National Library of Energy BETA

Sample records for monochromator sgm gratings

  1. Holographic optical grating and method for optimizing monochromator configuration

    DOE Patents [OSTI]

    Koike, Masato (Moraga, CA)

    1999-01-01

    This invention comprises a novel apparatus for recording a holographic groove pattern on a diffraction grating blank. The recording apparatus is configured using newly developed groups of analytical equations. The invention further comprises the novel holographic diffraction grating made with the inventive recording apparatus. The invention additionally comprises monochromators and spectrometers equipped with the inventive holographic diffraction grating. Further, the invention comprises a monochromator configured to reduce aberrations using a newly developed group of analytical equations. Additionally, the invention comprises a method to reduce aberrations in monochromators and spectrometers using newly developed groups of analytical equations.

  2. Commissioning of a Soft X-ray Beamline PF-BL-16A with a Variable-Included-Angle Varied-Line-Spacing Grating Monochromator

    SciTech Connect (OSTI)

    Amemiya, Kenta; Toyoshima, Akio; Kikuchi, Takashi; Kosuge, Takashi; Nigorikawa, Kazuyuki; Sumii, Ryohei; Ito, Kenji

    2010-06-23

    The design and commissioning of a new soft X-ray beamline, BL-16A, at the Photon Factory is presented. The beamline consists of a pre-focusing mirror, an entrance slit, a variable-included-angle varied-line-spacing plane grating monochromator, and a post-focusing system as usual, and provides circularly and linearly polarized soft X rays in the energy range 200-1500 eV with an APPLE-II type undulator. The commissioning procedure for the beamline optics is described in detail, especially the check of the focal position for the zero-th order and diffracted X rays.

  3. Mirror monochromator

    SciTech Connect (OSTI)

    Mankos, Marian; Shadman, Khashayar

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOIs MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90 and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam energy of 80-120 keV). Specialized software packages that have been developed by MEBS, Ltd. were used to calculate the electron optical properties of the key monochromator components: namely, the magnetic prism, the electron mirror, and the electron lenses. In the final step, these results were folded into a model describing the key electron-optical parameters of the complete monochromator. The simulations reveal that the mirror monochromator can reduce the energy spread of a Schottky electron source, an established electron emitter used widely in EMs, to 10 meV for practical beam current values and that further reduction of the energy spread down to 3 meV is possible for low current applications with a Cold Field Emitter (an electron source with 10x the brightness of a Schottky source). MirrorChroms can be designed and built to attach to different types of TEMs and SEMs, thus making them suitable for enhancing the study of the structure, composition, and bonding states of new materials at the nanoscale to advance material science research in the field of nanotechnology as well as biomedical research.

  4. Monochromator Crystal Glitch Library

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    SSRL's Monochromator Crystal Glitch Library allows users to view glitch spectra online, list specific crystal orientations, and download PDF files of the glitch spectra. (Specialized Interface)

  5. Optical system for high resolution spectrometer/monochromator

    DOE Patents [OSTI]

    Hettrick, M.C.; Underwood, J.H.

    1988-10-11

    An optical system for use in a spectrometer or monochromator employing a mirror which reflects electromagnetic radiation from a source to converge with same in a plane is disclosed. A straight grooved, varied-spaced diffraction grating receives the converging electromagnetic radiation from the mirror and produces a spectral image for capture by a detector, target or like receiver. 11 figs.

  6. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  7. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  8. Asymmetrically cut crystals for synchrotron radiation monochromators

    SciTech Connect (OSTI)

    Sanchez del Rio, M. ); Cerrina, F. )

    1992-01-01

    Asymmetrically cut crystals are interesting for use in synchrotron radiation monochromators because of their good energy resolution characteristics and their focusing properties. Ray tracing codes, such as SHADOW, are very efficient in the design and development of new optical devices. In order to determine the convenience of using asymmetrically cut crystals for x-ray monochromators, SHADOW has been extended to include these kinds of crystals. The physical approach to ray tracing asymmetrically cut crystals is based on the coexistence of two periodic structures. One of these is the bulk periodic structure of the Bragg planes. Such a structure determines the existence of a rocking curve near the Bragg condition, and is implemented in SHADOW following the Darwin--Prins formalism of the dynamical theory of diffraction. The second periodic structure is a one-dimensional grating on the crystal surface, formed by the truncation of the lattice planes with the surface. This grating is responsible for the focusing properties of these crystals and plays an essential role in determining the trajectory of the rays. The combination of an asymmetric crystal and a nonplanar surface can be easily achieved by bending (Johann case) to provide improved properties. More complex cases such as the ground-bent crystals (i.e., Johansson geometry) can be considered as a particular case of asymmetrical crystals in which the angle between the Bragg planes and the surface change along the crystal surface. All these cases have been implemented in SHADOW.

  9. Synchronized monochromator and insertion device energy scans at SLS

    SciTech Connect (OSTI)

    Krempasky, J.; Flechsig, U.; Korhonen, T.; Zimoch, D.; Quitmann, Ch.; Nolting, F.

    2010-06-23

    Synchronous monochromator and insertion device energy scans were implemented at the Surfaces/Interfaces:Microscopy (SIM) beamline in order to provide the users fast X-ray magnetic dichroism studies (XMCD). A simple software control scheme is proposed based on a fast monochromator run-time energy readback which quickly updates the insertion device requested energy during an on-the-fly X-ray absorption scan (XAS). In this scheme the Plain Grating Monochromator (PGM) motion control, being much slower compared with the insertion device (APPLE-II type undulator), acts as a 'master' controlling the undulator 'slave' energy position. This master-slave software implementation exploits EPICS distributed device control over computer network and allows for a quasi-synchronous motion control combined with data acquisition needed for the XAS or XMCD experiment.

  10. Active diffraction gratings: Development and tests

    SciTech Connect (OSTI)

    Bonora, S.; Frassetto, F.; Poletto, L. [Institute of Photonics and Nanotechnologies, National Council for Research of Italy, via Trasea, 7, Padova 35131 (Italy); Zanchetta, E.; Della Giustina, G.; Brusatin, G. [Industrial Engineering Department, University of Padova, Via Marzolo 9, 35131 Padova (Italy)

    2012-12-15

    We present the realization and characterization of an active spherical diffraction grating with variable radius of curvature to be used in grazing-incidence monochromators. The device consists of a bimorph deformable mirror on the top of which a diffraction grating with laminar profile is realized by UV lithography. The experimental results show that the active grating can optimize the beam focalization of visible wavelengths through its rotation and focus accommodation.

  11. APS high heat load monochromator

    SciTech Connect (OSTI)

    Lee, W.K.; Mills, D.

    1993-02-01

    This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach.

  12. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 linesmm) ...

  13. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925 linesmm) Flux (1.9 GeV, 400 mA) 1011 to 6 x 1015 photonss (resolution and energy dependent) Resolving power (EE)...

  14. Temporal characterization of a time-compensated monochromator for high-efficiency selection of extreme-ultraviolet pulses generated by high-order harmonics

    SciTech Connect (OSTI)

    Poletto, L.; Villoresi, P.; Benedetti, E.; Ferrari, F.; Stagira, S.; Sansone, G.; Nisoli, M.

    2008-07-15

    Ultrafast extreme-ultraviolet pulses are spectrally selected by a time-delay-compensated grating monochromator. The intrinsic very short duration of the pulses is obtained by exploiting the high-order harmonic generation process. The temporal characterization of the harmonic pulses is obtained using a cross-correlation method: pulses as short as 8 fs are measured at the output of the monochromator in the case of the 23rd harmonic. This value is in agreement with the expected duration of such pulses, indicating that the influence of the monochromator is negligible. The photon flux has been measured with a calibrated photodiode, pointing out the good efficiency of the monochromator, derived by the exploitation for the two gratings of the conical diffraction mounting.

  15. Focusing monochromators for high energy synchrotron radiation

    SciTech Connect (OSTI)

    Suortti, P. )

    1992-01-01

    Bent crystals are introduced as monochromators for high energy synchrotron radiation. The reflectivity of the crystal can be calculated reliably from a model where the bent crystal is approximated by a stack of lamellas, which have a gradually changing angle of reflection. The reflectivity curves of a 4 mm thick, asymmetrically cut ({chi}=9.5{degree}) Si(220) crystal are measured using 150 keV radiation and varying the bending radius from 25 to 140 m. The width of the reflectivity curve is up to 50 times the Darwin width of the reflection, and the maximum reflectivity exceeds 80%. The crystal is used as a monochromator in Compton scattering measurements. The source is on the focusing circle, so that the resolution is limited essentially by the detector/analyzer. A wide bandpass, sharply focused beam is attained when the source is outside the focusing circle in the transmission geometry. In a test experiment. 10{sup 12} photons on an area of 2 mm{sup 2} was observed. The energy band was about 4 keV centered at 40 keV. A powder diffraction pattern of a few reflections of interest was recorded by an intrinsic Ge detector, and this demonstrated that a structural transition can be followed at intervals of a few milliseconds.

  16. Multilayer diffraction grating

    DOE Patents [OSTI]

    Barbee, Jr., Troy W. (Palo Alto, CA)

    1990-01-01

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages.

  17. Multilayer diffraction grating

    DOE Patents [OSTI]

    Barbee, T.W. Jr.

    1990-04-10

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages. 2 figs.

  18. Catwalk grate lifting tool

    DOE Patents [OSTI]

    Gunter, L.W.

    1992-08-11

    A device is described for lifting catwalk grates comprising an elongated bent member with a handle at one end and a pair of notched braces and a hook at the opposite end that act in conjunction with each other to lock onto the grate and give mechanical advantage in lifting the grate. 10 figs.

  19. Multilayer dielectric diffraction gratings

    DOE Patents [OSTI]

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  20. Multilayer dielectric diffraction gratings

    DOE Patents [OSTI]

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  1. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, Ercan E. (Bolingbrook, IL); Mooney, Timothy M. (Westmont, IL); Toellner, Thomas (Green Bay, WI)

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut (.alpha.=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5-30 keV) of synchrotron radiation down to the .mu.eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator.

  2. High energy resolution, high angular acceptance crystal monochromator

    DOE Patents [OSTI]

    Alp, E.E.; Mooney, T.M.; Toellner, T.

    1996-06-04

    A 4-bounce dispersive crystal monochromator reduces the bandpass of synchrotron radiation to a 10-50 meV range without sacrificing angular acceptance. The monochromator includes the combination of an asymmetrical channel-cut single crystal of lower order reflection and a symmetrical channel-cut single crystal of higher order reflection in a nested geometric configuration. In the disclosed embodiment, a highly asymmetrically cut ({alpha}=20) outer silicon crystal (4 2 2) with low order reflection is combined with a symmetrically cut inner silicon crystal (10 6 4) with high order reflection to condition a hard x-ray component (5--30 keV) of synchrotron radiation down to the {micro}eV-neV level. Each of the crystals is coupled to the combination of a positioning inchworm and angle encoder via a respective rotation stage for accurate relative positioning of the crystals and precise energy tuning of the monochromator. 7 figs.

  3. Reflective diffraction grating

    DOE Patents [OSTI]

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  4. Monochromator for continuous spectrum x-ray radiation

    DOE Patents [OSTI]

    Staudenmann, J.L.; Liedl, G.L.

    1983-12-02

    A monochromator for use with synchrotron x-ray radiation comprises two diffraction means which can be rotated independently and independent means for translationally moving one diffraction means with respect to the other. The independence of the rotational and translational motions allows Bragg angles from 3.5/sup 0/ to 86.5/sup 0/, and facilitates precise and high-resolution monochromatization over a wide energy range. The diffraction means are removably mounted so as to be readily interchangeable, which allows the monochromator to be used for both non-dispersive and low dispersive.

  5. Monochromator for continuous spectrum x-ray radiation

    DOE Patents [OSTI]

    Staudenmann, Jean-Louis (Ames, IA); Liedl, Gerald L. (West Lafayette, IN)

    1987-07-07

    A monochromator for use with synchrotron x-ray radiation comprises two diffraction means which can be rotated independently and independent means for translationally moving one diffraction means with respect to the other. The independence of the rotational and translational motions allows Bragg angles from 3.5.degree. to 86.5.degree., and facilitates precise and high-resolution monochromatization over a wide energy range. The diffraction means are removably mounted so as to be readily interchangeable, which allows the monochromator to be used for both non-dispersive and low dispersive work.

  6. Electrically-programmable diffraction grating

    DOE Patents [OSTI]

    Ricco, Antonio J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM); Sinclair, Michael B. (Albuquerque, NM); Senturia, Stephen D. (Brookline, MA)

    1998-01-01

    An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).

  7. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  8. Beamline 4.0.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: 4.0.3.1: High-resolution inelastic scattering (MERIXS) 4.0.3.2: Angle-resolved photoemission spectroscopy (ARPES) GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012

  9. Beamline 4.0.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: 4.0.3.1: High-resolution inelastic scattering (MERIXS) 4.0.3.2: Angle-resolved photoemission spectroscopy (ARPES) GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012

  10. Beamline 4.0.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: 4.0.3.1: High-resolution inelastic scattering (MERIXS) 4.0.3.2: Angle-resolved photoemission spectroscopy (ARPES) GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012

  11. Beamline 4.0.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 4.0.3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: 4.0.3.1: High-resolution inelastic scattering (MERIXS) 4.0.3.2: Angle-resolved photoemission spectroscopy (ARPES) GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA)

  12. Beamline 4.0.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 4.0.3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: 4.0.3.1: High-resolution inelastic scattering (MERIXS) 4.0.3.2: Angle-resolved photoemission spectroscopy (ARPES) GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA)

  13. Beamline 4.0.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 4.0.3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: 4.0.3.1: High-resolution inelastic scattering (MERIXS) 4.0.3.2: Angle-resolved photoemission spectroscopy (ARPES) GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA)

  14. Beamline 4.0.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: 4.0.3.1: High-resolution inelastic scattering (MERIXS) 4.0.3.2: Angle-resolved photoemission spectroscopy (ARPES) GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012

  15. Beamline 4.0.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: 4.0.3.1: High-resolution inelastic scattering (MERIXS) 4.0.3.2: Angle-resolved photoemission spectroscopy (ARPES) GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012

  16. Beamline 4.0.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: 4.0.3.1: High-resolution inelastic scattering (MERIXS) 4.0.3.2: Angle-resolved photoemission spectroscopy (ARPES) GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012

  17. Beamline 4.0.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Print High-resolution spectroscopy of complex materials (MERLIN) Endstations: 4.0.3.1: High-resolution inelastic scattering (MERIXS) 4.0.3.2: Angle-resolved photoemission spectroscopy (ARPES) GENERAL BEAMLINE INFORMATION Operational 2011 Source characteristics 9.0-cm-period quasiperiodic elliptical polarization undulator (EPU9) Energy range 9eV-120eV with current gratings Monochromator Variable-included-angle spherical grating monochromator (SGM) Calculated flux (1.9 GeV, 400 mA) 1012

  18. Electrically-programmable diffraction grating

    DOE Patents [OSTI]

    Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.

    1998-05-26

    An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.

  19. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  20. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  1. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  2. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  3. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  4. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  5. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  6. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  7. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  8. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  9. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Beamline 9.3.2 Print Tuesday, 20 October 2009 09:06 Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011

  10. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  11. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  12. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  13. Beamline 9.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Chemical and Materials Scientific disciplines: Surfaces, interfaces, catalysis, environmental science, material science, electrochemistry Endstations: Ambient pressure X-ray Photoelectron Spectroscopy (APXPS)* Ambient pressure photoemission GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 30-850 eV Monochromator SGM (gratings: 100, 600 lines/mm) Calculated flux (1.9 GeV, 400 mA) up to 1.5 x 1011 photons/sec, energy dependent Resolving power

  14. Study of a scattering shield in a high heat load monochromator (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Study of a scattering shield in a high heat load monochromator Citation Details In-Document Search Title: Study of a scattering shield in a high heat load monochromator Authors: Huang, Rong ; Meron, Mati [1] ; HWMRI) [2] + Show Author Affiliations (UC) [UC ( Publication Date: 2014-02-04 OSTI Identifier: 1091969 Resource Type: Journal Article Resource Relation: Journal Name: Nucl. Instrum. Methods A; Journal Volume: 716; Journal Issue: 07, 2013 Research Org:

  15. High-order multilayer coated blazed gratings for high resolution soft x-ray spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Voronov, Dmitriy L.; Goray, Leonid I.; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.

    2015-02-17

    A grand challenge in soft x-ray spectroscopy is to drive the resolving power of monochromators and spectrometers from the 104 achieved routinely today to well above 105. This need is driven mainly by the requirements of a new technique that is set to have enormous impact in condensed matter physics, Resonant Inelastic X-ray Scattering (RIXS). Unlike x-ray absorption spectroscopy, RIXS is not limited by an energy resolution dictated by the core-hole lifetime in the excitation process. Using much higher resolving power than used for normal x-ray absorption spectroscopy enables access to the energy scale of soft excitations in matter. Thesemoreexcitations such as magnons and phonons drive the collective phenomena seen in correlated electronic materials such as high temperature superconductors. RIXS opens a new path to study these excitations at a level of detail not formerly possible. However, as the process involves resonant excitation at an energy of around 1 keV, and the energy scale of the excitations one would like to see are at the meV level, to fully utilize the technique requires the development of monochromators and spectrometers with one to two orders of magnitude higher energy resolution than has been conventionally possible. Here we investigate the detailed diffraction characteristics of multilayer blazed gratings. These elements offer potentially revolutionary performance as the dispersive element in ultra-high resolution x-ray spectroscopy. In doing so, we have established a roadmap for the complete optimization of the grating design. Traditionally 1st order gratings are used in the soft x-ray region, but we show that as in the optical domain, one can work in very high spectral orders and thus dramatically improve resolution without significant loss in efficiency.less

  16. Fiber Grating Environmental Sensing System

    DOE Patents [OSTI]

    Schulz, Whitten L. (Fairview, OR); Udd, Eric (Fairview, OR)

    2003-07-29

    Fiber grating environmental measurement systems are comprised of sensors that are configured to respond to changes in moisture or chemical content of the surrounding medium through the action of coatings and plates inducing strain that is measured. These sensors can also be used to monitor the interior of bonds for degradation due to aging, cracking, or chemical attack. Means to multiplex these sensors at high speed and with high sensitivity can be accomplished by using spectral filters placed to correspond to each fiber grating environmental sensor. By forming networks of spectral elements and using wavelength division multiplexing arrays of fiber grating sensors may be processed in a single fiber line allowing distributed high sensitivity, high bandwidth fiber optic grating environmental sensor systems to be realized.

  17. Back-scattering channel-cut high-resolution monochromator for inelastic x-ray scattering

    SciTech Connect (OSTI)

    Kushnir, V.I.; Abbamonte, P.M.; Macrander, A.T.; Schwoerer-Boehning, M.

    1997-08-01

    We report on a design and on some experimental results for the performance of a new high energy resolution monochromator. It is a large channel-cut Si crystal with a 197 mm separation between the two faces designed to operate in a near-backscattering regime. The device was tested as a second monochromator on Sector 3 of the Synchrotron Radiation Instrumentation Collaborative Access Team (SRI-CAT) at the Advanced Photon Source using the Si(777) reflection at a photon energy of 13.84 keV. The same monochromator can be used for other energies with reflections of the type (hhh). Special care has been taken to equalize the temperature of the two faces by employing a Peltier heat pump. A Si(111) double-crystal pre-monochromator designed to withstand the high heat load of the undulator radiation was used upstream on the beamline. The measured throughput efficiency of the Si(777) channel-cut monochromator was less ideal by a factor of 1.9. Dynamical diffraction theory was used to calculate the throughput of an ideally perfect crystal.

  18. Near-perfect diffraction grating rhomb

    DOE Patents [OSTI]

    Wantuck, Paul J. (Santa Fe, NM)

    1990-01-01

    A near-perfect grating rhomb enables an output beam to be diffracted to an angle offset from the input beam. The correcting grating is tipped relative to the dispersing grating to provide the offset angle. The correcting grating is further provided with a groove spacing which differs from the dispersing grating groove space by an amount effective to substantially remove angular dispersion in the output beam. A near-perfect grating rhomb has the capability for selective placement in a FEL to suppress sideband instabilities arising from the FEL.

  19. Ultra-stable sub-meV monochromator for hard X-rays

    SciTech Connect (OSTI)

    Toellner, T. S.; Collins, J.; Goetze, K.; Hu, M. Y.; Preissner, C.; Trakhtenberg, E.; Yan, L.

    2015-07-17

    A high-resolution silicon monochromator suitable for 21.541 keV synchrotron radiation is presented that produces a bandwidth of 0.27 meV. The operating energy corresponds to a nuclear transition in 151Eu. The first-of-its-kind, fully cryogenic design achieves an energy-alignment stability of 0.017 meV r.m.s. per day, or a 100-fold improvement over other meV-monochromators, and can tolerate higher X-ray power loads than room-temperature designs of comparable resolution. This offers the potential for significantly more accurate measurements of lattice excitation energies using nuclear resonant vibrational spectroscopy if combined with accurate energy calibration using, for example, high-speed Doppler shifting. The design of the monochromator along with its performance and impact on transmitted beam properties are presented.

  20. Ultra-stable sub-meV monochromator for hard X-rays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Toellner, T. S.; Collins, J.; Goetze, K.; Hu, M. Y.; Preissner, C.; Trakhtenberg, E.; Yan, L.

    2015-07-17

    A high-resolution silicon monochromator suitable for 21.541 keV synchrotron radiation is presented that produces a bandwidth of 0.27 meV. The operating energy corresponds to a nuclear transition in 151Eu. The first-of-its-kind, fully cryogenic design achieves an energy-alignment stability of 0.017 meV r.m.s. per day, or a 100-fold improvement over other meV-monochromators, and can tolerate higher X-ray power loads than room-temperature designs of comparable resolution. This offers the potential for significantly more accurate measurements of lattice excitation energies using nuclear resonant vibrational spectroscopy if combined with accurate energy calibration using, for example, high-speed Doppler shifting. The design of the monochromator alongmore » with its performance and impact on transmitted beam properties are presented.« less

  1. Inclined monochromator for high heat-load synchrotron x-ray radiation

    DOE Patents [OSTI]

    Khounsary, A.M.

    1994-02-15

    A double crystal monochromator is described including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced. 11 figures.

  2. Inclined monochromator for high heat-load synchrotron x-ray radiation

    DOE Patents [OSTI]

    Khounsary, Ali M. (Lisle, IL)

    1994-01-01

    A double crystal monochromator including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced.

  3. Patent: Ultrafast transient grating radiation to optical image...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast transient grating radiation to optical image converter Citation Details Title: Ultrafast transient grating radiation to optical image converter...

  4. Embedded high-contrast distributed grating structures

    DOE Patents [OSTI]

    Zubrzycki, Walter J. (Albuquerque, NM); Vawter, Gregory A. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM)

    2002-01-01

    A new class of fabrication methods for embedded distributed grating structures is claimed, together with optical devices which include such structures. These new methods are the only known approach to making defect-free high-dielectric contrast grating structures, which are smaller and more efficient than are conventional grating structures.

  5. Diffraction gratings used as identifying markers

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Ward, Michael B. (Idaho Falls, ID)

    1991-01-01

    A finely detailed defraction grating is applied to an object as an identifier or tag which is unambiguous, difficult to duplicate, or remove and transfer to another item, and can be read and compared with prior readings with relative ease. The exact pattern of the defraction grating is mapped by diffraction moire techniques and recorded for comparison with future readings of the same grating.

  6. Compact Imaging Spectrometer Utilizing Immersed Gratings

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)

    2006-03-21

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, a system for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through an optical element to the detector array.

  7. Diffraction gratings used as identifying markers

    DOE Patents [OSTI]

    Deason, V.A.; Ward, M.B.

    1991-03-26

    A finely detailed diffraction grating is applied to an object as an identifier or tag which is unambiguous, difficult to duplicate, or remove and transfer to another item, and can be read and compared with prior readings with relative ease. The exact pattern of the diffraction grating is mapped by diffraction moire techniques and recorded for comparison with future readings of the same grating. 7 figures.

  8. Analysis of higher harmonic contamination with a modified approach using a grating analyser

    SciTech Connect (OSTI)

    Gupta, Rajkumar Modi, Mohammed H.; Lodha, G. S.; Kumar, M.; Chakera, J. A.

