Kazakhstan); Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2011-04-15T23:59:59.000Z

    In this Brief Report, we use the exponential explicitly correlated variational basis set of the type exp(-{alpha}{sub n}R-{beta}{sub n}r{sub 1}-{gamma}{sub n}r{sub 2}) to calculate systematically the nonrelativistic bound-state energies for the hydrogen molecular ion HT{sup +}. We perform calculations for the states of the total orbital angular momentum L=0 and 1 with the complete set of vibrational quantum numbers v= 0-23, as well as for the states of L= 2-5 and v= 0-5. The E1 dipole transition moments, which are of importance for the planning of spectroscopic laser experiments, have been obtained as well.

  11. Elastic properties of superconducting MAX phases from first principles calculations

    E-Print Network [OSTI]

    I. R. Shein; A. L. Ivanovskii

    2010-06-03T23:59:59.000Z

    Using first-principles density functional calculations, a systematic study on the elastic properties for all known superconducting MAX phases (Nb2SC, Nb2SnC, Nb2AsC, Nb2InC, Mo2GaC and Ti2InC) was performed. As a result, the optimized lattice parameters, independent elastic constants, indicators of elastic anisotropy and brittle/ductile behavior as well as the so-called machinability indexis were calculated. We derived also bulk and shear moduli, Young's moduli, and Poisson's ratio for ideal polycrystalline MAX aggregates. The results obtained were discussed in comparison with available theoretical and experimental data and elastic parameters for other layered superconductors.

  12. ASME PTC 47 -- Calculation of overall IGCC plant performance

    SciTech Connect (OSTI)

    Xiong, T.; Horazak, D.A.

    1999-07-01T23:59:59.000Z

    An integrated gasification combined cycle (IGCC) plant is a combined chemical and power system that converts coal or other unrefined fuel into clean gaseous fuel, electric power, and other byproducts. The conversion process requires interactions among the gasification, gas cleaning, air or oxygen production, power and steam generation systems. Overall performance testing of IGCC plants. however, is based only on the streams that cross the overall plant boundary. This paper describes the calculation procedures required to conduct a fair and accurate performance test of an IGCC plant, as proposed for ASME Performance Test Code 47. Discussions include identification of parameters to be measured, calculations needed to evaluate performance, and corrections to performance data for test conditions that differ from reference conditions.

  13. On the calculation of percentile-based bibliometric indicators

    E-Print Network [OSTI]

    Waltman, Ludo

    2012-01-01T23:59:59.000Z

    A percentile-based bibliometric indicator is an indicator that values publications based on their position within the citation distribution of their field. The most straightforward percentile-based indicator is the proportion of frequently cited publications, for instance the proportion of publications that belong to the top 10% most frequently cited of their field. Recently, more complex percentile-based indicators were proposed. A difficulty in the calculation of percentile-based indicators is caused by the discrete nature of citation distributions combined with the presence of many publications with the same number of citations. We introduce an approach to calculating percentile-based indicators that deals with this difficulty in a more satisfactory way than earlier approaches suggested in the literature. We show in a formal mathematical framework that our approach leads to indicators that do not suffer from biases in favor of or against particular fields of science.

  14. MCNP photon transport benchmarking calculations performed at SRP. Revision 1

    SciTech Connect (OSTI)

    White, A.M.

    1989-12-31T23:59:59.000Z

    Monte Carlo methods have long been used at the Savannah River Laboratory (SRL) to perform criticality calculations for many different processes. To perform transport analyses (both neutron and photon) a two-dimensional infinite lattice integral transport code (GLASS) has been used. The neutron transport portion of the code has been benchmarked against other codes and experimental data. The photon transport portion of the code, which is used to calculate gamma redistribution in the event of a loss of moderator and/or coolant, had not been benchmarked against either. For this reason, the Monte Carlo code MCNP was used to benchmark the photon transport portion of the GLASS code. Preceding this, a brief description of the geometry of the Savannah River Plant`s (SRP) reactor cores and how they were modeled using MCNP will be given.

  15. CALOR89 calorimeter simulations, benchmarking, and design calculations

    SciTech Connect (OSTI)

    Handler, T. (Tennessee Univ., Knoxville, TN (USA)); Panakkal, J.K.; Proudfoot, J. (Argonne National Lab., IL (USA)); Cremaldi, L.; Moore, B.; Reidy, J.J. (Mississippi Univ., University, MS (USA)); Alsmiller, R.G. Jr.; Fu, P.; Gabriel, T.A. (Oak Ridge National Lab., TN (USA))

    1990-01-01T23:59:59.000Z

    Results on CALOR89 benchmarking and design calculations utilizing the CALOR89 programs are presented. The benchmarking is done with respect to the ZEUS and DO calorimeters. The design calculations were done for a variety of absorbers (depleted uranium, lead, and iron) of various thickness for a given scintillator thickness and for a fixed absorber thickness using various thickness for the scintillator. These studies indicate that a compensating calorimeter can be built using lead as the absorber, whereas a purely iron calorimeter would be non-compensating. A depleted uranium calorimeter would possibly be unsuitable if used in a large configuration and a high luminosity machine because of the delayed energy release from capture gammas. 11 refs., 5 figs.

  16. SOLGAS refined: A computerized thermodynamic equilibrium calculation tool

    SciTech Connect (OSTI)

    Trowbridge, L.D.; Leitnaker, J.M.

    1993-11-01T23:59:59.000Z

    SOLGAS, an early computer program for calculating equilibrium in a chemical system, has been made more user-friendly, and several{open_quote} bells and whistles{close_quotes} have been added. The necessity to include elemental species has been eliminated. The input of large numbers of starting conditions has been automated. A revised format for entering data simplifies and reduces chances for error. Calculated errors by SOLGAS are flagged, and several programming errors are corrected. Auxiliary programs are available to assemble and partially automate plotting of large amounts of data. Thermodynamic input data can be changed {open_quotes}on line.{close_quote} The program can be operated with or without a co-processor. Copies of the program, suitable for the IBM-PC or compatible with at least 384 bytes of low RAM, are available from the authors.

  17. Numerical calculations of ultrasonic fields I: transducer near fields

    SciTech Connect (OSTI)

    Johnson, J.A.

    1982-03-01T23:59:59.000Z

    A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two-dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two-dimensional plane strain or two-dimensional axial symmetries can be solved. Free, fixed, or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. This paper gives a brief description of the method and shows the results of the calculation of the near fields of circular flat and focused transducers. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens reconstruction technique off-axis.

  18. Numerical calculations of ultrasonic fields I: transducer near fields

    SciTech Connect (OSTI)

    Johnson, J.A.

    1982-04-01T23:59:59.000Z

    A computer code for the calculation of linear acoustic wave propagation in homogeneous fluid and solid materials has been derived from the thermal-hydraulics code STEALTH. The code uses finite-difference techniques in a two dimensional mesh made up of arbitrarily shaped quadrilaterals. Problems with two dimensional plane strain or two dimensional axial symmetries can be solved. Free, fixed or stressed boundaries can be used. Transducers can be modeled by time dependent boundary conditions or by moving pistons. A brief description of the method is given and the results of the calculation of the near fields of circular flat and focused transducers are shown. These results agree with analytic theory along the axis of symmetry and with other codes that use a Huygens' reconstruction technique off axis.

  19. Reactivity impact of delayed neutron spectra on MCNP calculations

    SciTech Connect (OSTI)

    Mosteller, R.D.; Werner, C.J.

    2000-07-01T23:59:59.000Z

    The new features in MCNP4C, the latest version of the MCNP Monte Carlo code, include the capability to sample from delayed as well as prompt fission emission spectra. Previous versions of MCNP all have sampled exclusively from prompt spectra. Delayed neutrons typically account for <1% of all neutrons emitted from fission, but the emission spectra for delayed neutrons are somewhat softer than those for prompt neutrons. Because of the softer spectrum, delayed neutrons are less likely to leak from the system, and they also are less likely to cause fission in isotopes that have an effective threshold for fission (e.g., {sup 238}U and {sup 240}Pu). Consequently, the inclusion of delayed neutron spectra can have a small but significant effect on reactivity calculations. This study performs MCNP4C calculations for a series of established benchmarks and quantifies the reactivity impact of the delayed neutron spectra.

  20. Solid-State Calculation of Crystalline Color Superconductivity

    E-Print Network [OSTI]

    Cao, Gaoqing; Zhuang, Pengfei

    2015-01-01T23:59:59.000Z

    It is generally believed that the inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase appears in a color superconductor when the pairing between different quark flavors is under the circumstances of mismatched Fermi surfaces. However, the real crystal structure of the LOFF phase is still unclear because an exact treatment of 3D crystal structures is rather difficult. In this work we calculate the ground-state energy of the body-centered cubic (BCC) structure for two-flavor pairing by diagonalizing the Hamiltonian matrix in the Bloch space, in analogy to the \\emph{ab initio} calculations in solid-state physics. We develop a computational scheme to overcome the difficulties in diagonalizing huge matrices. Our results show that the BCC structure is energetically more favorable than the 1D modulation in a narrow window around the conventional LOFF-normal phase transition point, which indicates the significance of the higher-order terms in the Ginzburg-Landau approach.

  1. Mesoscale polycrystal calculations of damage in spallation in metals

    SciTech Connect (OSTI)

    Tonks, Davis L [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory; Livescu, Veronica [Los Alamos National Laboratory; Luo, Shengnian [Los Alamos National Laboratory; Bronkhorst, C A [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The goal of this project is to produce a damage model for spallation in metals informed by the polycrystalline grain structure at the mesoscale. Earlier damage models addressed the continuwn macroscale in which these effects were averaged out. In this work we focus on cross sections from recovered samples examined with EBSD (electron backscattered diffraction), which reveal crystal grain orientations and voids. We seek to understand the loading histories of specific sample regions by meshing up the crystal grain structure of these regions and simulating the stress, strain, and damage histories in our hydro code, FLAG. The stresses and strain histories are the fundamental drivers of damage and must be calculated. The calculated final damage structures are compared with those from the recovered samples to validate the simulations.

  2. Calculation of thermal parameters of SiGe microbolometers

    E-Print Network [OSTI]

    Voitsekhovskii, A V; Yuryev, V A; Nesmelov, S N; 10.1007/s11182-008-9015-4

    2012-01-01T23:59:59.000Z

    The thermal parameters of a SiGe microbolometer were calculated using numerical modeling. The calculated thermal conduction and thermal response time are in good agreement with the values found experimentally and range between 2x10$^-7$ and 7x10$^-8$ W/K and 1.5 and 4.5 ms, respectively. High sensitivity of microbolometer is achieved due to optimization of the thermal response time and thermal conduction by fitting the geometry of supporting heat-removing legs or by selection of a suitable material providing boundary thermal resistance higher than 8x10$^-3$ cm$^2$K/W at the SiGe interface.

  3. Effects of internal gain assumptions in building energy calculations

    SciTech Connect (OSTI)

    Christensen, C.; Perkins, R.

    1981-01-01T23:59:59.000Z

    The utilization of direct solar gains in buildings can be affected by operating profiles, such as schedules for internal gains, thermostat controls, and ventilation rates. Building energy analysis methods use various assumptions about these profiles. The effects of typical internal gain assumptions in energy calculations are described. Heating and cooling loads from simulations using the DOE 2.1 computer code are compared for various internal-gain inputs: typical hourly profiles, constant average profiles, and zero gain profiles. Prototype single-family-detached and multi-family-attached residential units are studied with various levels of insulation and infiltration. Small detached commercial buildings and attached zones in large commercial buildings are studied with various levels of internal gains. The results of this study indicate that calculations of annual heating and cooling loads are sensitive to internal gains, but in most cases are relatively insensitive to hourly variations in internal gains.

  4. Experiences with leak rate calculations methods for LBB application

    SciTech Connect (OSTI)

    Grebner, H.; Kastner, W.; Hoefler, A.; Maussner, G. [and others

    1997-04-01T23:59:59.000Z

    In this paper, three leak rate computer programs for the application of leak before break analysis are described and compared. The programs are compared to each other and to results of an HDR Reactor experiment and two real crack cases. The programs analyzed are PIPELEAK, FLORA, and PICEP. Generally, the different leak rate models are in agreement. To obtain reasonable agreement between measured and calculated leak rates, it was necessary to also use data from detailed crack investigations.

  5. New correlation accurately calculates water solubilities of aromatics

    SciTech Connect (OSTI)

    Yaws, C.L.; Bu, L.; Nijhawan, S. (Lamar Univ., Beaumont, TX (United States))

    1994-08-29T23:59:59.000Z

    A new correlation calculates reliable aromatics solubilities in water down to very low concentrations. The correlation, based on boiling point, can be used for initial engineering studies. The importance of hydrocarbon solubility in water is increasing because of health, safety, and environmental issues. The paper begins with a discussion of the importance of solubility, even at low concentrations. The new correlation is described, aromatics are compared with paraffins, and the new correlation is compared with the API correlation.

  6. Water coning calculations for vertical and horizontal wells 

    E-Print Network [OSTI]

    Yang, Weiping

    1990-01-01T23:59:59.000Z

    recovery of several wells coning water. Since their type curves are specific for the data they investigated, it can not serve as a general method of coning evaluation. Addington'2 developed a set of gas coning correlations for 3-D coarse grid... for predicting (1) critical coning rate, (2) breakthrough time, and (3) WOR after breakthrough in both vertical and horizontal wells. Two hand calculation methods had been developed in this study. Either of them applies to both vertical and horizontal wells...

  7. 94 home power 95 / june & july 2003 Calculations

    E-Print Network [OSTI]

    Johnson, Eric E.

    94 home power 95 / june & july 2003 Code Calculations for an Off-Grid PV System The walls are up and the PV system is being assembled for the off-grid home described in Code Corner in HP94. This article National Laboratories Judy LaPointe's home is on its way to becoming a finished, off-grid home. #12;95www

  8. An alternative method for calculating the energy of gravitational waves

    E-Print Network [OSTI]

    Miroslav Sukenik; Jozef Sima

    1999-09-21T23:59:59.000Z

    In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.

  9. Validation of Criticality Safety Calculations with SCALE 6.2

    SciTech Connect (OSTI)

    Marshall, William BJ J [ORNL] [ORNL; Wiarda, Dorothea [ORNL] [ORNL; Celik, Cihangir [ORNL] [ORNL; Rearden, Bradley T [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    SCALE 6.2 provides numerous updates in nuclear data, nuclear data processing, and computational tools utilized in the criticality safety calculational sequences relative to SCALE 6.1. A new 252-group ENDF/B-VII.0 multigroup neutron library, improved ENDF/B-VII.0 continuous energy data, as well as the previously deployed 238-group ENDF/B-VII.0 neutron library are included in SCALE 6.2 for criticality safety analysis. The performance of all three libraries for keff calculations is examined with a broad sampling of critical experiment models covering a range of fuels and moderators. Critical experiments from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE) that are available in the SCALE Verified, Archived Library of Inputs and Data (VALID) are used in this validation effort. Over 300 cases are used in the validation of KENO V.a, and a more limited set of approximately 50 configurations are used for KENO-VI validation. Additionally, some KENO V.a cases are converted to KENO-VI models so that an equivalent set of experiments can be used to validate both codes. For continuous-energy calculations, SCALE 6.2 provides improved performance relative to SCALE 6.1 in most areas with notable improvements in fuel pin lattice cases, particularly those with mixed oxide fuel. Multigroup calculations with the 252-group library also demonstrate improved performance for fuel lattices, uranium (high and intermediate enrichment) and plutonium metal experiments, and plutonium solution systems. Overall, SCALE 6.2 provides equivalent or smaller biases than SCALE 6.1, and the two versions of KENO provide similar results on the same suite of problems.

  10. Cluster-model calculations of exotic decays from heavy nuclei

    SciTech Connect (OSTI)

    Buck, B.; Merchant, A.C.

    1989-05-01T23:59:59.000Z

    A cluster model employing a local, effective cluster-core potential is used to investigate exotic decay from heavy nuclei as a quantum tunneling phenomenon within a semiclassical approximation. Excellent agreement with all reported experimental measurements of the decay widths for /sup 14/C and /sup 24/Ne emission is obtained. As an added bonus, the width for alpha particle emission from /sup 212/Po is also calculated in good agreement with experiment.

  11. Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables 

    E-Print Network [OSTI]

    Haberl, J.; Yazdani, B.; Culp, C.

    2008-01-01T23:59:59.000Z

    AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... Energy Systems Laboratory p. 1 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas Engineering Experiment Station Texas A&M University System STATEWIDE AIR EMISSIONS CALCULATIONS FROM ENERGY EFFICIENCY, WIND...

  12. Quantum Monte Carlo calculations of neutron-alpha scattering

    E-Print Network [OSTI]

    Kenneth M. Nollett; Steven C. Pieper; R. B. Wiringa; J. Carlson; G. M. Hale

    2006-12-09T23:59:59.000Z

    We describe a new method to treat low-energy scattering problems in few-nucleon systems, and we apply it to the five-body case of neutron-alpha scattering. The method allows precise calculations of low-lying resonances and their widths. We find that a good three-nucleon interaction is crucial to obtain an accurate description of neutron-alpha scattering.

  13. Quantum Monte Carlo Calculations of Symmetric Nuclear Matter

    SciTech Connect (OSTI)

    Gandolfi, Stefano [Dipartimento di Fisica and INFN, University of Trento, via Sommarive 14, I-38050 Povo, Trento (Italy); Pederiva, Francesco [Dipartimento di Fisica and INFN, University of Trento, via Sommarive 14, I-38050 Povo, Trento (Italy); CNR-DEMOCRITOS National Supercomputing Center, Trieste (Italy); Fantoni, Stefano [Scuola Internazionale Superiore di Studi Avanzati and INFN via Beirut 2/4, 34014 Trieste (Italy); CNR-DEMOCRITOS National Supercomputing Center, Trieste (Italy); Schmidt, Kevin E. [Department of Physics, Arizona State University, Tempe, Arizona (United States)

    2007-03-09T23:59:59.000Z

    We present an accurate numerical study of the equation of state of nuclear matter based on realistic nucleon-nucleon interactions by means of auxiliary field diffusion Monte Carlo (AFDMC) calculations. The AFDMC method samples the spin and isospin degrees of freedom allowing for quantum simulations of large nucleonic systems and represents an important step forward towards a quantitative understanding of problems in nuclear structure and astrophysics.

  14. NAC-1 cask dose rate calculations for LWR spent fuel

    SciTech Connect (OSTI)

    CARLSON, A.B.

    1999-02-24T23:59:59.000Z

    A Nuclear Assurance Corporation nuclear fuel transport cask, NAC-1, is being considered as a transport and storage option for spent nuclear fuel located in the B-Cell of the 324 Building. The loaded casks will be shipped to the 200 East Area Interim Storage Area for dry interim storage. Several calculations were performed to assess the photon and neutron dose rates. This report describes the analytical methods, models, and results of this investigation.

