National Library of Energy BETA

Sample records for monitoring technical basis

  1. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    SciTech Connect (OSTI)

    COOPER, J.R.

    2000-04-17

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  2. Online Monitoring Technical Basis and Analysis Framework for Large Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transformers; Interim Report for FY 2012 | Department of Energy for Large Power Transformers; Interim Report for FY 2012 Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012 The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the U.S. Department of Energy Office of Nuclear Energy. The program is operated in collaboration with the Electric Power Research Institute's (EPRI's)

  3. Technical Planning Basis

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11

    The Guide assists DOE/NNSA field elements and operating contractors in identifying and analyzing hazards at facilities and sites to provide the technical planning basis for emergency management programs. Supersedes DOE G 151.1-1, Volume 2.

  4. Technical Basis for Work Place Air Monitoring for the Plutonium Finishing Plan (PFP)

    SciTech Connect (OSTI)

    JONES, R.A.

    1999-10-06

    This document establishes the basis for the Plutonium Finishing Plant's (PFP) work place air monitoring program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), Part 835 ''Occupational Radiation Protection''; Hanford Site Radiological Control Manual (HSRCM-1); HNF-PRO-33 1, Work Place Air Monitoring; WHC-SD-CP-SAR-021, Plutonium Finishing Plant Final Safety Analysis Report; and Applicable recognized national standards invoked by DOE Orders and Policies.

  5. Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

    SciTech Connect (OSTI)

    Nancy J. Lybeck; Vivek Agarwal; Binh T. Pham; Heather D. Medema; Kirk Fitzgerald

    2012-09-01

    The Light Water Reactor Sustainability program at Idaho National Laboratory (INL) is actively conducting research to develop and demonstrate online monitoring (OLM) capabilities for active components in existing Nuclear Power Plants. A pilot project is currently underway to apply OLM to Generator Step-Up Transformers (GSUs) and Emergency Diesel Generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working jointly to implement the pilot project. The EPRI Fleet-Wide Prognostic and Health Management (FW-PHM) Software Suite will be used to implement monitoring in conjunction with utility partners: the Shearon Harris Nuclear Generating Station (owned by Duke Energy for GSUs, and Braidwood Generating Station (owned by Exelon Corporation) for EDGs. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for GSUs. GSUs are main transformers that are directly connected to generators, stepping up the voltage from the generator output voltage to the highest transmission voltages for supplying electricity to the transmission grid. Technical experts from Shearon Harris are assisting INL and EPRI in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the FW-PHM Software Suite and tested using data from Shearon-Harris. Parallel research on EDGs is being conducted, and will be reported in an interim report during the first quarter of fiscal year 2013.

  6. Online Monitoring Technical Basis and Analysis Framework for Emergency Diesel Generators - Interim Report for FY 2013

    SciTech Connect (OSTI)

    Binh T. Pham; Nancy J. Lybeck; Vivek Agarwal

    2012-12-01

    The Light Water Reactor Sustainability program at Idaho National Laboratory is actively conducting research to develop and demonstrate online monitoring capabilities for active components in existing nuclear power plants. Idaho National Laboratory and the Electric Power Research Institute are working jointly to implement a pilot project to apply these capabilities to emergency diesel generators and generator step-up transformers. The Electric Power Research Institute Fleet-Wide Prognostic and Health Management Software Suite will be used to implement monitoring in conjunction with utility partners: Braidwood Generating Station (owned by Exelon Corporation) for emergency diesel generators, and Shearon Harris Nuclear Generating Station (owned by Duke Energy Progress) for generator step-up transformers. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for emergency diesel generators. Emergency diesel generators provide backup power to the nuclear power plant, allowing operation of essential equipment such as pumps in the emergency core coolant system during catastrophic events, including loss of offsite power. Technical experts from Braidwood are assisting Idaho National Laboratory and Electric Power Research Institute in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the Fleet-Wide Prognostic and Health Management Software Suite and tested using data from Braidwood. Parallel research on generator step-up transformers was summarized in an interim report during the fourth quarter of fiscal year 2012.

  7. Internal dosimetry technical basis manual

    SciTech Connect (OSTI)

    Not Available

    1990-12-20

    The internal dosimetry program at the Savannah River Site (SRS) consists of radiation protection programs and activities used to detect and evaluate intakes of radioactive material by radiation workers. Examples of such programs are: air monitoring; surface contamination monitoring; personal contamination surveys; radiobioassay; and dose assessment. The objectives of the internal dosimetry program are to demonstrate that the workplace is under control and that workers are not being exposed to radioactive material, and to detect and assess inadvertent intakes in the workplace. The Savannah River Site Internal Dosimetry Technical Basis Manual (TBM) is intended to provide a technical and philosophical discussion of the radiobioassay and dose assessment aspects of the internal dosimetry program. Detailed information on air, surface, and personal contamination surveillance programs is not given in this manual except for how these programs interface with routine and special bioassay programs.

  8. Technical basis for installation of the double shell tank exhaust flow monitoring systems

    SciTech Connect (OSTI)

    Willingham, W.E., Fluor Daniel Hanford

    1997-03-11

    This document presents the technical bases for installation of flow meters on the ventilation exhaust ducts of the flammable gas watch list double shell tanks (241-AN-103, 241-AN-104, 241-AN-105, 241-AN-107, 241-AW-101 and 241-SY-103), the saltwell receiver tanks (241-AN-101 and 241-SY-102) and the cross-site receiver tank (241-AP-104).

  9. Tank characterization technical sampling basis

    SciTech Connect (OSTI)

    Brown, T.M.

    1998-04-28

    Tank Characterization Technical Sampling Basis (this document) is the first step of an in place working process to plan characterization activities in an optimal manner. This document will be used to develop the revision of the Waste Information Requirements Document (WIRD) (Winkelman et al. 1997) and ultimately, to create sampling schedules. The revised WIRD will define all Characterization Project activities over the course of subsequent fiscal years 1999 through 2002. This document establishes priorities for sampling and characterization activities conducted under the Tank Waste Remediation System (TWRS) Tank Waste Characterization Project. The Tank Waste Characterization Project is designed to provide all TWRS programs with information describing the physical, chemical, and radiological properties of the contents of waste storage tanks at the Hanford Site. These tanks contain radioactive waste generated from the production of nuclear weapons materials at the Hanford Site. The waste composition varies from tank to tank because of the large number of chemical processes that were used when producing nuclear weapons materials over the years and because the wastes were mixed during efforts to better use tank storage space. The Tank Waste Characterization Project mission is to provide information and waste sample material necessary for TWRS to define and maintain safe interim storage and to process waste fractions into stable forms for ultimate disposal. This document integrates the information needed to address safety issues, regulatory requirements, and retrieval, treatment, and immobilization requirements. Characterization sampling to support tank farm operational needs is also discussed.

  10. Technical basis for dose reconstruction

    SciTech Connect (OSTI)

    Anspaugh, L.R.

    1996-01-31

    The purpose of this paper is to consider two general topics: technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied.

  11. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer ...

  12. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Life Cycle ...

  13. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus ...

  14. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2006-07-31

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  15. Technical Basis for PNNL Beryllium Inventory

    SciTech Connect (OSTI)

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  16. Technical Planning Basis - DOE Directives, Delegations, and Requiremen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, Technical Planning Basis by David Freshwater Functional areas: Defense Nuclear Facility Safety and Health Requirement, Safety and Security, The Guide assists DOENNSA field...

  17. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation lm001_das_2011_o.pdf (305.88 KB) More Documents & Publications Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Multi-Material Joining: Challenges and Opportunities

  18. Technical Basis for Assessing Uranium Bioremediation Performance

    SciTech Connect (OSTI)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  19. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  20. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2005-02-25

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  1. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2009-08-28

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  2. TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS

    SciTech Connect (OSTI)

    BERGLIN, E J

    2003-06-23

    This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

  3. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2011-04-04

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  4. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2010-04-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision

  5. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2007-03-12

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor

  6. Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology

    SciTech Connect (OSTI)

    Hill, Robin L.; Rathbone, Bruce A.

    2010-08-01

    The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41 standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).

  7. Technical WOrk Plan for: Construction Effects Monitoring

    SciTech Connect (OSTI)

    S. Goodin

    2006-09-14

    This document is the technical work plan (TWP) for performing the Construction Effects Monitoring (CEM) activity, which is one of 20 testing and monitoring activities included in Performance Confirmation Plan (BSC 2004 [DIRS 172452]). Collectively, the 20 activities make up the Performance Confirmation Program described in the plan. Each of the other 19 activities will have a separate TWP. This plan, though titled Construction Effects Monitoring, in accordance with the Performance Confirmation Plan, also includes testing that may be performed in addition to monitoring, if required. Performance confirmation is required by regulation 10 CFR Part 63 [DIRS 173273], and was started during site characterization (consistent with the regulation) and will continue until permanent closure of the repository (10 CFR 63.13 1 (b) [DIRS 173273]). This CEM activity has two primary goals: (1) to collect, analyze, and report on repository rock properties data for the purpose of confirming geotechnical and design parameters used in repository design, and (2) to provide information intended to confirm that the ability to retrieve waste from the repository has been preserved. It will be necessary for information from this CEM activity to be evaluated in combination with that obtained from other Performance Confirmation Program activities to achieve these goals. These relationships with other Performance Confirmation Program activities (e.g., drift inspection, subsurface mapping, and seismicity monitoring) will be discussed in later sections of this TWP.

  8. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2010-01-01

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the

  9. Technical Basis and Considerations for DOE M 435.1-1 (Appendix A)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09

    This appendix establishes the technical basis of the order revision process and of each of the requirements included in the revised radioactive waste management order.

  10. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reductions in GHG, criteria pollutants and acidification gases and * Development of LCA framework based on ISO standards and LCA technical reports such as 14040, 14044, and...

  11. Establishing the Technical Basis for Disposal of Heat-generating Waste in Salt

    Broader source: Energy.gov [DOE]

    The report summarizes available historic tests and the developed technical basis for disposal of heat-generating waste in salt, and the means by which a safety case for disposal of heat generating waste at a generic salt site can be initiated from the existing technical basis.

  12. Process monitoring using a Quality and Technical Surveillance Program

    SciTech Connect (OSTI)

    Rafferty, C.A.

    1995-02-01

    The purpose of process monitoring using a Quality and Technical Surveillance Program was to help ensure manufactured clad vents sets fully met technical and quality requirements established by the manufacturer and the customer, and that line and program management were immediately alerted if any aspect of the manufacturing activities drifted out of acceptable limits. The Quality and Technical Surveillance Program provided a planned, scheduled approach to monitor key processes and documentation illuminated potential problem areas early enough to permit timely corrective actions to reverse negative trends that, if left uncorrected, could have resulted in deficient hardware. Significant schedule and cost impacts were eliminated.

  13. Review and Approval of Nuclear Facility Safety Basis Documents (Documented Safety Analyses and Technical Safety Requirements)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-STD-1104-96 November 2005 CHANGE NOTICE NO. 3 Date December 2005 DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS DOCUMENTS (DOCUMENTED SAFETY ANALYSES AND TECHNICAL SAFETY REQUIREMENTS) U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information

  14. Human-system Interfaces to Automatic Systems: Review Guidance and Technical Basis

    SciTech Connect (OSTI)

    OHara, J.M.; Higgins, J.C.

    2010-01-31

    Automation has become ubiquitous in modern complex systems and commercial nuclear power plants are no exception. Beyond the control of plant functions and systems, automation is applied to a wide range of additional functions including monitoring and detection, situation assessment, response planning, response implementation, and interface management. Automation has become a 'team player' supporting plant personnel in nearly all aspects of plant operation. In light of the increasing use and importance of automation in new and future plants, guidance is needed to enable the NRC staff to conduct safety reviews of the human factors engineering (HFE) aspects of modern automation. The objective of the research described in this report was to develop guidance for reviewing the operator's interface with automation. We first developed a characterization of the important HFE aspects of automation based on how it is implemented in current systems. The characterization included five dimensions: Level of automation, function of automation, modes of automation, flexibility of allocation, and reliability of automation. Next, we reviewed literature pertaining to the effects of these aspects of automation on human performance and the design of human-system interfaces (HSIs) for automation. Then, we used the technical basis established by the literature to develop design review guidance. The guidance is divided into the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, we identified insights into the automaton design process, operator training, and operations.

  15. Technical Basis Spent Nuclear Fuel (SNF) Project Radiation and Contamination Trending Program

    SciTech Connect (OSTI)

    KURTZ, J.E.

    2000-05-10

    This report documents the technical basis for the Spent Nuclear Fuel (SNF) Program radiation and contamination trending program. The program consists of standardized radiation and contamination surveys of the KE Basin, radiation surveys of the KW basin, and radiation surveys of the Cold Vacuum Drying Facility (CVD) with the associated tracking. This report also discusses the remainder of radiological areas within the SNFP that do not have standardized trending programs and the basis for not having this program in those areas.

  16. Technical basis for the aboveground structure failure and associated represented hazardous conditions

    SciTech Connect (OSTI)

    MANGAN, D.

    2003-03-20

    The purpose of the Technical Basis Document is to determine the consequences and frequency of aboveground structure failures. These failures include drops of contained equipment, such as a pump, from a SST or DST, a crane failure resulting in a load drop onto a HEPA filter. These failures can result in an uncontrolled release of radiological and toxicological material.

  17. Technical Work Plan For: Meteorological Monitoring and Data Analysis

    SciTech Connect (OSTI)

    C.T. Bastian

    2003-03-28

    The meteorological monitoring and analysis program has three overall objectives. First, the program will acquire qualified meteorological data from monitoring activities in the Environmental Safety and Health (ES&H) network, including appropriate controls on measuring and test equipment. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The continuously operating monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. Second, the program will process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. Third, reports containing analyses or calculations could be created to provide information to data requesters.

  18. Technical Basis Spent Nuclear Fuel (SNF) Project Radiation and Contamination Trending Program

    SciTech Connect (OSTI)

    ELGIN, J.C.

    2000-10-02

    This report documents the technical basis for the Spent Nuclear Fuel (SNF) Program radiation and contamination trending program. The program consists of standardized radiation and contamination surveys of the KE Basin, radiation surveys of the KW basin, radiation surveys of the Cold Vacuum Drying Facility (CVD), and radiation surveys of the Canister Storage Building (CSB) with the associated tracking. This report also discusses the remainder of radiological areas within the SNFP that do not have standardized trending programs and the basis for not having this program in those areas.

  19. Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document provides the technical basis for the Department of Energy (DOE) Policy (P) 420.1, Nuclear Safety Policy, dated 2-8-2011. It includes an analysis of the revised Policy to determine whether it provides the necessary and sufficient high-level expectations that will lead DOE to establish and implement appropriate requirements to assure protection of the public, workers, and the environment from the hazards of DOE’s operation of nuclear facilities.

