Sample records for monitoring technical basis

  1. Technical Basis Document for PFP Area Monitoring Dosimetry Program

    SciTech Connect (OSTI)

    COOPER, J.R.

    2000-04-17T23:59:59.000Z

    This document describes the phantom dosimetry used for the PFP Area Monitoring program and establishes the basis for the Plutonium Finishing Plant's (PFP) area monitoring dosimetry program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), part 835, ''Occupational Radiation Protection'' Part 835.403; Hanford Site Radiological Control Manual (HSRCM-1), Part 514; HNF-PRO-382, Area Dosimetry Program; and PNL-MA-842, Hanford External Dosimetry Technical Basis Manual.

  2. Technical Basis for Radiological Workplace Air Monitoring and Sampling for the River Corridor Project 300 area

    SciTech Connect (OSTI)

    MANTOOTH, D.S.

    2000-01-17T23:59:59.000Z

    This report documents the technical basis by which the workplace air monitoring and sampling program is operated in the 324 and 327 Buildings.

  3. Technical Planning Basis

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-07-11T23:59:59.000Z

    The Guide assists DOE/NNSA field elements and operating contractors in identifying and analyzing hazards at facilities and sites to provide the technical planning basis for emergency management programs. Cancels DOE G 151.1-1, Volume 2.

  4. Technical Basis for Work Place Air Monitoring for the Plutonium Finishing Plan (PFP)

    SciTech Connect (OSTI)

    JONES, R.A.

    1999-10-06T23:59:59.000Z

    This document establishes the basis for the Plutonium Finishing Plant's (PFP) work place air monitoring program in accordance with the following requirements: Title 10, Code of Federal Regulations (CFR), Part 835 ''Occupational Radiation Protection''; Hanford Site Radiological Control Manual (HSRCM-1); HNF-PRO-33 1, Work Place Air Monitoring; WHC-SD-CP-SAR-021, Plutonium Finishing Plant Final Safety Analysis Report; and Applicable recognized national standards invoked by DOE Orders and Policies.

  5. Online Monitoring Technical Basis and Analysis Framework for Large Power Transformers; Interim Report for FY 2012

    SciTech Connect (OSTI)

    Nancy J. Lybeck; Vivek Agarwal; Binh T. Pham; Heather D. Medema; Kirk Fitzgerald

    2012-09-01T23:59:59.000Z

    The Light Water Reactor Sustainability program at Idaho National Laboratory (INL) is actively conducting research to develop and demonstrate online monitoring (OLM) capabilities for active components in existing Nuclear Power Plants. A pilot project is currently underway to apply OLM to Generator Step-Up Transformers (GSUs) and Emergency Diesel Generators (EDGs). INL and the Electric Power Research Institute (EPRI) are working jointly to implement the pilot project. The EPRI Fleet-Wide Prognostic and Health Management (FW-PHM) Software Suite will be used to implement monitoring in conjunction with utility partners: the Shearon Harris Nuclear Generating Station (owned by Duke Energy for GSUs, and Braidwood Generating Station (owned by Exelon Corporation) for EDGs. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for GSUs. GSUs are main transformers that are directly connected to generators, stepping up the voltage from the generator output voltage to the highest transmission voltages for supplying electricity to the transmission grid. Technical experts from Shearon Harris are assisting INL and EPRI in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the FW-PHM Software Suite and tested using data from Shearon-Harris. Parallel research on EDGs is being conducted, and will be reported in an interim report during the first quarter of fiscal year 2013.

  6. Online Monitoring Technical Basis and Analysis Framework for Emergency Diesel Generators - Interim Report for FY 2013

    SciTech Connect (OSTI)

    Binh T. Pham; Nancy J. Lybeck; Vivek Agarwal

    2012-12-01T23:59:59.000Z

    The Light Water Reactor Sustainability program at Idaho National Laboratory is actively conducting research to develop and demonstrate online monitoring capabilities for active components in existing nuclear power plants. Idaho National Laboratory and the Electric Power Research Institute are working jointly to implement a pilot project to apply these capabilities to emergency diesel generators and generator step-up transformers. The Electric Power Research Institute Fleet-Wide Prognostic and Health Management Software Suite will be used to implement monitoring in conjunction with utility partners: Braidwood Generating Station (owned by Exelon Corporation) for emergency diesel generators, and Shearon Harris Nuclear Generating Station (owned by Duke Energy Progress) for generator step-up transformers. This report presents monitoring techniques, fault signatures, and diagnostic and prognostic models for emergency diesel generators. Emergency diesel generators provide backup power to the nuclear power plant, allowing operation of essential equipment such as pumps in the emergency core coolant system during catastrophic events, including loss of offsite power. Technical experts from Braidwood are assisting Idaho National Laboratory and Electric Power Research Institute in identifying critical faults and defining fault signatures associated with each fault. The resulting diagnostic models will be implemented in the Fleet-Wide Prognostic and Health Management Software Suite and tested using data from Braidwood. Parallel research on generator step-up transformers was summarized in an interim report during the fourth quarter of fiscal year 2012.

  7. Flammable gas tank safety program: Technical basis for gas analysis and monitoring

    SciTech Connect (OSTI)

    Sherwood, D.J.

    1995-09-08T23:59:59.000Z

    Flammable gases generated in radioactive liquids. Twenty-five high level radioactive liquid waste storage tanks located underground at the Hanford Site are on a Flammable Gas Watch List because they contain waste which tends to retain the gases generated in it until rather large quantities are available for sudden release to the tank head space; if a tank is full it has little dome space, and a flammable concentration of gases could be produced--even if the tank is ventilated. If the waste has no tendency to retain gas generated in it then a continual flammable gas concentration in the tank dome space is established by the gas production rate and the tank ventilation rate (or breathing rate for unventilated tanks); this is also a potential problem for Flammable Gas Watch List tanks, and perhaps other Hanford tanks too. All Flammable Gas Watch List tanks will be fitted with Standard Hydorgen Monitoring Systems so that their behavior can be observed. In some cases, such as tank 241-SY-101, the data gathered from such observations will indicate that tank conditions need to be mitigated so that gas release events are either eliminated or rendered harmless. For example, a mixer pump was installed in tank 241-SY-101; operating the pump stirs the waste, replacing the large gas release events with small releases of gas that are kept below twenty-five percent of the lower flammability limit by the ventilation system. The concentration of hydrogen measured in Hanford waste tanks is greater than that of any other flammable gas. Hydrogen levels measured with a Standard Hydrogen Monitoring System in excess of 0.6 volume percent will cause Westinghouse Hanford Company to consider actions which will decrease the amount of flammable gas in the tank

  8. Facility worker technical basis document

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    2003-08-28T23:59:59.000Z

    This technical basis document was developed to support the Tank Farm Documented Safety Analysis (DSA). It describes the criteria and methodology for allocating controls to hazardous conditions with significant facility work consequence and presents the results of the allocation.

  9. Facility worker technical basis document

    SciTech Connect (OSTI)

    EVANS, C.B.

    2003-03-21T23:59:59.000Z

    This report documents the technical basis for facility worker safety to support the Tank Farms Documented Safety Analysis and described the criteria and methodology for allocating controls to hazardous conditions with significant facility worker consequences and presents the results of the allocation.

  10. Technical basis for internal dosimetry at Hanford

    SciTech Connect (OSTI)

    Sula, M.J.; Carbaugh, E.H.; Bihl, D.E.

    1991-07-01T23:59:59.000Z

    The Hanford Internal Dosimetry Program, administered by Pacific Northwest Laboratory for the US Department of Energy, provides routine bioassay monitoring for employees who are potentially exposed to radionuclides in the workplace. This report presents the technical basis for routine bioassay monitoring and the assessment of internal dose at Hanford. The radionuclides of concern include tritium, corrosion products ({sup 58}Co, {sup 60}Co, {sup 54}Mn, and {sup 59}Fe), strontium, cesium, iodine, europium, uranium, plutonium, and americium,. Sections on each of these radionuclides discuss the sources and characteristics; dosimetry; bioassay measurements and monitoring; dose measurement, assessment, and mitigation and bioassay follow-up treatment. 78 refs., 35 figs., 115 tabs.

  11. Organic solvent technical basis document

    SciTech Connect (OSTI)

    SANDGREN, K.R.

    2003-03-22T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for the organic solvent fire representative and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described in this report.

  12. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2003-10-09T23:59:59.000Z

    This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSC and/or TSR-level controls.

  13. FACILITY WORKER TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    2005-03-31T23:59:59.000Z

    This technical basis document was developed to support RPP-13033, ''Tank Farms Documented Safety Analysis (DSA). It describes the criteria and methodology for allocating controls to hazardous conditions with significant facility worker (FW) consequence and presents the results of the allocation. The criteria and methodology for identifying controls that address FW safety are in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''.

  14. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2005-03-03T23:59:59.000Z

    This document describes the qualitative evaluation of frequency and consequences for DST and SST representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant structures, systems and components (SSCs) and/or technical safety requirements (TSRs) were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support WP-13033, Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  15. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2005-02-18T23:59:59.000Z

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  16. Waste transfer leaks technical basis document

    SciTech Connect (OSTI)

    ZIMMERMAN, B.D.

    2003-03-22T23:59:59.000Z

    This document provides technical support for the onsite radiological and toxicological, and offsite toxicological, portions of the waste transfer leak accident presented in the Documented Safety Analysis. It provides the technical basis for frequency and consequence bin selection, and selection of safety SSCs and TSRs.

  17. Technical basis document for natural event hazards

    SciTech Connect (OSTI)

    CARSON, D.M.

    2003-08-28T23:59:59.000Z

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls This report documents the technical basis for assigning risk bins for Natural Event Hazards Representative Accident and associated represented hazardous conditions.

  18. Technical basis for dose reconstruction

    SciTech Connect (OSTI)

    Anspaugh, L.R.

    1996-01-31T23:59:59.000Z

    The purpose of this paper is to consider two general topics: technical considerations of why dose-reconstruction studies should or should not be performed and methods of dose reconstruction. The first topic is of general and growing interest as the number of dose-reconstruction studies increases, and one asks the question whether it is necessary to perform a dose reconstruction for virtually every site at which, for example, the Department of Energy (DOE) has operated a nuclear-related facility. And there is the broader question of how one might logically draw the line at performing or not performing dose-reconstruction (radiological and chemical) studies for virtually every industrial complex in the entire country. The second question is also of general interest. There is no single correct way to perform a dose-reconstruction study, and it is important not to follow blindly a single method to the point that cheaper, faster, more accurate, and more transparent methods might not be developed and applied.

  19. Technical basis document for external events

    SciTech Connect (OSTI)

    OBERG, B.D.

    2003-03-22T23:59:59.000Z

    This document supports the Tank Farms Documented Safety Analysis and presents the technical basis for the frequencies of externally initiated accidents. The consequences of externally initiated events are discussed in other documents that correspond to the accident that was caused by the external event. The external events include aircraft crash, vehicle accident, range fire, and rail accident.

  20. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2006-07-31T23:59:59.000Z

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  1. Technical basis document for natural event hazards

    SciTech Connect (OSTI)

    CARSON, D.M.

    2003-03-20T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for natural event hazards (NEH)-initiated representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report.

  2. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Life Cycle Analysis Basis for Program Focus Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus Polymer Composites Research in the LM Materials Program Overview...

  3. Technical Basis for PNNL Beryllium Inventory

    SciTech Connect (OSTI)

    Johnson, Michelle Lynn

    2014-07-09T23:59:59.000Z

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  4. Technical Basis for Assessing Uranium Bioremediation Performance

    SciTech Connect (OSTI)

    PE Long; SB Yabusaki; PD Meyer; CJ Murray; AL N’Guessan

    2008-04-01T23:59:59.000Z

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documented case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.

  5. APS Technical Systems Monitoring Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Source Technical Systems Accelerator Systems Storage Ring Status for the past 24 hours with real Time of Day User beam delineated. Current, Lifetime, History with 24-hr...

  6. MIXING OF INCOMPATIBLE MATERIALS IN WASTE TANKS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    SANDGREN, K.R.

    2003-10-15T23:59:59.000Z

    This document presents onsite radiological, onsite toxicological, and offsite toxicological consequences, risk binning, and control decision results for the mixing of incompatible materials in waste tanks representative accident. This technical basis document was developed to support the tank farms documented safety analysis (DSA) and describes the risk binning process, the technical basis for assigning risk bins, and the controls selected for the mixing of incompatible materials representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  7. Technical basis document for the evaporator dump accident

    SciTech Connect (OSTI)

    GOETZ, T.G.

    2003-03-22T23:59:59.000Z

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for the evaporator dump representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report.

  8. Mixing of incompatible materials in waste tanks technical basis document

    SciTech Connect (OSTI)

    SANDGREN, K.R.

    2003-03-21T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process, the technical basis for assigning risk bins, and the controls selected for the mixing of incompatible materials representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSCs) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report.

  9. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KOZLOWSKI, S.D.

    2007-05-30T23:59:59.000Z

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  10. Technical basis for the aboveground structure failure and associated represented hazardous conditions

    SciTech Connect (OSTI)

    GOETZ, T.G.

    2003-07-25T23:59:59.000Z

    This technical basis document describes the risk binning process and the technical basis for assigning risk bins for the aboveground structure failure representative accident and associated represented hazardous conditions. This document was developed to support the documented safety analysis.

  11. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2005-02-25T23:59:59.000Z

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database.

  12. TECHNICAL BASIS FOR VENTILATION REQUIREMENTS IN TANK FARMS OPERATING SPECIFICATIONS DOCUMENTS

    SciTech Connect (OSTI)

    BERGLIN, E J

    2003-06-23T23:59:59.000Z

    This report provides the technical basis for high efficiency particulate air filter (HEPA) for Hanford tank farm ventilation systems (sometimes known as heating, ventilation and air conditioning [HVAC]) to support limits defined in Process Engineering Operating Specification Documents (OSDs). This technical basis included a review of older technical basis and provides clarifications, as necessary, to technical basis limit revisions or justification. This document provides an updated technical basis for tank farm ventilation systems related to Operation Specification Documents (OSDs) for double-shell tanks (DSTs), single-shell tanks (SSTs), double-contained receiver tanks (DCRTs), catch tanks, and various other miscellaneous facilities.

  13. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2009-08-28T23:59:59.000Z

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document.

  14. Evaluation of the Technical Basis for Extended Dry Storage and

    E-Print Network [OSTI]

    -- Executive Summary U.S. Nuclear Waste Technical Review Board December 2010 #12;U.S.U.S. Nuclear Waste Technical Review Board Authors This report was prepared for the U.S. Nuclear Waste Technical Review Board.NWTRB.GOV ii #12;Extended Dry Storage and Transportation of Used Nuclear Fuel U.S. Nuclear Waste Technical

  15. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2011-04-04T23:59:59.000Z

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the manual by PNNL was discontinued beginning with Revision 0.2.

  16. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2010-04-01T23:59:59.000Z

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at the U.S. Department of Energy (DOE) Hanford site. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with requirements of 10 CFR 835, the DOE Laboratory Accreditation Program, the DOE Richland Operations Office, DOE Office of River Protection, DOE Pacific Northwest Office of Science, and Hanford’s DOE contractors. The dosimetry system is operated by the Pacific Northwest National Laboratory (PNNL) Hanford External Dosimetry Program which provides dosimetry services to PNNL and all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the manual by PNNL was discontinued beginning with Revision 0.2.

  17. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2007-03-12T23:59:59.000Z

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. Rev. 0 marks the first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database. Revision numbers that are whole numbers reflect major revisions typically involving changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Minor revision. Updated Chapters 5, 6 and 9 to reflect change in default ring calibration factor used in HEDP dose calculation software. Factor changed from 1.5 to 2.0 beginning January 1, 2007. Pages on which changes were made are as follows: 5.23, 5.69, 5.78, 5.80, 5.82, 6.3, 6.5, 6.29, 9.2.

  18. Technical Basis and Considerations for DOE M 435.1-1 (Appendix A)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-07-09T23:59:59.000Z

    This appendix establishes the technical basis of the order revision process and of each of the requirements included in the revised radioactive waste management order.

  19. Hanford Technical Basis for Multiple Dosimetry Effective Dose Methodology

    SciTech Connect (OSTI)

    Hill, Robin L.; Rathbone, Bruce A.

    2010-08-01T23:59:59.000Z

    The current method at Hanford for dealing with the results from multiple dosimeters worn during non-uniform irradiation is to use a compartmentalization method to calculate the effective dose (E). The method, as documented in the current version of Section 6.9.3 in the 'Hanford External Dosimetry Technical Basis Manual, PNL-MA-842,' is based on the compartmentalization method presented in the 1997 ANSI/HPS N13.41 standard, 'Criteria for Performing Multiple Dosimetry.' With the adoption of the ICRP 60 methodology in the 2007 revision to 10 CFR 835 came changes that have a direct affect on the compartmentalization method described in the 1997 ANSI/HPS N13.41 standard, and, thus, to the method used at Hanford. The ANSI/HPS N13.41 standard committee is in the process of updating the standard, but the changes to the standard have not yet been approved. And, the drafts of the revision of the standard tend to align more with ICRP 60 than with the changes specified in the 2007 revision to 10 CFR 835. Therefore, a revised method for calculating effective dose from non-uniform external irradiation using a compartmental method was developed using the tissue weighting factors and remainder organs specified in 10 CFR 835 (2007).

  20. Hanford External Dosimetry Technical Basis Manual PNL-MA-842

    SciTech Connect (OSTI)

    Rathbone, Bruce A.