  15. Exact-to-precision generalized perturbation for neutron transport calculation

    SciTech Connect (OSTI)

    Wang, C.; Abdel-Khalik, H. S. [North Carolina State University, 911 Oval Dr., Centennial Campus, Raleigh, NC 27606 (United States)

    2013-07-01T23:59:59.000Z

    This manuscript extends the exact-to-precision generalized perturbation theory (E{sub P}GPT), introduced previously, to neutron transport calculation whereby previous developments focused on neutron diffusion calculation only. The E{sub P}GPT collectively denotes new developments in generalized perturbation theory (GPT) that place premium on computational efficiency and defendable accuracy in order to render GPT a standard analysis tool in routine design and safety reactor calculations. EPGPT constructs a surrogate model with quantifiable accuracy which can replace the original neutron transport model for subsequent engineering analysis, e.g. functionalization of the homogenized few-group cross sections in terms of various core conditions, sensitivity analysis and uncertainty quantification. This is achieved by reducing the effective dimensionality of the state variable (i.e. neutron angular flux) by projection onto an active subspace. Confining the state variations to the active subspace allows one to construct a small number of what is referred to as the 'active' responses which are solely dependent on the physics model rather than on the responses of interest, the number of input parameters, or the number of points in the state phase space. (authors)

  16. Atmospheric neutrino flux calculation using the NRLMSISE00 atmospheric model

    E-Print Network [OSTI]

    Honda, M; Kajita, T; Kasahara, K; Midorikawa, S

    2015-01-01T23:59:59.000Z

    In this paper, we extend the calculation of the atmospheric neutrino flux~\\cite{hkkm2004,hkkms2006,hkkm2011} to the sites in polar and tropical regions. In our earliest full 3D-calculation~\\cite{hkkm2004}, we used DPMJET-III~\\cite{dpm} for the hadronic interaction model above 5~GeV, and NUCRIN~\\cite{nucrin} below 5~GeV. We modified DPMJET-III as in Ref.~\\cite{hkkms2006} to reproduce the experimental muon spectra better, mainly using the data observed by BESS group~\\cite{BESSTeVpHemu}. In a recent work~\\cite{hkkm2011}, we introduced JAM interaction model for the low energy hadronic interactions. JAM is a nuclear interaction model developed with PHITS (Particle and Heavy-Ion Transport code System)~\\cite{phits}. In Ref.~\\cite{hkkm2011}, we could reproduce the observed muon flux at the low energies at balloon altitude with DPMJET-III above 32 GeV and JAM below that better than the combination of DPMJET-III above 5~GeV and NUCRIN below that. Besides the interaction model, we have also improved the calculation sche...

  17. A general higher-order remap algorithm for ALE calculations

    SciTech Connect (OSTI)

    Chiravalle, Vincent P [Los Alamos National Laboratory

    2011-01-05T23:59:59.000Z

    A numerical technique for solving the equations of fluid dynamics with arbitrary mesh motion is presented. The three phases of the Arbitrary Lagrangian Eulerian (ALE) methodology are outlined: the Lagrangian phase, grid relaxation phase and remap phase. The Lagrangian phase follows a well known approach from the HEMP code; in addition the strain rate andflow divergence are calculated in a consistent manner according to Margolin. A donor cell method from the SALE code forms the basis of the remap step, but unlike SALE a higher order correction based on monotone gradients is also added to the remap. Four test problems were explored to evaluate the fidelity of these numerical techniques, as implemented in a simple test code, written in the C programming language, called Cercion. Novel cell-centered data structures are used in Cercion to reduce the complexity of the programming and maximize the efficiency of memory usage. The locations of the shock and contact discontinuity in the Riemann shock tube problem are well captured. Cercion demonstrates a high degree of symmetry when calculating the Sedov blast wave solution, with a peak density at the shock front that is similar to the value determined by the RAGE code. For a flyer plate test problem both Cercion and FLAG give virtually the same velocity temporal profile at the target-vacuum interface. When calculating a cylindrical implosion of a steel shell, Cercion and FLAG agree well and the Cercion results are insensitive to the use of ALE.

  18. WIPP Benchmark calculations with the large strain SPECTROM codes

    SciTech Connect (OSTI)

    Callahan, G.D.; DeVries, K.L. [RE/SPEC, Inc., Rapid City, SD (United States)

    1995-08-01T23:59:59.000Z

    This report provides calculational results from the updated Lagrangian structural finite-element programs SPECTROM-32 and SPECTROM-333 for the purpose of qualifying these codes to perform analyses of structural situations in the Waste Isolation Pilot Plant (WIPP). Results are presented for the Second WIPP Benchmark (Benchmark II) Problems and for a simplified heated room problem used in a parallel design calculation study. The Benchmark II problems consist of an isothermal room problem and a heated room problem. The stratigraphy involves 27 distinct geologic layers including ten clay seams of which four are modeled as frictionless sliding interfaces. The analyses of the Benchmark II problems consider a 10-year simulation period. The evaluation of nine structural codes used in the Benchmark II problems shows that inclusion of finite-strain effects is not as significant as observed for the simplified heated room problem, and a variety of finite-strain and small-strain formulations produced similar results. The simplified heated room problem provides stratigraphic complexity equivalent to the Benchmark II problems but neglects sliding along the clay seams. The simplified heated problem does, however, provide a calculational check case where the small strain-formulation produced room closures about 20 percent greater than those obtained using finite-strain formulations. A discussion is given of each of the solved problems, and the computational results are compared with available published results. In general, the results of the two SPECTROM large strain codes compare favorably with results from other codes used to solve the problems.

  19. New quinternary selenides: Syntheses, characterizations, and electronic structure calculations

    SciTech Connect (OSTI)

    Chung, Ming-Yan; Lee, Chi-Shen, E-mail: chishen@mail.nctu.edu.tw

    2013-06-01T23:59:59.000Z

    Five quinternary selenides, Sr?.??Y?.??Ge?.??Sb?.??Se? (I), Sr?.??La?.??Ge?.??Sb?.??Se? (II), Sr?.??La?.??Sn?.??Bi?.??Se? (III), Ba?.?? La?.?? Sn?.??Sb?.??Se? (IV), and Ba?.?? La?.??Sn?.??Bi?.??Se? (V), were synthesized by solid-state reaction in fused silica tubes. These compounds are isostructural and crystallize in the Sr?GeSb?Se? structural-type, which belongs to the orthorhombic space group Pnma (no. 62). Three structural units, 1?[MSe?], 1?[M?Se??] (M=Tt, Pn) and M´ (M´=groups II and III element), comprise the entire one-dimensional structure, separated by M´. Measurements of electronic resistivity and diffused reflectance suggest that IV and V have semiconducting properties. Electronic structure calculations confirm the site preferences of Sr/La element discovered by crystal structure refinement. - Graphical abstract: Quinternary selenides Ae?.??M?.??Tt?.??Pn?.??Se? (Ae, M, Tt, Pn=Sr/Ba, Y/La, Ge/Sn, Sb/Bi) were synthesized and their site preferences were characterized by single-crystal X-ray diffraction and electronic structure calculation. Highlights: • Five new quinternary selenides were synthesized and characterized. • Structural units, 1?[MSe?] and 1?[M?Se??] (M=Tt, Pn), construct the one-dimensional structure. • Calculations of electronic structure confirm site preference of Sr/La sites.

  20. Application of nuclear models to neutron nuclear cross section calculations

    SciTech Connect (OSTI)

    Young, P.G.

    1982-01-01T23:59:59.000Z

    Nuclear theory is used increasingly to supplement and extend the nuclear data base that is available for applied studies. Areas where theoretical calculations are most important include the determination of neutron cross sections for unstable fission products and transactinide nuclei in fission reactor or nuclear waste calculations and for meeting the extensive dosimetry, activation, and neutronic data needs associated with fusion reactor development, especially for neutron energies above 14 MeV. Considerable progress has been made in the use of nuclear models for data evaluation and, particularly, in the methods used to derive physically meaningful parameters for model calculations. Theoretical studies frequently involve use of spherical and deformed optical models, Hauser-Feshbach statistical theory, preequilibrium theory, direct-reaction theory, and often make use of gamma-ray strength function models and phenomenological (or microscopic) level density prescriptions. The development, application, and limitations of nuclear models for data evaluation are discussed, with emphasis on the 0.1 to 50 MeV energy range. (91 references).

  1. Investigation of the Accuracy of Calculation Methods for Conduction Transfer Functions of Building Construction

    E-Print Network [OSTI]

    Chen, Y.; Li, X.; Zhang, Q.; Spitler, J.; Fisher, D.

    2006-01-01T23:59:59.000Z

    USA lxq9031@yahoo.com.cn Abstract: Conduction transfer functions (CTFs) are widely used to calculate conduction heat transfer in building cooling load and energy calculations. They can conveniently fit into any load and energy calculation...

  2. TheRate: Program for Ab Initio Direct Dynamics Calculations of Thermal and

    E-Print Network [OSTI]

    Truong, Thanh N.

    , and the convergence of the rate constants with respect to the number of electronic structure calculations. 1998 John is that such limited potential energy information may be obtained from accurate electronic structure calculations-- --Dynamics Calculations of Thermal and Vibrational

  3. Consistent neutron kinetics data generation for nodal transient calculations

    SciTech Connect (OSTI)

    Akdeniz, B. [Penn State Univ., Nuclear Engineering Program, Univ. Park, PA 16802 (United States); Mueller, E.; Panayotov, D. [Westinghouse Electric Sweden, SE - 721 63 Vaesteraas (Sweden); Ivanov, K. N. [Penn State Univ., Nuclear Engineering Program, Univ. Park, PA 16802 (United States)

    2006-07-01T23:59:59.000Z

    Current three-dimensional transient codes for thermal reactors are mostly based on two-group diffusion-theory nodal models. In the two-group approach no explicit distinction is made between prompt fission neutrons and delayed neutrons. Consequently, effective delayed neutron fractions have traditionally been used in an attempt to compensate for this shortcoming. A fundamentally better approach would be to solve the nodal kinetics equations in a sufficient number of energy groups to explicitly capture neutron emission spectrum effects. However, this would require the availability of a multi-group nodal transient code as well as a lattice code to generate the appropriate multi-group nodal data for the simulator. One such simulator is the PARCS nodal transient code, which is widely used and recognized as representative of the current state-of-the-art. Unfortunately, a proper nodal data preparation path between PARCS and a lattice code is not available. Even though several industrial lattice codes could be considered as candidates, most of them are tailored to producing two-group nodal data and would require modifications to produce multi-group prompt and delayed neutron emission spectra. In this paper, the particular modifications required to match the TransLAT lattice code and the PARCS nodal transient code for BWR transient applications are reported. Some modifications to PARCS were also required to make two-group and multi-group applications fully consistent. Numerical results are presented both to verify the proper functioning of these modifications and to illuminate the impact of various nodal kinetics data approximations in a selected transient calculation. In particular, the significance of blending rodded and un-rodded kinetics data in partially rodded nodes is demonstrated. It is also confirmed that the use of delayed neutron importance factors in two-group calculations notably reduces the differences between two-group and multi-group kinetics calculations. (authors)

  4. The calculated rovibronic spectrum of scandium hydride, ScH

    E-Print Network [OSTI]

    Lodi, Lorenzo; Tennyson\\, Jonathan

    2015-01-01T23:59:59.000Z

    The electronic structure of six low-lying electronic states of scandium hydride, $X\\,{}^{1}\\Sigma^+$, $a\\,{}^{3}\\Delta$, $b\\,{}^{3}\\Pi$, $A\\,{}^{1}\\Delta$ $c\\,{}^{3}\\Sigma^+$, and $B\\,{}^{1}\\Pi$, is studied using multi-reference configuration interaction as a function of bond length. Diagonal and off-diagonal dipole moment, spin-orbit coupling and electronic angular momentum curves are also computed. The results are benchmarked against experimental measurements and calculations on atomic scandium. The resulting curves are used to compute a line list of molecular ro-vibronic transitions for $^{45}$ScH.

  5. Proton induced activation in mercury: Comparison of measurements and calculations

    SciTech Connect (OSTI)

    Remec, Igor [ORNL; Glasgow, David C [ORNL; Haines, John R [ORNL; Johnson, Jeffrey O [ORNL

    2008-01-01T23:59:59.000Z

    Measurements and simulations of the proton beam interaction with the mercury target were performed to support Spallation Neutron Source design. Due to the abundance of isotopes produced in mercury, the long delay between the irradiation and the measurements, and the self-shielding of the mercury sample, the measurements were difficult to perform and the activities of several isotopes have large uncertainties. Calculations predicted the activities of the most reliably measured isotopes within 20%/40%; however, some large discrepancies were observed for some isotopes for which the measurements were considered less reliable. Predicted dose rates were in very good agreement with the measurements.

  6. Envelope calculations for a low temperature neutron star

    E-Print Network [OSTI]

    McCoy, Robert Paul

    1976-01-01T23:59:59.000Z

    with distance inward from the surface R for all three star models S, I and II at effective temperature Te = 10 K 34 Density-pressure dependence for the Model S star at different values of Te 35 Envelope calculation traces in the opacity-density plane... )] (20) Similarly a relation between p and T can be found 64v GN~ uH() a+1 1 a+1 ~a+ 3 r L k 4-b+aJ 0 (21) Inserting this back into the energy transport equation (13) gives the radial dependence of the temperature (22) (23) where R is the surface...

  7. Accelerating Ab Initio Nuclear Physics Calculations with GPUs

    E-Print Network [OSTI]

    Hugh Potter; Dossay Oryspayev; Pieter Maris; Masha Sosonkina; James Vary; Sven Binder; Angelo Calci; Joachim Langhammer; Robert Roth; Ümit Çatalyürek; Erik Saule

    2014-12-18T23:59:59.000Z

    This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.

  8. Calculational comparison of DT, neon, and argon implosions

    SciTech Connect (OSTI)

    Stevens, J.C.

    1980-10-28T23:59:59.000Z

    A number of laboratories have been doing laser driven implosions of pure neon and argon gas as a diagnostic of the peak imploded conditions. The relationship of these implosions to DT implosions has been unclear. This paper will explore the physics of these higher Z gases and show that they are fundamentally easier to compress than DT gas. Specifically, this paper will show that, for the same initial mass density, and the same capsule design and drive conditions, the calculated peak compressed density is dependent on the type of fill gas, being substantially higher for Ne and Ar implosions than for DT implosions.

  9. Turbulent energy exchange: Calculation and relevance for profile prediction

    SciTech Connect (OSTI)

    Candy, J. [General Atomics, San Diego, California 92186 (United States)] [General Atomics, San Diego, California 92186 (United States)

    2013-08-15T23:59:59.000Z

    The anomalous heat production due to turbulence is neither routinely calculated in nonlinear gyrokinetic simulations nor routinely retained in profile prediction studies. In this work, we develop a symmetrized method to compute the exchange which dramatically reduces the intermittency in the time-dependent moment, thereby improving the accuracy of the time-average. We also examine the practical impact on transport-timescale simulations, and show that the exchange has only a minor impact on profile evolution for a well-studied DIII-D discharge.

  10. Field calculation of D0 toroids and comparison with measurement

    SciTech Connect (OSTI)

    Yamada, R.; Ostiguy, F.; Brzezniak, J.

    1992-06-01T23:59:59.000Z

    The magnetic structure of the D0 detector is described in an earlier report. The two-dimensional code POISSON was used for the initial design of the magnetic structures and the magnetic properties of the D0 toroids. During the construction, the two-dimensional code ANSYS was used to perform more detailed calculations. Full three-dimensional analysis was also performed using the code TOSCA. These new results are reported here and compared with measurements. In this study the magnetic flux in all toroids, CF, EF, and SAMUS is set in the same direction.

  11. APE project: a Gigaflop processor for lattice calculations

    SciTech Connect (OSTI)

    Bacilieri, P.; Cabasino, S.; Marzano, F.; Paohicci, P.; Petrarce, S.; Salina, G.; Cabibo, H.; Giovannella, C.; Marinari, E.; Parisi, G.

    1985-07-01T23:59:59.000Z

    A new special purpose parallel processor (APE) presently under development is presented. The theoretical computing power of the processor is 1 Giga-Flop and the memory can be expanded to 512 Mega-bytes. Sixteen 52 bit floating point processors each with a computing power of 64 Mega-Flops are driven in parallel as a single instruction multiple data machine under the control of a 3081/E. Each floating point unit is connected to two 8 Mega-byte memories which can also be accessed by the 3081.E. Though this machine can be used as a general purpose array processor the hardware has been optimized for lattice QCD calculations.

  12. Calculation of material properties and ray tracing in transformation media

    E-Print Network [OSTI]

    Schurig, D; Smith, D R

    2006-01-01T23:59:59.000Z

    Complex and interesting electromagnetic behavior can be found in spaces with non-flat topology. When considering the properties of an electromagnetic medium under an arbitrary coordinate transformation an alternative interpretation presents itself. The transformed material property tensors may be interpreted as a different set of material properties in a flat, Cartesian space. We describe the calculation of these material properties for coordinate transformations that describe spaces with spherical or cylindrical holes in them. The resulting material properties can then implement invisibility cloaks in flat space. We also describe a method for performing geometric ray tracing in these materials which are both inhomogeneous and anisotropic in their electric permittivity and magnetic permeability.

  13. Atomic data for astrophysics. Calculations, benchmarking and distribution

    SciTech Connect (OSTI)

    Del Zanna, G. [Department of Applied Mathematics and Theoretical Physics University of Cambridge Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2012-05-25T23:59:59.000Z

    Some recent R-matrix and distorted-wave calculations, done as part of the UK APAPNetwork, are presented. They are focused on some ions important for the EUV and the X-rays, in particular for the solar corona. A long-term and novel project to benchmark atomic data against laboratory and astrophysical data is summarised, highlighting new plasma diagnostics. The various ways in which the atomic data are made available to the various communities through e.g. the CHIANTI and the VAMDC EU framework are also presented.

  14. Home Energy Score Calculation Methodology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of EnergySeacrist,theA Qualified Assessor calculates the

  15. Calculating CO2 Emissions from Mobile Sources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump to:ListCRED:CalStarCalculating

  16. Property:GBIG/CalculatedCenter | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation, search PropertyCalculatedCenter Jump to: navigation, search

  17. Photovoltaics Economic Calculator (United States) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompanyPCNInformationLumiledsEconomic Calculator (United

  18. Calculating and Communicating Program Results | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change Request |82:91:4 Categorical9CadmiumCalculating and

  19. Calculation of Job Creation Through DOE Recovery Act Funding | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change Request |82:91:4 Categorical9CadmiumCalculating andof

  20. Tool and Calculator (Transit, Fuel) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePty LtdOpenHabitatand Calculator (Transit,

  1. Improve Claus simulation by integrating kinetic limitations into equilibrium calculations

    SciTech Connect (OSTI)

    Wen, T.C.

