Powered by Deep Web Technologies
Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Optical Design of VLS-PGM Soft X-Ray Beamline on Indus-2  

SciTech Connect (OSTI)

The optical design of a soft x-ray beamline on the bending magnet of Indus-2 synchrotron source is presented. A Varied Line Spacing Plane Grating Monochromator (VLS-PGM) was adopted with Hettrick type optics. The VLS-PGM consists of a spherical mirror and three interchangeable gratings of line densities 1200 l/mm, 400 l/mm and 150 l/mm to efficiently cover the energy region 50-1500 eV. The VLS groove parameters were obtained by minimizing defocus aberration, coma and spherical aberration. The overall performance of the beamline was estimated by detailed raytracing calculations. The beamline design, results of the raytracing calculations and the expected performances are presented.

Prasad, T. T.; Modi, M. H.; Lodha, G. S. [X-ray Optics Section, Indus Synchrotrons Ultilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

2010-06-23T23:59:59.000Z

2

Monochromator Crystal Glitch Library  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

SSRL's Monochromator Crystal Glitch Library allows users to view glitch spectra online, list specific crystal orientations, and download PDF files of the glitch spectra. (Specialized Interface)

3

APS high heat load monochromator  

SciTech Connect (OSTI)

This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach.

Lee, W.K.; Mills, D.

1993-02-01T23:59:59.000Z

4

Pulsed-neutron monochromator  

DOE Patents [OSTI]

In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

Mook, H.A. Jr.

1984-01-01T23:59:59.000Z

5

Pulsed-neutron monochromator  

DOE Patents [OSTI]

In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

Mook, Jr., Herbert A. (Oak Ridge, TN)

1985-01-01T23:59:59.000Z

6

Development of the Channel Cut Monochromator with Curved Reflecting Surfaces at NSRL  

SciTech Connect (OSTI)

To simplify the complicated mechanism of the traditional double crystal monochromator for synchrotron radiation, a kind of channel cut monochromator with curved reflecting surfaces to fix the exit beam position was successfully developed at NSRL. The performance of this monochromator, which includes the relative efficiency, diffraction bandwidth and deviation of the beam spot, was calculated and measured. The analysis of these results are presented in this paper.

Kang Le; Li Zhongliang; Feng Liangjie; Dong Xiaohao; Lu Lei; Zhao Feiyun; Xu Chaoyin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China)

2010-06-23T23:59:59.000Z

7

Investigation of pin-post monochromators for a wiggler beamline  

SciTech Connect (OSTI)

Three water-cooled pin-post monochromators, to be used on a wiggler beamline at the Advanced Photon Source (APS), were built with the heat exchanger engineered to provide very high heat transfer. The geometry of the heat exchanger as well as calculated data on the heat transfer will be presented. Before using the monochromators on the beamline, they were checked by x-ray diffraction topography. Reflections (333) and (220) in Bragg case were utilized. In all crystals, similar patterns of strain in the diffracting silicon layers were revealed, which can be attributed to the geometry of the heat exchangers, the bonding technology, and the thickness of the top layer. Conclusions about construction of future pin-post monochromators have been drawn.

Krasnicki, S.; Maj, J. [Argonne National Lab., IL (United States); Schildkamp, W. [Univ. of Chicago, IL (United States); Tonnessen, T. [Boeing North American, Albuquerque, NM (United States). Albuquerque Operations

1998-12-31T23:59:59.000Z

8

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

9

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

10

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

11

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.2 Print 0.2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

12

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

13

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

14

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

15

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

16

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

17

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

18

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

19

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

20

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.1 Print 0.1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

22

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

23

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

24

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Print 2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

25

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Print 1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

26

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2.0.2 Print 2.0.2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

27

Back-scattering channel-cut high-resolution monochromator for inelastic x-ray scattering  

SciTech Connect (OSTI)

We report on a design and on some experimental results for the performance of a new high energy resolution monochromator. It is a large channel-cut Si crystal with a 197 mm separation between the two faces designed to operate in a near-backscattering regime. The device was tested as a second monochromator on Sector 3 of the Synchrotron Radiation Instrumentation Collaborative Access Team (SRI-CAT) at the Advanced Photon Source using the Si(777) reflection at a photon energy of 13.84 keV. The same monochromator can be used for other energies with reflections of the type (hhh). Special care has been taken to equalize the temperature of the two faces by employing a Peltier heat pump. A Si(111) double-crystal pre-monochromator designed to withstand the high heat load of the undulator radiation was used upstream on the beamline. The measured throughput efficiency of the Si(777) channel-cut monochromator was less ideal by a factor of 1.9. Dynamical diffraction theory was used to calculate the throughput of an ideally perfect crystal.

Kushnir, V.I.; Abbamonte, P.M.; Macrander, A.T.; Schwoerer-Boehning, M.

1997-08-01T23:59:59.000Z

28

Highly asymmetric Laue focusing monochromator  

SciTech Connect (OSTI)

By using two highly asymmetric Laue crystals in a dispersive arrangement with a circular profile (Oe 8 mm) we have created a sagittaly focusing Laue system for the first time. The crystallographic planes (111) of the two Si crystals formed an angle of 7.95 deg. with the entrance surface. The crystals dimensions were 40 mmx20 mm and the diffracting surface was a 0.5 mm thick neck between the two circular profiles. The 15.35 keV diffracted beam formed an angle of 0.55 deg. with the exit surface. The calculated focusing distance of the Laue-Laue focusing system was 14 m.

Oberta, P. [Institute of Physics, Academy of Sciences of the Czech Republic v.v.i., Na Slovance 2, Praha 8 (Czech Republic); Swiss Light Source, Paul Scherrer Institut, Villigen (Switzerland); Mikulik, P. [Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlarska 2, Brno (Czech Republic); Hrdy, J.; Kittler, M. [Institute of Physics, Academy of Sciences of the Czech Republic v.v.i., Na Slovance 2, Praha 8 (Czech Republic)

2010-06-23T23:59:59.000Z

29

Adaptation of UVSOR-Type Plane-Grating Monochromator in Saga  

SciTech Connect (OSTI)

The plane grating monochromator (PGM) is one of the most useful monochromators in the world. The design concept of the PGM originates from the characteristics of synchrotron radiation itself, namely parallel rays and small source size. Since the performance of the PGM depends on the beam emittance of the storage ring, it is expected that even the used PGM may be utilized in recent facility. Therefore, the UVSOR-type PGM that had been used for more than twenty years in UVSOR was adapted to the university's branch beamline in Saga-LS with several modifications. The performance tests were carried out with a photoelectron spectrometer, and the observed values were compared with the ray-tracing calculation. The results show that the adaptation of the UVSOR-type PGM is good enough to study new functional materials.

Sugiyama, H.; Takahashi, K.; Ogawa, K.; Azuma, J.; Kamada, M. [Synchrotron Light Application Center, Saga University, Saga 840-8502 (Japan)

2010-06-23T23:59:59.000Z

30

A dynamic focusing x-ray monochromator for a wiggler beam line at the SRS of the SERC Daresbury Laboratory  

SciTech Connect (OSTI)

A Si(220) double-crystal monochromator for the energy range 10--30 keV is presented. It will be used for EXAFS as well as powder diffraction measurements. To determine the requirements for this monochromator we looked, apart from mean considerations, at the requirements dictated by EXAFS in transmission mode. For good data analyses the proper shape, amplitude, and location at the energy axis of each wiggle is required. Moreover it is essential to separate the wiggles from background and noise. For the latter a high flux through the sample is desirable, which can be achieved by horizontal focusing of the beam. For that we have chosen to bend the second crystal sagitally. The sagittal bending radius is adjustable between 50 and 0.8 m, because for different energies different sagittal radii are necessary to focus the beam on the sample. The mean meridional radius of the second crystal is fixed at 130 m, which is an optimization for 20 keV. The meridional radius of the first crystal can be tuned between 100 and 500 m. When this radius is set to 130 m the energy resolution is calculated to be 6, 3, and 35 eV for 10, 20, and 30 keV (for perfectly bent crystals). By changing the meridional radius of the first crystal, future users of this monochromator can make the trade off between resolution and intensity. Movement of the monochromator exit beam, during a scan, will occur due to the monochromator geometry, but is reduced as much as possible by using an asymmetrically cut second crystal, with an asymmetry angle of 2.5{degree}. The average exit beam movement of the monochromator for a 1-keV scan is 20 {mu}m. For 40% of the energy range (10--30 keV) the exit beam position remains within 10 {mu}m. For the second crystal no translation stage is used.

De Bruijn, D.; Van Zuylen, P. (TNO Institute of Applied Physics, P.O. Box 155, 2600 AD Delft (Netherlands)); Kruizinga, G. (Netherlands Organization for Scientific Research (NWO), P.O. Box 93138, 2509 AC Den Haag (Netherlands) State University of Utrecht, Sorbonnelaan 16, 3508 TB Utrecht (Netherlands))

1992-01-01T23:59:59.000Z

31

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

32

Beamline 12.0.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0.2 0.2 Beamline 12.0.2 Print Tuesday, 20 October 2009 09:30 Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm Unfocused: 200 x 200 µm Endstations 12.0.2.1: Coherent optics 12.0.2.2: Coherent scattering Detectors DetectorsCCD, photodiode, scintillator Scientific applications Branchlines designed for spatially coherent soft x-ray experiments

33

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

34

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

35

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

36

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

37

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

38

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

39

Beamline 11.3.2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1.3.2 Print 1.3.2 Print Inspection of EUV lithography masks GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 50-1000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1011 photons/s/0.01%BW at 100 eV Resolving power (E/ΔE) 7000 Endstations The SEMATECH Berkeley Actinic Inspection Tool Detector 2048 x 2048 EUV CCD Characteristics 900-1000x zoneplate microscope Spot size at sample 1-5 microns Spatial resolution 60 nm Sample format EUV Photolithography masks: 6" glass plate, multilayer coated for normal incidence reflectivity at 13.4 nm Sample preparation Cleanroom handling Sample environment 2.0 x 10-7 Torr base pressure Scientific applications EUV lithography Local contacts/ Spokespersons This e-mail address is being protected from spambots. You need JavaScript enabled to view it

40

Beamline 11.0.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Beamline 11.0.1 Print Tuesday, 20 October 2009 09:16 PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Proposal cycle Proposals for General Sciences Beamlines (6-month cycle) Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations 11.0.1.1: Photoemission electron microscope (PEEM3) 11.0.1.2: Soft x-ray scattering Special notes Polarization is user selectable; linear polarization continuously variable from horizontal to vertical; left and right elliptical (or circular) polarization

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High energy resolution, high angular acceptance crystal monochromator  

DOE Patents [OSTI]

A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

Alp, Ercan E. (Bolingbrook, IL); Mooney, Timothy M. (Westmont, IL); Toellner, Thomas (Green Bay, WI)

1996-06-04T23:59:59.000Z

42

Synchronized monochromator and insertion device energy scans at SLS  

SciTech Connect (OSTI)

Synchronous monochromator and insertion device energy scans were implemented at the Surfaces/Interfaces:Microscopy (SIM) beamline in order to provide the users fast X-ray magnetic dichroism studies (XMCD). A simple software control scheme is proposed based on a fast monochromator run-time energy readback which quickly updates the insertion device requested energy during an on-the-fly X-ray absorption scan (XAS). In this scheme the Plain Grating Monochromator (PGM) motion control, being much slower compared with the insertion device (APPLE-II type undulator), acts as a 'master' controlling the undulator 'slave' energy position. This master-slave software implementation exploits EPICS distributed device control over computer network and allows for a quasi-synchronous motion control combined with data acquisition needed for the XAS or XMCD experiment.

Krempasky, J.; Flechsig, U.; Korhonen, T.; Zimoch, D.; Quitmann, Ch.; Nolting, F. [Paul Scherrer Institut, Villigen, Swiss Light Source, 5235 Villigen PSI (Switzerland)

2010-06-23T23:59:59.000Z

43

Optical system for high resolution spectrometer/monochromator  

DOE Patents [OSTI]

An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane is disclosed. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver. 11 figs.

Hettrick, M.C.; Underwood, J.H.

1988-10-11T23:59:59.000Z

44

Grating monochromator for electron cyclotron resonance ion source operation  

SciTech Connect (OSTI)

Recently, we started to observe optical line spectra from an ECR plasma using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for beam tuning because it allows the extraction of the desired ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research gives new insights into its simplification. In this paper, the grating monochromator method for beam tuning of a Hyper-ECR ion source as an injector for RIKEN azimuthal varying field (AVF) cyclotron is described.

Muto, Hideshi [Center of General Education, Tokyo University of Science, Suwa, 5000-1 Toyohira, Chino Nagano 391-0292 (Japan)] [Center of General Education, Tokyo University of Science, Suwa, 5000-1 Toyohira, Chino Nagano 391-0292 (Japan); Ohshiro, Yukimitsu; Yamaka, Shouichi; Watanabe, Shin-ichi; Yamaguchi, Hidetoshi; Shimoura, Susumu [Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Riken Campus, Wako Saitama 351-0198 (Japan)] [Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Riken Campus, Wako Saitama 351-0198 (Japan); Oyaizu, Michihiro; Kase, Masayuki [RIKEN Nishina Center for Accelerator-Based Science, Wako Saitama 351-0198 (Japan)] [RIKEN Nishina Center for Accelerator-Based Science, Wako Saitama 351-0198 (Japan); Kubono, Shigeru [Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Riken Campus, Wako Saitama 351-0198 (Japan) [Center for Nuclear Study, University of Tokyo, 2-1 Hirosawa, Riken Campus, Wako Saitama 351-0198 (Japan); RIKEN Nishina Center for Accelerator-Based Science, Wako Saitama 351-0198 (Japan); Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road 509, Lanzhou 730000 (China); Hattori, Toshiyuki [Heavy Ion Cancer Therapy Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage Chiba 263-855 (Japan)] [Heavy Ion Cancer Therapy Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage Chiba 263-855 (Japan)

2013-07-15T23:59:59.000Z

45

High-heat-load synchrotron tests of room-temperature, silicon crystal monochromators at the CHESS F-2 wiggler station  

SciTech Connect (OSTI)

This note summarizes the results of the single crystal monochromator high-heat-load tests performed at the CHESS F-2 wiggler station. The results from two different cooling geometries are presented: (1) the ``pin-post`` crystal and (2) the ``criss-cross`` crystal. The data presented were taken in August 1993 (water-cooled pin-post) and in April 1995 (water- and gallium-cooled pin-post crystal and gallium-cooled criss-cross crystal). The motivation for trying these cooling (or heat exchanger) geometries is to improve the heat transfer efficiency over that of the conventional slotted crystals. Calculations suggest that the pin-post or the microchannel design can significantly improve the thermal performance of the crystal. The pin-post crystal used here was fabricated by Rocketdyne Albuquerque Operations. From the performance of the conventional slotted crystals, it was thought that increased turbulence in the flow pattern may also enhance the heat transfer. The criss-cross crystal was a simple attempt to achieve the increased flow turbulence. The criss-cross crystal was partly fabricated in-house (cutting, etching and polishing) and bonded by RAO. Finally, a performance comparison among all the different room temperature silicon monochromators that have been tested by the APS is presented. The data includes measurements with the slotted crystal and the core-drilled crystals. Altogether, the data presented here were taken at the CHESS F-2 wiggler station between 1991 and 1995.

Lee, W.K.; Fernandez, P.B.; Graber, T.; Assoufid, L.

1995-09-08T23:59:59.000Z

46

PERFORMANCE AND APPLICATION OF A DOUBLE CRYSTAL MONOCHROMATOR IN THE ENERGY REGION 800 < hv < 4500 eV  

E-Print Network [OSTI]

monochromator which is not UHV compatible and does not haveof this ultrahigh-vacuum (UHV) compatible constant deviationmonochromator, and (4) is UHV (~10~ torr) compatible. These

Hussain, Z.

2010-01-01T23:59:59.000Z

47

Inclined monochromator for high heat-load synchrotron x-ray radiation  

DOE Patents [OSTI]

A double crystal monochromator is described including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced. 11 figures.

Khounsary, A.M.

1994-02-15T23:59:59.000Z

48

Precision mechanical design of an UHV-compatible artificial channel-cut x-ray monochromator.  

SciTech Connect (OSTI)

A novel ultra-high-vacuum (UHV)-compatible x-ray monochromator has been designed and commissioned at the undulator beamline 8-ID-I at the Advanced Photon Source (APS) for x-ray photon correlation spectroscopy applications. To meet the challenging stability and x-ray optical requirements, the monochromator integrates two new precision angular positioning mechanisms into its crystal optics motion control system: An overconstrained weak-link mechanism that enables the positioning of an assembly of two crystals to achieve the same performance as a single channel-cut crystal, the so called 'artificial channel-cut crystal'; A ceramic motor driven in-vacuum sine-bar mechanism for the double crystal combined pitch motion. The mechanical design of the monochromator, as well as the test results of its positioning performance are presented in this paper.

Shu, D.; Narayanan, S.; Sandy, A.; Sprung, M.; Preissner, C.; Sullivan, J.; APS Engineering Support Division

2007-01-01T23:59:59.000Z

49

Thermal gradient crystals as tuneable monochromator for high energy X-rays  

SciTech Connect (OSTI)

At the high energy synchrotron radiation beamline BW5 at DORIS III at DESY a new monochromator providing broad energy bandwidth and high reflectivity is in use. On a small 10x10x5 mm{sup 3} silicon crystal scattering at the (311) reflection a thermal gradient is applied, which tunes the scattered energy bandwidth. The (311) reflection strongly suppresses the higher harmonics allowing the use of an image plate detector for crystallography. The monochromator can be used at photon energies above 60 keV.

Ruett, U.; Schulte-Schrepping, H.; Heuer, J.; Zimmermann, M. von [Hamburger Synchrotron Strahlungslabor (HASYLAB), at Deutsches Elektronensychrotron (DESY), Notkestr. 85, 22603 Hamburg (Germany)

2010-06-23T23:59:59.000Z

50

High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy  

Science Journals Connector (OSTI)

...equal to the beam current per unit area per unit solid angle per unit energy interval, CFE electron sources with their...Monochromated, spatially resolved electron energy-loss spectroscopic measurements of gold nanoparticles in the plasmon range...

2009-01-01T23:59:59.000Z

51

Design and characterization of an UHV compatible artificial channel cut monochromator.  

SciTech Connect (OSTI)

We present design and characterization results of a novel ultra-high-vacuum-compatible artificial channel-cut monochromator that has been installed at the undulator beamline 8-ID-I at the Advanced Photon Source. The monochromator has been designed to meet the challenging stability and optical requirements of the x-ray photon correlation spectroscopy program hosted at this beamline. In particular, the device incorporates a novel in-vacuum sine-bar drive mechanism for the combined pitch motion of the two crystals and a flexure-based high-stiffness weak-link mechanism for fine tuning the pitch and roll of the second crystal relative to the first crystal.

Narayanan, S.; Shu, D.; Sandy, A.; Sprung, M.; Preissner, C.; Sullivan, J.; X-Ray Science Division

2006-01-01T23:59:59.000Z

52

ANL/APS/TB-24 Diamond Monochromators for APS Undulator-A Beamlines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Diamond Monochromators for APS Undulator-A Beamlines R.C. Blasdell, L. A. Assoufid, and D. M. Mills TABLE OF CONTENTS 1. INTRODUCTION .................................................................................1 2. PHYSICAL PROPERTIES OF DIAMONDS ..................................................5 2.1 Varieties of Diamonds ....................................................................5 2.2 The Lattice Parameter .....................................................................5 2.3 Bulk Thermal and Mechanical Properties ...............................................6 2.4 Typical Surface and Lattice Plane Morphology ......................................8 2.5 The Liquid-GaIn/Diamond Interface ...................................................10 3. DIFFRACTION PROPERTIES OF DIAMOND

53

Improvement in Stability of SPring-8 Standard X-Ray Monochromators with Water-Cooled Crystals  

SciTech Connect (OSTI)

SPring-8 standard double-crystal monochromators containing water-cooled crystals were stabilized to a sufficient level to function as a part of optics components to supply stable microfocused x-ray beams, by determining causes of the instability and then removing them. The instability was caused by two factors--thermal deformation of fine stepper stages in the monochromator, which resulted in reduction in beam intensity with time, and vibrations of coolant supply units and vacuum pumps, which resulted in fluctuation in beam intensity. We remodeled the crystal holders to maintain the stage temperatures constant with water, attached x-ray and electron shields to the stages in order to prevent their warming up, introduced accumulators in the water circuits to absorb pressure pulsation, used polyurethane tubes to stabilize water flow, and placed rubber cushions under scroll vacuum pumps. As a result, the intensity reduction rate of the beam decreased from 26% to 1% per hour and the intensity fluctuation from 13% to 1%. The monochromators were also modified to prevent radiation damage to the crystals, materials used as a water seal, and motor cables.

Yamazaki, Hiroshi; Shimizu, Nobtaka; Kumasaka, Takashi; Koganezawa, Tomoyuki; Sato, Masugu; Hirosawa, Ichiro; Senba, Yasunori; Ohashi, Haruhiko; Goto, Shunji [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Hyogo 679-5198 (Japan); Shimizu, Yasuhiro; Miura, Takanori; Tanaka, Masayuki; Kishimoto, Hikaru; Matsuzaki, Yasuhisa [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1, Kouto, Sayo-cho, Hyogo 679-5198 (Japan); SPring-8 Service Co., Ltd., 2-23-1, Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1205 (Japan); Kawano, Yoshiaki; Yamamoto, Masaki; Ishikawa, Tetsuya [RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Hyogo 679-5148 (Japan)

2010-06-23T23:59:59.000Z

54

Time-delay compensated monochromator for the spectral selection of extreme-ultraviolet high-order laser harmonics  

SciTech Connect (OSTI)

The design and the characterization of a monochromator for the spectral selection of ultrashort high-order laser harmonics in the extreme ultraviolet are presented. The instrument adopts the double-grating configuration to preserve the length of the optical paths of different diffracted rays, without altering the extremely short duration of the pulse. The gratings are used in the off-plane mount to have high efficiency. The performances of the monochromator have been characterized in terms of spectral response, efficiency, photon flux, imaging properties, and temporal response. In particular, the temporal characterization of the harmonic pulses has been obtained using a cross-correlation method: Pulses as short as 8 fs have been measured at the output of the monochromators, confirming the effectiveness of the time-delay compensated configuration.

Poletto, Luca; Villoresi, Paolo; Frassetto, Fabio [Laboratory for UV and X-Ray Optical Research, CNR-INFM and Department of Information Engineering, University of Padova, Padova 35131 (Italy); Calegari, Francesca; Ferrari, Federico; Lucchini, Matteo; Sansone, Giuseppe; Nisoli, Mauro [National Laboratory for Ultrafast and Ultraintense Optical Science, CNR-INFM and Department of Physics, Politecnico di Milano, Milano 20133 (Italy)

2009-12-15T23:59:59.000Z

55

Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator  

SciTech Connect (OSTI)

A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A. [Adelphi Technology, Inc., 2003 East Bayshore Rd., Redwood City, California 94063 (United States); Pantell, R. H.; Feinstein, J. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B. [Davis McClellan Nuclear Radiation Center, University of California, McClellan, California 95652 (United States)

2010-01-15T23:59:59.000Z

56

Hybrid diamond-silicon angular-dispersive x-ray monochromator with 0.25-meV energy bandwidth and high spectral efficiency  

Science Journals Connector (OSTI)

We report on the design, implementation, and performance of an x-ray monochromator with ultra-high energy resolution (?E/E ? 2.7 10?8) and...

Stoupin, S; Shvydko, Y V; Shu, D; Blank, V D; Terentyev, S A; Polyakov, S N; Kuznetsov, M S; Lemesh, I; Mundboth, K; Collins, S P; Sutter, J P; Tolkiehn, M

2013-01-01T23:59:59.000Z

57

Design and analysis of a high heat load pin-post monochromator crystal with an integral water manifold  

SciTech Connect (OSTI)

Conventional minichannel water cooling geometry will not perform satisfactorily for x-radiation from a wiggler source at the Advanced Photon Source. For closed-gap wiggler operation, cryogenic silicon appears to be the only option for crystals in Bragg-Bragg geometry. For operation of the wiggler at more modest critical energies ({lt}17 keV), the first crystal can be cooled by a pin-post cooling scheme, using water at room temperature as a coolant. In order to limit the water consumption to 4 gpm and hence the risk of introducing vibrations to the crystal, the intensely cooled area of the crystal was matched to the footprint of the beam, leaving a less cooled area of the crystal subject to survival in a missteered beam but not to perform as a monochromator. The manifold design avoids large areas of high water pressure that would bow the crystal. We present here the design of a pin-post monochromator consisting of a four-layer silicon manifold system and an integrally bonded 39{percent} nickel-iron alloy base plate. A transparent prototype of the design will be exhibited. Fabrication techniques and design advantages will be discussed. {copyright} {ital 1996 American Institute of Physics.}

Schildkamp, W. [Consortium for Advanced Radiation Sources, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States)] [Consortium for Advanced Radiation Sources, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Tonnessen, T. [Rocketdyne Albuquerque Operations, 2511 C. Broadbent Parkway, N.E., Albuquerque, NM 87107 (United States)] [Rocketdyne Albuquerque Operations, 2511 C. Broadbent Parkway, N.E., Albuquerque, NM 87107 (United States)

1996-09-01T23:59:59.000Z

58

Experimental results with cryogenically cooled, thin, silicon crystal x-ray monochromators on high-heat-flux beamlines  

SciTech Connect (OSTI)

A novel, silicon crystal monochromator has been designed and tested for use on undulator and focused wiggler beamlines at third-generation synchrotron sources. The crystal utilizes a thin, partially transmitting diffracting element fabricated within a liquid-nitrogen cooled, monolithic block of silicon. This report summarizes the results from performance tests conducted at the European Synchrotron Radiation Facility (ESRF) using a focused wiggler beam and at the Advanced Photon Source (APS) on an undulator beamline. These experiments indicate that a cryogenic crystal can handle the very high power and power density x-ray beams of modem synchrotrons with sub-arcsec thermal broadening of the rocking curve. The peak power density absorbed on the surface of the crystal at the ESRF exceeded go W/mm{sup 2} with an absorbed power of 166 W, this takes into account the spreading of the beam due to the Bragg angle of 11.4{degrees}. At the APS, the peak heat flux incident on the crystal was 1.5 W/mA/mm{sup 2} with a power of 6.1 W/mA for a 2.0 H x 2.5 V mm{sup 2} beam at an undulator gap of 11.1 mm and stored current up to 96 mA.

Rogers, C.S.; Mills, D.M.; Lee, W.K.; Fernandez, P.B.; Graber, T.

1996-08-01T23:59:59.000Z

59

Commissioning of a Soft X-ray Beamline PF-BL-16A with a Variable-Included-Angle Varied-Line-Spacing Grating Monochromator  

SciTech Connect (OSTI)

The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.

Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi; Kosuge, Takashi; Nigorikawa, Kazuyuki; Sumii, Ryohei; Ito, Kenji [Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-06-23T23:59:59.000Z

60

Sagittal focusing Laue monochromator  

SciTech Connect (OSTI)

An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.

Zhong; Zhong (Stony Brook, NY), Hanson; Jonathan (Wading River, NY), Hastings; Jerome (Stanford, CA), Kao; Chi-Chang (Setauket, NY), Lenhard; Anthony (Medford, NY), Siddons; David Peter (Cutchogue, NY), Zhong; Hui (Coram, NY)

2009-03-24T23:59:59.000Z

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Quick-scanning x-ray absorption spectroscopy system with a servo-motor-driven channel-cut monochromator with a temporal resolution of 10 ms  

SciTech Connect (OSTI)

We have developed a quick-scanning x-ray absorption fine structure (QXAFS) system and installed it at the recently constructed synchrotron radiation beamline BL33XU at the SPring-8. Rapid acquisition of high-quality QXAFS data was realized by combining a servo-motor-driven Si channel-cut monochromator with a tapered undulator. Two tandemly aligned monochromators with channel-cut Si(111) and Si(220) crystals covered energy ranges of 4.0-28.2 keV and 6.6-46.0 keV, respectively. The system allows the users to adjust instantly the energy ranges of scans, the starting angles of oscillations, and the frequencies. The channel-cut crystals are cooled with liquid nitrogen to enable them to withstand the high heat load from the undulator radiation. Deformation of the reflecting planes is reduced by clamping each crystal with two cooling blocks. Performance tests at the Cu K-edge demonstrated sufficiently high data quality for x-ray absorption near-edge structure and extended x-ray absorption fine-structure analyses with temporal resolutions of up to 10 and 25 ms, respectively.

Nonaka, T.; Dohmae, K.; Araki, T.; Hayashi, Y.; Hirose, Y. [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Uruga, T.; Yamazaki, H.; Tanida, H.; Goto, S. [JASRI/Spring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Mochizuki, T. [JASRI/Spring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Toyama Corp., Zama, Kanagawa 228-0003 (Japan)

2012-08-15T23:59:59.000Z

62

A Laboratory-based Hard X-ray Monochromator for High-Resolution X-ray Emission Spectroscopy and X-ray Absorption Near Edge Structure Measurements  

E-Print Network [OSTI]

We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low poer x-ray (bremsstrahlung) tube source, a spherically-bent crystal analyzer (SBCA), and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of 5 keV to 10 keV while also dmeonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy (XES) comparable to those achived at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure (XANES), the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-powered line-foc...

Seidler, G T; Remesnik, A J; Pacold, J I; Ball, N A; Barry, N; Styczinski, M; Hoidn, O R

2014-01-01T23:59:59.000Z

63

Performance and application of a double-crystal monochromator in the energy region 800 less than or equal to h. nu. less than or equal to 4500 eV  

SciTech Connect (OSTI)

The performance and application of an ultra-high-vacuum compatible constant-deviation double-crystal monochromator (JUMBO) in operation at SSRL is demonstrated. The monochromator can be operated with any of four pairs of crystals interchangeable in situ. An electronic-maximum-search feedback loop optimizes the intensity of the spatially fixed outgoing beam as the photon energy is scanned. The monochromatic beam is focussed (approx. 1.5 mm x 5 mm) onto the sample by a toroidal mirror. Monochromator crystals of beryl(10 anti 10), InSb(111) and Ge(111) have been tested in the energy regions 800 to 1540 eV, 1690 to 4000 eV and 1930 to 4500 eV, respectively. The performance of these crystals with regard to the resolution, the intensity, the level of scattered light, and the contribution of higher orders have been determined. Various effects arising from a radiation-induced temperature gradient in the monochromator crystals are discussed.

Hussain, Z.; Umbach, E.; Shirley, D.A.; Stoehr, V.; Feldhaus, J.

1981-07-01T23:59:59.000Z

64

MA 16020 -- CALCULATOR POLICY  

E-Print Network [OSTI]

MA 16020 -- CALCULATOR POLICY. A ONE-LINE scientific calculator is REQUIRED. No other calculator is allowed. RECOMMENDED: TI-30Xa calculator

OwenDavis

2014-08-20T23:59:59.000Z

65

How Do Calculators Calculate? Helmut Knaust  

E-Print Network [OSTI]

not convert numbers to base 2. They use a binary-coded decimal (BCD) system instead. Calculators can only

Knaust, Helmut

66

Microprocessorbased monochromator controller  

E-Print Network [OSTI]

I-- _z 5o- > :5- % IOO a) 75 ooooO eeeeeeee 65 6 .7 .8 o ee Ooooooo eeeeeeeee 9 656.0 .2 3 .4 .5 .6, (NM) >- 50 > 25 00 b) 0 e lil e e 655.8 .9 656.0 .I .2 .3 .4 .5 .6 (NM) Figure 4. Bidirectional scans of deuterium lamp emission line at 656.1 nm (e..., University of Illinois, Urbana, Illinois, USA, 1977. [3] Intel Corporation "MCS-85 USERS Manual," Santa Clara, California, USA, 1978. [4] Larsen D.G., Rony, P.R., Titus, J.A., and Titus, C.A.,Arnerican Laboratory, 1978, 10 (9), 88. [5] Ref. 3, p. A1 32. [6...

Dalle-Molle, Richard; Defreese, James D.

1980-04-01T23:59:59.000Z

67

Original Impact Calculations  

Broader source: Energy.gov [DOE]

Original Impact Calculations, from the Tool Kit Framework: Small Town University Energy Program (STEP).

68

R-value Calculator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Wall Systems Advanced Wall Systems ORNL Home ASTM Testing BEP Home Related Sites Work With Us Advanced Wall Systems Home Interactive Calculators New Whole Wall R-value Calculators As A Part Of The ORNL Material Database For Whole Building Energy Simulations These calculators are replacing the old Whole Wall Thermal Performance calculator. These new versions of the calculator contain many new features and are part of the newly developed Interactive Envelope Materials Database for Whole-Building Energy Simulation Programs. The simple version of the Whole Wall R-value calculator is now available for use. This calculator is similar to the previous Whole Wall Thermal Performance calculator and does not require any downloads from the user. However, it was updated to allow calculations for fourteen wall details

69

ARM - Heat Index Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that combines air temperature and relative...

70

ARM - Wind Chill Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human...

71

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Annual GHG Emissions (lbs of CO2) Vehicle Cost Calculator See Assumptions and Methodology Back Next U.S. Department of Energy Energy Efficiency and Renewable Energy Get Widget Code...

72

Calculating polynomial runtime properties  

Science Journals Connector (OSTI)

Affine size-change analysis has been used for termination analysis of eager functional programming languages. The same style of analysis is also capable of compactly recording and calculating other properties of programs, including their runtime, maximum ...

Hugh Anderson; Siau-Cheng Khoo; Stefan Andrei; Beatrice Luca

2005-11-01T23:59:59.000Z

73

TVDG LET Calculator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

To The B N L Tandem Van de Graaff Accelerator To The B N L Tandem Van de Graaff Accelerator TVDG LET Calculator This program calculates the Peak LET, Corresponding Energy and Range as well as the LET and Range at the Specified Energy for the Specified Ion in the Specified Target. Select the Target Material from the dropdown list. Select the Ion Specie from the dropdown list. Enter the Total Ion Energy in the text box. This is equal to the Atomic Mass times the Energy/Nucleon. Click the 'Calculate' button or press the 'Enter' key. The Peak LET, Corresponding Energy and Range as well as the LET and Range at the Specified Energy for the Specified Ion in the Specified Target will be returned. Select your Target from the list Air Aluminum Oxide Carbon Copper Gallium Arsenide Gold Polyester Polyethylene Silicon Silicon Dioxide Skin Soda Lime Glass Sodium Iodide Water Select your Ion from the list

74

Solar Reflectance Index Calculator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reflectance Index Calculator Reflectance Index Calculator ASTM Designation: E 1980-01 Enter A State: Select a state Alabama Alaska Arkansas Arizona California Colorado Connecticut Delaware Florida Georgia Hawaii Iowa Idaho Illinois Indiana Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana North Carolina North Dakota Nebraska Nevada New Hampshire New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania Pacific Islands Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington Wisconsin West Virginia Wyoming Canadian Cities Enter A City: Select a city Wind Speed (mph) Wind Speed (m/s) Please input both the SR and the TE and the convection coeficient and surface temperature will be calculated

75

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

76

Carbon Footprint Calculator  

Broader source: Energy.gov [DOE]

This calculator estimates the amount of carbon emissions you and members of your household are responsible for. It does not include emissions associated with your work or getting to work if you commute by public transportation. It was developed by IEEE Spectrum magazine.

77

Plutonium 239 Equivalency Calculations  

SciTech Connect (OSTI)

This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

Wen, J

2011-05-31T23:59:59.000Z

78

Hydrogen Threshold Cost Calculation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

79

Steep Slope Calculator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Steep Slope Calculator Steep Slope Calculator Estimates Cooling and Heating Savings for Residential Roofs with Non-Black Surfaces Enter A State: Select a state Alabama Alaska Arkansas Arizona California Colorado Connecticut Delaware Florida Georgia Hawaii Iowa Idaho Illinois Indiana Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana North Carolina North Dakota Nebraska Nevada New Hampshire New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania Pacific Islands Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington Wisconsin West Virginia Wyoming Canadian Cities Enter A City: Select a city Click to see Data for All 243 Locations Roof Inputs: R-value(Btu-in/(hr ft2 oF):

80

Jobs Calculator | Department of Energy  

Energy Savers [EERE]

Jobs Calculator Jobs Calculator owipjobscalculatorv11-0.xls More Documents & Publications bbanxxxxxxxpmcprogressreport2y12qx.xlsx Job Counting Guidelines Title...

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Horizontal well IPR calculations  

SciTech Connect (OSTI)

This paper presents the calculation of near-wellbore skin and non-Darcy flow coefficient for horizontal wells based on whether the well is drilled in an underbalanced or overbalanced condition, whether the well is completed openhole, with a slotted liner, or cased, and on the number of shots per foot and phasing for cased wells. The inclusion of mechanical skin and the non-Darcy flow coefficient in previously published horizontal well equations is presented and a comparison between these equations is given. In addition, both analytical and numerical solutions for horizontal wells with skin and non-Darcy flow are presented for comparison.

Thomas, L.K.; Todd, B.J.; Evans, C.E.; Pierson, R.G.

1996-12-31T23:59:59.000Z

82

BTRIC - Tools & Calculators - ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calculators Calculators Attic Radiant Barrier Calculator Low-Slope Roof Calculator for Commercial Buildings (6/05) - estimates annual energy cost savings Moisture Control for Low-Slope Roofing (5/04) - determine if a roof design needs a vapor retarder or if the roofing system can be modified to enhance its tolerance for small leaks Modified Zone Method Roof Savings Calculator (12/12) - for commerical and residential buildings using whole-building energy simulations Solar Reflectance Index (SRI) Calculator (6/06) Steep-Slope Roof Calculator on Residential Buildings (6/05) - estimate annual energy cost savings Whole-Wall R-Value Calculator 2.0 (10/06) ZIP-Code R-Value Recommendation Calculator (1/08) Roofs/Attics Attic Radiant Barrier Fact Sheet (Jan 2011) Cool Roofs Will Revolutionize the Building Industry Fact Sheet

83

ENRAF gauge reference level calculations  

SciTech Connect (OSTI)

This document describes the method for calculating reference levels for Enraf Series 854 Level Detectors as installed in the tank farms. The reference level calculation for each installed level gauge is contained herein.

Huber, J.H., Fluor Daniel Hanford

1997-02-06T23:59:59.000Z

84

Naming chemical compounds: Calculator drill  

Science Journals Connector (OSTI)

36. Bits and pieces, 13. A calculator can be programmed to drill students on chemical compound naming rules.

David Holdsworth; Evelyn Lacanienta

1983-01-01T23:59:59.000Z

85

Multiple wavelength X-ray monochromators  

DOE Patents [OSTI]

An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

Steinmeyer, P.A.

1992-11-17T23:59:59.000Z

86

Two-axis sagittal focusing monochromator  

DOE Patents [OSTI]

An x-ray focusing device and method for adjustably focusing x-rays in two orthogonal directions simultaneously. The device and method can be operated remotely using two pairs of orthogonal benders mounted on a rigid, open frame such that x-rays may pass through the opening in the frame. The added x-ray flux allows significantly higher brightness from the same x-ray source.