    2014-04-15

    Soft x-ray spectra of the toroidal grating monochromator (TGM) at the reflectivity beamline of Indus-1 synchrotron source are analyzed for higher harmonic contribution. A diffraction grating of central line spacing 1200 l/mm is used to disperse the monochromatic beam received from TGM to quantify the harmonic contents in the 50–360 Å wavelength range. In order to calculate the harmonic contamination, conventionally the intensity of higher order peak is divided by first order peak intensity of the desired wavelength. This approach is found to give wrong estimate as first order peak itself is overlapped by higher order peaks. In the present study, a modified approach has been proposed to calculate harmonic contamination where the intensity contributions of overlapping orders have been removed from the first order diffraction peak of the desired wavelength. It is found that the order contamination in the TGM spectra is less than 15% in the wavelength range of 90–180 Å. The total harmonic contribution increases from 6%–60% in the wavelength range of 150–260 Å. The critical wavelength of Indus-1 is 61 Å hence the harmonic contamination below 90 Å is significantly low. The results obtained with modified approach match well with those obtained by quantitative analysis of multilayer reflectivity data. The obtained higher harmonics data are used to fit the transmission of aluminum edge filter in the 120–360 Å wavelength range.

  9. Fiber optic diffraction grating maker

    DOE Patents [OSTI]

    Deason, V.A.; Ward, M.B.

    1991-05-21

    A compact and portable diffraction grating maker is comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate. 4 figures.

  10. Fiber optic diffraction grating maker

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Ward, Michael B. (Idaho Falls, ID)

    1991-01-01

    A compact and portable diffraction grating maker comprised of a laser beam, optical and fiber optics devices coupling the beam to one or more evanescent beam splitters, and collimating lenses or mirrors directing the split beam at an appropriate photosensitive material. The collimating optics, the output ends of the fiber optic coupler and the photosensitive plate holder are all mounted on an articulated framework so that the angle of intersection of the beams can be altered at will without disturbing the spatial filter, collimation or beam quality, and assuring that the beams will always intersect at the position of the plate.

  11. Compact imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Lerner, Scott A.

    2005-12-20

    A compact imaging spectrometer comprising an entrance slit for directing light, lens means for receiving the light, refracting the light, and focusing the light; an immersed diffraction grating that receives the light from the lens means and defracts the light, the immersed diffraction grating directing the detracted light back to the lens means; and a detector that receives the light from the lens means.

  12. Compact imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR); Kuzmenko, Paul J. (Livermore, CA); Bennett, Charles L. (Livermore, CA)

    2007-07-03

    A compact imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The imaging spectrometer comprises an entrance slit for transmitting light, means for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the means for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the means for receiving the light and the means for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light to the means for receiving the light, and the means for receiving the light directs the light to the detector array.

  13. High resolution monochromator for inelastic scattering studies of high energy phonons using undulator radiation at the advanced photon source

    SciTech Connect (OSTI)

    Macrander, A.T.; Schwoerer-Boehning, M.; Abbamonte, P.M.; Hu, M.

    1997-08-01

    A monochromator for use at 13.84 keV with a calculated bandpass of 5.2 meV was designed built, and tested. Tuning was performed by rotating the inner crystal of a pair of nested silicon channel-cut crystals. The inner crystal employs the (884) reflection, and the outer crystal employs a collimating asymmetric (422) reflection (dynamical asymmetry factor, b, equal to {minus}17.5). Tests were done with a double-crystal Si(111) pre-monochromator situated upstream of the high resolution monochromator and a Si(777) backscattering crystal situated downstream. For this optical arrangement an ideal value of 6.3 meV as calculated by x-ray dynamical diffraction theory applies for the FWHM of the convolution of the net monochromator reflectivity function with that of the Si(777) reflection. This calculated value is to be compared to the value of 7.1 meV measured by tuning the high resolution monochromator. Measured efficiencies were less than ideal by a factor of 3.2 to 4.9, where the larger flux reduction factors were found with higher positron storage ring currents.

  14. Aplanatic and quasi-aplanatic diffraction gratings

    DOE Patents [OSTI]

    Hettrick, Michael C. (Berkeley, CA)

    1989-01-01

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for X-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnification across the optical aperture. The grating may be used, for example, in X-ray microscopes or telescopes of the imaging type and in X-ray microprobes. Increased spatial resolution and field of view may be realized in X-ray imaging.

  15. Aplanatic and quasi-aplanatic diffraction gratings

    DOE Patents [OSTI]

    Hettrick, M.C.

    1987-09-14

    A reflection diffraction grating having a series of transverse minute grooves of progressively varying spacing along a concave surface enables use of such gratings for x-ray or longer wavelength imaging of objects. The variable groove spacing establishes aplanatism or substantially uniform magnetification across the optical aperture. The grating may be sued, for example, in x-ray microscopes or telescopes of the imaging type and in x-ray microprobed. Increased spatial resolution and field of view may be realized in x-ray imaging. 5 figs.

  16. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925

  17. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925

  18. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925

  19. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925

  20. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925

  1. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380,

  2. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380,

  3. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925

  4. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380,

  5. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380,

  6. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925

  7. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925

  8. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925

  9. BEAMLINE 13-3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EXPERIMENTAL STATION 13-3 CURRENT STATUS Open RESPONSIBLE STAFF Bart Johnson EXPERIMENTS Soft X-ray Coherent Scattering: Resonant, Polarization-dependent; Lensless Imaging: X-ray Holography, MAD phasing; X-ray Photon Correlation Spectroscopy SCHEDULING Proposal Submittal and Scheduling Procedures Current SPEAR and Beam Line Schedules SOURCE EPU, Linear and Circular Polarization MONOCHROMATOR SGM, Rowland Circle Spherical Grating 300l/mm 600l/mm 1100l/mm Energy Range 150-400eV 350-750eV

  10. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925

  11. Beamline 8.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Surface and materials science, iRIXS (previously SXF), open port Scientific disciplines: Green energy sciences, material sciences, nanosciences, surfaces sciences, correlated electron system Endstations: 8.0.1.1: iRIXS (previously SXF) 8.0.1.2: Open port 8.0.1.3: Wet-RIXS 8.0.1.5: Bio-NEXAFS GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range 80-1250 eV Monochromator SGM (gratings: 150, 380, 925

  12. ALS Scientists Patent Technique To Dramatically Advance Grating-Based

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy ALS Scientists Patent Technique To Dramatically Advance Grating-Based Spectroscopy ALS Scientists Patent Technique To Dramatically Advance Grating-Based Spectroscopy Print Gratings - optical elements used to separate light in spectroscopy applications - have been in use since the early 19th century. Developments in the late 19th century led to the manufacture of gratings by highly precise ruling with a diamond onto a metallic surface. Many gratings are still produced today using

  13. ALS Scientists Patent Technique To Dramatically Advance Grating-Based

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy ALS Scientists Patent Technique To Dramatically Advance Grating-Based Spectroscopy ALS Scientists Patent Technique To Dramatically Advance Grating-Based Spectroscopy Print Tuesday, 29 January 2013 16:28 Gratings - optical elements used to separate light in spectroscopy applications - have been in use since the early 19th century. Developments in the late 19th century led to the manufacture of gratings by highly precise ruling with a diamond onto a metallic surface. Many gratings

  14. A dynamic focusing x-ray monochromator for a wiggler beam line at the SRS of the SERC Daresbury Laboratory

    SciTech Connect (OSTI)

    De Bruijn, D.; Van Zuylen, P. ); Kruizinga, G. , P.O. Box 93138, 2509 AC Den Haag State University of Utrecht, Sorbonnelaan 16, 3508 TB Utrecht )

    1992-01-01

    A Si(220) double-crystal monochromator for the energy range 10--30 keV is presented. It will be used for EXAFS as well as powder diffraction measurements. To determine the requirements for this monochromator we looked, apart from mean considerations, at the requirements dictated by EXAFS in transmission mode. For good data analyses the proper shape, amplitude, and location at the energy axis of each wiggle is required. Moreover it is essential to separate the wiggles from background and noise. For the latter a high flux through the sample is desirable, which can be achieved by horizontal focusing of the beam. For that we have chosen to bend the second crystal sagitally. The sagittal bending radius is adjustable between 50 and 0.8 m, because for different energies different sagittal radii are necessary to focus the beam on the sample. The mean meridional radius of the second crystal is fixed at 130 m, which is an optimization for 20 keV. The meridional radius of the first crystal can be tuned between 100 and 500 m. When this radius is set to 130 m the energy resolution is calculated to be 6, 3, and 35 eV for 10, 20, and 30 keV (for perfectly bent crystals). By changing the meridional radius of the first crystal, future users of this monochromator can make the trade off between resolution and intensity. Movement of the monochromator exit beam, during a scan, will occur due to the monochromator geometry, but is reduced as much as possible by using an asymmetrically cut second crystal, with an asymmetry angle of 2.5{degree}. The average exit beam movement of the monochromator for a 1-keV scan is 20 {mu}m. For 40% of the energy range (10--30 keV) the exit beam position remains within 10 {mu}m. For the second crystal no translation stage is used.

  15. Hydraulic Capacity of an ADA Compliant Street Drain Grate

    SciTech Connect (OSTI)

    Lottes, Steven A.; Bojanowski, Cezary

    2015-09-01

    Resurfacing of urban roads with concurrent repairs and replacement of sections of curb and sidewalk may require pedestrian ramps that are compliant with the American Disabilities Act (ADA), and when street drains are in close proximity to the walkway, ADA compliant street grates may also be required. The Minnesota Department of Transportation ADA Operations Unit identified a foundry with an available grate that meets ADA requirements. Argonne National Laboratorys Transportation Research and Analysis Computing Center used full scale three dimensional computational fluid dynamics to determine the performance of the ADA compliant grate and compared it to that of a standard vane grate. Analysis of a parametric set of cases was carried out, including variation in longitudinal, gutter, and cross street slopes and the water spread from the curb. The performance of the grates was characterized by the fraction of the total volume flow approaching the grate from the upstream that was captured by the grate and diverted into the catch basin. The fraction of the total flow entering over the grate from the side and the fraction of flow directly over a grate diverted into the catch basin were also quantities of interest that aid in understanding the differences in performance of the grates. The ADA compliant grate performance lagged that of the vane grate, increasingly so as upstream Reynolds number increased. The major factor leading to the performance difference between the two grates was the fraction of flow directly over the grates that is captured by the grates.

  16. Grating enhanced solid-state laser amplifiers

    DOE Patents [OSTI]

    Erlandson, Alvin C. (Livermore, CA); Britten, Jerald A. (Clayton, CA)

    2010-11-09

    A novel method and apparatus for suppressing ASE and parasitic oscillation modes in a high average power laser is introduced. Such an invention, as disclosed herein, uses diffraction gratings to increase gain, stored energy density, and pumping efficiency of solid-state laser gain media, such as, but not limited to rods, disks and slabs. By coupling predetermined gratings to solid-state gain media, such as crystal or ceramic laser gain media, ASE and parasitic oscillation modes can be effectively suppressed.

  17. Inductively coupled plasma-atomic emission spectroscopy: a computer controlled, scanning monochromator system for the rapid determination of the elements

    SciTech Connect (OSTI)

    Floyd, M.A.

    1980-03-01

    A computer controlled, scanning monochromator system specifically designed for the rapid, sequential determination of the elements is described. The monochromator is combined with an inductively coupled plasma excitation source so that elements at major, minor, trace, and ultratrace levels may be determined, in sequence, without changing experimental parameters other than the spectral line observed. A number of distinctive features not found in previously described versions are incorporated into the system here described. Performance characteristics of the entire system and several analytical applications are discussed.

  18. Grating array systems having a plurality of gratings operative in a coherently additive mode and methods for making such grating array systems

    DOE Patents [OSTI]

    Kessler, Terrance J.; Bunkenburg, Joachim; Huang, Hu

    2007-02-13

    A plurality of gratings (G1, G2) are arranged together with a wavefront sensor, actuators, and feedback system to align the gratings in such a manner, that they operate like a single, large, monolithic grating. Sub-wavelength-scale movements in the mechanical mounting, due to environmental influences, are monitored by an interferometer (28), and compensated by precision actuators (16, 18, 20) that maintain the coherently additive mode. The actuators define the grating plane, and are positioned in response to the wavefronts from the gratings and a reference flat, thus producing the interferogram that contains the alignment information. Movement of the actuators is also in response to a diffraction-limited spot on the CCD (36) to which light diffracted from the gratings is focused. The actuator geometry is implemented to take advantage of the compensating nature of the degrees of freedom between gratings, reducing the number of necessary control variables.

  19. Ultra-high density diffraction grating

    DOE Patents [OSTI]

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  20. Superfluid {sup 4}He Quantum Interference Grating

    SciTech Connect (OSTI)

    Sato, Yuki; Joshi, Aditya; Packard, Richard

    2008-08-22

    We report the first observation of quantum interference from a grating structure consisting of four weak link junctions in superfluid {sup 4}He. We find that an interference grating can be implemented successfully in a superfluid matter wave interferometer to enhance its sensitivity while trading away some of its dynamic range. We also show that this type of device can be used to measure absolute quantum mechanical phase differences. The results demonstrate the robust nature of superfluid phase coherence arising from quantum mechanics on a macroscopic scale.

  1. Fiber-bragg grating-loop ringdown method and apparatus

    DOE Patents [OSTI]

    Wang, Chuji (Starkville, MS)

    2008-01-29

    A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

  2. Tunable dark modes in one-dimensional diatomic dielectric gratings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zeng, Bo; Majumdar, Arka; Wang, Feng

    2015-05-04

    Recently researchers have demonstrated ultra high quality factor (Q) resonances in one-dimensional (1D) dielectric gratings. Here we theoretically investigate a new class of subwavelength 1D gratings, namely diatomic gratings with two nonequivalent subcells in one period, and utilize their intrinsic dark modes to achieve robust ultra high Q resonances. Such diatomic gratings provide extra design flexibility, and enable high Q resonators using thinner geometry with smaller filling factors compared to conventional designs like the high contrast gratings (HCGs). More importantly, we show that these high Q resonances can be efficiently tuned in situ, making the design appealing in various applicationsmoreincluding optical sensing, filtering and displays.less

  3. Fluidized bed boiler having a segmented grate

    DOE Patents [OSTI]

    Waryasz, Richard E. (Longmeadow, MA)

    1984-01-01

    A fluidized bed furnace (10) is provided having a perforate grate (9) within a housing which supports a bed of particulate material including some combustibles. The grate is divided into a plurality of segments (E2-E6, SH1-SH5, RH1-RH5), with the airflow to each segment being independently controlled. Some of the segments have evaporating surface imbedded in the particulate material above them, while other segments are below superheater surface or reheater surface. Some of the segments (E1, E7) have no surface above them, and there are ignitor combustors (32, 34) directed to fire into the segments, for fast startup of the furnace without causing damage to any heating surface.

  4. Compact reflective imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA)

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  5. A double crystal monochromator using tangentially bend crystals in combination with toroidal mirror focusing

    SciTech Connect (OSTI)

    Feng, Jun, Thompson,A.C.; Padmore,H.A.

    2000-02-24

    In collaboration with the Chemistry Department at the University of California at Berkeley, the ALS is building a beamline for structural determination in materials chemistry. The system will be used for single crystal x-ray diffraction on crystals that are too small or disordered for examination on laboratory systems, and typically will be used for crystals in the 5 - 20 micron regime. As some of the materials being designed are of the size of small proteins, phasing using direct methods is problematic, and so use of multiple wavelength anomalous dispersion techniques will be employed in many cases. The production of new compounds has been revolutionized in recent years with the development of combinatorial synthesis techniques, and a major b2048 to further advances in this field is access to rapid measurement of structural parameters. The specification of the beamline follows from these points. It must have a small focal spot to match closely the size of the crystals, high resolution for MAD techniques, and a high flux in the small focus. The strategy for satisfying these constraints is to us a system which is compact and which uses the minimum number of components. This is done in this case by using a pseudo channel cut crystal monochromator with tangentially bent crystals, in combination with a 1:1 focusing toroidal mirror. The toroidal mirror at 1:1 magnification has only very small aberrations, and from a 220 (h) by 25 (v) [micro] m FWHM source, an image of 220 by 45 [micro]m FWHM should be produced for a 3 mrad horizontal aperture for a full vertical aperture. This has already been achieved on an existing beamline. The crystal monochromator uses tangentially bent crystals in a concave - convex configuration to achieve matching of Bragg angles to the divergent source, while maintaining zero focusing power. A useful feature of this arrangement is that while there is an optimum crystal curvature for each energy that gives the expected Darwin width limited resolution, fixing the curvature gives approximately ideal resolution over typically 2 keV for the ALS bending magnet source. A further simplification is that the whole optical system will be inside the shield wall, with only a small pipe emerging from the shield wall to feed a standard commercial diffraction system. This means that the mirror will be at only 6.5 m from the source. This means that the toroidal mirror can be as short as 300 mm while collecting most of the vertical radiation fan. In addition, as the required tangential slope error is related to the angular size of the source, putting the mirror close reduces the slope error requirements substantially. These aspects together should result in a simple, low cost and very high performance system for small crystal, small molecule cr2048llography.

  6. Ultrafast transient grating radiation to optical image converter

    DOE Patents [OSTI]

    Stewart, Richard E; Vernon, Stephen P; Steel, Paul T; Lowry, Mark E

    2014-11-04

    A high sensitivity transient grating ultrafast radiation to optical image converter is based on a fixed transmission grating adjacent to a semiconductor substrate. X-rays or optical radiation passing through the fixed transmission grating is thereby modulated and produces a small periodic variation of refractive index or transient grating in the semiconductor through carrier induced refractive index shifts. An optical or infrared probe beam tuned just below the semiconductor band gap is reflected off a high reflectivity mirror on the semiconductor so that it double passes therethrough and interacts with the radiation induced phase grating therein. A small portion of the optical beam is diffracted out of the probe beam by the radiation induced transient grating to become the converted signal that is imaged onto a detector.

  7. Imaging Spectrometer Designs Utilizing Immersed Gratings With Accessible Entrance Slit

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA); Lerner, Scott A. (Corvallis, OR)

    2006-03-21

    A compact imaging spectrometer comprises an entrance slit, a catadioptric lens with a mirrored surface, a grating, and a detector array. The entrance slit directs light to the mirrored surface of the catadioptric lens; the mirrored surface reflects the light back through the lens to the grating. The grating receives the light from the catadioptric lens and diffracts the light to the lens away from the mirrored surface. The lens transmits the light and focuses it onto the detector array.

  8. Fiber optic security seal including plural Bragg gratings

    DOE Patents [OSTI]

    Forman, P.R.

    1994-09-27

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings. 2 figs.

  9. Gratings for Increasing Solid-State Laser Gain and Efficiency

    SciTech Connect (OSTI)

    Erlandson, A C; Britten, J A; Bonlie, J D

    2010-04-16

    We introduce new concepts for increasing the efficiency of solid state lasers by using gratings deposited on laser slabs or disks. The gratings improve efficiency in two ways: (1) by coupling out of the slab deleterious amplified spontaneous emission (ASE) and (2) by increasing the absorption efficiency of pump light. The gratings also serve as antireflective coatings for the extracting laser beam. To evaluate the potential for such coatings to improve laser performance, we calculated optical properties of a 2500 groove/mm, tantala-silica grating on a 1cm x 4cm x 8cm titanium-doped sapphire slab and performed ray-trace calculations for ASE and pump light. Our calculations show substantial improvements in efficiency due to grating ASE-coupling properties. For example, the gratings reduce pump energy required to produce a 0.6/cm gain coefficient by 9%, 20% and 35% for pump pulse durations of 0.5 {micro}s, 1{micro}s and 3{micro}s, respectively. Gratings also increase 532-nm pump-light absorption efficiency, particularly when the product slab overall absorption is small. For example, when the single-pass absorption is 1 neper, absorption efficiency increases from 66%, without gratings, to 86%, when gratings are used.

  10. Wavelength-conserving grating router for intermediate wavelength density

    DOE Patents [OSTI]

    Deri, Robert J.; Patel, Rajesh R.; Bond, Steven W.; Bennett, Cory V.

    2007-03-20

    A wavelength router to be used for fiber optical networking router is based on a diffraction grating which utilizes only N wavelengths to interconnect N inputs to N outputs. The basic approach is to augment the grating with additional couplers or wavelength selective elements so than N-1 of the 2N-1 outputs are combined with other N outputs (leaving only N outputs). One embodiment uses directional couplers as combiners. Another embodiment uses wavelength-selective couplers. Another embodiment uses a pair of diffraction gratings to maintain parallel propagation of all optical beams. Also, beam combining can be implemented either by using retroflection back through the grating pair or by using couplers.

  11. Fiber optic security seal including plural Bragg gratings

    DOE Patents [OSTI]

    Forman, Peter R. (Los Alamos, NM)

    1994-01-01

    An optical security system enables the integrity of a container seal to be remotely interrogated. A plurality of Bragg gratings is written holographically into the core of at least one optical fiber placed about the container seal, where each Bragg grating has a predetermined location and a known frequency for reflecting incident light. A time domain reflectometer is provided with a variable frequency light output that corresponds to the reflecting frequencies of the Bragg gratings to output a signal that is functionally related to the location and reflecting frequency of each of the Bragg gratings.

  12. Compact catadioptric imaging spectrometer utilizing reflective grating

    DOE Patents [OSTI]

    Lerner, Scott A.

    2005-12-27

    An imaging spectrometer apparatus comprising an entrance slit for directing light, a light means for receiving the light and directing the light, a grating that receives the light from the light means and defracts the light back onto the light means which focuses the light, and a detector that receives the focused light. In one embodiment the light means is a rotationally symmetric ZNSE aspheric lens. In another embodiment the light means comprises two ZNSE aspheric lenses that are coaxial. In another embodiment the light means comprises an aspheric mirror and a ZNSE aspheric lens.

  13. Compact Catadioptric Imaging Spectrometer Designs Utilizing Immersed Gratings

    DOE Patents [OSTI]

    Lerner, Scott A. (Livermore, CA)

    2006-02-28

    An imaging spectrometer comprising an entrance slit for directing light, a lens that receives said light and reflects said light, a grating that defracts said light back onto said lens which focuses said light, and a detector array that receives said focused light. In one embodiment the grating has rulings immersed into a germanium surface.

  14. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    SciTech Connect (OSTI)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-11

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k= 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k= 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  15. Magnetomechanically induced long period fiber gratings

    SciTech Connect (OSTI)

    Causado-Buelvas, Jesus D.; Gomez-Cardona, Nelson D.; Torres, Pedro

    2008-04-15

    In this work, we report a simple, flexible method to create long period fiber gratings mechanically by controlling the repulsion/attraction force between two magnets that pressing a plate with a periodic array of small glass cylinders to a short length of optical fiber. Via the photoelastic effect, the pressure points induce the required periodic refractive index modulation to create the LPFG. We found that the induced device exhibits spectral characteristics similar to those of other types of LPFG. As the optical properties of LPFGs are directly related to the nature of the applied perturbations, we show, to our knowledge for the frrst time, how is the evolution of birefringence effects in mechanically induced LPFGs.

  16. Review of High-Speed Fiber Optic Grating Sensors Systems

    SciTech Connect (OSTI)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  17. Increase of the grating coupler bandwidth with a graphene overlay

    SciTech Connect (OSTI)

    Cheng, Zhenzhou; Li, Zhen; Xu, Ke; Tsang, Hon Ki

    2014-03-17

    We present theoretical and experimental results that demonstrate an increase in the grating bandwidth by placing a graphene on the chip. A focusing subwavelength grating with coupling efficiency of ?4.3?dB and 1?dB bandwidth of ?60?nm was demonstrated. After a graphene sheet was transferred onto the chip, the maximum 1?dB bandwidth was increased to ?72?nm. Experimental results are consistent with the calculated graphene induced waveguide refractive index and dispersion changes, and the bandwidth improvement may be attributed to the reduction of grating dispersion. This study may be of interest for graphene-on-silicon photonic integrated circuit applications.

  18. Phase-shifting point diffraction interferometer phase grating designs

    DOE Patents [OSTI]

    Naulleau, Patrick (Oakland, CA)

    2001-01-01

    Diffraction phase gratings are employed in phase-shifting point diffraction interferometers to improve the interferometric fringe contrast. The diffraction phase grating diffracts a zeroth-order diffraction of light at a first power level to the test-beam window of a mask that is positioned at the image plane and a first-order diffraction at a second power to the reference-beam pinhole. The diffraction phase grating is preferably selected to yield a desired ratio of the first power level to second power level.