    2010-01-01T23:59:59.000Z

    The Hanford External Dosimetry Technical Basis Manual PNL-MA-842 documents the design and implementation of the external dosimetry system used at Hanford. The manual describes the dosimeter design, processing protocols, dose calculation methodology, radiation fields encountered, dosimeter response characteristics, limitations of dosimeter design under field conditions, and makes recommendations for effective use of the dosimeters in the field. The manual describes the technical basis for the dosimetry system in a manner intended to help ensure defensibility of the dose of record at Hanford and to demonstrate compliance with 10 CFR 835, DOELAP, DOE-RL, ORP, PNSO, and Hanford contractor requirements. The dosimetry system is operated by PNNL’s Hanford External Dosimetry Program (HEDP) which provides dosimetry services to all Hanford contractors. The primary users of this manual are DOE and DOE contractors at Hanford using the dosimetry services of PNNL. Development and maintenance of this manual is funded directly by DOE and DOE contractors. Its contents have been reviewed and approved by DOE and DOE contractors at Hanford through the Hanford Personnel Dosimetry Advisory Committee (HPDAC) which is chartered and chaired by DOE-RL and serves as means of coordinating dosimetry practices across contractors at Hanford. This manual was established in 1996. Since its inception, it has been revised many times and maintained by PNNL as a controlled document with controlled distribution. The first revision to be released through PNNL’s Electronic Records & Information Capture Architecture (ERICA) database was designated Revision 0. Revision numbers that are whole numbers reflect major revisions typically involving significant changes to all chapters in the document. Revision numbers that include a decimal fraction reflect minor revisions, usually restricted to selected chapters or selected pages in the document. Maintenance and distribution of controlled hard copies of the manual by PNNL was discontinued beginning with Revision 0.2. Revision Log: Rev. 0 (2/25/2005) Major revision and expansion. Rev. 0.1 (3/12/2007) Updated Chapters 5, 6 and 9 to reflect change in default ring calibration factor used in HEDP dose calculation software. Factor changed from 1.5 to 2.0 beginning January 1, 2007. Pages on which changes were made are as follows: 5.23, 5.69, 5.78, 5.80, 5.82, 6.3, 6.5, 6.29, and 9.2. Rev 0.2 (8/28/2009) Updated Chapters 3, 5, 6, 8 and 9. Chapters 6 and 8 were significantly expanded. References in the Preface and Chapters 1, 2, 4, and 7 were updated to reflect updates to DOE documents. Approved by HPDAC on 6/2/2009. Rev 1.0 (1/1/2010) Major revision. Updated all chapters to reflect the Hanford site wide implementation on January 1, 2010 of new DOE requirements for occupational radiation protection. The new requirements are given in the June 8, 2007 amendment to 10 CFR 835 Occupational Radiation Protection (Federal Register, June 8, 2007. Title 10 Part 835. U.S., Code of Federal Regulations, Vol. 72, No. 110, 31904-31941). Revision 1.0 to the manual replaces ICRP 26 dosimetry concepts and terminology with ICRP 60 dosimetry concepts and terminology and replaces external dose conversion factors from ICRP 51 with those from ICRP 74 for use in measurement of operational quantities with dosimeters. Descriptions of dose algorithms and dosimeter response characteristics, and field performance were updated to reflect changes in the neutron quality factors used in the measurement of operational quantities.

  1. Technical basis for the aboveground structure failure accident & associated represented hazardous conditions

    SciTech Connect (OSTI)

    GOETZ, T.G.

    2003-05-15T23:59:59.000Z

    This technical basis document describes the risk binning process and the technical basis for assigning risk bins for the above-ground structure failure representative accident and associated represented hazardous conditions. This document was developed to support the documented safety analysis.

  2. TECHNICAL BASIS FOR THE NUCLEAR CRITICALITY REPRESENTATIVE ACCIDENT & ASSOCIATED REPRESENTED HAZARDOUS CONDITIONS

    SciTech Connect (OSTI)

    GOETZ, T.G.

    2003-06-17T23:59:59.000Z

    This document was developed to support the documented safety analysis (DSA) and describes the process and basis for assigning risk bins for the nuclear criticality representative accident and associated hazardous conditions. Revision 1 incorporates ORP IRT comments to enhance the technical presentation and also makes editorial changes. This technical basis document was developed to support the documented safety analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for the nuclear criticality representative accident and associated hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the frequency and consequence.

  3. TECHNICAL BASIS FOR THE NUCLEAR CRITICALITY REPRESENTATIVE ACCIDENT & ASSOCIATED REPRESENTED HAZARDOUS CONDITIONS

    SciTech Connect (OSTI)

    GRIGSBY, J.M.

    2005-03-03T23:59:59.000Z

    Technical Basis Document for the Nuclear Criticality Representative Accident and Associate Represented Hazardous Conditions. Revision 2 of RPP-12371 provides accident consequence estimates for a hypothetical criticality event in an above grade facility (e.g. DBVS, CH-TRUM, and S-109 PWRS). This technical basis document was developed to support RPP-13033, ''Tank Farms Documented Safety Analysis (DSA)'', and describes the risk binning process and the technical basis for assigning risk bins for the nuclear criticality representative accident and associated hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  4. Online Monitoring Technical Basis and Analysis Framework for Emergency

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online Classified or ControlledDiesel

  5. Online Monitoring Technical Basis and Analysis Framework for Large Power

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergy Online Classified or

  6. Human-system Interfaces to Automatic Systems: Review Guidance and Technical Basis

    SciTech Connect (OSTI)

    OHara, J.M.; Higgins, J.C.

    2010-01-31T23:59:59.000Z

    Automation has become ubiquitous in modern complex systems and commercial nuclear power plants are no exception. Beyond the control of plant functions and systems, automation is applied to a wide range of additional functions including monitoring and detection, situation assessment, response planning, response implementation, and interface management. Automation has become a 'team player' supporting plant personnel in nearly all aspects of plant operation. In light of the increasing use and importance of automation in new and future plants, guidance is needed to enable the NRC staff to conduct safety reviews of the human factors engineering (HFE) aspects of modern automation. The objective of the research described in this report was to develop guidance for reviewing the operator's interface with automation. We first developed a characterization of the important HFE aspects of automation based on how it is implemented in current systems. The characterization included five dimensions: Level of automation, function of automation, modes of automation, flexibility of allocation, and reliability of automation. Next, we reviewed literature pertaining to the effects of these aspects of automation on human performance and the design of human-system interfaces (HSIs) for automation. Then, we used the technical basis established by the literature to develop design review guidance. The guidance is divided into the following seven topics: Automation displays, interaction and control, automation modes, automation levels, adaptive automation, error tolerance and failure management, and HSI integration. In addition, we identified insights into the automaton design process, operator training, and operations.

  7. Technical basis document for the release from contaminated facility representative accident and associated represented hazardous conditions

    SciTech Connect (OSTI)

    OBERG, B.D.

    2003-03-22T23:59:59.000Z

    This document supports the Tank Farms Documented Safety Analysis and describes the risk binning process and the technical basis for assigning risk bins for the release from contaminated facility representative accident and associated represented hazardous conditions. The representative accidents qualitatively considered are fires, deflagrations, and load drops in contaminated areas. The risks from a separate evaluation of compressed gas hazards are also summarized.

  8. Technical basis document for the steam intrusion from interfacing systems accident

    SciTech Connect (OSTI)

    GOETZ, T.G.

    2003-03-21T23:59:59.000Z

    This technical basis document was developed to support the Documented Safety Analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for the steam intrusion from interfacing systems representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report.

  9. Technical basis for the nuclear criticality representative accident and associated represented hazardous conditions

    SciTech Connect (OSTI)

    CARSON, D.M.

    2003-03-20T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for the nuclear criticality representative accident and associated hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report.

  10. Technical basis for the tank bump representative accident and associated hazardous conditions

    SciTech Connect (OSTI)

    WILLIAMS, J.C.

    2003-03-21T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for the tank bump representative accident and associated hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', as described in this report.

  11. Technical basis for the transportation related handling representative accidents and associated hazards condition

    SciTech Connect (OSTI)

    TOMASZEWSKI, T.A.

    2003-03-21T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for the handling and movement of tank farm waste sample containers, and mixed, low-level, and hazardous operational waste containers incidental to onsite vehicle transportation representative accident and associated hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. See RPP-14286, Facility Worker Technical Basis Document, for these considerations. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described in this report.

  12. Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1

    Broader source: Energy.gov [DOE]

    This document provides the technical basis for the Department of Energy (DOE) Policy (P) 420.1, Nuclear Safety Policy, dated 2-8-2011. It includes an analysis of the revised Policy to determine whether it provides the necessary and sufficient high-level expectations that will lead DOE to establish and implement appropriate requirements to assure protection of the public, workers, and the environment from the hazards of DOE’s operation of nuclear facilities.

  13. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Bradley, E.W. [Science Applications International Corp., Oak Ridge, TN (United States); Wu, C.F.; Goff, T.E. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1993-12-31T23:59:59.000Z

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from a sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.

  14. Technical basis document for the unplanned excavation/drilling of 200 area soils

    SciTech Connect (OSTI)

    STEPHENS, L.S.

    2003-03-21T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for the unplanned excavation/drilling of 200 Area soils representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described in this report.

  15. Technical Work Plan For: Meteorological Monitoring Data Analysis

    SciTech Connect (OSTI)

    R. Green

    2006-02-06T23:59:59.000Z

    The meteorological monitoring and analysis program has five objectives. (1) Acquire qualified meteorological data from YMP meteorological monitoring network using appropriate controls on measuring and test equipment. Because this activity is monitoring (i.e., recording naturally occurring events) pre-test predictions are not applicable. All work will be completed in accordance with U.S. Department of Energy (DOE) Office of Repository Development (ORD) administrative procedures and Bechtel SAIC Co., LLC (BSC) line procedures. The meteorological monitoring program includes measuring and test equipment calibrations, operational checks, preventive and corrective maintenance, and data collection. (2) Process the raw monitoring data collected in the field and submit technically reviewed, traceable data to the Technical Data Management System (TDMS) and the Records Processing Center. (3) Develop analyses or calculations to provide information to data requesters and provide data sets as requested. (4) Provide precipitation amounts to Site Operations to support requirements to perform inspections in the Stormwater Pollution Prevention Plan (implemented in LP-OM-050Q-BSC) following storm events of greater than 0.5 inches. The program also provides meteorological data during extreme weather conditions (e.g., high winds, rainstorms, etc.) to support decisions regarding worker safety. (5) Collect samples of precipitation for chemical and isotopic analysis by the United States Geological Survey (USGS). The BSC ES&H Environmental Compliance organization is responsible for performing this work. Data from calendar-year periods are submitted to the TDMS to provide YMP users with qualified meteorological data for scientific modeling and analyses, engineering designs of surface facilities, performance assessment analyses, and operational safety issues.

  16. Technical basis for classification of low-activity waste fraction from Hanford site tanks

    SciTech Connect (OSTI)

    Petersen, C.A.

    1996-09-20T23:59:59.000Z

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level waste, for disposal is a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  17. Site Screening and Technical Guidance for Monitored Natural Attenuation at DOE Sites

    SciTech Connect (OSTI)

    Borns, D.J.; Brady, P.V.; Brady, W.D.; Krupka, K.M.; Spalding, B.P.; Waters, R.D.; Zhang, P.

    1999-03-01T23:59:59.000Z

    Site Screening and Technical Guidance for Monitored Natural Attenuation at DOE Sites briefly outlines the biological and geochemical origins of natural attenuation, the tendency for natural processes in soils to mitigate contaminant transport and availability, and the means for relying on monitored natural attenuation (MNA) for remediation of contaminated soils and groundwaters. This report contains a step-by-step guide for (1) screening contaminated soils and groundwaters on the basis of their potential for remediation by natural attenuation and (2) implementing MNA consistent with EPA OSWER Directive 9200.4-17. The screening and implementation procedures are set up as a web-based tool (http://www.sandia.gov/eesector/gs/gc/na/mnahome.html) to assist US Department of Energy (DOE) site environmental managers and their staff and contractors to adhere to EPA guidelines for implementing MNA. This document is intended to support the Decision Maker's Framework Guide and Monitoring Guide both to be issued from DOE EM-40. Further technical advances may cause some of the approach outlined in this document to change over time.

  18. Final Technical Report: Development of Post?Installation Monitoring Capabilities

    SciTech Connect (OSTI)

    Polagye, Brian [University of Washington] [University of Washington

    2014-03-31T23:59:59.000Z

    The development of approaches to harness marine and hydrokinetic energy at large?scale is predicated on the compatibility of these generation technologies with the marine environment. At present, aspects of this compatibility are uncertain. Demonstration projects provide an opportunity to address these uncertainties in a way that moves the entire industry forward. However, the monitoring capabilities to realize these advances are often under?developed in comparison to the marine and hydrokinetic energy technologies being studied. Public Utility District No. 1 of Snohomish County has proposed to deploy two 6?meter diameter tidal turbines manufactured by OpenHydro in northern Admiralty Inlet, Puget Sound, Washington. The goal of this deployment is to provide information about the environmental, technical, and economic performance of such turbines that can advance the development of larger?scale tidal energy projects, both in the United States and internationally. The objective of this particular project was to develop environmental monitoring plans in collaboration with resource agencies, while simultaneously advancing the capabilities of monitoring technologies to the point that they could be realistically implemented as part of these plans. In this, the District was joined by researchers at the Northwest National Marine Renewable Energy Center at the University of Washington, Sea Mammal Research Unit, LLC, H.T. Harvey & Associates, and Pacific Northwest National Laboratory. Over a two year period, the project team successfully developed four environmental monitoring and mitigation plans that were adopted as a condition of the operating license for the demonstration project that issued by the Federal Energy Regulatory Commission in March 2014. These plans address nearturbine interactions with marine animals, the sound produced by the turbines, marine mammal behavioral changes associated with the turbines, and changes to benthic habitat associated with colonization of the subsea base support structure. In support of these plans, the project team developed and field tested a strobe?illuminated stereooptical camera system suitable for studying near?turbine interactions with marine animals. The camera system underwent short?term field testing at the proposed turbine deployment site and a multi?month endurance test in shallower water to evaluate the effectiveness of biofouling mitigation measures for the optical ports on camera and strobe pressure housings. These tests demonstrated that the camera system is likely to meet the objectives of the near?turbine monitoring plan and operate, without maintenance, for periods of at least three months. The project team also advanced monitoring capabilities related to passive acoustic monitoring of marine mammals and monitoring of tidal currents. These capabilities will be integrated in a recoverable monitoring package that has a single interface point with the OpenHydro turbines, connects to shore power and data via a wet?mate connector, and can be recovered to the surface for maintenance and reconfiguration independent of the turbine. A logical next step would be to integrate these instruments within the package, such that one instrument can trigger the operation of another.

  19. High integrity software for nuclear power plants: Candidate guidelines, technical basis and research needs. Main report, Volume 2

    SciTech Connect (OSTI)

    Seth, S.; Bail, W.; Cleaves, D.; Cohen, H.; Hybertson, D.; Schaefer, C.; Stark, G.; Ta, A.; Ulery, B. [Mitre Corp., McLean, VA (United States)

    1995-06-01T23:59:59.000Z

    The work documented in this report was performed in support of the US Nuclear Regulatory Commission to examine the technical basis for candidate guidelines that could be considered in reviewing and evaluating high integrity computer e following software development and assurance activities: Requirements specification; design; coding; verification and validation, inclukding static analysis and dynamic testing; safety analysis; operation and maintenance; configuration management; quality assurance; and planning and management. Each activity (framework element) was subdivided into technical areas (framework subelements). The report describes the development of approximately 200 candidate guidelines that span the entire ran e identification, categorization and prioritization of technical basis for those candidate guidelines; and the identification, categorization and prioritization of research needs for improving the technical basis. The report has two volumes: Volume 1, Executive Summary includes an overview of the framwork and of each framework element, the complete set of candidate guidelines, the results of the assessment of the technical basis for each candidate guideline, and a discussion of research needs that support the regulatory function; this document, Volume 2, is the main report.

  20. Application of Microprocessor-Based Equipment in Nuclear Power Plants - Technical Basis for a Qualification Methodology

    SciTech Connect (OSTI)

    Korsah, K.

    2001-08-24T23:59:59.000Z

    This document (1) summarizes the most significant findings of the ''Qualification of Advanced Instrumentation and Control (I&C) Systems'' program initiated by the Nuclear Regulatory Commission (NRC); (2) documents a comparative analysis of U.S. and European qualification standards; and (3) provides recommendations for enhancing regulatory guidance for environmental qualification of microprocessor-based safety-related systems. Safety-related I&C system upgrades of present-day nuclear power plants, as well as I&C systems of Advanced Light-Water Reactors (ALWRs), are expected to make increasing use of microprocessor-based technology. The Nuclear Regulatory Commission (NRC) recognized that the use of such technology may pose environmental qualification challenges different from current, analog-based I&C systems. Hence, it initiated the ''Qualification of Advanced Instrumentation and Control Systems'' program. The objectives of this confirmatory research project are to (1) identify any unique environmental-stress-related failure modes posed by digital technologies and their potential impact on the safety systems and (2) develop the technical basis for regulatory guidance using these findings. Previous findings from this study have been documented in several technical reports. This final report in the series documents a comparative analysis of two environmental qualification standards--Institute of Electrical and Electronics Engineers (IEEE) Std 323-1983 and International Electrotechnical Commission (IEC) 60780 (1998)--and provides recommendations for environmental qualification of microprocessor-based systems based on this analysis as well as on the findings documented in the previous reports. The two standards were chosen for this analysis because IEEE 323 is the standard used in the U.S. for the qualification of safety-related equipment in nuclear power plants, and IEC 60780 is its European counterpart. In addition, the IEC document was published in 1998, and should reflect any new qualification concerns, from the European perspective, with regard to the use of microprocessor-based safety systems in power plants.

  1. Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant

    SciTech Connect (OSTI)

    Hickey, Eva E.; Strom, Daniel J.