Haas, Edwin G; Stelmach, Christopher; Zhong, Zhong

2014-05-13T23:59:59.000Z

87

2050 Calculator | Open Energy Information  

Open Energy Info (EERE)

0 Calculator 0 Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 2050 Calculator Agency/Company /Organization: United Kingdom Department of Energy and Climate Change (DECC) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, Biomass, Buildings - Commercial, Buildings - Residential, Economic Development, Geothermal, Greenhouse Gas, Multi-model Integration, Multi-sector Impact Evaluation, Solar, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Analysis Tools, Pathways analysis Resource Type: Online calculator User Interface: Spreadsheet, Website Complexity/Ease of Use: Not Available Website: www.gov.uk/2050-pathways-analysis Country: United Kingdom Web Application Link: 2050-calculator-tool.decc.gov.uk/pathways/1111111111111111111111111111

88

A Look Inside the Cash Flow Opportunity Calculator: Calculations and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Look Inside the Cash Flow Opportunity Calculator: Calculations A Look Inside the Cash Flow Opportunity Calculator: Calculations and Methodology Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

89

Global nuclear-structure calculations  

SciTech Connect (OSTI)

The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to {epsilon}{sub 2} and {epsilon}{sub 4} used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and {Beta}-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential.

Moeller, P.; Nix, J.R.

1990-04-20T23:59:59.000Z

90

Wavelets in electronic structure calculations  

Science Journals Connector (OSTI)

A three-dimensional wavelet analysis is employed to develop a new formalism for electronic structure calculations. The wavelet formalism provides a systematically improvable and tractable description of electronic wave functions and overcomes limitations of conventional basis expansions. The potential power of the wavelet formalism for ab initio electronic structure calculations is demonstrated by a calculation of 1s states for all the naturally occurring nuclei on the periodic table and the interaction energies of the hydrogen molecule ion.

K. Cho, T. A. Arias, J. D. Joannopoulos, and Pui K. Lam

1993-09-20T23:59:59.000Z

91

Microcomputer programs for particulate control: section failure; baghouse; plume opacity prediction; and in-stack opacity calculator. Software  

SciTech Connect (OSTI)

IBM-PC usable versions of several computer models useful in particulate control are provided. The models were originally written for the TRS-80 Model I-III series of microcomputers and have been translated to run on the IBM-PC. The documentation for the TRS-80 versions applies to the IBM-PC versions. The programs are written in FORTRAN and are provided in both source (FORTRAN) and executable form. Some small machine language routines are used to format the screen for data entry. These routines limit the programs to IBM-PC and close clones. The minimum hardware requirements are 256K IBM-PC or close clone, a monochrome monitor, and a disk drive. A printer is useful but not required. The following computer programs are provided in the four-disk package: (1) ESP section failure model, (2) GCA/EPA baghouse model, (3) Plume opacity prediction model, and (4) In-stack opacity calculator. All the models are documented in EPA report Microcomputer Programs for Particulate Control, EPA-600/8-85-025a (PB86-146529). The models provide useful tools for those involved in particulate control.

Sparks, L.E.

1985-09-01T23:59:59.000Z

92

Calculation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

complimentary copy. Redistribution subject to AIP license or copyright, see http:php.aip.orgphpcopyright.jsp are sizable. The same approach can be used in other appli-...

93

Large scale electronic structure calculations  

Science Journals Connector (OSTI)

We formulate the Kohn-Sham density functional theory in terms of nonorthogonal, localized orbitals. Within this formulation we introduce a simple and effective method to localize the orbitals. Our approach leads to a plane-wave-based algorithm for total energy calculations whose computational complexity is of O(N), where N is the number of electrons. This opens the way to calculations of unprecedented scale. Our method appears to be of general character and applicable in other contexts such as quantum chemical or projected quantum Monte Carlo calculations.

Giulia Galli and Michele Parrinello

1992-12-14T23:59:59.000Z

94

Hydrogen Threshold Cost Calculation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Threshold Cost Calculation Hydrogen Threshold Cost Calculation DOE Hydrogen Program Record number11007, Hydrogen Threshold Cost Calculation, documents the methodology and...

95

SB EE Calculator | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calculator Energy Efficiency Decision Support Calculator Argonne's Energy Efficiency Decision Support Calculator is a simple tool that small business owners can use to quickly...

96

MFTF-B performance calculations  

SciTech Connect (OSTI)

In this report we document the operating scenario models and calculations as they exist and comment on those aspects of the models where performance is sensitive to the assumptions that are made. We also focus on areas where improvements need to be made in the mathematical descriptions of phenomena, work which is in progress. To illustrate the process of calculating performance, and to be very specific in our documentation, part 2 of this report contains the complete equations and sequence of calculations used to determine parameters for the MARS mode of operation in MFTF-B. Values for all variables for a particular set of input parameters are also given there. The point design so described is typical, but should be viewed as a snapshot in time of our ongoing estimations and predictions of performance.

Thomassen, K.I.; Jong, R.A.

1982-12-06T23:59:59.000Z

97

Calculation Theory of Uniform Distribution in Cleanroom  

Science Journals Connector (OSTI)

Calculation of the dust concentration is the core of the design calculation for cleanroom. The theoretical calculation in this chapter is ... the assumption that particles are uniformly distributed in cleanroom.

Zhonglin Xu

2014-01-01T23:59:59.000Z

98

NONLINEAR APPROXIMATIONS FOR ELECTRONIC STRUCTURE CALCULATIONS  

E-Print Network [OSTI]

NONLINEAR APPROXIMATIONS FOR ELECTRONIC STRUCTURE CALCULATIONS G. BEYLKIN AND T. S. HAUT Abstract. We present a new method for electronic structure calculations based on novel algorithms for nonlinear numerical calculus suitable for electronic structure calculations. For any spatial orbital

Beylkin, Gregory

99

Multilevel domain decomposition for electronic structure calculations  

E-Print Network [OSTI]

Multilevel domain decomposition for electronic structure calculations M. Barrault a,b,*, E. Cance method (MDD) for electronic structure calculations within semi- empirical and density functional theory electronic structure calculations A molecular system is composed of N electrons, modelled quantum

Hager, William

100

Electronic Structure Calculations on Helical Conducting Polymers  

Science Journals Connector (OSTI)

Electronic Structure Calculations on Helical Conducting Polymers ... Therefore, we select the B3LYP/6-31G* methodology to calculate the oligomers. ... Table 3 shows several calculated parameters. ...

Juan D. Ripoll; Andrei Serna; Doris Guerra; Albeiro Restrepo

2010-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cost Recovery Charge (CRC) Calculation Tables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cost Recovery Charge (CRC) Calculation Table Updated: October 6, 2014 FY 2016 September 2014 CRC Calculation Table (pdf) Final FY 2015 CRC Letter & Table (pdf) Note: The Cost...

102

Equations shorten pipe collapse calculations  

SciTech Connect (OSTI)

The API suggests collapse pressure equations for long, perfectly round, steel oil field casing, tubing, drill pipe, and line pipe. Operating and service company engineers can substitute two pipe collapse pressure equations for the 12 API equations now in general use. The shorthand results are almost the same as those from the API equations. The shorthand method has the additional advantage of allowing units from any measurement system. The API equations restrict calculations to US units only. The equation box lists the API (Equations 1--12) and the shorthand (Equations 13--14) equations. The API equations are based on work started shortly after the turn of the century.

Avakov, V.A. [Halliburton Energy Services, Duncan, OK (United States)

1995-04-10T23:59:59.000Z

103

Comparison of plasma focus calculations  

Science Journals Connector (OSTI)

A simple model for the current history of plasma focus experiments is presented. The presence of a leak current which does not pass through the plasma sheath is allowed. Results are found to compare quite well with those of much more sophisticated two?dimensional magnetohydrodynamic calculations. For the Frascati experiment which has detailed current measurements computed results do not agree with experimentally derived values. A reasonable match for the total current in the Frascati experiment can be found by lowering the leak current. Both total and leak current can be matched if a mass loss from the run?down region is allowed.

Peter G. Eltgroth

1982-01-01T23:59:59.000Z

104

Energy Calculator- Common Units and Conversions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

105

CALCULATING OPTICAL CONSTANTS OF GLAZING MATERIALS  

E-Print Network [OSTI]

Solar Energy CALCULATING OPTICAL CONSTANTS OF GLAZING MATERIALS Michael Rub August 1981 TWO-WEEK LOAN

Rubin, Michael

2013-01-01T23:59:59.000Z

106

Interruption Cost Estimate Calculator | Open Energy Information  

Open Energy Info (EERE)

Interruption Cost Estimate Calculator Interruption Cost Estimate Calculator Jump to: navigation, search Tool Summary Name: Interruption Cost Estimate (ICE) Calculator Agency/Company /Organization: Freeman, Sullivan & Co. Sector: Energy Focus Area: Grid Assessment and Integration, Energy Efficiency Resource Type: Online calculator, Software/modeling tools User Interface: Website Website: icecalculator.com/ Country: United States Cost: Free Northern America References: [1] Logo: Interruption Cost Estimate (ICE) Calculator This calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are interested in estimating interruption costs and/or the benefits associated with reliability improvements. About The Interruption Cost Estimate (ICE) Calculator is an electric reliability

107

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

108

Energy Input Output Calculator | Open Energy Information  

Open Energy Info (EERE)

Input Output Calculator Input Output Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Input-Output Calculator Agency/Company /Organization: Department of Energy Sector: Energy Focus Area: Energy Efficiency Resource Type: Online calculator User Interface: Website Website: www2.eere.energy.gov/analysis/iocalc/Default.aspx Web Application Link: www2.eere.energy.gov/analysis/iocalc/Default.aspx OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: EERE Energy Input-Output Calculator[1] The Energy Input-Output Calculator (IO Calculator) allows users to estimate the economic development impacts from investments in alternate electricity generating technologies. About the Calculator The Energy Input-Output Calculator (IO Calculator) allows users to estimate

109

Approach for Calculating OE Benefits  

Broader source: Energy.gov (indexed) [DOE]

Reliability Reliability U.S. Department of Energy - 1000 Independence Ave., SW Washington, DC 20585 2007 Electricity Delivery and Energy Reliability Joe Paladino October 29, 2007 Approach for Calculating OE Benefits Challenges * Established benefits methodologies (e.g., NEMS and MARKAL) do not address some of the major benefits that OE's program will provide (e.g. reliability). * Much of OE's program is about transforming the way the T&D infrastructure operates rather than replacing components: - Some technologies need a high penetration or must be deployed as an entire system to yield benefits (e.g. PMUs or Distribution Automation). - Some programs within OE are not developing "widgets" that can be easily counted. - OE is developing tools/methodologies or funding demonstrations that

110

Power Line Calculator for DOS  

SciTech Connect (OSTI)

The Power Line Calculator (PLC) for DOS, version 1.0, is a program that describes the electrical characteristics of a transmission or distribution system given user-defined input. This input may consist of a combination of operating currents and phases, symmetric components, power factor, and real or reactive power. The program also allows the user to designate whether currents are present on the system neutral or in the ground. The PLC assumes that any value entered by the user remains fixed (e.g., phase current, power factor), and for underdetermined systems, basic default assumptions are incorporated: the power factor is held at or near 1.0, the net phase current is kept at or near zero, and the phase conductor currents are kept balanced. The program operates under PC/MS-DOS version 3.3 or later, and the output is available in both tabular and graphic formats.

Silva, J.M. (Enertech Consultants, Campbell, CA (United States))

1992-11-01T23:59:59.000Z

111

RTU Comparison Calculator Enhancement Plan  

SciTech Connect (OSTI)

Over the past two years, Department of Energys Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.

Miller, James D.; Wang, Weimin; Katipamula, Srinivas

2014-03-31T23:59:59.000Z

112

Calculator Tips for TI-30XA  

E-Print Network [OSTI]

TI-30XA Calculator Tips. Calculator Memory. - To use the memory function, hit the STO key to store a number in either memory 1, 2, or 3. o To store the product of...

Owen Davis

2013-01-04T23:59:59.000Z

113

Spherical Target Temperature by Extended CFAST Calculation  

SciTech Connect (OSTI)

The purpose of this calculation is to evaluate the temperature at the surface of a spherical target made of polyethylene during a room fire. The current calculation is separated into 2 steps: (1) CFAST code calculation--Calculate the air temperature; radiation flux to the target from the fire, surrounding air, and walls; convection flux; and target temperature. (2) Extended model calculation--Calculate the temperature of the target sphere taking into account the density, heat capacity, heat conductivity, and the spherical geometry of the target by solving the coupled finite difference equations. The second step calculation utilizes the air temperature and radiation flux determined by the CFAST code calculation in the first step.

Ma, C W

2009-05-05T23:59:59.000Z

114

Building Energy Software Tools Directory: Duct Calculator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Duct Calculator Duct Calculator Duct Calculator logo. Provides access to duct calculation and sizing capabilities either as a standalone Windows program or from within the Autodesk Building Mechanical, the new HVAC-oriented version of AutoCAD. Based on the engineering data and procedures outlined in the ASHRAE Fundamentals Handbook Calculation Methods, Duct Calculator features an advanced and fully interactive user interface. Slide controls for air flow, velocity, friction and duct size provide real-time, interactive feedback; as you spin one, the others dynamically respond in real time. When used with Autodesk Building Mechanical, Duct Calculator streamlines the design process by automatically re-sizing whole branches of ductwork. Screen Shots Keywords duct-sizing, design, engineering, calculation

115

Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Vehicle Cost Calculator Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vehicle Cost Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/calc/ Web Application Link: www.afdc.energy.gov/calc/ OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Vehicle Cost Calculator[1] Logo: Vehicle Cost Calculator Calculate the total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Overview This tool uses basic information about your driving habits to calculate

116

Audio taped explanations of freshman experimental calculations  

Science Journals Connector (OSTI)

The authors have found audio tapes to be effective replacements for live, in-lab explanations of experimental calculations.

Aline M. Harrison

1971-01-01T23:59:59.000Z

117

Calculations of Hf -electron affinity and  

E-Print Network [OSTI]

Calculations of Hf - electron affinity and photodetachment partial cross sections Lin Pan. PHYS. B 2009 #12;Calculations of Hf - electron affinity and photodetachment partial cross sections 2 1 the replacements, the subshells that are not occupied in #12;Calculations of Hf - electron affinity

Beck, Donald R.

118

Distributed Energy Calculator | Open Energy Information  

Open Energy Info (EERE)

Distributed Energy Calculator Distributed Energy Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Energy Calculator Agency/Company /Organization: Apps for Energy Challenge Participant Sector: Energy Resource Type: Application prototype User Interface: Website Website: distributedenergycalculator.com/ OpenEI Keyword(s): Challenge Generated, Green Button Apps Language: English References: Apps for Energy[1] The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. You can upload Green Button Data to compare your utility energy costs to

119

Definition: Interchange Distribution Calculator | Open Energy Information  

Open Energy Info (EERE)

Distribution Calculator Distribution Calculator Jump to: navigation, search Dictionary.png Interchange Distribution Calculator The mechanism used by Reliability Coordinators in the Eastern Interconnection to calculate the distribution of Interchange Transactions over specific Flowgates. It includes a database of all Interchange Transactions and a matrix of the Distribution Factors for the Eastern Interconnection.[1] Related Terms Reliability Coordinator, Interchange Transaction References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Interchange_Distribution_Calculator&oldid=480261" Categories: Definitions

120

Chalmers Climate Calculator | Open Energy Information  

Open Energy Info (EERE)

Chalmers Climate Calculator Chalmers Climate Calculator Jump to: navigation, search Tool Summary Name: Chalmers Climate Calculator Agency/Company /Organization: Chalmers University of Technology Sector: Energy, Land Topics: Baseline projection, Co-benefits assessment, GHG inventory, Pathways analysis Resource Type: Software/modeling tools User Interface: Website Website: dhcp2-pc011134.fy.chalmers.se Cost: Free Chalmers Climate Calculator Screenshot References: Chalmers Climate Calculator[1] Logo: Chalmers Climate Calculator " In the Chalmers Climate Calculator the user can decide on when and how fast emissions of CO2 are reduced and what this emissions scenario implies in terms of CO2 concentration and global average surface temperature change. The climate sensitivity and the net aerosol forcing in year 2005

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Harmonic Analysis Errors in Calculating Dipole,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Harmonic Analysis Errors in Calculating Dipole, Harmonic Analysis Errors in Calculating Dipole, Quadrupole, and Sextupole Magnets using POISSON Ro be rt J. La ri<::::R~ i. September 10, 1985 Introduction LS-32 The computer program POISSON was used to calculate the dipole, quadru- pole, and sextupole magnets of the 6 GeV electron storage ring. A trinagular mesh must first be generated by LATTICE. The triangle size is varied over the "universe" at the discretion of the user. This note describes a series of test calculations that were made to help the user decide on the size of the mesh to reduce the harmonic field calculation errors. A conformal transfor- mation of a multipole magnet into a dipole reduces these errors. Dipole Magnet Calculations A triangular mesh used to calculate a "perfect" dipole magnet is shown in

122

Some Calculations for Cold Fusion Superheavy Elements  

E-Print Network [OSTI]

The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

Zhong, X H; Ning, P Z

2004-01-01T23:59:59.000Z

123

Some Calculations for Cold Fusion Superheavy Elements  

E-Print Network [OSTI]

The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

X. H. Zhong; L. Li; P. Z. Ning

2004-10-18T23:59:59.000Z

124

USAID Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

Logo: USAID Carbon Calculator This tool allows users to systematically estimate the CO2 benefits and consequent climate impacts of agriculture, forestry and other land use...

125

Evaluation Of Chemical Geothermometers For Calculating Reservoir...  

Open Energy Info (EERE)

Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

126

Hybrid Car Calculator | Open Energy Information  

Open Energy Info (EERE)

compare hybrid electric (HEV) and conventional vehicles. The calculator includes purchase price, fuel costs, repair and maintenance costs, resale value, and applicable tax...

127

China 2050 Pathways Calculator | Open Energy Information  

Open Energy Info (EERE)

China 2050 Pathways Calculator China 2050 Pathways Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: China 2050 Pathways Calculator Agency/Company /Organization: China's Energy Research Institute (ERI), UK Department of Energy and Climate Change (DECC), UK Foreign and Commonwealth Office (FCO) Focus Area: Non-renewable Energy, Renewable Energy Phase: Evaluate Options, Prepare a Plan Topics: Low-carbon plans/TNAs/NAMAs, Resource assessment, Pathways analysis Resource Type: Guide/manual, Training materials, Lessons learned/best practices, Online calculator User Interface: Website Website: china-en.2050calculator.net/pathways/111011011011101101011010111101101 Country: China OpenEI Keyword(s): International Eastern Asia Language: English References: Global Energy Governance Reform, 3 October 2012[1]

128

CUFR Tree Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

CUFR Tree Carbon Calculator CUFR Tree Carbon Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CUFR Tree Carbon Calculator Agency/Company /Organization: United States Forest Service Sector: Climate, Land Focus Area: Forestry Phase: Determine Baseline, Evaluate Options Topics: GHG inventory, Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.fs.fed.us/ccrc/topics/urban-forests/ctcc/ Cost: Free Language: English References: CUFR Tree Carbon Calculator[1] Overview "The CUFR Tree Carbon Calculator is the only tool approved by the Climate Action Reserve's Urban Forest Project Protocol for quantifying carbon dioxide sequestration from GHG tree planting projects. The CTCC is programmed in an Excel spreadsheet and provides carbon-related information

129

Campus Carbon Calculator | Open Energy Information  

Open Energy Info (EERE)

Campus Carbon Calculator Campus Carbon Calculator Jump to: navigation, search Tool Summary Name: Campus Carbon Calculator Agency/Company /Organization: Clean Air-Cool Planet Phase: Create a Vision, Determine Baseline, Develop Goals User Interface: Spreadsheet Website: www.cleanair-coolplanet.org/toolkit/inv-calculator.php The Campus Carbon Calculator(tm), Version 6.4, is now available for download. Version 6.4 includes new features, updates and corrections - including greatly expanded projection and solutions modules, designed to aid schools that have completed greenhouse gas inventories in developing long term, comprehensive climate action plans based on those inventories. The new modules facilitate analysis of carbon reduction options, determining project payback times, net present value, cost per ton reduced,

130

Unimolecular decomposition of methyltrichlorosilane: RRKM calculations  

SciTech Connect (OSTI)

Based on reaction thermochemistry and estimates of Arrhenius A-factors, it is expected that Si-C bond cleavage, C-H bond cleavage, and HCl elimination will be the primary channels for the unimolecular decomposition of methyltrichlorosilane. Using RRKM theory, we calculated rate constants for these three reactions. The calculations support the conclusion that these three reactions are the major decomposition pathways. Rate constants for each reaction were calculated in the high-pressure limit (800--1500 K) and in the falloff regime (1300--1500 K) for bath gases of both helium and hydrogen. These calculations thus provide branching fractions as well as decomposition rates. We also calculated bimolecular rate constants for the overall decomposition in the low-pressure limit. Interesting and surprising kinetic behavior of this system and the individual reactions is discussed. The reactivity of this chlorinated organosilane is compared to that of other organosilanes.

Osterheld, T.H.; Allendorf, M.D.; Melius, C.F.

1993-06-01T23:59:59.000Z

131

Foodborne Illness Cost Calculator | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Foodborne Illness Cost Calculator Foodborne Illness Cost Calculator Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Foodborne Illness Cost Calculator Dataset Summary Description The calculator provides information on the assumptions behind foodborne illness cost estimates and gives you a chance to make your own assumptions and calculate your own cost estimates. This interactive web-based tool allows users to estimate the cost of illness due to specific foodborne pathogens. The updated ERS cost estimate for Shiga-toxin producing E. coli O157 (STEC O157) was added to the Calculator in spring, 2008. Calculator users can now review and change the assumptions behind the ERS cost estimates for either STEC O157 or Salmonella. The assumptions that can be modified include the annual number of cases, the distribution of cases by severity, the use or costs of medical care, the amount or value of time lost from work, the costs of premature death, and the disutility costs for nonfatal cases. Users can also update the cost estimate for inflation for any year from 1997 to 2007.

132

IAEA sodium void reactivity benchmark calculations  

SciTech Connect (OSTI)

In this paper, the IAEA-1 992 ``Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core`` problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated.

Hill, R.N.; Finck, P.J.

1992-12-01T23:59:59.000Z

133

IAEA sodium void reactivity benchmark calculations  

SciTech Connect (OSTI)

In this paper, the IAEA-1 992 Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated.

Hill, R.N.; Finck, P.J.

1992-01-01T23:59:59.000Z

134

Spreadsheet Based Scaling Calculations and Membrane Performance  

SciTech Connect (OSTI)

Many membrane element manufacturers provide a computer program to aid buyers in the use of their elements. However, to date there are few examples of fully integrated public domain software available for calculating reverse osmosis and nanofiltration system performance. The Total Flux and Scaling Program (TFSP), written for Excel 97 and above, provides designers and operators new tools to predict membrane system performance, including scaling and fouling parameters, for a wide variety of membrane system configurations and feedwaters. The TFSP development was funded under EPA contract 9C-R193-NTSX. It is freely downloadable at www.reverseosmosis.com/download/TFSP.zip. TFSP includes detailed calculations of reverse osmosis and nanofiltration system performance. Of special significance, the program provides scaling calculations for mineral species not normally addressed in commercial programs, including aluminum, iron, and phosphate species. In addition, ASTM calculations for common species such as calcium sulfate (CaSO{sub 4}{times}2H{sub 2}O), BaSO{sub 4}, SrSO{sub 4}, SiO{sub 2}, and LSI are also provided. Scaling calculations in commercial membrane design programs are normally limited to the common minerals and typically follow basic ASTM methods, which are for the most part graphical approaches adapted to curves. In TFSP, the scaling calculations for the less common minerals use subsets of the USGS PHREEQE and WATEQ4F databases and use the same general calculational approach as PHREEQE and WATEQ4F. The activities of ion complexes are calculated iteratively. Complexes that are unlikely to form in significant concentration were eliminated to simplify the calculations. The calculation provides the distribution of ions and ion complexes that is used to calculate an effective ion product ''Q.'' The effective ion product is then compared to temperature adjusted solubility products (Ksp's) of solids in order to calculate a Saturation Index (SI) for each solid of interest. The SI is expressed as a log value (log(Q) - log(Ksp)) where positive values indicate potential scaling conditions. As this is an unprotected spreadsheet, the methodology is plainly visible to and readily modified by the user.

Wolfe, T D; Bourcier, W L; Speth, T F

2000-12-28T23:59:59.000Z

135

INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS  

E-Print Network [OSTI]

INDIRECT COST CALCULATION [IN REVERSE] YOU WANT TO CALCULATE THE DIRECT COSTS YOU KNOW WHAT THE TUITION, STIPEND AND EQUIPMENT COSTS ARE YOU KNOW WHAT THE TOTAL COST IS CALCULATION IS USING THE 2010 FED F&A RATE FOR WSU OF 52% (.52) [ DIRECT COST ­ TUITION ­ STIPEND ­ EQUIPMENT] (.52 ) + DIRECT

Finley Jr., Russell L.

136

Auxiliary basis expansions for large-scale electronic structure calculations  

E-Print Network [OSTI]

large-scale electronic structure calculations. Yousung Jungcost of electronic structure calculations is to employIntroduction. Electronic structure calculations are normally

Jung, Yousung; Sodt, Alexander; Gill, Peter W.M.; Head-Gordon, Martin

2005-01-01T23:59:59.000Z

137

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

Urban Transportation Emission Calculator Urban Transportation Emission Calculator Jump to: navigation, search Tool Summary Name: Urban Transportation Emission Calculator Agency/Company /Organization: Transport Canada Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Website Website: wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng Cost: Free References: http://wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng The Urban Transportation Emissions Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and criteria air contaminant (CAC) emissions from the operation of vehicles. It also estimates upstream GHG emissions from the production, refining and

138

Extensions To Standard Hold Time Calculations  

Science Journals Connector (OSTI)

The paper extends existing methods of calculating the hold time for a fire extinguishing gas in an enclosure to cover mechanical HVAC systems and wide descending interfaces, and compares ... the sharp descending ...

J. Dewsbury; R. A. Whiteley

2000-11-01T23:59:59.000Z

139

Essential Value, Pmax, and Omax Automated Calculator  

E-Print Network [OSTI]

Behavioral economic measures of demand are often calculated in sophisticated spreadsheet programs. Unfortunately, no closed form models for exact pmax (point of unit elasticity) and omax (response output at pmax) can be applied to initial regression...

Kaplan, Brent A.; Reed, Derek D.

2014-08-21T23:59:59.000Z

140

Energy-level calculation through perturbation theory  

Science Journals Connector (OSTI)

A method for analytical calculation of energy levels using perturbation theory is developed. Convergence of the perturbation theory directly follows from the method itself. An example of this method is given for the anharmonic oscillator.

Biswanath Rath

1990-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Medical physics calculations with MCNP: a primer  

E-Print Network [OSTI]

of Medical Internal Radiation Dose (MIRD) specific absorbed fraction (SAF) values using the ORNL MIRD phantom, x-ray phototherapy effectiveness, prostate brachytherapy lifetime dose calculations, and a radiograph of the head using the Zubal head phantom. Also...

Lazarine, Alexis D

2006-10-30T23:59:59.000Z

142

Modern methods of electronic structure calculations  

Science Journals Connector (OSTI)

In this Chapter we shall consider methods that are currently widely used for calculating the electronic structure of solids. Essentially, there are two groups of methods. The methods of the first group are bui...

Lev Kantorovich

2004-01-01T23:59:59.000Z

143

What is the GREET Fleet Footprint Calculator  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

GREET Fleet Calculator can estimate petroleum and carbon GREET Fleet Calculator can estimate petroleum and carbon footprints of both on-road vehicles and off-road equipment. What is the GREET Fleet Footprint Calculator? As early adopters of new vehicle technologies, fleets are vital to the success of alternative fuels and advanced vehicles (AFVs). The Greenhouse gases, Regulated Emis- sions, and Energy use in Transportation (GREET) Fleet Foot- print Calculator can help fleets decide on the AFVs that will best help them meet a variety of organizational goals and legal requirements, including reducing their petroleum use and greenhouse gas (GHG) emissions. Currently, the United States imports nearly half of its oil. 1 Because the United States uses about 70% of its oil for transportation, decreasing petroleum consumption in vehicles can substantially

144

Hartree-Fock calculations of nuclear masses  

E-Print Network [OSTI]

Hartree-Fock calculations pertaining to the determination of nuclear binding energies throughout the whole chart of nuclides are reviewed. Such an approach is compared with other methods. Main techniques in use are shortly presented. Advantages and drawbacks of these calculations are also discussed with a special emphasis on the extrapolation towards nuclei far from the stability valley. Finally, a discussion of some selected results from light to superheavy nuclei, is given.

Quentin, P

1976-01-01T23:59:59.000Z

145

Use of computers for multicomponent distillation calculations  

E-Print Network [OSTI]

LIBRARY 4 A I4 COLLEGE QF TEXAS USE OF COMPUTERS FOB MULTICOMPONENT DISTILLATION CALCULATIONS A Thesis By Samuel Lane Sullivan Jr, Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE January 1959 Major Subject: Chemical Engineering USE OF COMPUTERS FOR NULTICOMPONENT DISTILLATION CALCULATIONS A Thesis By Samuel Lane Sullivan Jr. Approved as to style and content by: Chairman...

Sullivan, Samuel Lane

2012-06-07T23:59:59.000Z

146

Universal basis sets for electronic structure calculations  

Science Journals Connector (OSTI)

The concept of a universal basis set for electronic structure calculations is explored by presenting energy results obtained when basis sets are transferred from one atom to another. The calculations are performed using the diagrammatic techniques of many?body perturbation theory. A single universal basis set is shown to give uniformly accurate descriptions of the matrix HartreeFock and correlation energies of the He Be and Ne atoms.

David M. Silver; Stephen Wilson

1978-01-01T23:59:59.000Z

147

Calculator programs for pipe stress engineering  

SciTech Connect (OSTI)

This book contains a collection of programs for solving a wide variety of stress problems using both the TI-59 and HP-41CV calculators. Each program is prefaced with a description of the problem to be solved, nomenclature, code restrictions and program limitations. Solutions are explained analytically and then followed by the complete program listing, documentation and checklists. Topics include calculations for pipewall thickness, pressure vessel analysis, reinforcement pads, allowable span, vibration, stress, and two-anchor piping systems.

Morgan, K.S.

1985-01-01T23:59:59.000Z

148

Calculator program speeds rod pump design  

SciTech Connect (OSTI)

Matching sucker rod pump characteristics to a specific application is greatly simplified with this program, intended for use with an HP-41CV hand-held computer. The user inputs application data and the program calculates all necessary design criteria, including Mill's acceleration factor, peak and minimum polish rod loads and horsepower required. Sample calculations are provided, together with a thorough discussion of special design considerations involved in huff-and-puff applications.

Engineer, R.; Davis, C.L.

1984-02-01T23:59:59.000Z

149

Multigroup neutron dose calculations for proton therapy  

SciTech Connect (OSTI)

We have developed tools for the preparation of coupled multigroup proton/neutron cross section libraries. Our method is to use NJOY to process evaluated nuclear data files for incident particles below 150 MeV and MCNPX to produce data for higher energies. We modified the XSEX3 program of the MCNPX code system to produce Legendre expansions of scattering matrices generated by sampling the physics models that are comparable to the output of the GROUPR routine of NJOY. Our code combines the low and high energy scattering data with user input stopping powers and energy deposition cross sections that we also calculated using MCNPX. Our code also calculates momentum transfer coefficients for the library and optionally applies an energy straggling model to the scattering cross sections and stopping powers. The motivation was initially for deterministic solution of space radiation shielding calculations using Attila, but noting that proton therapy treatment planning may neglect secondary neutron dose assessments because of difficulty and expense, we have also investigated the feasibility of multi group methods for this application. We have shown that multigroup MCNPX solutions for secondary neutron dose compare well with continuous energy solutions and are obtainable with less than half computational cost. This efficiency comparison neglects the cost of preparing the library data, but this becomes negligible when distributed over many multi group calculations. Our deterministic calculations illustrate recognized obstacles that may have to be overcome before discrete ordinates methods can be efficient alternatives for proton therapy neutron dose calculations.

Kelsey Iv, Charles T [Los Alamos National Laboratory; Prinja, Anil K [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

150

High resolution bragg focusing optics for synchrotron monochromators and analyzers  

SciTech Connect (OSTI)

A number of different applications for high resolution Bragg Focusing Optics are reviewed. Applications include Sagittal Focusing, Energy Dispersive optics for x-ray absorption and diffraction, a curved analyzer-multichannel detector method for efficient acquisition of powder and small angle scattering data, the use of Backscattering Analyzers for very high resolution inelastic scattering, and curved crystals for high energy applications.

Knapp, G.S.; Beno, M.A.; Gofron, K.J.

1997-07-01T23:59:59.000Z

151

A demonstration of variance and covariance calculations using MAVARIC (Materials Accounting VARIance Calculator) and PROFF (PROcessing and Fuel Facilities calculator)  

SciTech Connect (OSTI)

Good decision-making in materials accounting requires a valid calculation of control limits and detection sensitivity for facilities handling special nuclear materials (SNM). A difficult aspect of this calculation is determining the appropriate variance and covariance values for the terms in the materials balance (MB) equation. Computer software such as MAVARIC (Materials Accounting VARIance Calculator) and PROFF (PROcessing and Fuel Facilities calculator) can efficiently select and combine variance terms. These programs determine the variance and covariance of an MB equation by first obtaining relations for the variance and covariance of each term in the MB equation through propagating instrument errors and then substituting the measured quantities and their uncertainties into these relations. MAVARIC is a custom spreadsheet used with the second release of LOTUS 1-2-3.** PROFF is a stand-alone menu-driven program requiring no commercial software. Programs such as MAVARIC and PROFF facilitate the complex calculations required to determine the detection sensitivity of an SNM facility. These programs can also be used to analyze materials accounting systems.

Barlich, G.L.; Nasseri, S.S.

1990-01-01T23:59:59.000Z

152

Building Technologies Office: 179D DOE Calculator  

Broader source: Energy.gov (indexed) [DOE]

179D DOE Calculator 179D DOE Calculator EERE » Building Technologies Office » 179D DOE Calculator Printable Version Bookmark and Share What is the 179D federal tax deduction? Section 179D of the Federal Tax Code provides a tax deduction for energy efficiency improvements to commercial buildings. A building may qualify for a tax deduction under Section 179D not to exceed $1.80/ft² for whole building performance or $0.60/ft² for a partially qualifying property for envelope, heating, ventilating, and air conditioning (HVAC), or lighting improvements. In addition, a building may qualify with a reduced installed lighting power under the interim lighting rule. Energy simulations are required to show compliance with the energy and power cost savings requirements. View more detailed information.

153

Eddy-Current-Induced Multipole Field Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Eddy-Current-Induced Multipole Field Calculations Eddy-Current-Induced Multipole Field Calculations September 29, 2003 1 Eddy-Current-Induced Multipole Field Calculations Nicholas S. Sereno, Suk H. Kim 1.0 Abstract Time-varying magnetic fields of magnets in booster accelerators induce substantial eddy currents in the vacuum chambers. The eddy currents in turn act to produce various multi- pole fields that act on the beam. These fields must be taken into account when doing a lat- tice design. In the APS booster, the relatively long dipole magnets (3 meters) are linearly ramped to accelerate the injected 325 MeV beam to 7 GeV. Substantial dipole and sextu- pole fields are generated in the elliptical vacuum chamber from the induced eddy currents. In this note, formulas for the induced dipole and sextupole fields are derived for elliptical and rectangular vacuum chambers for a time-varying dipole field. A discussion is given

154

Refinement of synchroton spectral tip calculations  

Science Journals Connector (OSTI)

Refinements in the computing techniques were performed in the calculation of transition rates to the ground and first excited states in magnetic bremsstrahlung via the use of exact matrix elements. The above calculations were carried out to double precision on a UNIVAC 1108 computer as was the calculation of transition rates to the second excited state. Empirical formulas are given for the transition rates from arbitrary upper states to the ground state, first excited state, and the second excited state for arbitrary magnetic field strengths. In addition the relative probabilities of transitions from level three to the remaining three lower levels is investigated in detail in the vicinity of the quantum-mechanical critical field, and the spectral tip structure for an electron in state n?1 is viewed in this high-field regime.

D. White

1978-09-15T23:59:59.000Z

155

Healthcare Energy Impact Calculator | Open Energy Information  

Open Energy Info (EERE)

Healthcare Energy Impact Calculator Healthcare Energy Impact Calculator Jump to: navigation, search Tool Summary Name: Healthcare Energy Impact Calculator Agency/Company /Organization: Practice Greenhealth Sector: Climate User Interface: Website Complexity/Ease of Use: Simple Website: www.eichealth.org/ Cost: Free Related Tools UNEP-Bioenergy Decision Support Tool Global Relationship Assessment to Protect the Environment (GRAPE) World Induced Technical Change Hybrid (WITCH) ... further results Find Another Tool FIND DEVELOPMENT IMPACTS ASSESSMENT TOOLS An online tool based on U.S. Environmental Protection Agency (EPA) analysis of health impacts of power plant emissions of sulfur dioxide, nitrogen oxides, and mercury, this tool estimates premature deaths, chronic bronchitis, asthma attacks, emergency room visits, and more, by kWh/year.

156

Sequential Covariance Calculation for Exoplanet Image Processing  

E-Print Network [OSTI]

Direct imaging of exoplanets involves the extraction of very faint signals from highly noisy data sets, with noise that often exhibits significant spatial, spectral and temporal correlations. As a results, a large number of post-processing algorithms have been developed in order to optimally decorrelate the signal from the noise. In this paper, we explore four such closely related algorithms, all of which depend heavily on the calculation of covariances between large data sets of imaging data. We discuss the similarities and differences between these methods, and demonstrate how the use sequential calculation techniques can significantly improve their computational efficiencies.

Savransky, Dmitry

2015-01-01T23:59:59.000Z

157

Fully Automated Calculations in the complex MSSM  

E-Print Network [OSTI]

We review recent progress towards automated higher-order calculations in the MSSM with complex parameters (cMSSM). The consistent renormalization of all relevant sectors of the cMSSM and the inclusion into the FeynArts/FormCalc framework has recently been completed. Some example calculations applying this framework are briefly discussed. These include two-loop corrections to cMSSM Higgs boson masses as well as partial decay widths of electroweak supersymmetric particles decaying into a Higgs boson and another supersymmetric particle.

Hahn, T; von der Pahlen, F; Rzehak, H; Schappacher, C

2014-01-01T23:59:59.000Z

158

Fully Automated Calculations in the complex MSSM  

E-Print Network [OSTI]

We review recent progress towards automated higher-order calculations in the MSSM with complex parameters (cMSSM). The consistent renormalization of all relevant sectors of the cMSSM and the inclusion into the FeynArts/FormCalc framework has recently been completed. Some example calculations applying this framework are briefly discussed. These include two-loop corrections to cMSSM Higgs boson masses as well as partial decay widths of electroweak supersymmetric particles decaying into a Higgs boson and another supersymmetric particle.