  19. High Speed Measurements using Fiber-optic Bragg Grating Sensors

    SciTech Connect (OSTI)

    Benterou, J J; May, C A; Udd, E; Mihailov, S J; Lu, P

    2011-03-26

    Fiber grating sensors may be used to monitor high-speed events that include catastrophic failure of structures, ultrasonic testing and detonations. This paper provides insights into the utility of fiber grating sensors to measure structural changes under extreme conditions. An emphasis is placed on situations where there is a structural discontinuity. Embedded chirped fiber Bragg grating (CFBG) sensors can track the very high-speed progress of detonation waves (6-9 km/sec) inside energetic materials. This paper discusses diagnostic instrumentation and analysis techniques used to measure these high-speed events.

  20. Experimental observation of acoustic sub-harmonic diffraction by a grating

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Experimental observation of acoustic sub-harmonic diffraction by a grating Citation Details In-Document Search Title: Experimental observation of acoustic sub-harmonic diffraction by a grating A diffraction grating is a spatial filter causing sound waves or optical waves to reflect in directions determined by the frequency of the waves and the period of the grating. The classical grating equation is the governing principle that has successfully described

  1. Light modulation with a nano-patterned diffraction grating and...

    Office of Scientific and Technical Information (OSTI)

    with a nano-patterned diffraction grating and MEMS pixel. Abstract not provided. Authors: Skinner, Jack L. ; Talin, Albert Alec ; Horsley, David A. Publication Date: 2008-05-01...

  2. Grate assembly for fixed-bed coal gasifier

    DOE Patents [OSTI]

    Notestein, John E. (Morgantown, WV)

    1993-01-01

    A grate assembly for a coal gasifier of a moving-bed or fixed-bed type is provided for crushing agglomerates of solid material such as clinkers, tailoring the radial distribution of reactant gases entering the gasification reaction zone, and control of the radial distribution of downwardly moving solid velocities in the gasification and combustion zone. The clinker crushing is provided by pinching clinkers between vertically oriented stationary bars and angled bars supported on the upper surface of a rotating conical grate. The distribution of the reactant gases is provided by the selective positioning of horizontally oriented passageways extending through the grate. The radial distribution of the solids is provided by mounting a vertically and generally radially extending scoop mechanism on the upper surface of the grate near the apex thereof.

  3. Compact Refractive Imaging Spectrometer Designs Utilizing Immersed Gratings

    DOE Patents [OSTI]

    Lerner, Scott A. (Livermore, CA); Bennett, Charles L. (Livermore, CA); Bixler, Jay V. (Oakland, CA); Kuzmenko, Paul J. (Livermore, CA); Lewis, Isabella T. (San Jose, CA)

    2005-07-26

    A compact imaging spectrometer comprising an entrance slit for directing light, a first means for receiving the light and focusing the light, an immersed diffraction grating that receives the light from the first means and defracts the light, a second means for receiving the light from the immersed diffraction grating and focusing the light, and an image plane that receives the light from the second means

  4. Continuous wavelength tunable laser source with optimum positioning of pivot axis for grating

    DOE Patents [OSTI]

    Pushkarsky, Michael; Amone, David F.

    2010-06-08

    A laser source (10) for generating a continuously wavelength tunable light (12) includes a gain media (16), an optical output coupler (36F), a cavity collimator (38A), a diffraction grating (30), a grating beam (54), and a beam attacher (56). The diffraction grating (30) is spaced apart from the cavity collimator (38A) and the grating (30) cooperates with the optical output coupler (36F) to define an external cavity (32). The grating (30) includes a grating face surface (42A) that is in a grating plane (42B). The beam attacher (56) retains the grating beam (54) and allows the grating beam (54) and the grating (30) to effectively pivot about a pivot axis (33) that is located approximately at an intersection of a pivot plane (50) and the grating plane (42B). As provided herein, the diffraction grating (30) can be pivoted about the unique pivot axis (33) to move the diffraction grating (30) relative to the gain media (16) to continuously tune the lasing frequency of the external cavity (32) and the wavelength of the output light (12) so that the output light (12) is mode hop free.

  5. Applications of laser-induced gratings to spectroscopy and dynamics

    SciTech Connect (OSTI)

    Rohlfing, E.A.

    1993-12-01

    This program has traditionally emphasized two principal areas of research. The first is the spectroscopic characterization of large-amplitude motion on the ground-state potential surface of small, transient molecules. The second is the reactivity of carbonaceous clusters and its relevance to soot and fullerene formation in combustion. Motivated initially by the desire to find improved methods of obtaining stimulated emission pumping (SEP) spectra of transients, most of our recent work has centered on the use of laser-induced gratings or resonant four-wave mixing in free-jet expansions. These techniques show great promise for several chemical applications, including molecular spectroscopy and photodissociation dynamics. The author describes recent applications of two-color laser-induced grating spectroscopy (LIGS) to obtain background-free SEP spectra of transients and double resonance spectra of nonfluorescing species, and the use of photofragment transient gratings to probe photodissociation dynamics.

  6. Deformable silicone grating fabricated with a photo-imprinted polymer mold

    SciTech Connect (OSTI)

    Yamada, Itsunari, E-mail: yamada.i@e.usp.ac.jp [Department of Electronic Systems Engineering, School of Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533 (Japan)] [Department of Electronic Systems Engineering, School of Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533 (Japan); Nishii, Junji [Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812 (Japan)] [Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812 (Japan); Saito, Mitsunori [Department of Electronics and Informatics, Ryukoku University, Otsu, Shiga 520-2194 (Japan)] [Department of Electronics and Informatics, Ryukoku University, Otsu, Shiga 520-2194 (Japan)

    2014-01-15

    A tunable transmission grating was fabricated by molding a silicone elastomer (polydimethylsiloxane). Its optical characteristics were then evaluated during compression. For fabrication, a glass plate with a photoimprinted polymer grating film was used as a mold. Both the grating period and diffraction transmittance of the molded elastomer were functions of the compressive stress. The grating period changed from 3.02 to 2.86 ?m during compressing the elastomer in the direction perpendicular to the grooves.

  7. Transient population and polarization gratings induced by (1+1)-dimensional ultrashort dipole soliton

    SciTech Connect (OSTI)

    Xia, Keyu; Niu, Yueping; Li, Ruxin; Jin, Shiqi; Gong, Shangqing

    2007-05-15

    An ultrafast transient population grating induced by a (1+1)-dimensional, ultrashort dipole soliton is demonstrated by solving the full-wave Maxwell-Bloch equations. The number of lines and the period of the grating can be controlled by the beam waist and the area of the pulse. Of interest is that a polarization grating is produced. A coherent control scheme based on these phenomena can be contemplated as ultrafast transient grating techniques.

  8. Integrated narrowband optical filter based on embedded subwavelength resonant grating structures

    DOE Patents [OSTI]

    Grann, Eric B.; Sitter, Jr., David N.

    2000-01-01

    A resonant grating structure in a waveguide and methods of tuning the performance of the grating structure are described. An apparatus includes a waveguide; and a subwavelength resonant grating structure embedded in the waveguide. The systems and methods provide advantages including narrowband filtering capabilities, minimal sideband reflections, spatial control, high packing density, and tunability.

  9. Investigation on the properties of a laminar grating as a soft x-ray beam splitter

    SciTech Connect (OSTI)

    Liu Ying; Fuchs, Hans-Joerg; Liu Zhengkun; Chen Huoyao; He Shengnan; Fu Shaojun; Kley, Ernst-Bernhard; Tuennermann, Andreas

    2010-08-10

    Laminar-type gratings as soft x-ray beam splitters for interferometry are presented. Gold-coated grating beam splitters with 1000 lines/mm are designed for grazing incidence operation at 13.9nm. They are routinely fabricated using electron beam lithography and ion etching techniques. The laminar grating is measured to have almost equal absolute efficiencies of about 20% in the zeroth and -1st orders, which enables a fringe visibility up to 0.99 in the interferometer. The discrepancy of the grating profiles between the optimized theoretical and the experimental results is analyzed according to the comparison of the optimized simulation results and the measurement realization of the grating efficiencies. By a precise control of the grating profile, the grating efficiency in the -1st order and the fringe visibility could be improved to 25% and 1, respectively.

  10. Sagittal focusing Laue monochromator

    DOE Patents [OSTI]

    Zhong; Zhong (Stony Brook, NY), Hanson; Jonathan (Wading River, NY), Hastings; Jerome (Stanford, CA), Kao; Chi-Chang (Setauket, NY), Lenhard; Anthony (Medford, NY), Siddons; David Peter (Cutchogue, NY), Zhong; Hui (Coram, NY)

    2009-03-24

    An x-ray focusing device generally includes a slide pivotable about a pivot point defined at a forward end thereof, a rail unit fixed with respect to the pivotable slide, a forward crystal for focusing x-rays disposed at the forward end of the pivotable slide and a rearward crystal for focusing x-rays movably coupled to the pivotable slide and the fixed rail unit at a distance rearward from the forward crystal. The forward and rearward crystals define reciprocal angles of incidence with respect to the pivot point, wherein pivoting of the slide about the pivot point changes the incidence angles of the forward and rearward crystals while simultaneously changing the distance between the forward and rearward crystals.

  11. Beamline 5.3.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yes Source characteristics Bend magnet Energy range 600-2000eV eV Monochromator Low-dispersion, spherical-grating monochromator, two gratings Calculated flux (1.9 GeV, 500 mA) 1 x...

  12. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x...

  13. Phase-shifting point diffraction interferometer grating designs

    DOE Patents [OSTI]

    Naulleau, Patrick (Oakland, CA); Goldberg, Kenneth Alan (Berkeley, CA); Tejnil, Edita (San Carlos, CA)

    2001-01-01

    In a phase-shifting point diffraction interferometer, by sending the zeroth-order diffraction to the reference pinhole of the mask and the first-order diffraction to the test beam window of the mask, the test and reference beam intensities can be balanced and the fringe contrast improved. Additionally, using a duty cycle of the diffraction grating other than 50%, the fringe contrast can also be improved.

  14. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect (OSTI)

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ?5 keV to ?10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  15. Echelle grating multi-order imaging spectrometer utilizing a catadioptric lens

    DOE Patents [OSTI]

    Chrisp, Michael P; Bowers, Joel M

    2014-05-27

    A cryogenically cooled imaging spectrometer that includes a spectrometer housing having a first side and a second side opposite the first side. An entrance slit is on the first side of the spectrometer housing and directs light to a cross-disperser grating. An echelle immersions grating and a catadioptric lens are positioned in the housing to receive the light. A cryogenically cooled detector is located in the housing on the second side of the spectrometer housing. Light from the entrance slit is directed to the cross-disperser grating. The light is directed from the cross-disperser grating to the echelle immersions grating. The light is directed from the echelle immersions grating to the cryogenically cooled detector on the second side of the spectrometer housing.

  16. Apparatus comprising a tunable nanomechanical near-field grating and method for controlling far-field emission

    DOE Patents [OSTI]

    Carr, Dustin Wade (Albuquerque, NM); Bogart, Gregory Robert (Corrales, NM)

    2007-02-06

    A tunable nanomechanical near-field grating is disclosed which is capable of varying the intensity of a diffraction mode of an optical output signal. The tunable nanomechanical near-field grating includes two sub-gratings each having line-elements with width and thickness less than the operating wavelength of light with which the grating interacts. Lateral apertures in the two sub-gratings are formed from the space between one line-element of the first sub-grating and at least one line-element of the second sub-grating. One of the sub-gratings is capable of motion such that at least one of aperture width and aperture depth changes, causing a perturbation to the near-field intensity distribution of the tunable nanomechanical near-field grating and a corresponding change to the far-field emission of thereof.

  17. Compact Reflective Imaging Spectrometer Design Utilizing An Immersed Grating And Anamorphic Mirror

    DOE Patents [OSTI]

    Lerner, Scott A.

    2006-01-10

    A compact imaging spectrometer comprising an entrance slit, an anamorphic mirror, a grating, and a detector array. The entrance slit directs light to the anamorphic mirror. The anamorphic mirror receives the light and directs the light to the grating. The grating receives the light from the anamorphic mirror and defracts the light back onto the anamorphic mirror. The anamorphic mirror focuses the light onto a detector array.

  18. Self-seeding of a pulsed double-grating Ti:sapphire laser oscillator...

    Office of Scientific and Technical Information (OSTI)

    Energy Agency (IAEA) Country of Publication: United States Language: English Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DIFFRACTION GRATINGS; GEOMETRY;...

  19. Broadband extreme ultraviolet probing of transient gratings in vanadium dioxide

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sistrunk, Emily; Lawrence Livermore National Lab.; Grilj, Jakob; Ecole Polytechnique Federal de Lausanne; Jeong, Jaewoo; Samant, Mahesh G.; Gray, Alexander X.; Temple Univ. Philadelphia, PA; Drr, Hermann A.; Parkin, Stuart S. P.; et al

    2015-02-11

    Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demonstrate a step on this path showing core-valence sensitivity in transient grating spectroscopy with EUV probing. We study the optically induced insulator-to-metal transition (IMT) of a VO? film with EUV diffraction from the optically excited sample. The VO? exhibits a change in the 3p-3d resonance of V accompanied by an acoustic response. Due to the broadband probing we are able to separate the two features.

  20. Durable silver thin film coating for diffraction gratings

    DOE Patents [OSTI]

    Wolfe, Jesse D. (Discovery Bay, CA); Britten, Jerald A. (Oakley, CA); Komashko, Aleksey M. (San Diego, CA)

    2006-05-30

    A durable silver film thin film coated non-planar optical element has been developed to replace Gold as a material for fabricating such devices. Such a coating and resultant optical element has an increased efficiency and is resistant to tarnishing, can be easily stripped and re-deposited without modifying underlying grating structure, improves the throughput and power loading of short pulse compressor designs for ultra-fast laser systems, and can be utilized in variety of optical and spectrophotometric systems, particularly high-end spectrometers that require maximized efficiency.

  1. A simple scanning spectrometer based on a stretchable elastomeric reflective grating

    SciTech Connect (OSTI)

    Ghisleri, C.; Milani, P., E-mail: paolo.milani@mi.infn.it [CIMAINA and Dipartimento di Fisica, Universit di Milano, via Celoria 16, 20133 Milano (Italy); WISE srl, Piazza Duse 2, 20122 Milano (Italy); Potenza, M. A. C.; Bellacicca, A. [CIMAINA and Dipartimento di Fisica, Universit di Milano, via Celoria 16, 20133 Milano (Italy); Ravagnan, L. [WISE srl, Piazza Duse 2, 20122 Milano (Italy)

    2014-02-10

    We report a scanning optical spectrometer based on the use of a stretchable elastomeric reflective grating. The grating is obtained by supersonic cluster beam implantation of silver nanoparticles on polydimethylsiloxane previously grooved by molding to create a replica of a commercial digital versatile disk grating. The use of a stretchable grating allows the spectrometer spanning the whole optical wavelength range by solely extending the diffraction element by more than 100% of its original dimensions. The stretchable reflective optical grating shows excellent performances and stability upon thousands of stretching cycles. The use of this elastomeric element makes the optical layout and the mechanics of the spectrometer extremely simple and advantageous for those applications where spectral resolution is not a major requirement. As a proof of principle, we present the absorption spectrum of Rhodamine B in solution obtained by our spectrometer and compared to commercial instruments.

  2. Nanomechanical near-field grating apparatus and acceleration sensor formed therefrom

    DOE Patents [OSTI]

    Carr, Dustin Wade (Albuquerque, NM); Bogart, Gregory Robert (Corrales, NM); Keeler, Bianca E. N. (Albuquerque, NM)

    2008-03-04

    A nanomechanical near-field grating device is disclosed which includes two sub-gratings vertically spaced by a distance less than or equal to an operating wavelength. Each sub-grating includes a plurality of line-elements spaced apart by a distance less than or equal to the operating wavelength. A light source (e.g., a VCSEL or LED) can provide light at the operating wavelength for operation of the device. The device can operate as an active grating, with the intensity of a reflected or transmitted portion of the light varying as the relative positions of the sub-gratings are controlled by an actuator. The device can also operate as a passive grating, with the relative positions of the sub-gratings changing in response to an environmentally-induced force due to acceleration, impact, shock, vibration, gravity, etc. Since the device can be adapted to sense an acceleration that is directed laterally or vertically, a plurality of devices can be located on a common substrate to form a multi-axis acceleration sensor.

  3. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA)

    2008-07-08

    A system for determining property of multiphase fluids based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum exhibits peaks whose relative size depends on the properties of the various phases of the multiphase fluid. For example, for particles in a liquid, the peaks exhibit dependence on the particle size and the particle volume fraction. Where the exact relationship is know know a priori, data from different peaks of the same reflection spectrum or data from the peaks of different spectra obtained from different diffraction gratings can be used to resolve the size and volume fraction.

  4. A grateful dead analysis: the relationship between concert and listening behavior

    SciTech Connect (OSTI)

    Rodriguez, Marko A; Gintautas, Vadas; Pepe, Alberto

    2008-01-01

    The Grateful Dead was an American band born out of the 1960s San Francisco, California psychedelic movement, that played music together from 1965 to 1995. Despite relatively little popular radio airtime, while on tour the Grateful Dead enjoyed a cult-like following from a fan base that numbered in the millions. Still today, some ten years after dissolution, the band remains popular according to online music services, such as last.fm. This article presents a comparative analysis between 1,590 of the Grateful Dead's live concert set lists from 1972 to 1995 and 2,616,990 Grateful Dead listening events by last.fm users from August 2005 to October 2007. While there is a strong correlation between how songs were played in concert and how they were listened to by last.fm members, the outlying songs in this trend identify interesting aspects of the band and their present-day fans.

  5. Performance enhancement of thin film silicon solar cells based on distributed Bragg reflector and diffraction grating

    SciTech Connect (OSTI)

    Dubey, R. S.; Saravanan, S.; Kalainathan, S.

    2014-12-15

    The influence of various designing parameters were investigated and explored for high performance solar cells. Single layer grating based solar cell of 50 ?m thickness gives maximum efficiency up to 24 % whereas same efficiency is achieved with the use of three bilayers grating based solar cell of 30 ?m thickness. Remarkably, bilayer grating based solar cell design not only gives broadband absorption but also enhancement in efficiency with reduced cell thickness requirement. This absorption enhancement is attributed to the high reflection and diffraction from DBR and grating respectively. The obtained short-circuit current were 29.6, 32.9, 34.6 and 36.05 mA/cm{sup 2} of 5, 10, 20 and 30 ?m cell thicknesses respectively. These presented designing efforts would be helpful to design and realize new generation of solar cells.

  6. Short pulse laser stretcher-compressor using a single common reflective grating

    DOE Patents [OSTI]

    Erbert, Gaylen V.; Biswal, Subrat; Bartolick, Joseph M.; Stuart, Brent C.; Telford, Steve

    2004-05-25

    The present invention provides an easily aligned, all-reflective, aberration-free pulse stretcher-compressor in a compact geometry. The stretcher-compressor device is a reflective multi-layer dielectric that can be utilized for high power chirped-pulse amplification material processing applications. A reflective grating element of the device is constructed: 1) to receive a beam for stretching of laser pulses in a beam stretcher beam path and 2) to also receive stretched amplified pulses to be compressed in a compressor beam path through the same (i.e., common) reflective multilayer dielectric diffraction grating. The stretched and compressed pulses are interleaved about the grating element to provide the desired number of passes in each respective beam path in order to achieve the desired results.

  7. Passive Spectroscopy Bolometers, Grating- And X-Ray Imaging Crystal Spectrometers

    SciTech Connect (OSTI)

    Bitter, M; Hill, K W; Scott, S; Paul, S; Ince-Cushmann, A; Reinke, M; Rice, J; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2007-11-07

    This tutorial gives a brief introduction into passive spectroscopy and describes the working principles of bolometers, a high-resolution grating spectrometer, and a novel X-ray imaging crystal spectrometer, which is of particular interest for profile measurements of the ion temperature and plasma rotation velocity on ITER and future burning plasma experiments.

  8. Thermoresponsive PNIPAM Coatings on Nanostructured Gratings for Cell Alignment and Release

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhernenkov, Mikhail; Ashkar, Rana; Feng, Hao; Akintewe, Olukemi O.; Gallant, Nathan D.; Toomey, Ryan; Ankner, John F.; Pynn, Roger

    2015-05-20

    Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) has been widely used as a surface coating to thermally control the detachment of adsorbed cells without the need for extreme stimuli such as enzyme treatment. Recently, the use of 2D and 3D scaffolds in controlling cell positioning, growth, spreading, and migration has been of a great interest in tissue engineering and cell biology. We use a PNIPAM polymer surface coating atop a nanostructured linear diffraction grating to controllably change the surface topography of 2D linear structures using temperature stimuli. Neutron reflectometry and surface diffraction are utilized to examine the conformity of the polymer coating to themore » grating surface, its hydration profile, and its evolution in response to temperature variations. Our results show that, in the collapsed state, the PNIPAM coating conforms to the grating structures and retains a uniform hydration of 63%. In the swollen state, the polymer expands beyond the grating channels and absorbs up to 87% water. Such properties are particularly desirable for 2D cell growth scaffolds with a built-in nonextreme tissue-release mechanism. Indeed, the current system demonstrates advanced performance in the effective alignment of cultured fibroblast cells and the easy release of the cells upon temperature change.« less

  9. Thermoresponsive PNIPAM Coatings on Nanostructured Gratings for Cell Alignment and Release

    SciTech Connect (OSTI)

    Zhernenkov, Mikhail; Ashkar, Rana; Feng, Hao; Akintewe, Olukemi O.; Gallant, Nathan D.; Toomey, Ryan; Ankner, John F.; Pynn, Roger

    2015-05-20

    Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) has been widely used as a surface coating to thermally control the detachment of adsorbed cells without the need for extreme stimuli such as enzyme treatment. Recently, the use of 2D and 3D scaffolds in controlling cell positioning, growth, spreading, and migration has been of a great interest in tissue engineering and cell biology. We use a PNIPAM polymer surface coating atop a nanostructured linear diffraction grating to controllably change the surface topography of 2D linear structures using temperature stimuli. Neutron reflectometry and surface diffraction are utilized to examine the conformity of the polymer coating to the grating surface, its hydration profile, and its evolution in response to temperature variations. Our results show that, in the collapsed state, the PNIPAM coating conforms to the grating structures and retains a uniform hydration of 63%. In the swollen state, the polymer expands beyond the grating channels and absorbs up to 87% water. Such properties are particularly desirable for 2D cell growth scaffolds with a built-in nonextreme tissue-release mechanism. Indeed, the current system demonstrates advanced performance in the effective alignment of cultured fibroblast cells and the easy release of the cells upon temperature change.

  10. In-Situ Continuous Detonation Velocity Measurements Using Fiber-optic Bragg Grating Sensors

    SciTech Connect (OSTI)

    Benterou, J; Udd, E; Wilkins, P; Roeske, F; Roos, E; Jackson, D

    2007-07-25

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation and detonation research requires continuous measurement of low order detonation velocities as the detonation runs up to full order detonation for a given density and initiation pressure pulse. A novel detector of detonation velocity is presented using a 125 micron diameter optical fiber with an integral chirped fiber Bragg grating as an intrinsic sensor. This fiber is embedded in the explosive under study and interrogated during detonation as the fiber Bragg grating scatters light back along the fiber to a photodiode, producing a return signal dependant on the convolution integral of the grating reflection bandpass, the ASE intensity profile and the photodetector response curve. Detonation velocity is measured as the decrease in reflected light exiting the fiber as the grating is consumed when the detonation reaction zone proceeds along the fiber sensor axis. This small fiber probe causes minimal perturbation to the detonation wave and can measure detonation velocities along path lengths tens of millimeters long. Experimental details of the associated equipment and preliminary data in the form of continuous detonation velocity records within nitromethane and PBX-9502 are presented.

  11. 5000 groove/mm multilayer-coated blazed grating with 33percent efficiency in the 3rd order in the EUV wavelength range

    SciTech Connect (OSTI)

    Advanced Light Source; Voronov, Dmitriy L.; Anderson, Erik; Cambie, Rossana; Salmassi, Farhad; Gullikson, Eric; Yashchuk, Valeriy; Padmore, Howard; Ahn, Minseung; Chang, Chih-Hao; Heilmann, Ralf; Schattenburg, Mark

    2009-07-07

    We report on recent progress in developing diffraction gratings which can potentially provide extremely high spectral resolution of 105-106 in the EUV and soft x-ray photon energy ranges. Such a grating was fabricated by deposition of a multilayer on a substrate which consists ofa 6-degree blazed grating with a high groove density. The fabrication of the substrate gratings was based on scanning interference lithography and anisotropic wet etch of silicon single crystals. The optimized fabrication process provided precise control of the grating periodicity, and the grating groove profile, together with very short anti-blazed facets, and near atomically smooth surface blazed facets. The blazed grating coated with 20 Mo/Si bilayers demonstrated a diffraction efficiency in the third order as high as 33percent at an incidence angle of 11? and wavelength of 14.18 nm.