  20. Appendix E Technical Memorandum Regarding Instrumentation and Monitoring

    Office of Legacy Management (LM)

    1 3801 Automation Way Suite 100 Fort Collins CO 80525 Tel 970.223.9600 Fax 970.223.7171 www.tetratech.com Technical Memorandum To: Mr. Rick DiSalvo From: Lance Heyer, EI Thomas A. Chapel, PE Company: S. M. Stoller Corporation Date: March 30, 2012 Re: Instrumentation and Monitoring, Rocky Flats OLF Tt Project #: 114-181750 Introduction This technical memorandum provides a summary and evaluation of data collected from inclinometer and piezometer instrumentation at the Rocky Flats Original Landfill

  1. RCRA ground-water monitoring: Draft technical guidance

    SciTech Connect (OSTI)

    Not Available

    1992-11-01

    The manual was prepared to provide guidance for implementing the ground-water monitoring regulations for regulated units contained in 40 CFR Part 264 Subpart F and the permitting standards of 40 CFR Part 270. The manual also provides guidance to owners and operators of treatment, storage, and disposal facilities (TSDFs) that are required to comply with the requirements of 40 CFR Part 264 Subparts J (Tank Systems), K (Surface Impoundments), L (Waste Piles), N (Landfills), and X (Miscellaneous Units). This document updates technical information contained in other sources of U.S. EPA guidance, such as chapter eleven of SW-846 (Revision O, September 1986) and the Technical Enforcement Guidance Document (TEGD).

  2. Raciometry J. W. Griffin, Technical Monitor ARM Instrument Development Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. W. Griffin, Technical Monitor ARM Instrument Development Program Pacific Northwest Laboratory Richland, Washington the end of FY93 are noted. Fiscal Year 1993 is the third and final year of the initial (3-year) funding cycle for ARM- funded instrument development projects. That is, IDP principal investigators will be required to submit a new proposal in order to be considered for funding beyond September 30, 1993. As for the first funding cycle, continuation proposals will be peer-reviewed

  3. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    SciTech Connect (OSTI)

    Petersen, C.A.

    1996-09-20

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  4. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    SciTech Connect (OSTI)

    Petersen, C.A., Westinghouse Hanford

    1996-07-17

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  5. FY2001 Tank Characterization Technical Sampling Basis & Waste Information Requirements Document

    SciTech Connect (OSTI)

    ADAMS, M.R.

    2000-08-02

    The Fiscal Year 2001 Tank Characterization Technical Sampling Basis and Waste Information Requirements Document (TSB-WIRD) has the following purposes: (1) To identify and integrate sampling and analysis needs for fiscal year (FY) 2001 and beyond. (2) To describe the overall drivers that require characterization information and to document their source. (3) To describe the process for identifying, prioritizing, and weighting issues that require characterization information to resolve. (4) To define the method for determining sampling priorities and to present the sampling priorities on a tank-by-tank basis. (5) To define how the characterization program is going to satisfy the drivers, close issues, and report progress. (6)To describe deliverables and acceptance criteria for characterization deliverables.

  6. Technical Work Plan For: Meteorological Monitoring Data Analysis

    SciTech Connect (OSTI)

    R. Green

    2006-02-06

    The meteorological monitoring and analysis program has five objectives. (1) Acquire qualified meteorological data from YMP meteorological monitoring network using appropriate controls on measuring and test equipment. Because this activity is monitoring (i.e., recording naturally occurring events) pre-test predictions are not applicable. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The meteorological monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. (2) Process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. (3) Develop analyses or calculations to provide information to data requesters and provide data sets as requested. (4) Provide precipitation amounts to Site Operations to support requirements to perform inspections in the Stormwater Pollution Prevention Plan (implemented in LP-OM-050Q-BSC) following storm events of greater than 0.5 inches. The program also provides meteorological data during extreme weather conditions (e.g., high winds, rainstorms, etc.) to support decisions regarding worker safety. (5) Collect samples of precipitation for chemical and isotopic analysis by the United States Geological Survey (USGS). The BSC ES&H Environmental Compliance organization is responsible for performing this work. Data from calendar-year periods are submitted to the TDMS to provide YMP users with qualified meteorological data for scientific modeling and analyses, engineering designs of surface facilities, performance assessment analyses, and operational safety issues.

  7. Composition and Technical Basis for K Basin Settler Sludge Simulant for Inspection, Retrieval, and Pump Testing

    SciTech Connect (OSTI)

    Schmidt, Andrew J.; Zacher, Alan H.

    2007-06-25

    This report provides the formulation and technical basis for a K Basin Settler Tank Sludge simulant that will be used by the K Basin Closure Project (KBC) to test and develop equipment/approaches for Settler Tank sludge level measurement and retrieval in a mock-up test system of the actual Settler Tanks. The sludge simulant may also be used to demonstrate that the TOYO high pressure positive displacement pump design (reversing valves and hollow balls) is suitable for transfer of Settler Tank sludge from the K West (KW) Basin to the Cold Vacuum Drying Facility (CVDF) (~500 ft). As requested the by the K Basins Sludge Treatment Project (STP) the simulant is comprised of non-radioactive (and non-uranium) constituents.

  8. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 2, Technical basis

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume, Volume 2, contains the technical basis for the 1992 PA. Specifically, it describes the conceptual basis for consequence modeling and the PA methodology, including the selection of scenarios for analysis, the determination of scenario probabilities, and the estimation of scenario consequences using a Monte Carlo technique and a linked system of computational models. Additional information about the 1992 PA is provided in other volumes. Volume I contains an overview of WIPP PA and results of a preliminary comparison with the long-term requirements of the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses related to the preliminary comparison with 40 CFR 191B. Volume 5 contains uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance. Finally, guidance derived from the entire 1992 PA is presented in Volume 6.

  9. Site Screening and Technical Guidance for Monitored Natural Attenuation at DOE Sites

    SciTech Connect (OSTI)

    Borns, D.J.; Brady, P.V.; Brady, W.D.; Krupka, K.M.; Spalding, B.P.; Waters, R.D.; Zhang, P.

    1999-03-01

    Site Screening and Technical Guidance for Monitored Natural Attenuation at DOE Sites briefly outlines the biological and geochemical origins of natural attenuation, the tendency for natural processes in soils to mitigate contaminant transport and availability, and the means for relying on monitored natural attenuation (MNA) for remediation of contaminated soils and groundwaters. This report contains a step-by-step guide for (1) screening contaminated soils and groundwaters on the basis of their potential for remediation by natural attenuation and (2) implementing MNA consistent with EPA OSWER Directive 9200.4-17. The screening and implementation procedures are set up as a web-based tool (http://www.sandia.gov/eesector/gs/gc/na/mnahome.html) to assist US Department of Energy (DOE) site environmental managers and their staff and contractors to adhere to EPA guidelines for implementing MNA. This document is intended to support the Decision Maker's Framework Guide and Monitoring Guide both to be issued from DOE EM-40. Further technical advances may cause some of the approach outlined in this document to change over time.

  10. High integrity software for nuclear power plants: Candidate guidelines, technical basis and research needs. Executive summary: Volume 1

    SciTech Connect (OSTI)

    Seth, S.; Bail, W.; Cleaves, D.; Cohen, H.; Hybertson, D.; Schaefer, C.; Stark, G.; Ta, A.; Ulery, B.

    1995-06-01

    The work documented in this report was performed in support of the US Nuclear Regulatory Commission to examine the technical basis for candidate guidelines that could be considered in reviewing and evaluating high integrity computer software used in the safety systems of nuclear power plants. The framework for the work consisted of the following software development and assurance activities: requirements specification; design; coding; verification and validation, including static analysis and dynamic testing; safety analysis; operation and maintenance; configuration management; quality assurance; and planning and management. Each activity (framework element) was subdivided into technical areas (framework subelements). The report describes the development of approximately 200 candidate guidelines that span the entire range of software life-cycle activities; the assessment of the technical basis for those candidate guidelines; and the identification, categorization and prioritization of research needs for improving the technical basis. The report has two volumes: Volume 1, Executive Summary, includes an overview of the framework and of each framework element, the complete set of candidate guidelines, the results of the assessment of the technical basis for each candidate guideline, and a discussion of research needs that support the regulatory function; Volume 2 is the main report.

  11. Final Technical Report: Development of Post‐Installation Monitoring Capabilities

    SciTech Connect (OSTI)

    Polagye, Brian

    2014-03-31

    The development of approaches to harness marine and hydrokinetic energy at large‐scale is predicated on the compatibility of these generation technologies with the marine environment. At present, aspects of this compatibility are uncertain. Demonstration projects provide an opportunity to address these uncertainties in a way that moves the entire industry forward. However, the monitoring capabilities to realize these advances are often under‐developed in comparison to the marine and hydrokinetic energy technologies being studied. Public Utility District No. 1 of Snohomish County has proposed to deploy two 6‐meter diameter tidal turbines manufactured by OpenHydro in northern Admiralty Inlet, Puget Sound, Washington. The goal of this deployment is to provide information about the environmental, technical, and economic performance of such turbines that can advance the development of larger‐scale tidal energy projects, both in the United States and internationally. The objective of this particular project was to develop environmental monitoring plans in collaboration with resource agencies, while simultaneously advancing the capabilities of monitoring technologies to the point that they could be realistically implemented as part of these plans. In this, the District was joined by researchers at the Northwest National Marine Renewable Energy Center at the University of Washington, Sea Mammal Research Unit, LLC, H.T. Harvey & Associates, and Pacific Northwest National Laboratory. Over a two year period, the project team successfully developed four environmental monitoring and mitigation plans that were adopted as a condition of the operating license for the demonstration project that issued by the Federal Energy Regulatory Commission in March 2014. These plans address nearturbine interactions with marine animals, the sound produced by the turbines, marine mammal behavioral changes associated with the turbines, and changes to benthic habitat associated with

  12. Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant

    SciTech Connect (OSTI)

    Hickey, Eva E.; Strom, Daniel J.

    2005-08-01

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

  13. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    SciTech Connect (OSTI)

    FAYER JM; FREEDMAN VL; WARD AL; CHRONISTER GB

    2010-02-24

    tasks to achieve those outcomes. Full understanding of contaminant behavior in the deep vadose zone is constrained by four key data gaps: limited access; limited data; limited time; and the lack of an accepted predictive capability for determining whether surface barriers can effectively isolate deep vadose zone contaminants. Activities designed to fill these data gaps need to have these outcomes: (1) common evaluation methodology that provides a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination; (2) deep vadose zone data that characterize the lithology, the spatial distribution of moisture and contaminants, the physical, chemical, and biological process that affect the mobility of each contaminant, and the impacts to the contaminants following placement of a surface barrier; (3) subsurface monitoring to provide subsurface characterization of initial conditions and changes that occur during and following remediation activities; and (4) field observations that span years to decades to validate the evaluation methodology. A set of six proposed tasks was identified to provide information needed to address the above outcomes. The proposed tasks are: (1) Evaluation Methodology - Develop common evaluation methodology that will provide a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination. (2) Case Studies - Conduct case studies to demonstrate the applicability ofthe common evaluation methodology and provide templates for subsequent use elsewhere. Three sites expected to have conditions that would yield valuable information and experience pertinent to deep vadose zone contamination were chosen to cover a range of conditions. The sites are BC Cribs and Trenches, U Plant Cribs, and the T Farm Interim Cover. (3) Subsurface Monitoring Technologies - Evaluate minimally invasive

  14. Technical Basis for Certification of Seismic Design Criteria for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Brouns, T.M.; Rohay, A.C. [Pacific Northwest National Laboratory, Richland, WA (United States); Youngs, R.R. [Geomatrix Consultants, Inc., Oakland, CA (United States); Costantino, C.J. [C.J. Costantino and Associates, Valley, NY (United States); Miller, L.F. [U.S. Department of Energy, Office of River Protection, Richland, WA (United States)

    2008-07-01

    In August 2007, Secretary of Energy Samuel W. Bodman approved the final seismic and ground motion criteria for the Waste Treatment and Immobilization Plant (WTP) at the Department of Energy's (DOE) Hanford Site. Construction of the WTP began in 2002 based on seismic design criteria established in 1999 and a probabilistic seismic hazard analysis completed in 1996. The design criteria were reevaluated in 2005 to address questions from the Defense Nuclear Facilities Safety Board (DNFSB), resulting in an increase by up to 40% in the seismic design basis. DOE announced in 2006 the suspension of construction on the pretreatment and high-level waste vitrification facilities within the WTP to validate the design with more stringent seismic criteria. In 2007, the U.S. Congress mandated that the Secretary of Energy certify the final seismic and ground motion criteria prior to expenditure of funds on construction of these two facilities. With the Secretary's approval of the final seismic criteria in the summer of 2007, DOE authorized restart of construction of the pretreatment and high-level waste vitrification facilities. The technical basis for the certification of seismic design criteria resulted from a two-year Seismic Boreholes Project that planned, collected, and analyzed geological data from four new boreholes drilled to depths of approximately 1400 feet below ground surface on the WTP site. A key uncertainty identified in the 2005 analyses was the velocity contrasts between the basalt flows and sedimentary interbeds below the WTP. The absence of directly-measured seismic shear wave velocities in the sedimentary interbeds resulted in the use of a wider and more conservative range of velocities in the 2005 analyses. The Seismic Boreholes Project was designed to directly measure the velocities and velocity contrasts in the basalts and sediments below the WTP, reanalyze the ground motion response, and assess the level of conservatism in the 2005 seismic design criteria

  15. Human System Simulation in Support of Human Performance Technical Basis at NPPs

    SciTech Connect (OSTI)

    David Gertman; Katya Le Blanc; alan mecham; william phoenix; Magdy Tawfik; Jeffrey Joe

    2010-06-01

    This paper focuses on strategies and progress toward establishing the Idaho National Laboratorys (INLs) Human Systems Simulator Laboratory at the Center for Advanced Energy Studies (CAES), a consortium of Idaho State Universities. The INL is one of the National Laboratories of the US Department of Energy. One of the first planned applications for the Human Systems Simulator Laboratory is implementation of a dynamic nuclear power plant simulation (NPP) where studies of operator workload, situation awareness, performance and preference will be carried out in simulated control rooms including nuclear power plant control rooms. Simulation offers a means by which to review operational concepts, improve design practices and provide a technical basis for licensing decisions. In preparation for the next generation power plant and current government and industry efforts in support of light water reactor sustainability, human operators will be attached to a suite of physiological measurement instruments and, in combination with traditional Human Factors Measurement techniques, carry out control room tasks in simulated advanced digital and hybrid analog/digital control rooms. The current focus of the Human Systems Simulator Laboratory is building core competence in quantitative and qualitative measurements of situation awareness and workload. Of particular interest is whether introduction of digital systems including automated procedures has the potential to reduce workload and enhance safety while improving situation awareness or whether workload is merely shifted and situation awareness is modified in yet to be determined ways. Data analysis is carried out by engineers and scientists and includes measures of the physical and neurological correlates of human performance. The current approach supports a user-centered design philosophy (see ISO 13407 Human Centered Design Process for Interactive Systems, 1999) wherein the context for task performance along with the

  16. Technical Basis for Evaluating Surface Barriers to Protect Groundwater from Deep Vadose Zone Contamination

    SciTech Connect (OSTI)

    Fayer, Michael J.; Ward, Anderson L.; Freedman, Vicky L.