T. Hahn; S. Heinemeyer; F. von der Pahlen; H. Rzehak; C. Schappacher

2014-07-01T23:59:59.000Z

159

Automated calculations for multi-leg processes  

E-Print Network [OSTI]

The search for signals of new physics at the forthcoming LHC experiments involves the analysis of final states characterised by a high number of hadronic jets or identified particles. Precise theoretical predictions for these processes require the computation of scattering amplitudes with a large number of external particles and beyond leading order in perturbation theory. The complexity of a calculation grows with the number of internal loops as well as with the number of external legs. Automatisation of at least next-to-leading order calculations for LHC processes is therefore a timely task. I will discuss various approaches.

Stefan Weinzierl

2007-07-23T23:59:59.000Z

160

URANIUM MILL TAILINGS RADON FLUX CALCULATIONS  

E-Print Network [OSTI]

at the Piñon Ridge Property in western Montrose County, Colorado. The Piñon Ridge Mill includesURANIUM MILL TAILINGS RADON FLUX CALCULATIONS PI?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Submitted To: Energy Fuels Resources Corporation 44 Union Boulevard, Suite 600 Lakewood, Colorado 80228

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Brueckner calculations in harmonic oscillator basis  

Science Journals Connector (OSTI)

The binding energy (b.e.), r.m.s. radius and charge form factor of the4He nucleus are calculated for the Hamada-Johnston potential using the method developed in part I of this study. The single-particle spectrum ...

J. Blank

1979-01-01T23:59:59.000Z

162

CALCULATION OF ION ENERGY-DEPOSITION SPECTRA  

E-Print Network [OSTI]

CALCULATION OF ION ENERGY-DEPOSITION SPECTRA IN SILICON, LITHIUM-FLUORIDE, BORON, AND BORON CARBIDE by J.K. Shultis and D.S. McGregor Department of Mechanical and Nuclear Engineering Kansas State University Manhattan, Kansas 55606 published as Report 299 ENGINEERING EXPERIMENT STATION College

Shultis, J. Kenneth

163

Calculator program aids well cost management  

SciTech Connect (OSTI)

A TI-59 calculator program designed to track well costs on daily and weekly bases can dramatically facilitate the task of monitoring well expenses. The program computes the day total, cumulative total, cumulative item-row totals, and day-week total. For carrying these costs throughout the drilling project, magnetic cards can store the individual and total cumulative well expenses.

Doyle, C.J.

1982-01-18T23:59:59.000Z

164

Program performs vapor-liquid equilibrium calculations  

SciTech Connect (OSTI)

A program designed for the Hewlett-Packard HP-41CV or 41C calculators solves basic vapor-liquid equilibrium problems, including figuring the dewpoint, bubblepoint, and equilibrium flash. The algorithm uses W.C. Edmister's method for predicting ideal-solution K values.

Rice, V.L.

1982-06-28T23:59:59.000Z

165

Cool Roof Calculator | Open Energy Information  

Open Energy Info (EERE)

Cool Roof Calculator Cool Roof Calculator Jump to: navigation, search Tool Summary Name: Cool Roof Calculator Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Resource Type: Online calculator, Software/modeling tools User Interface: Website Website: www.ornl.gov/sci/roofs+walls/facts/CoolCalcEnergy.htm Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Calculation of Kinetics Parameters for the NBSR  

SciTech Connect (OSTI)

The delayed neutron fraction and prompt neutron lifetime have been calculated at different times in the fuel cycle for the NBSR when fueled with both high-enriched uranium (HEU) and low-enriched uranium (LEU) fuel. The best-estimate values for both the delayed neutron fraction and the prompt neutron lifetime are the result of calculations using MCNP5-1.60 with the most recent ENDFB-VII evaluations. The best-estimate values for the total delayed neutron fraction from fission products are 0.00665 and 0.00661 for the HEU fueled core at startup and end-of-cycle, respectively. For the LEU fuel the best estimate values are 0.00650 and 0.00648 at startup and end-of-cycle, respectively. The present recommendations for the delayed neutron fractions from fission products are smaller than the value reported previously of 0.00726 for the HEU fuel. The best-estimate values for the contribution from photoneutrons will remain as 0.000316, independent of the fuel or time in the cycle.The values of the prompt neutron lifetime as calculated with MCNP5-1.60 are compared to values calculated with two other independent methods and the results are in reasonable agreement with each other. The recommended, conservative values of the neutron lifetime for the HEU fuel are 650 {micro}s and 750 {micro}s for the startup and end-of-cycle conditions, respectively. For LEU fuel the recommended, conservative values are 600 {micro}s and 700 {micro}s for the startup and end-of-cycle conditions, respectively. In all three calculations, the prompt neutron lifetime was determined to be longer for the end-of-cycle equilibrium condition when compared to the startup condition. The results of the three analyses were in agreement that the LEU fuel will exhibit a shorter prompt neutron lifetime when compared to the HEU fuel.

Hanson A. L.; Diamond D.

2012-03-06T23:59:59.000Z

167

CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect (OSTI)

This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the CHF is included in the Q-List (BSC 2005 [DIRS 171190], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

C.E. Sanders

2005-04-07T23:59:59.000Z

168

How to Calculate Molecular Column Density  

E-Print Network [OSTI]

The calculation of the molecular column density from molecular spectral (rotational or ro-vibrational) transition measurements is one of the most basic quantities derived from molecular spectroscopy. Starting from first principles where we describe the basic physics behind the radiative and collisional excitation of molecules and the radiative transfer of their emission, we derive a general expression for the molecular column density. As the calculation of the molecular column density involves a knowledge of the molecular energy level degeneracies, rotational partition functions, dipole moment matrix elements, and line strengths, we include generalized derivations of these molecule-specific quantities. Given that approximations to the column density equation are often useful, we explore the optically thin, optically thick, and low-frequency limits to our derived general molecular column density relation. We also evaluate the limitations of the common assumption that the molecular excitation temperature is con...

Mangum, Jeffrey G

2015-01-01T23:59:59.000Z

169

Calculation of source terms for NUREG-1150  

SciTech Connect (OSTI)

The source terms estimated for NUREG-1150 are generally based on the Source Term Code Package (STCP), but the actual source term calculations used in computing risk are performed by much smaller codes which are specific to each plant. This was done because the method of estimating the uncertainty in risk for NUREG-1150 requires hundreds of source term calculations for each accident sequence. This is clearly impossible with a large, detailed code like the STCP. The small plant-specific codes are based on simple algorithms and utilize adjustable parameters. The values of the parameters appearing in these codes are derived from the available STCP results. To determine the uncertainty in the estimation of the source terms, these parameters were varied as specified by an expert review group. This method was used to account for the uncertainties in the STCP results and the uncertainties in phenomena not considered by the STCP.

Breeding, R.J.; Williams, D.C.; Murfin, W.B.; Amos, C.N.; Helton, J.C.

1987-10-01T23:59:59.000Z

170

Equation of State from Lattice QCD Calculations  

SciTech Connect (OSTI)

We provide a status report on the calculation of the Equation of State (EoS) of QCD at finite temperature using lattice QCD. Most of the discussion will focus on comparison of recent results obtained by the HotQCD and Wuppertal-Budapest collaborations. We will show that very significant progress has been made towards obtaining high precision results over the temperature range of T = 150-700 MeV. The various sources of systematic uncertainties will be discussed and the differences between the two calculations highlighted. Our final conclusion is that these lattice results of EoS are precise enough to be used in the phenomenological analysis of heavy ion experiments at RHIC and LHC.

Gupta, Rajan [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

171

CFD calculations of S809 aerodynamic characteristics  

SciTech Connect (OSTI)

Steady-state, two-dimensional CFD calculations were made for the S809 laminar-flow, wind-turbine airfoil using the commercial code CFD-ACE. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data from the Delft University 1.8 m x 1.25 m low-turbulence wind tunnel. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to-turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-{epsilon} model, is not appropriate at angles of attack with flow separation.

Wolfe, W.P. [Sandia National Labs., Albuquerque, NM (United States); Ochs, S.S. [Iowa State Univ., Ames, IA (United States)

1997-01-01T23:59:59.000Z

172

Improvements in EBR-2 core depletion calculations  

SciTech Connect (OSTI)

The need for accurate core depletion calculations in Experimental Breeder Reactor No. 2 (EBR-2) is discussed. Because of the unique physics characteristics of EBR-2, it is difficult to obtain accurate and computationally efficient multigroup flux predictions. This paper describes the effect of various conventional and higher order schemes for group constant generation and for flux computations; results indicate that higher-order methods are required, particularly in the outer regions (i.e. the radial blanket). A methodology based on Nodal Equivalence Theory (N.E.T.) is developed which allows retention of the accuracy of a higher order solution with the computational efficiency of a few group nodal diffusion solution. The application of this methodology to three-dimensional EBR-2 flux predictions is demonstrated; this improved methodology allows accurate core depletion calculations at reasonable cost. 13 refs., 4 figs., 3 tabs.

Finck, P.J.; Hill, R.N.; Sakamoto, S.

1991-01-01T23:59:59.000Z

173

Electronic-structure calculations in adaptive coordinates  

Science Journals Connector (OSTI)

The plane-wave method for electronic-structure calculations is reformulated in generalized curvilinear coordinates. This introduces a new set of basis functions that depend continuously on a coordinate transformation, and can adapt themselves to represent optimally the solutions of the Schrdinger equation. As a consequence, the effective plane-wave energy cutoff is allowed to vary in the unit cell in an unbiased way. The efficiency of this method is demonstrated in the calculation of the equilibrium structures of the CO and H2O molecules using the local-density approximation of density-functional theory, and norm-conserving, nonlocal pseudopotentials. The easy evaluation of forces on all degrees of freedom makes the method suitable for ab initio molecular-dynamics applications.

Franois Gygi

1993-10-15T23:59:59.000Z

174

Calculations of Heat-Capacities of Adsorbates  

E-Print Network [OSTI]

PHYSICAL REVIEW B VOLUME 14, NUMBER 7 1 OCTOBER 1976 Calculations of heat capacities of adsorbates W. R. Lawrence and R. E. Allen Department of Physics, Texas A& M University, College Station, Texas 77843 (Received 2 September 1975) The phonon... the substrate has a perfect (100) surface and the adsorbate goes down as a solid monolayer in registry with the substrate. The quasiharmonic approximation was used, and the results for Ne adsorbates were considerably different from those obtained...

LAWRENCE, WR; Allen, Roland E.

1976-01-01T23:59:59.000Z

175

Criticality Calculations for Step?2 GPHS Modules  

Science Journals Connector (OSTI)

The Multi?Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version referred to as the Step?2 GPHS Module has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of 238 Pu in the oxide form as the primary source of heat and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step?2 version. The Monte Carlo N?Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand the configuration is extremely sub?critical; k eff is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close?spaced stack to approach criticality ( k eff ?=?1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Ronald J. Lipinski; Danielle L. Hensen

2008-01-01T23:59:59.000Z

176

Criticality Calculations for Step-2 GPHS Modules  

SciTech Connect (OSTI)

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Lipinski, Ronald J. [Advanced Nuclear Concepts Department, Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States); Hensen, Danielle L. [Risk and Reliability Department Sandia National Laboratories, P.O Box 5800, Albuquerque, NM 87185 (United States)

2008-01-21T23:59:59.000Z

177

Criticality calculations for Step-2 GPHS modules.  

SciTech Connect (OSTI)

The Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) will use an improved version of the General Purpose Heat Source (GPHS) module as its source of thermal power. This new version, referred to as the Step-2 GPHS Module, has additional and thicker layers of carbon fiber material (Fine Weaved Pierced Fabric) for increased strength over the original GPHS module. The GPHS uses alpha decay of {sup 238}Pu in the oxide form as the primary source of heat, and small amounts of other actinides are also present in the oxide fuel. Criticality calculations have been performed by previous researchers on the original version of the GPHS module (Step 0). This paper presents criticality calculations for the present Step-2 version. The Monte Carlo N-Particle eXtended code (MCNPX) was used for these calculations. Numerous configurations of GPHS module arrays surrounded by wet sand and other materials (to reflect the neutrons back into the stack with minimal absorption) were modeled. For geometries with eight GPHS modules (from a single MMRTG) surrounded by wet sand, the configuration is extremely sub-critical; k{sub eff} is about 0.3. It requires about 1000 GPHS modules (from 125 MMRTGs) in a close-spaced stack to approach criticality (k{sub eff} = 1.0) when surrounded by wet sand. The effect of beryllium in the MMRTG was found to be relatively small.

Hensen, Danielle Lynn; Lipinski, Ronald J.

2007-08-01T23:59:59.000Z

178

SEECAL: Program to calculate age-dependent  

SciTech Connect (OSTI)

This report describes the computer program SEECAL, which calculates specific effective energies (SEE) to specified target regions for ages newborn, 1 y, 5 y, 10 y, 15 y, a 70-kg adult male, and a 58-kg adult female. The dosimetric methodology is that of the International Commission on Radiological Protection (ICRP) and is generally consistent with the schema of the Medical Internal Radiation Dose committee of the US Society of Nuclear Medicine. Computation of SEEs is necessary in the computation of equivalent dose rate in a target region, for occupational or public exposure to radionuclides taken into the body. Program SEECAL replaces the program SEE that was previously used by the Dosimetry Research Group at Oak Ridge National Laboratory. The program SEE was used in the dosimetric calculations for occupational exposures for ICRP Publication 30 and is limited to adults. SEECAL was used to generate age-dependent SEEs for ICRP Publication 56, Part 1. SEECAL is also incorporated into DCAL, a radiation dose and risk calculational system being developed for the Environmental Protection Agency. Electronic copies of the program and data files and this report are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.

Cristy, M.; Eckerman, K.F.

1993-12-01T23:59:59.000Z

179

Control Dewar Subcooler Heat Exchanger Calculations  

SciTech Connect (OSTI)

The calculations done to size the control dewar subcooler were done to obtain a sufficient subcooler size based on some conservative assumptions. The final subcooler design proposed in the design report will work even better because (1) It has more tubing length, and (2) will have already subcooled liquid at the inlet due to the transfer line design. The subcooler design described in the 'Design Report of the 2 Tesla Superconducting Solenoid for the Fermilab D0 Detector Upgrade' is the final design proposed. A short description of this design follows. The subcooler is constructed of 0.50-inch OD copper tubing with 1.0-inch diameter fins. It has ten and one half spirals at a 11.375-inch centerline diameter to provide 31 feet of tubing length. The liquid helium supply for the solenoid flows through the subcooler and then is expanded through a J-T valve. The subcooler spirals are immersed in the return two phase helium process stream. The return stream is directed over the finned tubing by an annulus created by a 10-inch pipe inside a 12-inch pipe. The transfer line from the refrigerator to the control dewar is constructed such that the liquid helium supply tube is in the refrigerator return stream, thereby subcooling the liquid up to the point where the u-tubes connect the transfer line to the control dewar. The subcooler within the control dewar will remove the heat picked up in the helium supply u-tube/bayonets. The attached subcooler/heat exchanger calculations were done neglecting any subcooling in the transfer line. All heat picked up in the transfer line from the refrigerator storage dewar to the control dewar is absorbed by the supply stream. The subcooler was sized such that the two phase supply fluid is subcooled at 1.7 atm pressure and when expanded through a JT valve to 1.45 atm pressure it is at a saturated liquid state. The calculations apply during steady state operation and at a flow rate of 16 g/s. The analysis of the heat exchanger was broken into two parts relating to the heat transfer mode taking place. The first part is considered the condensing part in which the helium supply stream is changed from two phase fluid to one phase liquid. The second part is the subcooling part where the liquid temperature is lowered, i.e.. subcooled. A summary of the calculations and results appears on the next page. The raw calculations follow the summary.

Rucinski, R.; /Fermilab

1993-10-04T23:59:59.000Z

180

Thick-Restart Lanczos Method for Electronic Structure Calculations  

E-Print Network [OSTI]

t h o d for electronic structure calculation. Phys. Rev. B,Large scale electronic structure calculations using them e t h o d for electronic structure calculations K, W u A ,

Wu, Kesheng; Simon, Horst D.; Wang, L.-W.

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Calculations on the Electronic Excited States of Ureas and Oligoureas  

Science Journals Connector (OSTI)

Calculations on the Electronic Excited States of Ureas and Oligoureas ... Much effort has been put into developing methods to calculate the CD spectra of polypeptides, from Moffitt's original calculation of the spectrum of the ?-helix10 to recent studies based on ab initio calculations. ... The energies of the first three transitions from our calculations are close to those calculated with the CCR(3)/daug-cc-pVTZ method. ...

Mark T. Oakley; Gilles Guichard; Jonathan D. Hirst

2007-03-03T23:59:59.000Z

182

Tool and Calculator (Transit, Fuel) | Open Energy Information  

Open Energy Info (EERE)

and Calculator (Transit, Fuel) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Tool and Calculator (Transit, Fuel) AgencyCompany Organization: Publictransportation...

183

Illustrative Calculation of Economics for Heat Pump and "Grid...  

Energy Savers [EERE]

Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Illustrative Calculation of Economics for Heat Pump and "Grid-Enabled" Water Heaters Rate...

184

First-principles calculations of the electronic structure, phase...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

calculations of the electronic structure, phase transition and properties of ZrSiO4 polymorphs. First-principles calculations of the electronic structure, phase transition and...

185

Calculation of Job Creation Through DOE Recovery Act Funding...  

Broader source: Energy.gov (indexed) [DOE]

Calculation of Job Creation Through DOE Recovery Act Funding Calculation of Job Creation Through DOE Recovery Act Funding U.S. Department of Energy (DOE) Office of Energy...

186

Fusion calculations with the Skyrme interactions  

Science Journals Connector (OSTI)

The effect on nuclear dynamics of using various parametrizations of the Skyrme potential is studied. In particular, fusion cross sections for the light system O16 + Mg24 are calculated for the interactions Skyrme II, Skyrme III, Skyrme IV, Skyrme V, and Skyrme VI. The interaction Skyrme III is shown to increase significantly the fusion cross section. An angular momentum window for fusion is observed to occur for Ec.m.?70 MeV.NUCLEAR REACTIONS O16(Mg24,x) in time-dependent Hartree-Fock approximation. Effect of nuclear interaction on fusion cross section.

S. J. Krieger and M. S. Weiss

1981-09-01T23:59:59.000Z

187

FIESTA 2: parallelizeable multiloop numerical calculations  

E-Print Network [OSTI]

The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin-Barnes representations. Other important improvements to the code are complete parallelization (even to multiple computers), high-precision arithmetics (allowing to calculate integrals which were undoable before), new integrators and Speer sectors as a strategy, the possibility to evaluate more general parametric integrals.

Smirnov, A V; Tentyukov, M

2009-01-01T23:59:59.000Z

188

FIESTA 2: parallelizeable multiloop numerical calculations  

E-Print Network [OSTI]

The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin-Barnes representations. Other important improvements to the code are complete parallelization (even to multiple computers), high-precision arithmetics (allowing to calculate integrals which were undoable before), new integrators and Speer sectors as a strategy, the possibility to evaluate more general parametric integrals.

A. V. Smirnov; V. A. Smirnov; M. Tentyukov

2009-12-01T23:59:59.000Z

189

Multi-Fuel Boiler Efficiency Calculations  

E-Print Network [OSTI]

to calculate the heat losses, a complete stack analysis is required. In 1956 when Buna's paper was published, stack analysis was done by Orsat analysis which gave the composition of carbon dioxide, carbon monoxide and oxygen. Nitrogen was assumed to make... up the difference. It was known that sulfur dioxide (if present) would be absorbed with carbon dioxide. Table 2 shows the components in the stack gas and the analysis of the combustion air. The total analysis of the stack gas is estimated by a...

Likins, M. R., Jr.

1984-01-01T23:59:59.000Z

190

Calculator program trilogy characterizes comingled gas streams  

SciTech Connect (OSTI)

A series of programs has been developed for the HP-41CV that allows a quicker and more accurate approach to commingled stream calculations. This avoids the margin of error that the representative method introduces. The alpha-numeric capability of the HP-41CV will prompt for the inputs of an 11-component stream. The program series comprises: gas analysis; gas gathering/gas analysis; and flash vaporization. Each of these programs has its stand-alone use; but their true worth is in their integrated capability.

Flowers, R.

1985-08-26T23:59:59.000Z

191

Method for calculating strontium sulfate solubility  

SciTech Connect (OSTI)

This paper presents a method of predicting the tendency of brines to deposit strontium sulfate scale. Strontium sulfate solubility product constants were determined in the laboratory at temperatures of 50, 75, 122 and 156/sup 0/F and ionic strengths of sodium chloride solutions from 0.1 to 5.25. Solid strontium sulfate was prepared and tagged with radioactive sulfur-35. Excess of this strontium sulfate was added to the sodium chloride solutions and shaken at the various temperatures until equilibrium was reached. The filtrate was analyzed for sulfate ion using a liquid scintillation counter and for strontium ion using an atomic absorption spectrophotometer. The solubility products were expressed graphically as K/sub sp/ versus ionic strength at various temperatures. A series of synthetic brines containing various amounts of sodium, magnesium, calcium, strontium and chloride ions was prepared. The solubilities of strontium sulfate in these brines were calculated using the known ionic strengths and solubility data obtained from the experiments with the sodium chloride solutions. These calculated values were compared with actual values determined in the same manner as those from the sodium chloride values.

Fletcher, G.E.; French, T.R.; Collins, A.G.

1981-04-01T23:59:59.000Z

192

Calculations of composition boundaries of saturated phases  

SciTech Connect (OSTI)

A program for the HP-41CV calculator is presented for calculating the equilibrium composition boundaries of pairs of saturating solids, liquids, or a combination of a solid and liquid. The activity coefficients must be represented in the form ln ..gamma../sub 1/ = (b/sub h//T - b/sub s/)x/sub 2//sup 2/ + (c/sub h//T - c/sub x/)x/sub 2//sup 3/ where h refers to an enthalpy contribution and s refers to an excess entropy contribution. For solid-liquid equilibria, enthalpies and entropies of fusion are required. For all equilibria, provision is made for use of hypothetical standard states such as the Henry's Law standard states. For example, in treating solid solutions of molybdenum in face-centered cubic metals such as Ni, Rh, or Pt, it is sometimes convenient to use a hypothetical fcc standard state of Mo which represents the limiting Henry's Law behavior of Mo in the fcc metal and has much different properties than a real fcc molybdenum solid.

Brewer, L.; Hahn, S.

1983-09-27T23:59:59.000Z

193

Entanglement and electron correlation in quantum chemistry calculations  

E-Print Network [OSTI]

Entanglement and electron correlation in quantum chemistry calculations Z. HUANG, H. WANG and S; in final form 1 July 2006) Electron­electron correlation in quantum chemistry calculations can be analysed of electron­electron correlation in quantum chemistry calculations. In quantum chemistry calculations

Kais, Sabre

194

Robust volume calculations for Constructive Solid Geometry (CSG) components in Monte Carlo transport calculations  

SciTech Connect (OSTI)

In this paper we consider a new generalized algorithm for the efficient calculation of component object volumes given their equivalent constructive solid geometry (CSG) definition. The new method relies on domain decomposition to recursively subdivide the original component into smaller pieces with volumes that can be computed analytically or stochastically, if needed. Unlike simpler brute-force approaches, the proposed decomposition scheme is guaranteed to be robust and accurate to within a user-defined tolerance. The new algorithm is also fully general and can handle any valid CSG component definition, without the need for additional input from the user. The new technique has been specifically optimized to calculate volumes of component definitions commonly found in models used for Monte Carlo particle transport simulations for criticality safety and reactor analysis applications. However, the algorithm can be easily extended to any application which uses CSG representations for component objects. The paper provides a complete description of the novel volume calculation algorithm, along with a discussion of the conjectured error bounds on volumes calculated within the method. In addition, numerical results comparing the new algorithm with a standard stochastic volume calculation algorithm are presented for a series of problems spanning a range of representative component sizes and complexities. (authors)

Millman, D. L. [Dept. of Computer Science, Univ. of North Carolina at Chapel Hill (United States); Griesheimer, D. P.; Nease, B. R. [Bechtel Marine Propulsion Corporation, Bertis Atomic Power Laboratory (United States); Snoeyink, J. [Dept. of Computer Science, Univ. of North Carolina at Chapel Hill (United States)

2012-07-01T23:59:59.000Z

195

Federal Energy Management Program: Energy Savings Calculator for Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Savings Energy Savings Calculator for Commercial Boilers to someone by E-mail Share Federal Energy Management Program: Energy Savings Calculator for Commercial Boilers on Facebook Tweet about Federal Energy Management Program: Energy Savings Calculator for Commercial Boilers on Twitter Bookmark Federal Energy Management Program: Energy Savings Calculator for Commercial Boilers on Google Bookmark Federal Energy Management Program: Energy Savings Calculator for Commercial Boilers on Delicious Rank Federal Energy Management Program: Energy Savings Calculator for Commercial Boilers on Digg Find More places to share Federal Energy Management Program: Energy Savings Calculator for Commercial Boilers on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

196

CDM Emission Reductions Calculation Sheet Series | Open Energy Information  

Open Energy Info (EERE)

CDM Emission Reductions Calculation Sheet Series CDM Emission Reductions Calculation Sheet Series Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CDM Emission Reductions Calculation Sheet Series Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Energy, Water Focus Area: Agriculture, Greenhouse Gas Topics: Baseline projection, GHG inventory Resource Type: Online calculator User Interface: Spreadsheet Website: www.iges.or.jp/en/cdm/report_ers.html Cost: Free CDM Emission Reductions Calculation Sheet Series Screenshot References: CDM Emission Reductions Calculation Sheet Series[1] "IGES ERs Calculation Sheet aims at providing a simplified spreadsheet for demonstrating emission reductions based on the approved methodologies corresponding to eligible project activities. The sheet will provide you

197

Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on AddThis.com...

198

Information about the Greenhouse Gas Emission Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sources and Assumptions for the Electric and Plug-in Hybrid Vehicle Sources and Assumptions for the Electric and Plug-in Hybrid Vehicle Greenhouse Gas Emissions Calculator To estimate your CO2 emissions rates and generate the bar graph, we used the following sources and assumptions. Your CO2 Emissions Rates Tailpipe (grams CO2/mile) This is the tailpipe CO2 emissions rate for combined city and highway driving that is shown on the fuel economy and environment label for the vehicle model you selected. It is the same regardless of where you live. Total (grams CO2/mile) This includes the vehicle's tailpipe emissions and emissions associated with the production of electricity used to charge the vehicle. For plug-in hybrid electric vehicles, it also includes emissions associated with the production of gasoline. It is estimated using the sources and assumptions below, and will vary based on where you live.

199

Power Line Calculator for Windows[trademark  

SciTech Connect (OSTI)

The Power Line Calculator (PLC) for Windows [trademark], version 1.0, is a program that describes the electrical characteristics of a transmission or distribution system given user-defined input. This input may consist of a combination of operating currents and phases, symmetric components, power factor, and real or reactive power. The program also allows the user to designate whether currents are present on the system neutral or in the ground. The PLC assumes that any value entered by the user remains fixed (e.g., phase current, power factor), and for underdetermined systems, basic default assumptions are incorporated: the power factor is held at or near 1.0, the net phase current is kept at or near zero, and the phase conductor currents are kept balanced. The program operates through a graphical user interface provided by Microsoft[reg sign] Windows [trademark] (version 3.1 or higher required), and the output is available in both tabular and graphic formats.

Silva, J.M. (Enertech Consultants, Campbell, CA (United States))

1992-12-01T23:59:59.000Z

200

Dynamical Collective Calculation of Supernova Neutrino Signals  

SciTech Connect (OSTI)

We present the first calculations with three flavors of collective and shock wave effects for neutrino propagation in core-collapse supernovae using hydrodynamical density profiles and the S matrix formalism. We explore the interplay between the neutrino-neutrino interaction and the effects of multiple resonances upon the time signal of positrons in supernova observatories. A specific signature is found for the inverted hierarchy and a large third neutrino mixing angle and we predict, in this case, a dearth of lower energy positrons in Cherenkov detectors midway through the neutrino signal and the simultaneous revelation of valuable information about the original fluxes. We show that this feature is also observable with current generation neutrino detectors at the level of several sigmas.

Gava, Jerome; Kneller, James; Volpe, Cristina; McLaughlin, G. C. [Institut de Physique Nucleaire, F-91406 Orsay cedex, CNRS/IN2P3 and University of Paris-XI (France); Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States)

2009-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Benchmark On Sensitivity Calculation (Phase III)  

SciTech Connect (OSTI)

The sensitivities of the keff eigenvalue to neutron cross sections have become commonly used in similarity studies and as part of the validation algorithm for criticality safety assessments. To test calculations of the sensitivity coefficients, a benchmark study (Phase III) has been established by the OECD-NEA/WPNCS/EG UACSA (Expert Group on Uncertainty Analysis for Criticality Safety Assessment). This paper presents some sensitivity results generated by the benchmark participants using various computational tools based upon different computational methods: SCALE/TSUNAMI-3D and -1D, MONK, APOLLO2-MORET 5, DRAGON-SUSD3D and MMKKENO. The study demonstrates the performance of the tools. It also illustrates how model simplifications impact the sensitivity results and demonstrates the importance of 'implicit' (self-shielding) sensitivities. This work has been a useful step towards verification of the existing and developed sensitivity analysis methods.

Ivanova, Tatiana [IRSN; Laville, Cedric [IRSN; Dyrda, James [Atomic Weapons Establishment; Mennerdahl, Dennis [E. Mennerdahl Systems; Golovko, Yury [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Raskach, Kirill [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Tsiboulia, Anatoly [Institute of Physics and Power Engineering (IPPE), Obninsk, Russia; Lee, Gil Soo [Korea Institute of Nuclear Safety (KINS); Woo, Sweng-Woong [Korea Institute of Nuclear Safety (KINS); Bidaud, Adrien [Labratoire de Physique Subatomique et de Cosmolo-gie (LPSC); Patel, Amrit [NRC; Bledsoe, Keith C [ORNL; Rearden, Bradley T [ORNL; Gulliford, J. [OECD Nuclear Energy Agency

2012-01-01T23:59:59.000Z

202

LMR thermal hydraulics calculations in the US  

SciTech Connect (OSTI)

A wide range of thermal hydraulics computer codes have been developed by various organizations in the US. These codes cover an extensive range of purposes from within-assembly-wise pin temperature calculations to plant wide transient analysis. The codes are used for static analysis, for analysis of protected anticipated transients, and for analysis of a wide range of unprotected transients for the more recent inherently safe LMR designs. Some of these codes are plant-specific codes with properties of a specific plant built into them. Other codes are more general and can be applied to a number of plants or designs. These codes, and the purposes for which they have been used, are described.

Dunn, F.E.; Malloy, D.J.; Mohr, D.

1987-04-27T23:59:59.000Z

203

Angular Size-Redshift: Experiment and Calculation  

E-Print Network [OSTI]

In this paper the next attempt is made to clarify the nature of the Euclidean behavior of the boundary in the angular size-redshift cosmological test. It is shown experimentally that this can be explained by the selection determined by anisotropic morphology and anisotropic radiation of extended radio sources. A catalogue of extended radio sources with minimal flux densities of about 0.01 Jy at 1.4 GHz was compiled for conducting the test. Without the assumption of their size evolution, the agreement between the experiment and calculation was obtained both in the Lambda CDM model (Omega_m=0.27 , Omega_v=0.73.) and the Friedman model (Omega = 0.1 ).

Amirkhanyan, V R

2015-01-01T23:59:59.000Z

204

Multigrid method for electronic structure calculations  

Science Journals Connector (OSTI)

A general real-space multigrid algorithm for the self-consistent solution of the Kohn-Sham equations appearing in the state-of-the-art electronic-structure calculations is described. The most important part of the method is the multigrid solver for the Schrdinger equation. Our choice is the Rayleigh quotient multigrid method (RQMG), which applies directly to the minimization of the Rayleigh quotient on the finest level. Very coarse correction grids can be used, because there is, in principle, no need to represent the states on the coarse levels. The RQMG method is generalized for the simultaneous solution of all the states of the system using a penalty functional to keep the states orthogonal. The performance of the scheme is demonstrated by applying it in a few molecular and solid-state systems described by nonlocal norm-conserving pseudopotentials.

M. Heiskanen, T. Torsti, M. J. Puska, and R. M. Nieminen

2001-06-01T23:59:59.000Z

205

Electronic band?shape calculations in ammonia  

Science Journals Connector (OSTI)

The vibronic nature of the lowest energy electronic absorption and of the lowest energy photoelectron spectrum of NH3 are investigated theoretically. Two?dimensional FranckCondon factor calculations are performed and theoretical spectra are constructed including the effect of vibronic linewidth. The comparison of the experimental with theoretical spectra computed under various assumptions leads to several conclusions. The conspicuous continuum underlying the ??? transition is seen to arise from the overlapping tails of vibronic line shapes. There is no need to attribute the continuum to a second electronic transition. The ?1 NH stretching mode is excited in both the electronic absorption and photoelectron spectrum. The ? state of NH3 may be able to support two quanta of ?1. The planar NH3 + ion has a NH bond longer than in the ground state NH3 by about 0.06 .

Phaedon Avouris; A. R. Rossi; A. C. Albrecht

1981-01-01T23:59:59.000Z

206

A Calculable Toy Model of the Landscape  

E-Print Network [OSTI]

Motivated by recent discussions of the string-theory landscape, we propose field-theoretic realizations of models with large numbers of vacua. These models contain multiple U(1) gauge groups, and can be interpreted as deconstructed versions of higher-dimensional gauge theory models with fluxes in the compact space. We find that the vacuum structure of these models is very rich, defined by parameter-space regions with different classes of stable vacua separated by boundaries. This allows us to explicitly calculate physical quantities such as the supersymmetry-breaking scale, the presence or absence of R-symmetries, and probabilities of stable versus unstable vacua. Furthermore, we find that this landscape picture evolves with energy, allowing vacua to undergo phase transitions as they cross the boundaries between different regions in the landscape. We also demonstrate that supergravity effects are crucial in order to stabilize most of these vacua, and in order to allow the possibility of cancelling the cosmological constant.

Keith R. Dienes; Emilian Dudas; Tony Gherghetta

2005-04-22T23:59:59.000Z

207

Nuclear structure calculations for astrophysical applications  

SciTech Connect (OSTI)

Relative to other fields of physics, astrophysics is probably unique in its requirement that a very large number of physical environments be modeled to achieve a satisfactory description of the phenomena under study. The dynamics of the cosmos is governed by interactions that span a vast range, from subnucleon, nucleon and nuclear distances to distances affected by the gravitational interactions, which extends over the width of a galaxy and beyond, to the edge of the universe. It is the nuclear processes that provide much of the energy that drives the macroscopic behavior of the cosmos. Through this energy release the behavior on the very small scale is coupled to the very large-scale behavior. On the nuclear level, cross sections, nuclear decay energies and nuclear decay paths are but a few examples of quantities that are of paramount importance in astrophysical models. Because nuclei of extreme composition, quite different from what can be studied on earth, exist in stellar environments, an understanding of the nuclear structure properties of these nuclei can only be obtained through theoretical means. This presents a continuing, stimulating challenge to the nuclear-physics community. Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, {beta}-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid-drop model.

Moeller, P. (Lund Univ. (Sweden). Dept. of Mathematical Physics); Nix, J.R. (Los Alamos National Lab., NM (USA)); Kratz, K.L. (Mainz Univ. (Germany, F.R.). Inst. fuer Kernchemie); Howard, W.M. (Lawrence Livermore National Lab., CA (USA))

1990-01-01T23:59:59.000Z

208

Calculation methods of the nuclear characteristics  

E-Print Network [OSTI]

In the book the mathematical methods of nuclear cross sections and phases of elastic scattering, energy and characteristics of bound states in two- and three-particle nuclear systems, when the potentials of interaction contain not only central, but also tensor component, are presented. Are given the descriptions of the mathematical numerical calculation methods and computer programs in the algorithmic language "BASIC" for "Turbo Basic" of firm "Borland" for the computers of the type IBM PC AT. For the numerical solutions of the initial Schroedinger equations are used finite- difference and variational methods, and also method of Runge-Kutta with the automatic calling sequence on the assigned accuracy of results for the scattering phase shifts and binding energy. Is given the description not of the standard methods of solving the system of equations of Schroedinger to the bound states and the alternative to Schmidt's method, method of solution of the generalized matrix problem at the eigenvalues. The developed programs make it possible to determine the wave functions of relative motion of nuclear fragments, calibrated to the correct asymptotic behavior taking into account Coulomb interaction. The programs of the extraction of nuclear phases (phase shift analysis) from the differential elastic cross sections are given. The book can be used as the textbook according to the numerical mathematical methods for the students and the graduate students of the physical and mathematical specialties of higher educational institutions. This Book is written in Russian, but will perhaps present certain interest.

S. B. Dubovichenko

2010-06-25T23:59:59.000Z

209

Ab initio calculation of the Hoyle state  

E-Print Network [OSTI]

The Hoyle state plays a crucial role in the hydrogen burning of stars heavier than our sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle [1] as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago [2,3], nuclear theorists have not yet uncovered the nature of this state from first principles. In this letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at -85(3) MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy. These lattice simulations provide insight into the structure of this unique state and new clues as to the amount of fine-tuning needed in nature for the production of carbon in stars.

Evgeny Epelbaum; Hermann Krebs; Dean Lee; Ulf-G. Meiner

2011-01-13T23:59:59.000Z

210

Variational Calculation with Harmonic-Oscillator Eigenfunctions  

Science Journals Connector (OSTI)

Variational calculations play an important role in quantum mechanics particularly in determining the ground-state energy of physical systems. Didactic examples in which one can see how the exact energy and wave function are approached by using a family of trial functions are not very numerous. An example was given in a recent book [M. Moshinsky The Harmonic Oscillator in Modern Physics: From Atoms to Quarks (Gordon and Breach New York 1969)] which discusses the ground state of the hydrogen atom using as trial wave function a linear combination of harmonic-oscillator states. In the present paper we carry out a similar analysis for the ground state of a particle of mass m in a three-dimensional square-well potential. We discuss not only the approach to the exact energy when we vary the frequency and the number of oscillator states but also analyze the overlap of the exact and variational wave functions and compare the exact and approximate form factors.

V. C. Aguilera-Navarro; R. M. Mndez V.

1971-01-01T23:59:59.000Z

211

Handbook of Industrial Engineering Equations, Formulas, and Calculations  

SciTech Connect (OSTI)

The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the book presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?

Badiru, Adedeji B [ORNL; Omitaomu, Olufemi A [ORNL

2011-01-01T23:59:59.000Z

212

??electron calculations of polarizabilities in conjugated systems  

Science Journals Connector (OSTI)

Finite?field technique has been applied to the calculation of ? molecular polarizabilities within the PariserParrPople Hamiltonian. This formalism allows to analyze large oligomers containing up to 400 atoms and asymptotic behaviors may be attained in some cases. We have investigated the role of the polymer size the backbone geometries the presence of neutral and charged defects (solitons polarons bipolarons) the chemical nature of the monomeric unit on the polarizabilities. Generally the polarizabilities are not deeply modified by a change of the geometrical characteristics and may lead to huge values for sufficiently large chains. Besides the charge of the system is the leading factor which determines the values of this property. The evolution of the polarizability with the number N of ? atomic centers ? u depends largely on the charge and on the defect. For the neutral systems the polarizability per monomeric unit ? u increases smoothly and then exhibits an asymptotic behavior with N. For polymers with a defect this variation is different: ? u first increases with N reaches a maximum ? u?max for N max and finally tends to an asymptotic value. The values of ? u?max for N max depend on the type of defect (soliton vs polaron) and are rather sensitive to the dependence of the first?neighbor one?electron interaction with the interatomic distance. A large number of results on polyacetylene and polyheterocycles shows that there exists a simple law between the polarizability and the electronic gap independently of the type of the monomeric unit. But this relation shows a deviation from a simple proportionality behavior as soon as ? reaches large values (as for example in polymers with defects).