  12. Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells

    SciTech Connect (OSTI)

    Wen, Long; Sun, Fuhe; Chen, Qin

    2014-04-14

    The incorporation of plasmonic nanostructures in the thin-film solar cells (TFSCs) is a promising route to harvest light into the nanoscale active layer. However, the light trapping scheme based on the plasmonic effects intrinsically presents narrow-band resonant enhancement of light absorption. Here we demonstrate that by cascading metal nanogratings with different sizes atop the TFSCs, broadband absorption enhancement can be realized by simultaneously exciting multiple localized surface plasmon resonances and inducing strong coupling between the plasmonic modes and photonic modes. As a proof of concept, we demonstrate of 66.5% in the photocurrent in an ultrathin amorphous silicon TFSC with two-dimensional cascaded gratings over the reference cell without gratings.

  13. Energy exchange between electromagnetic waves on the director diffraction grating in planar waveguide with nematic layer

    SciTech Connect (OSTI)

    Ledney, M. F. Tarnavskyy, A. S.

    2013-09-15

    The energy exchange between two coupled TE modes on the diffraction grating of the director in a planar waveguide containing a nematic liquid crystal layer is calculated. The diffraction grating is induced by an external electric field in the nematic layer with periodic anchoring energy at the waveguide surface. The intensity of the signal mode at the output of the nematic layer is calculated as a function of the amplitude and period of the anchoring-energy modulation, the nematic layer sizes, and the electric-field strength. The cases of modes with the same and opposite directions are considered. Analytical expressions for the maximum intensities of the signal mode are derived. In both cases the maximum intensity of the signal mode increases with an increase in the electric-field strength.

  14. Grating formation by a high power radio wave in near-equator ionosphere

    SciTech Connect (OSTI)

    Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.

    2011-11-15

    The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Such a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.

  15. Narrow band wavelength selective filter using grating assisted single ring resonator

    SciTech Connect (OSTI)

    Prabhathan, P. Murukeshan, V. M.

    2014-09-15

    This paper illustrates a filter configuration which uses a single ring resonator of larger radius connected to a grating resonator at its drop port to achieve single wavelength selectivity and switching property with spectral features suitable for on-chip wavelength selection applications. The proposed configuration is expected to find applications in silicon photonics devices such as, on-chip external cavity lasers and multi analytic label-free biosensors. The grating resonator has been designed for a high Q-factor, high transmittivity, and minimum loss so that the wavelength selectivity of the device is improved. The proof-of-concept device has been demonstrated on a Silicon-on-Insulator (SOI) platform through electron beam lithography and Reactive Ion Etching (RIE) process. The transmission spectrum shows narrow band single wavelength selection and switching property with a high Free Spectral Range (FSR) ?60 nm and side band rejection ratio >15 dB.

  16. Master dye laser oscillator including a specific grating assembly for use therein

    DOE Patents [OSTI]

    Davin, J.M.

    1992-09-01

    A dye laser oscillator for producing a tuned dye beam is disclosed herein and includes, among other components, a beam output coupling assembly, a dye cell assembly, a beam expander assembly, an etalon assembly, and a grating assembly. Each of three assemblies is vertically supported from a horizontal base so as to be readily removable from the base without interference from or interfering with the other assemblies. The particular grating assembly disclosed is specifically designed for proper optical alignment with the intended path of the dye beam to be produced and for accurate pivotal movement relative to the beam path in order to function as a coarse tuning mechanism in the production of the ultimately tuned beam. 5 figs.

  17. An experimental study of low-frequency amplitude noise in a fibre Bragg grating laser diode

    SciTech Connect (OSTI)

    Zholnerov, V S; Ivanov, A V; Kurnosov, V D; Kurnosov, K V; Romantsevich, V I; Chernov, R V

    2013-09-30

    We have studied the amplitude noise in a fibre Bragg grating laser diode. It has been shown that discontinuities in noise characteristics correlate with those in the power current and spectral characteristics of the laser diode, whereas the noise characteristics of the pump source have no such discontinuities. The highest noise level has been observed at pump currents corresponding to concurrent generation of two longitudinal modes. (lasers)

  18. Sensitivity enhancement of grating interferometer based two-dimensional sensor arrays using two-wavelength readout

    SciTech Connect (OSTI)

    Ferhanoglu, Onur; Urey, Hakan

    2011-07-01

    Diffraction gratings integrated with microelectromechanical systems (MEMS) sensors offer displacement measurements with subnanometer sensitivity. However, the sensitivity of the interferometric readout may drop significantly based on the gap between the grating and the reference surface. A two-wavelength (2-{lambda}) readout method was previously tested using a single MEMS sensor for illustrating increased displacement measurement capability. This work demonstrates sensitivity enhancement on a sensor array with large scale parallelization ({approx}20,000 sensors). The statistical representation, which is developed to model sensitivity enhancement within a grating based sensor array, is supported by experimental results using a thermal sensor array. In the experiments, two lasers at different wavelengths (633 and 650 nm) illuminate the thermal sensor array from the backside, time-sequentially. The diffracted first order light from the array is imaged onto a single CCD camera. The target scene is reconstructed by observing the change in the first diffracted order diffraction intensity for both wavelengths. Merging of the data from two measurements with two lasers was performed by taking the larger of the two CCD measurements with respect to the reference image for each sensor. {approx}30% increase in the average sensitivity was demonstrated for a 160x120 pixel IR sensor array. Proposed architecture is also applicable to a variety of sensing applications, such as parallel biosensing and atomic force microscopy, for improved displacement measurements and enhanced sensitivity.

  19. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    DOE Patents [OSTI]

    Greenwood, Margaret S.

    2005-04-12

    A system for determining a property of a fluid based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum including a diffraction order equal to zero exhibits a peak whose location is used to determine speed of sound in the fluid. A separate measurement of the acoustic impedance is combined with the determined speed of sound to yield a measure of fluid density. A system for determining acoustic impedance includes an ultrasonic transducer on a first surface of a solid member, and an opposed second surface of the member is in contact with a fluid to be monitored. A longitudinal ultrasonic pulse is delivered through the solid member, and a multiplicity of pulse echoes caused by reflections of the ultrasonic pulse between the solid-fluid interface and the transducer-solid interface are detected. The decay rate of the detected echo amplitude as a function of echo number is used to determine acoustic impedance.

  20. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOE Patents [OSTI]

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  1. Enhancement of near-infrared absorption in graphene with metal gratings

    SciTech Connect (OSTI)

    Zhao, B.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Zhao, J. M. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); School of Energy Science and Engineering, Harbin Institute of Technology, Harbin (China)

    2014-07-21

    Graphene has been demonstrated as a good candidate for ultrafast optoelectronic devices. However, graphene is essentially transparent in the visible and near infrared with an absorptivity of 2.3%, which has largely limited its application in photon detection. This Letter demonstrates that the absorptance in a monatomic graphene layer can be greatly enhanced to nearly 70%, thanks to the localized strong electric field resulting from magnetic resonances in deep metal gratings. Furthermore, the resonance frequency is essentially not affected by the additional graphene layer. The method presented here may benefit the design of next-generation graphene-based optical and optoelectronic devices.

  2. Magneto-exciton-polariton condensation in a sub-wavelength high contrast grating based vertical microcavity

    SciTech Connect (OSTI)

    Fischer, J.; Brodbeck, S.; Worschech, L.; Kamp, M.; Schneider, C.; Hfling, S.; Zhang, B.; Wang, Z.; Deng, H.

    2014-03-03

    We comparably investigate the diamagnetic shift of an uncoupled quantum well exciton with a microcavity exciton-polariton condensate on the same device. The sample is composed of multiple GaAs quantum wells in an AlAs microcavity, surrounded by a Bragg reflector and a sub-wavelength high contrast grating reflector. Our study introduces an independent and easily applicable technique, namely, the measurement of the condensate diamagnetic shift, which directly probes matter contributions in polariton condensates and hence discriminates it from a conventional photon laser.

  3. Long period grating refractive-index sensor: optimal design for single wavelength interrogation

    SciTech Connect (OSTI)

    Kapoor, Amita; Sharma, Enakshi K.

    2009-11-01

    We report the design criteria for the use of long period gratings (LPGs) as refractive-index sensors with output power at a single interrogating wavelength as the measurement parameter. The design gives maximum sensitivity in a given refractive-index range when the interrogating wavelength is fixed. Use of the design criteria is illustrated by the design of refractive-index sensors for specific application to refractive-index variation of a sugar solution with a concentration and detection of mole fraction of xylene in heptane (paraffin).

  4. Devices useful for vacuum ultraviolet beam characterization including a movable stage with a transmission grating and image detector

    DOE Patents [OSTI]

    Gessner, Oliver; Kornilov, Oleg A; Wilcox, Russell B

    2013-10-29

    The invention provides for a device comprising an apparatus comprising (a) a transmission grating capable of diffracting a photon beam into a diffracted photon output, and (b) an image detector capable of detecting the diffracted photon output. The device is useful for measuring the spatial profile and diffraction pattern of a photon beam, such as a vacuum ultraviolet (VUV) beam.

  5. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    SciTech Connect (OSTI)

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-15

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 ?m pixel pitch, a sample stage that rotates within a limited angular span of 30, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3 increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS were found to be different due to the difference in the tomosynthesis image reconstruction algorithms. Conclusions: It is feasible to simultaneously generate x-ray differential phase contrast, phase contrast, and absorption contrast tomosynthesis images using a grating-based data acquisition setup. The method shows promise in improving the visibility of several low-density materials and therefore merits further investigation.

  6. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-05-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

  7. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    SciTech Connect (OSTI)

    Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.; Marshall, B. R.; Grover, M.; Stevens, G. D.; Udd, E.

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  8. Replication of a Holographic Ion-etched Spherical Blazed Grating for use at Extreme-Ultraviolet Wavelengths: Efficiency

    SciTech Connect (OSTI)

    Kowalski,M.; Barbee, T.; Hunter, W.

    2006-01-01

    Using synchrotron radiation, we have measured the efficiency at an angle of incidence of 10 deg of a holographic ion-etched spherical blazed grating and three of its fourth-generation replicas. The measured efficiency profile of replicas 1 and 3 prior to multilayer coating oscillated from thin-film interference produced by the replicas' Al/Al2O3?/SiO2 structure. A Mo2C/Si multilayer coating was applied to the master grating and replicas 1 and 2. After coating, the maximum grating efficiency occurred in the -2nd order and the maximum values were 12.4% at 143.8 Angstroms for the master and 11.6% at 145.2 Angstroms for replicas 1 and 2. On the basis of measurements obtained after coating, the derived groove efficiency was 22.2% for the master, 19.4% for replica 1, and 19.3% for replica 2. The groove efficiency of the uncoated replica 3 was 24.3% at 142.5 Angstroms. We find that the replicas are reasonably faithful copies of the ion-etched master, and models based on measured atomic force microscope groove profiles are in general agreement with measured results. However, subtle issues remain regarding the widths of the peak order profile and the location of its maximum wavelength.

  9. Two-axis sagittal focusing monochromator

    DOE Patents [OSTI]

    Haas, Edwin G; Stelmach, Christopher; Zhong, Zhong

    2014-05-13

    An x-ray focusing device and method for adjustably focusing x-rays in two orthogonal directions simultaneously. The device and method can be operated remotely using two pairs of orthogonal benders mounted on a rigid, open frame such that x-rays may pass through the opening in the frame. The added x-ray flux allows significantly higher brightness from the same x-ray source.

  10. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

  11. Multiple wavelength X-ray monochromators

    DOE Patents [OSTI]

    Steinmeyer, Peter A. (Arvada, CO)

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

  12. Nanoimprinted Diffraction Gratings for Light Trapping in Crystal-Silicon Film Photovoltaics

    SciTech Connect (OSTI)

    Dirk Weiss

    2010-11-29

    Crystal-silicon (c-Si) film photovoltaics hold the promise of combining the advantages of state-of-the-art wafer-silicon technology with the scalability and the inherently much lower cost of thin-film solar technologies. In the thickness range of 2-20 ?¼m very effective light trapping is essential to absorb sufficient red and near-infrared (NIR) light and reach targeted efficiencies of 16%â??18%, as defined by the U.S. National Solar Technology Roadmap. One proposed method is diffractive light trapping, which, at least in certain wavelength ranges, can theoretically outperform light trapping through random scattering at a rough surface or interface. The goals of this project were (1) to develop a nanoimprinting process for a high-refractive-index dielectric material, (2) to fabricate diffraction gratings as back-reflectors using this material, and (3) to demonstrate for a 2 ?¼m c-Si film an improvement in AM1.5 photon absorption of at least 80% relative to single-pass absorption. We achieved goals (1) and (2). We developed a soft-imprint method for sol-based titanium dioxide precursor films (index range 2.3-2.4) and integrated imprinted films in thin-film silicon devices. We did not fully reach goal (3): depending on the model used for interpretation of the optical experimental data, AM1.5 photon absorption was improved by only 53% (coherent electromagnetic model) to 66% (non-coherent ray-tracing model). When compared to a metallized flat reference film (double-pass absorption), the improvement due to the grating is only 6%, if the (more conservative) electromagnetic model is used. Other important achievements from this project were: -We perfected an imprinting method for another ceramic material, aluminum oxide phosphate, which is index-matched with glass. -We tested diffractive light trapping at different incidence angles and found positive evidence for light trapping for angles up to 50?°, although the light-trapping efficiency decreased with increasing incidence angle. -The extent of the trapped wavelength range scales with the refractive index of the dielectric material. The full benefit of a high refractive index, however, is only achieved if the dielectric layer underneath the grating layer (the â??residual layerâ??) is sufficiently thick (several 100 nm). For a very thin residual layer, the light wave is predominantly localized in the underlying material during diffraction, and this materialâ??s refractive index then determines the trapping range. The (welcomed) consequence is that if this material is the silicon absorber layer, e.g. in a thin-film superstrate configuration, a very large trapping range can be achieved even if a low-index dielectric is used. We tested this directly through light-trapping experiments in glass plates using two different imprinted dielectric materials, titanium dioxide (index range 2.3-2.4) and aluminum oxide phosphate (index 1.5), with thick and thin residual layers. -We tested both copper and aluminum as low-cost reflector alternatives to silver on the grating back sides. In the relevant wavelength range above 650 nm, copper not only has the same high reflectance as silver, but the diffraction efficiency is also on par with silver. -A total of five scientific publications resulting from this work have either been published or are in preparation for submission (see Detailed Technical Report, below). Two conference presentations were given. In conclusion, we successfully developed nanoimprinting techniques for two ceramic precursor materials and tested diffractive light trapping in c-Si and nc-Si:H thin-film devices. The measured amount of light trapping did not fully reach our target value. The lessons learned from this project, however, both concerning experimental techniques and theoretical/modeling methods, have been extensive. Light trapping remains a central issue in thin c-Si technology, and we recommend to the US Department of Energy to increase research in this important area.

  13. Detector Having A Transmission Grating Beam Splitter For Multi-Wavelength Sample Analysis.

    DOE Patents [OSTI]

    Liu, Changsheng (State College, PA); Li, Qingbo (State College, PA)

    2000-09-12

    A detector for DNA sample identification is provided with a transmission grating beam splitter (TGBS). The TGBS split fluoresced light from a tagged DNA sample into 0th order and a 1st order components, both of which are detected on a two-dimensional detector array of a CCD camera. The 0th and 1st order components are detected along a column of pixels in the detector array, and are spaced apart from one another. The DNA samples are tagged with four fluorescent dyes, one dye specific for each nucleotide, and all four dyes responding in slightly different manner to the same monochromatic excitation signal. The TGBS splits fluoresced incoming light into 0th and 1st order components, which are then spread out among a number of pixels in the detector array. The 1st component of this light is received by pixels whose position relative to the 0th order component depends on the frequency of fluorescence. Thus, the position at which signal energy is detected on the array is indicative of the particular dye, and therefore, the corresponding nucleotide tagged by that dye. Monitoring signal energy at the 0th order pixel and selected 1st order pixels, provides a set of data from which one may then identify the particular nucleotide.

  14. Detector Having A Transmission Grating Beam Splitter For Multi-Wavelength.

    DOE Patents [OSTI]

    Liu, Changsheng (State College, PA); Li, Qingbo (State College, PA

    1999-12-07

    A detector for DNA sample identification is provided with a transmission grating beam splitter (TGBS). The TGBS split fluoresced light from a tagged DNA sample into 0th order and a 1st order components, both of which are detected on a two-dimensional detector array of a CCD camera. The 0th and 1st order components are detected along a column of pixels in the detector array, and are spaced apart from one another. The DNA samples are tagged with four fluorescent dyes, one dye specific for each nucleotide, and all four dyes responding in slightly different manner to the same monochromatic excitation signal. The TGBS splits fluoresced incoming light into 0th and 1st order components, which are then spread out among a number of pixels in the detector array. The 1st component of this light is received by pixels whose position relative to the 0th order component depends on the frequency of fluorescence. Thus, the position at which signal energy is detected on the array is indicative of the particular dye, and therefore, the corresponding nucleotide tagged by that dye. Monitoring signal energy at the 0th order pixel and selected 1st order pixels, provides a set of data from which one may then identify the particular nucleotide.

  15. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; et al

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domainmore » thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.« less

  16. Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures

    SciTech Connect (OSTI)

    Zeng, Lingping; Collins, Kimberlee C.; Hu, Yongjie; Luckyanova, Maria N.; Maznev, Alexei A.; Huberman, Samuel; Chiloyan, Vazrik; Zhou, Jiawei; Huang, Xiaopeng; Nelson, Keith A.; Chen, Gang

    2015-11-27

    Heat conduction in semiconductors and dielectrics depends upon their phonon mean free paths that describe the average travelling distance between two consecutive phonon scattering events. Nondiffusive phonon transport is being exploited to extract phonon mean free path distributions. Here, we describe an implementation of a nanoscale thermal conductivity spectroscopy technique that allows for the study of mean free path distributions in optically absorbing materials with relatively simple fabrication and a straightforward analysis scheme. We pattern 1D metallic grating of various line widths but fixed gap size on sample surfaces. The metal lines serve as both heaters and thermometers in time-domain thermoreflectance measurements and simultaneously act as wiregrid polarizers that protect the underlying substrate from direct optical excitation and heating. We demonstrate the viability of this technique by studying length-dependent thermal conductivities of silicon at various temperatures. The thermal conductivities measured with different metal line widths are analyzed using suppression functions calculated from the Boltzmann transport equation to extract the phonon mean free path distributions with no calibration required. Furthermore, this table-top ultrafast thermal transport spectroscopy technique enables the study of mean free path spectra in a wide range of technologically important materials.

  17. High energy x-ray phase contrast CT using glancing-angle grating interferometers

    SciTech Connect (OSTI)

    Sarapata, A.; Stayman, J. W.; Siewerdsen, J. H.; Finkenthal, M.; Stutman, D.; Pfeiffer, F.

    2014-02-15

    Purpose: The authors present initial progress toward a clinically compatible x-ray phase contrast CT system, using glancing-angle x-ray grating interferometry to provide high contrast soft tissue images at estimated by computer simulation dose levels comparable to conventional absorption based CT. Methods: DPC-CT scans of a joint phantom and of soft tissues were performed in order to answer several important questions from a clinical setup point of view. A comparison between high and low fringe visibility systems is presented. The standard phase stepping method was compared with sliding window interlaced scanning. Using estimated dose values obtained with a Monte-Carlo code the authors studied the dependence of the phase image contrast on exposure time and dose. Results: Using a glancing angle interferometer at high x-ray energy (∼45 keV mean value) in combination with a conventional x-ray tube the authors achieved fringe visibility values of nearly 50%, never reported before. High fringe visibility is shown to be an indispensable parameter for a potential clinical scanner. Sliding window interlaced scanning proved to have higher SNRs and CNRs in a region of interest and to also be a crucial part of a low dose CT system. DPC-CT images of a soft tissue phantom at exposures in the range typical for absorption based CT of musculoskeletal extremities were obtained. Assuming a human knee as the CT target, good soft tissue phase contrast could be obtained at an estimated absorbed dose level around 8 mGy, similar to conventional CT. Conclusions: DPC-CT with glancing-angle interferometers provides improved soft tissue contrast over absorption CT even at clinically compatible dose levels (estimated by a Monte-Carlo computer simulation). Further steps in image processing, data reconstruction, and spectral matching could make the technique fully clinically compatible. Nevertheless, due to its increased scan time and complexity the technique should be thought of not as replacing, but as complimentary to conventional CT, to be used in specific applications.

  18. In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber

    SciTech Connect (OSTI)

    Wu Zhifang; Liu Yange; Wang Zhi; Han Tingting; Li Shuo; Jiang Meng; Ping Shum, Perry

    2012-10-01

    We report a compact in-line Mach-Zehnder interferometer combining a microtaper with a long-period grating (LPG) in a section of all-solid photonic bandgap fiber. Theoretical and experimental investigations reveal that the interferometer works from the interference between the fundamental core mode and the LP{sub 01} cladding supermodes. The mechanism underlying the mode coupling caused by the microtaper can be attributed to a bandgap-shifting as the fiber diameter is abruptly scaled down. In addition, the interferometer designed to strengthen the coupling ratio of the long-period grating has a promising practical application in the simultaneous measurement of curvature and temperature.

  19. Beamline 10.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Angle- and Spin-Resolved Photoelectron Spectroscopy of Solids Scientific disciplines: Strongly correlated electron systems, magnetism Endstations: High energy resolution spectrometer (HERS) Spin- and angle-resolved photoelectron spectroscopy (Spin-ARPES) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator Spherical grating monochromator (380, 925, 2100 lines/mm gratings)

  20. Beamline 10.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Angle- and Spin-Resolved Photoelectron Spectroscopy of Solids Scientific disciplines: Strongly correlated electron systems, magnetism Endstations: High energy resolution spectrometer (HERS) Spin- and angle-resolved photoelectron spectroscopy (Spin-ARPES) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator Spherical grating monochromator (380, 925, 2100 lines/mm gratings)

  1. Beamline 10.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Angle- and Spin-Resolved Photoelectron Spectroscopy of Solids Scientific disciplines: Strongly correlated electron systems, magnetism Endstations: High energy resolution spectrometer (HERS) Spin- and angle-resolved photoelectron spectroscopy (Spin-ARPES) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator Spherical grating monochromator (380, 925, 2100 lines/mm gratings)

  2. Beamline 10.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Angle- and Spin-Resolved Photoelectron Spectroscopy of Solids Scientific disciplines: Strongly correlated electron systems, magnetism Endstations: High energy resolution spectrometer (HERS) Spin- and angle-resolved photoelectron spectroscopy (Spin-ARPES) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator Spherical grating monochromator (380, 925, 2100 lines/mm gratings)

  3. Beamline 10.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Angle- and Spin-Resolved Photoelectron Spectroscopy of Solids Scientific disciplines: Strongly correlated electron systems, magnetism Endstations: High energy resolution spectrometer (HERS) Spin- and angle-resolved photoelectron spectroscopy (Spin-ARPES) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator Spherical grating monochromator (380, 925, 2100 lines/mm gratings)

  4. Beamline 10.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Angle- and Spin-Resolved Photoelectron Spectroscopy of Solids Scientific disciplines: Strongly correlated electron systems, magnetism Endstations: High energy resolution spectrometer (HERS) Spin- and angle-resolved photoelectron spectroscopy (Spin-ARPES) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator Spherical grating monochromator (380, 925, 2100 lines/mm gratings)

  5. Beamline 10.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Angle- and Spin-Resolved Photoelectron Spectroscopy of Solids Scientific disciplines: Strongly correlated electron systems, magnetism Endstations: High energy resolution spectrometer (HERS) Spin- and angle-resolved photoelectron spectroscopy (Spin-ARPES) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (first and third harmonics) Energy range 17-350 eV Monochromator Spherical grating monochromator (380, 925, 2100 lines/mm gratings)

  6. Reproducible strain measurement in electronic devices by applying integer multiple to scanning grating in scanning moir fringe imaging

    SciTech Connect (OSTI)

    Kim, Suhyun Jung, Younheum; Kim, Joong Jung; Lee, Sunyoung; Lee, Haebum; Kondo, Yukihito

    2014-10-15

    Scanning moir fringe (SMF) imaging by high-angle annular dark field scanning transmission electron microscopy was used to measure the strain field in the channel of a transistor with a CoSi{sub 2} source and drain. Nanometer-scale SMFs were formed with a scanning grating size of d{sub s} at integer multiples of the Si crystal lattice spacing d{sub l} (d{sub s} ? nd{sub l}, n = 2, 3, 4, 5). The moir fringe formula was modified to establish a method for quantifying strain measurement. We showed that strain fields in a transistor measured by SMF images were reproducible with an accuracy of 0.02%.