    2010-02-03

    This document presents a strategy for evaluating the effectiveness of surface barriers for site-specific deep vadose zone remediation. The strategy provides a technically defensible approach to determine the depth to which a surface barrier can effectively isolate contaminants in the vadose at a specific site as a function of subsurface properties, contaminant distribution, barrier design, and infiltration control performance. The strategy also provides an assessment of additional data and information needs with respect to surface barrier performance for deep vadose zone applications. The strategy addresses the linkage between surface barriers and deep vadose zone in situ remediation activities, monitoring issues, and emerging science, technology, and regulatory objectives. In short, the report documents the existing knowledge base, identifies knowledge needs (based on data gaps), and suggests tasks whose outcomes will address those knowledge needs. More important, the report serves as a starting point to engage the regulator and stakeholder community on the viability of deploying surface barriers for deep vadose zone contamination. As that engagement unfolds, a systematic methodology can be formalized and instituted. The strategy is focused on deep vadose zone contamination and the methods needed to determine the impact to groundwater from those deep vadose zone contaminants. Processes that affect surface barrier performance, recharge in the areas surrounding the surface barrier, and the near-surface vadose zone beneath the barrier are acknowledged but are not addressed by this strategy. In addition, the collection of site-specific data on contaminant distribution and geologic structure and properties are programmatic responsibilities and are not provided by this strategy.

  17. Light Water Reactor Sustainability Program Technical Basis Guide Describing How to Perform Safety Margin Configuration Risk Management

    SciTech Connect (OSTI)

    Curtis Smith; James Knudsen; Bentley Harwood

    2013-08-01

    The INL has carried out a demonstration of the RISMC approach for the purpose of configuration risk management. We have shown how improved accuracy and realism can be achieved by simulating changes in risk as a function of different configurations in order to determine safety margins as the plant is modified. We described the various technical issues that play a role in these configuration-based calculations with the intent that future applications can take advantage of the analysis benefits while avoiding some of the technical pitfalls that are found for these types of calculations. Specific recommendations have been provided on a variety of topics aimed at improving the safety margin analysis and strengthening the technical basis behind the analysis process.

  18. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    SciTech Connect (OSTI)

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-08-01

    This report presents preliminary research results from the investigation into the development of new models and guidance for Concepts of Operations in advanced small modular reactor (AdvSMR) designs. AdvSMRs are nuclear power plants (NPPs), but unlike conventional large NPPs that are constructed on site, AdvSMRs systems and components will be fabricated in a factory and then assembled on site. AdvSMRs will also use advanced digital instrumentation and control systems, and make greater use of automation. Some AdvSMR designs also propose to be operated in a multi-unit configuration with a single central control room as a way to be more cost-competitive with existing NPPs. These differences from conventional NPPs not only pose technical and operational challenges, but they will undoubtedly also have regulatory compliance implications, especially with respect to staffing requirements and safety standards.

  19. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    SciTech Connect (OSTI)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  20. Technical basis for cases N-629 and N-631 as an alternative for RTNDT reference temperature

    SciTech Connect (OSTI)

    Merkle, John Graham; Server, W. L.

    2007-01-01

    ASME Code Cases N-629/N-631, published in 1999, provided an important new approach to allow material specific, measured fracture toughness curves for ferritic steels in the code applications. This has enabled some of the nuclear power plants whose reactor pressure vessel materials reached a certain threshold level based on overly conservative rules to use an alternative RTNDT to justify continued operation of their plants. These code cases have been approved by the US Nuclear Regulatory Commission and these have been proposed to be codified in Appendix A and Appendix G of the ASME Boiler and Pressure Vessel Code. This paper summarizes the basis of this approach for the record.

  1. Technical basis and proposal for deriving sediment quality criteria for metals

    SciTech Connect (OSTI)

    Ankley, G.T.; Toro, D.M. di |; Hansen, D.J.; Berry, W.J.

    1996-12-01

    In developing sediment quality criteria (SQC) for metals, it is essential that bioavailability be a prime consideration. Different studies have shown that while dry weight metal concentrations in sediments are not predictive of bioavailability, metal concentrations in interstitial (pore) water are correlated with observed biological effects. A key partitioning phase controlling cationic metal activity and toxicity in the sediment-interstitial water system is acid-volatile sulfide (AVS). Acid-volatile sulfide binds, on a mole-to-mole basis, a number of cationic metals of environmental concern (cadmium, copper, nickel, lead, zinc) forming insoluble sulfide complexes with minimal biological availability. Short-term (10-d) laboratory studies with a variety of marine and freshwater benthic organisms have demonstrated that when AVS concentrations in spiked or field-collected sediments exceed those of metals simultaneously extracted with the AVS, interstitial water metal concentrations remain below those predicted to cause effects, and toxicity does not occur. Similar observations have been made in life-cycle laboratory toxicity tests with amphipods and chironomids in marine and freshwater sediments spiked with cadmium and zinc, respectively. In addition, field colonization experiments, varying in length from several months to more than 1 year, with cadmium- or zinc-spiked freshwater and marine sediments, have demonstrated a lack of biological effects when there is sufficient AVS to limit interstitial water metal concentrations. These studies on metal bioavailability and toxicity in sediments serve as the basis for proposed SQC for the metals cadmium, copper, nickel, lead, and zinc.

  2. Technical Basis for Certification of Seismic Design Criteria for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect (OSTI)

    Brouns, Thomas M.; Rohay, Alan C.; Youngs, Robert R.; Costantino, Carl J.; Miller, Lewis F.

    2008-02-28

    In August 2007, Secretary of Energy Samuel W. Bodman approved the final seismic and ground motion criteria for the Waste Treatment and Immobilization Plant (WTP) at the Department of Energys (DOE) Hanford Site. Construction of the WTP began in 2002 based on seismic design criteria established in 1999 and a probabilistic seismic hazard analysis completed in 1996. The design criteria were re-evaluated in 2005 to address questions from the Defense Nuclear Facilities Safety Board (DNFSB), resulting in an increase by up to 40% in the seismic design basis. DOE announced in 2006 the suspension of construction on the pretreatment and high-level waste vitrification facilities within the WTP to validate the design with more stringent seismic criteria. In 2007, the U.S. Congress mandated that the Secretary of Energy certify the final seismic and ground motion criteria prior to expenditure of funds on construction of these two facilities. With the Secretarys approval of the final seismic criteria this past summer, DOE authorized restart of construction of the pretreatment and high-level waste vitrification facilities.

  3. The Effects of Degraded Digital Instrumentation and Control Systems on Human-system Interfaces and Operator Performance: HFE Review Guidance and Technical Basis

    SciTech Connect (OSTI)

    O'Hara, J.M.; W. Gunther, G. Martinez-Guridi

    2010-02-26

    New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.

  4. Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Martin, Wayne J.

    2001-07-23

    Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

  5. Geochemistry Technical Basis Document

    SciTech Connect (OSTI)

    Benedict, Jr, F Christopher; Rose, Timothy P; Thomas, James M; Waddell, Richard; Jacobson, Roger

    2004-03-18

    This document presents a methodology whereby geochemical data can more effectively contribute to the development , calibration, and verification of groundwater flow and slute transport models for the Underground Test Area (UGTA) Project.

  6. Enterprise Assessments Operational Awareness Record for the Review of the Technical Planning Basis at the Waste Isolation Pilot Plant (EA-WIPP-TPB-2016-04-05)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA Operational Awareness Record Report Number: EA-WIPP-TPB-2016-04-05 Site: Waste Isolation Pilot Plant Subject: Observation of Emergency Management Technical Planning Dates of Activity: 04/05/16 - 04/21/16 Report Preparer: Kurt Runge Activity Description/Purpose: The U.S. Department of Energy (DOE) Office of Emergency Management Assessments, within the independent Office of Enterprise Assessments (EA) reviewed portions of the technical planning basis for the Waste Isolation Pilot Plant (WIPP)

  7. Technical basis for radiological release of Grand Junction Office Building 2. Volume 2, dose assessment supporting data

    SciTech Connect (OSTI)

    1997-07-01

    The second volume of the Grand Junction Office Action Program Technical Basis for Radiological Release of Grand Junction Office Building 2 report includes the data quality objectives (DQO), sampling plan, collected data, and analysis used to model future radiation doses to members of the public occupying Building 2 on the U.S. Department of Energy (DOE) Grand Junction Office (GJO) site. This volume was assembled by extracting relevant components of the Grand Junction Projects Office Remedial Action Project Building 2 Public Dose Evaluation (DOE 1996) and inserting recent additional data that was gathered and dose pathway modeling that was performed. The intent of this document is to provide all derived guidance decisions, assumptions, measured data, testing results, and pathway modeling software input and output data that supports the discussion and determinations presented in Volume 1 of this report. For constructive employment of this document, the reader is encouraged to closely follow Volume 1 for proper association with the segment of information being examined.

  8. Technical basis for flawed cylinder test specification to assure adequate fracture resistance of ISO high-strength steel cylinder

    SciTech Connect (OSTI)

    Rana, M.D.; Smith, J.H.; Tribolet, R.O.

    1997-11-01

    High-pressure industrial gases (such as oxygen, nitrogen, argon, hydrogen, etc.) are stored and transported in portable cylinders. ISO TC58 SC3 has developed a draft specification 9809 for design and fabrication of high-pressure cylinders with maximum tensile strength limitation of 1,100 N/mm{sup 2}. In order to extend the ISO 9809 rules for higher than 1,100 N/mm{sup 2} strength level cylinders, a working group WG14 was formed in 1989 to develop new rules to assure adequate fracture resistance. In 1994, WG14 recommended a simple, but unique flawed cylinder test method for design qualification of the cylinder and acceptance criteria to assure adequate fracture resistance. WG14 also recommended Charpy-V-notch impact tests to control the required fracture resistance on production cylinders. This paper presents the technical basis that was employed in developing the flawed cylinder test method and acceptance criteria. The specification was developed for seamless steel cylinders having actual strength in the range of 1,100 to 1,400 N/mm{sup 2} and cylindrical section wall thickness in the range of 3 to 10 mm. Flawed cylinder tests were conducted on several hundred cylinders of varying sizes and strength levels. The specification requires to demonstrate LEAK-BEFORE-BREAK performance of the cylinder having flaw length equal to 1.6 (o.d. {times} t{sub design}){sup 0.5} at failure pressure = (t{sub design}/t{sub actual}) x Design Pressure.

  9. Technical basis for flawed cylinder test specification to assure adequate fracture resistance of ISO high strength steel cylinder

    SciTech Connect (OSTI)

    Rana, M.D.; Smith, J.H.; Tribolet, R.O.

    1996-12-01

    High pressure industrial gases (such as oxygen, nitrogen, argon, hydrogen, etc.) are stored and transported in portable cylinders. ISO TC58 SC3 has developed a draft specification 9809 for design and fabrication of high pressure cylinders with maximum tensile strength limitation of 1,100 N/mm{sup 2}. In order to extend the ISO 9809 rules for higher than 1,100 N/mm{sup 2} strength level cylinders, a working group WG14 was formed in 1989 to develop new rules to assure adequate fracture resistance. In 1994, WG14 recommended a simple, but unique flawed cylinder test method for design qualification of the cylinder and acceptance criteria to assure adequate fracture resistance. WG14 also recommended Charpy-V-Notch impact tests to control the required fracture resistance on production cylinders. This paper presents the technical basis that was employed in developing the flawed cylinder test method and acceptance criteria. The specification was developed for seamless steel cylinders having actual strength in the range of 1,100 to 1,400 N/mm{sup 2} and cylindrical section wall thickness in the range of 3mm to 10mm. Flawed cylinder tests were conducted on several hundred cylinders of varying sizes and strength levels. The specification requires to demonstrate LEAK-BEFORE-BREAK performance of the cylinder having flaw length equal to 1.6(O.D. {times} t{sub design}){sup 0.5} at failure pressure = (t{sub design}/t{sub actual}) {times} Design Pressure.

  10. Environmental Radiation Monitoring at the Areas of the Former Military Technical Bases at the Russian Far East - 12445

    SciTech Connect (OSTI)

    Kiselev, Sergey M.; Shandala, Nataliya K.; Titov, Alexey V.; Seregin, Vladimir A.; Akhromeev, Sergey V.; Lucyanec, Anatoly I.; Glinsky, Mark L.; Glagolev, Andrey V.

    2012-07-01

    After termination of operation at the serviced facilities of the nuclear fleet of the former Soviet Union, the Military Technical Base in Sysoeva Bay has been reorganized to the site for SNF and RW temporary storage (STS). The main activities of STS are receipt, storage and transmission to radioactive waste reprocessing. Establishment of the RW management regional centre in the Far-Eastern region at the STS in Sysoeva Bay implies intensification of SNF and RW management in this region that can result in increasing ecological load to the adjacent areas and settlements. Regulatory supervision of the radiation safety at the areas of the Former Military Technical Bases at the Russian Far East is one of the regulatory functions of the Federal Medical Biological Agency (FMBA of Russia). To regulate SNF an RW management and provide the effective response to changing radiation situation, the environmental radiation monitoring system is arranged. For this purpose, wide range of environmental media examinations at the Sysoeva Bay STS was performed by Burnasyan Federal Medical Biophysical Centre - a technical support organization of FMBA of Russia in collaboration with the Federal State Geological Enterprise 'Hydrospecgeology' (Federal Agency for Entrails). Regulation during the RW and SNF management is continuous process, which the FMBA of Russia implements in close cooperation with other Russian responsible authorities - the State Atomic Energy Corporation 'Rosatom' and Federal Agency for Entrails. The Environmental radiation monitoring findings served as a basis for the associated databank arrangement. The radio ecological monitoring system was arranged at the facilities under inspection for the purpose of the dynamic control of the radiation situation. It presupposes regular radiometry inspections in-situ, their analysis and assessment of the radiation situation forecast in the course of the STS remediation main stages. Some new data on the radiation situation at the

  11. Technical Basis Document: A Statistical Basis for Interpreting Urinary Excretion of Plutonium Based on Accelerator Mass Spectrometry (AMS) for Selected Atoll Populations in the Marshall Islands

    SciTech Connect (OSTI)

    Bogen, K; Hamilton, T F; Brown, T A; Martinelli, R E; Marchetti, A A; Kehl, S R; Langston, R G

    2007-05-01

    We have developed refined statistical and modeling techniques to assess low-level uptake and urinary excretion of plutonium from different population group in the northern Marshall Islands. Urinary excretion rates of plutonium from the resident population on Enewetak Atoll and from resettlement workers living on Rongelap Atoll range from <1 to 8 {micro}Bq per day and are well below action levels established under the latest Department regulation 10 CFR 835 in the United States for in vitro bioassay monitoring of {sup 239}Pu. However, our statistical analyses show that urinary excretion of plutonium-239 ({sup 239}Pu) from both cohort groups is significantly positively associated with volunteer age, especially for the resident population living on Enewetak Atoll. Urinary excretion of {sup 239}Pu from the Enewetak cohort was also found to be positively associated with estimates of cumulative exposure to worldwide fallout. Consequently, the age-related trends in urinary excretion of plutonium from Marshallese populations can be described by either a long-term component from residual systemic burdens acquired from previous exposures to worldwide fallout or a prompt (and eventual long-term) component acquired from low-level systemic intakes of plutonium associated with resettlement of the northern Marshall Islands, or some combination of both.