A. Villesuzanne; J. Hoarau; L. Ducasse; L. Olmedo; P. Hourquebie

1992-01-01T23:59:59.000Z

213

Global Calculation of Tidal Energy Conversion into Vertical Normal Modes  

Science Journals Connector (OSTI)

A direct calculation of the tidal generation of internal waves over the global ocean is presented. The calculation is based on a semianalytical model, assuming that the internal tide characteristic slope exceeds the bathymetric slope (subcritical ...

Saeed Falahat; Jonas Nycander; Fabien Roquet; Moundheur Zarroug

2014-12-01T23:59:59.000Z

214

A pocket calculator program for using Pozen's formula  

Science Journals Connector (OSTI)

Pozen's formula has been shown to improve diagnostic accuracy in patients with acute chest pain. This paper describes a short program for the HP-41CV calculator which reliably calculates acute ischemic heart disease probabilities using Pozen's formula.

Michael D. Hagen

1986-01-01T23:59:59.000Z

215

SUBJECT: CALCULATION OF JOB CREATION THROUGH RECOVERY ACT FUNDING...  

Broader source: Energy.gov (indexed) [DOE]

SUBJECT: CALCULATION OF JOB CREATION THROUGH RECOVERY ACT FUNDING SUBJECT: CALCULATION OF JOB CREATION THROUGH RECOVERY ACT FUNDING wpn10-14asep10-07aeecbg10-08a.pdf More...

216

Application of release rate data to hazard load calculations  

Science Journals Connector (OSTI)

The author illustrates methods of applying heat, smoke and toxic gas release rate data to calculating fire hazard loading values.

Edwin E. Smith

1974-08-01T23:59:59.000Z

217

Energy Cost Savings Calculator for Air-Cooled Electric Chillers  

Broader source: Energy.gov [DOE]

This calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels.

218

TDHF fusion calculations for spherical+deformed systems  

E-Print Network [OSTI]

We outline a formalism to carry out TDHF calculations of fusion cross sections for spherical + deformed nuclei. The procedure incorporates the dynamic alignment of the deformed nucleus into the calculation of the fusion cross section. The alignment results from multiple E2/E4 Coulomb excitation of the ground state rotational band. Implications for TDHF fusion calculations are discussed. TDHF calculations are done in an unrestricted three-dimensional geometry using modern Skyrme force parametrizations.

A. S. Umar; V. E. Oberacker

2006-04-04T23:59:59.000Z

219

Electronic Circular Dichroism of Proteins from First-Principles Calculations  

Science Journals Connector (OSTI)

Electronic Circular Dichroism of Proteins from First-Principles Calculations ... The circular dichroism (CD) spectra of 47 proteins in the far-ultraviolet have been calculated from first principles, using a parameter set derived from ab initio calculations on N-methylacetamide. ... An important aspect of calculating protein CD spectra is the accurate parametrization of the ground and excited electronic states of the amide chromophore. ...

Jonathan D. Hirst; Karl Colella; Andrew T. B. Gilbert

2003-09-30T23:59:59.000Z

220

Entropy Calculations and the Third Law of Thermodynamics Chemistry 223  

E-Print Network [OSTI]

Entropy Calculations and the Third Law of Thermodynamics Chemistry 223 1. Entropy Calculations I We heat of fusion, sublimation, or vaporization) is added to the system, with no resulting change, 2014 #12;Entropy Calculations and the Third Law -2- Chemistry 223 STiT f = T0 Ti CP,i(T, P, N) T d

Ronis, David M.

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

MATLAB Tutorial Getting Started with Calculations, Graphing and Programming  

E-Print Network [OSTI]

MATLAB Tutorial Getting Started with Calculations, Graphing and Programming Nicholas R. Kirchner UI 2 Calculations with MATLAB Standard Calculations and Variables Matrices and Vectors 3 Graphing NRK;Matrices and Vectors, Definitions MATLAB is short for MATrix LABoratory. It was built for high-speed matrix

Weinberger, Hans

222

Electronic Spectra and DFT Calculations of Hexanuclear Chalcocyanide Rhenium Clusters  

Science Journals Connector (OSTI)

Electronic Spectra and DFT Calculations of Hexanuclear Chalcocyanide Rhenium Clusters ... The good agreement with experiment obtained for the geometrical parameters gives the basis for comparing the calculated electronic transitions of these complexes with the experimental electronic spectra. ... On the calculation of bonding energies by the Hartree Fock Slater method. ...

S. G. Kozlova; S. P. Gabuda; K. A. Brylev; Yu. V. Mironov; V. E. Fedorov

2004-11-03T23:59:59.000Z

223

Performance of Parallel Eigensolvers on Electronic Structure Calculations II  

E-Print Network [OSTI]

Performance of Parallel Eigensolvers on Electronic Structure Calculations II Robert C. Ward1 employed to solve problems in quantum mechanics, such as electronic structure calculations, result in both symmetric linear eigensolvers applied to such eigenproblems in electronic structure calculations on the IBM

Ward, Robert C.

224

LOBPCG for electronic structure calculations Andrew Knyazev, CU-Denver  

E-Print Network [OSTI]

LOBPCG for electronic structure calculations Andrew Knyazev, CU-Denver 1 Center for Computational;LOBPCG for electronic structure calculations Andrew Knyazev, CU-Denver 2 Center for Computational). Several methods are available in ABINIT/VASP to calculate the electronic ground state: simple Davidson

Knyazev, Andrew

225

Recursion method for electronic structure calculations at nonzero temperature  

E-Print Network [OSTI]

Recursion method for electronic structure calculations at nonzero temperature E. Lorin and G. Z. MSC : 41A35, 35P, 65Y. 1 Introduction The vast majority of calculation of electronic properties- tronic structure calculations of molecules or solids at a temperature T. The pro- posed method has

Lorin, Emmanuel

226

ccsd00003115, Coupled Electron Ion Monte Carlo Calculations of Atomic  

E-Print Network [OSTI]

ccsd­00003115, version 1 ­ 21 Oct 2004 Coupled Electron Ion Monte Carlo Calculations of Atomic state calculations where both electronic and protonic degrees of freedom are treated quantum­zero temperature with a QMC calculation for the electronic energies where the Born­Oppenheimer approximation helps

227

Performance of Parallel Eigensolvers on Electronic Structure Calculations  

E-Print Network [OSTI]

Performance of Parallel Eigensolvers on Electronic Structure Calculations Robert C. Ward*§ , Yihua. Many models employed to solve problems in quantum mechanics, such as electronic structure calculations-Consistent Field procedure in electronic structure calculations on the distributed memory supercomputers at the Oak

Ward, Robert C.

228

Federal Energy Management Program: Energy Cost Calculator for Electric and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Cost Energy Cost Calculator for Electric and Gas Water Heaters to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Facebook Tweet about Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Twitter Bookmark Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Google Bookmark Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Delicious Rank Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on Digg Find More places to share Federal Energy Management Program: Energy Cost Calculator for Electric and Gas Water Heaters on AddThis.com...

229

Transition-phase calculation of a large, heterogeneous-core LMFBR. [SIMMER-II calculations  

SciTech Connect (OSTI)

A mechanistic calculation of a complete transition-phase sequence for a large heterogeneous core LMFBR has been performed using SIMMER-II. Recriticalities occurred as the disruption progressed through a series of different subphases. The number and severity of recriticalities was directly related to the timing and scale of fuel removal and coherence of material motion. The energetics associated with transition-phase are not yet resolved but the understanding of the characteristics of disruption and the effects of uncertainties has been extended significantly.

Luck, L.B.; Bell, C.R.; Asprey, M.W.; DeVault, G.P.

1981-01-01T23:59:59.000Z

230

A comparison of material balance calculations based on equilibrium ratios with Schilthuis balance calculations  

E-Print Network [OSTI]

and Liquid Phases for Assumed Initial Volume of 3, 900, 000, 000 Barrels. 31 ABSTRACT The theory of the material balance based on equihbrium ratios is described. The Kelley-Snyder field is described and a calculation of oil in place by the Schilthuis...& noglectbag the pres?ace of a water drive might ~ the high value of 4x 000, 000?000 barrels, and would if included, briag this value mox's into line with the others, Any water drive that would cause such effects would have to be from a limited aquifer...

Clanton, John L

2012-06-07T23:59:59.000Z

231

Comparing the accuracy of four-dimensional photon dose calculations with three-dimensional calculations using moving and deforming phantoms  

SciTech Connect (OSTI)

Purpose: Four-dimensional (4D) dose calculation algorithms, which explicitly incorporate respiratory motion in the calculation of doses, have the potential to improve the accuracy of dose calculations in thoracic treatment planning; however, they generally require greater computing power and resources than currently used for three-dimensional (3D) dose calculations. The purpose of this work was to quantify the increase in accuracy of 4D dose calculations versus 3D dose calculations. Methods: The accuracy of each dose calculation algorithm was assessed using measurements made with two phantoms. Specifically, the authors used a rigid moving anthropomorphic thoracic phantom and an anthropomorphic thoracic phantom with a deformable lung insert. To incorporate a clinically relevant range of scenarios, they programed the phantoms to move and deform with two motion patterns: A sinusoidal motion pattern and an irregular motion pattern that was extracted from an actual patient's breathing profile. For each combination of phantom and motion pattern, three plans were created: A single-beam plan, a multiple-beam plan, and an intensity-modulated radiation therapy plan. Doses were calculated using 4D dose calculation methods as well as conventional 3D dose calculation methods. The rigid moving and deforming phantoms were irradiated according to the three treatment plans and doses were measured using thermoluminescent dosimeters (TLDs) and radiochromic film. The accuracy of each dose calculation algorithm was assessed using measured-to-calculated TLD doses and a {gamma} analysis. Results: No significant differences were observed between the measured-to-calculated TLD ratios among 4D and 3D dose calculations. The {gamma} results revealed that 4D dose calculations had significantly greater percentage of pixels passing the 5%/3 mm criteria than 3D dose calculations. Conclusions: These results indicate no significant differences in the accuracy between the 4D and the 3D dose calculation methods inside the gross tumor volume. On the other hand, the film results demonstrated that the 4D dose calculations provided greater accuracy than 3D dose calculations in heterogeneous dose regions. The increase in accuracy of the 4D dose calculations was evident throughout the planning target volume.

Vinogradskiy, Yevgeniy Y.; Balter, Peter; Followill, David S.; Alvarez, Paola E.; White, R. Allen; Starkschall, George [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Department of Bioinformatics and Computational Biology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States)

2009-11-15T23:59:59.000Z

232

NREL: PVWatts - PVWatts Grid Data Calculator (Version 2)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Data Calculator (Version 2) Grid Data Calculator (Version 2) PVWattsTM Grid Data calculator allows users to select a photovoltaic (PV) system location in the United States from an interactive map. The Grid Data calculator uses hourly typical meteorological year weather data and a PV performance model to estimate annual energy production and cost savings for a crystalline silicon PV system. It allows users to create estimated performance data for any location in the United States or its territories by selecting a site on a 40-km gridded map. The 40-km Grid Data calculator considers data from a climatologically similar typical meteorological year data station and site-specific solar resource and maximum temperature information to provide PV performance estimation. In this version, performance is first calculated for the the nearest TMY2

233

Federal Energy Management Program: Energy Cost Calculator for Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Cost Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Facebook Tweet about Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Twitter Bookmark Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Google Bookmark Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Delicious Rank Federal Energy Management Program: Energy Cost Calculator for Commercial Heat Pumps (5.4 >=< 20 Tons) on Digg Find More places to share Federal Energy Management Program: Energy

234

Building Energy Software Tools Directory: Cool Roof Calculator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cool Roof Calculator Cool Roof Calculator Cool Roof Calculator logo. Many reflective roof coatings and membranes are now available for low-slope roofs. These coatings help to reduce summer air-conditioning loads, but can also increase the winter heating load. The Cool Roof Calculator will estimate both how much energy you'll save in the summer and how much extra energy you'll need in the winter. Cool Roof Calculator provides answers on a 'per square foot' basis, so you can then multiply by the area of your roof to find out your net savings each year. Keywords reflective roof, roofing membrane, low-slope roof Validation/Testing The Radiation Control Fact Sheet describes both the analytical and experimental results that went into the calculator's development. Expertise Required

235

Federal Energy Management Program: Energy Cost Calculator for Compact  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compact Fluorescent Lamps to someone by E-mail Compact Fluorescent Lamps to someone by E-mail Share Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Facebook Tweet about Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Twitter Bookmark Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Google Bookmark Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Delicious Rank Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on Digg Find More places to share Federal Energy Management Program: Energy Cost Calculator for Compact Fluorescent Lamps on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

236

Home Energy Score Calculation Methodology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Home Energy Score Calculation Methodology Home Energy Score Calculation Methodology Home Energy Score Calculation Methodology A Qualified Assessor calculates the Home Energy Score by first conducting a brief walk-through of the home and collecting approximately 40 data points. Next, the Qualified Assessor uses the Home Energy Scoring Tool to estimate the home's energy use. The Scoring Tool converts it into a Score and develops recommendations for energy improvements. All the data required to calculate the Home Energy Score is listed in the Data Collection Sheet. The calculation method holds a number of variables constant. For example, it assumes, that the thermostat is set at specific levels at various points of the year, and that homeowners use appliances in a standard way. By holding these other variables constant, the Home Energy Score allows

237

Ghost Diffraction: Causal Explanation via Correlated Trajectory Calculations  

E-Print Network [OSTI]

We use trajectory calculations to successfully explain two-photon "ghost" diffraction, a phenomenon previously explained via quantum mechanical entanglement. The diffraction patterns are accumulated one photon pair at a time. The calculations are based on initial correlation of the trajectories in the crystal source and a trajectory-wave ordering interaction with a variant generator inherent in its structure. Details are presented in comparison with ordinary diffraction calculated with the same trajectory model.

Bill Dalton

2001-02-22T23:59:59.000Z

238

A Parallel Orbital-Updating Approach for Electronic Structure Calculations  

E-Print Network [OSTI]

In this paper, we propose an orbital-based parallelization approach for electronic structure calculations. This approach is based on finite element discretizations and iterative techniques, and permits us to carry out electronic structure calculations in an orbital separation fashion and compute eigenvalues of a class of eigenvalue problems in principle individually. It is shown by our numerical experiments that this new approach is quite efficient for all-electron calculations for a class of molecular systems.

Xiaoying Dai; Xingao Gong; Aihui Zhou; Jinwei Zhu

2014-05-01T23:59:59.000Z

239

IGES GHG Calculator For Solid Waste | Open Energy Information  

Open Energy Info (EERE)

IGES GHG Calculator For Solid Waste IGES GHG Calculator For Solid Waste Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary Name: IGES GHG Calculator For Solid Waste Agency/Company /Organization: Institute for Global Environmental Strategies (IGES) Sector: Climate, Energy Complexity/Ease of Use: Simple Cost: Free Related Tools Energy Development Index (EDI) Harmonized Emissions Analysis Tool (HEAT) Electricity Markets Analysis (EMA) Model ... further results A simple spreadsheet model for calculating greenhouse gas emissions from existing waste management practices (transportation, composting, anaerobic digestion, mechanical biological treatment, recycling, landfilling) in

240

California Biomass Collaborative Energy Cost Calculators | Open Energy  

Open Energy Info (EERE)

California Biomass Collaborative Energy Cost Calculators California Biomass Collaborative Energy Cost Calculators Jump to: navigation, search Tool Summary Name: California Biomass Collaborative Energy Cost Calculators Agency/Company /Organization: California Biomass Collaborative Partner: Department of Biological and Agricultural Engineering, University of California Sector: Energy Focus Area: Biomass, - Biofuels, - Landfill Gas, - Waste to Energy Phase: Evaluate Options Resource Type: Software/modeling tools User Interface: Spreadsheet Website: biomass.ucdavis.edu/calculator.html Locality: California Cost: Free Provides energy cost and financial assessment tools for biomass power, bio gas, biomass combined heat and power, and landfill gas. Overview The California Biomass Collaborative provides energy cost and financial

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Leveraging GPUs in Ab Initio Nuclear Physics Calculations | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leveraging GPUs in Ab Initio Nuclear Physics Calculations Authors: Dossay Oryspayev, Hugh Potter, Pieter Maris, Masha Sosonkina, James P. Vary, Sven Binder, Angelo Calci, Joachim...

242

MCBRIDE, GRAHAM B. Simple calculation of daily photosynthesis ...  

Science Journals Connector (OSTI)

Simple calculation of daily photosynthesis by means of five photosynthesis-light equations. Abstract-The performance of five well-known photosynthesis-light...

2000-03-19T23:59:59.000Z

243

Approach for calculating population doses using the CIDER computer code  

SciTech Connect (OSTI)

This report describes an approach for calculating radiation doses for the Hanford Environmental Dose Reconstruction Project. The approach utilizes the CIDER computer code.

Shipler, D.B.

1993-04-29T23:59:59.000Z

244

Microsoft Word - 911127_0 Parametric-Calculations_rel.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Revision 0 Engineering Services for the Next Generation Nuclear Plant (NGNP) with Hydrogen Production NGNP Parametric Fuel and Reactor Pressure Vessel Temperature Calculations...

245

Energy and Cost Savings Calculators for Energy-Efficient Products...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Energy-Efficient Products Energy and Cost Savings Calculators for Energy-Efficient Products Estimate energy and cost savings for energy- and water-efficient product...

246

Energy Department Report Calculates Emissions and Costs of Power...  

Broader source: Energy.gov (indexed) [DOE]

and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for...

247

One-shot free energy calculations for crystalline materials.  

E-Print Network [OSTI]

??Current methods for free energy calculations in materials science are either computationally expensive, as lambda-integration, or based on the harmonic approximation and thus only applicable (more)

Andersson, Tommy

2012-01-01T23:59:59.000Z

248

Impulse Turbine Efficiency Calculation Methods with Organic Rankine Cycle.  

E-Print Network [OSTI]

?? A turbine was investigated by various methods of calculating its efficiency. The project was based on an existing impulse turbine, a one-stage turbine set (more)

Dahlqvist, Johan

2012-01-01T23:59:59.000Z

249

Solid Waste Operations Complex (SWOC) Facilities Sprinkler System Hydraulic Calculations  

SciTech Connect (OSTI)

The attached calculations demonstrate sprinkler system operational water requirements as determined by hydraulic analysis. Hydraulic calculations for the waste storage buildings of the Central Waste Complex (CWC), T Plant, and Waste Receiving and Packaging (WRAP) facility are based upon flow testing performed by Fire Protection Engineers from the Hanford Fire Marshal's office. The calculations received peer review and approval prior to release. The hydraulic analysis program HASS Computer Program' (under license number 1609051210) is used to perform all analyses contained in this document. Hydraulic calculations demonstrate sprinkler system operability based upon each individual system design and available water supply under the most restrictive conditions.

KERSTEN, J.K.

2003-07-11T23:59:59.000Z

250

Energy Cost Calculator for Electric and Gas Water Heaters | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and or efficiency level. INPUT...

251

EPA - Rainfall Erosivity Factor Calculator webpage | Open Energy...  

Open Energy Info (EERE)

webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Rainfall Erosivity Factor Calculator webpage Author Environmental Protection Agency...

252

Energy Star Building Upgrade Value Calculator | Open Energy Information  

Open Energy Info (EERE)

Energy Star Building Upgrade Value Calculator Energy Star Building Upgrade Value Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Star Building Upgrade Value Calculator (for Office Properties) Agency/Company /Organization: ENERGY STAR Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Spreadsheet Website: www.energystar.gov/index.cfm?c=comm_real_estate.building_upgrade_value The Building Upgrade Value Calculator allows practitioners to analyze the

253

Processus communicants Communication synchrone CSP/CCS/-calcul  

E-Print Network [OSTI]

Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Huitième partie Processus communicants CSP/Ada Systèmes concurrents 2 / 44 #12;Processus communicants Communication synchrone CSP/CCS/-calcul Rendez-vous étendu Ada Principes Synchronisation Désignation

Grigoras, .Romulus

254

Benchmark density functional theory calculations for nanoscale conductance  

E-Print Network [OSTI]

Benchmark density functional theory calculations for nanoscale conductance M. Strange,a I. S. The transmission functions are calculated using two different density functional theory methods, namely state density functional theory DFT . The resulting NEGF- DFT formalism provides a numerically efficient

Thygesen, Kristian

255

Calculation of the volume of an HPGe crystal  

Science Journals Connector (OSTI)

......of the present calculation was tested by running the INVENTOR 3D mechanical design software ( http://usa.autodesk.com/autodesk-inventor/ ), which is an independent method. The volume calculated is 419.705 cm3, i.e. in full-agreement......

Y. Nir-El; D. Har-Even

2012-06-01T23:59:59.000Z

256

PLUTONIUM/HIGH-LEVEL VITRIFIED WASTE BDBE DOSE CALCULATION  

SciTech Connect (OSTI)

The purpose of this calculation is to provide a dose consequence analysis of high-level waste (HLW) consisting of plutonium immobilized in vitrified HLW to be handled at the proposed Monitored Geologic Repository at Yucca Mountain for a beyond design basis event (BDBE) under expected conditions using best estimate values for each calculation parameter. In addition to the dose calculation, a plutonium respirable particle size for dose calculation use is derived. The current concept for this waste form is plutonium disks enclosed in cans immobilized in canisters of vitrified HLW (i.e., glass). The plutonium inventory at risk used for this calculation is selected from Plutonium Immobilization Project Input for Yucca Mountain Total Systems Performance Assessment (Shaw 1999). The BDBE examined in this calculation is a nonmechanistic initiating event and the sequence of events that follow to cause a radiological release. This analysis will provide the radiological releases and dose consequences for a postulated BDBE. Results may be considered in other analyses to determine or modify the safety classification and quality assurance level of repository structures, systems, and components. This calculation uses best available technical information because the BDBE frequency is very low (i.e., less than 1.0E-6 events/year) and is not required for License Application for the Monitored Geologic Repository. The results of this calculation will not be used as part of a licensing or design basis.

J.A. Ziegler

2000-11-20T23:59:59.000Z

257

Model calculates was deposition for North Sea oils  

SciTech Connect (OSTI)

A model for calculation of wax formation and deposition in pipelines and process equipment has been developed along with a new method for wax-equilibrium calculations using input from TBP distillation cuts. Selected results from the wax formation and deposition model have been compared with laboratory data from wax equilibrium and deposition experiments, and there have been some field applications of the model.

Majeed, A.; Bringedal, B.; Overa, S. (Norsk Hydro, Stabekk (NO))

1990-06-18T23:59:59.000Z

258

AHR 3/16/06 Equilibrium Flux Surface Calculations  

E-Print Network [OSTI]

preserved, with no flattening in edge stochastic region. · Assume zero net current (00 = 0). #12;#12;2 AHR 31 AHR 3/16/06 Equilibrium Flux Surface Calculations for W7AS and NCSX A. Reiman1, M. Zarnstorff1, D resonant magnetic field near plasma edge. Coil calculated to have little effect on rotational transform

Hudson, Stuart

259

Easier way to calculate E fields Equivalent to Coulomb's law  

E-Print Network [OSTI]

lines enter as leave closed surface the net is zero = ·= dAE AdE cos rr #12;Flux Calculate fluxGauss' Law Easier way to calculate E fields ­ Gauss' Law Equivalent to Coulomb's law Use ·= AE rr Let A become small so flux becomes integral over Gaussian surface Flux is proportional to net

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

260

Integration of Ab Initio Nuclear Physics Calculations with Optimization Techniques  

E-Print Network [OSTI]

Integration of Ab Initio Nuclear Physics Calculations with Optimization Techniques Masha Sosonkina1 into the field of nuclear physics calculations where the objective functions are very complex and computationally the ab initio nuclear physics code MFDn and the VTDIRECT95 code for derivative-free op- timization. We

Sosonkina, Masha

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Appendix II. Calculation of Slope Factors for Naturally Occurring Radionuclides  

E-Print Network [OSTI]

Appendix II. Calculation of Slope Factors for Naturally Occurring Radionuclides In developing calculates the slope factors for the naturally occurring radionuclides under consideration. The Radionuclide products with half-lives of less than 6 months). As explained below, naturally occurring radionuclides

262

Precision Calculations of Atoms with Few Valence Electrons  

E-Print Network [OSTI]

Precision Calculations of Atoms with Few Valence Electrons M. G. KOZLOV Petersburg Nuclear Physics words: atoms; effective Hamiltonian; pair equations; precision calculation; valence electron for valence electrons of an atom. The low-energy part of atomic spectrum is found by solving the eigenvalue

Kozlov, Mikhail G

263

Improved method for calculating projected frequencies along a reaction path  

E-Print Network [OSTI]

and calculating projected frequencies perpendicular to the reaction path have been examined. The SN2 reaction. The identity SN2 reaction of chloride with methyl chlo- ride is a suitable test case for exploring the accuracyImproved method for calculating projected frequencies along a reaction path Anwar G. Baboul and H

Schlegel, H. Bernhard

264

Texas LoanSTAR Program Savings Calculation Workbook  

E-Print Network [OSTI]

This is the report and manual for the Texas LoanSTAR Program Savings Calculation Workbook. The purpose of this report is to document the Texas LoanSTAR Program Savings Calculation Workbook to be used by the State Energy Conservation Office (SECO...

Liu, Z.; Baltazar-Cervantes, J. C.; Haberl, J. S.

2003-01-01T23:59:59.000Z

265

GTZ-Greenhouse Gas Calculator for Waste Management | Open Energy  

Open Energy Info (EERE)

GTZ-Greenhouse Gas Calculator for Waste Management GTZ-Greenhouse Gas Calculator for Waste Management Jump to: navigation, search Tool Summary Name: GTZ-Greenhouse Gas Calculator for Waste Management Agency/Company /Organization: GTZ Sector: Energy Website: www.gtz.de/en/themen/umwelt-infrastruktur/abfall/30026.htm References: GHG Calculator for Waste Management[1] Waste Management - GTZ Website[2] Logo: GTZ-Greenhouse Gas Calculator for Waste Management The necessity to reduce greenhouse gases and thus mitigate climate change is accepted worldwide. Especially in low- and middle-income countries, waste management causes a great part of the national greenhouse gas production, because landfills produce methane which has a particularly strong effect on climate change. Therefore, it is essential to minimize

266

EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) | Open  

Open Energy Info (EERE)

EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) Jump to: navigation, search Tool Summary Name: EPA Climate Leaders Simplified GHG Emissions Calculator (SGEC) Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.epa.gov/climateleaders/index.html Cost: Free The EPA Simplified GHG Emissions Calculator (SGEC) is designed to develop an annual GHG inventory based on the EPA Climate Leaders Greenhouse Gas Inventory Protocol. Overview The EPA Simplified GHG Emissions Calculator (SGEC) is designed to develop

267

NREL: PVWatts Site Specific Data Calculator (Version 1)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Specific Data Calculator (Version 1) Site Specific Data Calculator (Version 1) PVWattsTM Site Specific Data calculator allows users to select a photovoltaic (PV) system location from a defined list of options. For locations within the United States and its territories, users select a location from a map of 239 options. For international locations, users select a location from a drop-down menu of options. The PVWatts Site Specific Data calculator uses hourly typical meteorological year (TMY) weather data and a PV performance model to estimate annual energy production and cost savings for a crystalline silicon PV system. For locations in the United States and its territories, the PVWatts Version 1 calculator uses NREL TMY data. For other locations, it uses TMY data from the Solar and Wind Energy Resource Assessment

268

Building Energy Software Tools Directory: Popolo Utility Load Calculation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Popolo Utility Load Calculation Popolo Utility Load Calculation Popolo Utility Load Calculation is a collection of classes for calculating various heat transfer phenomena. The routines have been written from scratch in C#, and present a modern Applications Programming Interface (API) for .NET Framework programmers, allowing wrappers to be written for very high level languages. It contains classes to calculate solid conduction, convective heat transfer near wall surfaces, air ventilation, radiative heat balance of wall surfaces, transmitted solar radiation through a window, and so on. Users should build up these classes to simulate a whole complex building system. A sample source code to build test cases of BESTEST are provided. Since all the source code is distributed under the GNU General Public License, they can be freely

269

NREL: Energy Analysis - Levelized Cost of Energy Calculator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Levelized Cost of Energy Calculator Levelized Cost of Energy Calculator Transparent Cost Database Button The levelized cost of energy (LCOE) calculator provides a simple calculator for both utility-scale and distributed generation (DG) renewable energy technologies that compares the combination of capital costs, operations and maintenance (O&M), performance, and fuel costs. Note that this does not include financing issues, discount issues, future replacement, or degradation costs. Each of these would need to be included for a thorough analysis. To estimate simple cost of energy, use the slider controls or enter values directly to adjust the values. The calculator will return the LCOE expressed in cents per kilowatt-hour (kWh). The U.S. Department of Energy (DOE) Federal Energy Management Program

270

Ab-initio Reaction Calculations for Carbon-12 | Argonne Leadership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ab-initio Reaction Calculations for Carbon-12 Ab-initio Reaction Calculations for Carbon-12 The calculated density (red dots) is in excellent agreement with experimental data (solid curve). Steven Pieper Ab-initio Reaction Calculations for Carbon-12 PI Name: Steven C Pieper PI Email: spieper@anl.gov Institution: ANL Allocation Program: ESP Allocation Hours at ALCF: 110 Million Year: 2010 to 2013 Research Domain: Physics Researchers will calculate several fundamental properties of the 12C nucleus: the imaginary-time response, the one-body density matrix, and transition matrix elements between isospin- 0 and -1 states. These are needed to be able to reliably compute neutrino-12C scattering, which is needed for neutrino detector calibrations; quasi-elastic electron scattering, which is currently being measured at Jefferson Lab (JLab); and

271

Posters Comparisons of Brightness Temperature Measurements and Calculations Obtained  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Posters Comparisons of Brightness Temperature Measurements and Calculations Obtained During the Spectral Radiance Experiment Y. Han, J. B. Snider, and E. R. Westwater National Oceanic and Atmospheric Administration Environmental Research Laboratories/Environmental Technology Laboratory Boulder, Colorado S. H. Melfi National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland R. A. Ferrare Hughes STX Corporation Lanham, Maryland Introduction In radiometric remote sensing of the atmosphere, the ability to calculate radiances from underlying state variables is fundamental. To infer temperature and water vapor profiles from satellite- or ground-based radiometers, one must determine cloud-free regions and then calculate clear-sky radiance emerging from the top of the earth's

272

Numerical techniques for coupled neutronic/thermal-hydraulic reactor calculations  

SciTech Connect (OSTI)

The solution of coupled neutronic/thermal-hydraulic nuclear reactor calculations is achieved through an iterative procedure that treats the components of the calculations in a relatively decoupled fashion. This entails an alternation between the neutronic and thermal-hydraulic components of the calculation while using the most recent estimates of the neutron cross sections, as determined by the thermal-hydraulic feedback relationships. Although this decoupled approach is typically convergent, it has been demonstrated that the rate of convergence is quite inconsistent. As a result of these limitations, an effort has been directed toward the development of numerical techniques that more closely approximate a truly coupled solution.

Betts, C.M.; Kulas, M.M.; Klein, A.C. [Oregon State Univ., Corvallis, OR (United States)] [and others

1995-12-31T23:59:59.000Z

273

Relativistic calculations of electronic states of TeH  

Science Journals Connector (OSTI)

Relativistic configuration interaction calculations of five ?? states [3/2 1/2 1/2(II) 3/2(II) 5/2] of TeH are carried out. Comparison calculations of the 2? and 4? ?s states are also carried out with the objective of understanding the effect of spinorbit interaction on the electronic states of TeH. These calculations enable assignment of some of the experimentally observed spectra. The 1/2(II) 3/2(II) and 5/2 states exhibit interesting avoided crossings.

K. Balasubramanian; Ming Han; M. Z. Liao

1987-01-01T23:59:59.000Z

274

An electronic Hamiltonian for origin independent calculations of magnetic properties  

Science Journals Connector (OSTI)

A gauge origin independent formalism for the calculation of molecular magnetic properties is presented. Origin independence is obtained by using Londons gauge invariant atomic orbitals expanding the second quantization Hamiltonian in the external magnetic field and nuclear magnetic moments and using the resulting expansion terms as perturbation operators in response function calculations. To ensure orthonormality of the molecular orbitals a field?dependent symmetrical orthonormalization is employed. In this way the gauge dependence of the London orbitals is transferred to the Hamiltonian. The resulting perturbation operators may be used to calculate magnetic properties from any approximate a b i n i t i owave function.

Trygve Helgaker; Poul Jo/rgensen

1991-01-01T23:59:59.000Z

275

A brief comparison between grid based real space algorithms and spectrum algorithms for electronic structure calculations  

E-Print Network [OSTI]

factor for electronic structure calculations. However, onealgorithms for electronic structure calculations Lin-Wangmethod in electronic structure calculations. This is fueled

Wang, Lin-Wang

2008-01-01T23:59:59.000Z

276

A Constrained Optimization Algorithm for Total Energy Minimization in Electronic Structure Calculation  

E-Print Network [OSTI]

Functionals for Electronic Structure Calculations. J. Comp.Minimization in Electronic Structure Calculation ? ChaoKey words: electronic structure calculation, total energy

Yang, Chao; Meza, Juan C.; Wang, Lin-Wang

2005-01-01T23:59:59.000Z

277

Linearly Scaling 3D Fragment Method for Large-Scale Electronic Structure Calculations  

E-Print Network [OSTI]

for large scale electronic structure calculations. J. Phys.large-scale electronic struc- ture calculations. Phys. Rev.Large-Scale Electronic Structure Calculations Lin-Wang Wang,

Wang, Lin-Wang

2008-01-01T23:59:59.000Z

278

First principles calculation of material properties of group IV elements and III-V compounds  

E-Print Network [OSTI]

Kelly. Ab initio calculation of the electronic and opticalworkhorse for electronic structure calculations throughoutof the electronic structure calculations are presented in

Malone, Brad Dean

2012-01-01T23:59:59.000Z

279

The Linearly Scaling 3D Fragment Method for Large Scale Electronic Structure Calculations  

E-Print Network [OSTI]

large scale electronic structure calculations Zhengji Zhaoin [8]. 3. Electronic structure calculations for asymmetricd) initio electronic structure Pure CdS calculations. This

Zhao, Zhengji

2009-01-01T23:59:59.000Z

280

Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations  

E-Print Network [OSTI]

photoionization and electronic structure calculations. Olegand a number of electronic structure calculations. 9, 15-18and high-level electronic structure calculations. This work

Kostko, Oleg

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Accelerating Atomic Orbital-based Electronic Structure Calculation via Pole Expansion plus Selected Inversion  

E-Print Network [OSTI]

application to 2D electronic structure calculations, SIAM J.large-scale electronic-structure calculations, Europhys.large-scale electronic structure calculations, Phys. Rev. B

Lin, Lin

2012-01-01T23:59:59.000Z

282

Linear scaling 3D fragment method for large-scale electronic structure calculations  

E-Print Network [OSTI]

large-scale electronic structure calculations. Phys. Rev. B,for large scale electronic structure calculations. J. Phys.Large-Scale Electronic Structure Calculations Lin-Wang Wang,

Wang, Lin-Wang

2008-01-01T23:59:59.000Z

283

Electronic Structure Calculations on the Reaction of Vinyl Radical with Nitric Oxide  

Science Journals Connector (OSTI)

Electronic Structure Calculations on the Reaction of Vinyl Radical with Nitric Oxide ... Methyl isocyanate 19 is calculated to be the most stable isomer. ... Methods of Calculation ...

Raman Sumathi; Hue Minh Thi Nguyen; Minh Tho Nguyen; Jozef Peeters

2000-02-15T23:59:59.000Z

284

NERSC Calculations Provide Independent Confirmation of Global Land Warming  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calculations Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 September 9, 2013 | Tags: Climate Research, Hopper Contact: Jon Bashor, jbashor@lbl.gov, 510-486-5849 campo.jpg These maps show the changes in air temperatures over land as measured using thermometers (left side) and as calculated by the 20th Century Reanalysis project (left side). While more than 80 percent of the observed variation is captured by the computer model, the results show interesting differences in some regions such as the midwestern United States, Argentina and eastern Brazil. The differences may be due previously unrecognized issues with the pressure observations, variations in land use and land cover over time,

285

Natural Gas Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Natural Gas Vehicle Cost Calculator Natural Gas Vehicle Cost Calculator Jump to: navigation, search Tool Summary Name: Natural Gas Vehicle Cost Calculator Agency/Company /Organization: United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.afdc.energy.gov/afdc/vehicles/natural_gas_calculator.html Determine the costs to acquire and use a Natural Gas Vehicle (Honda Civic GX) as compared to a conventional vehicle.

286

Photovoltaics Economic Calculator (United States) | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Economic Calculator (United States) Photovoltaics Economic Calculator (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaics Economic Calculator (United States) Focus Area: Solar Topics: System & Application Design Website: instance.celadonapps.com/insolation/insolation.html Equivalent URI: cleanenergysolutions.org/content/photovoltaics-economic-calculator-uni Web-based tool that allows users to describe their solar system in detail and provides a detailed breakdown of power production and system economics. It uses the TMY2 solar data from the United States National Renewable Energy Laboratory's Renewable Resource Data Center. This model is appropriate for U.S.-based users, but it could also serve as an adaptable model example for other countries. References

287

Low Dose Radiation Research Program: Low-LET Microdosimetry Calculations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-LET Microdosimetry Calculations Low-LET Microdosimetry Calculations Authors: W.E. Wilson, J.H. Miller, D.J. Lynch, R.R. Lewis and M. Batdorf Institutions: Washington State University, Richland, WA, USA Liquid Model Calculations of low-linear-transfer (LET) microdosimetry have been extended to condensed phase by introducing new modules into the PITS code suite. Probability tables for inelastic interactions are constructed using the Dingfelder-GSF model for liquid-water cross-sections. Dingfelder et al. 1 re-evaluated low-energy electron interactions in liquid water in terms of five excitation and five ionization channels, and without assuming any collective interactions (plasmons). We use Dingfelder’s algorithms to calculate differential energy-loss distributions for the ten channels; by

288

Qualified Software for Calculating Commercial Building Tax Deducations |  

Broader source: Energy.gov (indexed) [DOE]

Qualified Software for Calculating Commercial Building Tax Qualified Software for Calculating Commercial Building Tax Deducations Qualified Software for Calculating Commercial Building Tax Deducations On this page you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements. To submit software for consideration to be added to this list, please read Requirements and Submission Process for Qualified Software. Qualified Software per IRS Notice 2006-52 as amplified by IRS Notice 2008-40, Section 4 The following software satisfies the requirements under Internal Revenue Service (IRS) Code §179D (c)(1) and (d) Regulations, Notice 2006-52 Section 6, dated June 2, 2006 as amplified by Notice 2008-40, Section 4. See the IRS requirements document for each version of software for details.