    1986-01-01T23:59:59.000Z

    Since all existing Claus simulators are based on equilibrium calculations, it is not surprising that the simulation results, including the overall sulfur yield, air to acid gas ratio, and stream compositions are somewhat different from the plant data. One method for improving the simulation is to consider the kinetic limitations in the Claus reactions. This has been accomplished in this work by integrating kinetic considerations into equilibrium calculations. Kinetic limitations have been introduced in both the Claus reaction furnace and the catalytic converters. An interactive computer program SULPLT Version 3 was written to implement the proposed modifications. The computer program was used to simulate the Claus furnace, catalytic converters, and the effect of air to acid gas ratio on sulfur recovery to check against literature data. Three Claus plants for which data exist have also been simulated. The results show that the proposed model predicts sulfur recovery, sulfur emission, optimal air to acid gas ratio, and various stream compositions more accurately than the equilibrium model. The proposed model appears to be valid, reliable, and applicable over a wide range of operating conditions (acid gas feeds ranging from 13% to 95% H/sub 2/S with different levels of impurities). The methodology developed in this study should be applicable to any reaction systems where kinetic limitations are important but where equilibrium still prevails.

  2. Mass Insertions vs. Mass Eigenstates calculations in Flavour Physics

    E-Print Network [OSTI]

    Dedes, A; Rosiek, J; Suxho, K; Tamvakis, K

    2015-01-01T23:59:59.000Z

    We present and prove a theorem of matrix analysis, the Flavour Expansion Theorem (or FET), according to which, an analytic function of a Hermitian matrix can be expanded polynomially in terms of its off-diagonal elements with coefficients being the divided differences of the analytic function and arguments the diagonal elements of the Hermitian matrix. The theorem is applicable in case of flavour changing amplitudes. At one-loop level this procedure is particularly natural due to the observation that every loop function in the Passarino-Veltman basis can be recursively expressed in terms of divided differences. FET helps to algebraically translate an amplitude written in mass eigenbasis into flavour mass insertions, without performing diagrammatic calculations in flavour basis. As a non-trivial application of FET up to a third order, we demonstrate its use in calculating strong bounds on the real parts of flavour changing mass insertions in the up- squark sector of the MSSM from neutron Electric Dipole Moment...

  3. Microcomputer aided calculations of parameters for spray dryer operation

    SciTech Connect (OSTI)

    Yeh, J.T.; Gyorke, D.F.; Pennline, H.W.; Drummond, C.J.

    1985-01-01T23:59:59.000Z

    This paper provides a series of practical microcomputer programs that can be used as a tool by engineers and researchers working with spray dryers for combustion process effluent control. The microcomputer programs calculate flue gas composition (CO/sub 2/, N/sub 2/, O/sub 2/, H/sub 2/O, and SO/sub 2/) from the composition of the fuel. The residence time of the flue gas in a spray dryer can be estimated, and using values provided by the user for the flow of water and absorbent slurry in the spray dryer, the program recalculates the flue gas composition and heat capacity at the exit of the spray dryer without accounting for any SO/sub 2/ removal that could occur in the spray dryer. From these values and the system pressure, the dew point and flue gas temperature at the spray dryer exit are calculated, providing the approach to saturation resulting from this choice of operating parameters. This computer code would enable a process engineer to quickly evaluate effects of important process parameters, such as flue gas temperature at the inlet to the spray dryer, atomizer water feed rate, and absorbent slurry concentration and feed rate, on the operation of a spray dryer.

  4. Coupled-channels calculations of $^{16}$O+$^{16}$O fusion

    E-Print Network [OSTI]

    H. Esbensen

    2008-05-13T23:59:59.000Z

    Fusion data for $^{16}$O+$^{16}$O are analyzed by coupled-channels calculations. It is shown that the calculated cross sections are sensitive to the couplings to the $2^+$ and $3^-$ excitation channels even at low energies, where these channels are closed. The sensitivity to the ion-ion potential is investigated by applying a conventional Woods-Saxon potential and the M3Y+repulsion potential, consisting of the M3Y double-folding potential and a repulsive term that simulates the effect of the nuclear incompressibility. The best overall fit to the data is obtained with a M3Y+repulsion potential which produces a shallow potential in the entrance channel. The stepwise increase in measured fusion cross sections at high energies is also consistent with such a shallow potential. The steps are correlated with overcoming the barriers for the angular momenta $L$ = 12, 14, 16, and 18. To improve the fit to the low-energy data requires a shallower potential and this causes a even stronger hindrance of fusion at low energies. It is therefore difficult, based on the existing fusion data, to make an accurate extrapolation to energies that are of interest to astrophysics.

  5. Physics methods for calculating light water reactor increased performances

    SciTech Connect (OSTI)

    Vandenberg, C.; Charlier, A.

    1988-11-01T23:59:59.000Z

    The intensive use of light water reactors (LWRs) has induced modification of their characteristics and performances in order to improve fissile material utilization and to increase their availability and flexibility under operation. From the conceptual point of view, adequate methods must be used to calculate core characteristics, taking into account present design requirements, e.g., use of burnable poison, plutonium recycling, etc. From the operational point of view, nuclear plants that have been producing a large percentage of electricity in some countries must adapt their planning to the need of the electrical network and operate on a load-follow basis. Consequently, plant behavior must be predicted and accurately followed in order to improve the plant's capability within safety limits. The Belgonucleaire code system has been developed and extensively validated. It is an accurate, flexible, easily usable, fast-running tool for solving the problems related to LWR technology development. The methods and validation of the two computer codes LWR-WIMS and MICROLUX, which are the main components of the physics calculation system, are explained.

  6. Load calculation and system evaluation for electric vehicle climate control

    SciTech Connect (OSTI)

    Aceves-Saborio, S.; Comfort, W.J. III

    1993-10-27T23:59:59.000Z

    Providing air conditioning for electric vehicles (EVs) represents an important challenge, because vapor compression air conditioners, which are common in gasoline powered vehicles, may consume a substantial part of the total energy stored in the EV battery. This report consists of two major parts. The first part is a cooling and heating load calculation for electric vehicles. The second part is an evaluation of several systems that can be used to provide the desired cooling and heating in EVs. Four cases are studied. Short range and full range EVs are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat reflecting windows, to reduce hot soak. Recent legislation has allowed the use of combustion heating whenever the ambient temperature drops below 5{degrees}C. This has simplified the problem of heating, and made cooling the most important problem. Therefore, systems described in this project are designed for cooling, and their applicability to heating at temperatures above 5{degrees}C is described. If the air conditioner systems cannot be used to cover the whole heating load at 5{degrees}C, then the vehicle requires a complementary heating system (most likely a heat recovery system or electric resistance heating). Air conditioners are ranked according to their overall weight. The overall weight is calculated by adding the system weight and the weight of the battery necessary to provide energy for system operation.

  7. Few-body calculations of $?$-nuclear quasibound states

    E-Print Network [OSTI]

    N. Barnea; E. Friedman; A. Gal

    2015-06-15T23:59:59.000Z

    We report on precise hyperspherical-basis calculations of $\\eta NN$ and $\\eta NNN$ quasibound states, using energy dependent $\\eta N$ interaction potentials derived from coupled-channel models of the $S_{11}$ $N^{\\ast}(1535)$ nucleon resonance. The $\\eta N$ attraction generated in these models is too weak to generate a two-body bound state. No $\\eta NN$ bound-state solution was found in our calculations in models where Re $a_{\\eta N}\\lesssim 1$ fm, with $a_{\\eta N}$ the $\\eta N$ scattering length, covering thereby the majority of $N^{\\ast}(1535)$ resonance models. A near-threshold $\\eta NNN$ bound-state solution, with $\\eta$ separation energy of less than 1 MeV and width of about 15 MeV, was obtained in the 2005 Green-Wycech model where Re $a_{\\eta N}\\approx 1$ fm. The role of handling self consistently the subthreshold $\\eta N$ interaction is carefully studied.

  8. Efficient Execution of Electronic Structure Calculations on SMP Clusters

    SciTech Connect (OSTI)

    Nurzhan Ustemirov

    2006-05-01T23:59:59.000Z

    Applications augmented with adaptive capabilities are becoming common in parallel computing environments. For large-scale scientific applications, dynamic adjustments to a computationally-intensive part may lead to a large pay-off in facilitating efficient execution of the entire application while aiming at avoiding resource contention. Application-specific knowledge, often best revealed during the run-time, is required to initiate and time these adjustments. In particular, General Atomic and Molecular Electronic Structure System (GAMESS) is a program for ab initio quantum chemistry that places significant demands on the high-performance computing platforms. Certain electronic structure calculations are characterized by high consumption of a particular resource, such as CPU, main memory, or disk I/O. This may lead to resource contention among concurrent GAMESS jobs and other programs in the dynamically changing environment. Thus, it is desirable to improve GAMESS calculations by means of dynamic adaptations. In this thesis, we show how an application- or algorithm-specific knowledge may play a significant role in achieving this goal. The choice of implementation is facilitated by a module-driven middleware easily integrated with GAMESS that assesses resource consumption and invokes GAMESS adaptations to the system environment. We show that the throughput of GAMESS jobs may be improved greatly as a result of such adaptations.

  9. Recent Developments in No-Core Shell-Model Calculations

    SciTech Connect (OSTI)

    Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R

    2009-03-20T23:59:59.000Z

    We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.

  10. Few-body calculations of $?$-nuclear quasibound states

    E-Print Network [OSTI]

    N. Barnea; E. Friedman; A. Gal

    2015-05-11T23:59:59.000Z

    We report on precise hyperspherical-basis calculations of $\\eta NN$ and $\\eta NNN$ quasibound states, using energy dependent $\\eta N$ interaction potentials derived from coupled-channel models of the $S_{11}$ $N^{\\ast}(1535)$ nucleon resonance. The $\\eta N$ attraction generated in these models is too weak to generate a two-body bound state. No $\\eta NN$ bound-state solution was found in our calculations in models where Re $a_{\\eta N}\\lesssim 1$ fm, with $a_{\\eta N}$ the $\\eta N$ scattering length, covering thereby the majority of $N^{\\ast}(1535)$ resonance models. A near-threshold $\\eta NNN$ bound-state solution, with $\\eta$ separation energy of less than 1 MeV and width of about 15 MeV, was obtained in the 2005 Green-Wycech model where Re $a_{\\eta N}\\approx 1$ fm. The role of handling self consistently the subthreshold $\\eta N$ interaction is carefully studied.

  11. Adaptations in Electronic Structure Calculations in Heterogeneous Environments

    SciTech Connect (OSTI)

    Talamudupula, Sai

    2011-11-29T23:59:59.000Z

    Modern quantum chemistry deals with electronic structure calculations of unprecedented complexity and accuracy. They demand full power of high-performance computing and must be in tune with the given architecture for superior e#14;ciency. To make such applications resourceaware, it is desirable to enable their static and dynamic adaptations using some external software (middleware), which may monitor both system availability and application needs, rather than mix science with system-related calls inside the application. The present work investigates scienti#12;c application interlinking with middleware based on the example of the computational chemistry package GAMESS and middleware NICAN. The existing synchronous model is limited by the possible delays due to the middleware processing time under the sustainable runtime system conditions. Proposed asynchronous and hybrid models aim at overcoming this limitation. When linked with NICAN, the fragment molecular orbital (FMO) method is capable of adapting statically and dynamically its fragment scheduling policy based on the computing platform conditions. Signi#12;cant execution time and throughput gains have been obtained due to such static adaptations when the compute nodes have very di#11;erent core counts. Dynamic adaptations are based on the main memory availability at run time. NICAN prompts FMO to postpone scheduling certain fragments, if there is not enough memory for their immediate execution. Hence, FMO may be able to complete the calculations whereas without such adaptations it aborts.

  12. Measurement and numerical calculation of Rubidium Rydberg Stark spectra

    E-Print Network [OSTI]

    Grimmel, Jens; Karlewski, Florian; Jessen, Florian; Reinschmidt, Malte; Sándor, Nóra; Fortágh, József

    2015-01-01T23:59:59.000Z

    We report on the measurement of Stark shifted energy levels of $^{87}$Rb Rydberg atoms in static electric fields by means of electromagnetically induced transparency (EIT). Electric field strengths of up to 500V/cm, ranging beyond the classical ionisation threshold, were applied using electrodes inside a glass cell with rubidium vapour. Stark maps for principal quantum numbers $n=35$ and $n=70$ have been obtained with high signal-to-noise ratio for comparison with results from ab initio calculations following the method described in [M. L. Zimmerman et al., Phys. Rev. A 20, 2251 (1979)], which was originally only verified for states around $n=15$. We also calculate the dipole matrix elements between low-lying states and Stark shifted Rydberg states to give a theoretical estimate of the relative strength of the EIT signal. The present work significantly extends the experimental verification of this numerical method in the range of both high principal quantum numbers and high electric fields with an accuracy of...

  13. NUMERICAL CALCULATIONS FOR THE ASYMPTOTIC, DIFFUSION DOMINATED MASS-TRANSFER COEFFICIENT IN PACKED BED REACTORS

    E-Print Network [OSTI]

    Fedkiw, Peter

    2011-01-01T23:59:59.000Z

    Calculations for the Asymptotic, Diffusion Dominated Mass-Transfer Coefficient in Packed Bed Reactors

  14. Modularization and simulation techniques for heat balance-based energy and load calculation

    E-Print Network [OSTI]

    Richard K. Strand

    2001-01-01T23:59:59.000Z

    the Loads Toolkit research project is to obtain a heat balance based load calculation procedure that

  15. Thermal and mechanical joints to cryo-cooled silicon monochromator crystals

    E-Print Network [OSTI]

    MacDowell, A.; Fakra, S.; Morrison, G.

    2006-01-01T23:59:59.000Z

    resistance of the joint. The operating temperature of –150 ooperating temperature range was as small as possible in an attempt to reduce the strain in the joint and

  16. ANL/APS/TB-24 Diamond Monochromators for APS Undulator-A Beamlines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it is convenient to give here an approximate expression for this dependence: a o 3.56715 - 5.3 10 -4 X 13 C + 3.14 X N 2 + 3.6 10 -6 K -1 (T -...

  17. Subband coding of monochrome images over binary symmetric channels with error correction

    E-Print Network [OSTI]

    Sheppard, Denise M

    1992-01-01T23:59:59.000Z

    Corrupted Next Codeword Codeword State Probability 00 00 01 01 10 10 110 110 110 01 10 00 00 100 010 110 101 011 4/22 4/22 2/22 2/22 2/22 2/22 1/22 1/22 1/22 I/22 1/22 1/22 State Transitions: P(I ~ F) = 4/22 + 4/22 + 2/22 + 2.../22 + 1/22 y 1/22 = 7/11 P(I ~ 0) = I/22 + 1/22 = I/11 P(I ~ 1) = 1/22 + 1/22 = 1/11 P(I ? + 11) = 2/22 + 2/22 = 2/11 Table IV. Transition probabilities from 11 state Appended Resulting Decoded Next Codeword Bit string Symbol(s) State Probability 00...

  18. als double-crystal monochromator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    newest additions to Sony's Bsec. for compatibility with slower vision systems using Sony XC-55 cameras. The XC-HR50 and XC-HR70 cameras incorporate Demoulin, Pascal 20 Stress...

  19. artificial channel-cut monochromator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will aim to further increase our customer value and our corporate value. Printer Market Environment It was said that the spread of the Internet and e-mail would do away with...

  20. Periodic magnetic fieldas a polarized and focusing thermal neutron spectrometer and monochromator

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    B828?. The aluminum spacers had dimensions 12.7 ? 2.54? 12.7magnet pole dimension ?axial width? Aluminum spacer width

  1. CLEAR (Calculates Logical Evacuation And Response): A Generic Transportation Network Model for the Calculation of Evacuation Time Estimates

    SciTech Connect (OSTI)

    Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.

    1982-03-01T23:59:59.000Z

    This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.

  2. Analytical calculation of neutral transport and its effect on ions

    SciTech Connect (OSTI)

    Calvin, M.D.; Hazeltine, R.D.; Valanju, P.M.; Solano, E.R. (Texas Univ., Austin, TX (USA). Inst. for Fusion Studies Texas Univ., Austin, TX (USA). Fusion Research Center)

    1991-06-01T23:59:59.000Z

    We analytically calculate the neutral particle distribution and its effects on ion heat and momentum transport in three-dimensional plasmas with arbitrary temperature and density profiles. A general variational principle taking advantage of the simplicity of the charge-exchange (CX) operator is derived to solve self-consistently the neutral-plasma interaction problem. To facilitate an extremal solution, we use the short CX mean-free-path ({lambda}{sub x}) ordering. Further, a non-variational, analytical solution providing a full set of transport coefficient is derived by making the realistic assumption that the product of the CX cross section with relative velocity is constant. The effects of neutrals on plasma energy loss and rotation appear in simple, sensible forms. We find that neutral viscosity dominates ion viscosity everywhere, and in the edge region by a large factor. 13 refs.

  3. RELAP5 posttest calculation of IAEA-SPE-4

    SciTech Connect (OSTI)

    Petelin, S.; Mavko, B.; Parzer, I.; Prosek, A.

    1994-12-31T23:59:59.000Z

    The International Atomic Energy Agency`s Fourth Standard Problem Exercise (IAEA-SPE-4) was performed at the PMK-2 facility. The PMK-2 facility is designed to study processes following small- and medium-size breaks in the primary system and natural circulation in VVER-440 plants. The IAEA-SPE-4 experiment represents a cold-leg side small break, similar to the IAEA-SPE-2, with the exception of the high-pressure safety injection being unavailable, and the secondary side bleed and feed initiation. The break valve was located at the dead end of a vertical downcomer, which in fact simulates a break in the reactor vessel itself, and should be unlikely to happen in a real nuclear power plant (NPP). Three different RELAP5 code versions were used for the transient simulation in order to assess the calculations with test results.

  4. Fast calculation of HELAS amplitudes using graphics processing unit (GPU)

    E-Print Network [OSTI]

    K. Hagiwara; J. Kanzaki; N. Okamura; D. Rainwater; T. Stelzer

    2010-10-11T23:59:59.000Z

    We use the graphics processing unit (GPU) for fast calculations of helicity amplitudes of physics processes. As our first attempt, we compute $u\\bar{u}\\to n\\gamma$ ($n=2$ to 8) processes in $pp$ collisions at $\\sqrt{s} = 14$TeV by transferring the MadGraph generated HELAS amplitudes (FORTRAN) into newly developed HEGET ({\\bf H}ELAS {\\bf E}valuation with {\\bf G}PU {\\bf E}nhanced {\\bf T}echnology) codes written in CUDA, a C-platform developed by NVIDIA for general purpose computing on the GPU. Compared with the usual CPU programs, we obtain 40-150 times better performance on the GPU.

  5. Glueball matrix elements: a lattice calculation and applications

    E-Print Network [OSTI]

    Harvey B. Meyer

    2008-08-22T23:59:59.000Z

    We compute the matrix elements of the energy-momentum tensor between glueball states and the vacuum in SU(3) lattice gauge theory and extrapolate them to the continuum. These matrix elements may play an important phenomenological role in identifying glue-rich mesons. Based on a relation derived long ago by the ITEP group for J/psi radiative decays, the scalar matrix element leads to a branching ratio for the glueball that is at least three times larger than the experimentally observed branching ratio for the f_0 mesons above 1GeV. This suggests that the glueball component must be diluted quite strongly among the known scalar mesons. Finally we review the current best continuum determination of the scalar and tensor glueball masses, the deconfining temperature, the string tension and the Lambda parameter, all in units of the Sommer reference scale, using calculations based on the Wilson action.