    2005-08-01T23:59:59.000Z

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

  2. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    SciTech Connect (OSTI)

    FAYER JM; FREEDMAN VL; WARD AL; CHRONISTER GB

    2010-02-24T23:59:59.000Z

    The U.S. DOE and its predecessors released nearly 2 trillion liters (450 billion gallons) of contaminated liquid into the vadose zone at the Hanford Site. Some of the contaminants currently reside in the deeper parts of the vadose zone where they are much less accessible to characterization, monitoring, and typical remediation activities. The DOE Richland Operations Office (DOE-RL) prepared a treatability test plan in 2008 to examine remediation options for addressing contaminants in the deep vadose zone; one of the technologies identified was surface barriers (also known as engineered barriers, covers, and caps). In the typical configuration, the contaminants are located relatively close to the surface, generally within 15 m, and thus they are close to the base of the surface barrier. The proximity of the surface barrier under these conditions yielded few concerns about the effectiveness of the barrier at depth, particularly for cases in which the contaminants were in a lined facility. At Hanford, however, some unlined sites have contaminants located well below depths of 15 m. The issue raised about these sites is the degree of effectiveness of a surface barrier in isolating contaminants in the deep vadose zone. Previous studies by Hanford Site and PNNL researchers suggest that surface barriers have the potential to provide a significant degree of isolation of deep vadose zone contaminants. The studies show that the actual degree of isolation is site-specific and depends on many factors, including recharge rates, barrier size, depth of contaminants, geohydrologic properties ofthe sediments, and the geochemical interactions between the contaminants and the sediments. After the DOE-RL treatability test plan was published, Pacific Northwest National Laboratory was contracted to review the information available to support surface barrier evaluation for the deep vadose zone, identify gaps in the information and outcomes necessary to fill the data gaps, and outline tasks to achieve those outcomes. Full understanding of contaminant behavior in the deep vadose zone is constrained by four key data gaps: limited access; limited data; limited time; and the lack of an accepted predictive capability for determining whether surface barriers can effectively isolate deep vadose zone contaminants. Activities designed to fill these data gaps need to have these outcomes: (1) common evaluation methodology that provides a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination; (2) deep vadose zone data that characterize the lithology, the spatial distribution of moisture and contaminants, the physical, chemical, and biological process that affect the mobility of each contaminant, and the impacts to the contaminants following placement of a surface barrier; (3) subsurface monitoring to provide subsurface characterization of initial conditions and changes that occur during and following remediation activities; and (4) field observations that span years to decades to validate the evaluation methodology. A set of six proposed tasks was identified to provide information needed to address the above outcomes. The proposed tasks are: (1) Evaluation Methodology - Develop common evaluation methodology that will provide a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination. (2) Case Studies - Conduct case studies to demonstrate the applicability ofthe common evaluation methodology and provide templates for subsequent use elsewhere. Three sites expected to have conditions that would yield valuable information and experience pertinent to deep vadose zone contamination were chosen to cover a range of conditions. The sites are BC Cribs and Trenches, U Plant Cribs, and the T Farm Interim Cover. (3) Subsurface Monitoring Technologies - Evaluate minimally invasive geophysical approaches for delineating subsurface plumes and monitoring their migration in the deep

  3. Human System Simulation in Support of Human Performance Technical Basis at NPPs

    SciTech Connect (OSTI)

    David Gertman; Katya Le Blanc; alan mecham; william phoenix; Magdy Tawfik; Jeffrey Joe

    2010-06-01T23:59:59.000Z

    This paper focuses on strategies and progress toward establishing the Idaho National Laboratory’s (INL’s) Human Systems Simulator Laboratory at the Center for Advanced Energy Studies (CAES), a consortium of Idaho State Universities. The INL is one of the National Laboratories of the US Department of Energy. One of the first planned applications for the Human Systems Simulator Laboratory is implementation of a dynamic nuclear power plant simulation (NPP) where studies of operator workload, situation awareness, performance and preference will be carried out in simulated control rooms including nuclear power plant control rooms. Simulation offers a means by which to review operational concepts, improve design practices and provide a technical basis for licensing decisions. In preparation for the next generation power plant and current government and industry efforts in support of light water reactor sustainability, human operators will be attached to a suite of physiological measurement instruments and, in combination with traditional Human Factors Measurement techniques, carry out control room tasks in simulated advanced digital and hybrid analog/digital control rooms. The current focus of the Human Systems Simulator Laboratory is building core competence in quantitative and qualitative measurements of situation awareness and workload. Of particular interest is whether introduction of digital systems including automated procedures has the potential to reduce workload and enhance safety while improving situation awareness or whether workload is merely shifted and situation awareness is modified in yet to be determined ways. Data analysis is carried out by engineers and scientists and includes measures of the physical and neurological correlates of human performance. The current approach supports a user-centered design philosophy (see ISO 13407 “Human Centered Design Process for Interactive Systems, 1999) wherein the context for task performance along with the requirements of the end-user are taken into account during the design process and the validity of design is determined through testing of real end users

  4. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01T23:59:59.000Z

    This report summarizes the technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. In addition, dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor (PWR) fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved {similar_to}5,000 fuel rods, and {similar_to}600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570{sup 0}C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at {similar_to}70{sup 0}C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the United States. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380{sup 0}C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400{sup 0}C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved.

  5. Technical basis for environmental qualification of microprocessor-based safety-related equipment in nuclear power plants

    SciTech Connect (OSTI)

    Korsah, K.; Wood, R.T. [Oak Ridge National Lab., TN (United States); Hassan, M. [Brookhaven National Lab., Upton, NY (United States); Tanaka, T.J. [Sandia National Labs., Albuquerque, NM (United States)

    1998-01-01T23:59:59.000Z

    This document presents the results of studies sponsored by the Nuclear Regulatory Commission (NRC) to provide the technical basis for environmental qualification of computer-based safety equipment in nuclear power plants. The studies were conducted by Oak Ridge National Laboratory (ORNL), Sandia National Laboratories (SNL), and Brookhaven National Laboratory (BNL). The studies address the following: (1) adequacy of the present test methods for qualification of digital I and C systems; (2) preferred (i.e., Regulatory Guide-endorsed) standards; (3) recommended stressors to be included in the qualification process during type testing; (4) resolution of need for accelerated aging for equipment to be located in a benign environment; and (5) determination of an appropriate approach for addressing the impact of smoke in digital equipment qualification programs. Significant findings from the studies form the technical basis for a recommended approach to the environmental qualification of microprocessor-based safety-related equipment in nuclear power plants.

  6. Light Water Reactor Sustainability Program Technical Basis Guide Describing How to Perform Safety Margin Configuration Risk Management

    SciTech Connect (OSTI)

    Curtis Smith; James Knudsen; Bentley Harwood

    2013-08-01T23:59:59.000Z

    The INL has carried out a demonstration of the RISMC approach for the purpose of configuration risk management. We have shown how improved accuracy and realism can be achieved by simulating changes in risk – as a function of different configurations – in order to determine safety margins as the plant is modified. We described the various technical issues that play a role in these configuration-based calculations with the intent that future applications can take advantage of the analysis benefits while avoiding some of the technical pitfalls that are found for these types of calculations. Specific recommendations have been provided on a variety of topics aimed at improving the safety margin analysis and strengthening the technical basis behind the analysis process.

  7. Technical Assessment of DOE Savannah River Site-Sponsored Radionuclide Monitoring Efforts in the Central Savannah River Area

    E-Print Network [OSTI]

    Georgia, University of

    Technical Assessment of DOE Savannah River Site-Sponsored Radionuclide Monitoring Efforts...................................................................................................... 3 Summary Conclusions to DOE Regarding CAB Recommendation 317........................... 4............................................................................................................ 8 Standards

  8. Establishing the Technical Basis for Disposal of Heat-generating Waste in

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt | Department of Energy Establishing the Technical

  9. Radioactive sealed sources: Reasonable accountability, exemption, and licensing activity thresholds -- A technical basis

    SciTech Connect (OSTI)

    Lee, D.W. [Los Alamos National Lab., NM (United States); Shingleton, K.L. [Lawrence Livermore National Lab., CA (United States)

    1996-07-01T23:59:59.000Z

    Perhaps owing to their small size and portability, some radiation accidents/incidents have involved radioactive sealed sources (RSSs). As a result, programs for the control and accountability of RSSs have come to be recommended and emplaced that essentially require RSSs to be controlled in a manner different from bulk, unsealed radioactive material. Crucially determining the total number of RSSs for which manpower-intensive radiation protection surveillance is provided is the individual RSS activity above which such surveillance is required and below which such effort is not considered cost effective. Individual RSS activity thresholds are typically determined through scenarios which impart a chosen internal or external limiting dose to Reference Man under specified exposure conditions. The resultant RSS threshold activity levels have meaning commensurate with the assumed scenario exposure parameters, i.e., if they are realistic and technically based. A review of how the Department of Energy (DOE), the International Atomic Energy Agency (IAEA), and the Nuclear Regulatory Commission (NRC) have determined their respective accountability, exemption, and licensing threshold activity values is provided. Finally, a fully explained method using references readily available to practicing health physicists is developed using realistic, technically-based calculation parameters by which RSS threshold activities may be locally generated.

  10. Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA)--Programmatic, Technical, and Regulatory Issues

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Martin, Wayne J.

    2001-07-23T23:59:59.000Z

    Natural attenuation processes are commonly used for remediation of contaminated sites. A variety of natural processes occur without human intervention at all sites to varying rates and degrees of effectiveness to attenuate (decrease) the mass, toxicity, mobility, volume, or concentration of organic and inorganic contaminants in soil, groundwater, and surface water systems. The objective of this review is to identify potential technical investments to be incorporated in the Subsurface Contaminant Focus Area Strategic Plan for monitored natural attenuation. When implemented, the technical investments will help evaluate and implement monitored natural attenuation as a remediation option at DOE sites. The outcome of this review is a set of conclusions and general recommendations regarding research needs, programmatic guidance, and stakeholder issues pertaining to monitored natural attenuation for the DOE complex.

  11. The Effects of Degraded Digital Instrumentation and Control Systems on Human-system Interfaces and Operator Performance: HFE Review Guidance and Technical Basis

    SciTech Connect (OSTI)

    O'Hara, J.M.; W. Gunther, G. Martinez-Guridi

    2010-02-26T23:59:59.000Z

    New and advanced reactors will use integrated digital instrumentation and control (I&C) systems to support operators in their monitoring and control functions. Even though digital systems are typically highly reliable, their potential for degradation or failure could significantly affect operator performance and, consequently, impact plant safety. The U.S. Nuclear Regulatory Commission (NRC) supported this research project to investigate the effects of degraded I&C systems on human performance and plant operations. The objective was to develop human factors engineering (HFE) review guidance addressing the detection and management of degraded digital I&C conditions by plant operators. We reviewed pertinent standards and guidelines, empirical studies, and plant operating experience. In addition, we conducted an evaluation of the potential effects of selected failure modes of the digital feedwater system on human-system interfaces (HSIs) and operator performance. The results indicated that I&C degradations are prevalent in plants employing digital systems and the overall effects on plant behavior can be significant, such as causing a reactor trip or causing equipment to operate unexpectedly. I&C degradations can impact the HSIs used by operators to monitor and control the plant. For example, sensor degradations can make displays difficult to interpret and can sometimes mislead operators by making it appear that a process disturbance has occurred. We used the information obtained as the technical basis upon which to develop HFE review guidance. The guidance addresses the treatment of degraded I&C conditions as part of the design process and the HSI features and functions that support operators to monitor I&C performance and manage I&C degradations when they occur. In addition, we identified topics for future research.

  12. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    SciTech Connect (OSTI)

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-08-01T23:59:59.000Z

    This report presents preliminary research results from the investigation into the development of new models and guidance for Concepts of Operations in advanced small modular reactor (AdvSMR) designs. AdvSMRs are nuclear power plants (NPPs), but unlike conventional large NPPs that are constructed on site, AdvSMRs systems and components will be fabricated in a factory and then assembled on site. AdvSMRs will also use advanced digital instrumentation and control systems, and make greater use of automation. Some AdvSMR designs also propose to be operated in a multi-unit configuration with a single central control room as a way to be more cost-competitive with existing NPPs. These differences from conventional NPPs not only pose technical and operational challenges, but they will undoubtedly also have regulatory compliance implications, especially with respect to staffing requirements and safety standards.

  13. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    SciTech Connect (OSTI)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09T23:59:59.000Z

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  14. Technical basis for evaluating electromagnetic and radio-frequency interference in safety-related I&C systems

    SciTech Connect (OSTI)

    Ewing, P.D.; Korsah, K. [Oak Ridge National Lab., TN (United States)

    1994-04-01T23:59:59.000Z

    This report discusses the development of the technical basis for the control of upsets and malfunctions in safety-related instrumentation and control (I&C) systems caused by electromagnetic and radio-frequency interference (EMI/RFI) and power surges. The research was performed at the Oak Ridge National Laboratory (ORNL) and was sponsored by the USNRC Office of Nuclear Regulatory Research (RES). The motivation for research stems from the safety-related issues that need to be addressed with the application of advanced I&C systems to nuclear power plants. Development of the technical basis centered around establishing good engineering practices to ensure that sufficient levels of electromagnetic compatibility (EMC) are maintained between the nuclear power plant`s electronic and electromechanical systems known to be the source(s) of EMI/RFI and power surges. First, good EMC design and installation practices need to be established to control the impact of interference sources on nearby circuits and systems. These EMC good practices include circuit layouts, terminations, filtering, grounding, bonding, shielding, and adequate physical separation. Second, an EMI/RFI test and evaluation program needs to be established to outline the tests to be performed, the associated test methods to be followed, and carefully formulated acceptance criteria based on the intended environment to ensure that the circuit or system under test meets the recommended guidelines. Third, a program needs to be developed to perform confirmatory tests and evaluate the surge withstand capability (SWC) and of I&C equipment connected to or installed in the vicinity of power circuits within the nuclear power plant. By following these three steps, the design and operability of safety-related I&C systems against EMI/RFI and power surges can be evaluated, acceptance criteria can be developed, and appropriate regulatory guidance can be provided.

  15. Analysis of waste treatment requirements for DOE mixed wastes: Technical basis

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation`s allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered.

  16. 2009 DOE-EM LONG-TERM MONITORING TECHNICAL FORUM SUMMARY REPORT

    SciTech Connect (OSTI)

    Mayer, J.

    2009-09-30T23:59:59.000Z

    The U. S. Department of Energy's (DOE) Office of Environmental Management (EM) has the responsibility for cleaning up 60 sites in 22 states that were associated with the legacy of the nation's nuclear weapons program and other research and development activities. These sites are unique and many of the technologies needed to successfully disposition the associated wastes have yet to be developed or would require significant re-engineering to be adapted for future EM cleanup efforts. In 2008, the DOE-EM Engineering and Technology Program (EM-22) released the Engineering and Technology Roadmap in response to Congressional direction and the need to focus on longer term activities required for the completion of the aforementioned cleanup program. One of the strategic initiatives included in the Roadmap was to enhance long term performance monitoring as defined by 'Develop and deploy cost effective long-term strategies and technologies to monitor closure sites (including soil, groundwater, and surface water) with multiple contaminants (organics, metals and radionuclides) to verify integrated long-term cleanup performance'. To support this long-term monitoring (LTM) strategic initiative, EM 22 and the Savannah River National Laboratory (SRNL) organized and held an interactive symposia, known as the 2009 DOE-EM Long-Term Monitoring Technical Forum, to define and prioritize LTM improvement strategies and products that could be realized within a 3 to 5 year investment time frame. This near-term focus on fundamental research would then be used as a foundation for development of applied programs to improve the closure and long-term performance of EM's legacy waste sites. The Technical Forum was held in Atlanta, GA on February 11-12, 2009, and attended by 57 professionals with a focus on identifying those areas of opportunity that would most effectively advance the transition of the current practices to a more effective strategy for the LTM paradigm. The meeting format encompassed three break-out sessions, which focused on needs and opportunities associated with the following LTM technical areas: (1) Performance Monitoring Tools, (2) Systems, and (3) Information Management. The specific objectives of the Technical Forum were to identify: (1) technical targets for reducing EM costs for life-cycle monitoring; (2) cost-effective approaches and tools to support the transition from active to passive remedies at EM waste sites; and (3) specific goals and objectives associated with the lifecycle monitoring initiatives outlined within the Roadmap. The first Breakout Session on LTM performance measurement tools focused on the integration and improvement of LTM performance measurement and monitoring tools that deal with parameters such as ecosystems, boundary conditions, geophysics, remote sensing, biomarkers, ecological indicators and other types of data used in LTM configurations. Although specific tools were discussed, it was recognized that the Breakout Session could not comprehensively discuss all monitoring technologies in the time provided. Attendees provided key references where other organizations have assessed monitoring tools. Three investment sectors were developed in this Breakout Session. The second Breakout Session was on LTM systems. The focus of this session was to identify new and inventive LTM systems addressing the framework for interactive parameters such as infrastructure, sensors, diagnostic features, field screening tools, state of the art characterization monitoring systems/concepts, and ecosystem approaches to site conditions and evolution. LTM systems consist of the combination of data acquisition and management efforts, data processing and analysis efforts and reporting tools. The objective of the LTM systems workgroup was to provide a vision and path towards novel and innovative LTM systems, which should be able to provide relevant, actionable information on system performance in a cost-effective manner. Two investment sectors were developed in this Breakout Session. The last Breakout Session of the Technical Forum

  17. Technical Basis for Safe Operations with Pu-239 in NMS and S Facilities (F and H Areas)

    SciTech Connect (OSTI)

    Bronikowski, M.G.

    1999-03-18T23:59:59.000Z

    Plutonium-239 is now being processed in HB-Line and H-Canyon as well as FB-Line and F-Canyon. As part of the effort to upgrade the Authorization Basis for H Area facilities relative to nuclear criticality, a literature review of Pu polymer characteristics was conducted to establish a more quantitative vs. qualitative technical basis for safe operations. The results are also applicable to processing in F Area facilities.The chemistry of Pu polymer formation, precipitation, and depolymerization is complex. Establishing limits on acid concentrations of solutions or changing the valence to Pu(III) or Pu(VI) can prevent plutonium polymer formation in tanks in the B lines and canyons. For Pu(IV) solutions of 7 g/L or less, 0.22 M HNO3 prevents polymer formation at ambient temperature. This concentration should remain the minimum acid limit for the canyons and B lines when processing Pu-239 solutions. If the minimum acid concentration is compromised, the solution may need to be sampled and tested for the presence of polymer. If polymer is not detected, processing may proceed. If polymer is detected, adding HNO3 to a final concentration above 4 M is the safest method for handling the solution. The solution could also be heated to speed up the depolymerization process. Heating with > 4 M HNO3 will depolymerize the solution for further processing.Adsorption of Pu(IV) polymer onto the steel walls of canyon and B line tanks is likely to be 11 mg/cm2, a literature value for unpolished steel. This value will be confirmed by experimental work. Tank-to-tank transfers via steam jets are not expected to produce Pu(IV) polymer unless a larger than normal dilution occurs (e.g., >3 percent) at acidities below 0.4 M.

  18. Technical Report No. 249, Department of Computer Science, ETH Zurich, July 1996 1 Faster Algorithms for Integer Lattice Basis Reduction

    E-Print Network [OSTI]

    Storjohann, Arne

    a given integer lattice basis b1 ; b2 ; : : : ; bn 2 ZZ n into a reduced basis. The cost of L 3 ­reduction product. The L 3 ­reduction algorithm presented in [12] guarantees to return a basis with initial vector for Integer Lattice Basis Reduction Arne Storjohann Eidgen¨ossische Technische Hochschule CH­8092 Z

  19. Technical basis for flawed cylinder test specification to assure adequate fracture resistance of ISO high-strength steel cylinder

    SciTech Connect (OSTI)

    Rana, M.D. [Praxair, Inc., Tonawanda, NY (United States); Smith, J.H. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Metallurgy Div.; Tribolet, R.O. [Tribolet (R.O.), Van Wert, OH (United States)

    1997-11-01T23:59:59.000Z

    High-pressure industrial gases (such as oxygen, nitrogen, argon, hydrogen, etc.) are stored and transported in portable cylinders. ISO TC58 SC3 has developed a draft specification 9809 for design and fabrication of high-pressure cylinders with maximum tensile strength limitation of 1,100 N/mm{sup 2}. In order to extend the ISO 9809 rules for higher than 1,100 N/mm{sup 2} strength level cylinders, a working group WG14 was formed in 1989 to develop new rules to assure adequate fracture resistance. In 1994, WG14 recommended a simple, but unique flawed cylinder test method for design qualification of the cylinder and acceptance criteria to assure adequate fracture resistance. WG14 also recommended Charpy-V-notch impact tests to control the required fracture resistance on production cylinders. This paper presents the technical basis that was employed in developing the flawed cylinder test method and acceptance criteria. The specification was developed for seamless steel cylinders having actual strength in the range of 1,100 to 1,400 N/mm{sup 2} and cylindrical section wall thickness in the range of 3 to 10 mm. Flawed cylinder tests were conducted on several hundred cylinders of varying sizes and strength levels. The specification requires to demonstrate LEAK-BEFORE-BREAK performance of the cylinder having flaw length equal to 1.6 (o.d. {times} t{sub design}){sup 0.5} at failure pressure = (t{sub design}/t{sub actual}) x Design Pressure.