289

Renewable and Appropriate Energy Laboratory (RAEL) Green Jobs Calculator |  

Open Energy Info (EERE)

Renewable and Appropriate Energy Laboratory (RAEL) Green Jobs Calculator Renewable and Appropriate Energy Laboratory (RAEL) Green Jobs Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable and Appropriate Energy Laboratory (RAEL) Green Jobs Calculator Focus Area: Renewable Energy Topics: Policy Impacts Website: rael.berkeley.edu/greenjobs Equivalent URI: cleanenergysolutions.org/content/renewable-and-appropriate-energy-labo Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This tool is an analytical job calculator for the U.S. power sector. It can be used to estimate how many jobs energy efficiency, renewable energy, and other low-carbon energy options, such as nuclear power and carbon capture and sequestration (CCS), will generate depending on proposed energy

290

Building Energy Software Tools Directory: Construction R-value Calculator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Construction R-value Calculator Construction R-value Calculator This online calculator calculates the R-value of a large number of common wall and roof constructions given a specified level of insulation. It uses the isothermal planes method to account for thermal bridging of framing material. Keywords R-value, thermal bridging Validation/Testing N/A Expertise Required Basic understanding of construction details is required. Users Approximately 15,000 web hits per month, mainly from New Zealand. Audience Designers and architects, researchers, officials dealing with building regulations Input The user selects the appropriate wall and roof design details from a number of drop-down boxes and enters the R-value of the installed insulation product. Output The program displays the R-value achieved by the wall or roof construction

291

Calculating CO2 Emissions from Mobile Sources | Open Energy Information  

Open Energy Info (EERE)

Calculating CO2 Emissions from Mobile Sources Calculating CO2 Emissions from Mobile Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Calculating CO2 Emissions from Mobile Sources,GHG Protocol Agency/Company /Organization: Aether, Environmental Data Services, Aether, Environmental Data Services Sector: Energy Focus Area: GHG Inventory Development, Industry, Transportation Topics: GHG inventory, Potentials & Scenarios Resource Type: Guide/manual Complexity/Ease of Use: Not Available Website: cf.valleywater.org/Water/Where_Your_Water_Comes_From/Water%20Supply%20 Cost: Free References: http://cf.valleywater.org/Water/Where_Your_Water_Comes_From/Water%20Supply%20and%20Infrastructure%20Planning/Climate%20Change/Guidance_for_mobile_emissions_GHG_protocol.pdf Related Tools Tool and Calculator (Transit, Fuel)

292

Energy Savings Calculator for Commercial Boilers: Closed Loop, Space  

Broader source: Energy.gov (indexed) [DOE]

Savings Calculator for Commercial Boilers: Closed Loop, Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only October 8, 2013 - 2:23pm Addthis This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable fluid type? Water Steam What fuel is used? Gas Oil How many boilers will you purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtu/hr* What is the thermal efficiency of the existing boiler? % Et New What is the capacity of the new boiler?

293

Powered by 500 Trillion Calculations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Powered by 500 Trillion Calculations Powered by 500 Trillion Calculations Powered by 500 Trillion Calculations April 15, 2011 - 5:31pm Addthis Blood flow visualization | Photo Courtesy of Argonne National Laboratory Blood flow visualization | Photo Courtesy of Argonne National Laboratory Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? Argonne's supercomputer is using its superpowers to map the movement of red blood cells -- which will hopefully lead to better diagnoses and treatments for patients with blood flow complications. With the power of 500 trillion calculations per second, a team of scientists from the Department of Energy's Argonne National Laboratory (ANL) and Brown University are mapping the movement of red blood cells -- hoping this will lead to better diagnoses and treatments for patients with

294

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Large Scale Quantum-mechanical Calculations of Proteins, Nanomaterials and Other Large Systems Event Sponsor: Leadership Computing Facility Seminar Start Date: Dec 5 2013 - 2:00pm Building/Room: Building 240/Room 4301 Location: Argonne National Laboratory Speaker(s): Dmitri G. Fedorov Speaker(s) Title: National Institute of Advanced Industrial Science and Technology (AIST) Host: Yuri Alexeev Our approach to large scale calculations is based on fragmenting a molecular system into pieces, and performing quantum-mechanical calculations of these fragments and their pairs in the fragment molecular orbital method (FMO). After a brief summary of the methodology, some typical applications to protein-ligand complexes, chemical reactions in explicit solvent, and nanomaterials (silicon nanowires, zeolites.

295

Flexible Fuel vehicle cost calculator | Open Energy Information  

Open Energy Info (EERE)

Flexible Fuel vehicle cost calculator Flexible Fuel vehicle cost calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Flexible Fuel Vehicle Cost Calculator Agency/Company /Organization: United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.afdc.energy.gov/afdc/progs/cost_anal.php?0/E85 Calculate the cost to drive a flex-fueled vehicle (one that can run on either E85 Ethanol or gasoline) on each fuel type.

296

Normal Vibration Calculations for Iron Tris(acetylacetonate)  

Science Journals Connector (OSTI)

The frequencies, shapes, and intensities of the absorption bands in IR spectrum of Fe(Acac)3 complex are calculated. The experimental data are adequately described using the force constants suggested for the comp...

S. N. Slabzhennikov; O. B. Ryabchenko

2003-07-01T23:59:59.000Z

297

Utility Cost Calculation Example? | OpenEI Community  

Open Energy Info (EERE)

Utility Cost Calculation Example? Home > Groups > Utility Rate Allandaly's picture Submitted by Allandaly(24) Member 13 May, 2014 - 11:59 Hi again, Thank you for your help so far....

298

AIM: Web-Based, Residential Energy Calculator for Homeowners  

E-Print Network [OSTI]

This paper discusses AIM, or Assess, Improve, Measure. AIM is an energy efficiency calculator for existing residences that has been developed to provide homeowners, realtors and builders with a method to rate the energy efficiency of an existing...

Marshall, K.; Moss, M.; Liu, B.; Culp, C.; Haberl, J.; Herbert, C.

299

Ray tracing and amplitude calculation in anisotropic layered media  

Science Journals Connector (OSTI)

......amplitude calculation in anisotropic layered media M. Sadri...0.3 for moderately anisotropic rocks to 0.3-0...higher for compacted shale formations (Thomsen...Thomsen's (1986) anisotropic parameters were defined......

M. Sadri; M. A. Riahi

2010-03-01T23:59:59.000Z

300

Trends in high-performance computing for engineering calculations  

Science Journals Connector (OSTI)

...James DeBonis Trends in high-performance computing for engineering calculations...and the environment . High-performance computing has evolved remarkably...application developers. high-performance computing|multicore|manycore...

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

HVAC Right-Sizing Part 1: Calculating Loads  

Broader source: Energy.gov [DOE]

This webinar, presented by IBACOS (a Building America Research Team) will highlight the key criteria required to create accurate heating and cooling load calculations, following the guidelines of the Air Conditioning Contractors of America (ACCA) Manual J version 8

302

Shell-Model Analysis for Brueckner Calculations in Light Nuclei  

Science Journals Connector (OSTI)

Brueckner self-consistent calculations are performed for O16, H3, and He4 nuclei with various modern hard-core interactions. Elements of the G matrix are calculated by the reference-spectrum method, while Q-1 corrections are made by matrix inversion in the proper single-particle space. Thus, it is not assumed that Q commutes with the center-of-mass motion. The prescription for selecting the appropriate spectrum of single-particle excited states is investigated by comparing results of the Brueckner method with other calculations. These comparisons indicate that the particle spectrum should be left unperturbed. One then finds that the Hamada-Johnston, Yale, and Reid (hard-core) interactions yield about one half the binding energy of O16. The calculated results are dissected into shell-model components. This analysis indicates that the short-range part of the hard-core interaction is too strongly repulsive.

Ram K. Tripathi and Paul Goldhammer

1972-07-01T23:59:59.000Z

303

arXiv:nuclth/0111056 MODERN SHELL-MODEL CALCULATIONS  

E-Print Network [OSTI]

of this approach, we have also performed calculations within the framework of the usual Brueckner G of the Brueckner G matrix has become feasible while the so-called folded- diagram series for the e#11;ective

Itaco, Nunzio

304

Calculation of the Limiting CESSAR Steam Line Break Transients  

Science Journals Connector (OSTI)

Argonne National Laboratory (ANL), under contract to the Nuclear Regulatory Commission, performed audit calculations of the limiting and Steam Line Break (SLB) [1] transient presented in the CESSAR FSAR. The r...

G. B. Peeler; D. L. Caraher; J. Guttmann

1984-01-01T23:59:59.000Z

305

Calculations of Microdosimetric Spectra for Low Energy Neutrons  

Science Journals Connector (OSTI)

......microdosimetric spectra for low energy neutrons have been...and non-elastic nuclear reaction channels...calculations for low energy neutrons have been...build-up caps on the nuclear reactions which contribute to the energy deposition and ionisation......

J.J. Coyne; R.S. Caswell; J. Zoetelief; B.R.L. Siebert

1990-06-01T23:59:59.000Z

306

A nondiagrammatic calculation of the Rho parameter from heavy fermions  

E-Print Network [OSTI]

A simple nondiagrammatic evaluation of the nondecoupling effect of heavy fermions on the Veltman's Rho parameter is presented in detail. This calculation is based on the path integral approach, the electroweak chiral Lagrangian formalism, and the Schwinger proper time method.

Hong-Hao Zhang

2009-11-21T23:59:59.000Z

307

Qualified Software for Calculating Commercial Building Tax Deductions  

Broader source: Energy.gov [DOE]

On this page you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements. To submit software for...

308

Calculation of performance characteristics and partial load behaviour  

Science Journals Connector (OSTI)

Calculating the forces and the relative velocities at the rotor blades for tip speed ratios other than the design tip speed ratio requires a substantial effort. In the following a method is described which is ...

Prof. Dr.-Ing. Robert Gasch; Prof. Dr.-Ing. Jochen Twele

2012-01-01T23:59:59.000Z

309

Form 1410 FR.14 Instructions Internal Service Providers: Rate Calculation  

E-Print Network [OSTI]

expenses, including expenditure types. Annualize the #12;Form 1410 FR.14 Instructions ISP Rate Calculation it exceeds 60 days of operating capital) or unplanned federal deficit into (B4). This amount will populate, by expenditure type, of t

310

Calculation of Accurate Hexagonal Discontinuity Factors for PARCS  

SciTech Connect (OSTI)

In this study we derive a methodology for calculating discontinuity factors consistent with the Triangle-based Polynomial Expansion Nodal (TPEN) method implemented in PARCS for hexagonal reactor geometries. The accuracy of coarse-mesh nodal methods is greatly enhanced by permitting flux discontinuities at node boundaries, but the practice of calculating discontinuity factors from infinite-medium (zero-current) single bundle calculations may not be sufficiently accurate for more challenging problems in which there is a large amount of internodal neutron streaming. The authors therefore derive a TPEN-based method for calculating discontinuity factors that are exact with respect to generalized equivalence theory. The method is validated by reproducing the reference solution for a small hexagonal core.

Pounders. J., Bandini, B. R. , Xu, Y, and Downar, T. J.

2007-11-01T23:59:59.000Z

311

A variational calculation of the trapping rate in thermal barriers  

Science Journals Connector (OSTI)

A variational calculation of the trapping rate and trapped-ion density in thermal barriers is presented. The effects of diffusion in energy as well as pitch-angle scattering are retained. The variational formulation uses the actual trapped/passing boundary in velocity space. The boundary condition is that the trapped-ion distribution function match the passing-ion distribution function, which is taken to be a Maxwellian, on the boundary. The results compare well with the two-dimensional Fokker-Planck code calculations by Futch and LoDestro. The CPU time for a variational calculation is less than 0.1 s using the CRAY-I computer, while a typical Fokker-Planck code calculation takes 1020 min.

X.Z. Li; G.A. Emmert

1984-01-01T23:59:59.000Z

312

STATE OF CALIFORNIA AREA WEIGHTED AVERAGE CALCULATION WORKSHEET: RESIDENTIAL  

E-Print Network [OSTI]

be used to calculate weight-averaged U-factors or averaged SHGC values for prescriptive envelope of window (the SHGC values of skylights cannot be averaged per §151(f)4A). a. "Area" can be replaced

313

Efficient modeling techniques for atomistic-based electronic density calculations  

Science Journals Connector (OSTI)

This paper presents an effective combination of various modeling and numerical techniques for enabling fast large-scale first-principle electronic density calculations. Areal-space mesh technique framework is...

Deyin Zhang; Eric Polizzi

2008-09-01T23:59:59.000Z

314

Calculations of the electronic structure of doped Buckminsterfullerene  

Science Journals Connector (OSTI)

Molecular cluster calculations within the local density approximation have been performed in a study of the electronic structure of theC 60 molecule Buckminsterfullerene doped with different a...

D. stling; A. Rosn

1993-01-01T23:59:59.000Z

315

Arc Flash Boundary Calculations Using Computer Software Tools  

SciTech Connect (OSTI)

Arc Flash Protection boundary calculations have become easier to perform with the availability of personal computer software. These programs incorporate arc flash protection boundary formulas for different voltage and current levels, calculate the bolted fault current at each bus, and use built in time-current coordination curves to determine the clearing time of protective devices in the system. Results of the arc flash protection boundary calculations can be presented in several different forms--as an annotation to the one-line diagram, as a table of arc flash protection boundary distances, and as printed placards to be attached to the appropriate equipment. Basic arc flash protection boundary principles are presented in this paper along with several helpful suggestions for performing arc flash protection boundary calculations.

Gibbs, M.D.

2005-01-07T23:59:59.000Z

316

Simulation Calculation on Solar Chimney Power Plant System  

Science Journals Connector (OSTI)

It is unpractical to establish a Solar Chimney Power Plant System (SCPPS) used to ... flow field of the SCPPS which caused by solar radiation intensity have been analyzed. The calculated ... as well as the differ...

HuiLan Huang; Hua Zhang; Yi Huang; Feng Lu

2007-01-01T23:59:59.000Z

317

EPA Rainfall Erosivity Factor Calculator Website | Open Energy...  

Open Energy Info (EERE)

Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Rainfall Erosivity Factor Calculator Website Abstract This website allows the developer to...

318

D0 Silicon Upgrade: Control Dewar Valve Calculations  

SciTech Connect (OSTI)

This engineering note documents the calculations that were done to support the valve size selection for the magnet flow control valve, EVMF in the solenoid control dewar. The size selected was a control valve with a Cv = 0.32.

Rucinski, Russ; /Fermilab

1995-10-20T23:59:59.000Z

319

A Look Inside the Cash Flow Opportunity Calculator FINAL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Look Inside the Cash Flow Opportunity (CFO) Calculator: A Look Inside the Cash Flow Opportunity (CFO) Calculator: Calculations and Methodology Background The Cash Flow Opportunity (CFO) Calculator was developed to address the "we don't have the money" objection that many organizations face when trying to implement energy efficiency projects, and to help facility managers translate energy savings into "financial speak." It is the result of proven field experiences that have been used to sell energy efficiency projects to decision-makers around the country. It uses simple financial arguments familiar to all financial managers. This document was prepared in response to numerous requests by users to show the calulations at work behind the worksheets. It will explain the logic behind each worksheet and the reason why the worksheet is included in the package.

320

Energy Cost Calculator for Urinals | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Urinals Urinals Energy Cost Calculator for Urinals October 8, 2013 - 2:38pm Addthis Vary water cost, frequency of operation, and /or efficiency level. INPUT SECTION This calculator assumes that early replacement of a urinal or toilet will take place with 10 years of life remaining for existing fixture. Input the following data (if any parameter is missing, calculator will set to default value). Defaults Water Saving Product Urinal Urinal Gallons per Flush gpf 1.0 gpf Quantity to be Purchased 1 Water Cost (including waste water charges) $/1000 gal $4/1000 gal Flushes per Day flushes 30 flushes Days per Year days 260 days Calculate Reset OUTPUT SECTION Performance per Your Choice Typical Existing Unit Recommended Level (New Unit) Best Available

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A computer program for HVDC converter station RF noise calculations  

SciTech Connect (OSTI)

HVDC converter station operations generate radio frequency (RF) electromagnetic (EM) noise which could interfere with adjacent communication and computer equipment, and carrier system operations. A generic Radio Frequency Computer Analysis Program (RAFCAP) for calculating the EM noise generated by valve ignition of a converter station has been developed as part of a larger project. The program calculates RF voltages, currents, complex power, ground level electric field strength and magnetic flux density in and around an HVDC converter station. The program requires the converter station network to be represented by frequency dependent impedance functions. Comparisons of calculated and measured values are given for an actual HVDC station to illustrate the validity of the program. RAFCAP is designed to be used by engineers for the purpose of calculating the RF noise produced by the igniting of HVDC converter valves.

Kasten, D.G.; Caldecott, R.; Sebo, S.A. (Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering); Liu, Y. (Virginia Polytechnic Inst. State Univ., Blacksburg, VA (United States). Bradley Dept. of Electrical Engineering)

1994-04-01T23:59:59.000Z

322

Scoping calculations of power sources for nuclear electric propulsion  

SciTech Connect (OSTI)

This technical memorandum describes models and calculational procedures to fully characterize the nuclear island of power sources for nuclear electric propulsion. Two computer codes were written: one for the gas-cooled NERVA derivative reactor and the other for liquid metal-cooled fuel pin reactors. These codes are going to be interfaced by NASA with the balance of plant in order to making scoping calculations for mission analysis.

Difilippo, F.C. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

1994-05-01T23:59:59.000Z

323

Improved load models for multi-area reliability calculations  

E-Print Network [OSTI]

IMPROVED LOAD MODELS FOR MULTI-AREA RELIABILITY CALCULATIONS A Thesis by SANJESH PATHAK Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1992 Major Subject: Electrical Engineering IMPROVED LOAD MODELS FOR MULTI-AREA RELIABILITY CALCULATIONS A Thesis by SAN JESH PATHAK Approved as to style and content by: Chanan Singh (Chair of Committee) Prasad Enjeti (Member) Ces . Mal, e...

Pathak, Sanjesh

1992-01-01T23:59:59.000Z

324

Basis functions for electronic structure calculations on spheres  

E-Print Network [OSTI]

We introduce a new basis function (the spherical gaussian) for electronic structure calculations on spheres of any dimension $D$. We find \\alert{general} expressions for the one- and two-electron integrals and propose an efficient computational algorithm incorporating the Cauchy-Schwarz bound. Using numerical calculations for the $D = 2$ case, we show that spherical gaussians are more efficient than spherical harmonics when the electrons are strongly localized.

Gill, Peter M W; Agboola, Davids

2014-01-01T23:59:59.000Z

325

Statewide Air Emissions Calculations from Wind and Other Renewable  

E-Print Network [OSTI]

ESL-TR-13-07-01 STATEWIDE AIR EMISSIONS CALCULATIONS FROM WIND AND OTHER RENEWABLES SUMMARY REPORT A Report to the Texas Commission on Environmental Quality For the Period September 2012 July 2013 Jeff Haberl... report, Statewide Emissions Calculations From Wind and Other Renewables, as required by the 79th Legislature. This work has been performed through a contract with the Texas Environmental Research Consortium (TERC). In this work the ESL is required...

Haberl, Jeff; Baltazar, Juan Carlos; Bahman, Yazdani; Claridge, David; Mao, Chunliu; Sandeep, Kota

326

Density Calculation of Sugar Solutions with the SAFT Model  

Science Journals Connector (OSTI)

Density Calculation of Sugar Solutions with the SAFT Model ... The density calculation has been carried out by applying statistical associating fluid theory (SAFT) equations of state. ... This new method made use of critical temperature, pressure, and volume as well as normal boiling temperature to determine the SAFT parameters for sugars and is now extended to determine the SAFT parameters for d-xylose, sucrose, and sorbitol. ...

Peijun Ji; Wei Feng; Tianwei Tan

2006-12-05T23:59:59.000Z

327

A Comparison Between Calculated and Measured SHGC For Complex Fenestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison Between Calculated and Measured SHGC For Complex Fenestration Comparison Between Calculated and Measured SHGC For Complex Fenestration Systems Title A Comparison Between Calculated and Measured SHGC For Complex Fenestration Systems Publication Type Conference Paper LBNL Report Number LBL-37037 Year of Publication 1995 Authors Klems, Joseph H., Jeffrey L. Warner, and Guy O. Kelley Conference Name ASHRAE Transactions Volume 102, Part 1 Date Published 02/1996 Conference Location Atlanta, GA Call Number LBL-37037 Abstract Calorimetric measurements of the dynamic net heat flow through a complex fenestration system consisting of a buff venetian blind inside clear double glazing are used to derive the direction-dependent beam SHGC of the fenestration. These measurements are compared with calculations according to a proposed general method for deriving complex fenestration system SHGCs from bidirectional layer optical properties and generic calorimetric properties. Previously published optical measurements of the same venetian blind and generic inward-flowing fraction measurements are used in the calculation. The authors find satisfactory agreement between the SHGC measurements and the calculation.

328

Iterative acceleration methods for Monte Carlo and deterministic criticality calculations  

SciTech Connect (OSTI)

If you have ever given up on a nuclear criticality calculation and terminated it because it took so long to converge, you might find this thesis of interest. The author develops three methods for improving the fission source convergence in nuclear criticality calculations for physical systems with high dominance ratios for which convergence is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic Acceleration (FDSA) Method are acceleration methods that speed fission source convergence for both Monte Carlo and deterministic methods. The third method is a hybrid Monte Carlo method that also converges for difficult problems where the unaccelerated Monte Carlo method fails. The author tested the feasibility of all three methods in a test bed consisting of idealized problems. He has successfully accelerated fission source convergence in both deterministic and Monte Carlo criticality calculations. By filtering statistical noise, he has incorporated deterministic attributes into the Monte Carlo calculations in order to speed their source convergence. He has used both the fission matrix and a diffusion approximation to perform unbiased accelerations. The Fission Matrix Acceleration method has been implemented in the production code MCNP and successfully applied to a real problem. When the unaccelerated calculations are unable to converge to the correct solution, they cannot be accelerated in an unbiased fashion. A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calculation to overcome these deficiencies. The Hybrid method additionally possesses reduced statistical errors.

Urbatsch, T.J.

1995-11-01T23:59:59.000Z

329

A Linear Scaling Three Dimensional Fragment Method for Large Scale Electronic Structure Calculations  

E-Print Network [OSTI]

large scale electronic structure calculations Lin-Wang Wang,total energy electronic structure calculation method, which

Wang, Lin-Wang; Zhao, Zhengji; Meza, Juan

2008-01-01T23:59:59.000Z

330

A Linear Scaling Three Dimensional Fragment Method for Large Scale Electronic Structure Calculations  

E-Print Network [OSTI]

large scale electronic structure calculations Lin-Wang Wang,total energy electronic structure calculation method, which

Wang, Lin-Wang

2010-01-01T23:59:59.000Z

331

Calculation of size for bound-state constituents  

E-Print Network [OSTI]

Elements are given of a calculation that identifies the size of a proton in the Schroedinger equation for lepton-proton bound states, using the renormalization group procedure for effective particles (RGPEP) in quantum field theory, executed only up to the second order of expansion in powers of the coupling constant. Already in this crude approximation, the extraction of size of a proton from bound-state observables is found to depend on the lepton mass, so that the smaller the lepton mass the larger the proton size extracted from the same observable bound-state energy splitting. In comparison of Hydrogen and muon-proton bound-state dynamics, the crude calculation suggests that the difference between extracted proton sizes in these two cases can be a few percent. Such values would match the order of magnitude of currently discussed proton-size differences in leptonic atoms. Calculations using the RGPEP of higher order than second are required for a precise interpretation of the energy splittings in terms of the proton size in the Schroedinger equation. Such calculations should resolve the conceptual discrepancy between two conditions: that the renormalization group scale required for high accuracy calculations based on the Schroedinger equation is much smaller than the proton mass (on the order of a root of the product of reduced and average masses of constituents) and that the energy splittings due to the physical proton size can be interpreted ignoring corrections due to the effective nature of constituents in the Schr\\"odinger equation.

Stanislaw D. Glazek

2014-06-01T23:59:59.000Z

332

Sminaire Farman (31 mars 2011) : Calcul Intensif Titre : Le centre de calcul de Bruyres le Chtel, moyens et applications (Daniel Bouche)  

E-Print Network [OSTI]

Séminaire Farman (31 mars 2011) : Calcul Intensif Titre : Le centre de calcul de Bruyères le Châtel

333

Energy Cost Calculator for Compact Fluorescent Lamps | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Compact Fluorescent Lamps Compact Fluorescent Lamps Energy Cost Calculator for Compact Fluorescent Lamps October 8, 2013 - 2:18pm Addthis This tool calculates the payback period for your calc retrofit project. Modify the default values to suit your project requirements. Existing incandescent lamp wattage Watts Incandescent lamp cost dollars Incandescent lamp life 1000 hours calc wattage Watts calc cost dollars calc life (6000 hours for moderate use, 10000 hours for high use) 8000 hours Number of lamps in retrofit project Hours operating per week hours Average cost of electricity 0.06 $/kWh Relamper labor costs $/hr Time taken to retrofit all lamps in this project min Time taken to relamp one lamp min Type of Relamping Practiced: Group Relamping: Calculate Simple Payback Period months

334

Building Technologies Office: Qualified Software for Calculating Commercial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Qualified Software for Calculating Commercial Building Tax Deductions Qualified Software for Calculating Commercial Building Tax Deductions On this page you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements. To submit software for consideration to be added to this list, please read Requirements and Submission Process for Qualified Software. Qualified Software per IRS Notice 2006-52 as amplified by IRS Notice 2008-40, Section 4 The following software satisfies the requirements under Internal Revenue Service (IRS) Code §179D (c)(1) and (d) Regulations, Notice 2006-52 Section 6, dated June 2, 2006 as amplified by Notice 2008-40, Section 4. See the IRS requirements document for each version of software for details.

335

Federal Energy Management Program: Energy and Cost Savings Calculators for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Cost Savings Calculators for Energy-Efficient Products and Cost Savings Calculators for Energy-Efficient Products The energy and cost calculators below allow Federal agencies to enter their own input values (such as utility rates, hours of use) to estimate energy and cost savings for energy-efficient products. Some are Web-based tools; others are Excel spreadsheets provided by ENERGY STAR® for download. Lighting Compact Fluorescent Lamps Exit Signs Commercial and Industrial Equipment Commercial Unitary Air Conditioners Air-Cooled Chillers Commercial Heat Pumps Boilers Food Service Equipment Dishwashers Freezers Fryers Griddles Hot Food Holding Cabinets Ovens Refrigerators Steam Cookers Ice Machines Office Equipment Computers, Monitors, and Imaging Equipment Appliances Dishwashers Clothes Washers Residential Equipment Central Air Conditioners

336

Energy Cost Calculator for Faucets and Showerheads | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Faucets and Showerheads Faucets and Showerheads Energy Cost Calculator for Faucets and Showerheads October 8, 2013 - 2:35pm Addthis Vary utility cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to the default value). Defaults Water Saving Product Faucet Showerhead Faucet Showerhead Flow Rate gpm 2.2 gpm 2.5 gpm Water Cost (including waste water charges) $/1000 gal $4/1000 gal $4/1000 gal Gas Cost $/therm 0.60 $/therm 0.60 $/therm Electricity Cost $/kWh 0.06 $/kWh 0.06 $/kWh Minutes per Day of Operation minutes 30 minutes 20 minutes Days per Year of Operation days 260 days 365 days Quantity to be Purchased unit(s) 1 unit 1 unit Calculate Reset

337

Load Balancing Of Parallel Monte Carlo Transport Calculations  

National Nuclear Security Administration (NNSA)

Load Balancing Of Parallel Load Balancing Of Parallel Monte Carlo Transport Calculations R.J. Procassini, M. J. O'Brien and J.M. Taylor Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551 The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since the particle work load varies over the course of the simulation, each cycle this algorithm determines if dynamic load balancing would speed up the calculation. If load balancing is required, a small number of particle communications are initiated in order to achieve load balance. This method has decreased the parallel run time by more than a factor of three for certain criticality

338

UC Berkley Green Jobs Calculator | Open Energy Information  

Open Energy Info (EERE)

UC Berkley Green Jobs Calculator UC Berkley Green Jobs Calculator Jump to: navigation, search Tool Summary Name: UC Berkeley Green Jobs Calculator Agency/Company /Organization: UC Berkeley Renewable and Appropriate Energy Laboratory Phase: Create a Vision, "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property., "Perpare a Plan" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property.

339

Electron Band Structure of Solid Methane: Ab Initio Calculations  

Science Journals Connector (OSTI)

The band structure of crystalline methane has been calculated in a linear-combination-of-molecular-orbitals approximation. In this molecular tight-binding method the Bloch sums are built up of Hartree-Fock orbitals of the free molecules. Interactions between the states of different molecules are calculated directly from molecular integrals without reducing the exchange interaction to an exchange potential. The approximations involved are shown to be well justified for a crystal made of closed-shell units. The band structure is obtained by solving secular equation in 400 points along the relevant symmetry lines. The calculated bands are relatively narrow, less than 2.5 eV wide, around the molecular levels. The band-to-band gap in solid methane is 24.5 eV. This value has the same order of magnitude as in solid rare gases.

Lucjan Piela; Luciano Pietronero; Raffaele Resta

1973-06-15T23:59:59.000Z

340

Calculations for methane scattering from LiF(001)  

Science Journals Connector (OSTI)

Calculations are presented for the scattering of CH4 molecules from a LiF(001) surface. The theory utilized is a mixed classical-quantum model that includes energy and momentum transfers between the surface and projectile for translational and rotational motions as well as internal mode excitation of the projectile molecule. The translation and rotation motions, including multiphonon excitations with the surface, are treated with classical dynamics. Internal vibrational mode excitation of the molecules is treated quantum mechanically with extension to arbitrary numbers of modes and arbitrary excitation quantum numbers. The results of calculations are compared with recent high-precision measurements of the scattering of CH4 molecules from clean, ordered LiF(001). The calculated results for energy-resolved spectra and for the angular distributions are in good agreement with experiment.

Iryna Moroz and J. R. Manson

2004-05-19T23:59:59.000Z

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Calculations allow program to design pipelines for waxy crude--  

SciTech Connect (OSTI)

This article reports that calculations have been derived which will permit writing of a computer program for design of a pipeline handling Newtonian, pseudoplastic, or yield-pseudoplastic crudes. Statistical analysis was used to find out the variation of rheological behavior with operating temperatures and wax content in various Saudi oils. The evaluation was carried out at a statistical confidence level of 95%. Experimental data were correlated with respect to power-law and Herschel-Bulkey law. The pipeline design calculations were carried out through a computer program. The friction factor was determined from Torrance's correlation and Dodge and Metzner correlation for yield-pseudoplastic and pseudoplastic fluids, respectively. The frictional pressure drop was calculated from Darcy-Weisbach equation.

Al-Fariss, T.F.; Desouky, S.E.M. (King Saud Univ., Riyadh, (SA))

1990-01-08T23:59:59.000Z

342

Automated One-Loop Calculations with GoSam  

E-Print Network [OSTI]

We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop.

Gavin Cullen; Nicolas Greiner; Gudrun Heinrich; Gionata Luisoni; Pierpaolo Mastrolia; Giovanni Ossola; Thomas Reiter; Francesco Tramontano

2011-11-08T23:59:59.000Z

343

Simple program calculates partial liquid volumes in vessels  

SciTech Connect (OSTI)

This paper reports on a simple calculator program which solves problems of partial liquid volumes for a variety of storage and process vessels, including inclined cylindrical vessels and those with conical heads. Engineers in the oil refining and chemical industries are often confronted with the problem of estimating partial liquid volumes in storage tanks or process vessels. Cistern, the calculator program presented here, allows fast and accurate resolution of problems for a wide range of vessels without user intervention, other than inputting the problem data. Running the program requires no mathematical skills. Cistern is written for Hewlett-Packard HP 41CV or HP 41CX programmable calculators (or HP 41C with extended memory modules).

Koch, P.

1992-04-13T23:59:59.000Z

344

Energy Department Report Calculates Emissions and Costs of Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Report Calculates Emissions and Costs of Power Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling. Grid operators typically cycle power plants to accommodate fluctuations in

345

Energy Department Report Calculates Emissions and Costs of Power Plant  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Report Calculates Emissions and Costs of Power Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West Energy Department Report Calculates Emissions and Costs of Power Plant Cycling Necessary for Increased Wind and Solar in the West September 24, 2013 - 10:08am Addthis A new report released today by the Energy Department's National Renewable Energy Laboratory (NREL) examines the potential impacts of increasing wind and solar power generation on the operators of coal and gas plants in the West. To accommodate higher amounts of wind and solar power on the electric grid, utilities must ramp down and ramp up or stop and start conventional generators more frequently to provide reliable power for their customers - a practice called cycling.

346

Energy Cost Calculator for Commercial Ice Machines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ice Machines Ice Machines Energy Cost Calculator for Commercial Ice Machines October 8, 2013 - 2:25pm Addthis Vary capacity size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Ice Cube Machine Ice Making Head Self-Contained Remote Condensing Unit Ice Making Head Type of Condenser Air Cooled Water Cooled Air Cooled Ice Harvest Rate (lbs. ice per 24 hrs.) lbs. per 24 hrs. 500 lbs. per 24 hrs. Energy Consumption (per 100 lbs. of ice) kWh 5.5 kWh Quantity of ice machines to be purchased 1 Energy Cost $/kWh 0.06 $/kWh Annual Hours of Operation hrs. 3000 hrs. Calculate Reset OUTPUT SECTION Performance per Ice Cube Machine Your

347

Transport Co-benefits Calculator | Open Energy Information  

Open Energy Info (EERE)

Transport Co-benefits Calculator Transport Co-benefits Calculator Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Transport Co-benefits Calculator Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Climate, Energy Complexity/Ease of Use: Moderate Website: www.iges.or.jp/en/archive/cp/activity20101108.html Cost: Free Related Tools Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool SimCLIM SEAGA Intermediate Level Handbook ... further results Characterizes co-benefits in terms of accidents, emissions, travel time, and vehicle operating costs. Approach A co-benefits approach capitalizes on synergies between current local

348

NREL-Levelized Cost of Energy Calculator | Open Energy Information  

Open Energy Info (EERE)

NREL-Levelized Cost of Energy Calculator NREL-Levelized Cost of Energy Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Simple Cost of Energy Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Non-renewable Energy, Biomass, Geothermal, Hydrogen, Solar, Water Power, Wind Phase: Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Create Early Successes, Evaluate Effectiveness and Revise as Needed Topics: Finance, Market analysis, Technology characterizations Resource Type: Software/modeling tools User Interface: Website Website: www.nrel.gov/analysis/tech_lcoe.html Web Application Link: www.nrel.gov/analysis/tech_lcoe.html OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools

349

Evaluation and validation of criticality codes for fuel dissolver calculations  

SciTech Connect (OSTI)

During the past ten years an OECD/NEA Criticality Working Group has examined the validity of criticality safety computational methods. International calculation tools which were shown to be valid in systems for which experimental data existed were demonstrated to be inadequate when extrapolated to fuel dissolver media. The spread of the results in the international calculation amounted to {plus minus} 12,000 pcm in the realistic fuel dissolver exercise n{degrees} 19 proposed by BNFL, and to {plus minus} 25,000 pcm in the benchmark n{degrees} 20 in which fissile material in solid form is surrounded by fissile material in solution. A theoretical study of the main physical parameters involved in fuel dissolution calculations was performed, i.e. range of moderation, variation of pellet size and the fuel double heterogeneity effect. The APOLLO/P{sub IC} method developed to treat latter effect, permits us to supply the actual reactivity variation with pellet dissolution and to propose international reference values. The disagreement among contributors' calculations was analyzed through a neutron balance breakdown, based on three-group microscopic reaction rates solicited from the participants. The results pointed out that fast and resonance nuclear data in criticality codes are not sufficiently reliable. Moreover the neutron balance analysis emphasized the inadequacy of the standard self-shielding formalism (NITAWL in the international SCALE package) to account for {sup 238}U resonance mutual self-shielding in the pellet-fissile liquor interaction. Improvements in the up-dated 1990 contributions, as do recent complementary reference calculations (MCNP, VIM, ultrafine slowing-down CGM calculation), confirm the need to use rigorous self-shielding methods in criticality design-oriented codes. 6 refs., 11 figs., 3 tabs.

Santamarina, A.; Smith, H.J. (CEA Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France)); Whitesides, G.E. (Oak Ridge National Lab., TN (United States))

1991-01-01T23:59:59.000Z

350

Introduction to the Cash Flow Opportunity Calculator Spreadsheet | ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Cash Flow Opportunity Calculator Spreadsheet the Cash Flow Opportunity Calculator Spreadsheet Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories

351

Financial Value Calculator | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financial Value Calculator Financial Value Calculator Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

352

Brueckner-Bethe calculation with a separable Argonne ?14 interaction  

Science Journals Connector (OSTI)

The binding energy of nuclear matter is calculated in the framework of the Brueckner-Bethe-Goldstone formalism at the two-hole line level of approximation, with the Gamow separable representation of the Argonne ?14 potential. The results are compared with the ones obtained from the original local potential in the gap choice. The agreement is around 2% for the total potential energy per particle, while for some individual channel the agreement is slightly worse, not exceeding 5 %. The same calculation made within the continuous choice is very close to the result obtained with the Paris potential, thus confirming the equivalent behaviour of the two potentials in many practical applications.

M. Baldo; L.S. Ferreira

1991-01-01T23:59:59.000Z

353

Reviewing model calculations of the Collins fragmentation function  

SciTech Connect (OSTI)

The Collins fragmentation function describes a left/right asymmetry in the fragmentation of a transversely polarized quark into a hadron in a jet. Four different model calculations of the Collins function have been presented in the literature. While based on the same concepts, they lead to different results and, in particular, to different signs for the Collins function. The purpose of the present work is to review the features of these models and correct some errors made in previous calculations. A full study of the parameter dependence and the possible modifications to these models is beyond the scope of the paper. However, some general conclusions are draw000.

Amrath, Daniela [Institut fuer Theoretische Physik II, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Deutsches Elektronen-Synchroton DESY, D-22603 Hamburg (Germany); Bacchetta, Alessandro [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany); Metz, Andreas [Institut fuer Theoretische Physik II, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

2005-06-01T23:59:59.000Z

354

Photo-Ionization of Lithium: A Many-Body Calculation  

Science Journals Connector (OSTI)

The photo-ionization cross section a? of lithium has been calculated to second order in Brueckner-Goldstone perturbation theory with Hartree-Fock as zero order, for ejected electron energies in the range 0<~k2<~0. 36 Ry. Other Hartree-Fock calculations of a? are analyzed using certain new theorems relating alternative forms of the matrix element. The final second-order perturbed values of a? in the length and velocity formulations are in good agreement with experiment throughout the energy range studied.