  6. Hanford Apatite Treatability Test Report Errata: Apatite Mass Loading Calculation

    SciTech Connect (OSTI)

    Szecsody, James E.; Vermeul, Vincent R.; Williams, Mark D.; Truex, Michael J.

    2014-05-19T23:59:59.000Z

    The objective of this errata report is to document an error in the apatite loading (i.e., treatment capacity) estimate reported in previous apatite treatability test reports and provide additional calculation details for estimating apatite loading and barrier longevity. The apatite treatability test final report (PNNL-19572; Vermeul et al. 2010) documents the results of the first field-scale evaluation of the injectable apatite PRB technology. The apatite loading value in units of milligram-apatite per gram-sediment is incorrect in this and some other previous reports. The apatite loading in units of milligram phosphate per gram-sediment, however, is correct, and this is the unit used for comparison to field core sample measurements.

  7. Novel variational approach for photonic crystal slab mode calculation

    E-Print Network [OSTI]

    Aram, Mohammad Hasan

    2015-01-01T23:59:59.000Z

    We propose a new method based on variational principle for analysis of photonic crystal (PC) slabs. Most of the methods used today treat PC slab as a three-dimensional (3D) crystal and this makes them very time and/or memory consuming. In this method we use Bloch theorem to expand the field on infinite plane waves which their amplitudes depend on the component perpendicular to the slab surface. By approximating these amplitudes with appropriate functions, we can find modes of PC slabs almost as fast as we can find modes of a two-dimensional (2D) crystal. Besides this advantage, we can also calculate radiation modes with this method which is not feasible with 3D Plane Wave Expansion (PWE) method.

  8. User's manual for GILDA: An infinite lattice diffusion theory calculation

    SciTech Connect (OSTI)

    Le, T.T.

    1991-11-01T23:59:59.000Z

    GILDA is a static two-dimensional diffusion theory code that performs either buckling (B[sup 2]) or k-effective (k[sub eff]) calculations for an infinite hexagonal lattice which is constructed by repeating identical seven-cell zones (one cell is one or seven identical homogenized hexes). GILDA was written by J. W. Stewart in 1973. This user's manual is intended to provide all of the information necessary to set up and execute a GILDA calculation and to interpret the output results. It is assumed that the user is familiar with the computer (VAX/VMS or IBM/MVS) and the JOSHUA system database on which the code is implemented. Users who are not familiar with the JOSHUA database are advised to consult additional references to understand the structure of JOSHUA records and data sets before turning to section 4 of this manual. Sections 2 and 3 of this manual serve as a theory document in which the basic diffusion theory and the numerical approximations behind the code are described. Section 4 describes the functions of the program's subroutines. Section 5 describes the input data and tutors the user how to set up a problem. Section 6 describes the output results and the error messages which may be encountered during execution. Users who only wish to learn how to run the code without understanding the theory can start from section 4 and use sections 2 and 3 as references. Finally, the VAX/VMS and the IBM execution command files together with sample input records are provided in the appendices at the end of this manual.

  9. Uncertainty Quantification of Calculated Temperatures for the AGR-1 Experiment

    SciTech Connect (OSTI)

    Binh T. Pham; Jeffrey J. Einerson; Grant L. Hawkes

    2012-04-01T23:59:59.000Z

    This report documents an effort to quantify the uncertainty of the calculated temperature data for the first Advanced Gas Reactor (AGR-1) fuel irradiation experiment conducted in the INL's Advanced Test Reactor (ATR) in support of the Next Generation Nuclear Plant (NGNP) R&D program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, the results of the numerical simulations can be used in combination with the statistical analysis methods to improve qualification of measured data. Additionally, the temperature simulation data for AGR tests can be used for validation of the fuel transport and fuel performance simulation models. The crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. The report is organized into three chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program and provides overviews of AGR-1 measured data, AGR-1 test configuration and test procedure, and thermal simulation. Chapters 2 describes the uncertainty quantification procedure for temperature simulation data of the AGR-1 experiment, namely, (i) identify and quantify uncertainty sources; (ii) perform sensitivity analysis for several thermal test conditions; (iii) use uncertainty propagation to quantify overall response temperature uncertainty. A set of issues associated with modeling uncertainties resulting from the expert assessments are identified. This also includes the experimental design to estimate the main effects and interactions of the important thermal model parameters. Chapter 3 presents the overall uncertainty results for the six AGR-1 capsules. This includes uncertainties for the daily volume-average and peak fuel temperatures, daily average temperatures at TC locations, and time-average volume-average and time-average peak fuel temperatures.

  10. Considerations of beta and electron transport in internal dose calculations

    SciTech Connect (OSTI)

    Bolch, W.E.; Poston, J.W. Sr.

    1990-12-01T23:59:59.000Z

    Ionizing radiation has broad uses in modern science and medicine. These uses often require the calculation of energy deposition in the irradiated media and, usually, the medium of interest is the human body. Energy deposition from radioactive sources within the human body and the effects of such deposition are considered in the field of internal dosimetry. In July of 1988, a three-year research project was initiated by the Nuclear Engineering Department at Texas A M University under the sponsorship of the US Department of Energy. The main thrust of the research was to consider, for the first time, the detailed spatial transport of electron and beta particles in the estimation of average organ doses under the Medical Internal Radiation Dose (MIRD) schema. At the present time (December of 1990), research activities are continuing within five areas. Several are new initiatives begun within the second or third year of the current contract period. They include: (1) development of small-scale dosimetry; (2) development of a differential volume phantom; (3) development of a dosimetric bone model; (4) assessment of the new ICRP lung model; and (5) studies into the mechanisms of DNA damage. A progress report is given for each of these tasks within the Comprehensive Report. In each case, preliminary results are very encouraging and plans for further research are detailed within this document.

  11. Efficient Error Calculation for Multiresolution Texture-Based Volume Visualization

    SciTech Connect (OSTI)

    LaMar, E; Hamann, B; Joy, K I

    2001-10-16T23:59:59.000Z

    Multiresolution texture-based volume visualization is an excellent technique to enable interactive rendering of massive data sets. Interactive manipulation of a transfer function is necessary for proper exploration of a data set. However, multiresolution techniques require assessing the accuracy of the resulting images, and re-computing the error after each change in a transfer function is very expensive. They extend their existing multiresolution volume visualization method by introducing a method for accelerating error calculations for multiresolution volume approximations. Computing the error for an approximation requires adding individual error terms. One error value must be computed once for each original voxel and its corresponding approximating voxel. For byte data, i.e., data sets where integer function values between 0 and 255 are given, they observe that the set of error pairs can be quite large, yet the set of unique error pairs is small. instead of evaluating the error function for each original voxel, they construct a table of the unique combinations and the number of their occurrences. To evaluate the error, they add the products of the error function for each unique error pair and the frequency of each error pair. This approach dramatically reduces the amount of computation time involved and allows them to re-compute the error associated with a new transfer function quickly.

  12. High-precision calculations of vortex sheet motion

    SciTech Connect (OSTI)

    Ely, J.S. (Lewis and Clark College, Portland, OR (United States)); Baker, G.R. (Ohio State Univ., Columbus, OH (United States))

    1994-04-01T23:59:59.000Z

    The motion of a vortex sheet undergoing Kelvin-Helmholtz instability is known to be ill-posed, causing deterioration in numerical calculations from the rapid growth of round-off errors. In particular, it is the smallest scales (introduced by round-off) that grow the fastest. Krasny introduced a spectral filter to suppress the growth of round-off errors of the smallest scales. He was then able to detect evidence supporting asymptotic studies that indicate the formation of a curvature singularity in finite time. We use high precision interval arithmetic, coded in C + +, to re-examine the evolution of a vortex sheet from initial conditions used previously by several researchers. Most importantly, our results are free from the influence of round-off errors. We show excellent agreement between results obtained through high precision interval arithmetic and through the use of Krasny's spectral filter. In particular, our results support the formation of a curvature singularity in finite time. After the time of singularity formation, the markers move in peculiar patterns. We rule out any possibility of this motion resulting from round-off errors, but it does depend on the level of resolution. We find no consistent behavior in the motion of the markers as we improve the resolution of the vortex sheet. Also, we find some disagreement between the results obtained through high precision interval arithmetic and through the use of the spectral filter. 29 refs., 5 figs.

  13. Development of nuclear models for higher energy calculations

    SciTech Connect (OSTI)

    Bozoian, M.; Siciliano, E.R.; Smith, R.D.

    1988-01-01T23:59:59.000Z

    Two nuclear models for higher energy calculations have been developed in the regions of high and low energy transfer, respectively. In the former, a relativistic hybrid-type preequilibrium model is compared with data ranging from 60 to 800 MeV. Also, the GNASH exciton preequilibrium-model code with higher energy improvements is compared with data at 200 and 318 MeV. In the region of low energy transfer, nucleon-nucleus scattering is predominately a direct reaction involving quasi-elastic collisions with one or more target nucleons. We discuss various aspects of quasi-elastic scattering which are important in understanding features of cross sections and spin observables. These include (1) contributions from multi-step processes; (2) damping of the continuum response from 2p-2h excitations; (3) the ''optimal'' choice of frame in which to evaluate the nucleon-nucleon amplitudes; and (4) the effect of optical and spin-orbit distortions, which are included in a model based on the RPA the DWIA and the eikonal approximation. 33 refs., 15 figs.

  14. Dose Rate Calculation of TRU Metal Ingot in Pyroprocessing - 12202

    SciTech Connect (OSTI)

    Lee, Yoon Hee [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Kunjai [Khalifa University of Science, Technology and Research (KUSTAR), Abu Dhabi Campus, PO.Box 127788, Abu Dhabi (United Arab Emirates)

    2012-07-01T23:59:59.000Z

    Spent fuel management has been a main problem to be solved for continuous utilization of nuclear energy. Spent fuel management policy of Korea is 'Wait and See'. It is focused on Pyro-process and SFR (Sodium-cooled Fast Reactor) for closed-fuel cycle research and development in Korea. For peaceful use of nuclear facilities, the proliferation resistance has to be proved. Proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Non-proliferation and safeguard issues have been strengthening internationally. Barriers to proliferation are that reduces desirability or attractiveness as an explosive and makes it difficult to gain access to the materials, or makes it difficult to misuse facilities and/or technologies for weapons applications. Barriers to proliferation are classified into intrinsic and extrinsic barriers. Intrinsic barrier is inherent quality of reactor materials or the fuel cycle that is built into the reactor design and operation such as material and technical barriers. As one of the intrinsic measures, the radiation from the material is considered significantly. Therefore the radiation of TRU metal ingot from the pyro-process was calculated using ORIGEN and MCNP code. (authors)

  15. Calculator program optimizes bit weight, rotary speed, reducing drilling cost

    SciTech Connect (OSTI)

    Simpson, M.A.

    1984-04-23T23:59:59.000Z

    Bit selection, bit weight, and rotary speed have repeatedly proven to be the most important and commonly overlooked alterable factors which control penetration rate, footage, and overall drilling cost. This is particularly true in offshore operations where drilling costs are highest and the greatest cost savings stand to be achieved through implementation of proven optimization techniques. The myth that bit weights and rotary speeds cannot be optimized in directional holes has hindered the industry from using this virtually cost-free method for reducing drilling cost. The use of optimized bit weights and rotary speeds in conjunction with minimum cost bit programs based on cost per foot analysis of previous bit runs in the area was implemented on a five-well platform in the Grand Isle Block 20 field, offshore Louisiana. Each of the directional wells was drilled substantially faster and cheaper than the discovery well, which was a straight hole. Average reductions in footage cost of 31.3%, based on daily operating cost of $30,000/day, and increase in average daily footage drilled of 45.2% were effected by ''collectively optimizing'' drilling performance. The ''Optimizer'' program is an HP-41CV adaptation of the Bourgoyne and Young drilling model. It was used to calculate the optimum bit weights and rotary speeds based on field drilling tests; historical bit and bearing wear data; and current operating conditions, cost, and constraints.

  16. Hyperon Puzzle: Hints from Quantum Monte Carlo Calculations

    E-Print Network [OSTI]

    Diego Lonardoni; Alessandro Lovato; Stefano Gandolfi; Francesco Pederiva

    2015-02-27T23:59:59.000Z

    The onset of hyperons in the core of neutron stars and the consequent softening of the equation of state have been questioned for a long time. Controversial theoretical predictions and recent astrophysical observations of neutron stars are the grounds for the so-called hyperon puzzle. We calculate the equation of state and the neutron star mass-radius relation of an infinite systems of neutrons and $\\Lambda$ particles by using the auxiliary field diffusion Monte Carlo algorithm. We find that the three-body hyperon-nucleon interaction plays a fundamental role in the softening of the equation of state and for the consequent reduction of the predicted maximum mass. We have considered two different models of three-body force that successfully describe the binding energy of medium mass hypernuclei. Our results indicate that they give dramatically different results on the maximum mass of neutron stars, not necessarily incompatible with the recent observation of very massive neutron stars. We conclude that stronger constraints on the hyperon-neutron force are necessary in order to properly assess the role of hyperons in neutron stars.

  17. The status of nuclear data for transmutation calculations

    SciTech Connect (OSTI)

    Wilson, W.B.; England, T.R.; MacFarlane, R.E.; Muir, D.W.; Young, P.G.

    1995-12-01T23:59:59.000Z

    At this point, the accurate description of transmutation products in a radiation environment is more a nuclear data problem than a code development effort. We have used versions of the CINDER code for over three decades to describe the transmutation of nuclear reactor fuels in radiation environments. The need for the accurate description of reactor neutron-absorption, decay-power, and decay-spectra properties have driven many AEC, ERDA, and DOE supported nuclear data development efforts in this period. The level of cross-section, decay, and fission-yield data has evolved from rudimentary to a comprehensive ENDF/B-VI library permitting great precision in reactor calculations. The precision of the data supporting reactor simulations provides a sturdy foundation for the data base required for the wide range of transmutation problems currently studied. However, such reactor problems are typically limited to neutron energies below 10 MeV or so; reaction and decay data are required for actinides of, say, 90 {le} Z {le} 96 neutron-rich fission products of 22 {le} Z {le} 72. The expansion into reactor structural materials and fusion systems extends these ranges in energy and Z somewhat. The library of nuclear data, constantly growing in breadth and quality with international cooperation, is now described in the following table.

  18. BENCHMARKING UPGRADED HOTSPOT DOSE CALCULATIONS AGAINST MACCS2 RESULTS

    SciTech Connect (OSTI)

    Brotherton, Kevin

    2009-04-30T23:59:59.000Z

    The radiological consequence of interest for a documented safety analysis (DSA) is the centerline Total Effective Dose Equivalent (TEDE) incurred by the Maximally Exposed Offsite Individual (MOI) evaluated at the 95th percentile consequence level. An upgraded version of HotSpot (Version 2.07) has been developed with the capabilities to read site meteorological data and perform the necessary statistical calculations to determine the 95th percentile consequence result. These capabilities should allow HotSpot to join MACCS2 (Version 1.13.1) and GENII (Version 1.485) as radiological consequence toolbox codes in the Department of Energy (DOE) Safety Software Central Registry. Using the same meteorological data file, scenarios involving a one curie release of {sup 239}Pu were modeled in both HotSpot and MACCS2. Several sets of release conditions were modeled, and the results compared. In each case, input parameter specifications for each code were chosen to match one another as much as the codes would allow. The results from the two codes are in excellent agreement. Slight differences observed in results are explained by algorithm differences.

  19. Calculation of Reactive-evaporation Rates of Chromia

    SciTech Connect (OSTI)

    Holcomb, G.R.

    2008-04-01T23:59:59.000Z

    A methodology is developed to calculate Cr-evaporation rates from Cr2O3 with a flat planar geometry. Variables include temperature, total pressure, gas velocity, and gas composition. The methodology was applied to solid-oxide, fuel cell conditions for metallic interconnects and to advanced-steam turbines conditions. The high velocities and pressures of the advanced steam turbine led to evaporation predictions as high as 5.18 9 10-8 kg/m2/s of CrO2(OH)2(g) at 760 °C and 34.5 MPa. This is equivalent to 0.080 mm per year of solid Cr loss. Chromium evaporation is expected to be an important oxidation mechanism with the types of nickel-base alloys proposed for use above 650 °C in advanced-steam boilers and turbines. It is shown that laboratory experiments, with much lower steam velocities and usually much lower total pressure than found in advanced steam turbines, would best reproduce chromium-evaporation behavior with atmospheres that approach either O2 + H2O or air + H2O with 57% H2O.

  20. Calculating Energy Savings in High Performance Residential Buildings Programs: Preprint

    SciTech Connect (OSTI)

    Hendron, B.; Rarrar-Nagy, S.; Anderson, R.; Judkoff, R.; Reeves, P.; Hancock, E.

    2003-08-01T23:59:59.000Z

    Accurate and meaningful energy savings calculations are essential for the evaluation of residential energy efficiency programs sponsored by the U.S. Department of Energy (DOE), such as the Building America Program (a public-private partnership designed to achieve significant energy savings in the residential building sector). The authors investigated the feasibility of applying existing performance analysis methodologies such as the Home Energy Rating System (HERS) and the International Energy Conservation Code (IECC) to the high performance houses constructed under Building America, which sometimes achieve whole-house energy savings in the 50-70% range. However, because Building America addresses all major end-use loads and because the technologies applied to Building America houses often exceed what is envisioned by energy codes and home-rating programs, the methodologies used in HERS and IECC have limited suitability, and a different approach was needed. The authors have researched these issues extensively over the past several years and developed a set of guidelines that draws upon work done by DOE's Energy Information Administration, the California Energy Commission, the International Code Council, RESNET, and other organizations that have developed similar methodologies to meet their needs. However, the final guidelines are tailored to provide accurate techniques for quantifying energy savings achieved by Building America to help policymakers assess the effectiveness of the program.

  1. Historical Survey of Daylighting Calculations Methods and Their Use in Energy Performance Simulations

    E-Print Network [OSTI]

    Kota, S.; Haberl, J. S.

    This paper traces the historical development of different daylighting calculation methods. Over the years there have been several developments in daylighting calculation methods. The last two decades have seen a number of new ideas and approaches...

  2. A general performance model for parallel sweeps on orthogonal grids for particle transport calculations

    E-Print Network [OSTI]

    Mathis, Mark Michael

    2000-01-01T23:59:59.000Z

    particle transport calculations is an important problem in many applications targeted by the Accelerated Strategic Computing Initiative of the United States Department of Energy. One common approach to deterministic particle transport calculations...