  20. Technical basis for flawed cylinder test specification to assure adequate fracture resistance of ISO high strength steel cylinder

    SciTech Connect (OSTI)

    Rana, M.D. [Praxair, Inc., Tonawanda, NY (United States). Process and Systems R and D; Smith, J.H. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Metallurgy Div.; Tribolet, R.O.

    1996-12-01T23:59:59.000Z

    High pressure industrial gases (such as oxygen, nitrogen, argon, hydrogen, etc.) are stored and transported in portable cylinders. ISO TC58 SC3 has developed a draft specification 9809 for design and fabrication of high pressure cylinders with maximum tensile strength limitation of 1,100 N/mm{sup 2}. In order to extend the ISO 9809 rules for higher than 1,100 N/mm{sup 2} strength level cylinders, a working group WG14 was formed in 1989 to develop new rules to assure adequate fracture resistance. In 1994, WG14 recommended a simple, but unique flawed cylinder test method for design qualification of the cylinder and acceptance criteria to assure adequate fracture resistance. WG14 also recommended Charpy-V-Notch impact tests to control the required fracture resistance on production cylinders. This paper presents the technical basis that was employed in developing the flawed cylinder test method and acceptance criteria. The specification was developed for seamless steel cylinders having actual strength in the range of 1,100 to 1,400 N/mm{sup 2} and cylindrical section wall thickness in the range of 3mm to 10mm. Flawed cylinder tests were conducted on several hundred cylinders of varying sizes and strength levels. The specification requires to demonstrate LEAK-BEFORE-BREAK performance of the cylinder having flaw length equal to 1.6(O.D. {times} t{sub design}){sup 0.5} at failure pressure = (t{sub design}/t{sub actual}) {times} Design Pressure.

  1. Technical Needs for Enhancing Risk Monitors with Equipment Condition Assessment for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Coble, Jamie B.; Coles, Garill A.; Ramuhalli, Pradeep; Meyer, Ryan M.; Berglin, Eric J.; Wootan, David W.; Mitchell, Mark R.

    2013-04-04T23:59:59.000Z

    Advanced small modular reactors (aSMRs) can provide the United States with a safe, sustainable, and carbon-neutral energy source. The controllable day-to-day costs of aSMRs are expected to be dominated by operation and maintenance costs. Health and condition assessment coupled with online risk monitors can potentially enhance affordability of aSMRs through optimized operational planning and maintenance scheduling. Currently deployed risk monitors are an extension of probabilistic risk assessment (PRA). For complex engineered systems like nuclear power plants, PRA systematically combines event likelihoods and the probability of failure (POF) of key components, so that when combined with the magnitude of possible adverse consequences to determine risk. Traditional PRA uses population-based POF information to estimate the average plant risk over time. Currently, most nuclear power plants have a PRA that reflects the as-operated, as-modified plant; this model is updated periodically, typically once a year. Risk monitors expand on living PRA by incorporating changes in the day-by-day plant operation and configuration (e.g., changes in equipment availability, operating regime, environmental conditions). However, population-based POF (or population- and time-based POF) is still used to populate fault trees. Health monitoring techniques can be used to establish condition indicators and monitoring capabilities that indicate the component-specific POF at a desired point in time (or over a desired period), which can then be incorporated in the risk monitor to provide a more accurate estimate of the plant risk in different configurations. This is particularly important for active systems, structures, and components (SSCs) proposed for use in aSMR designs. These SSCs may differ significantly from those used in the operating fleet of light-water reactors (or even in LWR-based SMR designs). Additionally, the operating characteristics of aSMRs can present significantly different requirements, including the need to operate in different coolant environments, higher operating temperatures, and longer operating cycles between planned refueling and maintenance outages. These features, along with the relative lack of operating experience for some of the proposed advanced designs, may limit the ability to estimate event probability and component POF with a high degree of certainty. Incorporating real-time estimates of component POF may compensate for a relative lack of established knowledge about the long-term component behavior and improve operational and maintenance planning and optimization. The particular eccentricities of advanced reactors and small modular reactors provide unique challenges and needs for advanced instrumentation, control, and human-machine interface (ICHMI) techniques such as enhanced risk monitors (ERM) in aSMRs. Several features of aSMR designs increase the need for accurate characterization of the real-time risk during operation and maintenance activities. A number of technical gaps in realizing ERM exist, and these gaps are largely independent of the specific reactor technology. As a result, the development of a framework for ERM would enable greater situational awareness regardless of the specific class of reactor technology. A set of research tasks are identified in a preliminary research plan to enable the development, testing, and demonstration of such a framework. Although some aspects of aSMRs, such as specific operational characteristics, will vary and are not now completely defined, the proposed framework is expected to be relevant regardless of such uncertainty. The development of an ERM framework will provide one of the key technical developments necessary to ensure the economic viability of aSMRs.

  2. Determination of power distribution in the VVER-440 core on the basis of data from in-core monitors by means of a metric analysis

    SciTech Connect (OSTI)

    Kryanev, A. V.; Udumyan, D. K. [National Research Nuclear University “MEPHI,” (Russian Federation); Kurchenkov, A. Yu., E-mail: s327@vver.kiae.ru; Gagarinskiy, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15T23:59:59.000Z

    Problems associated with determining the power distribution in the VVER-440 core on the basis of a neutron-physics calculation and data from in-core monitors are considered. A new mathematical scheme is proposed for this on the basis of a metric analysis. In relation to the existing mathematical schemes, the scheme in question improves the accuracy and reliability of the resulting power distribution.

  3. Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results

    SciTech Connect (OSTI)

    Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B. [and others

    1996-03-01T23:59:59.000Z

    A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

  4. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM DIOXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Duffey, J. M.; Livingston, R. R.; Berg, J. M.; Veirs, D. K.

    2013-02-06T23:59:59.000Z

    This report documents the technical basis for determining that stabilizing highpurity PuO{sub 2} derived from oxalate precipitation at the SRS HB-Line facility at a minimum of 625 {degree}C for at least four hours in an oxidizing atmosphere is equivalent to stabilizing at a minimum of 950 {degree}C for at least two hours as regards meeting the objectives of stabilization defined by DOE-STD-3013 if the material is handled in a way to prevent excessive absorption of water.

  5. Security during the Construction of New Nuclear Power Plants: Technical Basis for Access Authorization and Fitness-For-Duty Requirements

    SciTech Connect (OSTI)

    Branch, Kristi M.; Baker, Kathryn A.

    2009-09-01T23:59:59.000Z

    A technical letter report to the NRC summarizing the findings of a benchmarking study, literature review, and workshop with experts on current industry standards and expert judgments about needs for security during the construction phase of critical infrastructure facilities in the post-September 11 U.S. context, with a special focus on the construction phase of nuclear power plants and personnel security measures.

  6. Internal Technical Report, 1981 Annual Report, An Analysis of the Response of the Raft River Geothermal Site Monitor Wells

    SciTech Connect (OSTI)

    Thurow, T.L.; Large, R.M.; Allman, D.W.; Tullis, J.A.; Skiba, P.A.

    1982-04-01T23:59:59.000Z

    A groundwater monitoring program has been established on the Raft River Geothermal Site since 1978. The objective of this program is to document possible impacts that may be caused by geothermal production and injection on the shallow aquifers used for culinary and irrigation purposes. This annual progress report summarizes data from 12 monitor wells during 1981. These data are compared with long-term trends and are correlated with seasonal patterns, irrigation water use and geothermal production and testing. These results provide a basis for predicting long-term impacts of sustained geothermal production and testing. To date, there has been no effect on the water quality of the shallow aquifers.

  7. Ultrahigh sensitivity heavy noble gas detectors for long-term monitoring and for monitoring air. Technical status report

    SciTech Connect (OSTI)

    Valentine, J.D.

    1999-01-31T23:59:59.000Z

    The primary objective of this research project is to develop heavy noble gas (krypton, xenon, and radon) detectors for (1) long-term monitoring of transuranic waste, spent fuel, and other uranium and thorium bearing wastes and (2) alpha particle air monitors that discriminate between radon emissions and other alpha emitters. A University of Cincinnati/Argonne National Laboratory (UC/ANL) Team was assembled to complete this detector development project. DOE needs that are addressed by this project include improved long-term monitoring capability and improved air monitoring capability during remedial activities. Successful development and implementation of the proposed detection systems could significantly improve current capabilities with relatively simple and inexpensive equipment.

  8. Technical Basis for the Determination that Current Characterization Data and Processes are Sufficient to Ensure Safe Storage and to Design Waste Disposal

    SciTech Connect (OSTI)

    SIMPSON, B.C.

    1999-08-12T23:59:59.000Z

    This document presents the technical basis for closure of Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 93-5 Implementation Plan milestone 5.6.3.13, ''Core sample all tanks by 2002'' (DOE-RL 1996). The milestone was based on the need for characterization data to ensure safe storage of the waste, to operate the tanks safely, and to plan and implement retrieval and processing of the waste. Sufficient tank characterization data have been obtained to ensure that existing controls are adequate for safe storage of the waste in the 177 waste tanks at the Hanford Site. In addition, a process has been developed, executed, and institutionalized to systemically identify information needs, to integrate and prioritize the needs, and to reliably obtain and analyze the associated samples. This document provides a technical case that the remaining 45 incompletely sampled tanks no longer require sampling to support the intent of the Implementation Plan milestone. Sufficient data have been obtained to close the Unreviewed Safety Questions (USQs), and to ensure that existing hazard controls are adequate and appropriately applied. However, in the future, additional characterization of tanks at the site will be required to support identified information needs. Closure of this milestone allows sampling and analytical data to be obtained in a manner that is consistent with the integrated priority process.

  9. Suncatcher Monitoring Project. Quarterly technical report 1, October-December 1977

    SciTech Connect (OSTI)

    Maeda, B T

    1980-03-01T23:59:59.000Z

    Progress in monitoring the Suncatcher solar home is reviewed. The following are included: equipment purchase and preparations, sensor installation, house comfort monitoring, experiments, and natrual gas and electric use. Some data are given. (MHR)

  10. MINED GEOLOGIC DISPOSAL SYSTEM (MGDS) MONITORING & CONTROL SYSTEMS CENTRALIZATION TECHNICAL REPORT

    SciTech Connect (OSTI)

    M.J. McGrath

    1998-03-31T23:59:59.000Z

    The objective of this report is to identify and document Mined Geologic Disposal System (MGDS) requirements for centralized command and control. Additionally, to further develop the MGDS monitoring and control functions. This monitoring and control report provides the following information: (1) Determines the applicable requirements for a monitoring and control system for repository operations and construction (excluding Performance Confirmation). (2) Makes a determination as to whether or not centralized command and control is required.

  11. Ris National Laboratory Technical University of Denmark CONDITION MONITORING OF WIND

    E-Print Network [OSTI]

    Introduction This poster deals with condition monitoring of wind turbine blades based on a system stiffness and damping of an operating wind turbine blade and subsequently use changes in these parameters This poster deals with condition monitoring of wind turbine blades based on a system identification approach

  12. TECHNICAL BASIS DOCUMENT OF MARSSIM FIELD CALIBRATION FOR QUANTIFICATION OF CS-137 VOLUMETRICALLY CONTAMINATED SOILS IN THE BC CONTROLLED AREA USING 2 BY 2 SODIUM IODIDE DETECTORS

    SciTech Connect (OSTI)

    PAPPIN JL

    2007-10-26T23:59:59.000Z

    The purpose of this paper is to provide the Technical Basis and Documentation for Field Calibrations of radiation measurement equipment for use in the MARSSIM Seeping Surveys of the BC Controlled Area (BCCA). The Be Controlled Area is bounded on tt1e north by (but does not include) the BCCribs & Trenches and is bounded on the south by Army Loop Road. Parts of the BC Controlled Area are posted as a Contamination Area and the remainder is posted as a Soil Contamination Area. The area is approximately 13 square miles and divided into three zones (Zone A , Zone B. and Zone C). A map from reference 1 which shows the 3 zones is attached. The MARSSIM Scoping Surveys are intended 10 better identify the boundaries of the three zones based on the volumetric (pCi/g) contamination levels in the soil. The MARSSIM Field Calibration. reference 2. of radiation survey instrumentation will determine the Minimum Detectable Concentration (MDC) and an algorithm for converting counts to pCi/g. The instrumentation and corresponding results are not intended for occupational radiation protection decisions or for the release of property per DOE Order 5400.5.

  13. Safety Basis Report

    SciTech Connect (OSTI)

    R.J. Garrett

    2002-01-14T23:59:59.000Z

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  14. Environmental effects of dredging: Predicting and monitoring dredge-induced dissolved oxygen reduction. Technical notes

    SciTech Connect (OSTI)

    Houston, L.; LaSalle, M.W.; Lunz, J.D.

    1989-11-01T23:59:59.000Z

    This note summarizes the results of research into the potential for dissolved oxygen (DO) reduction associated with dredging operations. Efforts toward development of a simple computational model for predicting the degree of dredge-induced DO reduction are described along with results of a monitoring program around a bucket dredge operation.

  15. Final technical report. In-situ FT-IR monitoring of a black liquor recovery boiler

    SciTech Connect (OSTI)

    James Markham; Joseph Cosgrove; David Marran; Jorge Neira; Chad Nelson; Peter Solomon

    1999-05-31T23:59:59.000Z

    This project developed and tested advanced Fourier transform infrared (FT-IR) instruments for process monitoring of black liquor recovery boilers. The state-of-the-art FT-IR instruments successfully operated in the harsh environment of a black liquor recovery boiler and provided a wealth of real-time process information. Concentrations of multiple gas species were simultaneously monitored in-situ across the combustion flow of the boiler and extractively at the stack. Sensitivity to changes of particulate fume and carryover levels in the process flow were also demonstrated. Boiler set-up and operation is a complex balance of conditions that influence the chemical and physical processes in the combustion flow. Operating parameters include black liquor flow rate, liquor temperature, nozzle pressure, primary air, secondary air, tertiary air, boiler excess oxygen and others. The in-process information provided by the FT-IR monitors can be used as a boiler control tool since species indicative of combustion efficiency (carbon monoxide, methane) and pollutant emissions (sulfur dioxide, hydrochloric acid and fume) were monitored in real-time and observed to fluctuate as operating conditions were varied. A high priority need of the U.S. industrial boiler market is improved measurement and control technology. The sensor technology demonstrated in this project is applicable to the need of industry.

  16. Technical Report on Preliminary Methodology for Enhancing Risk Monitors with Integrated Equipment Condition Assessment

    SciTech Connect (OSTI)

    Ramuhalli, Pradeep; Coles, Garill A.; Coble, Jamie B.; Hirt, Evelyn H.

    2013-09-17T23:59:59.000Z

    Small modular reactors (SMRs) generally include reactors with electric output of ~350 MWe or less (this cutoff varies somewhat but is substantially less than full-size plant output of 700 MWe or more). Advanced SMRs (AdvSMRs) refer to a specific class of SMRs and are based on modularization of advanced reactor concepts. AdvSMRs may provide a longer-term alternative to traditional light-water reactors (LWRs) and SMRs based on integral pressurized water reactor concepts currently being considered. Enhancing affordability of AdvSMRs will be critical to ensuring wider deployment. AdvSMRs suffer from loss of economies of scale inherent in small reactors when compared to large (~greater than 600 MWe output) reactors. Some of this loss can be recovered through reduced capital costs through smaller size, fewer components, modular fabrication processes, and the opportunity for modular construction. However, the controllable day-to-day costs of AdvSMRs will be dominated by operation and maintenance (O&M) costs. Technologies that help characterize real-time risk are important for controlling O&M costs. Risk monitors are used in current nuclear power plants to provide a point-in-time estimate of the system risk given the current plant configuration (e.g., equipment availability, operational regime, and environmental conditions). However, current risk monitors are unable to support the capability requirements listed above as they do not take into account plant-specific normal, abnormal, and deteriorating states of active components and systems. This report documents technology developments that are a step towards enhancing risk monitors that, if integrated with supervisory plant control systems, can provide the capability requirements listed and meet the goals of controlling O&M costs. The report describes research results from an initial methodology for enhanced risk monitors by integrating real-time information about equipment condition and POF into risk monitors.

  17. Application of time-domain reflectometry to subsidence monitoring. Final technical report

    SciTech Connect (OSTI)

    Bauer, R.A.; Dowding, C.H.; Mehnert, B.B.; O'Connor, K.; Van Roosendaal, D.J.

    1991-01-01T23:59:59.000Z

    The report describes how reflected voltage pulses from coaxial antenna cable grouted in rock masses can be employed to quantify the type and magnitude of rock mass deformation (movements) during abandoned mine subsidence events. The cable signal generated can differentiate between both extension and shear deformation. It performs the same task as a combined full profile extensometer (to measure local extension) and inclinometer (to measure local shearing). Rock mass movements locally deform the grouted cable, which changes cable capacitance and thereby the reflected wave form of an induced voltage pulse. By monitoring changes in these reflected signatures, it is possible to monitor rock mass deformation. The project encompassed two sequential phases of work. First, laboratory determinations were made to quantify signal changes with shear and tensile cable deformation, and to select cable diameter and grout mix. Secondly, field installation and monitoring procedures were tested at two active planned subsidence mining operations and over one abandoned mine with an active subsidence event. The paper also develops the electromagnetic wave theory necessary to quantitatively relate changes in cable geometry to changes in reflected voltage signatures. The results of these analyses are employed to extract new information from previously collected field data and to analyze cable signature results from cables installed over the two planned subsidence mining operations and one abandoned mine.

  18. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    SciTech Connect (OSTI)

    Wei Qiao

    2012-05-29T23:59:59.000Z

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacity factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a gre

  19. FINAL TECHNICAL REPORT: Underwater Active Acoustic Monitoring Network For Marine And Hydrokinetic Energy Projects

    SciTech Connect (OSTI)

    Stein, Peter J.; Edson, Patrick L.

    2013-12-20T23:59:59.000Z

    This project saw the completion of the design and development of a second generation, high frequency (90-120 kHz) Subsurface-Threat Detection Sonar Network (SDSN). The system was deployed, operated, and tested in Cobscook Bay, Maine near the site the Ocean Renewable Power Company TidGen™ power unit. This effort resulted in a very successful demonstration of the SDSN detection, tracking, localization, and classification capabilities in a high current, MHK environment as measured by results from the detection and tracking trials in Cobscook Bay. The new high frequency node, designed to operate outside the hearing range of a subset of marine mammals, was shown to detect and track objects of marine mammal-like target strength to ranges of approximately 500 meters. This performance range results in the SDSN system tracking objects for a significant duration - on the order of minutes - even in a tidal flow of 5-7 knots, potentially allowing time for MHK system or operator decision-making if marine mammals are present. Having demonstrated detection and tracking of synthetic targets with target strengths similar to some marine mammals, the primary hurdle to eventual automated monitoring is a dataset of actual marine mammal kinematic behavior and modifying the tracking algorithms and parameters which are currently tuned to human diver kinematics and classification.