  7. Translational-symmetry alternating phase shifting mask grating mark used in a linear measurement model of lithographic projection lens aberrations

    SciTech Connect (OSTI)

    Qiu Zicheng; Wang Xiangzhao; Bi Qunyu; Yuan Qiongyan; Peng Bo; Duan Lifeng

    2009-07-01

    A linear measurement model of lithographic projection lens aberrations is studied numerically based on the Hopkins theory of partially-coherent imaging and positive resist optical lithography (PROLITH) simulation. In this linearity model, the correlation between the mark's structure and its sensitivities to aberrations is analyzed. A method to design a mark with high sensitivity is proved and declared. By use of this method, a translational-symmetry alternating phase shifting mask (Alt-PSM) grating mark is redesigned with all of the even orders, {+-}3rd and {+-}5th order diffraction light missing. In the evaluation simulation, the measurement accuracies of aberrations prove to be enhanced apparently by use of the redesigned mark instead of the old ones.

  8. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2002-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  9. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2003-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  10. Fabrication and testing of diamond-machined gratings in ZnSe, GaP, and bismuth germanate for the near infrared and visible

    SciTech Connect (OSTI)

    Kuzmenko, P J; Little, S L; Ikeda, Y; Kobayashi, N

    2008-06-22

    High quality immersion gratings for infrared applications have been demonstrated in silicon and germanium. To extend this technology to shorter wavelengths other materials must be investigated. We selected three materials, zinc selenide, gallium phosphide and bismuth germanate (Bi{sub 4}Ge{sub 3}O{sub 12}), based on high refractive index, good visible transmission and commercial availability in useful sizes. Crystal samples were diamond turned on an ultra-precision lathe to identify preferred cutting directions. Using this information we diamond-flycut test gratings over a range of feed rates to determine the optimal cutting conditions. For both ZnSe and GaP good surface quality was achieved at feed rates up to 1.0 cm/minute using a special compound angle diamond tool with negative rake angles on both cutting surfaces. The surface roughness of the groove facets was about 4 nm. A Zygo interferometer measured grating wavefront errors in reflection. For the ZnSe the RMS error was < {lambda}/20 at 633nm. More extensive testing was performed with a HeNe laser source and a cooled CCD camera. These measurements demonstrated high relative diffraction efficiency (> 80%), low random groove error (2.0 nm rms), and Rowland ghost intensities at < 0.1%. Preliminary tests on bismuth germanate show high tool wear.

  11. Experimental comparison of grating- and propagation-based hard X-ray phase tomography of soft tissue

    SciTech Connect (OSTI)

    Lang, S.; Schulz, G.; Müller, B.; Zanette, I.; Dominietto, M.; Langer, M.; Rack, A.; Le Duc, G.; David, C.; Mohr, J.; Pfeiffer, F.; Weitkamp, T.

    2014-10-21

    When imaging soft tissues with hard X-rays, phase contrast is often preferred over conventional attenuation contrast due its superior sensitivity. However, it is unclear which of the numerous phase tomography methods yields the optimized results at given experimental conditions. Therefore, we quantitatively compared the three phase tomography methods implemented at the beamline ID19 of the European Synchrotron Radiation Facility: X-ray grating interferometry (XGI), and propagation-based phase tomography, i.e., single-distance phase retrieval (SDPR) and holotomography (HT), using cancerous tissue from a mouse model and an entire heart of a rat. We show that for both specimens, the spatial resolution derived from the characteristic morphological features is about a factor of two better for HT and SDPR compared to XGI, whereas the XGI data generally exhibit much better contrast-to-noise ratios for the anatomical features. Moreover, XGI excels in fidelity of the density measurements, and is also more robust against low-frequency artifacts than HT, but it might suffer from phase-wrapping artifacts. Thus, we can regard the three phase tomography methods discussed as complementary. The application will decide which spatial and density resolutions are desired, for the imaging task and dose requirements, and, in addition, the applicant must choose between the complexity of the experimental setup and the one of data processing.

  12. Coherent pulse interrogation system for fiber Bragg grating sensing of strain and pressure in dynamic extremes of materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; Mielke, Chuck H.; Azad, Abul; Marshall, Bruce; La Lone, Brandon M.; Henson, Bryan; Smilowitz, Laura

    2015-05-21

    A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersivemoreline. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO?. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ?L/Lless

  13. Beamline 7.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2)

  14. Beamline 7.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2)

  15. Beamline 7.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2)

  16. Beamline 7.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2)

  17. Beamline 7.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2)

  18. Beamline 7.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2)

  19. Beamline 7.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2)

  20. Beamline 7.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.1 Print Photoemission electron microscope PEEM2 Scientific disciplines: Magnetism, materials, surface science, polymers Note: This beamline is NOT open to general users. GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 180-1500 eV Monochromator SGM Calculated flux (1.9 GeV, 400 mA) 3 x 1012 photons/s/0.1%BW at 800 eV (linearly polarized) Resolving power (E/ΔE) 1,000 Endstations Photoemission electron microscope (PEEM2)

  1. Beamline 5.3.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.3.2.1 Print Scanning Transmission X-Ray Microscopy (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 600-2000eV eV Monochromator Low-dispersion, spherical-grating monochromator, two gratings Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25-100 nm

  2. Beamline 5.3.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.3.2.1 Print Scanning Transmission X-Ray Microscopy (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 600-2000eV eV Monochromator Low-dispersion, spherical-grating monochromator, two gratings Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25-100 nm

  3. Beamline 5.3.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 5.3.2.1 Print Scanning Transmission X-Ray Microscopy (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 600-2000eV eV Monochromator Low-dispersion, spherical-grating monochromator, two gratings Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25-100

  4. Beamline 5.3.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.3.2.1 Print Scanning Transmission X-Ray Microscopy (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 600-2000eV eV Monochromator Low-dispersion, spherical-grating monochromator, two gratings Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25-100 nm

  5. Beamline 5.3.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.3.2.1 Print Scanning Transmission X-Ray Microscopy (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 600-2000eV eV Monochromator Low-dispersion, spherical-grating monochromator, two gratings Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25-100 nm

  6. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25 nm

  7. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25 nm

  8. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.3.2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25

  9. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.3.2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25

  10. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 5.3.2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample

  11. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25 nm

  12. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25 nm

  13. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 5.3.2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample

  14. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 5.3.2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample

  15. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 5.3.2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample

  16. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.2.2 Beamline 5.3.2.2 Print Tuesday, 20 October 2009 08:37 Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized

  17. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 5.3.2.2 Beamline 5.3.2.2 Print Tuesday, 20 October 2009 08:37 Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active

  18. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25 nm

  19. Beamline 5.3.2.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5.3.2.1 Print Scanning Transmission X-Ray Microscopy (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 600-2000eV eV Monochromator Low-dispersion, spherical-grating monochromator, two gratings Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25-100 nm

  20. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25 nm

  1. Beamline 5.3.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.2 Print Polymer Scanning Transmission X-Ray Microscopy (STXM) @ 5.3.2.2 GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 250-780 eV Monochromator Low-dispersion, spherical-grating monochromator, one grating Calculated flux (1.9 GeV, 500 mA) 1 x 107 photons/s at sample Resolving power (E/ΔE) ≤ 5,000 Endstations Scanning transmission x-ray microscope (STXM) Characteristics Active servo-stabilized toroidal premirror Spot size at sample (FWHM) 25 nm

  2. Gratings Inc | Open Energy Information

    Open Energy Info (EERE)

    microstructural and nanostructural approaches to different challenges facing the microelectronics and power industries. Coordinates: 35.08418, -106.648639 Show Map Loading...

  3. Performance measurements at the SLS SIM beamline

    SciTech Connect (OSTI)

    Flechsig, U.; Nolting, F.; Fraile Rodriguez, A.; Krempasky, J.; Quitmann, C.; Schmidt, T.; Spielmann, S.; Zimoch, D.

    2010-06-23

    The Surface/Interface: Microscopy beamline of the Swiss Light Source started operation in 2001. In 2007 the beamline has been significantly upgraded with a second refocusing section and a blazed grating optimized for high photon flux. Two Apple II type undulators with a plane grating monochromator using the collimated light scheme deliver photons with an energy from 90eV to about 2keV with variable polarization for the photoemission electron microscope (PEEM) as the primary user station. We measured a focus of (45x60) {mu}m({nu}xh) and a photon flux > 10{sup 12} photon/s for all gratings. Polarization switching within a few seconds is realized with the small bandpass of the monochromator and a slight detuning of the undulator.

  4. Experimental demonstration of a soft x-ray self-seeded free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ratner, D.; Abela, R.; Amann, J.; Behrens, C.; Bohler, D.; Bouchard, G.; Bostedt, C.; Boyes, M.; Chow, K.; Cocco, D.; et al

    2015-02-06

    The Linac Coherent Light Source has added self-seeding capability to the soft x-ray range using a grating monochromator system. We report demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10-4, and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50 fold higher brightness to users.

  5. Time and spectrum-resolving multiphoton correlator for 300900 nm

    SciTech Connect (OSTI)

    Johnsen, Kelsey D.; Thibault, Marilyne; Jennewein, Thomas; Kolenderski, Piotr; Scarcella, Carmelo; Tosi, Alberto

    2014-10-14

    We demonstrate a single-photon sensitive spectrometer in the visible range, which allows us to perform time-resolved and multi-photon spectral correlation measurements at room temperature. It is based on a monochromator composed of two gratings, collimation optics, and an array of single photon avalanche diodes. The time resolution can reach 110 ps and the spectral resolution is 2 nm/pixel, limited by the design of the monochromator. This technique can easily be combined with commercial monochromators and can be useful for joint spectrum measurements of two photons emitted in the process of parametric down conversion, as well as time-resolved spectrum measurements in optical coherence tomography or medical physics applications.

  6. Fiber Grating Moisture And Chemical Sensing System

    DOE Patents [OSTI]

    Schipani, Claudia (Turin, IT); Spano, Ennio (Turin, IT); Dalle Crode, Domenico (Turin, IT)

    2004-01-27

    A vane for a stator of a variable-geometry turbine, in particular for aeronautical engines, has an airfoil profile and a pair of hinge portions, which are carried by the airfoil profile and enable the airfoil profile to be coupled to a support structure of the stator so as to be rotatable about an axis of adjustment; the vane also has internal channels that allow a flow of air to pass through in order to cool the hinge portions.

  7. Material identification employing a grating spectrometer

    DOE Patents [OSTI]

    Gornushkin, Ignor B.; Winefordner, James D.; Smith, Benjamin W.

    2007-01-09

    Multi-ordered spectral data is obtained from various known substances and is stored in a spectral library. The identification of an unknown material is accomplished by correlating the sample's multi-ordered spectrum against all or a portion of the spectrum in the library, and finding the closest match.

  8. The Nanoscience Beamline at Diamond, Optical Design Considerations

    SciTech Connect (OSTI)

    Reininger, Ruben; Dhesi, Sarnjeet

    2007-01-19

    The main requirement of the Nanoscience Beamline at Diamond is to deliver the highest possible flux at the sample position of a PEEM with a resolving power of about 5000 in the energy range 80-2000 eV. The source of the beamline is a couple of APPLE II helical undulators in tandem that can also be used separately to allow for faster switching of the circular polarization. Based on its versatility, a collimated plane grating monochromator using sagittally focusing elements was chosen to cover the required energy range with three gratings. The operation of this monochromator requires a collimated beam incident on the grating along the dispersion direction. This can be achieved either with a toroid, focusing with its major radius along the non-dispersive direction at the exit slit, or with a sagittal cylinder. The former option uses a sagittal cylinder after the grating to focus the collimated beam at the exit slit. In the latter case, a toroid after the grating is used to focus in both directions at the exit slit. The advantage of the toroid downstream the grating is the higher horizontal demagnification. This configuration fulfills the Nanoscience Beamline's required resolving power but cannot be used to achieve very high resolution due to the astigmatic coma aberration of the toroidal mirror. The focusing at the sample position is performed with a KB pair of plane elliptical mirrors. Assuming achievable values for the errors on all the optical surfaces, the expected spots FWHW in the horizontal and vertical directions are 10 {mu}m and 3 {mu}m, respectively. The calculated photon flux at this spot at 5000 resolving power is >1012 photons/sec between 80 and 1600 eV for linearly polarized light and between 106 and 1200 eV for circularly polarized light. The beamline is expected to be operational in January 2007.

  9. News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monochromator Installed The new multilayer monochromator has been installed by Oxford Danfysik. In the coming months the monochromator will undergo commissioning by the...

  10. Study on higher harmonic suppression using edge filter and polished Si wafer

    SciTech Connect (OSTI)

    Gupta, R. K. Singh, Amol Modi, Mohammed H. Lodha, G. S.

    2014-04-24

    Higher harmonics contamination is a severe problem in synchrotron beamlines where grating monochromators are used. In these beamlines, absorption edge filters and critical angle mirrors are used to suppress the harmonic contaminations. In the present study, carried out using Indus-1 reflectivity beamline, a harmonic suppression characteristic of Al edge filter and polished silicon wafer are determined. It is found that the Al filter suppresses higher harmonics in 2–7% range whereas the polished silicon wafer can suppress the higher harmonics below 1%. The results of comparative study are discussed.

  11. Beamline 12.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Beamline 12.0.2 Print Tuesday, 20 October 2009 09:30 Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving

  12. Beamline 12.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm

  13. Beamline 12.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm

  14. Beamline 12.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm

  15. Beamline 12.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm

  16. Beamline 12.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm

  17. Beamline 12.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm

  18. Beamline 12.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm

  19. Beamline 12.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm

  20. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond mode. 10,000 times smaller in femtosecond mode.

  1. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond mode. 10,000 times smaller in femtosecond mode.

  2. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6.0.2 Print Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond mode. 10,000 times smaller in femtosecond

  3. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond mode. 10,000 times smaller in femtosecond mode.

  4. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Print Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond mode. 10,000 times smaller in femtosecond mode.

  5. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond mode. 10,000 times smaller in femtosecond mode.

  6. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 6.0.2 Print Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond mode. 10,000 times smaller in

  7. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beamline 6.0.2 Print Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond mode. 10,000 times smaller in

  8. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Beamline 6.0.2 Print Tuesday, 20 October 2009 08:40 Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond

  9. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond mode. 10,000 times smaller in femtosecond mode.

  10. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond mode. 10,000 times smaller in femtosecond mode.

  11. Novel intermediate energy X-ray beamline opening for researchers | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory A schematic drawing of the Intermediate Energy X-ray beamline optics, showing the source, an EM-VPU; M0 and M1, planar horizontal deflecting mirrors; M2, an internally cooled plane mirror that deflects the beam vertically onto one of the three gratings in the monochromator; M3R, a movable cylindrical mirror that horizontally focuses the source onto the RSXS sample position; M4R, a cylindrical mirror that vertically focuses the exit slit onto the RSXS sample position; and

  12. High-performance soft x-ray spectromicroscopy beamline at SSRF

    SciTech Connect (OSTI)

    Xue Chaofan; Wang Yong; Guo Zhi; Wu Yanqing; Zhen Xiangjun; Chen Min; Chen Jiahua; Xue Song; Tai Renzhong; Peng Zhongqi; Lu Qipeng

    2010-10-15

    The Shanghai Synchrotron Radiation Facility (SSRF) is the first third-generation synchrotron facility in China and operated at an electron energy of 3.5 GeV. One of the seven beamlines in the first construction phase is devoted to soft x-ray spectromicroscopy and is equipped with an elliptically polarized undulator light source, a plane grating monochromator, and a scanning transmission x-ray microscope end station. Initial results reveal the high performance of this beamline, with an energy resolving power estimated to be over 10 000 at the argon L-edge and a spatial resolution better than 30 nm.

  13. Experimental demonstration of a soft x-ray self-seeded free-electron laser

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Experimental demonstration of a soft x-ray self-seeded free-electron laser Citation Details In-Document Search Title: Experimental demonstration of a soft x-ray self-seeded free-electron laser The Linac Coherent Light Source has added self-seeding capability to the soft x-ray range using a grating monochromator system. We report demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10-4, and an

  14. Beamline 12.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Coherent science Scientific disciplines: Applied science, magnetism, materials science Endstations: 12.0.2.1: Coherent optics 12.0.2.2: Coherent x-ray scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Third harmonic of 8-cm-period undulator (U8) Energy range 300-1500 eV Monochromator VLS-PGM, with two gratings (600 and 1200 lines/mm) Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 500 eV Resolving power (E/DE) 1,000 Beam size Focused: 70 x 10 µm

  15. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond mode. 10,000 times smaller in femtosecond mode.

  16. Beamline 6.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Ultrafast/Femtosecond Dynamics Soft X Ray Scientific disciplines: Chemical dynamics, materials science, surfaces, interfaces GENERAL BEAMLINE INFORMATION Operational Yes, but not open to General Users Source characteristics 3.5-cm period undulator (U3) Energy range 250 eV- 1.5 keV Monochromator White light and VLS-PGM, with two gratings (250 and 1000 lines/mm) Calculated fs flux (1.9 GeV, 400 mA) 10,000-100,000 photons/pulse in picosecond mode. 10,000 times smaller in femtosecond mode.

  17. Performance of the BL4 Beamline for Surface and Interface Research at the Siam Photon Laboratory

    SciTech Connect (OSTI)

    Nakajima, Hideki; Buddhakala, Moragote; Chumpolkulwong, Somchai; Supruangnet, Ratchadapora; Kakizaki, Akito; Songsiriritthigul, Prayoon

    2007-01-19

    The evaluations of the monochromator of the BL4 beamline at the Siam Photon Laboratory were carried out by gas-phase photoionization measurements. The beamline employs a varied-line-spacing plane grating monochromator, which delivers photons with energies between 20-240 eV. The resolving power of the monochromator depends strongly with the alignment of the exit slit. The designed resolving power of 5000 has been achieved. The experimental station of the beamline has been upgraded for surface and interface research. The new experimental station removes the disadvantage and expands the capabilities of the old one in such a way that photoemission experiments using synchrotron light can be performed in parallel with other in situ surface analysis techniques, as well as with preparation of other samples. The new system includes the old photoemission system and a multi-UHV-chamber system. The standard surface-sensitive techniques available in addition to photoemission spectroscopy using synchrotron light are UPS, XPS, AES and LEED. The new experimental station also includes a metal MBE system for preparing samples for the studies of ultra-thin magnetic films and metal-semiconductor interfaces.

  18. SAMRAI: A novel variably polarized angle-resolved photoemission beamline in the VUV region at UVSOR-II

    SciTech Connect (OSTI)

    Kimura, Shin-Ichi; Ito, Takahiro; Hosaka, Masahito; Katoh, Masahiro; Sakai, Masahiro; Nakamura, Eiken; Kondo, Naonori; Horigome, Toshio; Hayashi, Kenji; Goto, Tomohiro; Ejima, Takeo; Soda, Kazuo

    2010-05-15

    A novel variably polarized angle-resolved photoemission spectroscopy beamline in the vacuum-ultraviolet (VUV) region has been installed at the UVSOR-II 750 MeV synchrotron light source. The beamline is equipped with a 3 m long APPLE-II type undulator with horizontally/vertically linear and right/left circular polarizations, a 10 m Wadsworth type monochromator covering a photon energy range of 6-43 eV, and a 200 mm radius hemispherical photoelectron analyzer with an electron lens of a {+-}18 deg. acceptance angle. Due to the low emittance of the UVSOR-II storage ring, the light source is regarded as an entrance slit, and the undulator light is directly led to a grating by two plane mirrors in the monochromator while maintaining a balance between high-energy resolution and high photon flux. The energy resolving power (h{nu}/{Delta}h{nu}) and photon flux of the monochromator are typically 1x10{sup 4} and 10{sup 12} photons/s, respectively, with a 100 {mu}m exit slit. The beamline is used for angle-resolved photoemission spectroscopy with an energy resolution of a few meV covering the UV-to-VUV energy range.

  19. Town Known for First Thanksgiving Grateful for Energy Savings

    Broader source: Energy.gov [DOE]

    Plymouth, Massachusetts, has made a number of energy efficiency improvements to reduce energy waste in the coming years, while also exploring opportunities to expand use of renewable energy sources.

  20. Fabrications of PVDF gratings :final report for LDRD project 79884.

    SciTech Connect (OSTI)

    Rogers, J. A. (University of Illinois, Urbana-Champaign); Carr, Dustin Wade; Bogart, Gregory R.

    2005-12-01

    The purpose of this project was to do some preliminary studies and process development on electroactive polymers to be used for tunable optical elements and MEMS actuators. Working in collaboration between Sandia National Labs and The University of Illinois Urbana-Champaign, we have successfully developed a process for applying thin films of poly (vinylidene fluoride) (PVDF) onto glass substrates and patterning these using a novel stamping technique. We observed actuation in these structures in static and dynamic measurements. Further work is needed to characterize the impact that this approach could have on the field of tunable optical devices for sensing and communication.

  1. ALS Scientists Patent Technique To Dramatically Advance Grating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    patented by the ALS Experimental Systems Group show the unique structure of saw-tooth grooves with atomically smooth facets. "RIXS is one of the biggest things to happen in...

  2. Performances and first experimental results of BACH, the beamline for dichroism and scattering experiments at ELETTRA

    SciTech Connect (OSTI)

    Zangrando, M.; Zacchigna, M.; Bondino, F.; Finazzi, M.; Pardini, T.; Plate, M.; Rochow, R.; Cocco, D.; Parmigiani, F.

    2004-05-12

    BACH, the new soft x-ray beamline for polarization dependent experiments at the Italian synchrotron radiation facility ELETTRA, has been commissioned, characterized and opened to external users. Based on two APPLE II undulators, it covers an energy range between 35 eV and 1600 eV with the control of the light polarization. The monochromator works either in high resolution or high flux mode. Resolving powers of 16000 at 50 eV, 12000 at 90 eV, more than 12000 at 400 eV, 15000 at 534 eV and 6600 at 867 eV have been achieved with the three high resolution gratings. The resolving powers of the high flux grating, which covers the 290 - 1600 eV range, have been measured reaching 7000 at 400 eV and 2200 at 867 eV. The fluxes, in the high resolution mode, range between 4{center_dot}1011 photons/s at 125 eV and 2{center_dot}1010 photons/s at about 1100 eV. Using the high flux grating with the best resolution achievable 1.7{center_dot}1011 photons/s impinge on the sample at 900 eV. Two branches are installed after the monochromator allowing the set-up of two different experimental stations. One of them, besides several facilities for surface preparation and analysis, hosts a compact inelastic soft x-ray spectrometer (ComIXS) dedicated to x-ray emission experiments exploiting the small spot (10 {mu}m in the vertical direction) on the sample. The other branch hosts a liquid helium cryostat equipped with a superconducting coil to perform absorption and transmission experiments with temperatures down to 2 K and magnetic field up to {+-}7 T.

  3. New SRC APPLE ll Variable Polarization Beamline

    SciTech Connect (OSTI)

    M Severson; M Bissen; M Fisher; G Rogers; R Reininger; M Green; D Eisert; B Tredinnick

    2011-12-31

    SRC has recently commissioned a new Varied Line-Spacing Plane Grating Monochromator (VLS-PGM) utilizing as its source a 1 m long APPLE II insertion device in short-straight-section 9 of the Aladdin storage ring. The insertion device reliably delivers horizontal, vertical, and right and left circularly polarized light to the beamline. Measurements from an in situ polarimeter can be used for undulator corrections to compensate for depolarizing effects of the beamline. The beamline has only three optical elements and covers the energy range from 11.1 to 270 eV using two varied line-spacing gratings. A plane mirror rotates to illuminate the gratings at the correct angle to cancel the defocus term at all photon energies. An exit slit and elliptical-toroid refocusing mirror complete the beamline. Using a 50 {mu}m exit slit, the beamline provides moderate to high resolution, with measured flux in the mid 10{sup 12} (photons/s/200 mA) range, and a spot size of 400 {mu}m horizontal by 30 {mu}m vertical.

  4. Analysis of soft x-ray/VUV transmission characteristics of Si and Al filters

    SciTech Connect (OSTI)

    Joseph, Aby; Modi, Mohammed H.; Singh, Amol; Gupta, R. K.; Lodha, G. S.