  3. Embodied Energy Calculation: Method and Guidelines for a Building and its Constituent Materials

    E-Print Network [OSTI]

    Dixit, Manish Kumar

    2013-10-23T23:59:59.000Z

    an embodied energy definition, a complete system boundary model, and a set of data collection, embodied energy calculation, and result reporting guidelines. The main goal of proposing the guidelines was to streamline the process of embodied energy calculation...

  4. Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte Carlo technique

    E-Print Network [OSTI]

    Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte The Monte Carlo technique is used to calculate electrical as well as thermoelectric transport properties ballistic thermionic transport and fully diffusive thermoelectric transport is also described. DOI: 10

  5. A Bin Method for Calculating Energy Conservation Retrofit Savings in Commercial Buildings

    E-Print Network [OSTI]

    Thamilseran, S.; Haberl, J. S.

    1994-01-01T23:59:59.000Z

    The calculation of measured energy savings from energy conservation retrofits is an important step in the verification of the success of a retrofit (Claridge et al. 1992). Several methods for calculating the savings from energy conservation...

  6. A Bin Method for Calculating Energy Conservation Retrofit Savings in Commercial Buildings 

    E-Print Network [OSTI]

    Thamilseran, S.; Haberl, J. S.

    1994-01-01T23:59:59.000Z

    The calculation of measured energy savings from energy conservation retrofits is an important step in the verification of the success of a retrofit (Claridge et al. 1992). Several methods for calculating the savings from energy conservation...

  7. SCWR Once-Through Calculations for Transmutation and Cross Sections

    SciTech Connect (OSTI)

    ganda, francesco (090771)

    2012-07-01T23:59:59.000Z

    It is the purpose of this report to document the calculation of (1) the isotopic evolution and of (2) the 1-group cross sections as a function of burnup of the reference Super Critical Water Reactor (SCWR), in a format suitable for the Fuel Cycle Option Campaign Transmutation Data Library. The reference SCWR design was chosen to be that described in [McDonald, 2005]. Super Critical Water Reactors (SCWR) are intended to operate with super-critical water (i.e. H2O at a pressure above 22 MPa and a temperature above 373oC) as a cooling – and possibly also moderating – fluid. The main mission of the SCWR is to generate lower cost electricity, as compared to current standard Light Water Reactors (LWR). Because of the high operating pressure and temperature, SCWR feature a substantially higher thermal conversion efficiency than standard LWR – i.e. about 45% versus 33%, mostly due to an increase in the exit water temperature from ~300oC to ~500oC – potentially resulting in a lower cost of generated electricity. The coolant remains single phase throughout the reactor and the energy conversion system, thus eliminating the need for pressurizers, steam generators, steam separators and dryers, further potentially reducing the reactor construction capital cost. The SCWR concept presented here is based on existing LWR technology and on a large number of existing fossil-fired supercritical boilers. However, it was concluded in [McDonald, 2005], that: “Based on the results of this study, it appears that the reference SCWR design is not feasible.” This conclusion appears based on the strong sensitivity of the design to small deviations in nominal conditions leading to small effects having a potentially large impact on the peak cladding temperature of some fuel rods. “This was considered a major feasibility issue for the SCWR” [McDonald, 2005]. After a description of the reference SCWR design, the Keno V 3-D single assembly model used for this analysis, as well as the calculated results, are presented. Additionally, the follwing information, presented in the appendixes, is intended to provide enough guidance that a researcher repeating the same task in the future should be able to obtain a vector of nuclei and cross sections ready for insertion into the transmutation library without any need for further instructions: (1) Complete TRITON/KENO-V input used for the analysis; (2) Inputs and detailed description of the usage of the OPUS utility, used to postproces and to extract the nuclei concentrations for the transmutation library; (3) Inputs and detailed description of the usage of the XSECLIST utility, used to postproces and to extract the 1-group cross sections for the transmutation library; (4) Details of an ad-hoc utility program developed to sort the nuclei and cross sections for the transmutation library.

  8. A Framework for Lattice QCD Calculations on GPUs

    SciTech Connect (OSTI)

    Winter, Frank; Clark, M.A.; Edwards, Robert G.; Joo, Balint

    2014-08-01T23:59:59.000Z

    Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to GPUs is typically limited to time-dominant algorithms and routines, leaving the remainder not accelerated which can open a serious Amdahl's law issue. The lattice QCD application Chroma allows to explore a different porting strategy. The layered structure of the software architecture logically separates the data-parallel from the application layer. The QCD Data-Parallel software layer provides data types and expressions with stencil-like operations suitable for lattice field theory and Chroma implements algorithms in terms of this high-level interface. Thus by porting the low-level layer one can effectively move the whole application in one swing to a different platform. The QDP-JIT/PTX library, the reimplementation of the low-level layer, provides a framework for lattice QCD calculations for the CUDA architecture. The complete software interface is supported and thus applications can be run unaltered on GPU-based parallel computers. This reimplementation was possible due to the availability of a JIT compiler (part of the NVIDIA Linux kernel driver) which translates an assembly-like language (PTX) to GPU code. The expression template technique is used to build PTX code generators and a software cache manages the GPU memory. This reimplementation allows us to deploy an efficient implementation of the full gauge-generation program with dynamical fermions on large-scale GPU-based machines such as Titan and Blue Waters which accelerates the algorithm by more than an order of magnitude.

  9. A Framework for Lattice QCD Calculations on GPUs

    E-Print Network [OSTI]

    F. T. Winter; M. A. Clark; R. G. Edwards; B. Joó

    2014-08-25T23:59:59.000Z

    Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to GPUs is typically limited to time-dominant algorithms and routines, leaving the remainder not accelerated which can open a serious Amdahl's law issue. The lattice QCD application Chroma allows to explore a different porting strategy. The layered structure of the software architecture logically separates the data-parallel from the application layer. The QCD Data-Parallel software layer provides data types and expressions with stencil-like operations suitable for lattice field theory and Chroma implements algorithms in terms of this high-level interface. Thus by porting the low-level layer one can effectively move the whole application in one swing to a different platform. The QDP-JIT/PTX library, the reimplementation of the low-level layer, provides a framework for lattice QCD calculations for the CUDA architecture. The complete software interface is supported and thus applications can be run unaltered on GPU-based parallel computers. This reimplementation was possible due to the availability of a JIT compiler (part of the NVIDIA Linux kernel driver) which translates an assembly-like language (PTX) to GPU code. The expression template technique is used to build PTX code generators and a software cache manages the GPU memory. This reimplementation allows us to deploy an efficient implementation of the full gauge-generation program with dynamical fermions on large-scale GPU-based machines such as Titan and Blue Waters which accelerates the algorithm by more than an order of magnitude.

  10. Simulated combined abnormal environment fire calculations for aviation impacts.

    SciTech Connect (OSTI)

    Brown, Alexander L.

    2010-08-01T23:59:59.000Z

    Aircraft impacts at flight speeds are relevant environments for aircraft safety studies. This type of environment pertains to normal environments such as wildlife impacts and rough landings, but also the abnormal environment that has more recently been evidenced in cases such as the Pentagon and World Trade Center events of September 11, 2001, and the FBI building impact in Austin. For more severe impacts, the environment is combined because it involves not just the structural mechanics, but also the release of the fuel and the subsequent fire. Impacts normally last on the order of milliseconds to seconds, whereas the fire dynamics may last for minutes to hours, or longer. This presents a serious challenge for physical models that employ discrete time stepping to model the dynamics with accuracy. Another challenge is that the capabilities to model the fire and structural impact are seldom found in a common simulation tool. Sandia National Labs maintains two codes under a common architecture that have been used to model the dynamics of aircraft impact and fire scenarios. Only recently have these codes been coupled directly to provide a fire prediction that is better informed on the basis of a detailed structural calculation. To enable this technology, several facilitating models are necessary, as is a methodology for determining and executing the transfer of information from the structural code to the fire code. A methodology has been developed and implemented. Previous test programs at the Sandia National Labs sled track provide unique data for the dynamic response of an aluminum tank of liquid water impacting a barricade at flight speeds. These data are used to validate the modeling effort, and suggest reasonable accuracy for the dispersion of a non-combustible fluid in an impact environment. The capability is also demonstrated with a notional impact of a fuel-filled container at flight speed. Both of these scenarios are used to evaluate numeric approximations, and help provide an understanding of the quantitative accuracy of the modeling methods.

  11. Radionuclide release calculations for selected severe accident scenarios

    SciTech Connect (OSTI)

    Denning, R.S.; Leonard, M.T.; Cybulskis, P.; Lee, K.W.; Kelly, R.F.; Jordan, H.; Schumacher, P.M.; Curtis, L.A. (Battelle Columbus Div., OH (USA))

    1990-08-01T23:59:59.000Z

    This report provides the results of source term calculations that were performed in support of the NUREG-1150 study. Severe Accident Risks: An Assessment for Five US Nuclear Power Plants.'' This is the sixth volume of a series of reports. It supplements results presented in the earlier volumes. Analyses were performed for three of the NUREG-1150 plants: Peach Bottom, a Mark I, boiling water reactor; Surry, a subatmospheric containment, pressurized water reactor; and Sequoyah, an ice condenser containment, pressurized water reactor. Complete source term results are presented for the following sequences: short term station blackout with failure of the ADS system in the Peach Bottom plant; station blackout with a pump seal LOCA for the Surry plant; station blackout with a pump seal LOCA in the Sequoyah plant; and a very small break with loss of ECC and spray recirculation in the Sequoyah plant. In addition, some partial analyses were performed which did not require running all of the modules of the Source Term Code Package. A series of MARCH3 analyses were performed for the Surry and Sequoyah plants to evaluate the effects of alternative emergency operating procedures involving primary and secondary depressurization on the progress of the accident. Only thermal-hydraulic results are provided for these analyses. In addition, three accident sequences were analyzed for the Surry plant for accident-induced failure of steam generator tubes. In these analyses, only the transport of radionuclides within the primary system and failed steam generator were examined. The release of radionuclides to the environment is presented for the phase of the accident preceding vessel meltthrough. 17 refs., 176 figs., 113 tabs.

  12. Forward model calculations for determining isotopic compositions of materials used in a radiological dispersal device

    E-Print Network [OSTI]

    Burk, David Edward

    2005-08-29T23:59:59.000Z

    -standard lattice assemblies. The measured isotopic concentrations from all three of the reactors showed good agreement with the calculated values....

  13. Calculating Wind Integration Costs: Separating Wind Energy Value from Integration Cost Impacts

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2009-07-01T23:59:59.000Z

    Accurately calculating integration costs is important so that wind generation can be fairly compared with alternative generation technologies.

  14. A SIMPLIFIED PROCEDURE FOR CALCULATING THE EFFECTS OF DAYLIGHT FROM CLEAR SKIES

    E-Print Network [OSTI]

    Bryan, Harvey J.

    2012-01-01T23:59:59.000Z

    J. , "The Calculation of Daylight Factor for Clear Skyand Predetermination of Daylight Illumination," ILLUMINATINGA MEASURING DIAGRAM FOR DAYLIGHT ILLUMINATION, Batsford,

  15. Project W-320, 241-C-106 sluicing: Civil/structural calculations. Volume 5

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-24T23:59:59.000Z

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable.

  16. Project W-320, 241-C-106 sluicing: Civil/structural calculations. Volume 8

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-23T23:59:59.000Z

    This supporting document has been prepared to make the FDNW civil/structural calculations for Project W-320 readily retrievable.

  17. M&V Plan and Savings Calculations Methods Outline (IDIQ Attachment J-8)

    Broader source: Energy.gov [DOE]

    Document outlines measurement and verification (M&V) planning and savings calculation methods for an energy savings performance contract (ESPC).

  18. The Use of Graphics Calculator in a Matriculation Statistics Classroom: A Malaysian Perspective

    E-Print Network [OSTI]

    Krishnan, Saras; Idris, Noraini

    2013-01-01T23:59:59.000Z

    graphics calculator for five weeks showed significantly greater improvement on their mathematics achievement than students in the control

  19. Project W-320, 241-C-106 sluicing electrical calculations, Volume 1

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-08-07T23:59:59.000Z

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable.

  20. Neutron Noise Calculations in Hexagonal Geometry and Comparison with Analytical Solutions

    E-Print Network [OSTI]

    Demazière, Christophe

    for addressing the noise calculations of light water reactors ~LWRs! in Cartesian geometries.3 This tool instability, etc. Extension of the noise calculation method to other reactor types such as Russian VVERsNeutron Noise Calculations in Hexagonal Geometry and Comparison with Analytical Solutions Hoai Nam

  1. 12.2001 . Using of Unitarity Equations for the Calculation of Fermion Interaction

    E-Print Network [OSTI]

    Titov, Anatoly

    of calculations performed for the research reactor WWR-M at Gatchïðåïðèíòû 12.2001 ã. Using of Unitarity Equations for the Calculation of Fermion Interaction amplitudes in the superstring theory are used to calculate the interaction amplitudes including the Ramond

  2. Simplified High-Accuracy Calculation of Eddy-Current Losses in Round-Wire Windings

    E-Print Network [OSTI]

    Simplified High-Accuracy Calculation of Eddy-Current Losses in Round-Wire Windings Xi Nan C. R the IEEE. #12;Simplified High-Accuracy Calculation of Eddy-Current Loss in Round-Wire Windings Xi Nan-- It has recently been shown that the most commonly used methods for calculating high-frequency eddy-current

  3. Framework for Coupling Room Air Models to Heat Balance Model Load and Energy Calculations (RP-1222)

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Framework for Coupling Room Air Models to Heat Balance Model Load and Energy Calculations (RP in a program for hourly load calculations of a single thermal zone. The heat balance model for load and energy to heat balance model load and energy calculations," HVAC&R Research, 10(2), 91-111. #12;2 · Mixed

  4. Faraday Discuss., 1997, 106, 205217 First principles calculations on crystalline and liquid iron at

    E-Print Network [OSTI]

    Vocadlo, Lidunka

    Hauptstrasse 8-10/136, A-1040 V ienna, Austria Ab initio electronic structure calculations, based upon density on liquid iron and we present the Ðrst ab initio quantum molecular dynamics calculations on the structure and transport properties of liquid iron under core conditions. Our calculations show that the structure

  5. A direct ab inifio dynamics approach for calculating thermal rate constants using variational transition state theory

    E-Print Network [OSTI]

    Truong, Thanh N.

    of a focusing technique to minimize the number of electronic structure calculations, while still preservingA direct ab inifio dynamics approach for calculating thermal rate constants using variational dynamics, " for calculations of thermal rate constants and related properties from first principles

  6. New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations

    E-Print Network [OSTI]

    de Groot, Bert

    New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations accurate free energy calculations based on molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a system by integrating the change

  7. Stray light calculation methods with optical ray trace software Gary L. Peterson

    E-Print Network [OSTI]

    Bechtold, Jill

    Stray light calculation methods with optical ray trace software Gary L. Peterson Breault Research, in most cases brute force stray light calculations are still impossible. This paper discusses why light, scatter, optical analysis software, ray trace software 1. INTRODUCTION Stray light calculations

  8. RIS-M-2185 CALCULATION OF HEAT RATING AND BURN-UP FOR TEST FUEL PINS

    E-Print Network [OSTI]

    RISØ-M-2185 CALCULATION OF HEAT RATING AND BURN-UP FOR TEST FUEL PINS IRRADIATED IN DR3 C. Bagger of fuel pins irradiated in HP1 rigs. The calculations are carried out rather detailed, especially of the data. INIS Descriptors . BURN-UP, CALORIMETRY, COMPUTER CALCULATIONS, DR-3, FISSION, FUEL ASSEMBLIES

  9. Wakefield Calculations for the LCLS in Multbunch Operation

    SciTech Connect (OSTI)

    Bane, K; /SLAC

    2011-10-17T23:59:59.000Z

    Normally the Linac Coherent Light Source (LCLS) operates in single-bunch mode, sending a bunch of up to 250 pC charge at 120 Hz through the linac and the undulator, and the resulting FEL radiation into one of the experimental hutches. With two bunches per rf pulse, each pulse could feed either two experiments or one experiment in a pump-probe type configuration. Two-bunch FEL operation has already been briefly tested at the LCLS, and works reasonably well, although not yet routinely. In this report we study the longitudinal and transverse long-range (bunch-to-bunch) wakefields of the linacs and their effects on LCLS performance in two-bunch mode, which is initially the most likely scenario. The longitudinal wake changes the average energy at the second bunch, and the transverse wake misaligns the second bunch (in transverse phase space) in the presence of e.g. transverse injection jitter or quad misalignments. Finally, we extend the study to consider the LCLS with trains of up to 20 bunches per rf pulse. In the LCLS the bunch is created in an rf gun, and then passes in sequence through Linac 0, Linac 1, Linac X, Bunch Compressor 1 (BC 1), Linac 2, BC 2, Linac 3, and finally the undulator. In the process the bunch energy reaches 13.5 GeV and peak current 3 kA. In Table 1 we present some machine and beam parameters in three of the linacs that we will use in the calculations: initial beam energy E{sub 0}, total accelerator length L, average beta function {beta}{sub y}, bunch peak current I, and rf phase (with respect to crest) {phi}; the final energy of a linac equals E{sub 0} of the following linac, and in Linac 3 is E{sub f} = 13.5 GeV. (The X-band linac, with L = 60 cm, has wake effects that are small compared to the other linacs, and will not be discussed.) In this report we limit our study to trains of equally populated, equally spaced bunches with a total length of less than 100 ns. The charge of each bunch is eN{sub b} = 250 pC.

  10. Calculating kinetics parameters and reactivity changes with continuous-energy Monte Carlo

    SciTech Connect (OSTI)

    Kiedrowski, Brian C [Los Alamos National Laboratory; Brown, Forrest B [Los Alamos National Laboratory; Wilson, Paul [UNIV. WISCONSIN

    2009-01-01T23:59:59.000Z

    The iterated fission probability interpretation of the adjoint flux forms the basis for a method to perform adjoint weighting of tally scores in continuous-energy Monte Carlo k-eigenvalue calculations. Applying this approach, adjoint-weighted tallies are developed for two applications: calculating point reactor kinetics parameters and estimating changes in reactivity from perturbations. Calculations are performed in the widely-used production code, MCNP, and the results of both applications are compared with discrete ordinates calculations, experimental measurements, and other Monte Carlo calculations.

  11. Environment-based pin-power reconstruction method for homogeneous core calculations

    SciTech Connect (OSTI)

    Leroyer, H.; Brosselard, C.; Girardi, E. [EDF R and D/SINETICS, 1 av du General de Gaulle, F92141 Claman Cedex (France)

    2012-07-01T23:59:59.000Z

    Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOX assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)

  12. Evaluation of the Heating & Cooling Energy Demand of a Case Residential Building by Comparing The National Calculation Methodology of Turkey and EnergyPlus through Thermal Capacity Calculations

    E-Print Network [OSTI]

    Atamaca, Merve; Kalaycioglu, Ece; Yilmaz, Zerrin

    2011-10-01T23:59:59.000Z

    usage and energy performance in buildings was published by European Union. In this scope, Turkey has developed a National Building Energy Performance Calculation Methodology, BepTr, which is based on simple hourly method in ISO EN 13790 Umbrella Document...