  20. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

    2012-07-02T23:59:59.000Z

    The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013 equivalency. Under the defined process conditions and associated material specifications, the high-purity PuO{sub 2} produced in HBL presents no unique safety concerns for packaging or storage in the 3013 required configuration. The PuO{sub 2} produced using the HBL flow sheet conditions will have a higher specific surface area (SSA) than PuO{sub 2} stabilized at 950 C and, consequently, under identical conditions will adsorb more water from the atmosphere. The greatest challenge to HBL operators will be controlling moisture content below 0.5 wt %. However, even at the 0.5 wt % moisture limit, the maximum acceptable pressure of a stoichiometric mixture of hydrogen and oxygen in the 3013 container is greater than the maximum possible pressure for the HBL PuO{sub 2} product.

  1. Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2004-11-23T23:59:59.000Z

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  2. TECHNICAL EVALUATION OF TEMPORAL GROUNDWATER MONITORING VARIABILITY IN MW66 AND NEARBY WELLS, PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.

    2012-08-28T23:59:59.000Z

    Evaluation of disposal records, soil data, and spatial/temporal groundwater data from the Paducah Gaseous Diffusion Plant (PGDP) Solid Waste Management Unit (SWMU) 7 indicate that the peak contaminant concentrations measured in monitoring well (MW) 66 result from the influence of the regional PGDP NW Plume, and does not support the presence of significant vertical transport from local contaminant sources in SWMU 7. This updated evaluation supports the 2006 conceptualization which suggested the high and low concentrations in MW66 represent different flow conditions (i.e., local versus regional influences). Incorporation of the additional lines of evidence from data collected since 2006 provide the basis to link high contaminant concentrations in MW66 (peaks) to the regional 'Northwest Plume' and to the upgradient source, specifically, the C400 Building Area. The conceptual model was further refined to demonstrate that groundwater and the various contaminant plumes respond to complex site conditions in predictable ways. This type of conceptualization bounds the expected system behavior and supports development of environmental cleanup strategies, providing a basis to support decisions even if it is not feasible to completely characterize all of the 'complexities' present in the system. We recommend that the site carefully consider the potential impacts to groundwater and contaminant plume migration as they plan and implement onsite production operations, remediation efforts, and reconfiguration activities. For example, this conceptual model suggests that rerouting drainage water, constructing ponds or basin, reconfiguring cooling water systems, capping sites, decommissioning buildings, fixing (or not fixing) water leaks, and other similar actions will potentially have a 'direct' impact on the groundwater contaminant plumes. Our conclusion that the peak concentrations in MW66 are linked to the regional PGDP NW Plume does not imply that there TCE is not present in SWMU 7. The available soil and groundwater data indicate that the some of the waste disposed in this facility contacted and/or were contaminated by TCE. In our assessment, the relatively small amount of TCE associated with SWMU 7 is not contributing detectable TCE to the groundwater and does not represent a significant threat to the environment, particularly in an area where remediation and/or management of TCE in the NW plume will be required for an extended timeframe. If determined to be necessary by the PGDP team and regulators, additional TCE characterization or cleanup activities could be performed. Consistent with the limited quantity of TCE in SWMU 7, we identify a range of low cost approaches for such activities (e.g., soil gas surveys for characterization or SVE for remediation). We hope that this information is useful to the Paducah team and to their regulators and stakeholders to develop a robust environmental management path to address the groundwater and soil contamination associated with the burial ground areas.

  3. Livestock Basis

    E-Print Network [OSTI]

    Mintert, James R.; Davis, Ernest E.; Dhuyvetter, Kevin C.; Bevers, Stan

    1999-06-23T23:59:59.000Z

    the cash price. Conversely, a positive basis indicates the futures price is less than the cash price. Basis is usually computed using the nearby (closest to expiration) futures con- tract. For example, in October the nearby corn futures contract... for market in September. The October Live Cattle contract is currently trading at $71 per cwt. But what does that mean to you when feeding and selling fin- ished steers in Hereford, Texas? To more accu- rately estimate what your actual selling price might be...

  4. Air/Superfund national technical guidance study series. Contingency plans at Superfund sites using air monitoring. Final report

    SciTech Connect (OSTI)

    Paul, R.

    1990-09-01T23:59:59.000Z

    Air emissions from remedial or removal activities at Superfund sites can potentially have a significant impact on the health and safety of the individuals living and working around the site. Contingency planning, as defined in the document, encompasses the air program established to protect offsite populations. Monitors for this purpose are usually located at the site perimeter or within the community. The purpose of the document is to: (1) illustrate contingency air monitoring with examples from past projects, and (2) describe how a contingency air monitoring program may be established. The document is illustrative in nature because the application of this type of monitoring is not consistently prescribed in rules and regulations, but is based on professional judgment applied in an analysis of individual sites and particular circumstances.

  5. Radioactive Waste Management Basis

    SciTech Connect (OSTI)

    Perkins, B K

    2009-06-03T23:59:59.000Z

    The purpose of this Radioactive Waste Management Basis is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE Manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  6. Nuclear Safety Basis Program Review Overview and Management Oversight...

    Broader source: Energy.gov (indexed) [DOE]

    This SRP, Nuclear Safety Basis Program Review, consists of five volumes. It provides information to help strengthen the technical rigor of line management oversight and federal...

  7. Assessing Beyond Design Basis Seismic Events and Implications...

    Office of Environmental Management (EM)

    on Seismic Risk Assessing Beyond Design Basis Seismic Events and Implications on Seismic Risk September 19, 2012 Presenter: Jeffrey Kimball, Technical Specialist (Seismologist)...

  8. Explanations of FreedomCAR/DOE Hydrogen Storage Technical Targets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Explanations of FreedomCARDOE Hydrogen Storage Technical Targets Explanations of FreedomCARDOE Hydrogen Storage Technical Targets Summary of FreedomCAR Targets and Basis for...

  9. Condition Monitoring of Cables Task 3 Report: Condition Monitoring Techniques for Electric Cables

    SciTech Connect (OSTI)

    Villaran, M.; Lofaro, R.; na

    2009-11-30T23:59:59.000Z

    For more than 20 years the NRC has sponsored research studying electric cable aging degradation, condition monitoring, and environmental qualification testing practices for electric cables used in nuclear power plants. This report summarizes several of the most effective and commonly used condition monitoring techniques available to detect damage and measure the extent of degradation in electric cable insulation. The technical basis for each technique is summarized, along with its application, trendability of test data, ease of performing the technique, advantages and limitations, and the usefulness of the test results to characterize and assess the condition of electric cables.

  10. Management Plan for Experimental Reintroduction of Sockeye into Skaha Lake; Proposed Implementation, Monitoring, and Evaluation, 2004 Technical Report.

    SciTech Connect (OSTI)

    Wright, Howie; Smith, Howard (Okanagan Nation Alliance, Fisheries Department, Westbank, BC, Canada)

    2004-01-01T23:59:59.000Z

    Okanagan River sockeye salmon, which spawn near the town of Oliver, B.C., have their farther upstream migration limited by several water control and diversion dams. Stock numbers have been declining for many years and the Okanagan Native Alliance Fisheries Department (ONAFD) has been the principal advocate of a program to restore their numbers and range by reintroducing them into upstream waters where they may once have occurred in substantial numbers Some investigators have warned that without effective intervention Okanagan sockeye are at considerable risk of extinction. Among a host of threats, the quality of water in the single nursery areas in Osoyoos Lake. is deteriorating and a sanctuary such as that afforded in larger lakes higher in the system could be essential. Because the proposed reintroduction upstream has implications for other fish species, (particularly kokanee, the so-called ''landlocked sockeye'' which reside in many Okanagan lakes), the proponents undertook a three-year investigation, with funding from the Bonneville Power Administration and the Confederated Tribes of the Colville Reservation, to identify possible problem areas, and they committed to an interim experimental reintroduction to Skaha Lake where any problems could be worked out before a more ambitious reintroduction, (e.g. to Okanagan Lake) could be formally considered. The three-year investigation was completed in the spring of 2003. It included an assessment of risks from disease or the possible introduction of unwanted exotic species. It also considered the present quality and quantity of sockeye habitat, and opportunities for expanding or improving it. Finally ecological complexity encouraged the development of a life history model to examine interactions of sockeye with other fishes and their food organisms. While some problem areas were exposed in the course of these studies, they appeared to be manageable and the concept of an experimental reintroduction was largely supported but with the proviso that there should be a thorough evaluation and reporting of progress and results. A 2004 start on implementation and monitoring has now been proposed.

  11. Technical Brief

    E-Print Network [OSTI]

    Depleted Uranium; Brian Littleton

    2006-01-01T23:59:59.000Z

    ii iiiFOREWARD The Depleted Uranium Technical Brief is designed to convey available information and knowledge about depleted uranium to EPA Remedial Project Managers, On-Scene Coordinators, contractors, and other Agency managers involved with the remediation of sites contaminated with this material. It addresses relative questions regarding the chemical and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological health hazard. It provides accepted data and references to additional sources for both the radiological and chemical characteristics, health risk as well as references for both the monitoring and measurement and applicable treatment techniques for depleted uranium. Please Note: This document has been changed from the original publication dated

  12. 324 Building safety basis criteria document

    SciTech Connect (OSTI)

    STEFFEN, J.M.

    1999-06-02T23:59:59.000Z

    The Safety Basis Criteria document describes the proposed format, content, and schedule for the preparation of an updated Safety Analysis Report (SAR) and Operational Safety Requirements document (OSR) for the 324 Building. These updated safety authorization basis documents are intended to cover stabilization and deactivation activities that will prepare the facility for turnover to the Environmental Restoration Contractor for final decommissioning. The purpose of this document is to establish the specific set of criteria needed for technical upgrades to the 324 Facility Safety Authorization Basis, as required by Project Hanford Procedure HNF-PRO-705, Safety Basis Planning, Documentation, Review, and Approval.

  13. Applying the Continuous Monitoring Technical

    E-Print Network [OSTI]

    Agency, as well as Larry Feldman and Zach Ragland from Booz Allen Hamilton. The authors would also like

  14. PRELIMINARY REVIEW COPY Technical Report Documentation Page

    E-Print Network [OSTI]

    Texas at Austin, University of

    PRELIMINARY REVIEW COPY Technical Report Documentation Page 1. Report No. 2941-3 Preliminary Review, long-term monitoring 18. Distribution Statement No restrictions. This document is available

  15. Potential Application of Electrical Signature Analysis Methods for Monitoring Small Modular Reactor Components

    SciTech Connect (OSTI)

    Damiano, Brian [ORNL] [ORNL; Tucker Jr, Raymond W [ORNL] [ORNL; Haynes, Howard D [ORNL] [ORNL

    2010-01-01T23:59:59.000Z

    This paper will describe the technical basis behind ESA and why we consider it a viable SMR condition monitoring technology. Concepts are presented of how ESA could be applied to monitor two candidate small modular reactor components: the main coolant pumps and the control rod drives. We believe the general health of these two components can be monitored and trended over time, using ESA methods. Our optimism is based on over two decades of ESA development and testing on a wide variety of components and systems, many of which have similar operational features to the main coolant pumps and control rod drives.

  16. Distributed Basis Pursuit

    E-Print Network [OSTI]

    2012-03-14T23:59:59.000Z

    Index Terms—Basis pursuit, distributed optimization, sensor networks, augmented ... and image denoising and restoration [1], [2], compression, fitting and ...

  17. Wind Turbine Manufacturing Process Monitoring

    SciTech Connect (OSTI)

    Waseem Faidi; Chris Nafis; Shatil Sinha; Chandra Yerramalli; Anthony Waas; Suresh Advani; John Gangloff; Pavel Simacek

    2012-04-26T23:59:59.000Z

    To develop a practical inline inspection that could be used in combination with automated composite material placement equipment to economically manufacture high performance and reliable carbon composite wind turbine blade spar caps. The approach technical feasibility and cost benefit will be assessed to provide a solid basis for further development and implementation in the wind turbine industry. The program is focused on the following technology development: (1) Develop in-line monitoring methods, using optical metrology and ultrasound inspection, and perform a demonstration in the lab. This includes development of the approach and performing appropriate demonstration in the lab; (2) Develop methods to predict composite strength reduction due to defects; and (3) Develop process models to predict defects from leading indicators found in the uncured composites.

  18. MCO loading and cask loadout technical manual

    SciTech Connect (OSTI)

    PRAGA, A.N.

    1998-10-01T23:59:59.000Z

    A compilation of the technical basis for loading a multi-canister overpack (MCO) with spent nuclear fuel and then placing the MCO into a cask for shipment to the Cold Vacuum Drying Facility. The technical basis includes a description of the process, process technology that forms the basis for loading alternatives, process control considerations, safety considerations, equipment description, and a brief facility structure description.

  19. Computer Science Department Technical Report

    E-Print Network [OSTI]

    Shahriar, Selim

    questions on querying and attack-resilience of CDDHT are also discussed. #12;Keywords: security, distributed intrusion detection systems, distributed hash table #12;1 Cyber Disease Monitoring with Distributed HashComputer Science Department Technical Report NWU-CS-04-40 July 12, 2004 Cyber Disease Monitoring

  20. Basi di dati: Funzionalit,

    E-Print Network [OSTI]

    Ghelli, Giorgio

    Basi di dati: Funzionalità, Progettazione, Interrogazione Giorgio Ghelli DBMS's 2 Temi · Funzionalità ed uso dei DBMS · Progettazione di una Base di Dati · Interrogazione di una Base di Dati Funzionalità dei DBMS DBMS's 4 Riferimenti · A. Albano, G. Ghelli, R. Orsini, Basi di Dati Relazionali e

  1. Technical Guidance

    Broader source: Energy.gov [DOE]

    The Office of Technical Guidance, within the Office of Health, Safety and Security develops and issues Government-wide and Department-wide technical guidance to ensure that classified nuclear...

  2. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    SciTech Connect (OSTI)

    R.E. Sweeney

    2001-02-08T23:59:59.000Z

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  3. Marsh, mudflat and tidal creek assessment Cumberland Island National Seashore. Kings Bay Environmental Monitoring Program cumberland island national seashore. Technical report

    SciTech Connect (OSTI)

    Nakashima, L.D.

    1991-01-01T23:59:59.000Z

    The project was designed to determine whether backbarrier dredging for the Kings Bay Naval Base is affecting marsh habitat sustainability on Cumberland Island. Research was predicated on the hypothesis that if the operation is indeed exerting an influence on Cumberland Island, it will most likely be first perceived in the effect it has on the rates of supply and delivery of sediments to the marshes and mudflats. The authors located three comparable sites, which experience a different level of exposure to the effects of dredging. Second, we initiated a time-series of marsh/mudflat sedimentation measurements, which are expected to be continued in future years. Finally, we compared six different methods for monitoring sedimentation, all of which are currently in practice.

  4. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Technical Report Documentation Page 1. Report No. FHWA/TX-10/5-5517-01-1 2. Government Accession No, field monitoring 18. Distribution Statement No restrictions. This document is available to the public

  5. BNL/SNS TECHNICAL NOTE R. Witkover

    E-Print Network [OSTI]

    BNL/SNS TECHNICAL NOTE NO. 049 R. Witkover September 23, 1998 ALTERNATING GRADIENT SYNCHROTRON-In-Gap" Monitor for the Spallation Neutron Source #12;SNS Technical Note Considerations in Designing a "Beam of approximately 550 nsec. With a design intensity of 1014 per pulse, un-controlled losses must be kept to a level

  6. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Broader source: Energy.gov (indexed) [DOE]

    1600 1800 Baseline 50% Body and Chassis Wt. Redn. Scenario Weight (kg) Other PolymerComposite Magnesium Aluminum Low Carbon Steel HiMed Steel 1180 1525 8 Managed by UT-Battelle...

  7. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Broader source: Energy.gov (indexed) [DOE]

    Canada * VEHMA International * Ford Motor CO. Barriers * High cost of lightweight materials solutions supported by Materials Technology Program to meet national objectives for...

  8. Technical Basis of Scaling Relationships for the Pretreatment Engineering Platform

    SciTech Connect (OSTI)

    Kuhn, William L.; Arm, Stuart T.; Huckaby, James L.; Kurath, Dean E.; Rassat, Scot D.

    2008-07-15T23:59:59.000Z

    Pacific Northwest National Laboratory has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Waste Treatment Plant (RPP-WTP) project to perform research and development activities. The Pretreatment Engineering Platform (PEP) is being designed and constructed as part of a plan to respond to an issue raised by the WTP External Flowsheet Review Team (EFRT) entitled “Undemonstrated Leaching Processes” and numbered M12. The PEP replicates the WTP leaching process using prototypic equipment and control strategies. The approach for scaling PEP performance data to predict WTP performance is critical to the successful resolution of the EFRT issue. This report describes the recommended PEP scaling approach, PEP data interpretation and provides recommendations on test conduct and data requirements.

  9. Technical Cost Modeling - Life Cycle Analysis Basis for Program...

    Broader source: Energy.gov (indexed) [DOE]

    185 HP, Port Fuel Injected, V6 Aluminum, 4 Valves per Cylinder, Naturally aspirated (No Turbo)) - Transmission (Front Wheel Drive, Locking Automatic) - Fuel Economy and...

  10. Low level mixed waste thermal treatment technical basis report

    SciTech Connect (OSTI)

    Place, B.G.

    1994-12-01T23:59:59.000Z

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.

  11. WIPP - Passive Institutional Controls (PICs) Technical and Conceptual Basis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulenceUtilizeRural

  12. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: Increasing

  13. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: IncreasingDepartment of

  14. Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: IncreasingDepartment

  15. The Brain Basis of Emotions 1 BRAIN BASIS OF EMOTION

    E-Print Network [OSTI]

    Barrett, Lisa Feldman

    The Brain Basis of Emotions 1 BRAIN BASIS OF EMOTION The brain basis of emotion: A meta, Building 149 Charlestown, MA 02129 lindqukr@nmr.mgh.harvard.edu #12;The Brain Basis of Emotions 2 Abstract Researchers have wondered how the brain creates emotions since the early days of psychological science

  16. DOE FINAL TECHNICAL REPORT RP

    SciTech Connect (OSTI)

    RUSS PETERMAN

    2012-01-01T23:59:59.000Z

    The City of Georgetown Utility Systems (GUS) patnered with the private sector, the American Public Power Association (APPA) and Southwestern University to design, construct, test and monitor a solar co-generation system directly connected to the GUS electric distribution system. This report consists of the Primary Technical Report and 3 attachments.