    2013-02-05

    Ultrathin filters of Al (1500A) and Si (1200A) should exhibit more than 65% transmission above their Labsorption edges in the soft x-ray/vacuum ultra violet region(Si L-edge: 124 A and Al L-edge: 170 A). However, the measured transmission characteristics of these filters showed {approx}40% transmission. The transmission measurements of these filters were carried at the reflectivity beamline of Indus-1 synchrotron source out over a large wavelength range of 120-360A. In order to understand the measured transmission performance a detailed model fitting is performed using the Paratt formalism. It is found that the oxidation of the surface region of the filters is responsible for the reduced transmission performance. Effects of higher harmonics of the toroidal grating monochromator are also considered in the data analysis.

  5. New Soft X-ray Beamline (BL10) at the SAGA Light Source

    SciTech Connect (OSTI)

    Yoshimura, D.; Setoyama, H.; Okajima, T.

    2010-06-23

    A new soft X-ray beamline (BL10) at the SAGA Light Source (SAGA-LS) was constructed at the end of 2008. Commissioning of this new beamline started at the beginning of 2009. Synchrotron radiation from a variably polarizing undulator (APPLE-II) can be used in this beamline. The obtained light is monochromatized by a varied-line-spacing plane grating monochromator with the variable included angle mechanism. Its designed resolving power and photon flux are 3,000-10,000 and 10{sup 12}-10{sup 9} photons/s at 300 mA, respectively. The performance test results were generally satisfactory. An overview of the optical design of the beamline and the current status of commissioning are reported.

  6. SSRL BEAM PORT SCHEDULE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UP - - - - - - - - - - START UP START UP - - - - - - - - - - START UP START UP 8821 -Moore 8821 -Moore 8024 -Stohr 8024 -Stohr 10-1 SGM START UP START UP 8821 -Moore 8821 -Moore...

  7. TEMPO: a New Insertion Device Beamline at SOLEIL for Time Resolved Photoelectron Spectroscopy Experiments on Solids and Interfaces

    SciTech Connect (OSTI)

    Polack, F.; Silly, M.; Chauvet, C.; Lagarde, B.; Bergeard, N.; Izquierdo, M.; Chubar, O.; Krizmancic, D.; Ribbens, M.; Duval, J.-P.; Basset, C.; Kubsky, S.; Sirotti, F.

    2010-06-23

    A new insertion device beamline is now operational on straight section 8 at the SOLEIL synchrotron radiation source in France. The beamline and the experimental station were developed to optimize the study of the dynamics of electronic and magnetic properties of materials. Here we present the main technical characteristics of the installation and the general principles behind them. The source is composed of two APPLE II type insertion devices. The monochromator with plane gratings and spherical mirrors is working in the energy range 40-1500 eV. It is equipped with VLS, VGD gratings to allow the user optimization of flux or higher harmonics rejection. The observed resonance structures measured in gas phase enable us to determine the available energy resolution: a resolving power higher than 10000 is obtained at the Ar 2p, N 1s and Ne K-edges when using all the optical elements at full aperture. The total flux as a function of the measured photon energy and the characterization of the focal spot size complete the beamline characterization.

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tecnai Specifications Specifications Accel. Voltage: 200 (and 120) kV Spherical Aberration Cs: 0.5 mm Chromatic Aberration Cc: 1.1 mm HRTEM Scherzer resolution 0.19 nm Information limit (monochromator off) 0.12 nm STEM Spatial Resolution Monochromator off 0.14 nm Monochromator on 1.0 nm EELS Energy Resolution Monochromator off 500 meV Monochromator on 150 meV

  9. Gap solitons in rocking optical lattices and waveguides with undulating gratings

    SciTech Connect (OSTI)

    Mayteevarunyoo, Thawatchai; Malomed, Boris A.

    2009-07-15

    We report results of a systematic analysis of the stability of one-dimensional solitons in a model including the self-repulsive or attractive cubic nonlinearity and a linear potential represented by a periodically shaking lattice, which was recently implemented in experiments with Bose-Einstein condensates. In optics, the same model applies to undulated waveguiding arrays, which are also available to the experiment. In the case of the repulsive nonlinearity, stability regions are presented, in relevant parameter planes, for fundamental gap solitons and their two-peak and three-peak bound complexes, in the first and second finite band gaps. In the model with the attractive nonlinearity, stability regions are produced for fundamental solitons and their bound states populating the semi-infinite gap. In the first finite and semi-infinite gaps, unstable solitons gradually decay into radiation, while, in the second finite band gap, they are transformed into more complex states, which may represent new species of solitons. For a large amplitude of the rocking-lattice drive, the model is tantamount to that with a 'flashing' lattice potential, which is controlled by periodic sequences of instantaneous kicks. Using this correspondence, we explain generic features of the stability diagrams for the solitons. We also derive a limit case of the latter system, in the form of coupled-mode equations with a 'flashing' linear coupling.

  10. High-harmonic XUV source for time- and angle-resolved photoemission...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: DOE Country of Publication: United States Language: English Subject: 36; HARMONICS; MONOCHROMATORS; PHOTOEMISSION; PROBES; RESOLUTION; SPECTRA; SPECTROSCOPY Word ...

  11. Document

    National Nuclear Security Administration (NNSA)

    February 6, 2004 Part II The President Executive Order 13327-Federal Real Property Asset Management VerDate jul<14>2003 12:11 Feb 05, 2004 Jkt 203001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\06FEE0.SGM 06FEE0 VerDate jul<14>2003 12:11 Feb 05, 2004 Jkt 203001 PO 00000 Frm 00002 Fmt 4717 Sfmt 4717 E:\FR\FM\06FEE0.SGM 06FEE0 Presidential Documents 5897 Federal Register Vol. 69, No. 25 Friday, February 6, 2004 Title 3- The President Executive Order 13327 of February 4, 2004

  12. The Nanoscience Beamline (I06) at Diamond Light Source

    SciTech Connect (OSTI)

    Dhesi, S. S.; Cavill, S. A.; Potenza, A.; Marchetto, H.; Mott, R. A.; Steadman, P.; Peach, A.; Shepherd, E. L.; Ren, X.; Wagner, U. H.; Reininger, R.

    2010-06-23

    The Nanoscience beamline (I06) is one of seven Diamond Phase-I beamlines which has been operational since January 2007 delivering polarised soft x-rays, for a PhotoEmission Electron Microscope (PEEM) and branchline, in the energy range 80-2100 eV. The beamline is based on a collimated plane grating monochromator with sagittal focusing elements, utilising two APPLE II helical undulator sources, and has been designed for high flux density at the PEEM sample position. A {approx}5 {mu}m ({sigma}) diameter beam is focussed onto the sample in the PEEM allowing a range of experiments using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and x-ray magnetic linear dichroism (XMLD) as contrast mechanisms. The beamline is also equipped with a branchline housing a 6T superconducting magnet for XMCD and XMLD experiments. The magnet is designed to move on and off the branchline which allows a diverse range of experiments.

  13. Influence of transient absorber gratings on the pulse parameters of passively mode-locked cw dye ring lasers

    SciTech Connect (OSTI)

    Kuehlke, D.; Rudolph, W.; Wilhelmi, B.

    1983-02-15

    A theoretical explanation of the experimental results obtained by the method of colliding pulse mode locking (CPM) is given. It is shown that, compared to other passive methods, the coherent interaction of the counter-running pulses in the thin absorber yields considerably shorter pulses with a more favorable stability region. Deviations from an amplifier position being symmetric with respect to the amplification of the counter-running pulses lead to different energies of the pulses and to a strong decrease of the stability range of the CPM.

  14. Patent: Method for characterization of a spherically bent crystal for

    Office of Scientific and Technical Information (OSTI)

    K.alpha. X-ray imaging of laser plasmas using a focusing monochromator geometry | DOEpatents Method for characterization of a spherically bent crystal for K.alpha. X-ray imaging of laser plasmas using a focusing monochromator geometry Citation Details Title: Method for characterization of a spherically bent crystal for K.alpha. X-ray imaging of laser plasmas using a focusing monochromator geometry

  15. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables ...

  16. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic,...

  17. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Quinn R. We describe a new FEL line-narrowing technique called distributed seeding (DS), using Si(111) Bragg crystal monochromators to enhance the spectral brightness of the...

  18. Direct Detector for Terahertz Radiation - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating...

  19. Advanced polychromator systems for remote chemical sensing (LDRD...

    Office of Scientific and Technical Information (OSTI)

    was to develop a programmable diffraction grating fabricated in SUMMiT Vtrademark. Two types of grating elements (vertical and rotational) were designed and demonstrated. The...

  20. GSA Federal Advisory Committee Management; Final Rule -- 41CFR Parts 101-6 and 102-3

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1<MAY>2000 17:39 Jul 18, 2001 Jkt 194001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\19JYR2.SGM pfrm01 PsN: 19JYR2 Thursday, July 19, 2001 Part II General Services Administration 41 CFR Parts 101-6 and 102-3 Federal Advisory Committee Management; Final Rule VerDate 11<MAY>2000 17:39 Jul 18, 2001 Jkt 194001 PO 00000 Frm 00002 Fmt 4701 Sfmt 4700 E:\FR\FM\19JYR2.SGM pfrm01 PsN: 19JYR2 37728 Federal Register / Vol. 66, No. 139 / Thursday, July 19, 2001 / Rules and Regulations GENERAL

  1. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100300 spectral band

    SciTech Connect (OSTI)

    Widmann, K., E-mail: widmann1@llnl.gov; Beiersdorfer, P.; Magee, E. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boyle, D. P.; Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 and 135 , respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 m at the 200 setting and better than 40 m for the 135- range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Li{sup +} and 65 eV for the 135 Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  2. Yttrium Dopants in Titania: not Structurally Incorporated but...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The x-ray energy was calibrated with Y foil before the experiments. For harmonics rejection the monochromator was detuned by 50%. Because the doping concentration of yttrium is ...

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Specifications Specifications 300 kV Monochromator ON Monochromator OFF Information limit 0.05 nm (at 0.15 eV) 0.05 nm STEM resolution 0.078 nm 0.05 nm Energy resolution (EELS) 0.15 eV 0.8 eV TEM 3rd order spherical aberration <1 µm, adjustable (± 50 µm) TEM 5th order spherical aberration ~4 mm STEM 3rd order spherical aberration <0.5 µm STEM 5th order spherical aberration <0.5 mm Specifications 80 kV Monochromator ON Monochromator OFF Information limit 0.07 nm (at 0.2 eV) 0.15 nm

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.5 Specifications Specifications 300 kV Monochromator ON Monochromator OFF Information limit 0.05 nm (at 0.15 eV) 0.08 nm STEM resolution 0.1 nm 0.05 nm Energy resolution (EELS) 0.10 eV 0.8 eV TEM 3rd order spherical aberration <1 µm, adjustable (± 50 µm) TEM 5th order spherical aberration ~5 mm STEM 3rd order spherical aberration <0.5 µm STEM 5th order spherical aberration <0.5 mm Specifications 80 kV Monochromator ON Monochromator OFF Information limit 0.07 nm (at 0.2 eV) 0.15 nm

  5. Beamline 3.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3.2 Print General x-ray testing station GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 4-20 keV Monochromator...

  6. Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tube PMT detector at the exit slit. One monochromator is an f 8.6 Czerny-Turner design with 500 mm focal length Jarrell-Ash, 1.6 nm mm dispersion with 1180...

  7. Beamline 8.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BEAMLINE INFORMATION Operational Yes Source characteristics Superbend magnet (5.0 tesla, single pole) Energy range 5-17 keV (1% max flux) Monochromator Double flat crystal,...

  8. Beamline 8.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INFORMATION Operational Yes Source characteristics Superbend magnet (1.9 GeV, 4.37 tesla) Energy range 6-46 keV ML mode Monochromator None or two ML or two Si(111) Flux (1.9...

  9. Part IV Council on Environmental Quality

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    79 Wednesday, No. 247 December 24, 2014 Part IV Council on Environmental Quality Revised Draft Guidance for Federal Departments and Agencies on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews; Notice VerDate Sep<11>2014 18:20 Dec 23, 2014 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\24DEN2.SGM 24DEN2 mstockstill on DSK4VPTVN1PROD with NOTICES2 77802 Federal Register / Vol. 79, No. 247 / Wednesday, December 24, 2014 / Notices 1 A

  10. Part II

    Energy Savers [EERE]

    Friday, No. 233 December 4, 2015 Part II Department of Defense General Services Administration National Aeronautics and Space Administration 48 CFR Chapter 1 Federal Acquisition Regulations; Rules VerDate Sep<11>2014 15:22 Dec 03, 2015 Jkt 238001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\04DER2.SGM 04DER2 wgreen on DSK2VPTVN1PROD with RULES2 75902 Federal Register / Vol. 80, No. 233 / Friday, December 4, 2015 / Rules and Regulations DEPARTMENT OF DEFENSE GENERAL SERVICES

  11. Part II

    Energy Savers [EERE]

    251 December 31, 2015 Part II Department of Defense General Services Administration National Aeronautics and Space Administration 48 CFR Chapter 1 Federal Acquisition Regulations; Final Rules VerDate Sep<11>2014 17:22 Dec 30, 2015 Jkt 238001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\31DER2.SGM 31DER2 tkelley on DSK3SPTVN1PROD with RULES2 81886 Federal Register / Vol. 80, No. 251 / Thursday, December 31, 2015 / Rules and Regulations DEPARTMENT OF DEFENSE GENERAL SERVICES ADMINISTRATION

  12. Document

    Energy Savers [EERE]

    Friday, January 9, 2009 Part II Department of Energy Privacy Act of 1974; Publication of Compilation of Privacy Act Systems of Records; Notice VerDate Nov<24>2008 15:08 Jan 08, 2009 Jkt 217001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\09JAN2.SGM 09JAN2 yshivers on PROD1PC62 with NOTICES2 994 Federal Register / Vol. 74, No. 6 / Friday, January 9, 2009 / Notices DEPARTMENT OF ENERGY Privacy Act of 1974; Publication of Compilation of Privacy Act Systems of Records AGENCY: U.S. Department

  13. Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monday, August 9, 2010 Part II Department of Labor Occupational Safety and Health Administration 29 CFR Part 1926 Cranes and Derricks in Construction; Final Rule VerDate Mar<15>2010 17:33 Aug 06, 2010 Jkt 220001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\09AUR2.SGM 09AUR2 emcdonald on DSK2BSOYB1PROD with RULES2 DOE/RL-92-36, Hanford Site Hoisting and Rigging Manual Chapter 19.0, OSHA 10 CFR 1926, Subpart CC January 31, 2011 Rev. 1 Page 1 48135 Federal Register / Vol. 75, No. 152 /

  14. Tuesday,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 28, 2004 Part III Department of Defense General Services Administration National Aeronautics and Space Administration 48 CFR Chapter 1, Parts 5, 6, et al. Federal Acquisition Circular 2001-27; Introduction, Free Trade Agreements- Australia and Morocco; Small Entity Compliance Guide; Final Rules VerDate jul<14>2003 18:58 Dec 27, 2004 Jkt 205001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\28DER2.SGM 28DER2 77870 Federal Register / Vol. 69, No. 248 / Tuesday, December 28, 2004 /

  15. Part III

    Energy Savers [EERE]

    127 July 2, 2015 Part III Department of Defense General Services Administration National Aeronautics and Space Administration 48 CFR Chapter 1 Federal Acquisition Regulation; Rules VerDate Sep<11>2014 21:24 Jul 01, 2015 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\02JYR3.SGM 02JYR3 asabaliauskas on DSK5VPTVN1PROD with RULES 38292 Federal Register / Vol. 80, No. 127 / Thursday, July 2, 2015 / Rules and Regulations DEPARTMENT OF DEFENSE GENERAL SERVICES ADMINISTRATION NATIONAL

  16. Monday,

    Office of Environmental Management (EM)

    December 20, 2004 Part V Department of Defense General Services Administration National Aeronautics and Space Administration 48 CFR Chapter 1, et al. Federal Acquisition Circular 2001-26; Introduction, Federal Acquisition Regulation; Electronic Representations and Certifications, et al.; Final Rules VerDate jul<14>2003 20:26 Dec 17, 2004 Jkt 205001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\20DER4.SGM 20DER4 76340 Federal Register / Vol. 69, No. 243 / Monday, December 20, 2004 / Rules

  17. Document

    Office of Environmental Management (EM)

    June 30, 2003 Part II Department of Energy Privacy Act of 1974; Publication of Compilation of Systems of Records; Notice VerDate Jan<31>2003 18:47 Jun 27, 2003 Jkt 200001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\30JNN2.SGM 30JNN2 38756 Federal Register / Vol. 68, No. 125 / Monday, June 30, 2003 / Notices DEPARTMENT OF ENERGY Privacy Act of 1974; Publication of Compilation of Systems of Records AGENCY: Department of Energy. ACTION: Notice. SUMMARY: As required by the Privacy Act of

  18. Document

    National Nuclear Security Administration (NNSA)

    Part Executive VerDate Aug<31>2005 15:32 Jan 25, 2007 Jkt 211001 PO 00000 Frm 00002 Fmt 4717 Sfmt 4717 E:\FR\FM\26JAE0.SGM 26JAE0 mstockstill on PROD1PC62 with PROPOSALS5 Presidential Documents 3919 Federal Register Vol. 72, No. 17 Friday, January 26, 2007 Title 3- The President Executive Order 13423 of January 24, 2007 Strengthening Federal Environmental, Energy, and Transpor- tation Management By the authority vested in me as President by the Constitution and the laws of the United

  19. Proposed Rule To Implement the 1997 8-Hour Ozone National Ambient Air Quality Standard: Revision on Subpart 1 Area Reclassification and Anti-Backsliding Provisions Under Former 1-Hour Ozone Standard; Proposed Deletion of Obsolete 1-Hour Ozone Standard Provision

    National Nuclear Security Administration (NNSA)

    VerDate Nov<24>2008 16:08 Feb 11, 2009 Jkt 217001 PO 00000 Frm 00026 Fmt 4702 Sfmt 4702 E:\FR\FM\12FEP1.SGM 12FEP1 mstockstill on PROD1PC66 with PROPOSALS Federal Register / Vol. 74, No. 28 / Thursday, February 12, 2009 / Proposed Rules 7027 section will be closed to all vessels whenever environmental conditions exceed the operational limitations of the relevant Coast Guard search and rescue resources as determined by the COTP. When a bar is closed, the operation of any vessel in the

  20. Window taper functions for subaperture processing. (Technical...

    Office of Scientific and Technical Information (OSTI)

    artifact of this approach is the creation of grating lobes in the final response. The nature of the grating lobes, including their amplitude and spacing, is an artifact of window...

  1. Improving combustion in residential size wood chip fireboxes

    SciTech Connect (OSTI)

    Huff, E.R.

    1982-12-01

    In a small experimental wood chip firebox with separate control of grate and overfire air, combustion intensity was increased with reduction in flyash and carbon monoxide by reducing air through the grate to a small fraction of stoichiometric air.

  2. Advances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    slit, and the other view, the bottom half. The light is dispersed by two gratings in a Czerny-Turner layout. 21 This double grating design is required to obtain the disper- sion...

  3. Hyper dispersion pulse compressor for chirped pulse amplification systems

    DOE Patents [OSTI]

    Barty, Christopher P. J. (Hayward, CA)

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  4. Nanocrystal structures

    DOE Patents [OSTI]

    Eisler, Hans J. (Stoneham, MA); Sundar, Vikram C. (Stoneham, MA); Walsh, Michael E. (Everett, MA); Klimov, Victor I. (Los Alamos, NM); Bawendi, Moungi G. (Cambridge, MA); Smith, Henry I. (Sudbury, MA)

    2008-12-30

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  5. Nanocrystal structures

    DOE Patents [OSTI]

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2006-12-19

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group IIVI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  6. Diffraction encoded position measuring apparatus

    DOE Patents [OSTI]

    Tansey, Richard J. (Thousand Oaks, CA)

    1991-01-01

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection.

  7. Diffraction encoded position measuring apparatus

    DOE Patents [OSTI]

    Tansey, R.J.

    1991-09-24

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection. 3 figures.

  8. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE) 7000

  9. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE) 7000

  10. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.3.2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE)

  11. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.3.2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE)

  12. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10.3.2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE)

  13. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.3.2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE)

  14. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE) 7000

  15. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE) 7000

  16. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE) 7000

  17. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.2 Beamline 10.3.2 Print Tuesday, 20 October 2009 09:15 Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7

  18. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE) 7000

  19. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE) 7000

  20. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2.2 Print Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend Energy range 5,500-16,000eV Monochromator Rosenbaum-Rock Si(111) sagitally focused monochromator Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/s at 12 keV Resolving power (E/ΔE) 7,000 with Si(111) crystals Endstations Minihutch Detectors

  1. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2.2 Print Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend Energy range 5,500-16,000eV Monochromator Rosenbaum-Rock Si(111) sagitally focused monochromator Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/s at 12 keV Resolving power (E/ΔE) 7,000 with Si(111) crystals Endstations Minihutch Detectors

  2. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2.2 Print Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend Energy range 5,500-16,000eV Monochromator Rosenbaum-Rock Si(111) sagitally focused monochromator Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/s at 12 keV Resolving power (E/ΔE) 7,000 with Si(111) crystals Endstations Minihutch Detectors

  3. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2.2 Print Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend Energy range 5,500-16,000eV Monochromator Rosenbaum-Rock Si(111) sagitally focused monochromator Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/s at 12 keV Resolving power (E/ΔE) 7,000 with Si(111) crystals Endstations Minihutch Detectors

  4. Beamline 6.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Magnetic Spectroscopy Scientific disciplines: Magnetic materials research, materials science Endstations: 6.3.1.1: Magnetic Spectroscopy 6.3.1.2: ISAAC In Situ XAS GENERAL BEAMLINE INFORMATION Operational Now Source characteristics Bend magnet Energy range 250-2000 eV Monochromator VLS-PGM monochromator with fixed exit slit and refocusing mirror Calculated flux (1.9 GeV, 400 mA) 1011photons/s/0.1%BW at 1000 eV Resolving power (E/ΔE) 5,000 Spot size at sample 50 x 500 µm Scientific

  5. Beamline 6.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Magnetic Spectroscopy Scientific disciplines: Magnetic materials research, materials science Endstations: 6.3.1.1: Magnetic Spectroscopy 6.3.1.2: ISAAC In Situ XAS GENERAL BEAMLINE INFORMATION Operational Now Source characteristics Bend magnet Energy range 250-2000 eV Monochromator VLS-PGM monochromator with fixed exit slit and refocusing mirror Calculated flux (1.9 GeV, 400 mA) 1011photons/s/0.1%BW at 1000 eV Resolving power (E/ΔE) 5,000 Spot size at sample 50 x 500 µm Scientific

  6. Beamline 6.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6.3.1 Print Magnetic Spectroscopy Scientific disciplines: Magnetic materials research, materials science Endstations: 6.3.1.1: Magnetic Spectroscopy 6.3.1.2: ISAAC In Situ XAS GENERAL BEAMLINE INFORMATION Operational Now Source characteristics Bend magnet Energy range 250-2000 eV Monochromator VLS-PGM monochromator with fixed exit slit and refocusing mirror Calculated flux (1.9 GeV, 400 mA) 1011photons/s/0.1%BW at 1000 eV Resolving power (E/ΔE) 5,000 Spot size at sample 50 x 500 µm Scientific

  7. Beamline 6.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.1 Print Magnetic Spectroscopy Scientific disciplines: Magnetic materials research, materials science Endstations: 6.3.1.1: Magnetic Spectroscopy 6.3.1.2: ISAAC In Situ XAS GENERAL BEAMLINE INFORMATION Operational Now Source characteristics Bend magnet Energy range 250-2000 eV Monochromator VLS-PGM monochromator with fixed exit slit and refocusing mirror Calculated flux (1.9 GeV, 400 mA) 1011photons/s/0.1%BW at 1000 eV Resolving power (E/ΔE) 5,000 Spot size at sample 50 x 500 µm Scientific

  8. Beamline 6.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Magnetic Spectroscopy Scientific disciplines: Magnetic materials research, materials science Endstations: 6.3.1.1: Magnetic Spectroscopy 6.3.1.2: ISAAC In Situ XAS GENERAL BEAMLINE INFORMATION Operational Now Source characteristics Bend magnet Energy range 250-2000 eV Monochromator VLS-PGM monochromator with fixed exit slit and refocusing mirror Calculated flux (1.9 GeV, 400 mA) 1011photons/s/0.1%BW at 1000 eV Resolving power (E/ΔE) 5,000 Spot size at sample 50 x 500 µm Scientific