  13. On the Sensitivity of ?/? Prediction to Dose Calculation Methodology in Prostate Brachytherapy

    SciTech Connect (OSTI)

    Afsharpour, Hossein [Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC (Canada); Centre Intégré de Cancérologie de la Montérégie, Hôpital Charles-LeMoyne, Greenfield Park, QC (Canada); Walsh, Sean [Department of Radiation Oncology Maastricht Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, Maastricht (Netherlands); Gray Institute for Radiation Oncology and Biology, The University of Oxford, The United Kingdom (United Kingdom); Collins Fekete, Charles-Antoine; Vigneault, Eric [Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC (Canada); Verhaegen, Frank [Department of Radiation Oncology Maastricht Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, Maastricht (Netherlands); Medical Physics Unit, Department of Oncology, McGill University, Montréal, Québec (Canada); Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Centre de Recherche sur le Cancer, Université Laval and Département de Radio-Oncologie, Centre Hospitalier Universitaire de Québec, Québec, QC (Canada)

    2014-02-01T23:59:59.000Z

    Purpose: To study the relationship between the accuracy of the dose calculation in brachytherapy and the estimations of the radiosensitivity parameter, ?/?, for prostate cancer. Methods and Materials: In this study, Monte Carlo methods and more specifically the code ALGEBRA was used to produce accurate dose calculations in the case of prostate brachytherapy. Equivalent uniform biologically effective dose was calculated for these dose distributions and was used in an iso-effectiveness relationship with external beam radiation therapy. Results: By considering different levels of detail in the calculations, the estimation for the ?/? parameter varied from 1.9 to 6.3 Gy, compared with a value of 3.0 Gy suggested by the American Association of Physicists in Medicine Task Group 137. Conclusions: Large variations of the ?/? show the sensitivity of this parameter to dose calculation modality. The use of accurate dose calculation engines is critical for better evaluating the biological outcomes of treatments.

  14. New equation calculates thermal conductivities of C[sub 1]-C[sub 4] gases

    SciTech Connect (OSTI)

    Yaws, C.L.; Lin, X.; Bu, L.; Nijhawan, S. (Lamar Univ., Beaumont, TX (United States))

    1994-04-18T23:59:59.000Z

    In the design of heat exchangers, heat-transfer coefficients are commonly calculated for individual items. These calculations require knowledge of the thermal conductivities of the species involved. The calculation require knowledge of the thermal conductivities of the species involved. The calculation of the overall heat-transfer coefficient for a heat exchanger also requires thermal conductivity data for the individual species. In fact, thermal conductivity is the fundamental property involved in heat transfer. Ordinarily, thermal conductivities are either measured experimentally or estimated using complex correlations and models. Engineers must search existing literature for the values needed. Here, a compilation of thermal conductivity data for gases is presented for a wide temperature range. Using these data with the accompanying equation will enable engineers to quickly determine values at the desired temperatures. The results are provided in an easy-to-use tabular format, which is especially helpful for rapid calculations using a personal computer or hand-held calculator.

  15. Neutron/gamma coupled library generation and gamma transport calculation with KARMA 1.2

    SciTech Connect (OSTI)

    Hong, S. G. [Dept. of Nuclear Engineering, Kyung Hee Univ., 446-701 Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do (Korea, Republic of); Kim, K. S.; Cho, J. Y.; Lee, K. H. [Korea Atomic Energy Research Inst., 305-353 Duckjin-dong, Yuseong-gu, Daejon (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    KAERI has developed a lattice transport calculation code KARMA and its multi-group cross section library generation system. Recently, the multi-group cross section library generation system has included a gamma cross section generation capability and KARMA also has been improved to include a gamma transport calculation module. This paper addresses the multi-group gamma cross section generation capability for the KARMA 1.2 code and the preliminary test results of the KARMA 1.2 gamma transport calculations. The gamma transport calculation with KARMA 1.2 gives the gamma flux, gamma smeared power, and gamma energy deposition distributions. The results of the KARMA gamma calculations were compared with those of HELIOS and they showed that KARMA 1.2 gives reasonable gamma transport calculation results. (authors)

  16. Microscopic Calculation of 240Pu Scission with a Finite-Range Effective Force

    SciTech Connect (OSTI)

    Younes, W; Gogny, D

    2009-05-04T23:59:59.000Z

    Hartree-Fock-Bogoliubov calculations of hot fission in {sup 240}Pu have been performed with a newly-implemented code that uses the D1S finite-range effective interaction. The hot-scission line is identified in the quadrupole-octupole-moment coordinate space. Fission-fragment shapes are extracted from the calculations. A benchmark calculation for {sup 226}Th is obtained and compared to results in the literature. In addition, technical aspects of the use of HFB calculations for fission studies are examined in detail. In particular, the identification of scission configurations, the sensitivity of near-scission calculations to the choice of collective coordinates in the HFB iterations, and the formalism for the adjustment of collective-variable constraints are discussed. The power of the constraint-adjustment algorithm is illustrated with calculations near the critical scission configurations with up to seven simultaneous constraints.

  17. RIS-M-2299 CALCULATION OF DOSE CONSEQUENCES OF A HYPOTHETICAL

    E-Print Network [OSTI]

    are calculated. The reactor is a light-water reactor located at a site representing an idealized, simplified.0. The Large Accident 5 2.1. BWR-2 6 2.2. PWR-4 7 2.3. BEK.r 8 3. REACTOR SURROUNDINGS. CALCULATION MODELS to the population are calculated. The reactor is a light-water re- actor located at a site representing an idealised

  18. Statistical verification of neutron-physics programs for calculations in support of nuclear safety

    SciTech Connect (OSTI)

    Tebin, V. V., E-mail: tebin@vver.kiae.ru [Russian Research Centre Kurchatov Institute (Russian Federation)

    2012-12-15T23:59:59.000Z

    An algorithm for statistical verification of the XT26 code contained in the SAPHIRE-2006 code system is described. The results of conservative estimation of the calculation error in the K{sub eff} calculations for different types of benchmark experiments are presented. The results of the statistical analysis of deviations from the experimental values are compared with the corresponding parameters obtained from the set of calculations performed using other codes.

  19. Relativistic configuration-interaction calculation of $K\\alpha$ transition energies in beryllium-like argon

    E-Print Network [OSTI]

    Yerokhin, V A; Fritzsche, S

    2014-01-01T23:59:59.000Z

    Relativistic configuration-interaction calculations have been performed for the energy levels of the low-lying and core-excited states of beryllium-like argon, Ar$^{14+}$. These calculations include the one-loop QED effects as obtained by two different methods, the screening-potential approach as well as the model QED operator approach. The calculations are supplemented by a systematic estimation of uncertainties of theoretical predictions.

  20. Status and prospects for the calculation of hadron structure from lattice QCD

    E-Print Network [OSTI]

    Dru B. Renner

    2010-02-04T23:59:59.000Z

    Lattice QCD calculations of hadron structure are a valuable complement to many experimental programs as well as an indispensable tool to understand the dynamics of QCD. I present a focused review of a few representative topics chosen to illustrate both the challenges and advances of our community: the momentum fraction, axial charge and charge radius of the nucleon. I will discuss the current status of these calculations and speculate on the prospects for accurate calculations of hadron structure from lattice QCD.

  1. CATALYZED COMBUSTION IN A FLAT PLATE BOUNDARY LAYER II. NUMERICAL CALCULATIONS

    E-Print Network [OSTI]

    Schefer, R.

    2010-01-01T23:59:59.000Z

    D.G. , Fourteenth Sympo- sium (International) on Combustion,The Combustion Institute, Pittsburgh, 107 (1973). Wilson,Program for Calculation of Combustion Reaction Equilibrium

  2. CALCUL QUANTIQUE DE L'ANISOTROPIE DIAMAGNTIQUE DES MOLCULES ORGANIQUES III. HYDROCARBURES AROMATIQUES COMPLEXES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    15. CALCUL QUANTIQUE DE L'ANISOTROPIE DIAMAGNÉTIQUE DES MOLÉCULES ORGANIQUES III. HYDROCARBURES orbitales moléculaires est étendue au cas des hydrocarbures conjugués contenant au moins quatre noyaux

  3. M&V Plan and Savings Calculations Methods Outline (IDIQ Attachment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    planning and savings calculation methods for an energy savings performance contract (ESPC). mvplanoutline.doc More Documents & Publications Post-Installation Report Outline...

  4. Integrated Water Treatment System (IWTS) Process Flow Diagram Mass Balance Calculations for K West Basin

    SciTech Connect (OSTI)

    REED, A.V.

    2000-02-28T23:59:59.000Z

    The purpose of this calculation is to develop the rational for the material balances that are documented in the KW Basin water system Level 1 process flow diagrams.

  5. Nonadiabatic calculations of ultraviolet absorption cross section of sulfur monoxide: Isotopic effects on the photodissociation reaction

    SciTech Connect (OSTI)

    Danielache, Sebastian O.; Tomoya, Suzuki; Nanbu, Shinkoh [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda Ku, Tokyo 102-8554 (Japan)] [Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda Ku, Tokyo 102-8554 (Japan); Kondorsky, Alexey [P. N. Lebedev Physical Institute of Russian Academy of Science, Leninsky pr., 53, Moscow, 119991 (Russian Federation) [P. N. Lebedev Physical Institute of Russian Academy of Science, Leninsky pr., 53, Moscow, 119991 (Russian Federation); Moscow Institute of Physics and Technology (State University), Institutsky per., 9, Dolgoprudny Moscow region, 141700 (Russian Federation); Tokue, Ikuo [Department of Chemistry, Faculty of Science, Niigata University, Ikarashi, Niigata 950-2181 (Japan)] [Department of Chemistry, Faculty of Science, Niigata University, Ikarashi, Niigata 950-2181 (Japan)

    2014-01-28T23:59:59.000Z

    Ultraviolet absorption cross sections of the main and substituted sulfur monoxide (SO) isotopologues were calculated using R-Matrix expansion technique. Energies, transition dipole moments, and nonadiabatic coupling matrix elements were calculated at MRCI/AV6Z level. The calculated absorption cross section of {sup 32}S{sup 16}O was compared with experimental spectrum; the spectral feature and the absolute value of photoabsorption cross sections are in good agreement. Our calculation predicts a long lived photoexcited SO* species which causes large non-mass dependent isotopic effects depending on the excitation energy in the ultraviolet region.

  6. Application Of A Spherical-Radial Heat Transfer Model To Calculate...

    Open Energy Info (EERE)

    Spherical-Radial Heat Transfer Model To Calculate Geothermal Gradients From Measurements In Deep Boreholes Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  7. Vehicle Technologies Office Merit Review 2014: First Principles Calculations and NMR Spectroscopy of Electrode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about first principles calculations...

  8. Cooling load calculations for radiant systems: are they the same traditional methods?

    E-Print Network [OSTI]

    Bauman, Fred; Feng, Jingjuan Dove; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    heat transfer is handled in traditional cooling load calculationheat gain is well recognized by cooling load calculationload calculations for radiant systems should use the ASHRAE heat

  9. New Calculator Helps You Buy the Energy-Saving Vehicle of Your...

    Energy Savers [EERE]

    vehicles running on alternative fuels such as electricity, ethanol, natural gas, or biodiesel. With the new calculator, which was developed by DOE's National Renewable Energy...

  10. Ce dernier potentiel d'ionisation peut servir au calcul des moments magntiques nuclaires du plutonium,

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    plutonium, mais nous avons constaté par la suite, qu'un facteur 2 a été omis dans notre calcul du nombre

  11. A transport based one-dimensional perturbation code for reactivity calculations in metal systems

    SciTech Connect (OSTI)

    Wenz, T.R.

    1995-02-01T23:59:59.000Z

    A one-dimensional reactivity calculation code is developed using first order perturbation theory. The reactivity equation is based on the multi-group transport equation using the discrete ordinates method for angular dependence. In addition to the first order perturbation approximations, the reactivity code uses only the isotropic scattering data, but cross section libraries with higher order scattering data can still be used with this code. The reactivity code obtains all the flux, cross section, and geometry data from the standard interface files created by ONEDANT, a discrete ordinates transport code. Comparisons between calculated and experimental reactivities were done with the central reactivity worth data for Lady Godiva, a bare uranium metal assembly. Good agreement is found for isotopes that do not violate the assumptions in the first order approximation. In general for cases where there are large discrepancies, the discretized cross section data is not accurately representing certain resonance regions that coincide with dominant flux groups in the Godiva assembly. Comparing reactivities calculated with first order perturbation theory and a straight {Delta}k/k calculation shows agreement within 10% indicating the perturbation of the calculated fluxes is small enough for first order perturbation theory to be applicable in the modeled system. Computation time comparisons between reactivities calculated with first order perturbation theory and straight {Delta}k/k calculations indicate considerable time can be saved performing a calculation with a perturbation code particularly as the complexity of the modeled problems increase.

  12. Project W-320, 241-C-106 sluicing HVAC calculations, Volume 4

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-30T23:59:59.000Z

    This supporting document has been prepared to make the FDNW calculations for Project W-320, readily retrievable. The report contains the following design calculations: Cooling load in pump pit 241-AY-102; Pressure relief seal loop design; Process building piping stress analysis; Exhaust skid maximum allowable leakage criteria; and Recirculation heat, N509 duct requirements.

  13. A coupled neutronics/thermalhydraulics tool for calculating fluctuations in Pressurized Water Reactors

    E-Print Network [OSTI]

    Demazière, Christophe

    A coupled neutronics/thermal­hydraulics tool for calculating fluctuations in Pressurized Water Reactors Viktor Larsson , Christophe Demazière Chalmers University of Technology, Department of Nuclear noise Coupled calculations a b s t r a c t This paper describes a tool for estimating fluctuations

  14. Calculation of higher moments of the neutron multiplication process in a time-varying medium

    E-Print Network [OSTI]

    Pázsit, Imre

    , which only calculates this new component added and com- pletely ignores the zero-power reactor noiseCalculation of higher moments of the neutron multiplication process in a time-varying medium Y Available online 20 April 2007 Abstract The zero-power reactor noise theory in a steady neutron multiplying

  15. Time domain half-space dyadic Green's functions for eddy-current calculations

    E-Print Network [OSTI]

    Bowler, John R.

    Time domain half-space dyadic Green's functions for eddy-current calculations J. R. Bowlera) Centre American Institute of Physics. S0021-8979 99 08422-4 I. TIME DOMAIN INTERACTION The calculation of eddy-current-domain eddy-current scattering problems for cases in which a scat- terer is embedded in an otherwise

  16. 558: Calculation of Eddy Currents in the ETE Spherical Torus G.O. Ludwig

    E-Print Network [OSTI]

    558: Calculation of Eddy Currents in the ETE Spherical Torus G.O. Ludwig Instituto Nacional de model based on the Green's function method. The distribution of eddy currents is calculated using a thin well with values of the eddy currents measured in ETE. INTRODUCTION This paper presents a magnetostatic

  17. Ab Initio Calculation of the Photoelectron Spectra of the Hydroxycarbene Diradicals Lucas Koziol,

    E-Print Network [OSTI]

    Krylov, Anna I.

    + . The heat of formation, based on careful comparison between theoretical calculations and experimental data, UniVersity of Southern California, Los Angeles, California 90089-0482, C. L. Emerson Center- HCOH were reported.9 The calculated lines and intensities matched the experimental data of Schreiner et

  18. Accurate Thermodynamic Model for the Calculation of H2S Solubility in Pure Water and Brines

    E-Print Network [OSTI]

    Zhu, Chen

    Accurate Thermodynamic Model for the Calculation of H2S Solubility in Pure Water and Brines Zhenhao mineral solubility in H2S saturated brines. An example calculation for galena solubility is given. 1 gasification process.5,6 Sequestration of the gases into geological brine formation is one of the promising

  19. UDC 622.276 A NEW APPROACH CALCULATE OIL-GAS RATIO

    E-Print Network [OSTI]

    Fernandez, Thomas

    UDC 622.276 A NEW APPROACH CALCULATE OIL-GAS RATIO FOR GAS CONDENSATE AND VOLATILE OIL RESERVOIRS. In this work, we develop a new approach to calculate oil-gas ratio (Rv) by matching PVT experimental data laboratory analysis of eight gas condensate and five volatile oil fluid samples; selected under a wide range

  20. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect (OSTI)

    HU, T.A.

    2005-10-27T23:59:59.000Z

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  1. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    SciTech Connect (OSTI)

    HU TA

    2009-10-26T23:59:59.000Z

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  2. A simulation method for calculating the absolute entropy and free energy of fluids: Application to

    E-Print Network [OSTI]

    Meirovitch, Hagai

    A simulation method for calculating the absolute entropy and free energy of fluids: Application is a general approach for calculating the absolute entropy and free energy by analyzing Boltzmann samples and the TIP3P model of water, and very good results for the free energy are obtained, as compared with results

  3. Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire heterostructures

    E-Print Network [OSTI]

    Yu, Edward T.

    Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire-shell heterostructures in 111 zinc blende and 0001 wurtzite geometries. These calculations reveal that critical wurtzite nanowire systems. In this article we extend this methodology to explore and contrast coherency

  4. Efficiency of pump absorption in double-clad fiber amplifiers. III. Calculation of modes

    E-Print Network [OSTI]

    Kouznetsov, Dmitrii

    Efficiency of pump absorption in double-clad fiber amplifiers. III. Calculation of modes Dmitrii us to calculate the efficiency of an incoherent pump in general-geometry double-clad fibers. This approach yields accurate estimates of the absorption rate of each mode of the pump in the first order

  5. PII: S0958-3947(02)00141-3 A COMPARISON OF METHODS TO CALCULATE BIOLOGICAL

    E-Print Network [OSTI]

    Pouliot, Jean

    that depends on the ionizing photon. Alternately, one can collect the initial energies imparted to electrons matter. The expression to calculate the RBE provided by microdosimetry requires the use of the energy by calculations is the electron energy spectrum at the point of interest in mat- ter. The energy contents

  6. Calculation of vibrational spectra of an icosahedral quasicrystal AlCuFe

    SciTech Connect (OSTI)

    Rudenko, A. N., E-mail: ran@infoteck.ru; Mazurenko, V. G. [Ural State University (Russian Federation)

    2007-11-15T23:59:59.000Z

    Vibrational spectra of an icosahedral quasicrystal AlCuFe have been calculated on the basis of a crystalline 1/1 approximant by the recurrence method. To describe the interaction of atoms in a quasicrystal, the semiempirical EAM model was used. It is shown that the calculated spectra are in satisfactory agreement with the experimental neutron inelastic scattering data.

  7. Energy & Society Back-of-the-Envelope Calculations Back-of-the-Envelope

    E-Print Network [OSTI]

    Kammen, Daniel M.