  17. Puna Geothermal Venture Hydrologic Monitoring Program

    SciTech Connect (OSTI)

    None

    1990-04-01T23:59:59.000Z

    This document provides the basis for the Hydrologic Monitoring Program (HMP) for the Puna Geothermal Venture. The HMP is complementary to two additional environmental compliance monitoring programs also being submitted by Puma Geothermal Venture (PGV) for their proposed activities at the site. The other two programs are the Meteorology and Air Quality Monitoring Program (MAQMP) and the Noise Monitoring Program (NMP), being submitted concurrently.

  18. Technical challenges for dismantlement verification

    SciTech Connect (OSTI)

    Olinger, C.T.; Stanbro, W.D.; Johnston, R.G.; Nakhleh, C.W.; Dreicer, J.S.

    1997-11-01T23:59:59.000Z

    In preparation for future nuclear arms reduction treaties, including any potential successor treaties to START I and II, the authors have been examining possible methods for bilateral warhead dismantlement verification. Warhead dismantlement verification raises significant challenges in the political, legal, and technical arenas. This discussion will focus on the technical issues raised by warhead arms controls. Technical complications arise from several sources. These will be discussed under the headings of warhead authentication, chain-of-custody, dismantlement verification, non-nuclear component tracking, component monitoring, and irreversibility. The authors will discuss possible technical options to address these challenges as applied to a generic dismantlement and disposition process, in the process identifying limitations and vulnerabilities. They expect that these considerations will play a large role in any future arms reduction effort and, therefore, should be addressed in a timely fashion.

  19. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  20. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  1. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01T23:59:59.000Z

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  2. Technical safety requirements for the Auxiliary Hot Cell Facility (AHCF).

    SciTech Connect (OSTI)

    Seylar, Roland F.

    2004-02-01T23:59:59.000Z

    These Technical Safety Requirements (TSRs) identify the operational conditions, boundaries, and administrative controls for the safe operation of the Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, in compliance with 10 CFR 830, 'Nuclear Safety Management.' The bases for the TSRs are established in the AHCF Documented Safety Analysis (DSA), which was issued in compliance with 10 CFR 830, Subpart B, 'Safety Basis Requirements.' The AHCF Limiting Conditions of Operation (LCOs) apply only to the ventilation system, the high efficiency particulate air (HEPA) filters, and the inventory. Surveillance Requirements (SRs) apply to the ventilation system, HEPA filters, and associated monitoring equipment; to certain passive design features; and to the inventory. No Safety Limits are necessary, because the AHCF is a Hazard Category 3 nuclear facility.

  3. Measurement and Monitoring of the World's Forests: A Review and...

    Open Energy Info (EERE)

    Measurement and Monitoring of the World's Forests: A Review and Summary of Remote Sensing Technical Capability, 2009-2015 Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  4. System Design and the Safety Basis

    SciTech Connect (OSTI)

    Ellingson, Darrel

    2008-05-06T23:59:59.000Z

    The objective of this paper is to present the Bechtel Jacobs Company, LLC (BJC) Lessons Learned for system design as it relates to safety basis documentation. BJC has had to reconcile incomplete or outdated system description information with current facility safety basis for a number of situations in recent months. This paper has relevance in multiple topical areas including documented safety analysis, decontamination & decommissioning (D&D), safety basis (SB) implementation, safety and design integration, potential inadequacy of the safety analysis (PISA), technical safety requirements (TSR), and unreviewed safety questions. BJC learned that nuclear safety compliance relies on adequate and well documented system design information. A number of PIS As and TSR violations occurred due to inadequate or erroneous system design information. As a corrective action, BJC assessed the occurrences caused by systems design-safety basis interface problems. Safety systems reviewed included the Molten Salt Reactor Experiment (MSRE) Fluorination System, K-1065 fire alarm system, and the K-25 Radiation Criticality Accident Alarm System. The conclusion was that an inadequate knowledge of system design could result in continuous non-compliance issues relating to nuclear safety. This was especially true with older facilities that lacked current as-built drawings coupled with the loss of 'historical knowledge' as personnel retired or moved on in their careers. Walkdown of systems and the updating of drawings are imperative for nuclear safety compliance. System design integration with safety basis has relevance in the Department of Energy (DOE) complex. This paper presents the BJC Lessons Learned in this area. It will be of benefit to DOE contractors that manage and operate an aging population of nuclear facilities.

  5. PRELIMINARY SELECTION OF MGR DESIGN BASIS EVENTS

    SciTech Connect (OSTI)

    J.A. Kappes

    1999-09-16T23:59:59.000Z

    The purpose of this analysis is to identify the preliminary design basis events (DBEs) for consideration in the design of the Monitored Geologic Repository (MGR). For external events and natural phenomena (e.g., earthquake), the objective is to identify those initiating events that the MGR will be designed to withstand. Design criteria will ensure that radiological release scenarios resulting from these initiating events are beyond design basis (i.e., have a scenario frequency less than once per million years). For internal (i.e., human-induced and random equipment failures) events, the objective is to identify credible event sequences that result in bounding radiological releases. These sequences will be used to establish the design basis criteria for MGR structures, systems, and components (SSCs) design basis criteria in order to prevent or mitigate radiological releases. The safety strategy presented in this analysis for preventing or mitigating DBEs is based on the preclosure safety strategy outlined in ''Strategy to Mitigate Preclosure Offsite Exposure'' (CRWMS M&O 1998f). DBE analysis is necessary to provide feedback and requirements to the design process, and also to demonstrate compliance with proposed 10 CFR 63 (Dyer 1999b) requirements. DBE analysis is also required to identify and classify the SSCs that are important to safety (ITS).

  6. Portal monitoring technology control process

    SciTech Connect (OSTI)

    York, R.L.

    1998-12-31T23:59:59.000Z

    Portal monitors are an important part of the material protection, control, and accounting (MPC and A) programs in Russia and the US. Although portal monitors are only a part of an integrated MPC and A system, they are an effective means of controlling the unauthorized movement of special nuclear material (SNM). Russian technical experts have gained experience in the use of SNM portal monitors from US experts ad this has allowed them to use the monitors more effectively. Several Russian institutes and companies are designing and manufacturing SNM portal monitors in Russia. Interactions between Russian and US experts have resulted in improvements to the instruments. SNM portal monitor technology has been effectively transferred from the US to Russia and should be a permanent part of the Russian MPC and A Program. Progress in the implementation of the monitors and improvements to how they are used are discussed.

  7. Slide25 | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    national research capabilities * Provide a sound basis for decision-making * Drive innovation Brian Hitson U.S. DOE Office of Scientific and Technical Information Chair,...

  8. The pointer basis and the feedback stabilization of quantum systems

    E-Print Network [OSTI]

    L. Li; A. Chia; H. M. Wiseman

    2014-11-19T23:59:59.000Z

    The dynamics for an open quantum system can be `unravelled' in infinitely many ways, depending on how the environment is monitored, yielding different sorts of conditioned states, evolving stochastically. In the case of ideal monitoring these states are pure, and the set of states for a given monitoring forms a basis (which is overcomplete in general) for the system. It has been argued elsewhere [D. Atkins et al., Europhys. Lett. 69, 163 (2005)] that the `pointer basis' as introduced by Zurek and Paz [Phys. Rev. Lett 70, 1187(1993)], should be identified with the unravelling-induced basis which decoheres most slowly. Here we show the applicability of this concept of pointer basis to the problem of state stabilization for quantum systems. In particular we prove that for linear Gaussian quantum systems, if the feedback control is assumed to be strong compared to the decoherence of the pointer basis, then the system can be stabilized in one of the pointer basis states with a fidelity close to one (the infidelity varies inversely with the control strength). Moreover, if the aim of the feedback is to maximize the fidelity of the unconditioned system state with a pure state that is one of its conditioned states, then the optimal unravelling for stabilizing the system in this way is that which induces the pointer basis for the conditioned states. We illustrate these results with a model system: quantum Brownian motion. We show that even if the feedback control strength is comparable to the decoherence, the optimal unravelling still induces a basis very close to the pointer basis. However if the feedback control is weak compared to the decoherence, this is not the case.

  9. Version Auteur Monitoring the International Standardization Process

    E-Print Network [OSTI]

    Boyer, Edmond

    organizations are in charge of global security management. To address this issue, ISO (International Standards Organization), the main international organization for technical standardization, has launched a set of studiesVersion Auteur Monitoring the International Standardization Process Theoretical Choices

  10. Radioactive Waste Management BasisSept 2001

    SciTech Connect (OSTI)

    Goodwin, S S

    2011-08-31T23:59:59.000Z

    This Radioactive Waste Management Basis (RWMB) documents radioactive waste management practices adopted at Lawrence Livermore National Laboratory (LLNL) pursuant to Department of Energy (DOE) Order 435.1, Radioactive Waste Management. The purpose of this RWMB is to describe the systematic approach for planning, executing, and evaluating the management of radioactive waste at LLNL. The implementation of this document will ensure that waste management activities at LLNL are conducted in compliance with the requirements of DOE Order 435.1, Radioactive Waste Management, and the Implementation Guide for DOE manual 435.1-1, Radioactive Waste Management Manual. Technical justification is provided where methods for meeeting the requirements of DOE Order 435.1 deviate from the DOE Manual 435.1-1 and Implementation Guide.

  11. Applications guide to pedestrian SNM monitors

    SciTech Connect (OSTI)

    Fehlau, P.E.

    1986-02-01T23:59:59.000Z

    The applications guide introduces readers to the pedestrian special nuclear material (SNM) monitors that provide nuclear material control at DOE contractor facilities. It explains the principles of operation, the strong and weak points, and steps for calibration and maintenance of the monitors. Administrators and security specialists will find an overview of pedestrain monitor application and upkeep in Part 1 of the guide and a descriptive catalog of present-day monitors in Part 3. Technically oriented readers will be interested in the more detailed discussion of SNM monitoring physics and SNM monitor design principles found in Part 2. 18 refs., 33 figs., 9 tabs.

  12. Improvements to Technical Specifications surveillance requirements

    SciTech Connect (OSTI)

    Lobel, R.; Tjader, T.R.

    1992-12-01T23:59:59.000Z

    In August 1983 an NRC task group was formed to investigate problems with surveillance testing required by Technical Specifications, and to recommend approaches to effect improvements. NUREG-1024 ( Technical Specifications-Enhancing Safety Impact'') resulted, and it contained recommendations to review the basis for test frequencies; to ensure that the tests promote safety and do not degrade equipment; and to review surveillance tests so that they do not unnecessarily burden personnel. The Technical Specifications Improvement Program (TSIP) was established in December 1984 to provide the framework for rewriting and improving the Technical Specifications. As an element of the TSIP, all Technical Specifications surveillance requirements were comprehensively examined as recommended in NUREG-1024. The results of that effort are presented in this report. The study found that while some testing at power is essential to verify equipment and system operability, safety can be improved, equipment degradation decreased, and unnecessary personnel burden relaxed by reducing the amount of testing at power.

  13. Monitoring materials

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    The apparatus and method provide techniques for effectively implementing alpha and/or beta and/or gamma monitoring of items or locations as desired. Indirect alpha monitoring by detecting ions generated by alpha emissions, in conjunction with beta and/or gamma monitoring is provided. The invention additionally provides for screening of items prior to alpha monitoring using beta and/or gamma monitoring, so as to ensure that the alpha monitoring apparatus is not contaminated by proceeding direct to alpha monitoring of a heavily contaminated item or location. The invention provides additional versatility in the emission forms which can be monitored, whilst maintaining accuracy and avoiding inadvertent contamination.

  14. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2014-08-25 14:37:27...

  15. DOE technical standards list: Department of Energy standards index

    SciTech Connect (OSTI)

    NONE

    1999-05-01T23:59:59.000Z

    This Department of Energy (DOE) technical standards list (TSL) has been prepared by the Office of Nuclear Safety Policy and Standards (EH-31) on the basis of currently available technical information. Periodic updates of this TSL will be issued as additional information is received on standardization documents being issued, adopted, or canceled by DOE. This document was prepared for use by personnel involved in the selection and use of DOE technical standards and other Government and non-Government standards. This TSL provides listings of current DOE technical standards, non-Government standards that have been adopted by DOE, other standards-related documents in which DOE has a recorded interest, and canceled DOE technical standards. Information on new DOE technical standards projects, technical standards released for coordination, recently published DOE technical standards, and activities of non-Government standards bodies that may be of interest to DOE is published monthly in Standards Actions.

  16. Technical information

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)ThousandNumber andCrude StreamCrudeTechnical

  17. Technical Sessions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag:8,, 20153 To synchronizeTechnical

  18. CTBT technical issues handbook

    SciTech Connect (OSTI)

    Zucca, J.J. [ed.

    1994-05-01T23:59:59.000Z

    The purpose of this handbook is to give the nonspecialist in nuclear explosion physics and nuclear test monitoring an introduction to the topic as it pertains to a Comprehensive Test Ban Treaty (CTBT). The authors have tried to make the handbook visually oriented, with figures paired to short discussions. As such, the handbook may be read straight through or in sections. The handbook covers four main areas and ends with a glossary, which includes both scientific terms and acronyms likely to be encountered during CTBT negotiations. The following topics are covered: (1) Physics of nuclear explosion experiments. This is a description of basic nuclear physics and elementary nuclear weapon design. Also discussed are testing practices. (2) Other nuclear experiments. This section discusses experiments that produce small amounts of nuclear energy but differ from explosion experiments discussed in the first chapter. This includes the type of activities, such as laser fusion, that would continue after a CTBT is in force. (3) Monitoring tests in various environments. This section describes the different physical environments in which a test could be conducted (underground, in the atmosphere, in space, underwater, and in the laboratory); the sources of non-nuclear events (such as earthquakes and mining operations); and the opportunities for evasion. (4) On-site inspections. A CTBT is likely to include these inspections as an element of the verification provisions, in order to resolve the nature of ambiguous events. This chapter describes some technical considerations and technologies that are likely to be useful. (5) Selecting verification measures. This chapter discusses the uncertain nature of the evidence from monitoring systems and how compliance judgments could be made, taking the uncertainties into account. It also discusses how to allocate monitoring resources, given the likelihood of testing by various countries in various environments.

  19. Project W-420 stack monitoring system upgrades

    SciTech Connect (OSTI)

    CARPENTER, K.E.

    1999-02-25T23:59:59.000Z

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420.

  20. Milk Futures, Options and Basis

    E-Print Network [OSTI]

    Haigh, Michael; Stockton, Matthew; Anderson, David P.; Schwart Jr., Robert B.

    2001-10-12T23:59:59.000Z

    The milk futures and options market enables producers and processors to manage price risk. This publication explains hedging, margin accounts, basis and how to track it, and other fundamentals of the futures and options market....

  1. Basis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugustDecade5-F,INITIAL

  2. Basis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugustDecade5-F,INITIALoperator bispectral analysis

  3. 1990 Weatherization Assistance Program monitoring. Final report

    SciTech Connect (OSTI)

    Samuels, L.S.

    1992-06-19T23:59:59.000Z

    The fiscal year 1990 DOE weatherization programs were monitored in Indiana, Ohio, and Wisconsin. The focus of the monitoring was on a total of 18 subgrantees. Separate reports on the monitoring completed on each site was submitted as well as the final summary report for each state. The scope of monitoring consisted of a review of current contracts, budgets, program operating procedures, staffing, inventory control, financial and procurement procedures, review of client files and audit reports, inspection of completed dwelling units and assessment of monitoring, training, and technical assistance provided by the grantees. A random sampling of completed units were selected and visits were made to inspect these weatherized dwellings.

  4. Energy Management and Control Systems and their Use for Performance Monitoring in the LoanSTAR Program, Technical Report prepared for the Lawrence Berkeley Laboratory, University of California, Energy and Environment Division

    E-Print Network [OSTI]

    Heinemeier, K. E.; Akbari, H.

    1993-01-01T23:59:59.000Z

    ESL-TR-93/06-02 LBL-33114 UC-350 LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA ENERGY AND ENVIRONMENT DIVISION ENERGY MANAGEMENT AND CONTROL SYSTEMS AND THEIR USE FOR PERFORMANCE MONITORING IN THE LOANSTAR PROGRAM Final Report Prepared...

  5. The Long Wavelength Array System Technical Requirements

    E-Print Network [OSTI]

    Ellingson, Steven W.

    (frequency) DR Dynamic Range EMC Electromagnetic Compatibility FOV Field of View G.N.D. Galactic Noise Intermediate Array with 16 antennas (core) MCS Monitor and Control System ns nanosecond RFI Radio FrequencyThe Long Wavelength Array System Technical Requirements Version: Draft #9 2007-November-19 Compiled

  6. BNL/SNS TECHNICAL NOTE R. Witkover

    E-Print Network [OSTI]

    BNL/SNS TECHNICAL NOTE NO. 126 R. Witkover TechSource, Inc. Santa Fe, NM September 2, 2003 COLLIDER BLM Signal Calibration Constants R. Witkover TechSource, Inc. Santa Fe, NM Background The Beam Loss Monitor (BLM) system is designed to measure beam losses in the SNS using Ion Chambers supplied by BNL

  7. Technical Consultant Report Template

    Broader source: Energy.gov [DOE]

    Technical Consultant Report Template, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  8. Decontamination Systems Information and Research Program. Quarterly technical progress report, January 1--March 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation of chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.

  9. Technical Report

    SciTech Connect (OSTI)

    ,; ,; ,

    2012-02-01T23:59:59.000Z

    The 2011 World Materials Summit, held on 10/9-12/2011 in Washington DC, provided a forum for top decision makers and energy experts from aropund the world to focus on the materials research needs for the growing energy economy. Organized jointly by the Materials Research Society (MRS), the European MRS (E-MRS), and the Chinese MRS (C-MRS), the goal of the Summit was to explore how the different regions of the world can work together on the critical issue of clean energy, including its relation to environmental sustainability and water. The participants considered the area of materials research as well as advocacy, economics, outreach, and education. Realizing that the concerns are long-term and that young players will ultimately be the ones who are going to need to solve the energy challenges, the chairs of the Summit inaugurated a Student Congress, a program for graduate students and postdoctoral scholars in fields directly related to energy and environmental science, engineering, and/or policy. The top 45 candidates coming from 18 countries were selected on a competititve basis to participate in the Student Congress. The four-day effort culminated in a 2011 Worlds Materials Summit Declaration delineating materials directions related to global access to clean energy and water in a sustainable way.