  12. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B.

    1996-03-01

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

  13. FY 2000 Tanks Focus Area Corrosion Monitoring Technical Committee Meeting Summary Report

    SciTech Connect (OSTI)

    NORMAN, E.C.

    2000-07-19

    The primary purpose of the annual meeting between the corrosion monitoring personnel at the various DOE sites is to facilitate communications and promote technology transfer between the two sites. The close communications and good spirit of teamwork being exhibited between the parties representing the Hanford and Savannah River Sites has helped the Savannah River Site effort avoid many of the problems encountered during the initial development effort at Hanford. Similar benefits can be expected over the next few years as the ORNL program is developed. Expected products of this meeting as defined in Milestone A.4-1 of TTP RL0-9-WT-41 are reports on the status of technical work at the sites, discussions of emerging technical issues, and results of laboratory experiments and field trials. The formal meeting, informal discussions throughout the week, and the presentation materials shown in the attachment to this document fulfill the expectations of this meeting. At the conclusion of the meeting it was agreed that close communications should continue between the concerned parties at ORNL, SRTC and Hanford. Tentative plans were made to hold a similar meeting in approximately one year.

  14. Security during the Construction of New Nuclear Power Plants: Technical Basis for Access Authorization and Fitness-For-Duty Requirements

    SciTech Connect (OSTI)

    Branch, Kristi M.; Baker, Kathryn A.

    2009-09-01

    A technical letter report to the NRC summarizing the findings of a benchmarking study, literature review, and workshop with experts on current industry standards and expert judgments about needs for security during the construction phase of critical infrastructure facilities in the post-September 11 U.S. context, with a special focus on the construction phase of nuclear power plants and personnel security measures.

  15. Monitoring EERE's Recovery Act Portfolio

    SciTech Connect (OSTI)

    2011-01-01

    Performance monitoring of Recovery Act projects within EERE has been an ongoing effort. Project recipients have been reporting technical and financial progress to project officers on a quarterly basis.

  16. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04

    requirements, including the need to operate in different coolant environments, higher operating temperatures, and longer operating cycles between planned refueling and maintenance outages. These features, along with the relative lack of operating experience for some of the proposed advanced designs, may limit the ability to estimate event probability and component POF with a high degree of certainty. Incorporating real-time estimates of component POF may compensate for a relative lack of established knowledge about the long-term component behavior and improve operational and maintenance planning and optimization. The particular eccentricities of advanced reactors and small modular reactors provide unique challenges and needs for advanced instrumentation, control, and human-machine interface (ICHMI) techniques such as enhanced risk monitors (ERM) in aSMRs. Several features of aSMR designs increase the need for accurate characterization of the real-time risk during operation and maintenance activities. A number of technical gaps in realizing ERM exist, and these gaps are largely independent of the specific reactor technology. As a result, the development of a framework for ERM would enable greater situational awareness regardless of the specific class of reactor technology. A set of research tasks are identified in a preliminary research plan to enable the development, testing, and demonstration of such a framework. Although some aspects of aSMRs, such as specific operational characteristics, will vary and are not now completely defined, the proposed framework is expected to be relevant regardless of such uncertainty. The development of an ERM framework will provide one of the key technical developments necessary to ensure the economic viability of aSMRs.

  17. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM DIOXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Duffey, J. M.; Livingston, R. R.; Berg, J. M.; Veirs, D. K.

    2013-02-06

    This report documents the technical basis for determining that stabilizing highpurity PuO{sub 2} derived from oxalate precipitation at the SRS HB-Line facility at a minimum of 625 {degree}C for at least four hours in an oxidizing atmosphere is equivalent to stabilizing at a minimum of 950 {degree}C for at least two hours as regards meeting the objectives of stabilization defined by DOE-STD-3013 if the material is handled in a way to prevent excessive absorption of water.

  18. Nuclear Safety Basis Program Review Overview and Management Oversight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standard Review Plan | Department of Energy Safety Basis Program Review Overview and Management Oversight Standard Review Plan Nuclear Safety Basis Program Review Overview and Management Oversight Standard Review Plan This SRP, Nuclear Safety Basis Program Review, consists of five volumes. It provides information to help strengthen the technical rigor of line management oversight and federal monitoring of DOE nuclear facilities. It provides a primer on the safety basis development and

  19. Applying Human-performance Models to Designing and Evaluating Nuclear Power Plants: Review Guidance and Technical Basis

    SciTech Connect (OSTI)

    O'Hara, J.M.

    2009-11-30

    Human performance models (HPMs) are simulations of human behavior with which we can predict human performance. Designers use them to support their human factors engineering (HFE) programs for a wide range of complex systems, including commercial nuclear power plants. Applicants to U.S. Nuclear Regulatory Commission (NRC) can use HPMs for design certifications, operating licenses, and license amendments. In the context of nuclear-plant safety, it is important to assure that HPMs are verified and validated, and their usage is consistent with their intended purpose. Using HPMs improperly may generate misleading or incorrect information, entailing safety concerns. The objective of this research was to develop guidance to support the NRC staff's reviews of an applicant's use of HPMs in an HFE program. The guidance is divided into three topical areas: (1) HPM Verification, (2) HPM Validation, and (3) User Interface Verification. Following this guidance will help ensure the benefits of HPMs are achieved in a technically sound, defensible manner. During the course of developing this guidance, I identified several issues that could not be addressed; they also are discussed.

  20. Online Monitoring Technical Basis and Analysis Framework for Emergency Diesel Generators—Interim Report for FY 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Light Water Reactor Sustainability Program is a research, development, and deployment program sponsored by the U.S. Department of Energy Office of Nuclear Energy. The program is operated in...

  1. Design of a basinwide monitoring program for the Tampa Bay estuary. Final technical pub

    SciTech Connect (OSTI)

    Hochberg, R.J.; Weisberg, S.B.; Frithsen, J.B.

    1992-10-30

    The Tampa Bay National Estuary Program (TBNEP) is developing a Comprehensive Conservation and Management Plan (CCMP) to recommend management actions for protecting the Tampa Bay estuary. The purpose of the document is to facilitate development of the monitoring program by assisting the TBNEP to define the objectives of a monitoring program for Tampa Bay identifying indicators and a sampling design that are appropriate to those objectives, and identifying how existing Tampa Bay monitoring programs can be incorporated and modified (if necessary) to meet the monitoring objectives.

  2. Technical Report on Preliminary Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Coles, Garill A.; Coble, Jamie B.; Hirt, Evelyn H.

    2013-09-17

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. AdvSMRs may provide a longer-term alternative to traditional light-water reactors (LWRs) and SMRs based on integral pressurized water reactor concepts currently being considered. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment. AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors. Some of this loss can be recovered through reduced capital costs through smaller size, fewer components, modular fabrication processes, and the opportunity for modular construction. However, the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments that are a step towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results from an initial methodology for enhanced risk monitors by integrating real-time information about equipment condition and POF into risk monitors.

  3. Technical Assessment of DOE Savannah River Site-Sponsored Radionuclide Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of DOE Savannah River Site-Sponsored Radionuclide Monitoring Efforts in the Central Savannah River Area Prepared by the Savannah River Ecology Laboratory at the Request of The Department of Energy - Savannah River Site in Response to the Savannah River Site Citizens Advisory Board Recommendation 317 Submitted: June 24, 2014 Prepared By: (in alphabetical Order) Mr. Dean Fletcher (Research Professional III) Ms. Angela Lindell (Research Professional III) Dr. Gary Mills (Associate

  4. Safety Basis Report

    SciTech Connect (OSTI)

    R.J. Garrett

    2002-01-14

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  5. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

    2012-07-02

    The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013

  6. Annual radiological environmental monitoring report: Watts Bar Nuclear Plant, 1992. Operations Services/Technical Programs

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This report describes the preoperational environmental radiological monitoring program conducted by TVA in the vicinity of the Watts Bar Nuclear Plant (WBN) in 1992. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas that will not be influenced by plant operations. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels. During plant operations, results from stations near the plant will be compared with concentrations from control stations and with preoperational measurements to determine potential impacts to the public. Exposures calculated from environmental samples were contributed by naturally occurring radioactive materials, from materials commonly found in the environment as a result of atmospheric fallout, or from the operation of other nuclear facilities in the area. Since WBN has not operated, there has been no contribution of radioactivity from the plant to the environment.

  7. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    SciTech Connect (OSTI)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, was shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.

  8. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    SciTech Connect (OSTI)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with

  9. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.

    2012-08-28

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU

  10. Technical summary of groundwater quality protection program at the Savannah River Site (1952--1986). Volume 2, Groundwater monitoring results

    SciTech Connect (OSTI)

    Heffner, J.D.

    1991-11-01

    Data is presented regarding ground water monitoring results from the Savannah River Plant for the years of 1952-1986. (CBS)

  11. Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  12. Technical evaluation report on the monitoring of electric power to the reactor-protection system for the Brunswick Steam Electric Plant, Units 1 and 2

    SciTech Connect (OSTI)

    Selan, J.C.

    1982-04-26

    This report documents the technical evaluation of the monitoring of electric power to the reactor protection system (RPS) at the Brunswick Steam Electric Plant, Units 1 and 2. The evaluation is to determine if the proposed design modification will protect the RPS from abnormal voltage and frequency conditions which could be supplied from the power supplies and will meet certain requirements set forth by the Nuclear Regulatory Commission. The proposed design modifications with time delays verified by GE, will protect the RPS from sustained abnormal voltage and frequency conditions from the supplying sources.

  13. Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS For the ATLAS Collaboration, Shawn McKee 1 , Andrew Lake 2 , Philippe Laurens 3 , Horst Severini 4 , Tomasz Wlodek 5 , Stephen Wolff 6 and Jason Zurawski 6 1 University of Michigan Physics Department 2 Lawrence Berkeley National Laboratory 3 Michigan State University Physics and Astronomy Department 4 University of Oklahoma, Physics/IT 5 Brookhaven National Laboratory 6 Internet2 E-mail: smckee@umich.edu, andy@es.net,

  14. Engineering task plan TWRS technical baseline completion

    SciTech Connect (OSTI)

    Moore, T.L

    1996-03-08

    The Tank Waste Remediation System (TWRS) includes many activities required to remediate the radioactive waste stored in underground waste storage tanks. These activities include routine monitoring of the waste, facilities maintenance, upgrades to existing equipment, and installation of new equipment necessary to manage, retrieve, process, and dispose of the waste. In order to ensure that these multiple activities are integrated, cost effective, and necessary, a sound technical baseline is required from which all activities can be traced and measured. The process by which this technical baseline is developed will consist of the identification of functions, requirements, architecture, and test (FRAT) methodology. This process must be completed for TWRS to a level that provides the technical basis for all facility/system/component maintenance, upgrades, or new equipment installation.

  15. Laser ultrasonic furnace tube coke monitor. Quarterly technical progress report No. 1, May 1--August 1, 1998

    SciTech Connect (OSTI)

    1998-08-15

    The overall aim of the project is to demonstrate the performance and practical use of a laser ultrasonic probe for measuring the thickness of coke deposits located within the high temperature tubes of a thermal cracking furnace. This aim will be met by constructing an optical probe that will be tested using simulated coke deposits that are positioned inside of a bench-scale furnace. Successful development of the optical coke detector will provide industry with the only available method for on-line measurement of coke deposits. The optical coke detector will have numerous uses in the refining and petrochemical sectors including monitoring of visbreakers, hydrotreaters, delayed coking units, vacuum tower heaters, and various other heavy oil heating applications where coke formation is a problem. The coke detector will particularly benefit the olefins industry where high temperature thermal crackers are used to produce ethylene, propylene, butylene and other important olefin intermediates. The ethylene industry requires development of an on-line method for gauging the thickness of coke deposits in cracking furnaces because the current lack of detailed knowledge of coke deposition profiles introduces the single greatest uncertainty in the simulation and control of modern cracking furnaces. The laser ultrasonic coke detector will provide operators with valuable new information allowing them to better optimize the decoking turnaround schedule and therefore maximize production capacity.

  16. Management Plan for Experimental Reintroduction of Sockeye into Skaha Lake; Proposed Implementation, Monitoring, and Evaluation, 2004 Technical Report.

    SciTech Connect (OSTI)

    Wright, Howie; Smith, Howard

    2004-01-01

    but with the proviso that there should be a thorough evaluation and reporting of progress and results. A 2004 start on implementation and monitoring has now been proposed.

  17. Technical Note: Nanometric organic photovoltaic thin film detectors for dose monitoring in diagnostic x-ray imaging

    SciTech Connect (OSTI)

    Elshahat, Bassem; Gill, Hardeep Singh; Kumar, Jayant; Filipyev, Ilya; Zygmanski, Piotr; Shrestha, Suman; Karellas, Andrew; Hesser, Jrgen; Sajo, Erno

    2015-07-15

    Purpose: To fabricate organic photovoltaic (OPV) cells with nanometric active layers sensitive to ionizing radiation and measure their dosimetric characteristics in clinical x-ray beams in the diagnostic tube potential range of 60150 kVp. Methods: Experiments were designed to optimize the detectors x-ray response and find the best parameter combination by changing the active layer thickness and the area of the electrode. The OPV cell consisted of poly (3-hexylthiophene-2,5-diyl): [6,6]-phenyl C{sub 61} butyric acid methyl ester photoactive donor and acceptor semiconducting organic materials sandwiched between an aluminum electrode as an anode and an indium tin oxide electrode as a cathode. The authors measured the radiation-induced electric current at zero bias voltage in all fabricated OPV cells. Results: The net OPV current as a function of beam potential (kVp) was proportional to kVp{sup ?0.5} when normalized to x-ray tube output, which varies with kVp. Of the tested configurations, the best combination of parameters was 270 nm active layer thicknesses with 0.7 cm{sup 2} electrode area, which provided the highest signal per electrode area. For this cell, the measured current ranged from approximately 0.7 to 2.4 nA/cm{sup 2} for 60150 kVp, corresponding to about 0.09 nA0.06 nA/mGy air kerma, respectively. When compared to commercial amorphous silicon thin film photovoltaic cells irradiated under the same conditions, this represents 2.5 times greater sensitivity. An additional 40% signal enhancement was observed when a 1 mm layer of plastic scintillator was attached to the cells beam-facing side. Conclusions: Since both OPVs can be produced as flexible devices and they do not require external bias voltage, they open the possibility for use as thin film in vivo detectors for dose monitoring in diagnostic x-ray imaging.