Edward S. Chang and M. R. C. McDowell

1968-12-05T23:59:59.000Z

355

Quantum statistical calculation of cluster abundances in hot dense matter  

E-Print Network [OSTI]

The cluster abundances are calculated from a quantum statistical approach taking into account in-medium corrections. For arbitrary cluster size the self-energy and Pauli blocking shifts are considered. Exploratory calculations are performed for symmetric matter at temperature $T=5$ MeV and baryon density $\\varrho=0.0156$ fm$^{-3}$ to be compared with the solar element distribution. It is shown that the abundances of weakly bound nuclei with mass number $4

Gerd Ropke

2014-07-01T23:59:59.000Z

356

RADIATION DOSE CALCULATION FOR FUEL HANDLING FACILITY CLOSURE CELL EQUIPMENT  

SciTech Connect (OSTI)

This calculation evaluates the energy deposition rates in silicon, gamma and neutron flux spectra at various locations of interest throughout FHF closure cell. The physical configuration features a complex geometry, with particle flux attenuation of many orders of magnitude that cannot be modeled by computer codes that use deterministic methods. Therefore, in this calculation the Monte Carlo method was used to solve the photon and neutron transport. In contrast with the deterministic methods, Monte Carlo does not solve an explicit transport equation, but rather obtain answers by simulating individual particles, recording the aspects of interest of their average behavior, and estimates the statistical precision of the results.

D. Musat

2005-03-07T23:59:59.000Z

357

Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements  

E-Print Network [OSTI]

The Sivers transverse single spin asymmetry (TSSA) is calculated and compared at different scales using the TMD evolution equations applied to previously existing extractions. We apply the Collins-Soper-Sterman (CSS) formalism, using the version recently developed by Collins. Our calculations rely on the universality properties of TMD-functions that follow from the TMD-factorization theorem. Accordingly, the non-perturbative input is fixed by earlier experimental measurements, including both polarized semi-inclusive deep inelastic scattering (SIDIS) and unpolarized Drell-Yan (DY) scattering. It is shown that recent COMPASS measurements are consistent with the suppression prescribed by TMD evolution.

S. Mert Aybat; Alexei Prokudin; Ted C. Rogers

2012-06-27T23:59:59.000Z

358

Excited State Effects in Nucleon Matrix Element Calculations  

SciTech Connect (OSTI)

We perform a high-statistics precision calculation of nucleon matrix elements using an open sink method allowing us to explore a wide range of sink-source time separations. In this way the influence of excited states of nucleon matrix elements can be studied. As particular examples we present results for the nucleon axial charge g{sub A} and for the first moment of the isovector unpolarized parton distribution x{sub u-d}. In addition, we report on preliminary results using the generalized eigenvalue method for nucleon matrix elements. All calculations are performed using N{sub f} = 2+1+1 maximally twisted mass Wilson fermions.

Constantia Alexandrou, Martha Constantinou, Simon Dinter, Vincent Drach, Karl Jansen, Theodoros Leontiou, Dru B Renner

2011-12-01T23:59:59.000Z

359

Variational calculation of the trapping rate in thermal barriers  

SciTech Connect (OSTI)

A variational calculation of the trapping rate and trapped ion density in thermal barriers is presented. The effects of diffusion in energy as well as pitch angle scattering are retained. The variational formulation uses the actual trapped-passing boundary in velocity space. The boundary condition is that the trapped ion distribution function matches the passing ion distribution function, which is taken to be a Maxwellian, on the boundary. The results compare well with two-dimensional Fokker-Planck code calculations by Futch and LoDestro.

Li, X.Z.; Emmert, G.A.

1982-10-01T23:59:59.000Z

360

Calculation of electronic transport coefficients of Ag and Au plasma  

Science Journals Connector (OSTI)

The thermoelectric transport coefficients of silver and gold plasma have been calculated within the relaxation-time approximation. We considered temperatures of 10100kK and densities of ??1g/cm3. The plasma composition was calculated using a corresponding system of coupled mass action laws, including the atom ionization up to +4. For momentum cross sections of electron-atom scattering we used the most accurate expressions available. The results of our modeling have been compared with other researchers' data whenever possible.

E. M. Apfelbaum

2011-12-29T23:59:59.000Z

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hand-held calculator program gives economic evaluation  

SciTech Connect (OSTI)

This article presents a comprehensive oil and gas property written for the Hewlett-Packard 41CV handheld calculator (or an HP-41C equipped with 4 memory modules). The program allows the user to enter all of the required parameters at the beginning and calculates the results with a minimum of interruptions. This is accomplished by tieing an engineering projection of future production to the desired variations in the economic factors to be used in the evaluation process. The presented economic analysis program can be used for a variety of economic and reserve evaluations.

Jones, R.; Maxwell, R.L.

1983-02-14T23:59:59.000Z

362

Calculation of low-energy atmospheric muon flux  

Science Journals Connector (OSTI)

We report the results of a three-dimensional Monte Carlo calculation of the low-energy atmospheric muon flux. They agree with the experiments by Allkofer et al. at sea level, but the agreement with the experiments by Conversi at a high altitude is not good, particularly at a very high altitude.

Haeshim Lee and Sidney A. Bludman

1988-11-01T23:59:59.000Z

363

Numerical Tokamak Turbulence calculations on the CRAY T3E  

Science Journals Connector (OSTI)

Full cross section calculations of ion-temperature-gradient-driven turbulence with Landau closure are being carried out as part of the Numerical Tokamak Turbulence Project, one of the U. S. Department of Energy's Phase II Grand Challenges. To include ... Keywords: PVM, fusion energy, parallel computing, t3e, turbulence

V. E. Lynch; J-N. Leboeuf; B. A. Carreras; J. D. Alvarez; L. Garcia

1997-11-01T23:59:59.000Z

364

Gas-storage calculations yield accurate cavern, inventory data  

SciTech Connect (OSTI)

This paper discusses how determining gas-storage cavern size and inventory variance is now possible with calculations based on shut-in cavern surveys. The method is the least expensive of three major methods and is quite accurate when recorded over a period of time.

Mason, R.G. (Transcontinental Gas Pipeline Corp., Houston, TX (US))

1990-07-02T23:59:59.000Z

365

Calculation method for electricity end-use for residential lighting  

Science Journals Connector (OSTI)

Abstract Knowledge of the electricity demand for different electrical appliances in households is very important in the work to reduce electricity use in households. Metering of end-uses is expensive and time consuming and therefore other methods for calculation of end-use electricity can be very useful. This paper presents a method to calculate the electricity used for lighting in households based on regression analysis of daily electricity consumption, out-door temperatures and the length of daylight at the same time and location. The method is illustrated with analyses of 45 Norwegian households. The electricity use for lighting in an average Norwegian household is calculated to 1050kWh/year or 6% of total electricity use. The results are comparable to metering results of lighting in other studies in the Nordic countries. The methodology can also be used to compensate for the seasonal effect when metering electricity for lighting less than a year. When smart meters are more commonly available, the possible adaption of this method will increase, and the need for end-use demand calculations will still be present.

Eva Rosenberg

2014-01-01T23:59:59.000Z

366

Wind energy calculated from SAR and scatterometer satellite data  

E-Print Network [OSTI]

. · Offshore wind resources estimated from SAR · On WASP · Wind indexing based on scatterometer · Wake effects footprint 62 m footprint Wind field maps from SAR are valid for 10 m height #12;7 Slide no. 62 m 10 m Upwind1 Slide no. 4 Wind energy calculated from SAR and scatterometer satellite data Charlotte Bay

367

Hydrostatic and Stability Calculations with Adrian B. Biran1  

E-Print Network [OSTI]

MATLAB is that of students that have to solve exercises, carry on projects and especially thoseHydrostatic and Stability Calculations with MATLAB Adrian B. Biran1 August 29, 2006 Abstract This paper shows how MATLAB can be used in Naval Architecture for practical hydrostatic and stability

Rimon, Elon

368

From artifact to instrument: mathematics teaching mediated by symbolic calculators  

Science Journals Connector (OSTI)

......with an overhead projector, to bring up to date programs via Internet; Students rapidly introduce and use calculators in class and...if the function starts to decrease or oscillate then it is not good. Consequently one can put forward the hypothesis that the......

Luc Trouche

2003-12-01T23:59:59.000Z

369

Evaluating risk using bounding calculations and limited data  

SciTech Connect (OSTI)

This paper describes a methodology for estimating the potential risk to workers and the public from igniting organic solvents in any of the 177 underground waste storage tanks at the Hanford Site in southeastern Washington state. The Hanford Site is one of the U.S. Department of Energy's former production facilities for nuclear materials. The tanks contain mixed radioactive wastes. Risk is measured by calculating toxicological and radiological accident consequences and frequencies and comparing the results to established regulatory guidelines. Available sample data is insufficient to adequately characterize the waste and solvent, so a model that maximizes releases from the tanks (bounding case) is used. Maximizing releases (and thus consequences) is a standard technique used in safety analysis to compensate for lack of information. The model predicts bounding values of fire duration, the time at which the fire extinguishes because of lack of oxygen, and a pressure history of a fire in a tank. The model output is used to calculate mass and volume release rates of material from the tanks. The mass and volume release rates permit calculation of radiological and toxicological consequences. The resulting consequence calculations demonstrate that risk from an organic solvent fire in the tanks is within regulatory guidelines.

COWLEY, W.L.

1999-05-27T23:59:59.000Z

370

Introduzione Matlab Carla Guerrini 1 IEEE-754 Calculators  

E-Print Network [OSTI]

1 Introduzione Matlab Carla Guerrini 1 IEEE-754 Calculators http://babbage.cs.qc.edu/IEEE-754 and Making an Impact http://www.ima.umn.edu/newsltrs/updates/summer03/ Introduzione Matlab Carla Guerrini 2 Introduzione all'ambiente Matlab #12;2 Introduzione Matlab Carla Guerrini 3 Riferimenti bibliografici · Guida

Guerrini, Carla

371

MATLAB Tutorial Getting Started with Calculations, Graphing and Programming  

E-Print Network [OSTI]

MATLAB Tutorial Getting Started with Calculations, Graphing and Programming Nicholas R. Kirchner University of Minnesota Thursday, August 30, 2012 #12;Outline 1 MATLAB installation NRK (University of Minnesota) MATLAB 2012.08.30 2 / 28 #12;Outline 1 MATLAB installation 2 The MATLAB UI NRK (University

Weinberger, Hans

372

Alternative similarity renormalization group generators in nuclear structure calculations  

Science Journals Connector (OSTI)

The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. With this choice, a fast convergence of many-body calculations can be achieved, but at the same time substantial three-body interactions are induced even if one starts from a purely two-nucleon (NN) Hamiltonian. Three-nucleon (3N) interactions can be handled by modern many-body methods. However, it has been observed that when including initial chiral 3N forces in the Hamiltonian, the SRG transformations induce a non-negligible four-nucleon interaction that cannot be currently included in the calculations for technical reasons. Consequently, it is essential to investigate alternative SRG generators that might suppress the induction of many-body forces while at the same time might preserve the good convergence. In this work we test two alternative generators with operators of block structure in the harmonic oscillator basis. In the no-core shell model calculations for 3H, 4He, and 6Li with chiral NN force, we demonstrate that their performances appear quite promising.

Nuiok M. Dicaire; Conor Omand; Petr Navrtil

2014-09-04T23:59:59.000Z

373

MHD Stability Calculations of High-Quasi-Axisymmetric Stellarators  

E-Print Network [OSTI]

because the net toroidal current is zero or very small. However, in high-beta compact stellaratorsMHD Stability Calculations of High- Quasi-Axisymmetric Stellarators G. Y. Fu, L. P. Ku, N. Pomphrey the external kink modes. Most previous work has assumed cylindrical geometry and zero beta. In this work

374

MHD Stability Calculations of High-Quasi-Axisymmetric Stellarators  

E-Print Network [OSTI]

because the net toroidal current is zero or very small. However, in high-beta compact stellaratorsMHD Stability Calculations of High- Quasi-Axisymmetric Stellarators G. Y. Fu, L. P. Ku, N. Pomphrey kink modes. Most previous work has assumed cylindrical geometry and zero beta. In this work, extensive

375

Improving Cost Calculations for Global Constraints in Local Search  

E-Print Network [OSTI]

Improving Cost Calculations for Global Constraints in Local Search Markus Bohlin Swedish Institute- straint satisfaction is based on local minimization of a cost function, which is usually the number equivalent to a set of basic constraints but still contributes as little to the cost as a single basic

Rossi, Francesca

376

How to Calculate the True Cost of Steam  

Broader source: Energy.gov [DOE]

This brief details how to calculate the true cost of steam, which is important for monitoring and managing energy use in a plant, evaluating proposed design changes to the generation or distribution infrastructure and the process itself, and for continuing to identify competitive advantages through steam system and plant efficiency improvements.

377

Computationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary  

E-Print Network [OSTI]

windings occurs at the level of individual turns, the method could be applied, but its advantages are lessComputationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary Waveforms and Two- or Three-Dimensional Field Geometry C. R. Sullivan From IEEE Transactions on Power Electronics

378

Improved Calculation of Core Loss With Nonsinusoidal Waveforms  

E-Print Network [OSTI]

. Comparison with experimental measure- ments in MnZn ferrite shows improved accuracy. The result may be op machines, transformers, inductors, and other static reactors, loss in the magnetic material is often pre of the flux density. It can be directly calculated from geometry and bulk resistivity in ferrites, and

379

Overall Ventilation System Flow Network Calculation for Site Recommendation  

SciTech Connect (OSTI)

The scope of this calculation is to determine ventilation system resistances, pressure drops, airflows, and operating cost estimates for the Site Recommendation (SR) design as detailed in the ''Site Recommendation Subsurface Layout'' (BSC (Bechtel SAIC Company) 2001a). The statutory limit for emplacement of waste in Yucca Mountain is 70,000 metric tons of uranium (MTU) and is considered the base case for this report. The objective is to determine the overall repository system ventilation flow network for the monitoring phase during normal operations and to provide a basis for the system description document design descriptions. Any values derived from this calculation will not be used to support construction, fabrication, or procurement. The work scope is identified in the ''Technical Work Plan for Subsurface Design Section FY01 Work Activities'' (CRWMS M&O 2001, pp. 6 and 13). In accordance with the technical work plan this calculation was prepared in accordance with AP-3.12Q, ''Calculations'' and other procedures invoked by AP-3.12Q. It also incorporates the procedure AP-SI1.Q, ''Software Management''.

Jeff J. Steinhoff

2001-08-02T23:59:59.000Z

380

Using Graphical Representations to Support the Calculation of Infusion Parameters  

E-Print Network [OSTI]

Using Graphical Representations to Support the Calculation of Infusion Parameters Sandy J. J. Gould in which participants were asked to solve a num- ber of infusion parameter problems that were represented representations transfer to actual workplace settings. Keywords: Graphical reasoning, infusion pumps, re

Subramanian, Sriram

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Empirical Estimation of Biota Exposure Range for Calculation  

E-Print Network [OSTI]

for species lacking home range information Establish relationships between biota and sediment for BAF/BSAF calculation Identify potential applications for future sediment quality assessments #12;#12;#12;#12;BSAF = Ct.28 1 10 100 1000 10000 1 10 100 1000 10000 Sediment DDT (ug/kg dry) TissueDDT(ug/kgdry) BAF BSAF #12

382

On the direct calculation of thermal rate constants  

E-Print Network [OSTI]

required to obtain C f,s (t) is evaluated by a Lanczos iteration procedure which calculates only the nonzero eigenvalues. The propagation in complex time, t c =t?i??/2, is carried out using a Chebychev expansion. This method is seen to be both accurate...

Thompson, Ward H.; Miller, William H.

1995-03-01T23:59:59.000Z

383

Alternative similarity renormalization group generators in nuclear structure calculations  

E-Print Network [OSTI]

The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. With this choice, a fast convergence of many-body calculations can be achieved, but at the same time substantial three-body interactions are induced even if one starts from a purely two-nucleon (NN) Hamiltonian. Three-nucleon (3N) interactions can be handled by modern many-body methods. However, it has been observed that when including initial chiral 3N forces in the Hamiltonian, the SRG transformations induce a non-negligible four-nucleon interaction that cannot be currently included in the calculations for technical reasons. Consequently, it is essential to investigate alternative SRG generators that might suppress the induction of many-body forces while at the same time might preserve the good convergence. In this work we test two alternative generators with operators of block structure in the harmonic oscillator basis. In the no-core shell model calculations for 3H, 4He and 6Li with chiral NN force, we demonstrate that their performances appear quite promising.

Nuiok M. Dicaire; Conor Omand; Petr Navratil

2014-08-22T23:59:59.000Z

384

Calculating center-glass performance indices of windows  

SciTech Connect (OSTI)

Building envelope performance is strongly influenced by solar gain and heat transfer through windows. The majority of this energy gain or loss passes through the center-glass area of the glazing system. Various methods have been devised to calculate the corresponding center-glass performance indices. Solar heat gain coefficient (SHGC) and U-factor are the quantities most frequently sought. Hand calculations have given way to computer-based techniques. Computer simulation offers the opportunity to employ more detailed models plus the ability to model the large number of glazing systems made possible by design options, such as low-emissivity or solar-control coatings, selective glass tints, substitute fill gases, and glazing layers, that partially transmit longwave radiation. A new, more accurate method is presented in this paper for manipulating spectral optical data while calculating the energy related optical properties of glazing layers and glazing systems. The use of the same technique to track visible and ultraviolet radiation is also demonstrated. In addition, more refined methods are documented for calculating SHGC and U-factor while accounting for the thermal resistance of individual glazings.

Wright, J.L. [Univ. of Waterloo, Ontario (Canada). Dept. of Mechanical Engineering

1998-10-01T23:59:59.000Z

385

Relativistic calculations of electronic states of PdH  

Science Journals Connector (OSTI)

Complete active space MCSCF(CASSCF)/first?order configuration interaction (FOCI) calculations followed by relativistic configuration interaction (RCI) calculations are carried out on 2?+ 2? 2? and 2?+(II) ?s states and 1/2 3/2 1/2(II) 3/2(II) and 5/2 ?? states of PdH. Our calculations predict that the ground state is 2?+ 1/2. The spinorbit splitting and contamination of the excited states (2? and 2?) are quite large. The two 3/2 states are quite mixed [3/2(I): 66% 2?3 / 2 29% 2?3 / 2] in character. The spectroscopic properties (R e T e D e and ? e ) of all the above states are calculated and compared with available experimental results on the ground state of PdD. The Mulliken population analysis of the low?lying states of PdH shows that the 2?+ state is ionic (Pd+H?) but the excited 2? and 2? states are a bit more ionic with the same polarity as the ground state. The 3/2 state exhibits an interesting avoided crossing.

K. Balasubramanian; P. Y. Feng; M. Z. Liao

1987-01-01T23:59:59.000Z

386

Molecular point?group symmetry in electronic structure calculations  

Science Journals Connector (OSTI)

A generalization of Pitzers equal contribution theorem is put forth. The new theorem specifies which types of matrix elements can be constructed using only symmetry?unique (batches of) integrals. A general and simple algorithm to use molecular point?group symmetry in electronic structure calculations is outlined.

Marco Hser

1991-01-01T23:59:59.000Z

387

Precision Calculations of Atoms with Few Valence Electrons  

E-Print Network [OSTI]

Precision Calculations of Atoms with Few Valence Electrons M. G. KOZLOV Petersburg Nuclear Physics for valence electrons of an atom. The low-energy part of atomic spectrum is found by solving the eigenvalue­valence correlations. We tested this method on a toy model of a four-electron atom with the core 1s2 . The spectrum

Kozlov, Mikhail G

388

Calculations of Ion Heating by ECRH J. C. Sprott  

E-Print Network [OSTI]

a magnetic gradient where e lectron cyclotron resonance heating occurs. The electrons g ain perpendicular e cyclotron resonance heating. The electron density then increases in the reg ion of small magnetic fieldCalculations of Ion Heating by ECRH by J. C. Sprott January, 1970 Plasma Studies University

Sprott, Julien Clinton

389

Oxygen Toxicity Calculations by Erik C. Baker, P.E.  

E-Print Network [OSTI]

1 Oxygen Toxicity Calculations by Erik C. Baker, P.E. Management of exposure to oxygen toxicity myself using the good ole' FORTRAN programming language, I found that incorporating oxygen toxicity for others. Background Two oxygen toxicity parameters are typically "tracked" in technical diving

Read, Charles

390

Atomic Structure Calculations from the Los Alamos Atomic Physics Codes  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The well known Hartree-Fock method of R.D. Cowan, developed at Los Alamos National Laboratory, is used for the atomic structure calculations. Electron impact excitation cross sections are calculated using either the distorted wave approximation (DWA) or the first order many body theory (FOMBT). Electron impact ionization cross sections can be calculated using the scaled hydrogenic method developed by Sampson and co-workers, the binary encounter method or the distorted wave method. Photoionization cross sections and, where appropriate, autoionizations are also calculated. Original manuals for the atomic structure code, the collisional excitation code, and the ionization code, are available from this website. Using the specialized interface, you will be able to define the ionization stage of an element and pick the initial and final configurations. You will be led through a series of web pages ending with a display of results in the form of cross sections, collision strengths or rates coefficients. Results are available in tabular and graphic form.

Cowan, R. D.

391

Calculations of helically symmetric equilibria with PIES D. Monticello  

E-Print Network [OSTI]

Calculations of helically symmetric equilibria with PIES D. Monticello Collaborators: A. Reiman, S. Hudson Outline: 1) PIES algorithm 2) PIES convergence a) Temporal convergence b) m, n, k convergence 3) Effects of a model bootstrap current 4) Future plans #12;#12;PIES "Princeton Iterative Equilibrium Solver

Hudson, Stuart

392

DATA FOR THE CALCULATION OF ALBEDOS FROM CONCRETE  

E-Print Network [OSTI]

DATA FOR THE CALCULATION OF ALBEDOS FROM CONCRETE IRON, LEAD, AND WATER FOR PHOTONS AND NEUTRONS for the neutron albedo, and (3) the secondary-photon albedo for incident neutrons. Albedo data is provided for four materials: concrete, iron, lead, and water. Unlike previous compilations of albedo data, modern

Shultis, J. Kenneth

393

Degree Day Calculations Dr. Nikki Rothwell, District Fruit IPM Educator  

E-Print Network [OSTI]

. For example, if the min/max thermometer indicates a low of 45 degrees F and a high of 75 degrees F F, then 10 degree days would have accumulated. Check your thermometer and make this calculation each toward your target number. Minimum and maximum temperatures should be recorded from a Min/Max thermometer

394

Dose calculation software for helical tomotherapy, utilizing patient CT data to calculate an independent three-dimensional dose cube  

SciTech Connect (OSTI)

Purpose: Treatment plans for the TomoTherapy unit are produced with a planning system that is integral to the unit. The authors have produced an independent dose calculation system, to enable plans to be recalculated in three dimensions, using the patient's CT data. Methods: Software has been written using MATLAB. The DICOM-RT plan object is used to determine the treatment parameters used, including the treatment sinogram. Each projection of the sinogram is segmented and used to calculate dose at multiple calculation points in a three-dimensional grid using tables of measured beam data. A fast ray-trace algorithm is used to determine effective depth for each projection angle at each calculation point. Calculations were performed on a standard desktop personal computer, with a 2.6 GHz Pentium, running Windows XP. Results: The time to perform a calculation, for 3375 points averaged 1 min 23 s for prostate plans and 3 min 40 s for head and neck plans. The mean dose within the 50% isodose was calculated and compared with the predictions of the TomoTherapy planning system. When the modified CT (which includes the TomoTherapy couch) was used, the mean difference for ten prostate patients, was -0.4% (range -0.9% to +0.3%). With the original CT (which included the CT couch), the mean difference was -1.0% (range -1.7% to 0.0%). The number of points agreeing with a gamma 3%/3 mm averaged 99.2% with the modified CT, 96.3% with the original CT. For ten head and neck patients, for the modified and original CT, respectively, the mean difference was +1.1% (range -0.4% to +3.1%) and 1.1% (range -0.4% to +3.0%) with 94.4% and 95.4% passing a gamma 4%/4 mm. The ability of the program to detect a variety of simulated errors has been tested. Conclusions: By using the patient's CT data, the independent dose calculation performs checks that are not performed by a measurement in a cylindrical phantom. This enables it to be used either as an additional check or to replace phantom measurements for some patients. The software has potential to be used in any application where one wishes to model changes to patient conditions.

Thomas, Simon J.; Eyre, Katie R.; Tudor, G. Samuel J.; Fairfoul, Jamie [Medical Physics Department, Addenbrooke's Hospital, Cambridge CB2 0QQ (United Kingdom)

2012-01-15T23:59:59.000Z

395

Benchmarking analytical calculations of proton doses in heterogeneous matter  

SciTech Connect (OSTI)

A proton dose computational algorithm, performing an analytical superposition of infinitely narrow proton beamlets (ASPB) is introduced. The algorithm uses the standard pencil beam technique of laterally distributing the central axis broad beam doses according to the Moliere scattering theory extended to slablike varying density media. The purpose of this study was to determine the accuracy of our computational tool by comparing it with experimental and Monte Carlo (MC) simulation data as benchmarks. In the tests, parallel wide beams of protons were scattered in water phantoms containing embedded air and bone materials with simple geometrical forms and spatial dimensions of a few centimeters. For homogeneous water and bone phantoms, the proton doses we calculated with the ASPB algorithm were found very comparable to experimental and MC data. For layered bone slab inhomogeneity in water, the comparison between our analytical calculation and the MC simulation showed reasonable agreement, even when the inhomogeneity was placed at the Bragg peak depth. There also was reasonable agreement for the parallelepiped bone block inhomogeneity placed at various depths, except for cases in which the bone was located in the region of the Bragg peak, when discrepancies were as large as more than 10%. When the inhomogeneity was in the form of abutting air-bone slabs, discrepancies of as much as 8% occurred in the lateral dose profiles on the air cavity side of the phantom. Additionally, the analytical depth-dose calculations disagreed with the MC calculations within 3% of the Bragg peak dose, at the entry and midway depths in the phantom. The distal depth-dose 20%-80% fall-off widths and ranges calculated with our algorithm and the MC simulation were generally within 0.1 cm of agreement. The analytical lateral-dose profile calculations showed smaller (by less than 0.1 cm) 20%-80% penumbra widths and shorter fall-off tails than did those calculated by the MC simulations. Overall, this work validates the usefulness of our ASPB algorithm as a reasonably fast and accurate tool for quality assurance in planning wide beam proton therapy treatment of clinical sites either composed of homogeneous materials or containing laterally extended inhomogeneities that are comparable in density and located away from the Bragg peak depths.

Ciangaru, George; Polf, Jerimy C.; Bues, Martin; Smith, Alfred R. [Proton Therapy Facility, Department of Radiation Physics, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030 (United States)

2005-12-15T23:59:59.000Z

396

Benchmarking kinetic calculations of resistive wall mode stability  

SciTech Connect (OSTI)

Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive SpectrumKinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].

Berkery, J. W.; Sabbagh, S. A. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)] [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Liu, Y. Q. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Wang, Z. R.; Logan, N. C.; Park, J.-K.; Manickam, J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

2014-05-15T23:59:59.000Z

397

Calculations of population transfer during intense laser pulses  

SciTech Connect (OSTI)

Recent experiments by several groups have examined the question of population transfer to resonantly excited states during intense short laser pulses, in particular the amount of population that remains ``trapped`` in excited states at the end of a laser pulse. In this chapter we present calculations of population transfer and resonant ionization in xenon at both 660 and 620 nm. At the longer wavelength, the seven photon channel closes at 2.5{times}10{sup 13} W/cm{sup 2}. Pulses with peak intensities higher than this result in ``Rydberg trapping``, the resonant transfer of population to a broad range of high-lying states. The amount of population transferred depends on both the peak intensity and pulse duration. At 620 mm there are numerous possible six photon resonances to states with p or f angular momentum. We have done a large number of calculations for 40 fs pulses at different peak intensities and have examined the population transferred to these low-lying resonant states as a function of the peak laser intensity. We do not have room to comment upon the resonantly enhanced ionized electron energy spectra that we also determine in the same calculations. Our calculations involve the direct numerical integration of the time-dependent Schroedinger equation for an atom interacting with a strong laser field. The time-dependent wave function of a given valence electron is calculated on a spatial grid using a one-electron pseudo potential. This single active electron approximation (SAE) has been shown to be a good approximation for the rare gases at the intensities and wavelengths that we will consider. The SAE potential we use has an explicit angular momentum dependence which allows us to reproduce all of the excited state energies for xenon quite well.

Schafer, K.J.; Kulander, K.C.

1993-08-01T23:59:59.000Z

398

Uncertainties Associated with Theoretically Calculated N2-Broadened Half-Widths of H2O Lines  

E-Print Network [OSTI]

to be calculated theoretically. The accuracy of these calculated values depends on many factors such as the line-shape1 Uncertainties Associated with Theoretically Calculated N2- Broadened Half-Widths of H2O Lines Q-offs used in the theoretical calculations, we have carried out extensive numerical calculations of the N2

Gamache, Robert R.

399

Validation of the Home Energy Saver Energy Calculation Methodology: Using  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation of the Home Energy Saver Energy Calculation Methodology: Using Validation of the Home Energy Saver Energy Calculation Methodology: Using Empirical Data to Improve Simulation Speaker(s): Danny Parker Date: August 6, 2013 - 12:00pm - 1:00pm Location: 90-3122 Seminar Host/Point of Contact: Evan Mills The Home Energy Saver (HES) suite - developed by EETD researchers - offers popular online simulation tools that enable U.S. homeowners and energy professionals to rigorously evaluate home energy use and develop recommendations on how energy can be saved across all end uses. The underlying analytical system is also available as a web service to power third-party energy analysis tools. Given the system's diverse uses, it is important that the simulation is robust and accurate. While the HES engineering methods are extensively documented and subjected to peer

400

How Portfolio Manager calculates greenhouse gas emissions | ENERGY STAR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Portfolio Manager calculates greenhouse gas emissions How Portfolio Manager calculates greenhouse gas emissions Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Learn the benefits Get started Use Portfolio Manager The new ENERGY STAR Portfolio Manager How Portfolio Manager helps you save The benchmarking starter kit Identify your property type Enter data into Portfolio Manager The data quality checker

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CALCULATION OF PULSED KICKER MAGNETIC FIELD ATTENUATION INSIDE BEAM CHAMBERS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CALCULATION OF PULSED KICKER MAGNETIC FIELD ATTENUATION CALCULATION OF PULSED KICKER MAGNETIC FIELD ATTENUATION INSIDE BEAM CHAMBERS S. H. Kim January 8, 2001 1. Introduction and Summary The ceramic beam chambers in the sections of the kicker magnets for the beam injection and extraction in the Advanced Photon Source (APS) are made of alumina. The inner surface of the ceramic chamber is coated with a conductive paste. The choice of coating thickness is intended to reduce the shielding of the pulsed kicker magnetic field while containing the electromagnetic fields due to the beam bunches inside the chamber, and minimize the Ohmic heating due to the fields on the chamber [1]. The thin coating generally does not give a uniform surface resistivity for typical dimensions of the ceramic chambers in use. The chamber cross section is a circular or

402

Tropical Africa: Calculated Actual Aboveground Live Biomass in Open and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Calculated Actual Aboveground Live Biomass in Open and Calculated Actual Aboveground Live Biomass in Open and Closed Forests (1980) image Brown, S., and G. Gaston. 1996. Tropical Africa: Land Use, Biomass, and Carbon Estimates For 1980. ORNL/CDIAC-92, NDP-055. Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A. More Maps Land Use Maximum Potential Biomass Density Area of Closed Forests (By Country) Mean Biomass of Closed Forests (By Country) Area of Open Forests (By Country) Mean Biomass of Open Forests (By County) Percent Forest Cover (By Country) Total Forest Biomass (By Country) Population Density - 1990 (By Administrative Unit) Population Density - 1980 (By Administrative Unit) Population Density - 1970 (By Administrative Unit) Population Density - 1960 (By Administrative Unit)

403

Direct calculation of leak path factors for highly compartmentalized buildings  

SciTech Connect (OSTI)

The large, highly compartmentalized configurations of buildings at many Department of Energy (DOE) facilities call the validity of traditional, simplistic methods for estimating contaminant leak path factors (LPFs) into question. Conversely, rigorous calculation of LPFs using detailed flow-field analysis computer codes is impractical for routine analysis. This paper describes a recent application of a rigorous, yet practical, method of calculating LPFs for the Chemical and Metallurgical Research (CMR) Facility at Los Alamos National Laboratory (LANL). The approach involves computer simulation of airborne contaminant transport using the MELCOR computer code. MELCOR is a general-purpose, fluid flow and aerosol transport analysis code originally developed by the US Nuclear Regulatory Commission to evaluate the release, transport, and deposition of radionuclides in nuclear reactor systems. However, the fundamental mathematical models in the code and the modular code architecture make it suitable to the CMR analysis.

Leonard, M.T. [ITS Corp., Albuquerque, NM (United States); McClure, P.R. [Los Alamos National Lab., NM (United States)

1998-12-01T23:59:59.000Z

404

Non-Born-Oppenheimer calculations of the BH molecule  

SciTech Connect (OSTI)

Variational calculations employing explicitly correlated Gaussian basis functions have been performed for the ground state of the boron monohydride molecule (BH) and for the boron atom (B). Up to 2000 Gaussians were used for each system. The calculations did not assume the Born-Oppenheimer (BO) approximation. In the optimization of the wave function, we employed the analytical energy gradient with respect to the Gaussian exponential parameters. In addition to the total nonrelativistic energies, we computed scalar relativistic corrections (mass-velocity and Darwin). With those added to the total energies, we estimated the dissociation energy of BH. The non-BO wave functions were also used to compute some expectation values involving operators dependent on the interparticle distances.

Bubin, Sergiy; Stanke, Monika; Adamowicz, Ludwik

2009-07-30T23:59:59.000Z

405

Ion beam energy spectrum calculation via dosimetry data deconvolution.  

SciTech Connect (OSTI)

The energy spectrum of a H{sup +} beam generated within the HERMES III accelerator is calculated from dosimetry data to refine future experiments. Multiple layers of radiochromic film are exposed to the beam. A graphic user interface was written in MATLAB to align the film images and calculate the beam's dose depth profile. Singular value regularization is used to stabilize the unfolding and provide the H{sup +} beam's energy spectrum. The beam was found to have major contributions from 1 MeV and 8.5 MeV protons. The HERMES III accelerator is typically used as a pulsed photon source to experimentally obtain photon impulse response of systems due to high energy photons. A series of experiments were performed to explore the use of Hermes III to generate an intense pulsed proton beam. Knowing the beam energy spectrum allows for greater precision in experiment predictions and beam model verification.

Harper-Slaboszewicz, Victor Jozef; Sharp, Andrew Clinton (A& M University, College Station, TX)

2010-10-01T23:59:59.000Z

406

Calculated electronic transitions of the water ammonia complex  

Science Journals Connector (OSTI)

We have calculated vertical excitation energies and oscillator strengths of the low lying electronic transitions in H 2 O N H 3 and H 2 O ? N H 3 using a hierarchy of coupled cluster response functions [coupled cluster singles (CCS) second order approximate coupled cluster singles and doubles (CC2) coupled cluster singles and doubles (CCSD) and third order approximate coupled cluster singles doubles and triples (CC3)] and correlation consistent basis functions (n-aug-cc-pVXZ where n = s d t and X = D T Q ). Our calculations indicate that significant changes in the absorption spectra of the photodissociative states of H 2 O and N H 3 monomers occur upon complexation. In particular we find that the electronic transitions originating from N H 3 are blueshifted whereas the electronic transitions originating from H 2 O are redshifted.

Joseph R. Lane; Veronica Vaida; Henrik G. Kjaergaard

2008-01-01T23:59:59.000Z

407

Electronic Spectra and Molecular?Orbital Calculations of Dioxazines  

Science Journals Connector (OSTI)

An iterative extended Hckel molecular?orbital calculation for the ??electron system has been carried out to interpret the electronic spectra of dioxazines. The absorption peaks in the visible have been identified as the transitions from the highest occupied orbital to the lowest empty one. It is found that the orbital energy difference contributes only about one?third of the transition energy the rest coming from the difference in the electronic repulsion energies of the ground and the excited states. The spectra in concentrated sulfuric acid solution can be interpreted as that of a diprotonated molecule. By assuming that the effective core charges of the nitrogen atoms to which the protons are attached are increased from 1 to about 1.5 proton charge it is possible to account for the observed red shift of the band in the visible region. The calculated transition frequencies in the visible as well as in the uv are in good agreement with the observed ones.

I. Chen; M. Lardon; L. Weinberger

1967-01-01T23:59:59.000Z

408

Complex energy approaches for calculating isobaric analogue states  

Science Journals Connector (OSTI)

Parameters of isobaric analog resonance (IAR) are calculated in the framework of the Lane model using different methods. In the standard method, the direct numerical solution of the coupled channel (CC) Lane equations served as a reference for checking two complex energy methods, namely the complex energy shell model (CXSM) and the complex scaling (CS) approaches. The IAR parameters calculated by the CXSM and the CS methods agree with that of the CC results within 1 keV for all partial waves considered. Although the CXSM and the CS methods have similarities, an important difference is that only the CXSM method offers a direct way for studying the configurations of the IAR wave function.

R. Id Betan; A. T. Kruppa; T. Vertse

2008-10-14T23:59:59.000Z

409

Calculation of tin atomic data and plasma properties.  

SciTech Connect (OSTI)

This report reviews the major methods and techniques we use in generating basic atomic and plasma properties relevant to extreme ultraviolet (EUV) lithography applications. The basis of the work is the calculation of the atomic energy levels, transitions probabilities, and other atomic data by various methods, which differ in accuracy, completeness, and complication. Later on, we calculate the populations of atomic levels and ion states in plasmas by means of the collision-radiation equilibrium (CRE) model. The results of the CRE model are used as input to the thermodynamic functions, such as pressure and temperature from the internal energy and density (equation of state), electric resistance, thermal conduction, and other plasma properties. In addition, optical coefficients, such as emission and absorption coefficients, are generated to resolve a radiation transport equation (RTE). The capabilities of our approach are demonstrated by generating the required atomic and plasma properties for tin ions and plasma within the EUV region near 13.5 nm.

Morozov, V.; Tolkach, V.; Hassanein, A.

2005-08-26T23:59:59.000Z

410

Calculation of the cross section for top quark production  

SciTech Connect (OSTI)

The authors summarize calculations of the cross section for top quark production at hadron colliders within the context of perturbative quantum chromodynamics, including resummation of the effects of initial-state soft gluon radiation to all orders in the strong coupling strength. In their approach they resume the universal leading-logarithm contributions, and they restrict the calculation to the region of phase space that is demonstrably perturbative. They compare the approach with other methods. They present predictions of the physical cross section as a function of the top quark mass in proton-antiproton reactions at center-of-mass energies of 1.8 and 2.0 TeV, and they discuss estimated uncertainties.

Berger, E.L.; Contopanagos, H. [Argonne National Lab., IL (United States). High Energy Physics Div.

1996-06-21T23:59:59.000Z

411

Thermochemical data for CVD modeling from ab initio calculations  

SciTech Connect (OSTI)

Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.

Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Melius, C.F. [Sandia National Labs., Livermore, CA (United States)

1993-12-31T23:59:59.000Z

412

Calculations in support of a potential definition of large release  

SciTech Connect (OSTI)

The Nuclear Regulatory Commission has stated a hierarchy of safety goals with the qualitative safety goals as Level I of the hierarchy, backed up by the quantitative health objectives as Level II and the large release guideline as Level III. The large release guideline has been stated in qualitative terms as a magnitude of release of the core inventory whose frequency should not exceed 10{sup -6} per reactor year. However, the Commission did not provide a quantitative specification of a large release. This report describes various specifications of a large release and focuses, in particular, on an examination of releases which have a potential to lead to one prompt fatality in the mean. The basic information required to set up the calculations was derived from the simplified source terms which were obtained from approximations of the NUREG-1150 source terms. Since the calculation of consequences is affected by a large number of assumptions, a generic site with a (conservatively determined) population density and meteorology was specified. At this site, various emergency responses (including no response) were assumed based on information derived from earlier studies. For each of the emergency response assumptions, a set of calculations were performed with the simplified source terms; these included adjustments to the source terms, such as the timing of the release, the core inventory, and the release fractions of different radionuclides, to arrive at a result of one mean prompt fatality in each case. Each of the source terms, so defined, has the potential to be a candidate for a large release. The calculations show that there are many possible candidate source terms for a large release depending on the characteristics which are felt to be important.

Hanson, A.L.; Davis, R.E.; Mubayi, V.

1994-05-01T23:59:59.000Z

413

Numerical procedure for calculating temperature profiles in LMFBR coolant channels  

SciTech Connect (OSTI)

A new numerical procedure (which makes use of a weighted residuals procedure in space and a fully-implicit finite difference procedure in time), for calculating temperatures in an LMFBR coolant channel has been developed and incorporated into the Super System Code (SSC). This procedure is highly accurate on a nodal basis and has greatly increased computational efficiency as compared to the method formerly in SSC.

Horak, W.C.; Kennett, R.J.; Guppy, J.G.

1981-07-01T23:59:59.000Z

414

Maximum Partial Area Rule for Phase Equilibrium Calculations  

Science Journals Connector (OSTI)

Figure 5 shows an area (AOC) related to the overall composition (z1). ... The numerical value of AOC equals that of the distance between the Gibbs curve and its tangent line at the fixed input overall composition as illustrated by Figure 6 on which ML denotes a value calculated from the model at the overall composition and TL denotes the tangent-line value for the same composition. ... On Figure 5, EAR requires that AOC + U2 equal |L|. ...

Guor-Shiarn Shyu; Nishawn S. M. Hanif; Kenneth R. Hall; Philip T. Eubank

1996-11-07T23:59:59.000Z

415

Calculation of sensitivity coefficients for a neutron well logging tool  

E-Print Network [OSTI]

(Lsmsrsh, 1966; Bartine et al. , 1974; Duderstadt et al. , 1976). The straightforward (direct) calculation requires knowledge of the forward neutron flux, neutron cross section data, and detector responses (such as reaction rates) for each situation, i.... e. , the detector's responses are repeatedly com- puted for each change in the formation's composition. The perturbation (indirect) method requires knowledge of the forward neutron flux, detector response, and sd- joint neutron flux for a base...

Chen, Chien-Hsiang

2012-06-07T23:59:59.000Z

416

Calculating the probability of detecting radio signals from alien civilizations  

E-Print Network [OSTI]

Although it might not be self-evident, it is in fact entirely possible to calculate the probability of detecting alien radio signals by understanding what types of extraterrestrial radio emissions can be expected and what properties these emissions can have. Using the Drake equation as the obvious starting point, and logically identifying and enumerating constraints of interstellar radio communications can yield the probability of detecting a genuine alien radio signal.

Marko Horvat

2007-07-14T23:59:59.000Z

417

Calculating the probability of detecting radio signals from alien civilizations  

E-Print Network [OSTI]

Although it might not be self-evident, it is in fact entirely possible to calculate the probability of detecting alien radio signals by understanding what types of extraterrestrial radio emissions can be expected and what properties these emissions can have. Using the Drake equation as the obvious starting point, and logically identifying and enumerating constraints of interstellar radio communications can yield the probability of detecting a genuine alien radio signal.

Horvat, Marko

2006-01-01T23:59:59.000Z

418

Validation of Criticality Safety Calculations with SCALE 6.2  

SciTech Connect (OSTI)

SCALE 6.2 provides numerous updates in nuclear data, nuclear data processing, and computational tools utilized in the criticality safety calculational sequences relative to SCALE 6.1. A new 252-group ENDF/B-VII.0 multigroup neutron library, improved ENDF/B-VII.0 continuous energy data, as well as the previously deployed 238-group ENDF/B-VII.0 neutron library are included in SCALE 6.2 for criticality safety analysis. The performance of all three libraries for keff calculations is examined with a broad sampling of critical experiment models covering a range of fuels and moderators. Critical experiments from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (IHECSBE) that are available in the SCALE Verified, Archived Library of Inputs and Data (VALID) are used in this validation effort. Over 300 cases are used in the validation of KENO V.a, and a more limited set of approximately 50 configurations are used for KENO-VI validation. Additionally, some KENO V.a cases are converted to KENO-VI models so that an equivalent set of experiments can be used to validate both codes. For continuous-energy calculations, SCALE 6.2 provides improved performance relative to SCALE 6.1 in most areas with notable improvements in fuel pin lattice cases, particularly those with mixed oxide fuel. Multigroup calculations with the 252-group library also demonstrate improved performance for fuel lattices, uranium (high and intermediate enrichment) and plutonium metal experiments, and plutonium solution systems. Overall, SCALE 6.2 provides equivalent or smaller biases than SCALE 6.1, and the two versions of KENO provide similar results on the same suite of problems.

Marshall, William BJ J [ORNL] [ORNL; Wiarda, Dorothea [ORNL] [ORNL; Celik, Cihangir [ORNL] [ORNL; Rearden, Bradley T [ORNL] [ORNL

2013-01-01T23:59:59.000Z

419

Quantum Monte Carlo calculations of neutron-alpha scattering  

E-Print Network [OSTI]

We describe a new method to treat low-energy scattering problems in few-nucleon systems, and we apply it to the five-body case of neutron-alpha scattering. The method allows precise calculations of low-lying resonances and their widths. We find that a good three-nucleon interaction is crucial to obtain an accurate description of neutron-alpha scattering.

Kenneth M. Nollett; Steven C. Pieper; R. B. Wiringa; J. Carlson; G. M. Hale

2006-12-09T23:59:59.000Z

420

Microcomputer Software for Refrigerant Property and Cycle Analysis Calculations  

E-Print Network [OSTI]

cost, a large component of which is energy-related. Existing system operation must be analyzed to optimize energy consumption while still meeting cooling load requirements. Refrigerant properties, which form the basis for such calculations, have... to illustrate the application of the program to problems in design and operation of refrigeration systems. INTRODUCTION Thermodynamic analysis of refrigeration systems is important in a variety. of industrial; commercial, and building-related applications...

Bierschenk, J. L.; Strohl, S. T.; Schmidt, P. S.

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

An alternative method for calculating the energy of gravitational waves  

E-Print Network [OSTI]

In the expansive nondecelerative universe model, creation of matter occurs due to which the Vaidya metrics is applied. This fact allows for localizing gravitational energy and calculating the energy of gravitational waves using an approach alternative to the well established procedure based on quadrupole formula. Rationalization of the gradual increase in entropy of the Universe using relation describing the total curvature of space-time is given too.

Miroslav Sukenik; Jozef Sima

1999-09-21T23:59:59.000Z

422

Calculations of the electronic properties of hydrogenated silicon  

Science Journals Connector (OSTI)

We have used the coherent potential approximation to calculate the electronic densities of states for a model of hydrogenated amorphous silicon. The results demonstrate the restoration and widening of the band gap with increasing hydrogen content. In the valence band, excellent agreement with photoemission experiments is obtained. In the conduction band Si-H antibonding states are predicted that can be inferred from photoconductivity measurements.

D. A. Papaconstantopoulos and E. N. Economou

1981-12-15T23:59:59.000Z

423

Two?dimensional magnetohydrodynamic calculations of the plasma focus  

Science Journals Connector (OSTI)

Two?dimensional magnetohydrodynamic calculations on plasma focus experiments in the Mather geometry are described. The properties of the two?dimensional numerical solutions are discussed. Detailed results are given for a specific problem which compares favorably with experiment. The numerical solution for the plasma focus previously given by Potter has been rerun with substantial disagreement. Arguments are given to show that the Potter code is incorrect.

Stephen Maxon; James Eddleman

1978-01-01T23:59:59.000Z

424

Ladder operators for the rotating Morse oscillators: Matrix element calculations  

Science Journals Connector (OSTI)

We describe a simple method based on the hypervirial theorem along with a second-quantization formalism, which allows us to obtain recursion relations without using explicit wave functions for the calculation of matrix elements such as {exp[-a(r-re)]}n, (r-re)n, (r-re)nexp[-a(r-re)], and {exp[-a(r-re)]}n(d/dr) for the rotating Morse oscillator.

A. Lpez Pieiro and B. Moreno

1988-12-01T23:59:59.000Z

425

Determination of hydrogen cluster velocities and comparison with numerical calculations  

SciTech Connect (OSTI)

The use of powerful hydrogen cluster jet targets in storage ring experiments led to the need of precise data on the mean cluster velocity as function of the stagnation temperature and pressure for the determination of the volume density of the target beams. For this purpose a large data set of hydrogen cluster velocity distributions and mean velocities was measured at a high density hydrogen cluster jet target using a trumpet shaped nozzle. The measurements have been performed at pressures above and below the critical pressure and for a broad range of temperatures relevant for target operation, e.g., at storage ring experiments. The used experimental method is described which allows for the velocity measurement of single clusters using a time-of-flight technique. Since this method is rather time-consuming and these measurements are typically interfering negatively with storage ring experiments, a method for a precise calculation of these mean velocities was needed. For this, the determined mean cluster velocities are compared with model calculations based on an isentropic one-dimensional van der Waals gas. Based on the obtained data and the presented numerical calculations, a new method has been developed which allows to predict the mean cluster velocities with an accuracy of about 5%. For this two cut-off parameters defining positions inside the nozzle are introduced, which can be determined for a given nozzle by only two velocity measurements.

Tschner, A.; Khler, E.; Ortjohann, H.-W.; Khoukaz, A. [Institut fr Kernphysik, Westflische Wilhelms-Universitt Mnster, D-48149 Mnster (Germany)] [Institut fr Kernphysik, Westflische Wilhelms-Universitt Mnster, D-48149 Mnster (Germany)

2013-12-21T23:59:59.000Z

426

Brueckner-Bethe and variational calculations of nuclear matter  

Science Journals Connector (OSTI)

Results of both Brueckner-Bethe and variational calculations for the binding energy of nuclear matter as a function of density are presented for several recent nucleon-nucleon potentials. A detailed comparison is made for the Argonne v14 potential, the most realistic potential for which both methods have been used. The two methods agree reasonably well, with predicted saturation points of -17.8 MeV at 1.6 fm-1 for the Brueckner-Bethe method, and -16.6 MeV at 1.7 fm-1 for the variational method. The variational energies are 12 MeV above the Brueckner-Bethe energies for densities from 1.2 to 1.7 fm-1. The results of Brueckner-Bethe calculations are also given for the Paris and Bonn potentials as well as results of variational calculations for the Urbana v14 potential. These potentials all give similar binding energy curves, and all saturate matter at a density significantly above the empirical value.

B. D. Day and R. B. Wiringa

1985-09-01T23:59:59.000Z

427

Alternative similarity renormalization group generators in nuclear structure calculations  

E-Print Network [OSTI]

The similarity renormalization group (SRG) has been successfully applied to soften interactions for ab initio nuclear calculations. In almost all practical applications in nuclear physics, an SRG generator with the kinetic energy operator is used. With this choice, a fast convergence of many-body calculations can be achieved, but at the same time substantial three-body interactions are induced even if one starts from a purely two-nucleon (NN) Hamiltonian. Three-nucleon (3N) interactions can be handled by modern many-body methods. However, it has been observed that when including initial chiral 3N forces in the Hamiltonian, the SRG transformations induce a non-negligible four-nucleon interaction that cannot be currently included in the calculations for technical reasons. Consequently, it is essential to investigate alternative SRG generators that might suppress the induction of many-body forces while at the same time might preserve the good convergence. In this work we test two alternative generators with oper...

Dicaire, Nuiok M; Navratil, Petr

2014-01-01T23:59:59.000Z

428

Multigroup calculations using VIM: A user's guide to ISOVIM  

SciTech Connect (OSTI)

Monte Carlo calculations have long been used to benchmark more a mate approximate solution methods for reactor physics problems. The power of VIM (ref 1) lies partly in the detailed geometrical representations incorporating the (generally) curved surfaces of combinatorial geometry, and partly in the fine energy detail of pointwise cross sections which are independent of the neutron spectrum. When differences arise between Monte Carlo and deterministic calculations, the question arises, is the error in the multigroup cross sections, in the treatment of transport effects, or in the mesh-based treatment of space in the deterministic calculation The answers may not be obvious, but may be identified by combining the exact geometry capability of VIM with the multigroup formalism. We can now run VIM in a multigroup mode by producing special VIM Material files which contain point-wise data describing multigroup data with histograms. This forces VIM to solve the multigroup problem with only three small code modifications. P[sub N] scattering is simulated with the usual tabulated angular distributions with 20 equally-sized scattering angle cosine meshes. This document describes the VIM multigroup capability, the procedures for generating multigroup cross sections for VIM, and their use. The multigroup cross section generating code, ISOVIM, is described, and benchmark testing is documented.

Blomquist, R.N.

1992-09-01T23:59:59.000Z

429

Microscopic calculation of the imaginary Lane isospin potential W1  

Science Journals Connector (OSTI)

Results of a determination of the imaginary Lane potential W1 are presented, based on a second-order calculation of the 25 MeV Ca48(p,n)48Sc 0+ analog reaction. Inelastic (p,p-1), (n,n-1) and charge exchange (p,n-1) particle-hole intermediate nuclear states are used, and an exact treatment of the continuum and of second-order knockout exchange are included. A complex-energy intermediate-projectile Greens function is used to account for energy averaging of the incident beam. The sign of W1 is shown to be positive, in agreement with phenomenological results, but the calculated magnitude is about a factor of 2 weaker than the Becchetti-Greenlees phenomenological potential. The contribution from an intermediate ground-state deuteron projectile is calculated in the zero-range approximation for pickup and stripping and is found to be about (1/3) of the contribution from the sum of all intermediate particle-hole states.

F. Osterfeld and V. A. Madsen

1985-07-01T23:59:59.000Z

430

WIPP shaft seal system parameters recommended to support compliance calculations  

SciTech Connect (OSTI)

The US Department of Energy plans to dispose of transuranic waste at the Waste Isolation Pilot Plant (WIPP), which is sited in southeastern New Mexico. The WIPP disposal facility is located approximately 2,150 feet (650 m) below surface in the bedded halite of the Salado Formation. Prior to initiation of disposal activities, the Department of Energy must demonstrate that the WIPP will comply with all regulatory requirements. Applicable regulations require that contaminant releases from the WIPP remain below specified levels for a period of 10,000 years. To demonstrate that the WIPP will comply with these regulations, the Department of Energy has requested that Sandia National Laboratories develop and implement a comprehensive performance assessment of the WIPP repository for the regulatory period. This document presents the conceptual model of the shaft sealing system to be implemented in performance assessment calculations conducted in support of the Compliance Certification Application for the WIPP. The model was developed for use in repository-scale calculations and includes the seal system geometry and materials to be used in grid development as well as all parameters needed to describe the seal materials. These calculations predict the hydrologic behavior of the system. Hence conceptual model development is limited to those processes that could impact the fluid flow through the seal system.

Hurtado, L.D.; Knowles, M.K. [Sandia National Labs., Albuquerque, NM (United States); Kelley, V.A.; Jones, T.L.; Ogintz, J.B. [INTERA Inc., Austin, TX (United States); Pfeifle, T.W. [RE/SPEC, Inc., Rapid City, SD (United States)

1997-12-01T23:59:59.000Z

431

Divya Energy Solar Panel Savings Calculator | Open Energy Information  

Open Energy Info (EERE)

Divya Energy Solar Panel Savings Calculator Divya Energy Solar Panel Savings Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Divya Energy Solar Panel Savings Calculator Agency/Company /Organization: Boston Cleanweb Hackathon Resource Type: Application prototype User Interface: Website Website: hackerleague.org/hackathons/boston-cleanweb-hackathon/hacks/divya-ener Web Application Link: www.divyaenergy.com/cleanweb/ OpenEI Keyword(s): Cleanweb Hackathon, Boston, Community Generated Coordinates: 42.3490737°, -71.0481764° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3490737,"lon":-71.0481764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Calculation of nuclear masses using image reconstruction techniques  

SciTech Connect (OSTI)

Several methods have been developed to calculate and predict nuclear masses over the last 70 years. The accuracy of the present state-of-the-art nuclear mass models is impressive, because these quantities can be calculated with an average 0.05 % precision. However this precision level is still insufficient to deal with nuclear reactions of astrophysical interest, especially r-process ones. Different approaches exist to calculate nuclear masses, ranging from the simple Bethe-Weizsaecker Liquid Drop Formula (LDM) to the sophisticated Finite Range Droplet Model calculations or the microscopic Hartree-Fock-Bogoliuvob techniques from first principles, using Skyrme or Gogny parametrizations of the nucleon-nucleon interaction. Here we suggest a new method to calculate this fundamental property of the atomic nucleus, using a completely phenomenological point of view. Our method is based in the analysis of the differences between measured masses and LDM predictions, which contains information related to those ingredients not taken into account in the LDM formula, such as shell closures, nuclear deformations and residual nuclear interactions. The differences are arranged in a two dimensional plot which can be viewed as an incomplete image of the full chart of nuclides, equivalent to a product of the full image and a binary mask. In order to remove the distortions produced by this mask we employ an algorithm, well known in astronomy, used to remove artificial effects present in the astrophysical images collected through telescopes. This algorithm is called the CLEAN method. It is one of a number of methods which exists to deconvolve undesirable effects in images and to extrapolate or reconstruct missing parts in them. By using the CLEAN method we can fit measured masses with an r.m.s error of less than 100 keV. We have performed several checks and concluded that its utilization must be carried out carefully in order to obtain reliable results in the zone of unknown masses between the driplines. We also outline potential applications of the present approach.

Barea, J.; Frank, A.; Hirsch, J. G.; Lopez, J. C.; Morales, I.; Mendoza, J. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, 04510 Mexico, D.F. (Mexico); Velazquez, V. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, 04510 Mexico, D.F. (Mexico)

2007-10-26T23:59:59.000Z

433

E-Print Network 3.0 - authentic cost calculations Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cost calculations Search Powered by Explorit Topic List Advanced Search Sample search results for: authentic cost calculations Page: << < 1 2 3 4 5 > >> 1 A Lightweight...

434

Calculation and Verification of Blood Ethanol Measurement Uncertainty for Headspace Gas Chromatography  

Science Journals Connector (OSTI)

......Calculation and Verification of Blood Ethanol Measurement Uncertainty for...Calculation and verification of blood ethanol measurement uncertainty for...2% of the BAC measurement. Verification of the estimate......

Jason H. Sklerov; Fiona J. Couper

2011-09-01T23:59:59.000Z

435

Electric Field Calculations on Dry-Type Medium Voltage Current Transformers.  

E-Print Network [OSTI]

??This research presents potential and electric field calculations on medium voltage (MV) epoxy insulated outdoor current transformers (CTs) using a numeri-cal calculation approach. Two designs (more)

Lakshmichand Jain, Sandeep Kumar

2012-01-01T23:59:59.000Z

436

Accurate Band-Structure Calculations for the 3d Transition Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

qualitatively improve the calculated bandgap energies (see table). * Using this method, electronic structure calculations with correct d-band energies and accurate absorption...

437

Documentation of Calculation Methodology, Input Data, and Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Documentation of Calculation Methodology, Input Data, and Infrastructure Documentation of Calculation Methodology, Input Data, and Infrastructure for the Home Energy Saver Web Site Title Documentation of Calculation Methodology, Input Data, and Infrastructure for the Home Energy Saver Web Site Publication Type Report LBNL Report Number LBNL-51938 Year of Publication 2005 Authors Pinckard, Margaret J., Richard E. Brown, Evan Mills, James D. Lutz, Mithra M. Moezzi, Celina S. Atkinson, Christopher A. Bolduc, Gregory K. Homan, and Katie Coughlin Document Number LBNL-51938 Pagination 108 Date Published July 13 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract The Home Energy Saver (HES, http://HomeEnergySaver.lbl.gov) is an interactive web site designed to help residential consumers make decisions about energy use in their homes. This report describes the underlying methods and data for estimating energy consumption. Using engineering models, the site estimates energy consumption for six major categories (end uses); heating, cooling, water heating, major appliances, lighting, and miscellaneous equipment. The approach taken by the Home Energy Saver is to provide users with initial results based on a minimum of user input, allowing progressively greater control in specifying the characteristics of the house and energy consuming appliances. Outputs include energy consumption (by fuel and end use), energy-related emissions (carbon dioxide), energy bills (total and by fuel and end use), and energy saving recommendations. Real-world electricity tariffs are used for many locations, making the bill estimates even more accurate. Where information about the house is not available from the user, default values are used based on end-use surveys and engineering studies. An extensive body of qualitative decision-support information augments the analytical results.

438

ENERGY STAR Healthcare Energy Savings Financial Analysis Calculators |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Healthcare Energy Savings Financial Analysis Healthcare Energy Savings Financial Analysis Calculators Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

439

Calculation of hadronic matrix elements using lattice QCD  

SciTech Connect (OSTI)

The author gives a brief introduction to the scope of lattice QCD calculations in his effort to extract the fundamental parameters of the standard model. This goal is illustrated by two examples. First the author discusses the extraction of CKM matrix elements from measurements of form factors for semileptonic decays of heavy-light pseudoscalar mesons such as D {yields} Ke{nu}. Second, he presents the status of results for the kaon B parameter relevant to CP violation. He concludes the talk with a short outline of his experiences with optimizing QCD codes on the CM5.

Gupta, R.

1993-08-01T23:59:59.000Z

440

Proliferation Potential of Accelerator-Drive Systems: Feasibility Calculations  

SciTech Connect (OSTI)

Accelerator-driven systems for fissile materials production have been proposed and studied since the early 1950s. Recent advances in beam power levels for small accelerators have raised the possibility that such use could be feasible for a potential proliferator. The objective of this study is to review the state of technology development for accelerator-driven spallation neutron sources and subcritical reactors. Energy and power requirements were calculated for a proton accelerator-driven neutron spallation source and subcritical reactors to produce a significant amount of fissile material--plutonium.

Riendeau, C.D.; Moses, D.L.; Olson, A.P.

1998-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Accelerating Ab Initio Nuclear Physics Calculations with GPUs  

E-Print Network [OSTI]

This paper describes some applications of GPU acceleration in ab initio nuclear structure calculations. Specifically, we discuss GPU acceleration of the software package MFDn, a parallel nuclear structure eigensolver. We modify the matrix construction stage to run partly on the GPU. On the Titan supercomputer at the Oak Ridge Leadership Computing Facility, this produces a speedup of approximately 2.2x - 2.7x for the matrix construction stage and 1.2x - 1.4x for the entire run.

Hugh Potter; Dossay Oryspayev; Pieter Maris; Masha Sosonkina; James Vary; Sven Binder; Angelo Calci; Joachim Langhammer; Robert Roth; mit atalyrek; Erik Saule

2014-12-18T23:59:59.000Z

442

Statewide Air Emissions Calculations from Energy Efficiency, Wind and Renewables  

E-Print Network [OSTI]

AND RENEWABLES May 2008 Energy Systems Laboratory p. 2 Electricity Production from Wind Farms (2002-2007) ? Installed capacity of wind turbines was 3,026 MW (March 2007). ? Announced new project capacity is 3,125 MW by 2010. ? Lowest electricity period... Speed (MPH) T u rb in e P o w er (k W h /h ) Hourly electricity produced vs on- site wind data acceptable for hourly modeling. Issue: hourly on-site data not always available. Calculating NOx Reductions from Wind Farms Energy...

Haberl, J.; Yazdani, B.; Culp, C.

443

Calculation of dose to soft tisse from implanted beta sources  

E-Print Network [OSTI]

of these scaled point kernel in water are tabulated by Berger (Fig. 2. 4). This figure shows the scaled electron absorbed distributions in water for two electron energies. 18 16 0, 1 Mev 'd dC E C cc D td dC cd cc cCd 14 12 08 06 04 1 Mev 02... Approved as to style and content by: Warren D. Recce (Chair of Committee) Jo . Poston, Sr (Memb ) Mic ael Walker (Member) John . Poston, Sr. (Head of Department) May 1998 Major Subject: Health Physics ABSTRACT Calculation of Dose to Soft Tissue...

Dauffy, Lucile

2012-06-07T23:59:59.000Z

444

L2-Logique, TD5 Calcul des propositions  

E-Print Network [OSTI]

L2-Logique, TD5 2007/08 Calcul des propositions 1 D´emonstrations Dans cette partie, utilisez le m´eta-th´eor standard. On interpr`ete ce syst`eme par l'alg`ebre de Boole standard. 2 - Est-ce que tout th´eor`eme de CP) (A B) | A, B FCP0 } 4 - Est-ce que toute tautologie est un th´eor`eme de CP0' ? 5 - Le m´eta-th´eor

Narboux, Julien

445

Automated one-loop calculations with GoSam  

E-Print Network [OSTI]

In this talk, the program package GOSAM is presented, which can be used for the automated calculation of one-loop amplitudes for multi-particle processes. The integrands are generated in terms of Feynman diagrams and can be reduced by d-dimensional integrand-level decomposition, or tensor reduction, or a combination of both. Through various examples we show that GOSAM can produce one-loop amplitudes for both QCD and electroweak theory; model files for theories Beyond the Standard Model can be linked as well.

G. Cullen; N. Greiner; G. Heinrich; G. Luisoni; P. Mastrolia; G. Ossola; T. Reiter; F. Tramontano

2012-01-13T23:59:59.000Z

446

Semiclassical framework for the calculation of transport anisotropies  

E-Print Network [OSTI]

and well-known phenomenon1?3 with applications in spintronics.4,5 Although the experimental observation of this anisotropic magnetoresistance #1;AMR#2; is rather direct?first accomplished as early as 1857?its theo- retical understanding is far from...; relies on calculating the transport relaxation time #2; from the scattering amplitudes w#1;k#1; ,k#1;#1;#2; between two states on the Fermi surface using 1 #2; =#3; d2k#1;#1;2#3;#2;2w#1;k#1;,k#1;#1;#2;#4;1 ? cos #4;k#1;k#1;#1;#5; . #1;1...

Vyborny, Karel; Kovalev, Alexey A.; Sinova, Jairo; Jungwirth, T.

2009-01-01T23:59:59.000Z

447

Calculation of nuclear matrix elements in neutrinoless double electron capture  

E-Print Network [OSTI]

We compute nuclear matrix elements for neutrinoless double electron capture on $^{152}$Gd, $^{164}$Er and $^{180}$W nuclei. Recent precise mass measurements for these nuclei have shown a large resonance enhancement factor that makes them the most promising candidates for observing this decay mode. We use an advanced energy density functional method which includes beyond mean-field effects such as symmetry restoration and shape mixing. Our calculations reproduce experimental charge radii and $B(E2)$ values predicting a large deformation for all these nuclei. This fact reduces significantly the values of the NMEs leading to half-lives larger than $10^{29}$ years for the three candidates.

Tomas R. Rodriguez; Gabriel Martinez-Pinedo

2012-03-05T23:59:59.000Z

448

Atomic spectral methods for molecular electronic structure calculations  

Science Journals Connector (OSTI)

Theoretical methods are reported for ab initio calculations of the adiabatic (BornOppenheimer) electronic wave functions and potential energy surfaces of molecules and other atomic aggregates. An outer product of complete sets of atomic eigenstates familiar from perturbation-theoretical treatments of long-range interactions is employed as a representational basis without prior enforcement of aggregate wave function antisymmetry. The nature and attributes of this atomic spectral-product basis are indicated completeness proofs for representation of antisymmetric states provided convergence of Schrdinger eigenstates in the basis established and strategies for computational implemention of the theory described. A diabaticlike Hamiltonian matrix representative is obtained which is additive in atomic-energy and pairwise-atomic interaction-energy matrices providing a basis for molecular calculations in terms of the (Coulombic) interactions of the atomic constituents. The spectral-product basis is shown to contain the totally antisymmetric irreducible representation of the symmetric group of aggregate electron coordinate permutations once and only once but to also span other (non-Pauli) symmetric group representations known to contain unphysical discrete states and associated continua in which the physically significant Schrdinger eigenstates are generally embedded. These unphysical representations are avoided by isolating the physical block of the Hamiltonian matrix with a unitary transformation obtained from the metric matrix of the explicitly antisymmetrized spectral-product basis. A formal proof of convergence is given in the limit of spectral closure to wave functions and energy surfaces obtained employing conventional prior antisymmetrization but determined without repeated calculations of Hamiltonian matrix elements as integrals over explicitly antisymmetric aggregate basis states. Computational implementations of the theory employ efficient recursive methods which avoid explicit construction the metric matrix and do not require storage of the full Hamiltonian matrix to isolate the antisymmetric subspace of the spectral-product representation. Calculations of the lowest-lying singlet and triplet electronic states of the covalent electron pair bond ( H 2 ) illustrate the various theorems devised and demonstrate the degree of convergence achieved to values obtained employing conventional prior antisymmetrization. Concluding remarks place the atomic spectral-product development in the context of currently employed approaches for ab initio construction of adiabatic electronic eigenfunctions and potential energy surfaces provide comparisons with earlier related approaches and indicate prospects for more general applications of the method.

P. W. Langhoff; J. A. Boatz; R. J. Hinde; J. A. Sheehy

2004-01-01T23:59:59.000Z

449

Spectral differences in real-space electronic structure calculations  

Science Journals Connector (OSTI)

Real-space grids for electronic structure calculations are efficient because the potential is diagonal while the second derivative in the kinetic energy may be sparsely evaluated with finite differences or finite elements. In applications to vibrational problems in chemical physics a family of methods known as spectral differences has improved finite differences by several orders of magnitude. In this paper the use of spectral differences for electronic structure is studied. Spectral differences are implemented in two electronic structure programs PARSEC and HARES which currently employ finite differences. Applications to silicon clusters and lattices indicate that spectral differences achieve the same accuracy as finite differences with less computational work.

D. K. Jordan; D. A. Mazziotti

2004-01-01T23:59:59.000Z

450

Ab initio calculations of surface phase diagrams of silica polymorphs  

Science Journals Connector (OSTI)

We present first-principle calculations of structural and electronic properties of several ?-quartz and ?-cristobalite surfaces. The effect of hydrogen passivation is investigated and it is demonstrated that in addition to significantly reducing the surface energy, hydrogen dramatically changes the surface phase diagram. We identify stability fields for single species surface termination and demonstrate that controlling the chemical environment allows a certain degree of process control of the surface termination and properties important in modern technology such as atomic layer deposition of high-k dielectrics and silicon on insulator.

Evgueni Chagarov; Alexander A. Demkov; James B. Adams

2005-02-23T23:59:59.000Z

451

Method of calculation of heat generation rates for DWPF glass  

SciTech Connect (OSTI)

The Waste Acceptance Preliminary Specifications (WAPS) require estimates of the heat generation rate of DWPF waste glasses. Estimates of the heat generation rates of projected glass compositions are to be reported in the Waste Form Qualification Report. Similar estimates for actual production glasses are to be reported in the Production Records. In this report, a method of calculating the heat generation rate from the radionuclide inventory is provided. Application of the method to the DWPF Design-Basis glass indicates that the heat generation rate can be accurately estimated from the Sr-90, Y-90, Cs-137, Ba-137m, and Pu-238 contents alone.

Plodinec, M.J.

1992-03-17T23:59:59.000Z

452

Method of calculation of heat generation rates for DWPF glass  

SciTech Connect (OSTI)

The Waste Acceptance Preliminary Specifications (WAPS) require estimates of the heat generation rate of DWPF waste glasses. Estimates of the heat generation rates of projected glass compositions are to be reported in the Waste Form Qualification Report. Similar estimates for actual production glasses are to be reported in the Production Records. In this report, a method of calculating the heat generation rate from the radionuclide inventory is provided. Application of the method to the DWPF Design-Basis glass indicates that the heat generation rate can be accurately estimated from the Sr-90, Y-90, Cs-137, Ba-137m, and Pu-238 contents alone.

Plodinec, M.J.

1993-02-04T23:59:59.000Z

453

Nonlinear eigenvalue problems in Density Functional Theory calculations  

SciTech Connect (OSTI)

Developed in the 1960's by W. Kohn and coauthors, Density Functional Theory (DFT) is a very popular quantum model for First-Principles simulations in chemistry and material sciences. It allows calculations of systems made of hundreds of atoms. Indeed DFT reduces the 3N-dimensional Schroedinger electronic structure problem to the search for a ground state electronic density in 3D. In practice it leads to the search for N electronic wave functions solutions of an energy minimization problem in 3D, or equivalently the solution of an eigenvalue problem with a non-linear operator.

Fattebert, J

2009-08-28T23:59:59.000Z

454

Adaptations in Electronic Structure Calculations in Heterogeneous Environments  

SciTech Connect (OSTI)

Modern quantum chemistry deals with electronic structure calculations of unprecedented complexity and accuracy. They demand full power of high-performance computing and must be in tune with the given architecture for superior e#14;ciency. To make such applications resourceaware, it is desirable to enable their static and dynamic adaptations using some external software (middleware), which may monitor both system availability and application needs, rather than mix science with system-related calls inside the application. The present work investigates scienti#12;c application interlinking with middleware based on the example of the computational chemistry package GAMESS and middleware NICAN. The existing synchronous model is limited by the possible delays due to the middleware processing time under the sustainable runtime system conditions. Proposed asynchronous and hybrid models aim at overcoming this limitation. When linked with NICAN, the fragment molecular orbital (FMO) method is capable of adapting statically and dynamically its fragment scheduling policy based on the computing platform conditions. Signi#12;cant execution time and throughput gains have been obtained due to such static adaptations when the compute nodes have very di#11;erent core counts. Dynamic adaptations are based on the main memory availability at run time. NICAN prompts FMO to postpone scheduling certain fragments, if there is not enough memory for their immediate execution. Hence, FMO may be able to complete the calculations whereas without such adaptations it aborts.

Talamudupula, Sai

2011-11-29T23:59:59.000Z

455

Recent Developments in No-Core Shell-Model Calculations  

SciTech Connect (OSTI)

We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.

Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R

2009-03-20T23:59:59.000Z

456

Calculations on seismic coupling of underground explosions in salt  

SciTech Connect (OSTI)

This report details the results of a theoretical study of seismic coupling and decoupling of underground explosions in a salt medium. A series of chemical and nuclear explosions was carried out years ago in salt domes for the Cowboy and the Dribble programs to provide experimental data on seismic coupling for both tamped explosions and explosions in cavities. The Cowboy program consisted of a series of chemical explosions, and the Dribble program consisted of the tamped nuclear Salmon event, the Sterling nuclear event in the Salmon cavity, and an associated site calibration effort. This report presents the results of extensive computer calculations, which are in satisfactory agreement with the experimental data. The calculations were extended to give general results on seismic coupling in salt. The measure of seismic coupling for most of this work was the residual reduced displacement potential (residual RDP). The decoupling associated with a shot in a cavity was expressed as the ratio of the resulting residual RDP to that of an equal-sized tamped shot.

Heusinkveld, M.E.

1981-01-20T23:59:59.000Z

457

Tissue Heterogeneity in IMRT Dose Calculation for Lung Cancer  

SciTech Connect (OSTI)

The aim of this study was to evaluate the differences in accuracy of dose calculation between 3 commonly used algorithms, the Pencil Beam algorithm (PB), the Anisotropic Analytical Algorithm (AAA), and the Collapsed Cone Convolution Superposition (CCCS) for intensity-modulated radiation therapy (IMRT). The 2D dose distributions obtained with the 3 algorithms were compared on each CT slice pixel by pixel, using the MATLAB code (The MathWorks, Natick, MA) and the agreement was assessed with the {gamma} function. The effect of the differences on dose-volume histograms (DVHs), tumor control, and normal tissue complication probability (TCP and NTCP) were also evaluated, and its significance was quantified by using a nonparametric test. In general PB generates regions of over-dosage both in the lung and in the tumor area. These differences are not always in DVH of the lung, although the Wilcoxon test indicated significant differences in 2 of 4 patients. Disagreement in the lung region was also found when the {Gamma} analysis was performed. The effect on TCP is less important than for NTCP because of the slope of the curve at the level of the dose of interest. The effect of dose calculation inaccuracy is patient-dependent and strongly related to beam geometry and to the localization of the tumor. When multiple intensity-modulated beams are used, the effect of the presence of the heterogeneity on dose distribution may not always be easily predictable.

Pasciuti, Katia, E-mail: ka.pasciuti@libero.i [Laboratory of Medical Physics, Istituto Regina Elena, Roma (Italy); Iaccarino, Giuseppe; Strigari, Lidia [Laboratory of Medical Physics, Istituto Regina Elena, Roma (Italy); Malatesta, Tiziana [Medical Physics Department, S. Giovanni Calibita, Fatebenefratelli Hospital, Roma (Italy); Benassi, Marcello; Di Nallo, Anna Maria [Laboratory of Medical Physics, Istituto Regina Elena, Roma (Italy); Mirri, Alessandra; Pinzi, Valentina [Division of Radiotherapy, Istituto Regina Elena, Roma (Italy); Landoni, Valeria [Laboratory of Medical Physics, Istituto Regina Elena, Roma (Italy)

2011-07-01T23:59:59.000Z

458

Calculations of long-lived isomer production in neutron reactions  

SciTech Connect (OSTI)

We have carried out theoretical calculations for the production of the long-lived isomers {sup 93m}Nb({1/2}{sup {minus}}, 16y), {sup 121m}Sn(11/2{minus}, 55 yr), {sup 166m}Ho(7-, 1200 yr), {sup 184m}Re(8+, 165 d), {sup 186m}Re(8+, 2{times}10{sup 5} yr), {sup 178m}Hf(16+, 31 yr), {sup 179m}Hf(25/2-, 25 d), {sup 192m}Ir(9+, 241 yr), all of which pose potential radiation activation problems in nuclear fusion reactors. We consider (n, 2n), (n,n{prime}), and (n, {gamma}) production modes and compare our results both with experimental data (where available) and systematic. We also investigate the dependence of the isomeric cross section ratio on incident neutron energy for the isomers under consideration. The statistical Hauser-Feshbach plus preequilibrium code GNASH was used for the calculations. Where discrete state experimental information was lacking, rotational band members above the isomeric state, which can be justified theoretically but have not been experimentally resolved, were reconstructed. 16 refs., 8 figs.

Chadwick, M.B.; Young, P.G.