  9. Beamline 6.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Magnetic Spectroscopy Scientific disciplines: Magnetic materials research, materials science Endstations: 6.3.1.1: Magnetic Spectroscopy 6.3.1.2: ISAAC In Situ XAS GENERAL BEAMLINE INFORMATION Operational Now Source characteristics Bend magnet Energy range 250-2000 eV Monochromator VLS-PGM monochromator with fixed exit slit and refocusing mirror Calculated flux (1.9 GeV, 400 mA) 1011photons/s/0.1%BW at 1000 eV Resolving power (E/ΔE) 5,000 Spot size at sample 50 x 500 µm Scientific

  10. Beamline 6.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.1 Beamline 6.3.1 Print Tuesday, 20 October 2009 08:42 Magnetic Spectroscopy Scientific disciplines: Magnetic materials research, materials science Endstations: 6.3.1.1: Magnetic Spectroscopy 6.3.1.2: ISAAC In Situ XAS GENERAL BEAMLINE INFORMATION Operational Now Source characteristics Bend magnet Energy range 250-2000 eV Monochromator VLS-PGM monochromator with fixed exit slit and refocusing mirror Calculated flux (1.9 GeV, 400 mA) 1011photons/s/0.1%BW at 1000 eV Resolving power (E/ΔE) 5,000

  11. Beamline 6.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Magnetic Spectroscopy Scientific disciplines: Magnetic materials research, materials science Endstations: 6.3.1.1: Magnetic Spectroscopy 6.3.1.2: ISAAC In Situ XAS GENERAL BEAMLINE INFORMATION Operational Now Source characteristics Bend magnet Energy range 250-2000 eV Monochromator VLS-PGM monochromator with fixed exit slit and refocusing mirror Calculated flux (1.9 GeV, 400 mA) 1011photons/s/0.1%BW at 1000 eV Resolving power (E/ΔE) 5,000 Spot size at sample 50 x 500 µm Scientific

  12. Beamline 6.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Magnetic Spectroscopy Scientific disciplines: Magnetic materials research, materials science Endstations: 6.3.1.1: Magnetic Spectroscopy 6.3.1.2: ISAAC In Situ XAS GENERAL BEAMLINE INFORMATION Operational Now Source characteristics Bend magnet Energy range 250-2000 eV Monochromator VLS-PGM monochromator with fixed exit slit and refocusing mirror Calculated flux (1.9 GeV, 400 mA) 1011photons/s/0.1%BW at 1000 eV Resolving power (E/ΔE) 5,000 Spot size at sample 50 x 500 µm Scientific

  13. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm

  14. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm

  15. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm Samples

  16. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm Samples

  17. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm

  18. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm

  19. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm Samples

  20. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm

  1. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm Samples

  2. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm

  3. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm Samples

  4. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm Samples

  5. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm Samples

  6. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 Beamline 7.3.3 Print Tuesday, 20 October 2009 08:50 Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC

  7. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm Samples

  8. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm Samples

  9. Beamline 9.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9.0.1 Beamline 9.0.1 Print Tuesday, 20 October 2009 08:57 Diffraction Microscopy Scientific disciplines: Applied science, biology, polymers, soft materials. Endstations: Serial crystallography Diffractive imaging Nanosurveyor GENERAL BEAMLINE INFORMATION Operational Yes. Source characteristics 10-cm period undulator (U10) Energy range 500-1500 eV Monochromator Either none or an off-axis zone-plate monochromator that will provide a focused beam with bandwidth of about 0.1% Calculated flux (1.9

  10. Beamline 9.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Print Diffraction Microscopy Scientific disciplines: Applied science, biology, polymers, soft materials. Endstations: Serial crystallography Diffractive imaging Nanosurveyor GENERAL BEAMLINE INFORMATION Operational Yes. Source characteristics 10-cm period undulator (U10) Energy range 500-1500 eV Monochromator Either none or an off-axis zone-plate monochromator that will provide a focused beam with bandwidth of about 0.1% Calculated flux (1.9 GeV, 400 mA) 2.8 x 1015 photons/s/1%BW/central

  11. Beamline 9.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9.0.1 Print Diffraction Microscopy Scientific disciplines: Applied science, biology, polymers, soft materials. Endstations: Serial crystallography Diffractive imaging Nanosurveyor GENERAL BEAMLINE INFORMATION Operational Yes. Source characteristics 10-cm period undulator (U10) Energy range 500-1500 eV Monochromator Either none or an off-axis zone-plate monochromator that will provide a focused beam with bandwidth of about 0.1% Calculated flux (1.9 GeV, 400 mA) 2.8 x 1015 photons/s/1%BW/central

  12. Beamline 9.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Diffraction Microscopy Scientific disciplines: Applied science, biology, polymers, soft materials. Endstations: Serial crystallography Diffractive imaging Nanosurveyor GENERAL BEAMLINE INFORMATION Operational Yes. Source characteristics 10-cm period undulator (U10) Energy range 500-1500 eV Monochromator Either none or an off-axis zone-plate monochromator that will provide a focused beam with bandwidth of about 0.1% Calculated flux (1.9 GeV, 400 mA) 2.8 x 1015 photons/s/1%BW/central cone

  13. Beamline 9.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9.0.1 Beamline 9.0.1 Print Tuesday, 20 October 2009 08:57 Diffraction Microscopy Scientific disciplines: Applied science, biology, polymers, soft materials. Endstations: Serial crystallography Diffractive imaging Nanosurveyor GENERAL BEAMLINE INFORMATION Operational Yes. Source characteristics 10-cm period undulator (U10) Energy range 500-1500 eV Monochromator Either none or an off-axis zone-plate monochromator that will provide a focused beam with bandwidth of about 0.1% Calculated flux (1.9

  14. Beamline 9.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.1 Beamline 9.0.1 Print Tuesday, 20 October 2009 08:57 Diffraction Microscopy Scientific disciplines: Applied science, biology, polymers, soft materials. Endstations: Serial crystallography Diffractive imaging Nanosurveyor GENERAL BEAMLINE INFORMATION Operational Yes. Source characteristics 10-cm period undulator (U10) Energy range 500-1500 eV Monochromator Either none or an off-axis zone-plate monochromator that will provide a focused beam with bandwidth of about 0.1% Calculated flux (1.9 GeV,

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIBRA Specifications Resolution Point-to-Point 0.29 nm Information limit 0.19 nm Energy resolution 0.7 eV without monochromator 0.15 eV with monochromator STEM Spatial Resolution BF/DF 0.45 nm HAADF (attainable) 0.45 nm Electron emitter ZrO/W-field emitter system (Schottky) Illumination System Parallel wide field TEM mode 0.1 urad to 20 mrad illumination aperture Objective lens: HT objective Cs (Spherical aberration) 2.2 mm Cc (Chromatic aberration) 2.2 mm Specimen Stage Double tilt holder angle

  16. Microsoft Word - DCM beamline 2008.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crystal Monochromator (DCM) The CAMD XAS beamline has been in operation since the fall of 1994, first using a double-crystal monochromator (DCM) from the Laboratório Nacional de Luz Síncrotron (LNLS), then using one from Bonn University. The lowest energy at which data have been successfully collected is the Cu L III edge at 932.5 eV and the highest is the Mo K edge at 20,000 eV. Data have been collected from a wide variety of samples associated with research in materials science, catalysis,

  17. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE) 7000

  18. Beamline 10.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Environmental and Materials Science, Micro X-Ray Absorption Spectroscopy (µXAS, µEXAFS) Scientific disciplines: Earth and environmental science, material science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet (beamline optics collect 0.166 horizontal mrad) Energy range 2.5-17 keV Monochromator Monochromatic, with Si(111) two-crystal, constant-exit monochromator Measured flux 9 x 109 photons/s into 16 x 7 µm2 spot at 6 keV Resolving power (E/ΔE) 7000

  19. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2.2 Print Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend Energy range 5,500-16,000eV Monochromator Rosenbaum-Rock Si(111) sagitally focused monochromator Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/s at 12 keV Resolving power (E/ΔE) 7,000 with Si(111) crystals Endstations Minihutch Detectors

  20. Beamline 4.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2.2 Print Molecular Biology Consortium Multiple-Wavelength Anomalous Diffraction (MAD) and Macromolecular Crystallography (MX) Scientific discipline: Structural biology GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Superbend Energy range 5,500-16,000eV Monochromator Rosenbaum-Rock Si(111) sagitally focused monochromator Calculated flux (1.9 GeV, 400 mA) 2.5 x 1011 photons/s at 12 keV Resolving power (E/ΔE) 7,000 with Si(111) crystals Endstations Minihutch Detectors

  1. Beamline 6.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Magnetic Spectroscopy Scientific disciplines: Magnetic materials research, materials science Endstations: 6.3.1.1: Magnetic Spectroscopy 6.3.1.2: ISAAC In Situ XAS GENERAL BEAMLINE INFORMATION Operational Now Source characteristics Bend magnet Energy range 250-2000 eV Monochromator VLS-PGM monochromator with fixed exit slit and refocusing mirror Calculated flux (1.9 GeV, 400 mA) 1011photons/s/0.1%BW at 1000 eV Resolving power (E/ΔE) 5,000 Spot size at sample 50 x 500 µm Scientific

  2. Beamline 6.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Magnetic Spectroscopy Scientific disciplines: Magnetic materials research, materials science Endstations: 6.3.1.1: Magnetic Spectroscopy 6.3.1.2: ISAAC In Situ XAS GENERAL BEAMLINE INFORMATION Operational Now Source characteristics Bend magnet Energy range 250-2000 eV Monochromator VLS-PGM monochromator with fixed exit slit and refocusing mirror Calculated flux (1.9 GeV, 400 mA) 1011photons/s/0.1%BW at 1000 eV Resolving power (E/ΔE) 5,000 Spot size at sample 50 x 500 µm Scientific

  3. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm Samples

  4. Beamline 7.3.3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3 Print Small- and Wide-Angle X-Ray Scattering (SAXS/WAXS/Protein SAXS)* Scientific disciplines: Polymer science, materials science, proteins, surface science GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 10 keV Monochromator Mo/B4C double multilayer monochromator Measured flux (1.9 GeV, 400 mA) 1012 photons/s Resolving power (E/ΔE) 100 Detectors Pilatus 1M, Pilatus 100K, Pilatus 300KW, 2x ADSC Quantum 4u Spot size at sample 1 mm x 0.8 mm Samples

  5. Phase plate technology for laser marking of magnetic discs

    DOE Patents [OSTI]

    Neuman, B.; Honig, J.; Hackel, L.; Dane, C.B.; Dixit, S.

    1998-10-27

    An advanced design for a phase plate enables the distribution of spots in arbitrarily shaped patterns with very high uniformity and with a continuously or near-continuously varying phase pattern. A continuous phase pattern eliminates large phase jumps typically expected in a grating that provides arbitrary shapes. Large phase jumps increase scattered light outside of the desired pattern, reduce efficiency and can make the grating difficult to manufacture. When manufacturing capabilities preclude producing a fully continuous grating, the present design can be easily adapted to minimize manufacturing errors and maintain high efficiencies. This continuous grating is significantly more efficient than previously described Dammann gratings, offers much more flexibility in generating spot patterns and is easier to manufacture and replicate than a multi-level phase grating. 3 figs.

  6. Phase plate technology for laser marking of magnetic discs

    DOE Patents [OSTI]

    Neuman, Bill (Livermore, CA); Honig, John (Livermore, CA); Hackel, Lloyd (Livermore, CA); Dane, C. Brent (Livermore, CA); Dixit, Shamasundar (Livermore, CA)

    1998-01-01

    An advanced design for a phase plate enables the distribution of spots in arbitrarily shaped patterns with very high uniformity and with a continuously or near-continuously varying phase pattern. A continuous phase pattern eliminates large phase jumps typically expected in a grating that provides arbitrary shapes. Large phase jumps increase scattered light outside of the desired pattern, reduce efficiency and can make the grating difficult to manufacture. When manufacturing capabilities preclude producing a fully continuous grating, the present design can be easily adapted to minimize manufacturing errors and maintain high efficiencies. This continuous grating is significantly more efficient than previously described Dammann gratings, offers much more flexibility in generating spot patterns and is easier to manufacture and replicate than a multi-level phase grating.

  7. Advanced polychromator systems for remote chemical sensing (LDRD project

    Office of Scientific and Technical Information (OSTI)

    52575). (Technical Report) | SciTech Connect Advanced polychromator systems for remote chemical sensing (LDRD project 52575). Citation Details In-Document Search Title: Advanced polychromator systems for remote chemical sensing (LDRD project 52575). The objective of this LDRD project was to develop a programmable diffraction grating fabricated in SUMMiT V{trademark}. Two types of grating elements (vertical and rotational) were designed and demonstrated. The vertical grating element utilized

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... These grating structures have been measured by use of the Nano Optic Measuring Machine ... In additional measurements under Littrow condition the higher order diffraction signals of ...

  9. Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns...

    Office of Scientific and Technical Information (OSTI)

    Subject: 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 2-METHYLBUTANE; FOCUSING; GHZ RANGE; GRATINGS; HYDRODYNAMICS; LASER TARGETS; ...

  10. Advanced polychromator systems for remote chemical sensing (LDRD...

    Office of Scientific and Technical Information (OSTI)

    on the programmable diffraction grating. Authors: Sinclair, Michael B. ; Pfeifer, Kent Bryant ; Allen, James Joe Publication Date: 2005-01-01 OSTI Identifier: 921144 Report...

  11. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    The maximum counting rate achieves more than 2 x 106 X-raysspixel. January 2007 Passive Spectroscopy Bolometers, Grating- And X-ray Imaging Crystal Spectrometers Bitter, M....

  12. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Doppler widths and shifts. The data analysis techniqu Full Text Available March 2009 Passive Spectroscopy Bolometers, Grating- And X-Ray Imaging Crystal Spectrometers Bitter, M ;...

  13. Nat Fisch Wins Europe's Alfvén Prize | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "I am very grateful that the European Physical Society reached across the ocean to ... phenomena, including new ways of creating electrical currents using radio-frequency waves. ...

  14. High channel density wavelength division multiplexer with defined diffracting means positioning

    DOE Patents [OSTI]

    Jannson, Tomasz P.; Jannson, Joanna L.; Yeung, Peter C.

    1990-01-01

    A wavelength division multiplexer/demultiplexer having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges.

  15. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the complex helped solve these problems, but I'm especially grateful to Eric Bauer, Capability Leader for Materials Synthesis and Characterization in the Condensed...

  16. Neutrons find "missing" magnetism of plutonium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the complex helped solve these problems, but I'm especially grateful to Eric Bauer, Capability Leader for Materials Synthesis and Characterization in the Condensed...

  17. The Soft X-ray Research instrument at the Linac Coherent Light...

    Office of Scientific and Technical Information (OSTI)

    ... As an instrument designed to provide high transmission, medium resolution and minimal pulse broadening of the ultrashort FEL pulses, gratings with groove density of 100 and 200 ...

  18. 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The basic theory underlying geochemical transport and the sorption conceptual models noted ... The authors are grateful for the financial support of the United States Nuclear ...

  19. Thin-film spectroscopic sensor

    DOE Patents [OSTI]

    Burgess, Jr., Lloyd W. (Seattle, WA); Goldman, Don S. (Richland, WA)

    1992-01-01

    There is disclosed an integrated spectrometer for chemical analysis by evanescent electromagnetic radiation absorption in a reaction volume. The spectrometer comprises a noninteractive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device. There is further disclosed a chemical sensor to determine the pressure and concentration of a chemical species in a mixture comprising an interactive waveguide, a substrate, an entrance grating and an exit grating, an electromagnetic radiation source, and an electromagnetic radiation sensing device.

  20. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11.0.2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission

  1. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission spectroscopy

  2. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission spectroscopy

  3. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11.0.2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission

  4. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission spectroscopy

  5. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission

  6. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission spectroscopy

  7. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.0.2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission

  8. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission spectroscopy

  9. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission spectroscopy

  10. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.0.2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission

  11. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission spectroscopy

  12. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission spectroscopy

  13. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission spectroscopy

  14. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission spectroscopy

  15. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission spectroscopy

  16. Beamline 10.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photonss at 12.5 keV...

  17. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Print Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables Endstations Ambient-pressure photoemission spectroscopy

  18. Beamline 12.2.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Yes Source characteristics Superbend magnet, 1.9GeV, 5.29Tesla, 500mA Monochromator Si(111) or Multilayer Energy range 6-40 keV for Si(111), 14-28 keV for Multilayer Resolving...

  19. Test surfaces useful for calibration of surface profilometers

    DOE Patents [OSTI]

    Yashchuk, Valeriy V; McKinney, Wayne R; Takacs, Peter Z

    2013-12-31

    The present invention provides for test surfaces and methods for calibration of surface profilometers, including interferometric and atomic force microscopes. Calibration is performed using a specially designed test surface, or the Binary Pseudo-random (BPR) grating (array). Utilizing the BPR grating (array) to measure the power spectral density (PSD) spectrum, the profilometer is calibrated by determining the instrumental modulation transfer.

  20. Diffractive element in extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Ray-Chaudhurl, Avijit K. (Livermore, CA)

    2000-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  1. Diffractive element in extreme-UV lithography condenser

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM); Ray-Chaudhuri, Avijit (Livermore, CA)

    2001-01-01

    Condensers having a mirror with a diffraction grating in projection lithography using extreme ultra-violet significantly enhances critical dimension control. The diffraction grating has the effect of smoothing the illumination at the camera's entrance pupil with minimum light loss. Modeling suggests that critical dimension control for 100 nm features can be improved from 3 nm to less than about 0.5 nm.

  2. Imaging spectrometer wide field catadioptric design

    DOE Patents [OSTI]

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  3. High-efficiency spectral purity filter for EUV lithography

    DOE Patents [OSTI]

    Chapman, Henry N.

    2006-05-23

    An asymmetric-cut multilayer diffracts EUV light. A multilayer cut at an angle has the same properties as a blazed grating, and has been demonstrated to have near-perfect performance. Instead of having to nano-fabricate a grating structure with imperfections no greater than several tens of nanometers, a thick multilayer is grown on a substrate and then cut at an inclined angle using coarse and inexpensive methods. Effective grating periods can be produced this way that are 10 to 100 times smaller than those produced today, and the diffraction efficiency of these asymmetric multilayers is higher than conventional gratings. Besides their ease of manufacture, the use of an asymmetric multilayer as a spectral purity filter does not require that the design of an EUV optical system be modified in any way, unlike the proposed use of blazed gratings for such systems.

  4. Direct detector for terahertz radiation

    DOE Patents [OSTI]

    Wanke, Michael C. (Albuquerque, NM); Lee, Mark (Albuquerque, NM); Shaner, Eric A. (Albuquerque, NM); Allen, S. James (Santa Barbara, CA)

    2008-09-02

    A direct detector for terahertz radiation comprises a grating-gated field-effect transistor with one or more quantum wells that provide a two-dimensional electron gas in the channel region. The grating gate can be a split-grating gate having at least one finger that can be individually biased. Biasing an individual finger of the split-grating gate to near pinch-off greatly increases the detector's resonant response magnitude over prior QW FET detectors while maintaining frequency selectivity. The split-grating-gated QW FET shows a tunable resonant plasmon response to FIR radiation that makes possible an electrically sweepable spectrometer-on-a-chip with no moving mechanical optical parts. Further, the narrow spectral response and signal-to-noise are adequate for use of the split-grating-gated QW FET in a passive, multispectral terahertz imaging system. The detector can be operated in a photoconductive or a photovoltaic mode. Other embodiments include uniform front and back gates to independently vary the carrier densities in the channel region, a thinned substrate to increase bolometric responsivity, and a resistive shunt to connect the fingers of the grating gate in parallel and provide a uniform gate-channel voltage along the length of the channel to increase the responsivity and improve the spectral resolution.

  5. Instrument and method for focusing X-rays, gamma rays and neutrons

    DOE Patents [OSTI]

    Smither, Robert K. (Hinsdale, IL)

    1984-01-01

    A crystal diffraction instrument or diffraction grating instrument with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the crystalline structure, by assembling a plurality of crystalline structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal diffraction case.

  6. Instrument and method for focusing x rays, gamma rays, and neutrons

    DOE Patents [OSTI]

    Smither, R.K.

    1982-03-25

    A crystal-diffraction instrument or diffraction-grating instrument is described with an improved crystalline structure or grating spacing structure having a face for receiving a beam of photons or neutrons and diffraction planar spacing or grating spacing along that face with the spacing increasing progressively along the face to provide a decreasing Bragg diffraction angle for a monochromatic radiation and thereby increasing the usable area and acceptance angle. The increased planar spacing for the diffraction crystal is provided by the use of a temperature differential across the line structures with different compositions, by an individual crystalline structure with a varying composition and thereby a changing planar spacing along its face, and by combinations of these techniques. The increased diffraction grating element spacing is generated during the fabrication of the diffraction grating by controlling the cutting tool that is cutting the grooves or controlling the laser beam, electron beam, or ion beam that is exposing the resist layer, etc. It is also possible to vary this variation in grating spacing by applying a thermal gradient to the diffraction grating in much the same manner as is done in the crystal-diffraction case.

  7. Design of a High Resolution and High Flux Beam line for VUV Angle-Resolved Photoemission at UVSOR-II

    SciTech Connect (OSTI)

    Kimura, Shin-ichi; Ito, Takahiro; Nakamura, Eiken; Hosaka, Masahito; Katoh, Masahiro

    2007-01-19

    A high-energy-resolution angle-resolved photoemission beamline in the vacuum-ultraviolet (VUV) region has been designed for a 750 MeV synchrotron light source UVSOR-II. The beamline equips an APPLE-II-type undulator with the horizontally/vertically linear and right/left circular polarizations, a modified Wadsworth-type monochromator and a high-resolution photoelectron analyzer. The monochromator covers the photon energy range of 6 - 40 eV. The energy resolution (hv/{delta}hv) and the photon flux on samples are expected to be 2 x 104 and 1012 photons/sec at 10 eV, 4 x 104 and 5 x 1011 photons/sec at 20 eV, and 6 x 104 and 1011 photons/sec at 40 eV, respectively. The beamline provides the high-resolution angle-resolved photoemission spectroscopy less than 1 meV in the whole VUV energy range.

  8. REFLECT: A computer program for the x-ray reflectivity of bent perfect crystals

    SciTech Connect (OSTI)

    Etelaeniemi, V.; Suortti, P.; Thomlinson, W. . Dept. of Physics; Brookhaven National Lab., Upton, NY )

    1989-09-01

    The design of monochromators for x-ray applications, using either standard laboratory sources on synchrotron radiation sources, requires a knowledge of the reflectivity of the crystals. The reflectivity depends on the crystals used, the geometry of the reflection, the energy range of the radiation, and, in the present case, the cylindrical bending radius of the optical device. This report is intended to allow the reader to become familiar with, and therefore use, a computer program called REFLECT which we have used in the design of a dual beam Laue monochromator for synchrotron angiography. The results of REFLECT have been compared to measured reflectivities for both bent Bragg and Laue geometries. The results are excellent and should give full confidence in the use of the program. 6 refs.

  9. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    SciTech Connect (OSTI)

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-11-15

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to {approx}7 eV, delivering under typical conditions >10{sup 12} ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  10. Non-plugging pressure tap

    DOE Patents [OSTI]

    Echtler, Joseph P. (Pittsburgh, PA)

    1978-01-01

    A pressure tap having utility in an environment of a solid-gas phase process flow includes a tubular coupling part having attached over a passage therethrough at an end opening thereof exposed to the flow a grating of spaced bars, and affixed internally across a passage therethrough so as to cover over an opening therein a screen which maintains contained within the passage between it and the grating a matrix of smooth spheres. The grating bars are so oriented by the disposition of the aforesaid end opening with respect to the flow such that accumulations of solids therebetween tending to bridge the opening are removed therefrom by the flow.

  11. Dispersion-compensated fresnel lens

    DOE Patents [OSTI]

    Johnson, Kenneth C.

    1992-01-01

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.

  12. Multi-channel polarized thermal emitter

    DOE Patents [OSTI]

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P

    2013-07-16

    A multi-channel polarized thermal emitter (PTE) is presented. The multi-channel PTE can emit polarized thermal radiation without using a polarizer at normal emergence. The multi-channel PTE consists of two layers of metallic gratings on a monolithic and homogeneous metallic plate. It can be fabricated by a low-cost soft lithography technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and the spectral separation between peaks are tuned by changing the mutual angle between the orientations of the two gratings.

  13. Study of optical Laue diffraction

    SciTech Connect (OSTI)

    Chakravarthy, Giridhar E-mail: aloksharan@email.com; Allam, Srinivasa Rao E-mail: aloksharan@email.com; Satyanarayana, S. V. M. E-mail: aloksharan@email.com; Sharan, Alok E-mail: aloksharan@email.com

    2014-10-15

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  14. Dispersion-compensated Fresnel lens

    DOE Patents [OSTI]

    Johnson, K.C.