  18. Technical Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Review for Technical Standards of Interest Legend: Red = Technical Standards Program Activities and Responsibilities Blue = Directives Program Activities and Responsibilities

  19. Wireless data monitor technical manual

    SciTech Connect (OSTI)

    Deck, J.W.

    1992-09-21

    This document describes the hardware and software design of a multi-site wireless data acquisition system developed for the Utilities Operations department at the Portsmouth Gaseous Diffusion Plant. Some unique features incorporated in the project are the use of packet radio modems to implement a multipoint system and the use of a commercial alpha-numeric telephone pager to allow site alarms to ``chase`` the operator.

  20. Wireless data monitor technical manual

    SciTech Connect (OSTI)

    Deck, J.W.

    1992-09-21

    This document describes the hardware and software design of a multi-site wireless data acquisition system developed for the Utilities Operations department at the Portsmouth Gaseous Diffusion Plant. Some unique features incorporated in the project are the use of packet radio modems to implement a multipoint system and the use of a commercial alpha-numeric telephone pager to allow site alarms to chase'' the operator.

  1. APS Technical Systems Monitoring Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gap Status Insertion Device Gap Values. 24 hour plot of each. Updated every minute. Liquid Nitrogen Distribution System Status Liquid Nitrogen Distribution System...

  2. RWMC Performance Assessment/Composite Analysis Monitoring Report - FY-2002

    SciTech Connect (OSTI)

    Ritter, P.D.; Parsons, A.M.

    2002-09-30

    US DOE Order 435.1, Radioactive Waste Management, Chapter IV and the associated implementation manual and guidance require monitoring of low-level radioactive waste (LLW) disposal facilities. The Performance Assessment/Composite Analysis (PA/CA) Monitoring program was developed and implemented to meet this requirement. This report represents the results of PA/CA monitoring projects that are available as of September 2002. The technical basis for the PA/CA program is provided in the PA/CA Monitoring Program document and a program description document (PDD) serves as the quality assurance project plan for implementing the PM program. Subsurface monitoring, air pathway surveillance, and subsidence monitoring/control are required to comply with DOE Order 435.1, Chapter IV. Subsidence monitoring/control and air pathway surveillance are performed entirely by other INEEL programs - their work is summarized herein. Subsurface monitoring includes near-field (source) monitoring of buried activated beryllium and steel, monitoring of groundwater in the vadose zone, and monitoring of the Snake River Plain Aquifer. Most of the required subsurface monitoring information presented in this report was gathered from the results of ongoing INEEL monitoring programs. This report also presents results for several new monitoring efforts that have been initiated to characterize any migration of radionuclides in surface sediment near the waste.

  3. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    SciTech Connect (OSTI)

    Villaran, M.; Lofaro, R.; na

    2009-11-30

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  4. Microfabricated BTU monitoring device for system-wide natural...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Microfabricated BTU monitoring device for system-wide natural gas monitoring. Citation Details In-Document Search Title: Microfabricated BTU monitoring device for ...

  5. Authorization basis requirements comparison report

    SciTech Connect (OSTI)

    Brantley, W.M.

    1997-08-18

    The TWRS Authorization Basis (AB) consists of a set of documents identified by TWRS management with the concurrence of DOE-RL. Upon implementation of the TWRS Basis for Interim Operation (BIO) and Technical Safety Requirements (TSRs), the AB list will be revised to include the BIO and TSRs. Some documents that currently form part of the AB will be removed from the list. This SD identifies each - requirement from those documents, and recommends a disposition for each to ensure that necessary requirements are retained when the AB is revised to incorporate the BIO and TSRs. This SD also identifies documents that will remain part of the AB after the BIO and TSRs are implemented. This document does not change the AB, but provides guidance for the preparation of change documentation.

  6. Software solutions for emission monitoring

    SciTech Connect (OSTI)

    DeFriez, H.; Schillinger, S.; Seraji, H.

    1996-12-31

    Industry and state and federal environmental regulatory agencies are becoming ever more conciliatory due to the high cost of implementing the Clean Air Act Amendments of 1990 (CAAA) for the operation of Continuous Emissions Monitoring Systems (CEMS). In many cases the modifications do nothing to reduce emissions or even to measure the pollution, but simply let the source owner or operator and the permitting authority agree on a monitoring method and/or program. The EPA methods and standards developed under the Code of Federal Regulations (CFRs) have proven to be extremely costly and burdensome. Now, the USEPA and state agencies are making efforts to assure that emissions data has a strong technical basis to demonstrate compliance with regulations such as Title V.

  7. Technical Guidance

    Broader source: Energy.gov [DOE]

    The Office of Technical Guidance, within the Office of Health, Safety and Security develops and issues Government-wide and Department-wide technical guidance to ensure that classified nuclear...

  8. WIPP Documents - Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Compliance Monitoring Implementation Plan for 40 CFR §191.14(b), Assurance Requirement - DOE/WIPP 99-3119 Rev. 8 Effective date: 10/2014 Discharge Permit Renewal, DP-831, Waste Isolation Pilot Plant, July 29, 2014 Overview of the WIPP Effluent Monitoring Program - technical paper Provides an overview of the effluent air monitoring activities at WIPP. The Effluent Monitoring Program is designed to comply with the EPA radiation protection standards for management and storage of

  9. Technical information

    Gasoline and Diesel Fuel Update (EIA)

    Home> Commercial Buildings Home> Technical Information > Estimation of Standard Errors Estimation of Standard Errors Sampling error is the difference between the survey estimate...

  10. Technical Standards Newsletter - June 2005 | Department of Energy

    Office of Environmental Management (EM)

    Department of Energy Technical Report Confirms Reliability of Yucca Mountain Technical Work Technical Report Confirms Reliability of Yucca Mountain Technical Work February 17, 2006 - 11:59am Addthis WASHINGTON, DC - The Department of Energy's Office of Civilian Radioactive Waste Management (OCRWM) today released a report confirming the technical soundness of infiltration modeling work performed by U.S. Geological Survey (USGS) employees. "The report makes clear that the technical basis

  11. RWMC Performance Assessment/Composite Analysis Monitoring Program Report - FY 2002

    SciTech Connect (OSTI)

    Ritter, Paul David; Parsons, Alva Marie

    2002-09-01

    US DOE Order 435.1, Radioactive Waste Management, Chapter IV and the associated implementation manual and guidance require monitoring of low-level radioactive waste (LLW) disposal facilities. The Performance Assessment/Composite Analysis (PA/CA) Monitoring program was developed and implemented to meet this requirement. This report represents the results of PA/CA monitoring projects that are available as of September 2002. The technical basis for the PA/CA program is provided in the PA/CA Monitoring Program document and a program description document (PDD) serves as the quality assurance project plan for implementing the PM program. Subsurface monitoring, air pathway surveillance, and subsidence monitoring/control are required to comply with DOE Order 435.1, Chapter IV. Subsidence monitoring/control and air pathway surveillance are performed entirely by other INEEL programs - their work is summarized herein. Subsurface monitoring includes near-field (source) monitoring of buried activated beryllium and steel, monitoring of groundwater in the vadose zone, and monitoring of the Snake River Plain Aquifer. Most of the required subsurface monitoring information presented in this report was gathered from the results of ongoing INEEL monitoring programs. This report also presents results for several new monitoring efforts that have been initiated to characterize any migration of radionuclides in surface sediment near the waste.

  12. Initial technical basis for late washing filter cleaning

    SciTech Connect (OSTI)

    Morrissey, M.F.; Dworjanyn, L.O.

    1992-07-23

    Bench scale filter cleaning tests at the Savannah River Technology Center have shown that cross-flow filter elements can be cleaned between late wash filtration runs and restored to original clean water flux conditions. The most effective cleaning technique was high flow axial recirculation, followed by flushing with caustic solution. Simple flushing with oxalic acid and caustic is less effective and is not recommended because of adverse experience in ITP filter cleaning and uncertainty in the.nature of radiolysis by-product contaminants.

  13. TECHNICAL BASIS DOCUMENT NO. 1: CLIMATE AND INFILTRATION

    SciTech Connect (OSTI)

    NA

    2004-05-01

    For the past 20 years, extensive field, laboratory, and modeling investigations have been performed at Yucca Mountain, which have led to the development of a number of conceptual models of infiltration and climate for the Yucca Mountain region around the repository site (Flint, A.L. et al. 2001; Wang and Bodvarsson 2003). Evaluating the amount of infiltrating water entering the subsurface is important, because this water may affect the percolation flux, which, in turn, controls seepage into the waste emplacement drifts and radionuclide transport from the repository to the water table. Forecasting of climatic data indicates that during the next 10,000 years at Yucca Mountain, the present-day climate should persist for 400 to 600 years, followed by a warmer and much wetter monsoon climate for 900 to 1,400 years, and by a cooler and wetter glacial-transition climate for the remaining 8,000 to 8,700 years. The analysis of climatic forecasting indicates that long-term climate conditions are generally predictable from a past climate sequence, while short-term climate conditions and weather predictions may be more variable and uncertain. The use of past climate sequences to bound future climate sequences involves several types of uncertainties, such as (1) uncertainty in the timing of future climate, (2) uncertainty in the methodology of climatic forecasting, and (3) uncertainty in the earth's future physical processes. Some of the uncertainties of the climatic forecasting are epistemic (reducible) and aleatoric (irreducible). Because of the size of the model domain, INFIL treats many flow processes in a simplified manner. For example, uptake of water by roots occurs according to the ''distributed model'', in which available water in each soil layer is withdrawn in proportion to the root density in that layer, multiplied by the total evapotranspirative demand. Runoff is calculated simply as the excess of precipitation over a sum of infiltration and water storage in the root zone. More significantly, water movement throughout the soil profile is treated according to the bucket model, in which the amount of water that moves down from one layer to the next is equal to the mass of water in excess of field capacity in the upper layer. The development of a numerical model of infiltration involves a number of abstractions and simplifications to represent the complexity of environmental conditions at Yucca Mountain, such as the arid climate, mountain-type topography, heterogeneous soils and fractured rock, and irregular soil-rock interface.

  14. Technical Cost Modeling- Life Cycle Analysis Basis for Program Focus

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  15. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy Newly Released Study Highlights Significant Utica Shale Potential Results from NETL-Sponsored Study Now Publically Available A pioneering study led by West Virginia University, and financially supported by the Energy Department's National Energy Technology Laboratory (NETL) and 14 industry members of the Utica Shale Appalachian Basin Exploration Consortium, indicates that the newly explored Utica Shale, which underlies the better-known Marcellus Shale, could hold far

  16. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  17. Pacific Northwest National Laboratory Potential Impact Categories for Radiological Air Emission Monitoring

    SciTech Connect (OSTI)

    Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. M.

    2012-06-05

    In 2002, the EPA amended 40 CFR 61 Subpart H and 40 CFR 61 Appendix B Method 114 to include requirements from ANSI/HPS N13.1-1999 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities for major emission points. Additionally, the WDOH amended the Washington Administrative Code (WAC) 246-247 Radiation protection-air emissions to include ANSI/HPS N13.1-1999 requirements for major and minor emission points when new permitting actions are approved. A result of the amended regulations is the requirement to prepare a written technical basis for the radiological air emission sampling and monitoring program. A key component of the technical basis is the Potential Impact Category (PIC) assigned to an emission point. This paper discusses the PIC assignments for the Pacific Northwest National Laboratory (PNNL) Integrated Laboratory emission units; this revision includes five PIC categories.

  18. FTCP Quarterly Report on Federal Technical Capability, May 11, 2016 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1, 2016 FTCP Quarterly Report on Federal Technical Capability, May 11, 2016 This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls. Quarterly Report on Federal Technical Capability 5-11-2016 (334.32 KB) More Documents &

  19. FTCP Quarterly Report on Federal Technical Capability, July 29, 2016 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Quarterly Report on Federal Technical Capability, July 29, 2016 FTCP Quarterly Report on Federal Technical Capability, July 29, 2016 This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls. Quarterly Report on Federal

  20. Technical Position, NSTP 2002-1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Technical Position, NSTP 2002-1 April 25, 2002 Technical position on Onsite Transportation for Safety Basis Technical position to clarify the need to prepare both a Transportation Safety Document (TSD) and a Safety Analysis Report for Packaging (SARP) to satisfy the requirement for a Documented Safety Analysis (DSA) to meeting 10 CFR Part 830. Technical Position, NSTP 2002-1 (636.24 KB) More Documents & Publications Technical Standards, Guidance on MELCOR computer code - May 3, 2004

  1. Remote Monitoring Transparency Program

    SciTech Connect (OSTI)

    Sukhoruchkin, V.K.; Shmelev, V.M.; Roumiantsev, A.N.; Croessmann, C.D.; Horton, R.D.; Matter, J.C.; Czajkowski, A.F.; Sheely, K.B.; Bieniawski, A.J.

    1996-12-31

    The objective of the Remote Monitoring Transparency Program is to evaluate and demonstrate the use of remote monitoring technologies to advance nonproliferation and transparency efforts that are currently being developed by Russia and the US without compromising the national security of the participating parties. Under a lab-to-lab transparency contract between Sandia National Laboratories (SNL) and the Kurchatov Institute (KI RRC), the Kurchatov Institute will analyze technical and procedural aspects of the application of remote monitoring as a transparency measure to monitor inventories of direct-use HEU and plutonium (e.g., material recovered from dismantled nuclear weapons). A goal of this program is to assist a broad range of political and technical experts in learning more about remote monitoring technologies that could be used to implement nonproliferation, arms control, and other security and confidence building measures. Specifically, this program will: (1) begin integrating Russian technologies into remote monitoring systems; (2) develop remote monitoring procedures that will assist in the application of remote monitoring techniques to monitor inventories of HEU and Pu from dismantled nuclear weapons; and (3) conduct a workshop to review remote monitoring fundamentals, demonstrate an integrated US/Russian remote monitoring will have on the national security of participating countries.