    .3. Impacts of Increasing Power Plant Efficiency in China 19 4. Building a Basic Energy Budget 21 5. Light scientific, technical, economic, social, political, and environmental opportunities and impacts of the energyEnergy & Society Back-of-the-Envelope Calculations 1 Toolkit 2: Back-of-the-Envelope Calculations

  8. Computer Graphics in Real-time Docking with Energy Calculation and Minimization

    E-Print Network [OSTI]

    Levitt, Michael

    Computer Graphics in Real-time Docking with Energy Calculation and Minimization N. Pattabiraman, M. Levitt*, T.E. Ferrin, R. Langridge Computer Graphics Laboratory, Department of Pharmaceutical Chemistry 1985 We describe a real-time docking method using molecular graphics and high-speed calculation

  9. ERDC/ELTR-14-13 Calculation of Oyster Benefits with a

    E-Print Network [OSTI]

    ERDC/ELTR-14-13 Calculation of Oyster Benefits with a Bioenergetics Model of the Virginia Oyster://acwc.sdp.sirsi.net/client/default. #12;ERDC/EL TR-14-13 November 2014 Calculation of Oyster Benefits with a Bioenergetics Model Abstract A bioenergetics model is formulated and validated for the Virginia oyster (Crassostrea virginica

  10. Radiation damage calculation in PHITS Y. Iwamoto1, K. Niita2, T. Sawai1,

    E-Print Network [OSTI]

    McDonald, Kirk

    Radiation damage calculation in PHITS 1 Y. Iwamoto1, K. Niita2, T. Sawai1, R.M. Ronningen3, T Feb. ­ 15 Feb. 2012 #12;2 Introduction Radiation damage model in PHITS Radiation damage calculation As the power of proton and heavy-ion accelerators is increasing, the prediction of the structural damage

  11. Linear Response Calculations of Lattice Dynamics in Strongly Correlated Systems S.Y. Savrasov

    E-Print Network [OSTI]

    Savrasov, Sergej Y.

    electronic structure calculations has already led to new insights in long-standing prob- lemsLinear Response Calculations of Lattice Dynamics in Strongly Correlated Systems S.Y. Savrasov electrons and the local density functional theory of electronic structure. We apply the method to study

  12. PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands of Processors

    E-Print Network [OSTI]

    PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands in the material science category. The DFT can be used to calculate the electronic structure, the charge density. To understand the electronic structures of such systems and the corresponding carrier dynamics is essential

  13. Curvature in Conjugate Gradient Eigenvalue Computation with Applications to Materials and Chemistry Calculations

    E-Print Network [OSTI]

    Edelman, Alan

    is the ab initio calculation of electronic structure within the local density approximation. Such approaches understanding of the thermodynamic properties of bulk materials 5], the structure and dynamics of surfaces 11 Calculations Alan Edelman Tomas A. Ariasy Steven T. Smithz Abstract We illustrate the importance of using

  14. Predictions of Hole Mobilities in Oligoacene Organic Semiconductors from Quantum Mechanical Calculations

    E-Print Network [OSTI]

    Goddard III, William A.

    hole mobility. Electronic band structure calculations have previously been used to predict charge the reorganization energy and electron-transfer coupling matrix elements and molecular dynamics (MD) to do Calculations Wei-Qiao Deng and William A. Goddard III* Materials and Process Simulation Center, California

  15. A Current-based Method for Short Circuit Power Calculation under Noisy Input Waveforms*

    E-Print Network [OSTI]

    Pedram, Massoud

    A Current-based Method for Short Circuit Power Calculation under Noisy Input Waveforms* Hanif circuit energy dissipation of logic cells. The short circuit current is highly dependent on the input waveforms are then used to calculate the short circuit current, and hence, short circuit energy dissipation

  16. Studies on free energy calculations. I. Thermodynamic integration using a polynomial path

    E-Print Network [OSTI]

    Mezei, Mihaly

    Studies on free energy calculations. I. Thermodynamic integration using a polynomial path Haluk in the free energy of hydration between the C, and aR conformations of alanine dipeptide at infinite dilution equilibria is determined by free energy ditferences, the calculation of the free energies has long been

  17. Detecting Protein-Protein Interaction Decoys using Fast Free Energy Calculations

    E-Print Network [OSTI]

    Langmead, Christopher James

    Detecting Protein-Protein Interaction Decoys using Fast Free Energy Calculations Christopher James, Generalized Belief Propagation, Free Energy, Protein- Protein Interactions #12;Abstract We present a physics for a given complex, and Generalized Belief Propa- gation to perform the free energy calculation. Our method

  18. Studies on free energy calculations. II. A theoretical approach to molecular solvation

    E-Print Network [OSTI]

    Mezei, Mihaly

    Studies on free energy calculations. II. A theoretical approach to molecular solvation Haluk Resat methods of performing the thermodynamic integration in solvation free energy calculations are also at the particle creation limit in obtaining quantitatively reliable results for the solvation free energies. I

  19. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources a significant effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 15

  20. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.0 pounds

  1. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.5 pounds

  2. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 73 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

  3. Per Capita Consumption The NMFS calculation of per capita consumption is

    E-Print Network [OSTI]

    Per Capita Consumption 84 The NMFS calculation of per capita consumption is based to estimate per capita consumption. Data for the model are derived primarily from second- ary sources effect on the resulting calculation. U.S. per capita consumption of fish and shellfish was 16.3 pounds

  4. A Comparison of the AC and DC Power Flow Models for LMP Calculations

    E-Print Network [OSTI]

    A Comparison of the AC and DC Power Flow Models for LMP Calculations Thomas J. Overbye, Xu Cheng power flow model for LMP-based market calculations. The paper first provides a general discussion of balanced, three phase, electric power transmission networks is through the solution of the power flow. From

  5. Calculations of crystal-melt interfacial free energies by nonequilibrium work measurements

    E-Print Network [OSTI]

    Song, Xueyu

    Calculations of crystal-melt interfacial free energies by nonequilibrium work measurements Yan Mu perturbation method to compute the interfacial free energies by nonequilibrium work measurements with cleaving potential procedure. Using this method, we calculated the interfacial free energies of different crystal

  6. Improved quantum Monte Carlo calculation of the ground-state energy of the hydrogen molecule

    E-Print Network [OSTI]

    Anderson, James B.

    variational energies. The accuracy of the new Monte Carlo energy is approximately equal to that of recentImproved quantum Monte Carlo calculation of the ground-state energy of the hydrogen molecule Bin Carlo calculation of the nonrelativistic ground-state energy of the hydrogen molecule, without the use

  7. Simulation method for calculating the entropy and free energy of peptides and proteins

    E-Print Network [OSTI]

    Meirovitch, Hagai

    Simulation method for calculating the entropy and free energy of peptides and proteins Srinath for calculating the absolute entropy, S, and free energy, F, of fluids. Here, the method is extended to peptide determined (the ``frozen past''), and the TP is ob- tained from a Monte Carlo simulation of the (future) part

  8. Improved irradiances for use in ocean heating, primary production, and photo-oxidation calculations

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    penetration on upper-ocean heating and circulation. The first model assumed that all solar ir- radianceImproved irradiances for use in ocean heating, primary production, and photo-oxidation calculations Accurate calculation of underwater light is fundamental to predictions of upper-ocean heating, primary

  9. Quantum mechanical method of fragment's angular and energy distribution calculation for binary and ternary fission

    SciTech Connect (OSTI)

    Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Titova, L. V.; Pen'kov, N. V. [Voronezh State University (Russian Federation)

    2006-08-15T23:59:59.000Z

    In the framework of quantum-mechanical fission theory, the method of calculation for partial fission width amplitudes and asymptotic behavior of the fissile nucleus wave function with strong channel coupling taken into account has been suggested. The method allows one to solve the calculation problem of angular and energy distribution countation for binary and ternary fission.

  10. Calculation of heat capacities of light and heavy water by path-integral molecular dynamics

    E-Print Network [OSTI]

    Nielsen, Steven O.

    reproduces the isotope effect. The heat capacity in the liquid D2O has been calculated to be 10% higher than important in the liquid phase. In fact, in many systems, the heat capacity has an isotope effect, whichCalculation of heat capacities of light and heavy water by path-integral molecular dynamics

  11. A Critical Assessment of Computer Tools for Calculating Composite Wind Turbine Blade Properties

    E-Print Network [OSTI]

    Yu, Wenbin

    A Critical Assessment of Computer Tools for Calculating Composite Wind Turbine Blade Properties Hui assess several computer tools for calculating the inertial and structural properties of wind turbine, and a realistic composite wind turbine blade are used to evaluate the performance of different tools

  12. Evaluation of a new commercial Monte Carlo dose calculation algorithm for electron beams

    SciTech Connect (OSTI)

    Vandervoort, Eric J., E-mail: evandervoort@toh.on.ca; Cygler, Joanna E. [Department of Medical Physics, The Ottawa Hospital Cancer Centre, The University of Ottawa, Ottawa, Ontario K1H 8L6 (Canada) [Department of Medical Physics, The Ottawa Hospital Cancer Centre, The University of Ottawa, Ottawa, Ontario K1H 8L6 (Canada); The Faculty of Medicine, The University of Ottawa, Ottawa, Ontario K1H 8M5 (Canada); Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Tchistiakova, Ekaterina [Department of Medical Physics, The Ottawa Hospital Cancer Centre, The University of Ottawa, Ottawa, Ontario K1H 8L6 (Canada) [Department of Medical Physics, The Ottawa Hospital Cancer Centre, The University of Ottawa, Ottawa, Ontario K1H 8L6 (Canada); Department of Medical Biophysics, University of Toronto, Ontario M5G 2M9 (Canada); Heart and Stroke Foundation Centre for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Ontario M4N 3M5 (Canada); La Russa, Daniel J. [Department of Medical Physics, The Ottawa Hospital Cancer Centre, The University of Ottawa, Ottawa, Ontario K1H 8L6 (Canada) and The Faculty of Medicine, The University of Ottawa, Ottawa, Ontario K1H 8M5 (Canada)] [Department of Medical Physics, The Ottawa Hospital Cancer Centre, The University of Ottawa, Ottawa, Ontario K1H 8L6 (Canada) and The Faculty of Medicine, The University of Ottawa, Ottawa, Ontario K1H 8M5 (Canada)

    2014-02-15T23:59:59.000Z

    Purpose: In this report the authors present the validation of a Monte Carlo dose calculation algorithm (XiO EMC from Elekta Software) for electron beams. Methods: Calculated and measured dose distributions were compared for homogeneous water phantoms and for a 3D heterogeneous phantom meant to approximate the geometry of a trachea and spine. Comparisons of measurements and calculated data were performed using 2D and 3D gamma index dose comparison metrics. Results: Measured outputs agree with calculated values within estimated uncertainties for standard and extended SSDs for open applicators, and for cutouts, with the exception of the 17 MeV electron beam at extended SSD for cutout sizes smaller than 5 × 5 cm{sup 2}. Good agreement was obtained between calculated and experimental depth dose curves and dose profiles (minimum number of measurements that pass a 2%/2 mm agreement 2D gamma index criteria for any applicator or energy was 97%). Dose calculations in a heterogeneous phantom agree with radiochromic film measurements (>98% of pixels pass a 3 dimensional 3%/2 mm ?-criteria) provided that the steep dose gradient in the depth direction is considered. Conclusions: Clinically acceptable agreement (at the 2%/2 mm level) between the measurements and calculated data for measurements in water are obtained for this dose calculation algorithm. Radiochromic film is a useful tool to evaluate the accuracy of electron MC treatment planning systems in heterogeneous media.

  13. Weigel, Southworth, and Meyer 1 Calculators for Estimating Greenhouse Gas Emissions from Public

    E-Print Network [OSTI]

    Weigel, Southworth, and Meyer 1 Calculators for Estimating Greenhouse Gas Emissions from Public-0171 Fax: (404) 894-2278 E-mail: frank.southworth@ce.gatech.edu Dr. Michael D. Meyer, P.E. Director-2278 E-mail: michael.meyer@ce.gatech.edu #12;Weigel, Southworth, and Meyer 2 Calculators for Estimating

  14. CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS

    E-Print Network [OSTI]

    Stanford University

    c c c i i c I CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS to calculate the steam/water relative permeabilities in geothermal reservoirs was developed and applied. . . . . . . . . . . . . . . . . . . . . . . 1 PRZVIOUS PIETHODS OF CALCLXATING STEAM/TtJATER RELATIVE PERPlEX3ILITIES IN GEOTHE?XAL XZSERVOIFG

  15. Bounding Radionuclide Inventory and Accident Consequence Calculation for the 1L Target

    SciTech Connect (OSTI)

    Kelsey, Charles T. IV [Los Alamos National Laboratory

    2011-01-01T23:59:59.000Z

    A bounding radionuclide inventory for the tungsten of the Los Alamos Neutron Science Center (LANSCE) IL Target is calculated. Based on the bounding inventory, the dose resulting from the maximum credible incident (MCI) is calculated for the maximally exposed offsite individual (MEOl). The design basis accident involves tungsten target oxidation following a loss of cooling accident. Also calculated for the bounding radionuclide inventory is the ratio to the LANSCE inventory threshold for purposes of inventory control as described in the target inventory control policy. A bounding radionuclide inventory calculation for the lL Target was completed using the MCNPX and CINDER'90 codes. Continuous beam delivery at 200 {micro}A to 2500 mA{center_dot}h was assumed. The total calculated activity following this irradiation period is 205,000 Ci. The dose to the MEOI from the MCI is 213 mrem for the bounding inventory. The LANSCE inventory control threshold ratio is 132.

  16. Exchange-only optimized effective potential calculation of excited state spectra for He and Be atoms.

    SciTech Connect (OSTI)

    Desjarlais, Michael Paul; Muller, Richard Partain

    2006-02-01T23:59:59.000Z

    The optimized effective potential (OEP) method allows orbital-dependent functionals to be used in density functional theory (DFT), which, in particular, allows exact exchange formulations of the exchange energy to be used in DFT calculations. Because the exact exchange is inherently self-interaction correcting, the resulting OEP calculations have been found to yield superior band-gaps for condensed-phase systems. Here we apply these methods to the isolated atoms He and Be, and compare to high quality experiments and calculations to demonstrate that the orbital energies accurately reproduce the excited state spectrum for these species. These results suggest that coupling the exchange-only OEP calculations with proper (orbital-dependent or other) correlation functions might allow quantitative accuracy from DFT calculations.

  17. A calculation method of running range of electric vehicle with battery hybrid system

    SciTech Connect (OSTI)

    Ohmae, T.; Naito, S.; Ishizuka, M.

    1980-05-01T23:59:59.000Z

    Much attention is being paid to electric vehicles from environmental standpoints. One disadvantage of the electric vehicle is that its operative range is short. A means to overcome this difficulty is to use a hybrid battery which consist of a energy battery and a power battery. A method to make it possible to calculate the discharge characteristics of the battery hybrid system taking into account the charging behavior from the energy battery to the power battery is presented. In the proposed method, first the output voltage and the output current of an equivalent battery, which is required for realizing the given operating pattern are calculated. Next, the conduction ratio of the main chopper and the equivalent discharge of electric charge of each battery are calculated. These calculated data are used to calculate the operating range.

  18. First principles calculation of polarization induced interfacial charges in GaN/AlN heterostructures

    E-Print Network [OSTI]

    Rohan Mishra; Oscar D. Restrepo; Siddharth Rajan; Wolfgang Windl

    2011-05-17T23:59:59.000Z

    We propose a new method to calculate polarization induced interfacial charges in semiconductor heterostructures using classical electrostatics applied to real-space band diagrams from first principles calculations and apply it to GaN/AlN heterostructures with ultrathin AlN layers (4-6 monolayers). We show that the calculated electric fields and interfacial charges are independent of the exchange-correlation functionals used (local-density approximation and hybrid functionals). We also find the calculated interfacial charge of (6.8 +/- 0.4) x 10^13 cm-2 to be in excellent agreement with experiments and the value of 6.58 x 10^13 cm-2 calculated from bulk polarization constants, validating the use of bulk constants even for very thin films.

  19. Algorithm for calculation of characterisitcs of thermionic electricity-generating assemblies

    SciTech Connect (OSTI)

    Babushkin, Yu.V.; Mendel'baum, M.A.; Savinov, A.P.; Sinyavskii, V.V.

    1981-01-01T23:59:59.000Z

    A numerical algorithm has been developed for calculating the kinetic characteristics of electricity-generating coaxial cells and assemblies; it is based on separate solution of the equations describing the thermal and electrical processes with their subsequent coordination by way of the volt-ampere characteristics of an elementary thermionic converter by means of piecewise-linear approximation of the nonlinear characteristics at the operating points. The possibilities and advantages of the proposed calculation algorithm for investigation of the transients occurring in the course of operation of the electricity generating assemblies (EGA) are indicated. Results are reported for sample calculations of several EGA static and kinetic characteristics. 10 refs.

  20. Use of computers for making multicomponent distillation calculations for reboiler-absorbers

    E-Print Network [OSTI]

    Canik, Leebert J

    1961-01-01T23:59:59.000Z

    /vli are those which are in material balance and in agreement with the specifications. The relationship may be stated as follows. (20) In a similar manner, the quantity 01 is used to express the relationship between the calculated and corrected values of wli... calculation and the minimum rate to I/1. 2 times the value used to make the calculation. At the end of the twentieth trial, p was further reduced to 0. 025 and at the end of the thirtieth trial, p was reduced to 0. 01. For other problems presented herein...

  1. Calculations of dynamic stresses in the envelopes of pulsed Xe flashlamps

    SciTech Connect (OSTI)

    Holdener, F.R.; Platt, E.A.; Erlandson, A.C.; Frank, D.N.; Gelinas, R.J.; Jancaitis, K.S.; Larson, D.W.; Sinz, K.H.

    1992-08-31T23:59:59.000Z

    We have modeled dynamic stresses in the envelopes of pulsed xenon flashlamps, treating stresses produced by three different sources: the heating of the envelope by the plasma; the pressure rise of the xenon gas; and magnetic forces, due to currents flowing in nearby lamps. The heat-induced stresses were calculated by the finite element method, using uniform heating rates for the inside surface of the envelope that were inferred from flashlamp radiant efficiency measurements. Pressure-induced stresses were calculated analytically, using empirical relationships for temperature and pressure in terms of current density. Magnetically-induced stresses were also calculated analytically, for flashlamps packed parallel to each other in linear arrays.

  2. Molecular mechanics calculations of five-membered and pseudo-four-membered rings 

    E-Print Network [OSTI]

    Cooper, Carol Rae

    1986-01-01T23:59:59.000Z

    TO MODIFY EXiSTING MM2" FORCE FIELD VITA 76 92 ]01 109 122 128 132 134 134 138 146 163 166 LIST OF TABLES TABLE Page IH-1 Calculated components of steric energy for planar, C, and Cs conformations of cyclopentane. 20 III-2 Barriers... xolane. 42 III-13 Comparison of calculated structural parameters for planar, Csy 1, 3-dioxolane. III-14 Calculated components of steric energy for planar, C, and Cs conformations of silacyclopentane. 45 LIST OF TABLES (CONTINUED) TABLE Page Hl-15...

  3. Theoretical calculation of medium-energy proton-induced reactions on Al, Zr, and Pb

    SciTech Connect (OSTI)

    Ramavataram, S.; Divadeenam, M.; Ward, T.E.