  10. Electrical Engineering and Computer Science Department Technical Report

    E-Print Network [OSTI]

    Shahriar, Selim

    Electrical Engineering and Computer Science Department Technical Report NWU-EECS-11-10 November 11, 2011 An Introduction to the Palacios Virtual Machine Monitor---Version 1.3 Jack Lange Peter Dinda Kyle Hale Lei Xia Abstract Palacios is a virtual machine monitor (VMM) from the V3VEE Project

  11. Electrical Engineering and Computer Science Department Technical Report

    E-Print Network [OSTI]

    Shahriar, Selim

    Electrical Engineering and Computer Science Department Technical Report NWU-EECS-08-11 November 30, 2008 An Introduction to the Palacios Virtual Machine Monitor---Version 1.0 Jack Lange Peter Dinda Abstract Palacios is the first virtual machine monitor (VMM) from the V3VEE Project to be released

  12. HELIUM COMPRESSOR MONITORING SYSTEM Donna Kubik

    E-Print Network [OSTI]

    HELIUM COMPRESSOR MONITORING SYSTEM Donna Kubik Arecibo Observatory #12;1 CONTENTS 1. Design goals 3 1.1 Features of the compressor monitoring system 4 2. EDAS: The basis of data acquisition 5 2 Compressor #1 Connectors Compressor #2 Connectors Compressor #3 Connectors Compressor #4 Connectors

  13. INL FCF Basis Review Follow-up

    Broader source: Energy.gov (indexed) [DOE]

    Basis. The four Significant Issues addressed the: 1) analysis of cadmium releases in seismic events, 2) analysis of radiological releases following an evaluation basis earthquake...

  14. Knowing and Managing Grain Basis

    E-Print Network [OSTI]

    Amosson, Stephen H.; Mintert, James R.; Tierney Jr., William I.; Waller, Mark L.

    1999-06-23T23:59:59.000Z

    Knowing and Managing Grain Basis Stephen Amosson, Jim Mintert, William Tierney and Mark Waller* Differences in grain prices throughout the world are the result of surplus or deficit production in various regions. In general, grain prices are lower... in the inland producing regions and higher in grain-deficit, densely populated and port regions. Distances between producing and consuming regions explain the price differential. Transfer costs, which include loading or handling and transportation charges...

  15. TCAP Aluminium Dissolution Flowsheet Basis

    SciTech Connect (OSTI)

    PIERCE, ROBERTA.

    2004-03-01T23:59:59.000Z

    The Actinide Technology Section has proposed the use of an nitric acid HNO3 and potassium fluoride KF flowsheet for stripping palladium Pd from palladium-coated kieselguhr Pd/K and removing aluminum (Al) metal foam from the TCAP coils. The basis for the HNO3-KF flowsheet is drawn from many sources. A brief review of the sources will be presented. The basic flowsheet involves three process steps, each with its own chemistry.

  16. Hanford Generic Interim Safety Basis

    SciTech Connect (OSTI)

    Lavender, J.C.

    1994-09-09T23:59:59.000Z

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  17. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-05-18T23:59:59.000Z

    Provides requirements and responsibilities to ensure recruitment and hiring of technically capable personnel to retain critical technical capabilities within the Department at all times. Cancels DOE M 426.1-1. Canceled by DOE O 426.1.

  18. Technical Fact Sheets

    Broader source: Energy.gov [DOE]

    Technical Fact Sheets (TFS) provide summary-level information on the impact of new, deployed, applied, and/or planned technical approaches supporting EM cleanup projects.  The TFS is presented as a...

  19. Basis for NGNP Reactor Design Down-Selection

    SciTech Connect (OSTI)

    L.E. Demick

    2010-08-01T23:59:59.000Z

    The purpose of this paper is to identify the extent of technology development, design and licensing maturity anticipated to be required to credibly identify differences that could make a technical choice practical between the prismatic and pebble bed reactor designs. This paper does not address a business decision based on the economics, business model and resulting business case since these will vary based on the reactor application. The selection of the type of reactor, the module ratings, the number of modules, the configuration of the balance of plant and other design selections will be made on the basis of optimizing the Business Case for the application. These are not decisions that can be made on a generic basis.

  20. Basis for NGNP Reactor Design Down-Selection

    SciTech Connect (OSTI)

    L.E. Demick

    2011-11-01T23:59:59.000Z

    The purpose of this paper is to identify the extent of technology development, design and licensing maturity anticipated to be required to credibly identify differences that could make a technical choice practical between the prismatic and pebble bed reactor designs. This paper does not address a business decision based on the economics, business model and resulting business case since these will vary based on the reactor application. The selection of the type of reactor, the module ratings, the number of modules, the configuration of the balance of plant and other design selections will be made on the basis of optimizing the Business Case for the application. These are not decisions that can be made on a generic basis.

  1. A Review of Sensor Calibration Monitoring for Calibration Interval Extension in Nuclear Power Plants

    SciTech Connect (OSTI)

    Coble, Jamie B.; Meyer, Ryan M.; Ramuhalli, Pradeep; Bond, Leonard J.; Hashemian, Hash; Shumaker, Brent; Cummins, Dara

    2012-08-31T23:59:59.000Z

    Currently in the United States, periodic sensor recalibration is required for all safety-related sensors, typically occurring at every refueling outage, and it has emerged as a critical path item for shortening outage duration in some plants. Online monitoring can be employed to identify those sensors that require calibration, allowing for calibration of only those sensors that need it. International application of calibration monitoring, such as at the Sizewell B plant in United Kingdom, has shown that sensors may operate for eight years, or longer, within calibration tolerances. This issue is expected to also be important as the United States looks to the next generation of reactor designs (such as small modular reactors and advanced concepts), given the anticipated longer refueling cycles, proposed advanced sensors, and digital instrumentation and control systems. The U.S. Nuclear Regulatory Commission (NRC) accepted the general concept of online monitoring for sensor calibration monitoring in 2000, but no U.S. plants have been granted the necessary license amendment to apply it. This report presents a state-of-the-art assessment of online calibration monitoring in the nuclear power industry, including sensors, calibration practice, and online monitoring algorithms. This assessment identifies key research needs and gaps that prohibit integration of the NRC-approved online calibration monitoring system in the U.S. nuclear industry. Several needs are identified, including the quantification of uncertainty in online calibration assessment; accurate determination of calibration acceptance criteria and quantification of the effect of acceptance criteria variability on system performance; and assessment of the feasibility of using virtual sensor estimates to replace identified faulty sensors in order to extend operation to the next convenient maintenance opportunity. Understanding the degradation of sensors and the impact of this degradation on signals is key to developing technical basis to support acceptance criteria and set point decisions, particularly for advanced sensors which do not yet have a cumulative history of operating performance.

  2. Total Energy Monitor

    SciTech Connect (OSTI)

    Friedrich, S

    2008-08-11T23:59:59.000Z

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.

  3. Ion Monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Calderbridge, GB); Luff, Craig Janson (Calderbridge, GB); Dockray, Thomas (Calderbridge, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2003-11-18T23:59:59.000Z

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  4. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19T23:59:59.000Z

    This directive defines requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Cancels DOE M 426.1-1A, Federal Technical Capability Manual.

  5. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-23T23:59:59.000Z

    The Order promotes DOE's use of Voluntary Consensus Standards (VCS) as the primary method for application of technical standards and establishes and manages the DOE Technical Standards Program (TSP) including technical standards development, information, activities, issues, and interactions. Admin Chg 1 dated 3-12-13.

  6. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-19T23:59:59.000Z

    The Technical Standards Program (TSP) promotes the use of voluntary consensus standards by the Department of Energy (DOE), provides DOE with the means to develop needed technical standards, and manages overall technical standards information, activities, issues, and interactions. Cancels DOE O 1300.2A. Canceled by DOE O 252.1A

  7. A Brief Survey of Physical Activity Monitoring Devices1

    E-Print Network [OSTI]

    Helal, Abdelsalam

    on their mechanisms, measurements, product forms, and data portability. and 3) the role of personal devices both conventional standalone pedometer devices and personal digital devices integrated A Brief Survey of Physical Activity Monitoring Devices1 Technical Report MPCL-08

  8. Class 3 Tracking and Monitoring System Report

    SciTech Connect (OSTI)

    Safely, Eugene; Salamy, S. Phillip

    1999-11-29T23:59:59.000Z

    The objective of Class 3 tracking system are to assist DOE in tracking and performance and progress of these projects and to capture the technical and financial information collected during the projects' monitoring phase. The captured information was used by DOE project managers and BDM-Oklahoma staff for project monitoring and evaluation, and technology transfer activities. The proposed tracking system used the Class Evaluation Executive Report (CLEVER), a relation database for storing and disseminating class project data; GeoGraphix, a geological and technical analysis and mapping software system; the Tertiary Oil Recovery Information System (TORIS) database; and MS-Project, a project management software system.

  9. Solar Power Tower Design Basis Document, Revision 0

    SciTech Connect (OSTI)

    ZAVOICO,ALEXIS B.

    2001-07-01T23:59:59.000Z

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  10. Technical solutions to nonproliferation challenges

    SciTech Connect (OSTI)

    Satkowiak, Lawrence [Director, Nonproliferation, Safeguards and Security Programs, Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2014-05-09T23:59:59.000Z

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  11. Electrostatic monitoring

    DOE Patents [OSTI]

    Orr, Christopher Henry (Cumbria, GB); Luff, Craig Janson (Cumbria, GB); Dockray, Thomas (Cumbria, GB); Macarthur, Duncan Whittemore (Los Alamos, NM)

    2001-01-01T23:59:59.000Z

    The apparatus and method provide a technique for more simply measuring alpha and/or beta emissions arising from items or locations. The technique uses indirect monitoring of the emissions by detecting ions generated by the emissions, the ions being attracted electrostatically to electrodes for discharge of collection. The apparatus and method employ a chamber which is sealed around the item or location during monitoring with no air being drawn into or expelled from the chamber during the monitoring process. A simplified structure and operations arises as a result, but without impairing the efficiency and accuracy of the detection technique.

  12. Formal Management Review of the Safety Basis Calculations Noncompliance

    SciTech Connect (OSTI)

    Altenbach, T J

    2008-06-24T23:59:59.000Z

    In Reference 1, LLNL identified a failure to adequately implement an institutional commitment concerning administrative requirements governing the documentation of Safety Basis calculations supporting the Documented Safety Analysis (DSA) process for LLNL Hazard Category 2 and Category 3 nuclear facilities. The AB Section has discovered that the administrative requirements of AB procedure AB-006, 'Safety Basis Calculation Procedure for Category 2 and 3 Nuclear Facilities', have not been uniformly or consistently applied in the preparation of Safety Basis calculations for LLNL Hazard Category 2 and 3 Nuclear Facilities. The SEP Associated Director has directed the AB Section to initiate a formal management review of the issue that includes, but is not necessarily limited to the following topics: (1) the basis establishing Ab-006 as a required internal procedure for Safety Basis calculations; (2) how requirements for Safety Basis calculations flow down in the institutional DSA process; (3) the extent to which affected Laboratory organizations have explicitly complied with the requirements of Procedure AB-006; (4) what alternative approaches LLNL organizations has used for Safety Basis calculations and how these alternate approaches compare with Procedure AB-006 requirements; and (5) how to reconcile Safety Basis calculations that were performed before Procedure AB-006 came into existence (i.e., August 2001). The management review2 also includes an extent-of-condition evaluation to determine how widespread the discovered issue is throughout Laboratory organizations responsible for operating nuclear facilities, and to determine if implementation of AB procedures other than AB-006 has been similarly affected. In Reference 2, Corrective Action 1 was established whereby the SEP Directorate will develop a plan for performing a formal management review of the discovered condition, including an extent-of condition evaluation. In Reference 3, a plan was provided to prepare a formal management review, satisfying Corrective Action 1. An AB-006 Working Group was formed,led by the AB Section, with representatives from the Nuclear Materials Technology Program (NMTP), the Radioactive and Hazardous Waste Management (RHWM) Division, and the Packaging and Transportation Safety (PATS) Program. The key action of this management review was for Working Group members to conduct an assessment of all safety basis calculations referenced in their respective DSAs. Those assessments were tasked to provide the following information: (1) list which safety basis calculations correctly follow AB-006 and therefore require no additional documentation; (2) identify and list which safety basis calculations do not strictly follow AB-006, these include NMTP Engineering Notes, Engineering Safety Notes, and calculations by organizations external to the nuclear facilities (such as Plant Engineering), subcontractor calculations, and other internally generated calculations. Each of these will be reviewed and listed on a memorandum with the facility manager's (or designee's) signature accepting that calculation for use in the DSA. If any of these calculations are lacking the signature of a technical reviewer, they must also be reviewed for technical content and that review documented per AB-006.

  13. RISK REDUCTION THROUGH USE OF EXTERNAL TECHNICAL REVIEWS, TECHNOLOGY READINESS ASSESSMENTS AND TECHNICAL RISK RATINGS - 9174

    SciTech Connect (OSTI)

    Cercy, M; Steven P Schneider, S; Kurt D Gerdes, K

    2008-12-12T23:59:59.000Z

    The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks.

  14. RISK REDUCTION THROUGH USE OF EXTERNAL TECHNICAL REVIEWS, TECHNOLOGY READINESS ASSESSMENTS AND TECHNICAL RISK RATINGS - 9174

    SciTech Connect (OSTI)

    Cercy, M; Steven P Schneider, S; Kurt D Gerdes, K

    2009-01-15T23:59:59.000Z

    The U.S. Department of Energy's Office of Environmental Management (DOE-EM) was established to achieve the safe and compliant disposition of legacy wastes and facilities from defense nuclear applications. A large majority of these wastes and facilities are 'one-of-a-kind' and unique to DOE. Many of the programs to treat these wastes have been 'first-of-a-kind' and unprecedented in scope and complexity. This has meant that many of the technologies needed to successfully disposition these wastes were not yet developed or required significant re-engineering to be adapted for DOE-EM's needs. The DOE-EM program believes strongly in reducing the technical risk of its projects and has initiated several efforts to reduce those risks: (1) Technology Readiness Assessments to reduce the risks of deployment of new technologies; (2) External Technical Reviews as one of several steps to ensure the timely resolution of engineering and technology issues; and (3) Technical Risk Ratings as a means to monitor and communicate information about technical risks. This paper will present examples of how Technology Readiness Assessments, External Technical Reviews, and Technical Risk Ratings are being used by DOE-EM to reduce technical risks.

  15. Safety basis academy summary of project implementation from 2007-2009

    SciTech Connect (OSTI)

    Johnston, Julie A [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    During fiscal years 2007 through 2009, in accordance with Performance Based Incentives with DOE/NNSA Los Alamos Site Office, Los Alamos National Security (LANS) implemented and operated a Safety Basis Academy (SBA) to facilitate uniformity in technical qualifications of safety basis professionals across the nuclear weapons complex. The implementation phase of the Safety Basis Academy required development, delivery, and finalizing a set of 23 courses. The courses developed are capable of supporting qualification efforts for both federal and contractor personnel throughout the DOE/NNSA Complex. The LANS Associate Director for Nuclear and High Hazard Operations (AD-NHHO) delegated project responsibillity to the Safety Basis Division. The project was assigned to the Safety Basis Technical Services (SB-TS) Group at Los Alamos National Laboratory (LANL). The main tasks were project needs analysis, design, development, implementation of instructional delivery, and evaluation of SBA courses. DOE/NNSA responsibility for oversight of the SBA project was assigned to the Chief of Defense for Nuclear Safety, and delegated to the Authorization Basis Senior Advisor, Continuous Learning Chair (CDNS-ABSA/CLC). NNSA developed a memorandum of agreement with LANS AD-NHHO. Through a memorandum of agreement initiated by NNSA, the DOE National Training Center (NTC) will maintain the set of Safety Basis Academy courses and is able to facilitate course delivery throughout the DOE Complex.

  16. BASIS Set Exchange (BSE): Chemistry Basis Sets from the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Basis Set Library

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Feller, D; Schuchardt, Karen L.; Didier, Brett T.; Elsethagen, Todd; Sun, Lisong; Gurumoorthi, Vidhya; Chase, Jared; Li, Jun

    The Basis Set Exchange (BSE) provides a web-based user interface for downloading and uploading Gaussian-type (GTO) basis sets, including effective core potentials (ECPs), from the EMSL Basis Set Library. It provides an improved user interface and capabilities over its predecessor, the EMSL Basis Set Order Form, for exploring the contents of the EMSL Basis Set Library. The popular Basis Set Order Form and underlying Basis Set Library were originally developed by Dr. David Feller and have been available from the EMSL webpages since 1994. BSE not only allows downloading of the more than 200 Basis sets in various formats; it allows users to annotate existing sets and to upload new sets. (Specialized Interface)

  17. Development of an In-line Minority-Carrier Lifetime Monitoring Tool for Process Control during Fabrication of Crystalline Silicon Solar Cells: Final Technical Report, 2 August 2002-15 November 2004

    SciTech Connect (OSTI)

    Sinton, R. A.

    2004-12-01T23:59:59.000Z

    The objective of this subcontract over its two-phase, two-year duration was to design and develop improvements to the existing Sinton Consulting R&D minority-carrier lifetime testers. The improvements enable the possibilities for performing various in-line diagnostics on crystalline silicon wafers and cells for solar cell manufacturing lines. This facilitates manufacturing optimization and improved process control. The scope of work for Phase I was to prototype industrial applications for the improved instruments. A small-sample-head version of the instrument was designed and developed in this effort. This new instrument was complemented by detailed application notes detailing the productive use of minority-carrier lifetime measurements for process optimization and routine process control. In Phase II, the results from the first year were applied to design new instruments for industrial applications. These instruments were then characterized and documented. We report here on four new instruments, each optimized for a specific application as demanded by industrial customers. The documentation for these instruments was very technical and involved considerable R&D. Applications were developed that applied the latest in R&D on industrial silicon materials. By investigating the compromises that would be necessary to measure industrial material directly without the sample preparation that is commonly done for good research, we were able to develop several very innovative applications that can now be done directly in the production line for process control.

  18. Using the stress response to monitor process control: pathways to more effective bioremediation

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01T23:59:59.000Z

    Title: Authors: Addresses: Process Control Monitoring byStress Response Process Control by Stress Response Terry C.response as a basis for process control of microbiological

  19. Technical Talks Timing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a technical talk is to communicate information to the audience. The Speaker Keep in mind that your objective is communication of information. Mumbling, monotone speech and use...

  20. DOE Technical Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    Designing Effective Residential Retrofit Programs eere.energy.gov The Parker Ranch installation in Hawaii DOE Technical Assistance Program Quality Assurance for Residential...

  1. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    The present invention relates to a monitoring well which includes an enclosure defining a cavity and a water reservoir enclosed within the cavity and wherein the reservoir has an inlet and an outlet. The monitoring well further includes a porous housing borne by the enclosure and which defines a fluid chamber which is oriented in fluid communication with the outlet of the reservoir, and wherein the porous housing is positioned in an earthen soil location below-grade. A geophysical monitoring device is provided and mounted in sensing relation relative to the fluid chamber of the porous housing; and a coupler is selectively moveable relative to the outlet of reservoir to couple the porous housing and water reservoir in fluid communication. An actuator is coupled in force transmitting relation relative to the coupler to selectively position the coupler in a location to allow fluid communication between the reservoir and the fluid chamber defined by the porous housing.