  2. DOE FINAL TECHNICAL REPORT RP

    SciTech Connect (OSTI)

    RUSS PETERMAN

    2012-01-01

    The City of Georgetown Utility Systems (GUS) patnered with the private sector, the American Public Power Association (APPA) and Southwestern University to design, construct, test and monitor a solar co-generation system directly connected to the GUS electric distribution system. This report consists of the Primary Technical Report and 3 attachments.

  3. Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Documents

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SENSITIVE DOE-STD-1104-2009 May 2009 Superseding DOE-STD-1104-96 DOE STANDARD REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY DESIGN BASIS DOCUMENTS U.S. Department of Energy AREA SAFT Washington, DC 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1104-2009 ii Available on the Department of Energy Technical Standards web page at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ DOE-STD-1104-2009 iii CONTENTS FOREWORD

  4. Technical Standards Managers

    Broader source: Energy.gov (indexed) [DOE]

    FACILITYADDRESS LOC CODE DOE TECHNICAL STANDARD MANAGERS AU-30 DOE Technical Standards ... FACILITYADDRESS LOC CODE DOE TECHNICAL STANDARD MANAGERS DOE-CTA TSM Gustave E. (Bud) ...

  5. Department of Energy Technical Support Document National Environmental

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Act Implementing Procedures Supplement to Notice of Proposed Rulemaking Proposed Changes and Supplemental Supporting Basis | Department of Energy Department of Energy Technical Support Document National Environmental Policy Act Implementing Procedures Supplement to Notice of Proposed Rulemaking Proposed Changes and Supplemental Supporting Basis Department of Energy Technical Support Document National Environmental Policy Act Implementing Procedures Supplement to Notice of Proposed

  6. FTCP Quarterly Report on Federal Technical Capability, December 7, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  7. FTCP Quarterly Report on Federal Technical Capability, April 3, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  8. FTCP Quarterly Report on Federal Technical Capability, September 2, 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  9. FTCP Quarterly Report on Federal Technical Capability, August 8, 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  10. FTCP Quarterly Report on Federal Technical Capability, May 29, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  11. FTCP Quarterly Report on Federal Technical Capability, August 18, 2015

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  12. FTCP Quarterly Report on Federal Technical Capability, March 2, 2016

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  13. FTCP Quarterly Report on Federal Technical Capability, June 5, 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  14. FTCP Quarterly Report on Federal Technical Capability, May 18, 2011

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  15. FTCP Quarterly Report on Federal Technical Capability, December 15, 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  16. FTCP Quarterly Report on Federal Technical Capability, February 20, 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  17. FTCP Quarterly Report on Federal Technical Capability, November 20, 2013

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  18. FTCP Quarterly Report on Federal Technical Capability, March 6, 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  19. FTCP Quarterly Report on Federal Technical Capability, February 24, 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  20. FTCP Quarterly Report on Federal Technical Capability, July 3, 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  1. FTCP Quarterly Report on Federal Technical Capability, November 20, 2012

    Broader source: Energy.gov [DOE]

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  2. FTCP Quarterly Report on Federal Technical Capability, May 30, 2012

    Broader source: Energy.gov [DOE]

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  3. FTCP Quarterly Report on Federal Technical Capability, August 16, 2013

    Broader source: Energy.gov [DOE]

    This Quarterly Report on the Federal Technical Capability Program (FTCP) contains information on the status of qualifications in the Technical Qualification Program (TQP) and technical skill gaps, on a quarterly basis. Report also displays trend data for overall TQP qualification and staffing shortfalls.

  4. Radioactive Waste Management BasisApril 2006

    SciTech Connect (OSTI)

    Perkins, B K

    2011-08-31

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  5. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  6. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  7. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  8. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    SciTech Connect (OSTI)

    R. Sweeney

    2000-03-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  9. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    SciTech Connect (OSTI)

    R.E. Sweeney

    2001-02-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  10. Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Monitoring Environmental Monitoring Tour Sampling for known and unexpected contaminants

  11. CTBT technical issues handbook

    SciTech Connect (OSTI)

    Zucca, J.J.

    1994-05-01

    The purpose of this handbook is to give the nonspecialist in nuclear explosion physics and nuclear test monitoring an introduction to the topic as it pertains to a Comprehensive Test Ban Treaty (CTBT). The authors have tried to make the handbook visually oriented, with figures paired to short discussions. As such, the handbook may be read straight through or in sections. The handbook covers four main areas and ends with a glossary, which includes both scientific terms and acronyms likely to be encountered during CTBT negotiations. The following topics are covered: (1) Physics of nuclear explosion experiments. This is a description of basic nuclear physics and elementary nuclear weapon design. Also discussed are testing practices. (2) Other nuclear experiments. This section discusses experiments that produce small amounts of nuclear energy but differ from explosion experiments discussed in the first chapter. This includes the type of activities, such as laser fusion, that would continue after a CTBT is in force. (3) Monitoring tests in various environments. This section describes the different physical environments in which a test could be conducted (underground, in the atmosphere, in space, underwater, and in the laboratory); the sources of non-nuclear events (such as earthquakes and mining operations); and the opportunities for evasion. (4) On-site inspections. A CTBT is likely to include these inspections as an element of the verification provisions, in order to resolve the nature of ambiguous events. This chapter describes some technical considerations and technologies that are likely to be useful. (5) Selecting verification measures. This chapter discusses the uncertain nature of the evidence from monitoring systems and how compliance judgments could be made, taking the uncertainties into account. It also discusses how to allocate monitoring resources, given the likelihood of testing by various countries in various environments.

  12. Technical Report - FINAL

    SciTech Connect (OSTI)

    Barbara Luke, Director, UNLV Engineering Geophysics Laboratory

    2007-04-25

    Improve understanding of the earthquake hazard in the Las Vegas Valley and to assess the state of preparedness of the area's population and structures for the next big earthquake. 1. Enhance the seismic monitoring network in the Las Vegas Valley 2. Improve understanding of deep basin structure through active-source seismic refraction and reflection testing 3. Improve understanding of dynamic response of shallow sediments through seismic testing and correlations with lithology 4. Develop credible earthquake scenarios by laboratory and field studies, literature review and analyses 5. Refine ground motion expectations around the Las Vegas Valley through simulations 6. Assess current building standards in light of improved understanding of hazards 7. Perform risk assessment for structures and infrastructures, with emphasis on lifelines and critical structures 8. Encourage and facilitate broad and open technical interchange regarding earthquake safety in southern Nevada and efforts to inform citizens of earthquake hazards and mitigation opportunities

  13. Technical Report

    SciTech Connect (OSTI)

    ,; ,; ,

    2012-02-01

    The 2011 World Materials Summit, held on 10/9-12/2011 in Washington DC, provided a forum for top decision makers and energy experts from aropund the world to focus on the materials research needs for the growing energy economy. Organized jointly by the Materials Research Society (MRS), the European MRS (E-MRS), and the Chinese MRS (C-MRS), the goal of the Summit was to explore how the different regions of the world can work together on the critical issue of clean energy, including its relation to environmental sustainability and water. The participants considered the area of materials research as well as advocacy, economics, outreach, and education. Realizing that the concerns are long-term and that young players will ultimately be the ones who are going to need to solve the energy challenges, the chairs of the Summit inaugurated a Student Congress, a program for graduate students and postdoctoral scholars in fields directly related to energy and environmental science, engineering, and/or policy. The top 45 candidates coming from 18 countries were selected on a competititve basis to participate in the Student Congress. The four-day effort culminated in a 2011 Worlds Materials Summit Declaration delineating materials directions related to global access to clean energy and water in a sustainable way.

  14. DOE Technical Assistance Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TAP offers: * One-on-one assistance * Extensive online resource library, including: ... Technical * Renewable energy siting and development * Review of technical specs for RFPs * ...

  15. Improvements to Technical Specifications surveillance requirements

    SciTech Connect (OSTI)

    Lobel, R.; Tjader, T.R.

    1992-12-01

    In August 1983 an NRC task group was formed to investigate problems with surveillance testing required by Technical Specifications, and to recommend approaches to effect improvements. NUREG-1024 ( Technical Specifications-Enhancing Safety Impact'') resulted, and it contained recommendations to review the basis for test frequencies; to ensure that the tests promote safety and do not degrade equipment; and to review surveillance tests so that they do not unnecessarily burden personnel. The Technical Specifications Improvement Program (TSIP) was established in December 1984 to provide the framework for rewriting and improving the Technical Specifications. As an element of the TSIP, all Technical Specifications surveillance requirements were comprehensively examined as recommended in NUREG-1024. The results of that effort are presented in this report. The study found that while some testing at power is essential to verify equipment and system operability, safety can be improved, equipment degradation decreased, and unnecessary personnel burden relaxed by reducing the amount of testing at power.

  16. United States Environmental Monitoring EPA

    Office of Legacy Management (LM)

    United States Environmental Monitoring EPA 600/R-93/141 Environmental Protection Systems Laboratory January 1992 Agency P.O. Box 93478 Las Vegas NV 89193-3478 Research and Development _EPA Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1991 Available to DOE and DOE contractors from the Office of Scientificand Technical Information, P.O. Box 62, Oak ridge,TN 39831; pricesavailablefrom (615) 576-8401 Availableto the publicfrom

  17. Strengthening Line Management Oversight and Federal Monitoring...

    Office of Environmental Management (EM)

    Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities Standard Review Plan Volume 4 - Nuclear Safety Basis Program Review During Facility ...

  18. DOE technical standards list: Department of Energy standards index

    SciTech Connect (OSTI)

    1999-05-01

    This Department of Energy (DOE) technical standards list (TSL) has been prepared by the Office of Nuclear Safety Policy and Standards (EH-31) on the basis of currently available technical information. Periodic updates of this TSL will be issued as additional information is received on standardization documents being issued, adopted, or canceled by DOE. This document was prepared for use by personnel involved in the selection and use of DOE technical standards and other Government and non-Government standards. This TSL provides listings of current DOE technical standards, non-Government standards that have been adopted by DOE, other standards-related documents in which DOE has a recorded interest, and canceled DOE technical standards. Information on new DOE technical standards projects, technical standards released for coordination, recently published DOE technical standards, and activities of non-Government standards bodies that may be of interest to DOE is published monthly in Standards Actions.

  19. Tank Farms Technical Safety Requirements [VOL 1 and 2

    SciTech Connect (OSTI)

    CASH, R.J.

    2000-12-28

    The Technical Safety Requirements (TSRs) define the acceptable conditions, safe boundaries, basis thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR).

  20. Basis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This has a number of advantages, such as reduced dataset requirements, ability to ... then solve for these coefficients using statistical correlations in the dataset. ...

  1. Basis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that this equation is a difference- equation representation in the temporal domain of a first- order-in-time nonlinear partial differential equation. The co- efficient L k...

  2. Wireless Sensor Network for Electric Transmission Line Monitoring...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Wireless Sensor Network for Electric Transmission Line Monitoring Citation Details In-Document Search Title: Wireless Sensor Network for Electric Transmission ...

  3. Northeast Feedstock Supply Technical and Economica (Technical...

    Office of Scientific and Technical Information (OSTI)

    Northeast Feedstock Supply Technical and Economica Citation Details In-Document Search ... This in-depth analysis considers the current and f Authors: Corrie Nichol ; Kara Cafferty ...

  4. CRAD, NNSA- Safety Basis (SB)

    Broader source: Energy.gov [DOE]

    CRAD for Safety Basis (SB). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  5. Engineering basis for operator control of nuclear power stations in abnormal operations - closing the loop

    SciTech Connect (OSTI)

    Womack, E.A.; Kelly, J.J.; Elliott, N.S.

    1980-01-01

    The Abnormal Transient Operating Guidelines (ATOG) Program is intended to ''close the loop'' on a continuing basis between the engineering designers/performance analysts and the operators who control the plant. It will make the technical basis for operation responsive to information from the study of actual plant transients, as well as new developments in engineering.

  6. Radiation monitoring policy at the advanced light source

    SciTech Connect (OSTI)

    Donahue, R.; Heinzelman, K.; Perdue, G.

    1998-02-04

    When the accelerator first began operation it was decided that, until we had the necessary dosimetry data to decide otherwise, we would badge the entire worker and experimental population. Each person was issued a dosimetry badge that contained 4 TLD elements. Badges were processed on a monthly basis. After three years of analyzing a total of 65,000 TLD elements, the decision was made to modify the radiation monitoring policy at the ALS. Only those individuals in the workforce that have any potential for exposure, no matter how small, would be badged. Subsequently, DOE conducted an independent review of the ALS radiation monitoring and dosimetry program. This review concluded that the ALS program, if expanded as proposed, would be adequate under the 10 CFR 835 Rule to establish radiation exposures to an acceptable level of confidence. The review team recommended the ALS provide more comprehensive documentation on the basis for its radiation protection and monitoring program. This document describes the technical justification for that program.

  7. Technical Area 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  8. International Linear Collider-A Technical Progress Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: International Linear Collider-A Technical Progress Report Citation Details In-Document Search Title: International Linear Collider-A Technical Progress Report The ...

  9. High bandwidth beam current monitor

    SciTech Connect (OSTI)

    Baltrusaitis, R.M.; Ekdahl, C.A. ); Cooper, R.G. . Santa Barbara Operations); Peterson, E.; Warn, C.E. . Las Vegas Operations)

    1993-01-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe.

  10. High bandwidth beam current monitor

    SciTech Connect (OSTI)

    Baltrusaitis, R.M.; Ekdahl, C.A.; Cooper, R.G.; Peterson, E.; Warn, C.E.

    1993-06-01

    A stripline directional coupler beam current monitor capable of measuring the time structure of a 30-ps electron beam bunch has been developed. The time response performance of the monitor compares very well with Cherenkov light produced in quartz by the electron beam. The four-pickup monitor is now used on a routine basis for measuring the beam duration, tuning for optimized beam bunching, and centering the bunch in the beam pipe.

  11. Sandia National Laboratories: Careers: Internships & Co-ops: Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Programs Technical Institute Programs Internships & Co-ops Technical Institute Programs Center for Computing Research Engineering Design and Integration Students Nonlinear Mechanics and Dynamics Research Institute Science of Extreme Environments Research Institute SENTINL: Energy Surety Incubator SENTINL: Interns for Security, Arms Control, and Force Protection Engineering TITANS: Center for Analysis Systems and Applications TITANS: Center for Cyber Defenders TITANS: Monitoring

  12. The Basis Code Development System

    Energy Science and Technology Software Center (OSTI)

    1994-03-15

    BASIS9.4 is a system for developing interactive computer programs in Fortran, with some support for C and C++ as well. Using BASIS9.4 you can create a program that has a sophisticated programming language as its user interface so that the user can set, calculate with, and plot, all the major variables in the program. The program author writes only the scientific part of the program; BASIS9.4 supplies an environment in which to exercise that scientificmore » programming which includes an interactive language, an interpreter, graphics, terminal logs, error recovery, macros, saving and retrieving variables, formatted I/O, and online documentation.« less

  13. Technical Assessment Team Report

    Broader source: Energy.gov [DOE]

    The Technical Assessment Team (TAT) is an independent team of technical experts that evaluated the mechanisms and chemical reactions contributing to the failure of a waste drum at the Waste...