    1988-01-01T23:59:59.000Z

    The intranuclear cascade model of nuclear reactions was used to calculate double differential cross sections for the (p,xn) reaction. The calculations were performed with a generalized version of the code VEGAS, CLUST. Model predictions are compared with recent experimental data. Calculated fast-particle spectral shapes at low angles are reproduced reasonably well for the experimental data. As one possible improvement to the model, the proton reaction cross sections were estimated independently using the prescriptions of Karol, and DeVries and Peng. The systematic trends that emerge from this analysis are discussed. 12 refs., 5 figs.

  4. Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model

    SciTech Connect (OSTI)

    Kawano, Toshihiko [Los Alamos National Laboratory; Moller, Peter [Los Alamos National Laboratory; Wilson, William B [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.

  5. Project W-320, 241-C-106 sluicing: Civil/structural calculations. Volume 6

    SciTech Connect (OSTI)

    Bailey, J.W.

    1998-07-24T23:59:59.000Z

    This supporting document has been prepared to make the FDNW calculations for Project W-320 readily retrievable. The purpose of this calculation is to conservatively estimate the weight of equipment and structures being added over Tank 241-C-106 as a result of Project W-320 and combine these weights with the estimated weights of existing structures and equipment as calculated in Attachment 1. The combined weights will be compared to the allowable live load limit to provide a preliminary assessment of loading conditions above Tank 241-C-106.

  6. Calculation of large ion densities under HVdc transmission lines by the finite difference method

    SciTech Connect (OSTI)

    Suda, Tomotaka; Sunaga, Yoshitaka [Central Research Institute of Electrical Power Industry, Komae, Tokyo (Japan)] [Central Research Institute of Electrical Power Industry, Komae, Tokyo (Japan)

    1995-10-01T23:59:59.000Z

    A calculation method for large ion densities (charged aerosols) under HVdc transmission lines was developed considering both the charging mechanism of aerosols by small ions and the drifting process by wind. Large ion densities calculated by this method agreed well with the ones measured under the Shiobara HVdc test line on the lateral profiles at ground level up to about 70m downwind from the line. Measured values decreased more quickly than calculated ones farther downwind from the line. Considering the effect of point discharge from ground cover (earth corona) improved the agreement in the farther downwind region.

  7. Efficiency of free energy calculations of spin lattices by spectral quantum algorithms

    E-Print Network [OSTI]

    Cyrus P. Master; Fumiko Yamaguchi; Yoshihisa Yamamoto

    2002-07-10T23:59:59.000Z

    Quantum algorithms are well-suited to calculate estimates of the energy spectra for spin lattice systems. These algorithms are based on the efficient calculation of the discrete Fourier components of the density of states. The efficiency of these algorithms in calculating the free energy per spin of general spin lattices to bounded error is examined. We find that the number of Fourier components required to bound the error in the free energy due to the broadening of the density of states scales polynomially with the number of spins in the lattice. However, the precision with which the Fourier components must be calculated is found to be an exponential function of the system size.

  8. An Algorithm for Calculating the Probability of Classes of Data Patterns on a Genealogy

    E-Print Network [OSTI]

    Koch, Jordan M.; Holder, Mark T.

    2012-12-14T23:59:59.000Z

    Felsenstein’s pruning algorithm allows one to calculate the probability of any particular data pattern arising on a phylogeny given a model of character evolution. Here we present a similar dynamic programming algorithm. ...

  9. FileName//FileDate//PNNL-SA-##### DPA Calculational Methodologies Used in Fission

    E-Print Network [OSTI]

    McDonald, Kirk

    FileName//FileDate//PNNL-SA-##### DPA Calculational Methodologies Used in Fission and Fusion Reactor Materials Applications David Wootan - david.wootan@pnnl.gov, 1-509-372-6865 Radiation Damage

  10. Comment on ``Success of collinear expansion in the calculation of induced gluon emission''

    E-Print Network [OSTI]

    P. Aurenche; B. G. Zakharov; H. Zaraket

    2008-06-01T23:59:59.000Z

    We show that the arguments against our recent paper on the failure of the collinear expansion in the calculation of the induced gluon emission raised by X.N. Wang are either incorrect or irrelevant.

  11. Calculating differential cross sections for electron-impact ionization without explicit use of the asymptotic form

    SciTech Connect (OSTI)

    McCurdy, C.W. [Computing Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)] [Computing Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Rescigno, T.N. [Physics and Space Technology Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Physics and Space Technology Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    1997-12-01T23:59:59.000Z

    We describe the calculation of singly differential (energy-sharing) cross sections for electron-impact ionization. First, using exterior complex scaling, we calculate the outgoing portion of the scattering wave function without explicit use of asymptotic boundary conditions. Once that wave function is known for a finite region of space, the outgoing flux can be calculated and extrapolated to large distances according to behavior that is specific to the ionization problem. The differential cross section is proportional to the outgoing flux in specific directions of a hyperspherical angle in the coordinates. Calculations on the singlet s-wave radial limit (Temkin-Poet and collinear) models of electron-hydrogen atom ionization are presented. {copyright} {ital 1997} {ital The American Physical Society}

  12. Development of radiological concentrations and unit liter doses for TWRS FSAR radiological consequence calculations

    SciTech Connect (OSTI)

    Cowley, W.L.

    1996-04-25T23:59:59.000Z

    The analysis described in this report develops the Unit Liter Doses for use in the TWRS FSAR. The Unit Liter Doses provide a practical way to calculate conservative radiological consequences for a variety of potential accidents for the tank farms.

  13. Double resonance Raman spectra of graphene : a full 2D calculation

    E-Print Network [OSTI]

    Narula, Rohit

    2007-01-01T23:59:59.000Z

    Visible range Raman spectra of graphene are generated based on the double resonant process employing a full two-dimensional numerical calculation applying second-order perturbation theory. Tight binding expressions for ...

  14. Permits and Variances for Solar Panels, Calculation of Impervious Cover (Maryland)

    Broader source: Energy.gov [DOE]

    In May 2012 Maryland enacted legislation stating that any calculation of "impervious surface" required by state or local authorities as part of a permit or variance relating to zoning, construction...

  15. /sup 18/O as a core plus two valence neutrons: A three-body Faddeev calculation

    SciTech Connect (OSTI)

    Ueta, K.; Miyake, H.; Mizukami, A.

    1983-01-01T23:59:59.000Z

    The nucleus /sup 18/O is studied assuming a three-body model: two neutrons outside an inert core of /sup 16/O: and solving the Faddeev equations. The calculated spectrum is in good agreement with experiment.

  16. The work-Hamiltonian connection and the usefulness of the Jarzynski equality for free energy calculations

    E-Print Network [OSTI]

    Zimanyi, Eric N.

    The connection between work and changes in the Hamiltonian for a system with a time-dependent Hamiltonian has recently been called into question, casting doubt on the usefulness of the Jarzynski equality for calculating ...

  17. Hydraulic Calculations Relating to the Flooding and Draining of the Roman Colosseum for Naumachiae 

    E-Print Network [OSTI]

    Crapper, Martin

    This report includes full details of the calculations used in determining flows into and out of the Colosseum. It should be read in conjunction with the published paper in the Proceedings of ICE Civil Engineering 160 ...

  18. A power regulator for the generators on the A.C. network calculator 

    E-Print Network [OSTI]

    Francis, Lawrence Gregg

    1956-01-01T23:59:59.000Z

    LIBRARY A A M COLLEQE OF TEXAS A POWER REGULATOR FOR THE GENERATORS ON THE A. C. NETWORK CALCULATOR A Thesis By Lawrence Gregg Francis Submitted to the Graduate School of the Agricultural and Mechanical College of Teens in partial...

  19. Evolutionary Ecology, 1996, 10, 221-232 Calculating the ESS level

    E-Print Network [OSTI]

    Hurd, Peter L.

    Evolutionary Ecology, 1996, 10, 221-232 Calculating the ESS level aggressive communication demonstrate that while a non-communicating ESS does exist, so do several others which use information

  20. Analysis of drilling fluid rheology and tool joint effect to reduce errors in hydraulics calculations 

    E-Print Network [OSTI]

    Viloria Ochoa, Marilyn

    2006-10-30T23:59:59.000Z

    .........................................................................45 V HYDRAULICS ....................................................................................49 5.1 Friction Pressure Loss Calculation..........................................50 VI TOOL JOINT... ......................................................................................71 6.1 Weld-On Tool Joint..................................................................71 VII STUDY APPROACHES TO ESTIMATE PRESSURE LOSSES BY CORRECTING FOR TOOL JOINT LOSSES .....................................77 7...

  1. Calculation notes that support accident scenario and consequence of the evaporator dump

    SciTech Connect (OSTI)

    Crowe, R.D., Westinghouse Hanford

    1996-09-09T23:59:59.000Z

    The purpose of this calculation note is to provide the basis for evaporator dump consequence for the Tank Farm Safety Analysis Report (FSAR). Evaporator Dump scenario is developed and details and description of the analysis methods are provided.

  2. Calculation notes that support accident scenario and consequence of the evaporator dump

    SciTech Connect (OSTI)

    Crowe, R.D.

    1996-09-27T23:59:59.000Z

    The purpose of this calculation note is to provide the basis for evaporator dump consequence for the Tank Farm Safety Analysis Report (FSAR). Evaporator Dump scenario is developed and details and description of the analysis methods are provided.

  3. Experimental Validation of Pore-Level Calculations of Static and Dynamic Petrophysical Properties of Clastic Rocks

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    . The calculations are based on high-resolution three-dimensional (3D) digital images of actual clastic rocks of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an ab- stract

  4. Webinar: Using the RTU Comparison Calculator to Justify High-Efficiency Units

    Broader source: Energy.gov [DOE]

    The Advanced Rooftop Unit (RTU) Campaign is working with the Pacific Northwest National Laboratory (PNNL) to update its RTU Comparison Calculator (RTUCC). Join this webinar to learn how contractors...

  5. Development of a Residential Code-Compliant Calculator for the Texas Climate Vision Project

    E-Print Network [OSTI]

    Haberl, J. S.; Marshall, K.; Mukhopadhyay, J.; Gilman, D. R.; Stackhouse, R.; Cordes, J.; Yazdani, B.; Culp, C.; Morgan, R.; Montgomery, C.; Liu, Z.

    of a single-family house and how the web-based software collects, calculates and certifies above-code compliance for each home, while aggregating data and providing value to builders, inspectors and Austin Energy....

  6. Calculation of NOx Emissions Reductions From Energy Efficient Residential Building Construction in Texas

    E-Print Network [OSTI]

    Haberl, J. S.; Culp, C.; Gilman, D.; Yazdani, B.; Fitzpatrick, T.; Muns, S.

    2006-05-23T23:59:59.000Z

    . These areas face severe sanctions if attainment is not reached by 2007. This paper provides an overview of the procedures that have been developed and used to calculate the electricity savings and NOx reductions from code-compliant residential construction...

  7. Calculation Notes for Subsurface Leak Resulting in Pool, TWRS FSAR Accident Analysis

    SciTech Connect (OSTI)

    Hall, B.W.

    1996-09-25T23:59:59.000Z

    This document includes the calculations performed to quantify the risk associated with the unmitigated and mitigated accident scenarios described in the TWRS FSAR for the accident analysis titled: Subsurface Leaks Resulting in Pool.

  8. Calculation notes for surface leak resulting in pool, TWRS FSAR accident analysis

    SciTech Connect (OSTI)

    Hall, B.W.

    1996-09-25T23:59:59.000Z

    This document includes the calculations performed to quantify the risk associated with the unmitigated and mitigated accident scenarios described in the TWRS FSAR for the accident analysis titled: Surface Leaks Resulting in Pool.

  9. Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation

    E-Print Network [OSTI]

    Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation C potential temperature; primary magma. Index Terms: 3621 Mineralogy and Petrology: Mantle processes (1038); 3610 Mineralogy and Petrology: Geochemical modeling (1009, 8410); 3630 Mineralogy and Petrology

  10. Back-calculating emission rates for ammonia and particulate matter from area sources using dispersion modeling

    E-Print Network [OSTI]

    Price, Jacqueline Elaine

    2004-11-15T23:59:59.000Z

    backward Lagrangian stochastic model and a Gaussian plume dispersion model. This analysis assessed the uncertainty surrounding each sampling procedure in order to gain a better understanding of the uncertainty in the final emission rate calculation (a basis...

  11. Sensitivity and uncertainty analyses for thermo-hydraulic calculation of research reactor

    SciTech Connect (OSTI)

    Hartini, Entin; Andiwijayakusuma, Dinan [Center for Development of Nuclear Informatics - National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)] [Center for Development of Nuclear Informatics - National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia); Isnaeni, Muh Darwis [Center for Reactor Technology and Nuclear Safety- National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)] [Center for Reactor Technology and Nuclear Safety- National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)

    2013-09-09T23:59:59.000Z

    The sensitivity and uncertainty analysis of input parameters on thermohydraulic calculations for a research reactor has successfully done in this research. The uncertainty analysis was carried out on input parameters for thermohydraulic calculation of sub-channel analysis using Code COOLOD-N. The input parameters include radial peaking factor, the increase bulk coolant temperature, heat flux factor and the increase temperature cladding and fuel meat at research reactor utilizing plate fuel element. The input uncertainty of 1% - 4% were used in nominal power calculation. The bubble detachment parameters were computed for S ratio (the safety margin against the onset of flow instability ratio) which were used to determine safety level in line with the design of 'Reactor Serba Guna-G. A. Siwabessy' (RSG-GA Siwabessy). It was concluded from the calculation results that using the uncertainty input more than 3% was beyond the safety margin of reactor operation.

  12. Parallel Reacting Flow Calculations for Chemical Vapor Deposition Reactor Design 1

    E-Print Network [OSTI]

    Devine, Karen

    , memory, and scalability of distributed memory parallel computers. An unstructured finite element transport from the fluid mechanics and heat transfer. Both works used solution procedures that require the reacting flow model and numerical method and summarize representative calculations using MPSalsa

  13. Module I2, Option Calcul Hautes Performances, Master Modlisation et Simulation (M2) Responsable : Patrick Ciarlet

    E-Print Network [OSTI]

    Patrick, Ciarlet

    "Parallélisme et Calcul Réparti" et B13 "High Performance Computing" de troisième année de l'ENSTA. I. Intitulés performances (HPC : High Performance Computing) et optimisation. I2-3 : Programmation parallèle sur des modèles

  14. A new comprehensive semiempirical approach to calculate three-phase water/hydrocarbons equilibria 

    E-Print Network [OSTI]

    Tandia, Bagus Krisna

    1995-01-01T23:59:59.000Z

    A new comprehensive semiempirical approach (CSA) has been developed to calculate three-phase water/hydrocarbons equilibria. It uses both laboratory data (stagewise isochoric distillation data) and Peng-Robinson EOS. It considers mutual solubility...

  15. Calculation of conventional and prompt lepton fluxes at very high energy

    E-Print Network [OSTI]

    Fedynitch, Anatoli; Gaisser, Thomas K; Riehn, Felix; Stanev, Todor

    2015-01-01T23:59:59.000Z

    An efficient method for calculating inclusive conventional and prompt atmospheric leptons fluxes is presented. The coupled cascade equations are solved numerically by formulating them as matrix equation. The presented approach is very flexible and allows the use of different hadronic interaction models, realistic parametrizations of the primary cosmic-ray flux and the Earth's atmosphere, and a detailed treatment of particle interactions and decays. The power of the developed method is illustrated by calculating lepton flux predictions for a number of different scenarios.

  16. Statewide Air Emissions Calculations from Wind and Other Renewables: Summary Report

    E-Print Network [OSTI]

    Chandrasekaran, Vivek; Turner, Dan; Yazdani, Bahman; Culp, Charles; Gilman, Don; Baltazar-Cervantes, Juan-Carlos; Liu, Zi; Haberl, Jeff S.

    Engineering Experiment Station or the Energy Systems Laboratory. Page August 2009 Energy Systems Laboratory, Texas A&M University System 3 SUMMARY REPORT Statewide Air Emissions Calculations from Wind and Other Renewables 1. EXECUTIVE SUMMARY...). The Energy Systems Laboratory, in fulfillment of its responsibilities under this Legislation, submits its third annual report, ?Statewide Air Emissions Calculations from Wind and Other Renewables,? to the Texas Commission on Environmental Quality...

  17. Lagrange-Function Approach to Real-Space Order-N Electronic-Structure Calculations

    SciTech Connect (OSTI)

    Varga, Kalman [ORNL; Pantelides, Sokrates T [ORNL

    2006-01-01T23:59:59.000Z

    The Lagrange functions are a family of analytical, complete, and orthonormal basis sets that are suitable for efficient, accurate, real-space, order-N electronic-structure calculations. Convergence is controlled by a single monotonic parameter, the dimension of the basis set, and computational complexity is lower than that of conventional approaches. In this paper we review their construction and applications in linearscaling electronic-structure calculations.

  18. Dealing with parameter uncertainty in the calculation of water surface profiles

    E-Print Network [OSTI]

    Vargas-Cruz, Ruben F.

    1998-01-01T23:59:59.000Z

    ABSTRACT Dealing with Parameter Uncertainty in the Calculation of Water Surface Profiles. (August 1998) Ruben R Vargas-Cruz, B. S. , Polytechnic University of Puerto Rico Chair of Advisory Committee: Dr. Ralph A. Wurbs Hydrologic and hydraulic... component of the hydrologic cycle in the analysis is important. In that case the water budget must be calculated using the following expression. P ? R ? I ? G ? E ? T=tkS where, P = Precipitation, R = Surface runoff, I = Infiltration, G = Groundwater...

  19. Relativistic configuration-interaction calculation of $K\\alpha$ transition energies in beryllium-like iron

    E-Print Network [OSTI]

    Yerokhin, V A; Fritzsche, S

    2014-01-01T23:59:59.000Z

    We perform relativistic configuration-interaction calculations of the energy levels of the low-lying and core-excited states of beryllium-like iron, Fe$^{22+}$. The results include the QED contributions calculated by two different methods, the model QED operator approach and the screening-potential approach. The uncertainties of theoretical energies are estimated systematically. The predicted wavelengths of the K\\alpha transitions in beryllium-like iron improve previous theoretical results and compare favorably with the experimental data.

  20. Calculation of extremity neutron fluence-to-dose equivalent conversion factors

    E-Print Network [OSTI]

    Wood-Zika, Annmarie Ruth

    1997-01-01T23:59:59.000Z

    surface fluence spectra 45 LIST OF TABLES TABLE Page Properties of commercially available TLDs . . PNNL dose equivalent averaged quality factors . 16 3 MCNP input deck geometries Phantoms modeled in MCNP input decks . . Comparison of calculated..., PNNL and DOELAP fluence-to-dose equivalent conversion factors for bare '"Cf . . . . 37 Comparison of calculated, PNNL and DOELAP fluence-to-dose equivalent conversion factors for D, O moderated '"Cf. 37 Fluence-to-dose equivalent conversion factors...