1991-01-01T23:59:59.000Z

459

Exposure Time Calculator for Immersion Grating Infrared Spectrograph: IGRINS  

E-Print Network [OSTI]

We present an exposure-time calculator (ETC) for the Immersion Grating Infrared Spectrograph (IGRINS). The signal and noise values are calculated by taking into account the telluric background emission and absorption, the emission and transmission of the telescope and instrument optics, and the dark current and read noise of the infrared detector arrays. For the atmospheric transmission, we apply models based on the amount of precipitable water vapor along the line of sight to the target. The ETC produces the expected signal-to-noise ratio (S/N) for each resolution element, given the exposure-time and number of exposures. In this paper, we compare the simulated continuum S/N for the early-type star HD 124683 and the late-type star GSS 32, and the simulated emission line S/N for the H2 rovibrational transitions from the Iris Nebula NGC 7023 with the observed IGRINS spectra. The simulated S/N from the ETC is overestimate by 10 - 15 % for the sample continuum targets.

Le, Huynh Anh N; Jaffe, Daniel T; Lee, Jae-Joon; Im, Myungshin; Kaplan, Kyle; Seifahrt, Andreas

2015-01-01T23:59:59.000Z

460

Generic effective source for scalar self-force calculations  

E-Print Network [OSTI]

A leading approach to the modelling of extreme mass ratio inspirals involves the treatment of the smaller mass as a point particle and the computation of a regularized self-force acting on that particle. In turn, this computation requires knowledge of the regularized retarded field generated by the particle. A direct calculation of this regularized field may be achieved by replacing the point particle with an effective source and solving directly a wave equation for the regularized field. This has the advantage that all quantities are finite and require no further regularization. In this work, we present a method for computing an effective source which is finite and continuous everywhere, and which is valid for a scalar point particle in arbitrary geodesic motion in an arbitrary background spacetime. We explain in detail various technical and practical considerations that underlie its use in several numerical self-force calculations. We consider as examples the cases of a particle in a circular orbit about Schwarzschild and Kerr black holes, and also the case of a particle following a generic time-like geodesic about a highly spinning Kerr black hole. We provide numerical C code for computing an effective source for various orbital configurations about Schwarzschild and Kerr black holes.

Barry Wardell; Ian Vega; Jonathan Thornburg; Peter Diener

2011-12-29T23:59:59.000Z

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Calculated electronic structure of metastable phases of Cu  

Science Journals Connector (OSTI)

The electronic energy band and ground-state properties for the existing body-centered-cubic (bcc) and body-centered-tetragonal (bct) crystals, and the predicted hexagonal-close-packed (hcp) structure of elemental copper have been calculated by using first-principles density-functional linear muffin-tin orbital methods in a unified scheme. Results are presented in the form of the energy-band structure in k space and the total energy as a function of the lattice constant. A recent proposed generalized gradient approximation scheme gives more accurate values than the standard local-density approximation. The calculated band structure of bct-Cu is in good agreement with that measured in photoemission experiments, on Cu films grown epitaxialy on Pd{001} and on Pt{001}. The equilibrium lattice constants given by us are in good agreement with those obtained from experiments on bct-Cu and bcc-Cu films. The possibility of the existence of an artificial structure of hcp-Cu has been discussed.

Yumei Zhou; Wuyan Lai; Jianqing Wang

1994-02-15T23:59:59.000Z

462

Nonperturbative relativistic calculation of the muonic hydrogen spectrum  

Science Journals Connector (OSTI)

We investigate the muonic hydrogen 2P3/2F=2 to 2S1/2F=1 transition through a precise, nonperturbative numerical solution of the Dirac equation including the finite-size Coulomb force and finite-size vacuum polarization. The results are compared with earlier perturbative calculations of (primarily) [E. Borie, Phys. Rev. A 71, 032508 (2005);? E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67 (1982);? E. Borie, Z. Phys. A 275, 347 (1975) and A. P. Martynenko, Phys. Rev. A 71, 022506 (2005);? A. Martynenko, Phys. At. Nucl. 71, 125 (2008), and K. Pachucki, Phys. Rev. A 53, 2092 (1996)] and experimental results recently presented by Pohl et al. [Nature (London) 466, 213 (2010)], in which this very comparison is interpreted as requiring a modification of the proton charge radius from that obtained in electron scattering and electronic hydrogen analyses. We find no significant discrepancy between the perturbative and nonperturbative calculations, and we present our results as confirmation of the perturbative methods.

J. D. Carroll; A. W. Thomas; J. Rafelski; G. A. Miller

2011-07-15T23:59:59.000Z

463

PC-SAFT parameters from ab initio calculations  

Science Journals Connector (OSTI)

Abstract We use highly accurate ab initio calculations of binding enthalpies and entropies of gas phase clusters of alcohols to demonstrate how they can be used to obtain association parameters for PC-SAFT. The thermochemical results demonstrate that cooperativity effects and state dependent cluster distributions cause a strongly varying average enthalpy and entropy per bond as function of temperature and density for alcohols. In contrast to this, the two association parameters of PC-SAFT lead to density independent bond enthalpy and entropy and are thus effective parameters. Therefore, we choose to compute the cluster distribution at a universal state point and show that the thus obtained association parameters can be used to reduce the number of adjustable parameters from 5 to 3 with only a marginal loss of accuracy for most of the studied systems, and even an estimation of thermodynamic properties without adjusted parameters is possible. The ab initio calculations suggest that the 2B association scheme is more appropriate for 1-alkanols than the 3B one.

Muhammad Umer; Katja Albers; Gabriele Sadowski; Kai Leonhard

2014-01-01T23:59:59.000Z

464

E-Print Network 3.0 - acceptance crystal monochromator Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... Source: Controlled Fusion Atomic Data Center (CFADC) Collection: Plasma Physics and Fusion 13 MACS -A New High Intensity Cold Neutron Spectrometer at NIST Summary: V (Ei2.1...

465

Neutron Diffraction Performance Based on Multiple Reflection Monochromator for High-Resolution Neutron Radiography  

Science Journals Connector (OSTI)

The effects of multiple Bragg reflections in single crystal can be observed when more than one set of planes are simultaneously operative for a given wavelength i.e. when more than two reciprocal lattice point...

Pavel Mikula; Miroslav Vrana

2007-01-01T23:59:59.000Z

466

Model calculations of the hydrogen/deuterium kinetic isotope effect in the atomic hydrogen + disilane reaction  

Science Journals Connector (OSTI)

Model calculations of the hydrogen/deuterium kinetic isotope effect in the atomic hydrogen + disilane reaction ...

I. Safarik; T. L. Pollock; O. P. Strausz

1974-01-01T23:59:59.000Z

467

Calculating the vapor pressure of water from the second law of thermodynamics  

Science Journals Connector (OSTI)

Calculating the vapor pressure of water from the second law of thermodynamics ... Thermodynamics ...

M. H. Everdell

1969-01-01T23:59:59.000Z

468

Configuration interaction calculation of the specific mass shift for atoms with few valence electrons.  

E-Print Network [OSTI]

) calculation. If technically Electronic address: mgk@MF1309.spb.edu possible, we allow all configurations two valence electrons. II. DETAILS OF THE CALCULATIONS In this work we calculated SMS for the low-valence correlations were included. Si II, which has a ground state configuration 3s2 3p was calculated in [1] as a one-electron

Kozlov, Mikhail G

469

The calculation of stepper and synchronous electric motors for automobile electric drives  

Science Journals Connector (OSTI)

Peculiarities of calculations for electric motors for automobile electric drives integrated with electronic controls are considered.

V. V. Kozlov

2007-05-01T23:59:59.000Z

470

CATHARE calculations of Phenix ultimate natural convection test  

SciTech Connect (OSTI)

The Phenix Sodium cooled Fast Reactor (SFR) started operation in 1973 and it was stopped in 2009. Before the reactor was definitively shutdown, in order to collect experimental data for code assessments in the frame of Generation IV an intensive program of ultimate tests was set up. Among these ultimate experiments, two thermal hydraulic tests were performed: an asymmetrical test consisting in a trip on one secondary pump and a natural convection test in the primary circuit. The natural convection test has been used for an international benchmark on system codes in the frame of the IAEA. The CATHARE code - initially developed for water cooled reactors and now extended for safety analyses for other kinds of reactors, including Sodium Fast Reactor - was used by CEA for this benchmark. The paper reminds briefly the Phenix reactor with the main physical parameters and the instrumentation used during the natural convection test. Main test results are also briefly reminded including the evolution of the core and the heat exchangers inlet and outlet temperatures, and some local temperature measurements. The main developments to perform CATHARE SFR computations and the strategy of system code assessment are presented. Then the CATHARE modelling of Phenix reactor is depicted and the various assumptions are pointed out. CATHARE encountered no problem to predict the initial nominal state. Afterwards, the whole transient scenario is calculated and CATHARE calculations are compared to the Phenix measurements. The global trend is rather well predicted by the CATHARE code. Nevertheless, due to complex flow phenomena occurring in large plena and components, the system code encountered physical limitations, leading to remaining discrepancies between code prediction and plant data. Various sensitivity calculations are presented and they bring partial answers. Additional analyses are in progress to understand more deeply the complex 3D phenomena involved during the different phases of the natural convection test. Additional work for coupling CATHARE system code and TRIO-U CFD code is in progress and will bring useful information to better understand the physical phenomena involved during the natural convection test and to improve system modeling for future SFR safety analysis. (authors)

Pialla, D.; Tenchine, D. [CEA, DEN, DM2S/STMF, Grenoble, F-17 rue des Martyrs, 38000 Grenoble (France); Gauthe, P. [CEA, DEN, DER/SESI, Cadarache, F-13108 Saint Paul lez Durance (France); Vasile, A. [CEA, DEN, DER, Cadarache, F-13108 Saint Paul lez Durance (France)

2012-07-01T23:59:59.000Z

471

HVAC Right-Sizing Part 1: Calculating Loads  

Broader source: Energy.gov (indexed) [DOE]

Building America Building America Presented by: Mike Gestwick - National Renewable Energy Laboratory Arlan Burdick, Anthony Grisolia - IBACOS, a Building America Research Team HVAC Right-Sizing Part 1: Calculating Loads Thursday, April 28 11:00 a.m. - 12:00 p.m. Eastern Building Technologies Program Mike Gestwick michael.gestwick@nrel.gov Building America: Introduction April 28, 2011 Introduction to Building America * Reduce energy use in new and existing residential buildings * Promote building science and systems engineering / integration approach * "Do no harm": Ensure safety, health and durability are maintained or improved * Accelerate adoption of high performance technologies www.buildingamerica.gov 15 Industry Research Teams Habitat Cost Effective Energy Retrofit Program

472

Glueball matrix elements: a lattice calculation and applications  

E-Print Network [OSTI]

We compute the matrix elements of the energy-momentum tensor between glueball states and the vacuum in SU(3) lattice gauge theory and extrapolate them to the continuum. These matrix elements may play an important phenomenological role in identifying glue-rich mesons. Based on a relation derived long ago by the ITEP group for J/psi radiative decays, the scalar matrix element leads to a branching ratio for the glueball that is at least three times larger than the experimentally observed branching ratio for the f_0 mesons above 1GeV. This suggests that the glueball component must be diluted quite strongly among the known scalar mesons. Finally we review the current best continuum determination of the scalar and tensor glueball masses, the deconfining temperature, the string tension and the Lambda parameter, all in units of the Sommer reference scale, using calculations based on the Wilson action.

Harvey B. Meyer

2008-08-22T23:59:59.000Z

473

Hanford Apatite Treatability Test Report Errata: Apatite Mass Loading Calculation  

SciTech Connect (OSTI)

The objective of this errata report is to document an error in the apatite loading (i.e., treatment capacity) estimate reported in previous apatite treatability test reports and provide additional calculation details for estimating apatite loading and barrier longevity. The apatite treatability test final report (PNNL-19572; Vermeul et al. 2010) documents the results of the first field-scale evaluation of the injectable apatite PRB technology. The apatite loading value in units of milligram-apatite per gram-sediment is incorrect in this and some other previous reports. The apatite loading in units of milligram phosphate per gram-sediment, however, is correct, and this is the unit used for comparison to field core sample measurements.

Szecsody, James E.; Vermeul, Vincent R.; Williams, Mark D.; Truex, Michael J.

2014-05-19T23:59:59.000Z

474

Calculations on permanent-magnet quadrupoles with nonrectangular cross section  

SciTech Connect (OSTI)

The current trend toward higher frequencies to power drift-tube linacs (DTLs) and coupled-cavity linacs (CCLs) reduces the space available for quadrupole focusing magnets. Similarly, the space available for matching sections between linac sections is limited, and often the matching section bunchers are designed in odd shapes to make them fit. This shaping further restricts focusing magnet space. One approach to attaining sufficient quadrupole strength is such situations is to use rare-earth permanent-magnet quadrupoles (PMQs) with cross sections tailored to fill as much of the available space as possible. In this paper, we describe some techniques we have developed to calculate the properties of such magnets both singly and when other magnets are nearby. 3 refs., 4 figs.

Boicourt, G.P.; Merson, J.L.

1988-01-01T23:59:59.000Z

475

Delay time calculation for dual-wavelength quantum cascade lasers  

SciTech Connect (OSTI)

In this paper, we calculate the turn-on delay (t{sub th}) and buildup (?t) times of a midinfrared quantum cascade laser operating simultaneously on two laser lines having a common upper level. The approach is based on the four-level rate equations model describing the variation of the electron number in the states and the photon number present within the cavity. We obtain simple analytical formulae for the turn-on delay and buildup times that determine the delay times and numerically apply our results to both the single and bimode states of a quantum cascade laser, in addition the effects of current injection on t{sub th} and ?t are explored.

Hamadou, A., E-mail: abd-hamado@yahoo.fr [Dpartement des Sciences et Techniques, Facult des Sciences et de la Technologie, Universit de Bordj Bou Arreridj 34000 (Algeria); Laboratoire dtude des surfaces et interfaces des matriaux solides (LESIMS), Stif 19000 (Algeria); Lamari, S. [Laboratoire dtude des surfaces et interfaces des matriaux solides (LESIMS), Stif 19000 (Algeria); Dpartement de Physique, Facult des Sciences, Universit Stif 1, 19000 (Algeria); Thobel, J.-L. [Institut d'Electronique, de Microlectronique et de Nanotechnologie (IEMN), UMR 8520, Universit Lille1, Avenue Poincar, BP 60069, 59652 Villeneuve d'Ascq Cdex (France)

2013-11-28T23:59:59.000Z

476

Center of pressure calculations for a bent-axis vehicle  

SciTech Connect (OSTI)

Bent-axis maneuvering vehicles provide a unique type of control for a variety of supersonic and hypersonic missions. Unfortunately, large hinge moments, incomplete pitching moment predictions, and a misunderstanding of corresponding center of pressure calculations have prevented their application. A procedure is presented for the efficient design of bent-axis vehicles given an adequate understanding of origins of pitching moment effects. In particular,sources of pitching moment contributions will be described including not only normal force, but inviscid axial force and viscous effects as well. Off-centerline center of pressure effects are first reviewed for symmetric hypersonic sphere-cone configurations. Next the effects of the bent-axis geometry are considered where axial force, acting on the deflected tail section, can generate significant pitching moment components. The unique relationship between hinge moments and pitching moments for the bent-axis class of vehicles is discussed. 15 refs.

Rutledge, W.H.; Polansky, G.F.

1992-01-01T23:59:59.000Z

477

Calculation of TMD Evolution for Transverse Single Spin Asymmetry Measurements  

SciTech Connect (OSTI)

In this letter, we show that it is necessary to include the full treatment of QCD evolution of Transverse Momentum Dependent parton densities to explain discrepancies between HERMES data and recent COMPASS data on a proton target for the Sivers transverse single spin asymmetry in Semi-Inclusive Deep Inelastic Scattering (SIDIS). Calculations based on existing fits to TMDs in SIDIS, and including evolution within the Collins-Soper-Sterman with properly defined TMD PDFs are shown to provide a good explanation for the discrepancy. The non-perturbative input needed for the implementation of evolution is taken from earlier analyses of unpolarized Drell-Yan (DY) scattering at high energy. Its success in describing the Sivers function in SIDIS data at much lower energies is strong evidence in support of the unifying aspect of the QCD TMD-factorization formalism.

Mert Aybat, Ted Rogers, Alexey Prokudin

2012-06-01T23:59:59.000Z

478

Ab initio correlated calculations of rare-gas dimer quadrupoles  

SciTech Connect (OSTI)

This paper reports ab initio calculations of rare gas (RG=Kr, Ar, Ne, and He) dimer quadrupoles at the second order of Moeller-Plesset perturbation theory (MP2). The study reveals the crucial role of the dispersion contribution to the RG{sub 2} quadrupole in the neighborhood of the equilibrium dimer separation. The magnitude of the dispersion quadrupole is found to be much larger than that predicted by the approximate model of Hunt. As a result, the total MP2 quadrupole moment is significantly smaller than was assumed in virtually all previous related studies. An analytical model for the distance dependence of the RG{sub 2} quadrupole is proposed. The model is based on the effective-electron approach of Jansen, but replaces the original Gaussian approximation to the electron density in an RG atom by an exponential one. The role of the nonadditive contribution in RG{sub 3} quadrupoles is discussed.

Donchev, Alexander G. [Algodign, LLC, Bolshaya Sadovaya 8, Moscow 123001 (Russian Federation)

2007-10-15T23:59:59.000Z

479

Selection of minimum earthquake intensity in calculating pipe failure probabilities  

SciTech Connect (OSTI)

In a piping reliability analysis, it is sometimes necessary to specify a minimum ground motion intensity, usually the peak acceleration, below which the ground motions are not considered as earthquakes and, hence, are neglected. The calculated probability of failure of a piping system is dependent on this selected minimum earthquake intensity chosen for the analysis. A study was conducted to determine the effects of the minimum earthquake intensity on the probability of pipe failure. The results indicated that the probability of failure of the piping system is not very sensitive to the variations of the selected minimum peak ground acceleration. However, it does have significant effects on various scenarios that make up the system failure.

Lo, T.Y.

1985-01-01T23:59:59.000Z

480

Calculation of density profiles in tandem mirrors fueled by pellets  

SciTech Connect (OSTI)

We have modified the LLNL radial transport code TMT to model reactor regime plasmas, fueled by pellets. The source profiles arising from pellet fueling are obtained from existing pellet ablation models. Because inward radial diffusion due to inverted profiles must compete with trapping of central cell ions in the transition region for tandem mirrors, pellets must penetrate fairly far into the plasma. In fact, based on our radial calculations, a pellet with a velocity of 10 km/sec cannot sustain the central flux tubes; a velocity more like 100 km/sec will be necessary. We also find that the central cell radial diffusion must exceed classical by about a factor of 100.

Campbell, R.B.; Gilmore, J.M.

1983-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "monochromator vls-pgm calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Hydrogen trapping in ?-Pu: insights from electronic structure calculations  

Science Journals Connector (OSTI)

Density functional theory calculations have been performed to provide details of the structural and charge-transfer details related to the solid solution of hydrogen in (?)-plutonium. We follow the Flanagan model that outlines the process by which hydrogen interacts with a metal to produce hydride phases, via a sequence of surface, interstitial and defect-bound (trapped) states. Due to the complexities of the electronic structure in plutonium solid-state systems, we take the pragmatic approach of adopting the 'special quasirandom structure' to disperse the atomic magnetic moments. We find that this approach produces sound structural and thermodynamic properties in agreement with the available experimental data. In ?-Pu, hydrogen has an exothermic binding energy to all of the states relevant in the Flanagan model, and, furthermore, is anionic in all these states. The charge transfer is maximized (i.e.most negative for hydrogen) in the hydride phase. The pathway from surface to hydride is sequentially exothermic, in the order surface

Christopher D Taylor; Sarah C Hernandez; Michael F Francis; Daniel S Schwartz; Asok K Ray

2013-01-01T23:59:59.000Z

482

Electrons in Dry DNA from Density Functional Calculations  

E-Print Network [OSTI]

The electronic structure of an infinite poly-guanine - poly-cytosine DNA molecule in its dry A-helix structure is studied by means of density-functional calculations. An extensive study of 30 nucleic base pairs is performed to validate the method. The electronic energy bands of DNA close to the Fermi level are then analyzed in order to clarify the electron transport properties in this particularly simple DNA realization, probably the best suited candidate for conduction. The energy scale found for the relevant band widths, as compared with the energy fluctuations of vibrational or genetic-sequence origin, makes highly implausible the coherent transport of electrons in this system. The possibility of diffusive transport with sub-nanometer mean free paths is, however, still open. Information for model Hamiltonians for conduction is provided.

E. Artacho; M. Machado; D. Sanchez-Portal; P. Ordejon; J. M. Soler

2002-09-24T23:59:59.000Z

483

Phase Space Wannier Functions in Electronic Structure Calculations  

E-Print Network [OSTI]

We consider the applicability of phase space Wannier functions" to electronic structure calculations. These generalized Wannier functions are analogous to localized plane waves and constitute a complete, orthonormal set which is exponentially localized both in position and momentum space. Their properties are described and an illustrative application to bound states in one dimension is presented. Criteria for choosing basis set size and lattice constant are discussed based on semi-classical, phase space considerations. Convergence of the ground state energy with respect to basis size is evaluated. Comparison with plane-waves basis sets indicates that the number of phase space Wannier functions needed for convergence can be signicantly smaller in three dimensions. PACS: 71.10.+x, 71.50.+t

D. J. Sullivan; J. J. Rehr; J. W. Wilkins; K. G. Wilson

2010-07-20T23:59:59.000Z

484

Calculations of electronic states in ultrasmall quantum boxes of diamond  

Science Journals Connector (OSTI)

The electronic structure of ultrasmall quantum boxes (QBs) of diamond with (110) ( 1 1 0 ) and (001) planes saturated by hydrogen is calculated using the extended Hckel-type nonorthogonal tight-binding method. It is shown that in contrast to the QBs with the ideal surfaces which show a clear dependence of the lowest unoccupied molecular orbital (LUMO) energy on the size variation along the [001] direction the energy of the LUMO state in the QBs with a monohydrogenated dimer on the (001) surface depends little on the size variation in agreement with the experiment. It is found that the LUMO state in the latter is surfacelike in character and associated with backbonds of the surface dimers. It is also demonstrated that optical transitions across the energy gap exhibit significant oscillator strength.

Masahiko Nishida

2008-01-01T23:59:59.000Z

485

Electronic stopping?power calculations for heavy ions in semiconductors  

Science Journals Connector (OSTI)

A model for ion stopping in semiconductors which considers separate stopping contributions from valence and core electrons and explicitly includes the effect of the gap has been used to calculate the electronic stopping power of energetic B P and As in Si Ge GaAs and CdTe for projectile energies 10 keV100 MeV. Account was taken of the partially stripped incident ions by means of the effective charge. There is good agreement at low ion velocity with Lindhard and Scharffs [J. Lindhard and M. Scharff Phys. Rev. 1 2 4 128 (1961)] values which for heavy ions do not depend on effective charge theory as well as with the semiempirical curves at energies E?0.2 MeV/nucleon where they can be compared.

S. G. Elkomoss; A. Pape; S. Unamuno

1990-01-01T23:59:59.000Z

486

Calculated secondary yields for proton broadband using DECAY TURTLE  

SciTech Connect (OSTI)

The calculations for the yields were done by Al Sondgeroth and Anthony Malensek. The authors used the DECAY deck called PBSEC{_}E.DAT from the CMS DECKS library. After obtaining the run modes and calibration modes from the liaison physicist, they made individual decay runs, using DECAY TURTLE from the CMS libraries and a production spectrum subroutine which was modified by Anthony, for each particle and decay mode for all particle types coming out of the target box. Results were weighted according to branching ratios for particles with more than one decay mode. The production spectra were produced assuming beryllium as the target. The optional deuterium target available to broadband will produce slightly higher yields. It should be noted that they did not include pion yields from klong decays because they could not simulate three body decays. Pions from klongs would add a very small fraction to the total yield.

Sondgeroth, A.

1995-02-01T23:59:59.000Z

487

Calculations on the Electronic Structure and UV?Visible Spectrum of Oxyhemocyanin  

Science Journals Connector (OSTI)

Calculations on the Electronic Structure and UV?Visible Spectrum of Oxyhemocyanin ... Note that the difference obtained directly from the UHF calculations is too small, only 3211 cm-1, a result largely caused by the large amount of triplet character in the Sz = 0 singlet UHF calculation. ... We calculate the AF singlet ground state 6800 cm-1 lower in energy than the triplet, giving a 2J value larger than the one calculated for the imidazole-based model. ...

Guillermina Lucia Esti; Michael C. Zerner

1999-02-19T23:59:59.000Z

488

FY 2009 EE Rebates Stimulus State Calculations State/Territory  

Broader source: Energy.gov (indexed) [DOE]

EE Rebates Stimulus State Calculations EE Rebates Stimulus State Calculations State/Territory State Population % $ EE Rebates $ EE Rebates Population Adjusted (Not Rounded) (Rounded) Alabama 4,661,900 1.51% 4,472,947 4,473,000 Alaska 686,293 0.22% 658,477 658,000 Arizona 6,500,180 2.11% 6,236,718 6,237,000 Arkansas 2,855,390 0.93% 2,739,657 2,740,000 California 36,756,666 11.92% 35,266,866 35,267,000 Colorado 4,939,456 1.60% 4,739,253 4,739,000 Connecticut 3,501,252 1.14% 3,359,341 3,359,000 Delaware 873,092 0.28% 837,704 838,000 District of Columbia 591,833 0.19% 567,845 568,000 Florida 18,328,340 5.95% 17,585,466 17,585,000 Georgia 9,685,744 3.14% 9,293,167 9,293,000 Hawaii 1,288,198 0.42% 1,235,985 1,236,000 Idaho 1,523,816 0.49% 1,462,054 1,462,000 Illinois 12,901,563 4.18% 12,378,644 12,379,000 Indiana 6,376,792 2.07% 6,118,331 6,118,000 Iowa 3,002,555 0.97%

489

Uncertainty Quantification of Calculated Temperatures for the AGR-1 Experiment  

SciTech Connect (OSTI)

This report documents an effort to quantify the uncertainty of the calculated temperature data for the first Advanced Gas Reactor (AGR-1) fuel irradiation experiment conducted in the INLs Advanced Test Reactor (ATR) in support of the Next Generation Nuclear Plant (NGNP) R&D program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, the results of the numerical simulations can be used in combination with the statistical analysis methods to improve qualification of measured data. Additionally, the temperature simulation data for AGR tests can be used for validation of the fuel transport and fuel performance simulation models. The crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. The report is organized into three chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program and provides overviews of AGR-1 measured data, AGR-1 test configuration and test procedure, and thermal simulation. Chapters 2 describes the uncertainty quantification procedure for temperature simulation data of the AGR-1 experiment, namely, (i) identify and quantify uncertainty sources; (ii) perform sensitivity analysis for several thermal test conditions; (iii) use uncertainty propagation to quantify overall response temperature uncertainty. A set of issues associated with modeling uncertainties resulting from the expert assessments are identified. This also includes the experimental design to estimate the main effects and interactions of the important thermal model parameters. Chapter 3 presents the overall uncertainty results for the six AGR-1 capsules. This includes uncertainties for the daily volume-average and peak fuel temperatures, daily average temperatures at TC locations, and time-average volume-average and time-average peak fuel temperatures.

Binh T. Pham; Jeffrey J. Einerson; Grant L. Hawkes

2013-03-01T23:59:59.000Z

490

MONTE-CARLO BURNUP CALCULATION UNCERTAINTY QUANTIFICATION AND PROPAGATION DETERMINATION  

SciTech Connect (OSTI)

MONTEBURNS is a Monte-Carlo depletion routine utilizing MCNP and ORIGEN 2.2. Uncertainties exist in the MCNP transport calculation, but this information is not passed to the depletion calculation in ORIGEN or saved. To quantify this transport uncertainty and determine how it propagates between burnup steps, a statistical analysis of a multiple repeated depletion runs is performed. The reactor model chosen is the Oak Ridge Research Reactor (ORR) in a single assembly, infinite lattice configuration. This model was burned for a 25.5 day cycle broken down into three steps. The output isotopics as well as effective multiplication factor (k-effective) were tabulated and histograms were created at each burnup step using the Scott Method to determine the bin width. It was expected that the gram quantities and k-effective histograms would produce normally distributed results since they were produced from a Monte-Carlo routine, but some of results do not. The standard deviation at each burnup step was consistent between fission product isotopes as expected, while the uranium isotopes created some unique results. The variation in the quantity of uranium was small enough that, from the reaction rate MCNP tally, round off error occurred producing a set of repeated results with slight variation. Statistical analyses were performed using the {chi}{sup 2} test against a normal distribution for several isotopes and the k-effective results. While the isotopes failed to reject the null hypothesis of being normally distributed, the {chi}{sup 2} statistic grew through the steps in the k-effective test. The null hypothesis was rejected in the later steps. These results suggest, for a high accuracy solution, MCNP cell material quantities less than 100 grams and greater kcode parameters are needed to minimize uncertainty propagation and minimize round off effects.

Nichols, T.; Sternat, M.; Charlton, W.

2011-05-08T23:59:59.000Z

491

Calculating limits for torsion and tensile loads on drill pipe  

SciTech Connect (OSTI)

Drill pipe used for drilling horizontal and extended reach holes experiences much higher torsional and tensile loads than normally seen while drilling vertical holes. This is particularly true for rigs with top drives vs. rigs with rotary tables. When pipe is rotated while pulling out of the hole, which is commonly done on top drive rigs, the drill pipe can experience high tensile and torsional loading simultaneously. These conditions increase the probability of overload on tool joints and require that the drill pipe and tool joint selection process include consideration of combined loading. Calculating the required drill pipe strength for vertical holes is straightforward and spelled out in Section 5 of API RP7G. In vertical hole applications, pipe is almost always selected for its tensile capacity and the torsional strength of the pipe generally does not require special consideration. In Section 4 of API Sec 7, API recommends that the tool joints have a torsional strength of 80% of the pipe`s torsional strength; this is usually adequate. The torsional strength and tensile strength of commonly used drill pipe and tool joint combinations are tabulated in Tables 2 through 10 of API RP7G. Appendix A.8.3 in API RP7G shows a method for plotting a graphical representation of the combined torsional and tensile operational limits of tool joints. How to calculate the limits of the drill pipe tube is shown in Appendix A.9.2. This paper defines terms and limits, and discusses building and using a diagram to determine safe loads.

Bailey, E.I. [Stress Engineering Service Inc., Houston, TX (United States); Smith, J.E. [Grant Prideco, Houston, TX (United States)

1998-02-01T23:59:59.000Z

492

Scoping Inventory Calculations for the Rare Isotope Accelerator  

SciTech Connect (OSTI)

This document is a report on our activities in FY03 exploring nuclear safety and hazard analysis issues relevant to the Rare Isotope Accelerator (RIA). It is not clear whether DOE will classify the RIA as an accelerator facility subject to the accelerator-specific safety requirements of DOE Order 420.2A or as a nonreactor nuclear facility subject to the requirements of 10 CFR 830. The final outcome of this issue will have significant impact on the construction and operation of the facility and the quality assurance requirements for items or services that may affect nuclear safety. The resolution of this issue will be an important earlier decision for the RIA project team and will require early consultation with the appropriate DOE authorities. For nuclear facilities, facility hazard classification depends on the inventory of releasable radionuclides; therefore, some simplistic, scoping inventory calculations for some assumed targets and beams are done to estimate the hazard category of RIA if it is declared a nuclear facility. These calculations show that for the scenarios analyzed, RIA would produce sufficient quantities of radionuclides to be classified as a Category 3 nuclear facility. Over the lifetime of RIA operations, it may be possible to build up Category 2 quantities of {sup 227}Ac and {sup 228}Th. A storage building, separate from the driver, target, and experimental buildings, used to store and isolate accumulated targets and other hardware, can mitigate the potential impact on RIA. The more onerous requirements of Category 2 facilities would only be imposed on the storage facility and not on the rest of the RIA facilities. Some of the differences in a category 2 and category 3 facility are discussed in Appendix 1.

Ahle, L E; Boles, J L

2003-07-25T23:59:59.000Z

493

A divide-and-conquer linear scaling three dimensional fragment method for large scale electronic structure calculations  

E-Print Network [OSTI]

large scale electronic structure calculations Zhengji Zhao,total energy electronic structure calculation method basedfor ab initio electronic structure calculations. We have

Zhao, Zhengji

2008-01-01T23:59:59.000Z

494

A Fast Parallel Algorithm for Selected Inversion of Structured Sparse Matrices with Application to 2D Electronic Structure Calculations  

E-Print Network [OSTI]

large-scale electronic-structure calculations, Europhys.Tight-binding electronic-structure calculations and tight-large-scale electronic structure calculations, Phy. Rev. B

Lin, Lin

2010-01-01T23:59:59.000Z

495

The use of bulk states to accelerate the band edge state calculation of a semiconductor quantum dot  

E-Print Network [OSTI]

Pseudopotential Electronic Structure Calculations formethods for electronic structure calculations of materials.problems in electronic structure calculations. BIT, 36(3):1

Vomel, Christof; Tomov, Stanimire Z.; Wang, Lin-Wang; Marques, Osni A.; Dongarra, Jack J.

2008-01-01T23:59:59.000Z

496

Density Functional Theory Calculations of Mass Transport in UO2  

SciTech Connect (OSTI)

In this talk we present results of density functional theory (DFT) calculations of U, O and fission gas diffusion in UO{sub 2}. These processes all impact nuclear fuel performance. For example, the formation and retention of fission gas bubbles induce fuel swelling, which leads to mechanical interaction with the clad thereby increasing the probability for clad breach. Alternatively, fission gas can be released from the fuel to the plenum, which increases the pressure on the clad walls and decreases the gap thermal conductivity. The evolution of fuel microstructure features is strongly coupled to diffusion of U vacancies. Since both U and fission gas transport rates vary strongly with the O stoichiometry, it is also important to understand O diffusion. In order to better understand bulk Xe behavior in UO{sub 2{+-}x} we first calculate the relevant activation energies using DFT techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next we investigate species transport on the (111) UO{sub 2} surface, which is motivated by the formation of small voids partially filled with fission gas atoms (bubbles) in UO{sub 2} under irradiation. Surface diffusion could be the rate-limiting step for diffusion of such bubbles, which is an alternative mechanism for mass transport in these materials. As expected, the activation energy for surface diffusion is significantly lower than for bulk transport. These results are further discussed in terms of engineering-scale fission gas release models. Finally, oxidation of UO{sub 2} and the importance of cluster formation for understanding thermodynamic and kinetic properties of UO{sub 2+x} are investigated.

Andersson, Anders D. [Los Alamos National Laboratory; Dorado, Boris [CEA; Uberuaga, Blas P. [Los Alamos National Laboratory; Stanek, Christopher R. [Los Alamos National Laboratory

2012-06-26T23:59:59.000Z

497

WIPP Compliance Certification Application calculations parameters. Part 1: Parameter development  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) in southeast New Mexico has been studied as a transuranic waste repository for the past 23 years. During this time, an extensive site characterization, design, construction, and experimental program was completed, which provided in-depth understanding of the dominant processes that are most likely to influence the containment of radionuclides for 10,000 years. Nearly 1,500 parameters were developed using information gathered from this program; the parameters were input to numerical models for WIPP Compliance Certification Application (CCA) Performance Assessment (PA) calculations. The CCA probabilistic codes frequently require input values that define a statistical distribution for each parameter. Developing parameter distributions begins with the assignment of an appropriate distribution type, which is dependent on the type, magnitude, and volume of data or information available. The development of the parameter distribution values may require interpretation or statistical analysis of raw data, combining raw data with literature values, scaling of lab or field data to fit code grid mesh sizes, or other transformation. Parameter development and documentation of the development process were very complicated, especially for those parameters based on empirical data; they required the integration of information from Sandia National Laboratories (SNL) code sponsors, parameter task leaders (PTLs), performance assessment analysts (PAAs), and experimental principal investigators (PIs). This paper, Part 1 of two parts, contains a discussion of the parameter development process, roles and responsibilities, and lessons learned. Part 2 will discuss parameter documentation, traceability and retrievability, and lessons learned from related audits and reviews.

Howarth, S.M.

1997-11-14T23:59:59.000Z

498

Calculating the probability of injected carbon dioxide plumes encountering faults  

SciTech Connect (OSTI)

One of the main concerns of storage in saline aquifers is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available for these aquifers. This necessitates a method using available fault data to estimate the probability of injected carbon dioxide encountering and migrating up a fault. The probability of encounter can be calculated from areal fault density statistics from available data, and carbon dioxide plume dimensions from numerical simulation. Given a number of assumptions, the dimension of the plume perpendicular to a fault times the areal density of faults with offsets greater than some threshold of interest provides probability of the plume encountering such a fault. Application of this result to a previously planned large-scale pilot injection in the southern portion of the San Joaquin Basin yielded a 3% and 7% chance of the plume encountering a fully and half seal offsetting fault, respectively. Subsequently available data indicated a half seal-offsetting fault at a distance from the injection well that implied a 20% probability of encounter for a plume sufficiently large to reach it.

Jordan, P.D.

2011-04-01T23:59:59.000Z

499

Calculation of Helium nuclei in quenched lattice QCD  

E-Print Network [OSTI]

We present results for the binding energies for ^4He and ^3He nuclei calculated in quenched lattice QCD at the lattice spacing of a =0.128 fm with a heavy quark mass corresponding to m_pi = 0.8 GeV. Enormous computational cost for the nucleus correlation functions is reduced by avoiding redundancy of equivalent contractions stemming from permutation symmetry of protons or neutrons in the nucleus and various other symmetries. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the ground state energy of the nucleus channel and the free multi-nucleon states by changing the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads to the conclusion that the measured ground states are bounded. It is also encouraging that the measured binding energies and the experimental ones show the same order of magnitude.

T. Yamazaki

2010-12-02T23:59:59.000Z

500

Calculations of neutron spectra after neutronneutron scattering  

Science Journals Connector (OSTI)

A direct neutronneutron scattering length, ann, measurement with the goal of 3% accuracy (0.5 fm) is under preparation at the aperiodic pulsed reactor YAGUAR. A direct measurement of ann will not only help resolve conflicting results of ann by indirect means, but also in comparison to the protonproton scattering length, app, shed light on the charge-symmetry of the nuclear force. We discuss in detail the analysis of the nn-scattering data in terms of a simple analytical expression. We also discuss calibration measurements using the time-of-flight spectra of neutrons scattered on He and Ar gases and the neutron activation technique. In particular, we calculate the neutron velocity and time-of-flight spectra after scattering neutrons on neutrons and after scattering neutrons on He and Ar atoms for the proposed experimental geometry, using a realistic neutron flux spectrumMaxwellian plus epithermal tail. The shape of the neutron spectrum after scattering is appreciably different from the initial spectrum, due to collisions between thermalthermal and thermalepithermal neutrons. At the same time, the integral over the Maxwellian part of the realistic scattering spectrum differs by only about 6 per cent from that of a pure Maxwellian nn-scattering spectrum.

B E Crawford; S L Stephenson; C R Howell; G E Mitchell; W Tornow; W I Furman; E V Lychagin; A Yu Muzichka; G V Nekhaev; A V Strelkov; E I Sharapov; V N Shvetsov

2004-01-01T23:59:59.000Z

First Page Previous Page 1 2 3 4 5 6 7 8