    1992-11-03

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.

  15. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Beamline 11.0.2 Print Tuesday, 20 October 2009 09:17 Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables

  16. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Beamline 11.0.2 Print Tuesday, 20 October 2009 09:17 Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables

  17. Beamline 11.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Beamline 11.0.2 Print Tuesday, 20 October 2009 09:17 Molecular Environmental Science (MES) Scientific disciplines: Surface chemistry, environmental, planetary, biological, and medical sciences Endstations: Ambient-pressure photoemission spectroscopy Scanning transmission x-ray microscope (STXM) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range See endstation tables Monochromator See endstation tables

  18. Beamline 12.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables

  19. Beamline 12.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables

  20. Beamline 12.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables

  1. Beamline 12.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables

  2. Beamline 12.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables

  3. Beamline 12.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables

  4. Beamline 12.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables

  5. Beamline 12.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables

  6. Beamline 12.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables

  7. Beamline 12.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables

  8. Beamline 3.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3.2 Print General x-ray testing station GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 4-20 keV Monochromator Si(111) Endstations Hutch with 2 x 3 ft optical table Calculated spot size at sample Up to 30 x 10 mm Sample format Mount off optical table Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Semiconductor characterization Spokesperson This e-mail address is being protected

  9. Beamline 3.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3.2 Print General x-ray testing station GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 4-20 keV Monochromator Si(111) Endstations Hutch with 2 x 3 ft optical table Calculated spot size at sample Up to 30 x 10 mm Sample format Mount off optical table Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Semiconductor characterization Spokesperson This e-mail address is being protected

  10. Beamline 3.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3.2 Print General x-ray testing station GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 4-20 keV Monochromator Si(111) Endstations Hutch with 2 x 3 ft optical table Calculated spot size at sample Up to 30 x 10 mm Sample format Mount off optical table Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Semiconductor characterization Spokesperson This e-mail address is being protected

  11. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7:

  12. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7:

  13. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.0.2 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7:

  14. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7:

  15. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7.0.2 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7:

  16. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7:

  17. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7:

  18. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7:

  19. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7:

  20. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Beamline 7.0.2 Print Tuesday, 20 October 2009 08:45 Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system,

  1. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7:

  2. Commissioning of a microprobe-XRF beamline (BL-16) on Indus-2 synchrotron source

    SciTech Connect (OSTI)

    Tiwari, M. K.; Gupta, P.; Sinha, A. K.; Garg, C. K.; Singh, A. K.; Kane, S. R.; Garg, S. R.; Lodha, G. S.

    2012-06-05

    We report commissioning of the microprobe-XRF beamline on Indus-2 synchrotron source. The beamline has been recently made operational and is now open for the user's experiments. The beamline comprises of Si(111) double crystal monochromator and Kirkpatrick-Baez focusing optics. The beamline covers wide photon energy range of 4 - 20 keV using both collimated and micro-focused beam modes. The design details and the first commissioning results obtained using this beamline are presented.

  3. BEAMLINE 14-3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-3 CURRENT STATUS: This beam line is in design. SUPPORTED TECHNIQUES: Low Energy XAS MAIN SCIENTIFIC DISCIPLINES: % TIME GENERAL USE: SCHEDULING: SOURCE: BEAM LINE SPECIFICATIONS: energy range resolution DE/E spot size flux angular acceptance focused unfocused OPTICS: MONOCHROMATOR: ABSORPTION: INSTRUMENTATION: DATA ACQUISITION AND ANALYSIS: RESPONSIBLE STAFF: BEAM LINE PHONE NUMBER: GENERAL DESCRIPTION: SCIENTIFIC APPLICATIONS / SELECTED RESULTS: April 17, 2009: SSRL Beamline 14 Sees First

  4. Beamline 12.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.0.1 Print EUV optics testing and interferometry, angle- and spin-resolved photoemission Scientific discipline: Applied science, correlated electron systems Endstations: Angle- and spin-resolved photoemission (12.0.1.1) Berkeley Dose Calibration Tool (DCT)(12.0.1.2) SEMATECH Berkeley Microfield Exposure Tool (MET) (12.0.1.3) GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 8-cm-period undulator (U8) Energy range See endstation tables Monochromator See endstation tables

  5. Beamline 3.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3.2 Print General x-ray testing station GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 4-20 keV Monochromator Si(111) Endstations Hutch with 2 x 3 ft optical table Calculated spot size at sample Up to 30 x 10 mm Sample format Mount off optical table Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Semiconductor characterization Spokesperson This e-mail address is being protected

  6. Beamline 3.3.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3.2 Print General x-ray testing station GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 4-20 keV Monochromator Si(111) Endstations Hutch with 2 x 3 ft optical table Calculated spot size at sample Up to 30 x 10 mm Sample format Mount off optical table Sample environment Ambient, air Scientific disciplines Applied science Scientific applications Semiconductor characterization Spokesperson This e-mail address is being protected

  7. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7:

  8. Beamline 7.0.2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0.2 Print Surface and Materials Science, Spectromicroscopy Scientific disciplines: Correlated electron system, materials science Endstations: nanoARPES (nARPES) EmicroARPES (Branchline 7.0.2.1) GENERAL BEAMLINE INFORMATION Operational No Source characteristics 5-cm period undulator (U5) (first, third, and fifth harmonics) Energy range See endstation tables Monochromator See endstation tables Scientific disciplines Correlated electron system, materials science Website Beamline 7:

  9. Final Report (Technical Report) | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Report Citation Details In-Document Search Title: Final Report We propose to extend the technique of polarized neutron scattering into new domains by continued development and application of polarized 3He spin-filters. These devices are particularly relevant to the Spallation Neutron Source, as the polarizing monochromators historically used at reactor sources will usually not be suitable polarizers, and wide-angle polarization analysis will be essential. With prior support from the Office

  10. A possibility for using an APPLE undulator to generate a photon beam with transverse optical modes.

    SciTech Connect (OSTI)

    Sasaki, S.; McNulty, I.; Shimada, T.; JAEA

    2008-01-01

    We investigate use of an APPLE-type undulator for generating Laguerre-Gaussian (LG) and Hermite-Gaussian (HG) mode beams. We find that the second harmonic radiation in the circular mode corresponds to an LG beam with l=1, and the second harmonic in the linear mode corresponds to an HG beam with l=1. The combination of an APPLE undulator and conventional monochromator optics may provide an opportunity for a new type of experimental research in the synchrotron radiation community.

  11. A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford Synchrotron Radiation Lightsource

    SciTech Connect (OSTI)

    Sokaras, D.; Nordlund, D.; Weng, T.-C.; Velikov, P.; Wenger, D.; Garachtchenko, A.; George, M.; Borzenets, V.; Johnson, B.; Rabedeau, T.; Mori, R. Alonso; Bergmann, U.; Qian, Q.

    2012-04-15

    We present a new x-ray Raman spectroscopy end-station recently developed, installed, and operated at the Stanford Synchrotron Radiation Lightsource. The end-station is located at wiggler beamline 6-2 equipped with two monochromators-Si(111) and Si(311) as well as collimating and focusing optics. It consists of two multi-crystal Johann type spectrometers arranged on intersecting Rowland circles of 1 m diameter. The first one, positioned at the forward scattering angles (low-q), consists of 40 spherically bent and diced Si(110) crystals with 100 mm diameters providing about 1.9% of 4{pi} sr solid angle of detection. When operated in the (440) order in combination with the Si (311) monochromator, an overall energy resolution of 270 meV is obtained at 6462.20 eV. The second spectrometer, consisting of 14 spherically bent Si(110) crystal analyzers (not diced), is positioned at the backward scattering angles (high-q) enabling the study of non-dipole transitions. The solid angle of this spectrometer is about 0.9% of 4{pi} sr, with a combined energy resolution of 600 meV using the Si (311) monochromator. These features exceed the specifications of currently existing relevant instrumentation, opening new opportunities for the routine application of this photon-in/photon-out hard x-ray technique to emerging research in multidisciplinary scientific fields, such as energy-related sciences, material sciences, physical chemistry, etc.

  12. Martin GmbH | Open Energy Information

    Open Energy Info (EERE)

    Martin designs and constructs the core component of waste-to-energy facilities, the combustion grate. References: Martin GmbH1 This article is a stub. You can help OpenEI by...

  13. Multi-channel polarized thermal emitter (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    by changing the mutual angle between the orientations of the two gratings. Authors: Lee, Jae-Hwang ; Ho, Kai-Ming ; Constant, Kristen P Publication Date: 2013-07-16 OSTI...

  14. Measurements of Spin Dynamics Reveal that Shape of Excitons in Quantum Rod Heterostructures Changes with Size (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    Using femtosecond cross-polarized transient grating (CPTG) and polarization anisotropy, NREL was able to probe the extent of electronic delocalization in CdSe/CdS quantum rod heterostructures (QRH) with a 'dot-in-rod' geometry.

  15. Dispersion compensation in chirped pulse amplification systems

    DOE Patents [OSTI]

    Bayramian, Andrew James; Molander, William A.

    2014-07-15

    A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.

  16. Phase-shifting point diffraction interferometer mask designs

    DOE Patents [OSTI]

    Goldberg, Kenneth Alan (Berkeley, CA)

    2001-01-01

    In a phase-shifting point diffraction interferometer, different image-plane mask designs can improve the operation of the interferometer. By keeping the test beam window of the mask small compared to the separation distance between the beams, the problem of energy from the reference beam leaking through the test beam window is reduced. By rotating the grating and mask 45.degree., only a single one-dimensional translation stage is required for phase-shifting. By keeping two reference pinholes in the same orientation about the test beam window, only a single grating orientation, and thus a single one-dimensional translation stage, is required. The use of a two-dimensional grating allows for a multiplicity of pinholes to be used about the pattern of diffracted orders of the grating at the mask. Orientation marks on the mask can be used to orient the device and indicate the position of the reference pinholes.

  17. New Mexico's 3rd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Gratings Inc Green Money Journal Green2V MesoFuel Inc Mirasol Solar Energy Systems Nature s Accent Inc Noribachi Group PNM Resources Perma Works Positive Energy Quantum Solar...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... D.A. ; Hardy, W.N. We report a transport study of nonequilibrium quasi-particles in a high-transition-temperature cuprate superconductor using the transient grating technique. ...

  19. Excitation of surface waves on one-dimensional solid-fluid phononic...

    Office of Scientific and Technical Information (OSTI)

    They also confirm that all propagating waves detected in water follow the grating law. Numerical simulations however reveal that in the sub-diffraction regime, acoustic energy of a ...

  20. Multi-channel polarized thermal emitter (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    technique called two-polymer microtransfer molding. The spectral positions of the mid-infrared (MIR) radiation peaks can be tuned by changing the periodicity of the gratings and...

  1. Development and operation of a high-throughput accurate-wavelength...

    Office of Scientific and Technical Information (OSTI)

    imaging. A precision optical encoder measures the grating angle with an accuracy 0.075 arc sec. A high quantum efficiency low-etaloning CCD detector allows operation at longer...

  2. D. R atner,1* R. Abela,2 J. A m ann...

    Office of Scientific and Technical Information (OSTI)

    ... During operation, pulse energy on the grating is de- term ined by extracting the seeding m onochrom ator op- tics and downstream undulators and measuring the to- tal energy with ...

  3. Optically transduced MEMS gyro device

    DOE Patents [OSTI]

    Nielson, Gregory N; Bogart, Gregory R; Langlois, Eric; Okandan, Murat

    2014-05-20

    A bulk micromachined vibratory gyro in which a proof mass has a bulk substrate thickness for a large mass and high inertial sensitivity. In embodiments, optical displacement transduction is with multi-layer sub-wavelength gratings for high sensitivity and low cross-talk with non-optical drive elements. In embodiments, the vibratory gyro includes a plurality of multi-layer sub-wavelength gratings and a plurality of drive electrodes to measure motion of the proof mass induced by drive forces and/or moments and induced by the Coriolis Effect when the gyro experiences a rotation. In embodiments, phase is varied across the plurality gratings and a multi-layer grating having the best performance is selected from the plurality.

  4. High channel density wavelength division multiplexer with defined diffracting means positioning

    DOE Patents [OSTI]

    Jannson, T.P.; Jannson, J.L.; Yeung, P.C.

    1990-05-15

    A wavelength division multiplexer/demultiplexer is disclosed having optical path lengths between a fiber array and a Fourier transform lens, and between a dispersion grating and the lens equal to the focal length of the lens. The optical path lengths reduce losses due to angular acceptance mismatch in the multiplexer. Close orientation of the fiber array about the optical axis and the use of a holographic dispersion grating reduces other losses in the system. Multi-exposure holographic dispersion gratings enable the multiplexer/demultiplexer for extremely broad-band simultaneous transmission and reflection operation. Individual Bragg plane sets recorded in the grating are dedicated to and operate efficiently on discrete wavelength ranges. 11 figs.

  5. February 22, 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 22, 2013 Print Wednesday, 30 January 2013 11:33 Friday, February 22 @ 12 noon, USB 15-253 Towards perfect diffraction gratings with x-rays Dmitriy Voronov, Experimental...

  6. STR/ITS: Instrument Selection

    Office of Environmental Management (EM)

    - 488 nm; 200 mW max power RoMack Inc. 20' fiber optic (6 around 1) on " VCR fitting Kaiser Optical Holospec- f1.8 I VIS w 488 grating Andor DV-420-OE CCD detector Detection...

  7. Tritium Instrument Demonstration Station (TIDS)

    Office of Environmental Management (EM)

    - 488 nm; 200 mW max power RoMack Inc. 20' fiber optic (6 around 1) on " VCR fitting Kaiser Optical Holospec- f1.8 I VIS w 488 grating Andor DV-420-OE CCD detector Detection...

  8. NREL Senior Research Fellow Honored by The Journal of Physical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    who does all of their research at a national laboratory. "I am grateful to the editorial board of The Journal of Physical Chemistry for this great honor and especially to...

  9. ALSNews Vol. 353

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a wide variety of extremely precise metrology equipment for characterizing the x-ray optics (mirrors and gratings) essential to modern light-source science. Suit up in your...

  10. Tue Wed Thu Fri Sat Sun Mon Tue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minitti L695 Gaffney L751 Petrovic L764 Schlichting List for web v5 1102013 Instr. Prop Title Spokes Person XCS L637 A grating-based delay line for x-ray pump x-ray probe...

  11. PARC 2 Renewal | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read Washington University's coverage We are very grateful for all the hard work and dedication put forth by PARC members over the previous 5 years and we look forward to...

  12. Measuring short electron bunch lengths using coherent smith-purcell radiation

    DOE Patents [OSTI]

    Nguyen, Dinh C. (Los Alamos, NM)

    1999-01-01

    A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches.

  13. Mathematical and computational modeling of the diffraction problems by discrete singularities method

    SciTech Connect (OSTI)

    Nesvit, K. V.

    2014-11-12

    The main objective of this study is reduced the boundary-value problems of scattering and diffraction waves on plane-parallel structures to the singular or hypersingular integral equations. For these cases we use a method of the parametric representations of the integral and pseudo-differential operators. Numerical results of the model scattering problems on periodic and boundary gratings and also on the gratings above a flat screen reflector are presented in this paper.

  14. Fire victim helped by area programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fire victim helped by area programs Fire victim helped by local nonprofit organizations A perennial helper, didn't realize that she might someday need help herself. April 3, 2012 Beatrice Dubois is grateful for the help she received from Lab-supported Beatrice Dubois is grateful for the help she received from Lab-supported, local nonprofits during her time of need. Contact Kathy Keith Community Relations & Partnerships (505) 665-4400 Email Beatrice Dubois, dedicated fundraiser, assisted

  15. Measuring short electron bunch lengths using coherent Smith-Purcell radiation

    DOE Patents [OSTI]

    Nguyen, D.C.

    1999-03-30

    A method is provided for directly determining the length of sub-picosecond electron bunches. A metallic grating is formed with a groove spacing greater than a length expected for the electron bunches. The electron bunches are passed over the metallic grating to generate coherent and incoherent Smith-Purcell radiation. The angular distribution of the coherent Smith-Purcell radiation is then mapped to directly deduce the length of the electron bunches. 8 figs.

  16. Apparatus for injecting high power laser light into a fiber optic cable

    DOE Patents [OSTI]

    Sweatt, William C. (Albuquerque, NM)

    1997-01-01

    High intensity laser light is evenly injected into an optical fiber by the combination of a converging lens and a multisegment kinoform (binary optical element). The segments preferably have multi-order gratings on each which are aligned parallel to a radial line emanating from the center of the kinoform and pass through the center of the element. The grating in each segment causes circumferential (lateral) dispersion of the light, thereby avoiding detrimental concentration of light energy within the optical fiber.

  17. Modeling and experimental studies of oxide covered metal surfaces: TiO{sub 2}/Ti a model system. Progress report

    SciTech Connect (OSTI)

    Smyrl, W.H.

    1991-12-31

    Prior work in our laboratories at the Corrosion Research Center has shown that thin, anodic TiO{sub 2} films formed by the Slow Growth Mode (SGM) on polycrystalline titanium and microcrystalline with a texture that varies from one metal grain to another. Furthermore, the underlying metal grains are mapped by the photoelectrochemical response of the oxide. The same characteristics have also been demonstrated in our laboratory for ZnO grown on Zn. The TiO{sub 2}/Ti system has been chosen for study both because of its importance in energy systems, and because it can serve as a model system for other metal-metal oxide couples. The investigations of anodic TiO{sub 2} films on Ti have shown that the properties of thin films are consistent with the rutile form of the oxide. Both experimental data and theoretical calculations show the close resemblance to results on single crystal TiO{sub 2}. Furthermore, the modeling studies reveal that the optical transitions near the bandedge arise from the bulk band structure. The photoelectrochemical properties of anodic TiO{sub 2} films have now been shown to obey the simple Gaertner-Butler model for the semiconductor-electrolyte interface, with a few modifications. The most important deviation has now been shown to be a result of multiple internal reflections in the oxide film.

  18. Modeling and experimental studies of oxide covered metal surfaces: TiO sub 2 /Ti a model system

    SciTech Connect (OSTI)

    Smyrl, W.H.

    1991-01-01

    Prior work in our laboratories at the Corrosion Research Center has shown that thin, anodic TiO{sub 2} films formed by the Slow Growth Mode (SGM) on polycrystalline titanium and microcrystalline with a texture that varies from one metal grain to another. Furthermore, the underlying metal grains are mapped by the photoelectrochemical response of the oxide. The same characteristics have also been demonstrated in our laboratory for ZnO grown on Zn. The TiO{sub 2}/Ti system has been chosen for study both because of its importance in energy systems, and because it can serve as a model system for other metal-metal oxide couples. The investigations of anodic TiO{sub 2} films on Ti have shown that the properties of thin films are consistent with the rutile form of the oxide. Both experimental data and theoretical calculations show the close resemblance to results on single crystal TiO{sub 2}. Furthermore, the modeling studies reveal that the optical transitions near the bandedge arise from the bulk band structure. The photoelectrochemical properties of anodic TiO{sub 2} films have now been shown to obey the simple Gaertner-Butler model for the semiconductor-electrolyte interface, with a few modifications. The most important deviation has now been shown to be a result of multiple internal reflections in the oxide film.

  19. Return to 1990: The cost of mitigating United States carbon emissions in the post-2000 period

    SciTech Connect (OSTI)

    Edmonds, J.A.; Kim, S.H.; MacCracken, C.N.; Sands, R.D.; Wise, M.A.

    1997-10-01

    The Second Generation Model (SGM) is employed to examine four hypothetical agreements to reduce emissions in Annex 1 nations (OECD nations plus most of the nations of Eastern Europe and the former Soviet Union) to levels in the neighborhood of those which existed in 1990, with obligations taking effect in the year 2010. The authors estimate the cost to the US of complying with such agreements under three distinct conditions: no trading of emissions rights, trading of emissions rights only among Annex 1 nations, and a fully global trading regime. The authors find that the marginal cost of returning to 1990 emissions levels in the US in the absence of trading opportunities is approximately $108 per metric ton carbon in 2010. The total cost in that year is approximately 0.2% of GDP. International trade in emissions permits lowers the cost of achieving any mitigation objective by equalizing the marginal cost of carbon mitigation among countries. For the four mitigation scenarios in this study, economic costs to the US remain below 1% of GDP through at least the year 2020.

  20. Crystal face temperature determination means

    DOE Patents [OSTI]

    Nason, D.O.; Burger, A.

    1994-11-22

    An optically transparent furnace having a detection apparatus with a pedestal enclosed in an evacuated ampule for growing a crystal thereon is disclosed. Temperature differential is provided by a source heater, a base heater and a cold finger such that material migrates from a polycrystalline source material to grow the crystal. A quartz halogen lamp projects a collimated beam onto the crystal and a reflected beam is analyzed by a double monochromator and photomultiplier detection spectrometer and the detected peak position in the reflected energy spectrum of the reflected beam is interpreted to determine surface temperature of the crystal. 3 figs.

  1. BL 11

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BL 11-2 Status and Scheduling Information Third Run 2001 BL 11-2 user commissioning is in full swing. March and April activities have centered around debugging and characterizing major electromechanical and optical systems of the beam line (motors, mirrors, and the 11-2 LN-cooled monochromator). We are now preparing for the upcoming run, of which 5 1/2 weeks are scheduled for user beam. Further commissioning work and new system testing will be interspersed between user beam periods. Notably,

  2. Beamline 10.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with

  3. Beamline 10.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with

  4. Beamline 10.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print X-ray fluorescence microprobe Scientific disciplines: Environmental science, detector development, low-dose radiation effects in cells GENERAL BEAMLINE INFORMATION Operational Yes, but not open to users Source characteristics Bend magnet Energy range 3-20 keV Monochromator White light, multilayer mirrors in Kirkpatrick-Baez configuration Calculated flux (1.9 GeV, 400 mA) 3 x 1010 photons/s at 12.5 keV Resolving power (E/ΔE) White light to 30 at 12 keV Endstations Large hutch with

  5. Beamline 11.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission Electron Microscope (PEEM3) 11.0.1.2: Soft X-Ray Scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations

  6. Beamline 11.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission Electron Microscope (PEEM3) 11.0.1.2: Soft X-Ray Scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations

  7. Beamline 11.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission Electron Microscope (PEEM3) 11.0.1.2: Soft X-Ray Scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations

  8. Beamline 11.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission Electron Microscope (PEEM3) 11.0.1.2: Soft X-Ray Scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations

  9. Beamline 11.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission Electron Microscope (PEEM3) 11.0.1.2: Soft X-Ray Scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations

  10. Beamline 11.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission Electron Microscope (PEEM3) 11.0.1.2: Soft X-Ray Scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations

  11. Beamline 11.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission Electron Microscope (PEEM3) 11.0.1.2: Soft X-Ray Scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations

  12. Beamline 11.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission Electron Microscope (PEEM3) 11.0.1.2: Soft X-Ray Scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations

  13. Beamline 11.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Beamline 11.0.1 Print Tuesday, 20 October 2009 09:16 PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission Electron Microscope (PEEM3) 11.0.1.2: Soft X-Ray Scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving

  14. Beamline 11.0.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print PEEM3, Soft X-Ray Scattering Scientific disciplines: Magnetism, materials, surface science, polymers Endstations: 11.0.1.1: Photoemission Electron Microscope (PEEM3) 11.0.1.2: Soft X-Ray Scattering GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 5.0-cm period elliptical polarization undulator (EPU5) Energy range 150-2000 eV Monochromator VLS-PGM Calculated flux (1.9 GeV, 400 mA) 1013 photons/s/0.1%BW at 800 eV Resolving power (E/ΔE) 4,000 at 800 eV Endstations

  15. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker AXS

  16. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker AXS

  17. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker

  18. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker AXS

  19. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Print Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford Cryosystems Cryostream Plus Detectors Bruker AXS

  20. Beamline 11.3.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.1 Beamline 11.3.1 Print Tuesday, 20 October 2009 09:22 Small-molecule crystallography Beamline 11.3.1 web site Scientific disciplines: Structural chemistry, magnetic materials, microporous materials. GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics Bend magnet Energy range 6-17 keV Monochromator Channel-cut Si(111) Flux (1.9 GeV, 400 mA) 1x1011 photons/s/0.01%BW at 10 keV Resolving power (E/ΔE) 1000 Endstations Medium sized hutch with Bruker AXS D8 diffractometer and Oxford