  14. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-05-18

    Provides requirements and responsibilities to ensure recruitment and hiring of technically capable personnel to retain critical technical capabilities within the Department at all times. Cancels DOE M 426.1-1. Canceled by DOE O 426.1.

  15. NASA technical baseline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Twitter Google + Vimeo GovDelivery SlideShare SunShot Grand Challenge: Regional Test Centers NASA technical baseline HomeTag:NASA technical baseline Curiosity's multi-mission ...

  16. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2014-08-25 14:37:27...

  17. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization » Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2016-04-29 11:34:30

  18. Environmental Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Monitoring Environmental Monitoring Tour Sampling for known and unexpected contaminants Open full screen to view more You are running an unsupported browser, some...

  19. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Overview Please see the man pages of the commands below for more options. The Job Information page has more information on current queue status,...

  20. Monitoring materials

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2002-01-01

    The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

  1. Apply for Technical Assistance

    Broader source: Energy.gov [DOE]

    Application form for U.S. Department of Energy (DOE) Office of Indian Energy technical assistance for tribes.

  2. SPEAR3 | Technical Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Documentation Hardware Component Database: Mechanical Electrical Drawing shor tcuts BPM Development SSRL | SLAC | Stanford University | SSRL Computing | SLAC Computing...

  3. Technical Assistance | Department of Energy

    Office of Environmental Management (EM)

    Technical Assistance The Technical Assistance program is managed through the Center for Sustainable Soil and Groundwater Solutions at SRNL. The Technical Assistance program ...

  4. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-23

    The Order promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. Admin Chg 1 dated 3-12-13.

  5. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-19

    The Technical Standards Program (TSP) promotes the use of voluntary consensus standards by the Department of Energy (DOE), provides DOE with the means to develop needed technical standards, and manages overall technical standards information, activities, issues, and interactions. Cancels DOE O 1300.2A. Canceled by DOE O 252.1A

  6. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19

    This directive defines requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Cancels DOE M 426.1-1A, Federal Technical Capability Manual.

  7. Active DOE Technical Standards Managers

    Office of Environmental Management (EM)

    TECHNICAL STANDARDS PROGRAM ASSIGNMENT TELEPHONEFAXEMAIL NAME DOE FACILITYADDRESS LOC ... Central Technical Authority Chief, Nuclear Safety Sta - CTACNS 1000 Independence ...

  8. Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Althouse, P E; Bertoldo, N A; Bowen, B M; Brown, R A; Campbell, C G; Christofferson, E; Gallegos, G M; Grayson, A R; Jones, H E; Larson, J M; Laycak, D; Mathews, S; Peterson, S R; Revelli, M J; Rueppel, D; Williams, R A; Wilson, K; Woods, N

    2005-11-23

    Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA, also known as Superfund). This EMP does not address the technical requirements for such monitoring.

  9. Final Scientific Technical Report...

    Office of Scientific and Technical Information (OSTI)

    ... on BAS, only 10% of commercial buildings utilize advanced monitoring and controls 1. ... potential that automation and monitoring systems can offer, there is a need for ...

  10. Hanford Generic Interim Safety Basis

    SciTech Connect (OSTI)

    Lavender, J.C.

    1994-09-09

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  11. OTEC support services. Quarterly technical progress report No. 16, 15 February 1982-14 May 1982

    SciTech Connect (OSTI)

    Not Available

    1982-05-01

    Technical progress is reported in the area of OTEC program survey, analysis, evaluation, and recommendation concerning program performance, including OTEC commercialization support and program technical engineering and instrumentation analysis. Progress is also reported in the areas of program technical monitoring, OTEC system integration, and transmission subsystem considerations. Participation in meetings, conferences, etc. is also reported. (LEW)

  12. OTEC support services quarterly technical progress report No. 14, 15 August 1981-14 November 1981

    SciTech Connect (OSTI)

    1981-11-01

    The progress in the areas of system integration, system engineering, and management services is reported. The effort is divided into seven tasks: survey, analysis, and evaluation of technical program status; program technical monitoring; development and implementation of methodology for identification, evaluation, and trade-off for major subsystem configurations; technical assessments; OTEC system integration; environment and siting considerations; and transmission subsystem considerations. (LEW)

  13. OTEC support services. Quarterly technical progress report No. 18, 15 August 1982-14 November 1982

    SciTech Connect (OSTI)

    Not Available

    1982-11-01

    After a brief description of the technical engineering and management support services for the OTEC Program and of the task objectives, technical progress is reported in the areas of: survey, analysis, and evaluation; program technical monitoring; and transmission subsystem subsytem considerations. (LEW)

  14. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  15. Application of Engineering and Technical Requirements for DOE Nuclear Facilities Standard Review Plan (SRP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Standard Review Plan (SRP), Application of Engineering and Technical Requirements for DOE Nuclear Facilities, was developed by the Chief of Nuclear Safety (CNS)1, Office of the Under Secretary for Nuclear Security, to help strengthen the technical rigor of line management oversight and federal monitoring of DOE nuclear facilities. This SRP (hereafter refers to as the Engineering SRP) provides consistent review guidance to assure that engineering and technical requirements are appropriately applied for the design, operations and disposition2 of DOE nuclear facilities. It is one of a series of three SRPs developed by the CNS. The other two SRPs address: 1) nuclear safety basis program review; and 2) application of requirements of DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, and DOE-STD-1189, Integration of Safety into the Design Process, for DOE Critical Decision (CD) review and approval. These SRPs may be revised in the future to reflect changes in the DOE requirements, lessons learned, and experience/insights from nuclear facility design, operations, and disposition.

  16. design basis threat | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    design basis threat Design Basis Threat NNSA has taken aggressive action to improve the security of its nuclear weapons material (often referred to as special nuclear material, or ...

  17. Technical solutions to nonproliferation challenges

    SciTech Connect (OSTI)

    Satkowiak, Lawrence

    2014-05-09

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  18. Spent nuclear fuel project technical databook

    SciTech Connect (OSTI)

    Reilly, M.A.

    1998-07-22

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values.

  19. OSR encapsulation basis -- 100-KW

    SciTech Connect (OSTI)

    Meichle, R.H.

    1995-01-27

    The purpose of this report is to provide the basis for a change in the Operations Safety Requirement (OSR) encapsulated fuel storage requirements in the 105 KW fuel storage basin which will permit the handling and storing of encapsulated fuel in canisters which no longer have a water-free space in the top of the canister. The scope of this report is limited to providing the change from the perspective of the safety envelope (bases) of the Safety Analysis Report (SAR) and Operations Safety Requirements (OSR). It does not change the encapsulation process itself.

  20. Project W-420 stack monitoring system upgrades

    SciTech Connect (OSTI)

    CARPENTER, K.E.

    1999-02-25

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420.

  1. DOE Technical Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    TAP Webinar eere.energy.gov The Parker Ranch installation in Hawaii DOE Technical Assistance Program Procuring and ... Solar America Communities Solar America Communities is a ...

  2. Final Technical Report Division

    Office of Scientific and Technical Information (OSTI)

    Technical Report Division of Nuclear Physics in the Department of Energy DOE Award ... Center for Theoretical Studies in Nuclear Physics and Related Areas (ECT*), Trento, ...

  3. Technical Information Specialist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a Technical Information Specialist coordinating and executing data curation and quality activities, including software quality assurance, for...

  4. TECHNICAL STANDARDS PROGRAM RESPONSIBILITIES

    Broader source: Energy.gov [DOE]

    PurposeThis procedure describes the responsibilities of persons who are charged with implementing the DOE Technical Standards Program. 

  5. Voltage Control Technical Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-08-Voltage-Control-Technical-Conference Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  6. AIKEN TECHNICAL COLLEGE CAMPUS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AIKEN TECHNICAL COLLEGE CAMPUS 2276 Jefferson Davis Highway, Graniteville SC 29829 Visitor parking is provided mainly on Parking Lot 3. In addition to that, all parking lots have...

  7. TECHNICAL STANDARDS COMMENT RESOLUTION

    Broader source: Energy.gov [DOE]

    PurposeThis procedure provides guidance for resolving comments on DOE Technical Standards that are received during the coordination process. 

  8. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-23

    The order establishes the DOE Technical Standards Program. Admin Chg 1, dated 3-12-13 supersedes DOE O 252.1A.

  9. Groundwater Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Groundwater Monitoring Groundwater Monitoring LANL maintains an extensive groundwater monitoring and surveillance program through sampling. August 1, 2013 Conceptual model of water movement and geology at Los Alamos National Laboratory Conceptual model of water movement and geology at Los Alamos National Laboratory RELATED IMAGES http://farm4.staticflickr.com/3749/9827580556_473a91fd78_t.jpg Enlarge

  10. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05

    The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

  11. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19

    To define requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Chg 1 dated 9-20-11 supersedes DOE O 426.1 and cancels DOE P 426.1.

  12. Technical Review Panel Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRP Report v7, 12 Aug 2012 TRP Report Final December 2012 Advanced Reactor Concepts Technical Review Panel Report Evaluation and Identification of future R&D on eight Advanced Reactor Concepts, conducted April - September 2012 December 2012 Public release version 2 Public release version 3 Table of Contents Summary ................................................................................................................................... 4 1. Overview of the Technical Review Panel

  13. About Technical Assistance

    Broader source: Energy.gov [DOE]

    As technologies proceed along the development pipeline, most face major hurdles as they attempt to enter commercial markets. Our Technical Assistance program helps lower a range of institutional barriers to prepare innovative, energy-efficient technologies and energy management systems for full commercial deployment. These projects and activities address barriers that are not technical, Technology Readiness Level 9.

  14. Guidance For Preparatioon of Basis For Interim Operation (BIO) Documents

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3011-2002 December 2002 Superceding DOE-STD-3011-94 November 1994 DOE STANDARD GUIDANCE FOR PREPARATION OF BASIS FOR INTERIM OPERATION (BIO) DOCUMENTS U.S. Department of Energy AREA SAFT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-3011-2002 ii This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S.

  15. Preparation of Safety Basis Documents for Transuranic (TRU) Waste Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5506-2007 April 2007 DOE STANDARD Preparation of Safety Basis Documents for Transuranic (TRU) Waste Facilities U.S. Department of Energy Washington, D.C. 20585 AREA-SAFT DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-5506-2007 ii Available on the Department of Energy Technical Standards Program Web Site at Http://tis.eh.doe.gov/techstds/ DOE-STD-5506-2007 iii Foreword This Standard provides analytical assumptions and methods, as well as hazard controls

  16. Sandia National Laboratories: Cooperative Monitoring Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooperative Monitoring Center IPB Building "Achieving International Security Through Technical Collaborations" Established at Sandia National Laboratories in 1994, the Cooperative Monitoring Center (CMC) provides a venue in which experts on technology and policy from around the world can explore the use of shareable, unclassified technology and research to: Implement Confidence Building Measures (CBMs) Monitor compliance with treaties or other agreements As part of Sandia's Global

  17. RISK REDUCTION THROUGH USE OF EXTERNAL TECHNICAL REVIEWS, TECHNOLOGY READINESS ASSESSMENTS AND TECHNICAL RISK RATINGS - 9174

    SciTech Connect (OSTI)

    Cercy, M; Steven P Schneider, S; Kurt D Gerdes, K

    2008-12-12

    The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks.

  18. RISK REDUCTION THROUGH USE OF EXTERNAL TECHNICAL REVIEWS, TECHNOLOGY READINESS ASSESSMENTS AND TECHNICAL RISK RATINGS - 9174

    SciTech Connect (OSTI)

    Cercy, M; Steven P Schneider, S; Kurt D Gerdes, K

    2009-01-15

    The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks.

  19. 1990 Weatherization Assistance Program monitoring. Final report

    SciTech Connect (OSTI)

    Samuels, L.S.

    1992-06-19

    The fiscal year 1990 DOE weatherization programs were monitored in Indiana, Ohio, and Wisconsin. The focus of the monitoring was on a total of 18 subgrantees. Separate reports on the monitoring completed on each site was submitted as well as the final summary report for each state. The scope of monitoring consisted of a review of current contracts, budgets, program operating procedures, staffing, inventory control, financial and procurement procedures, review of client files and audit reports, inspection of completed dwelling units and assessment of monitoring, training, and technical assistance provided by the grantees. A random sampling of completed units were selected and visits were made to inspect these weatherized dwellings.

  20. Beyond Design Basis Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond Design Basis Events Beyond Design Basis Events Beyond Design Basis Events Following the March 2011 Fukushima Daiichi nuclear plant accident in Japan, DOE embarked upon several initiatives to investigate the safety posture of its nuclear facilities relative to beyond design basis events (BDBEs). These initiatives included issuing Safety Bulletin 2011-01, Events Beyond Design Safety Basis Analysis, and conducting two DOE nuclear safety workshops. DOE also issued two reports documenting the

  1. Basis for NGNP Reactor Design Down-Selection

    SciTech Connect (OSTI)

    L.E. Demick

    2011-11-01

    The purpose of this paper is to identify the extent of technology development, design and licensing maturity anticipated to be required to credibly identify differences that could make a technical choice practical between the prismatic and pebble bed reactor designs. This paper does not address a business decision based on the economics, business model and resulting business case since these will vary based on the reactor application. The selection of the type of reactor, the module ratings, the number of modules, the configuration of the balance of plant and other design selections will be made on the basis of optimizing the Business Case for the application. These are not decisions that can be made on a generic basis.

  2. Sandia National Laboratories: Careers: Internships: Technical Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs: Center for Cyber Defenders TITANS: Center for Cyber Defenders Photo of CCD interns CCD interns use a custom power meter to measure the amount of energy consumed by their computers and monitors. When offered Year-round Who can apply High school, undergraduate, and graduate students majoring in computer science, engineering, or other technical areas Location Sandia/New Mexico and Sandia/California About CCD The Center for Cyber Defenders (CCD) gives computer science interns practical

  3. Technical Standards, Safety Analysis Toolbox Codes - November 2003 |

    Office of Environmental Management (EM)

    Department of Energy Standards, Safety Analysis Toolbox Codes - November 2003 Technical Standards, Safety Analysis Toolbox Codes - November 2003 November 2003 Software Quality Assurance Plan and Criteria for the Safety Analysis Toolbox Codes Safety analysis software for the DOE "toolbox" was designated by DOE/EH in March 2003 (DOE/EH, 2003). The supporting basis for this designation was provided by a DOE-chartered Safety Analysis Software Group in the technical report, Selection of

  4. Solar Power Tower Design Basis Document, Revision 0

    SciTech Connect (OSTI)

    ZAVOICO,ALEXIS B.

    2001-07-01

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  5. COORDINATION OF DOE TECHNICAL STANDARDS

    Broader source: Energy.gov [DOE]

    PurposeThis procedure provides guidance on the formal coordination of DOE Technical Standards in the DOE Technical Standards Program (TSP). The purpose of coordination of draft technical standards...

  6. BASIS Set Exchange (BSE): Chemistry Basis Sets from the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Basis Set Library

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feller, D; Schuchardt, Karen L.; Didier, Brett T.; Elsethagen, Todd; Sun, Lisong; Gurumoorthi, Vidhya; Chase, Jared; Li, Jun

    The Basis Set Exchange (BSE) provides a web-based user interface for downloading and uploading Gaussian-type (GTO) basis sets, including effective core potentials (ECPs), from the EMSL Basis Set Library. It provides an improved user interface and capabilities over its predecessor, the EMSL Basis Set Order Form, for exploring the contents of the EMSL Basis Set Library. The popular Basis Set Order Form and underlying Basis Set Library were originally developed by Dr. David Feller and have been available from the EMSL webpages since 1994. BSE not only allows downloading of the more than 200 Basis sets in various formats; it allows users to annotate existing sets and to upload new sets. (Specialized Interface)

  7. BASIS Set Exchange (BSE): Chemistry Basis Sets from the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Basis Set Library

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feller, D; Schuchardt, Karen L.; Didier, Brett T.; Elsethagen, Todd; Sun, Lisong; Gurumoorthi, Vidhya; Chase, Jared; Li, Jun

    The Basis Set Exchange (BSE) provides a web-based user interface for downloading and uploading Gaussian-type (GTO) basis sets, including effective core potentials (ECPs), from the EMSL Basis Set Library. It provides an improved user interface and capabilities over its predecessor, the EMSL Basis Set Order Form, for exploring the contents of the EMSL Basis Set Library. The popular Basis Set Order Form and underlying Basis Set Library were originally developed by Dr. David Feller and have been available from the EMSL webpages since 1994. BSE not only allows downloading of the more than 500 Basis sets in various formats; it allows users to annotate existing sets and to upload new sets. (Specialized Interface)

  8. Technical Standards Newsletters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Standards Newsletters Technical Standards Newsletters July 5, 2016 Technical Standards Newsletter - June 2016 Standards Actions Technical Standards Newsletter, June 2016 February 24, 2016 Technical Standards Newsletter - February 2016 Standards Actions Technical Standards Newsletter, February 2016 October 19, 2015 Technical Standards Newsletter - October 2015 Standards Actions Technical Standards Newsletter, October 2015 April 21, 2015 Technical Standards Newsletter - April 2015

  9. Technical Services Supply Process Specialist

    Broader source: Energy.gov [DOE]

    This position is located in Vancouver, Washington, and serves as senior process and procedure specialist within Technical Services Support (NSTS), and is responsible for the technical assimilation...

  10. Coeur d'Alene Tribe Fisheries Program Research, Monitoring and Evaluation Plan; Implementation of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation, 1997-2002 Technical Report.

    SciTech Connect (OSTI)

    Vitale, Angelo; Lamb, Dave; Peters, Ronald

    2002-11-01

    Westslope cutthroat trout (Oncorhynchus clarki lewisi) and bull trout (Salvelinus confluentus) are currently of special concern regionally and are important to the culture and subsistence needs of the Coeur d'Alene Tribe. The mission of the Coeur d'Alene Tribe Fisheries Program is to restore and maintain these native trout and the habitats that sustain them in order to provide subsistence harvest and recreational fishing opportunities for the Reservation community. The adfluvial life history strategy exhibited by westslope cutthroat and bull trout in the Lake Coeur d'Alene subbasin makes these fish susceptible to habitat degradation and competition in both lake and stream environments. Degraded habitat in Lake Coeur d'Alene and its associated streams and the introduction of exotic species has lead to the decline of westslope cutthroat and listing of bull trout under the endangered species act (Peters et al. 1998). Despite the effects of habitat degradation, several streams on the Reservation still maintain populations of westslope cutthroat trout, albeit in a suppressed condition (Table 1). The results of several early studies looking at fish population status and habitat condition on the Reservation (Graves et al. 1990; Lillengreen et al. 1993, 1996) lead the Tribe to aggressively pursue funding for habitat restoration under the Northwest Power Planning Council's (NWPPC) resident fish substitution program. Through these efforts, habitat restoration needs were identified and projects were initiated. The Coeur d'Alene Tribe Fisheries Program is currently involved in implementing stream habitat restoration projects, reducing the transport of sediment from upland sources, and monitoring fish populations in four watersheds on the Coeur d'Alene Reservation (Figure 1). Restoration projects have included riparian plantings, addition of large woody debris to streams, and complete channel reconstruction to restore historical natural channel forms. In addition, ponds have

  11. Final Scientific/Technical Report, DE-FG02-06ER64171, Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity – Subproject to Co-PI Eric E. Roden

    SciTech Connect (OSTI)

    Eric E. Roden

    2009-07-08

    This report summarizes research conducted in conjunction with a project entitled “Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Darrell Chandler (originally at Argonne National Laboratory, now with Akonni Biosystems) was the overall PI/PD for the project. The overall project goals were to (1) apply a model iron-reducer and sulfate-reducer microarray and instrumentation systems to sediment and groundwater samples from the Scheibe et al. FRC Area 2 field site, UMTRA sediments, and other DOE contaminated sites; (2) continue development and expansion of a 16S rRNA/rDNA¬-targeted probe suite for microbial community dynamics as new sequences are obtained from DOE-relevant sites; and (3) address the fundamental molecular biology and analytical chemistry associated with the extraction, purification and analysis of functional genes and mRNA in environmental samples. Work on the UW subproject focused on conducting detailed batch and semicontinuous culture reactor experiments with uranium-contaminated FRC Area 2 sediment. The reactor experiments were designed to provide coherent geochemical and microbiological data in support of microarray analyses of microbial communities in Area 2 sediments undergoing biostimulation with ethanol. A total of four major experiments were conducted (one batch and three semicontinuous culture), three of which (the batch and two semicontinuous culture) provided samples for DNA microarray analysis. A variety of other molecular analyses (clone libraries, 16S PhyloChip, RT-PCR, and T-RFLP) were conducted on parallel samples from the various experiments in order to provide independent information on microbial community response to biostimulation.

  12. UVIG Fall Technical Workshop

    Broader source: Energy.gov [DOE]

    The 2015 UVIG Fall Technical Workshop will provide attendees with an expanded perspective on the status of wind and solar integration and interconnection to utility systems in the United States and...

  13. OSH technical reference manual

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  14. Technical White Papers

    Broader source: Energy.gov [DOE]

    The following technical white papers explore potential options to increase widespread deployment of distributed generation (DG) and combined heat and power (CHP). Issues such as the treatment of CHP in renewable portfolio standards and CHP commissioning are discussed.

  15. DOE Technical Assistance Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Effective Renewables Programs Cheryl Jenkins Vermont Energy Investment Corporation DOE Technical Assistance Program Team 4 - Program & Project Development & Implementation September 28, 2010 2 | Designing Effective Renewables Programs eere.energy.gov Webinar Overview * Technical Assistance Project (TAP) Overview * The Framework for an Effective Program * Effective Program Design Approaches * Resources * Q&A 3 | Designing Effective Renewables Programs eere.energy.gov What is

  16. TEP Technical Asssistance 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gov The Parker Ranch installation in Hawaii Tribal Energy Program TEP Technical Assistance 2010 Sandra Begay-Campbell Principal Member of the Technical Staff Sandia National Laboratories October 25, 2010 2 | Tribal Energy Program eere.energy.gov Navajo: NTUA Solar Customer Providing rural Navajo families ACCESS to electricity 3 | Tribal Energy Program eere.energy.gov Hopi: Off-Grid Resident Living off-grid does not mean sacrificing comfort but understanding your limits 4 | Tribal Energy Program

  17. Climate Action Champion: Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy.gov/betterbuildings Climate Action Champion: Technical Assistance to the City of Seattle Planning for Seattle's new Building Energy Code Overview The City of Seattle, identified as a Climate Action Champion (CAC) by the Department of Energy (DOE), is revising its 2012 Energy Code, already one of the most progressive in the country. Seattle has made a pledge to be carbon neutral by 2050. Seattle received technical assistance from the Pacific Northwest National Laboratory in order to

  18. Safety Basis Information System | Department of Energy

    Energy Savers [EERE]

    Click on the above link to log in to the Safety Basis web interface. "RESTRICTED; access ... Click on the above link to access the form to request access to the Safety Basis web ...

  19. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  20. Safety basis academy summary of project implementation from 2007-2009

    SciTech Connect (OSTI)

    Johnston, Julie A

    2009-01-01

    During fiscal years 2007 through 2009, in accordance with Performance Based Incentives with DOE/NNSA Los Alamos Site Office, Los Alamos National Security (LANS) implemented and operated a Safety Basis Academy (SBA) to facilitate uniformity in technical qualifications of safety basis professionals across the nuclear weapons complex. The implementation phase of the Safety Basis Academy required development, delivery, and finalizing a set of 23 courses. The courses developed are capable of supporting qualification efforts for both federal and contractor personnel throughout the DOE/NNSA Complex. The LANS Associate Director for Nuclear and High Hazard Operations (AD-NHHO) delegated project responsibillity to the Safety Basis Division. The project was assigned to the Safety Basis Technical Services (SB-TS) Group at Los Alamos National Laboratory (LANL). The main tasks were project needs analysis, design, development, implementation of instructional delivery, and evaluation of SBA courses. DOE/NNSA responsibility for oversight of the SBA project was assigned to the Chief of Defense for Nuclear Safety, and delegated to the Authorization Basis Senior Advisor, Continuous Learning Chair (CDNS-ABSA/CLC). NNSA developed a memorandum of agreement with LANS AD-NHHO. Through a memorandum of agreement initiated by NNSA, the DOE National Training Center (NTC) will maintain the set of Safety Basis Academy courses and is able to facilitate course delivery throughout the DOE Complex.

  1. Technical Assessment Team (TAT) Supporting Technical Documents | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Technical Assessment Team (TAT) Supporting Technical Documents Technical Assessment Team (TAT) Supporting Technical Documents The documents (listed below) are the documents used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The Technical Assessment Team (TAT) has undertaken a deliberative investigation process to understand and determine the cause

  2. Monitoring Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring Jobs Monitoring Jobs Monitoring Hopper Batch Jobs See the man pages for more options. The Job Information page has more information on current queue status, completed jobs, ALPS logs and job summary statistics. Job Commands Command Description qsub batch_script Submits batch script to the queue. The output of qsub will be a jobid qdel jobid Deletes a job from the queue qhold jobid Puts a job on hold in the queue. To delete a job from the hopper xfer queue users must add an additional

  3. Electrostatic monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2001-01-01

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  4. Routine Radiological Environmental Monitoring Plan. Volume 1

    SciTech Connect (OSTI)

    Bechtel Nevada

    1999-12-31

    The U.S. Department of Energy manages the Nevada Test Site in a manner that meets evolving DOE Missions and responds to the concerns of affected and interested individuals and agencies. This Routine Radiological Monitoring Plan addressess complicance with DOE Orders 5400.1 and 5400.5 and other drivers requiring routine effluent monitoring and environmental surveillance on the Nevada Test Site. This monitoring plan, prepared in 1998, addresses the activities conducted onsite NTS under the Final Environmental Impact Statement and Record of Decision. This radiological monitoring plan, prepared on behalf of the Nevada Test Site Landlord, brings together sitewide environmental surveillance; site-specific effluent monitoring; and operational monitoring conducted by various missions, programs, and projects on the NTS. The plan provides an approach to identifying and conducting routine radiological monitoring at the NTS, based on integrated technical, scientific, and regulatory complicance data needs.

  5. Technical Assistance to Developers

    SciTech Connect (OSTI)

    Rockward, Tommy; Borup, Rodney L.; Garzon, Fernando H.; Mukundan, Rangachary; Spernjak, Dusan

    2012-07-17

    This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols, and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.

  6. Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Technical Assistance The U.S. Department of Energy (DOE) Office of Indian Energy provides federally recognized Indian tribes, including Alaska Native villages, tribal energy resource development organizations, and other organized tribal groups and communities, with technical assistance to advance tribal energy projects. For general information or inquiries, please contact our help desk. On-Request TECHNICAL ASSISTANCE Technical experts from DOE and its national laboratories,

  7. Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance Technical Assistance Photo courtesy of Dennis Schroeder, NREL 18022 Photo courtesy of Dennis Schroeder, NREL 18022 The U.S. Department of Energy offers technical assistance supporting energy efficiency and renewable energy. This technical assistance can include direct advice on issues or goals, tools and maps, and training. Some select technical assistance offerings are listed below. For States and Communities The State and Local Solution Center provides states and

  8. Radiation Exposure Monitoring Systems Data Submittal Notification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Radiation Exposure Monitoring Systems Data Submittal Notification Radiation Exposure Monitoring Systems Data Submittal Notification December 17, 2015 Monitoring records are required to be reported to the Department of Energy (DOE) Radiation Records Repository by March 31 under DOE Order 231.1B and in accordance with the REMS Reporting Guide. These records form the basis for the analysis presented in the DOE Occupational Radiation Exposure annual report. In July of 2007,

  9. Technical requirements for bioassay support services

    SciTech Connect (OSTI)

    Hickman, D.P.; Anderson, A.L. )

    1991-05-01

    This document provides the technical basis for the Chem-Nuclear Geotech (Geotech) bioassay program. It includes information and details that can be used as a model in providing technical contents and requirements for bioassay laboratory support, either internally or in solicitations by Geotech to obtain subcontractor laboratory support. It provides a detailed summary and description of the types of bioassay samples to be expected in support of Geotech remedial projects for the US Department of Energy and the bioassay services and analytical requirements necessary to process such samples, including required limits of sensitivity. General responsibilities of the bioassay laboratory are also addressed, including quality assurance. Peripheral information of importance to the program is included in the appendices of this document. 7 tabs.

  10. Southwest Region Experiment Station - Final Technical Report

    SciTech Connect (OSTI)

    Rosenthal, A

    2011-08-19

    lessons learned Task 3: PV Codes and Standards 1. Serve as the national lead for development and preparation of all proposals (related to PV) to the National Electrical Code 2. Participate in the Standards Technical Panels for modules (UL1703) and inverters (UL1741) Task 4: Assess Inverter Long Term Reliability 1. Install and monitor identical inverters at SWRES and SERES 2. Operate and monitor all inverters for 5 years, characterizing all failures and performance trends Task 5: Test and Evaluation Support for Solar America Initiative 1. Provide test and evaluation services to the National Laboratories for stage gate and progress measurements of SAI TPP winners