  2. Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district

    E-Print Network [OSTI]

    Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district heating system ­ and makes a proposal for a technical and economic improvement. Monitoring of water quality in district heating systems is necessary

  3. Final Scientific/Technical Report, DE-FG02-06ER64171, Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity – Subproject to Co-PI Eric E. Roden

    SciTech Connect (OSTI)

    Eric E. Roden

    2009-07-08T23:59:59.000Z

    This report summarizes research conducted in conjunction with a project entitled “Integrated Nucleic Acid System for In-Field Monitoring of Microbial Community Dynamics and Metabolic Activity”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. Darrell Chandler (originally at Argonne National Laboratory, now with Akonni Biosystems) was the overall PI/PD for the project. The overall project goals were to (1) apply a model iron-reducer and sulfate-reducer microarray and instrumentation systems to sediment and groundwater samples from the Scheibe et al. FRC Area 2 field site, UMTRA sediments, and other DOE contaminated sites; (2) continue development and expansion of a 16S rRNA/rDNA¬-targeted probe suite for microbial community dynamics as new sequences are obtained from DOE-relevant sites; and (3) address the fundamental molecular biology and analytical chemistry associated with the extraction, purification and analysis of functional genes and mRNA in environmental samples. Work on the UW subproject focused on conducting detailed batch and semicontinuous culture reactor experiments with uranium-contaminated FRC Area 2 sediment. The reactor experiments were designed to provide coherent geochemical and microbiological data in support of microarray analyses of microbial communities in Area 2 sediments undergoing biostimulation with ethanol. A total of four major experiments were conducted (one batch and three semicontinuous culture), three of which (the batch and two semicontinuous culture) provided samples for DNA microarray analysis. A variety of other molecular analyses (clone libraries, 16S PhyloChip, RT-PCR, and T-RFLP) were conducted on parallel samples from the various experiments in order to provide independent information on microbial community response to biostimulation.

  4. Monitoring well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Sisson, James B. (Idaho Falls, ID)

    1999-01-01T23:59:59.000Z

    A monitoring well including a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto.

  5. Monitoring well

    DOE Patents [OSTI]

    Hubbell, J.M.; Sisson, J.B.

    1999-06-29T23:59:59.000Z

    A monitoring well is described which includes: a conduit defining a passageway, the conduit having a proximal and opposite, distal end; a coupler connected in fluid flowing relationship with the passageway; and a porous housing borne by the coupler and connected in fluid flowing relation thereto. 8 figs.

  6. Environmental effects of dredging. Implementation approach for thalweg disposal of dredged material. Technical notes

    SciTech Connect (OSTI)

    Olin, T.J.; Miller, A.C.; Palermo, M.R.

    1993-05-01T23:59:59.000Z

    This technical note introduces the concept of thalweg disposal and associated considerations for implementation, including disposal site selection, environmental and regulatory considerations, and suitable dredging methods and equipment. Monitoring procedures are also outlined.

  7. NOAA Technical Memorandum GLERL-154 SYSTEM POWER CONTROLLER: A LOW POWER CIRCUIT BOARD

    E-Print Network [OSTI]

    NOAA Technical Memorandum GLERL-154 SYSTEM POWER CONTROLLER: A LOW POWER CIRCUIT BOARD FOR THE CONTROLAND MONITORING OF SUBSYSTEM POWER IN DATA COLLECTION SYSTEMS Ronald Muzzi Stephen Constant John LaneDesign...............................................................................................................................8 2.2.1Power

  8. Federal Technical Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-11-19T23:59:59.000Z

    To define requirements and responsibilities for meeting the Department of Energy (DOE) commitment to recruiting, deploying, developing, and retaining a technically competent workforce that will accomplish DOE missions in a safe and efficient manner through the Federal Technical Capability Program (FTCP). Chg. 1 dated 9-20-11 Cancels DOE O 426.1. Cancels DOE P 426.1.

  9. About Technical Assistance

    Broader source: Energy.gov [DOE]

    As technologies proceed along the development pipeline, most face major hurdles as they attempt to enter commercial markets. Our Technical Assistance program helps lower a range of institutional barriers to prepare innovative, energy-efficient technologies and energy management systems for full commercial deployment. These projects and activities address barriers that are not technical, Technology Readiness Level 9.

  10. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    the opportunity to consider a physical attack, with very little to lose. We thus set out to analyse the deviceTechnical Report Number 592 Computer Laboratory UCAM-CL-TR-592 ISSN 1476-2986 Unwrapping J. Murdoch Technical reports published by the University of Cambridge Computer Laboratory are freely

  11. Federal Technical Capability Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05T23:59:59.000Z

    The Federal Technical Capability Manual provides the process for the recruitment, deployment, development, and retention of Federal personnel with the demonstrated technical capability to safely accomplish the Departments missions and responsibilities at defense nuclear facilities. Canceled by DOE M 426.1-1A. Does not cancel other directives.

  12. Depleted Uranium Technical Brief

    E-Print Network [OSTI]

    Depleted Uranium Technical Brief United States Environmental Protection Agency Office of Air and Radiation Washington, DC 20460 EPA-402-R-06-011 December 2006 #12;#12;Depleted Uranium Technical Brief EPA of Radiation and Indoor Air Radiation Protection Division ii #12;iii #12;FOREWARD The Depleted Uranium

  13. MATHEMATICAL ENGINEERING TECHNICAL REPORTS

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    MATHEMATICAL ENGINEERING TECHNICAL REPORTS A Subband Coding Approach to Control under Limited Data Rates and Message Losses Hideaki ISHII and Shinji HARA (Communicated by Kazuo Murota) METR 2006­22 April METR technical reports are published as a means to ensure timely dissemination of scholarly

  14. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    SciTech Connect (OSTI)

    Casey, Leslie A. [DOE/NNSA

    2004-09-01T23:59:59.000Z

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  15. compression monitor(s) Bernhard Schmidt -FLA-

    E-Print Network [OSTI]

    -leg this port ! #12;#12;spectrometer #12;technicalities diamond window UHV mirror mount (BESSY) #12;technicalities diamond window UHV mirror mount (BESSY) CSR #12;Status & Plans vacuum parts ordered, installation

  16. Active Technical Standards Managers List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNICAL STANDARDS PROGRAM ASSIGNMENT TELEPHONEFAXEMAIL NAME DOE FACILITYADDRESS LOC CODE AU-30 Jeff D. Feit DOE Technical Standards Program, Manager U.S. Department of Energy...

  17. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

  18. Cylinder monitoring program

    SciTech Connect (OSTI)

    Alderson, J.H. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31T23:59:59.000Z

    Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.

  19. Tritium monitor

    DOE Patents [OSTI]

    Chastagner, Philippe (Augusta, GA)

    1994-01-01T23:59:59.000Z

    A system for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream.

  20. Tritium monitor

    DOE Patents [OSTI]

    Chastagner, P.

    1994-06-14T23:59:59.000Z

    A system is described for continuously monitoring the concentration of tritium in an aqueous stream. The system pumps a sample of the stream to magnesium-filled combustion tube which reduces the sample to extract hydrogen gas. The hydrogen gas is then sent to an isotope separation device where it is separated into two groups of isotopes: a first group of isotopes containing concentrations of deuterium and tritium, and a second group of isotopes having substantially no deuterium and tritium. The first group of isotopes containing concentrations of deuterium and tritium is then passed through a tritium detector that produces an output proportional to the concentration of tritium detected. Preferably, the detection system also includes the necessary automation and data collection equipment and instrumentation for continuously monitoring an aqueous stream. 1 fig.

  1. Southwest Region Experiment Station - Final Technical Report

    SciTech Connect (OSTI)

    Rosenthal, A

    2011-08-19T23:59:59.000Z

    Southwest Technology Development Institute (SWTDI), an independent, university-based research institute, has been the operator of the Southwest Region Photovoltaic Experiment Station (SWRES) for almost 30 years. The overarching mission of SWTDI is to position PV systems and solar technologies to become cost-effective, major sources of energy for the United States. Embedded in SWTDI's general mission has been the more-focused mission of the SWRES: to provide value added technical support to the DOE Solar Energy Technologies Program (SETP) to effectively and efficiently meet the R&D needs and targets specified in the SETP Multi-Year Technical Plan. : The DOE/SETP goals of growing U.S. PV manufacturing into giga-watt capacities and seeing tera-watt-hours of solar energy production in the U.S. require an infrastructure that is under development. The staff of the SWRES has supported DOE/SETP through a coherent, integrated program to address infrastructural needs inhibiting wide-scale PV deployment in three major technical categories: specialized engineering services, workforce development, and deployment facilitation. The SWRES contract underwent three major revisions during its five year period-of- performance, but all tasks and deliverables fell within the following task areas: Task 1: PV Systems Assistance Center 1. Develop a Comprehensive multi-year plan 2. Provide technical workforce development materials and workshops for PV stakeholder groups including university, professional installers, inspectors, state energy offices, Federal agencies 3. Serve on the NABCEP exam committee 4. Provide on-demand technical PV system design reviews for U.S. PV stakeholders 5. Provide PV system field testing and instrumentation, technical outreach (including extensive support for the DOE Market Transformation program) Task 2: Design-for-Manufacture PV Systems 1. Develop and install 18 kW parking carport (cost share) and PV-thermal carport (Albuquerque) deriving and publishing lessons learned Task 3: PV Codes and Standards 1. Serve as the national lead for development and preparation of all proposals (related to PV) to the National Electrical Code 2. Participate in the Standards Technical Panels for modules (UL1703) and inverters (UL1741) Task 4: Assess Inverter Long Term Reliability 1. Install and monitor identical inverters at SWRES and SERES 2. Operate and monitor all inverters for 5 years, characterizing all failures and performance trends Task 5: Test and Evaluation Support for Solar America Initiative 1. Provide test and evaluation services to the National Laboratories for stage gate and progress measurements of SAI TPP winners

  2. Technical Foundations of the Agent Contest 2008

    E-Print Network [OSTI]

    Zachmann, Gabriel

    (Technical Computer Science) Prof. Dr. Gabriel Zachmann (Computer Graphics) #12;Technical Foundations

  3. Technical Standards, Style Guide- August 1, 2000

    Broader source: Energy.gov [DOE]

    Style Guide for the Preparation of DOE Technical Standards (Standards, Handbooks, and Technical Standards Lists)

  4. UsingIMG 2.4 Technical Report LBNL-63614

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    of Energy. Anyone using this system consents to monitoring of this use by system or security personnelUsingIMG 2.4 Technical Report LBNL-63614 Genome Biology Program Department of Energy Joint Genome Institute Biological Data Management and Technology Center Lawrence Berkeley National Laboratory December 1

  5. Electrical Engineering and Computer Science Department Technical Report

    E-Print Network [OSTI]

    Shahriar, Selim

    Electrical Engineering and Computer Science Department Technical Report NWU-EECS-07-01 March 26, 2007 Blackbox No More: Reconstruction of Internal Virtual Machine State Benjamin Prosnitz Abstract Virtual Machine Monitors (VMM) provide Virtual Machine software which runs on them with a virtual hardware

  6. ISI TechnicalManual ISI/TM-88-197

    E-Print Network [OSTI]

    Robins, Gabriel

    ISI TechnicalManual ISI/TM-88-197 February1988 University ofSouthern California Gabriel Robins %% ... ... .. The ISI Grapher Manual INFORMATION SCIENCES 213/822-1511 INSTITUTEJ f-"-676 292-t5466Admiralty Way. MONITORING ORGANIZATION REPORT NUMBER(S) ISI/TM-88-197 6a. NAME OF PERFORMING ORGANIZATION USC

  7. Scientific Opportunities for Monitoring at Environmental Remediation Sites (SOMERS): Integrated Systems-Based Approaches to Monitoring

    SciTech Connect (OSTI)

    Bunn, Amoret L.; Wellman, Dawn M.; Deeb, Rula A.; Hawley, Elizabeth L.; Truex, Michael J.; Peterson, Mark; Freshley, Mark D.; Pierce, Eric M.; McCord, John; Young, Michael H.; Gilmore, Tyler J.; Miller, Rick; Miracle, Ann L.; Kaback, Dawn; Eddy-Dilek, Carol; Rossabi, Joe; Lee, Michelle H.; Bush, Richard P.; Beam , Paul; Chamberlain, G. M.; Marble, Justin; Whitehurst, Latrincy; Gerdes, Kurt D.; Collazo, Yvette

    2012-05-15T23:59:59.000Z

    Through an inter-disciplinary effort, DOE is addressing a need to advance monitoring approaches from sole reliance on cost- and labor-intensive point-source monitoring to integrated systems-based approaches such as flux-based approaches and the use of early indicator parameters. Key objectives include identifying current scientific, technical and implementation opportunities and challenges, prioritizing science and technology strategies to meet current needs within the DOE complex for the most challenging environments, and developing an integrated and risk-informed monitoring framework.

  8. Technical Standards Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-02-23T23:59:59.000Z

    The order establishes the DOE Technical Standards Program. Cancels DOE O 252.1 and DOE G 252.1-1. Admin Chg 1, dated 3-12-13 cancels DOE O 252.1A.

  9. OSH technical reference manual

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    In an evaluation of the Department of Energy (DOE) Occupational Safety and Health programs for government-owned contractor-operated (GOCO) activities, the Department of Labor`s Occupational Safety and Health Administration (OSHA) recommended a technical information exchange program. The intent was to share written safety and health programs, plans, training manuals, and materials within the entire DOE community. The OSH Technical Reference (OTR) helps support the secretary`s response to the OSHA finding by providing a one-stop resource and referral for technical information that relates to safe operations and practice. It also serves as a technical information exchange tool to reference DOE-wide materials pertinent to specific safety topics and, with some modification, as a training aid. The OTR bridges the gap between general safety documents and very specific requirements documents. It is tailored to the DOE community and incorporates DOE field experience.

  10. DOE Technical Assistance Program

    Broader source: Energy.gov (indexed) [DOE]

    Solid-State Solutions for Municipal Lighting: What You'll Need to Know eere.energy.gov The Parker Ranch installation in Hawaii DOE Technical Assistance Program Solid-State...

  11. CRAD, Engineering Design and Safety Basis - December 22, 2009...

    Broader source: Energy.gov (indexed) [DOE]

    Engineering Design and Safety Basis - December 22, 2009 CRAD, Engineering Design and Safety Basis - December 22, 2009 December 22, 2009 Engineering Design and Safety Basis...

  12. Monitoring Energy Consumption In Wireless Sensor Networks

    E-Print Network [OSTI]

    Turau, Volker

    Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

  13. RCRA and Operational Monitoring (ROM). Multi-Year Program Plan and Fiscal Year 95 Work Plan WBS 1.5.3

    SciTech Connect (OSTI)

    Not Available

    1994-09-17T23:59:59.000Z

    This document contains information concerning the RCRA and Operational Monitoring Program at Hanford Reservation. Information presented includes: Schedules for ground water monitoring activities, program cost baseline, program technical baseline, and a program milestone list.

  14. Routine environmental monitoring schedule, calendar year 1995

    SciTech Connect (OSTI)

    Schmidt, J.W.; Markes, B.M.; McKinney, S.M.

    1994-12-01T23:59:59.000Z

    This document provides Bechtel Hanford, Inc. (BHI) and Westinghouse Hanford Company (WHC) a schedule of monitoring and sampling routines for the Operational Environmental Monitoring (OEM) program during calendar year (CY) 1995. Every attempt will be made to consistently follow this schedule; any deviation from this schedule will be documented by an internal memorandum (DSI) explaining the reason for the deviation. The DSI will be issued by the scheduled performing organization and directed to Near-Field Monitoring. The survey frequencies for particular sites are determined by the technical judgment of Near-Field Monitoring and may depend on the site history, radiological status, use and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive wastes sites are scheduled to be surveyed at least annually. Any newly discovered wastes sites not documented by this schedule will be included in the revised schedule for CY 1995.

  15. Technical Assistance to Developers

    SciTech Connect (OSTI)

    Rockward, Tommy [Los Alamos National Laboratory; Borup, Rodney L. [Los Alamos National Laboratory; Garzon, Fernando H. [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Spernjak, Dusan [Los Alamos National Laboratory

    2012-07-17T23:59:59.000Z

    This task supports the allowance of technical assistance to fuel-cell component and system developers as directed by the DOE. This task includes testing of novel materials and participation in the further development and validation of single cell test protocols. This task also covers technical assistance to DOE Working Groups, the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Driving Research and Innovation for Vehicle efficiency and Energy sustainability (U.S. Drive) Fuel Cell Technology Team. Assistance includes technical validation of new fuel cell materials and methods, single cell fuel cell testing to support the development of targets and test protocols, and regular advisory participation in other working groups and reviews. This assistance is made available to PEM fuel cell developers by request and DOE Approval. The objectives are to: (1) Support technically, as directed by DOE, fuel cell component and system developers; (2) Assess fuel cell materials and components and give feedback to developers; (3) Assist the DOE Durability Working Group with the development of various new material durability Testing protocols; and (4) Provide support to the U.S. Council for Automotive Research (USCAR) and the USCAR/DOE Fuel Cell Technology Team. FY2012 specific technical objectives are: (1) Evaluate novel MPL materials; (2) Develop of startup/ shutdown protocol; (3) Test the impact of hydrophobic treatment on graphite bi-polar plates; (4) Perform complete diagnostics on metal bi-polar plates for corrosion; and (5) Participate and lead efforts in the DOE Working Groups.

  16. CRAD, Safety Basis - Los Alamos National Laboratory Waste Characteriza...

    Office of Environmental Management (EM)

    Safety Basis - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Safety Basis - Los Alamos National Laboratory Waste...

  17. Transmission Line Security Monitor: Final Report

    SciTech Connect (OSTI)

    John Svoboda

    2011-04-01T23:59:59.000Z

    The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

  18. 222-S Laboratory interim safety basis

    SciTech Connect (OSTI)

    WEAVER, L.L.

    2001-09-10T23:59:59.000Z

    The purpose of this document is to establish the Interim Safety Basis (ISB) for the 222-S Laboratory. An ISB is a documented safety basis that provides the justification for the continued operation of the facility until an upgraded documented safety analysis (DSA) is prepared in compliance with 10CFR 830, Subpart B. The 222-S Laboratory ISB is based on revised facility and process descriptions and revised accident analyses that reflect current conditions.

  19. Technical background document for draft soil screening level guidance

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The document provides technical details of the derivation of the September 30, 1993, draft Soil Screening Levels (SSLs) Guidance for Superfund (PB93-963508). The document is presented in two sections. Section I defines SSL and provides background information on the development of SSLs and their application and implementation at Superfund sites, including sampling schemes for measuring SSL attainment. It also provides draft SSLs developed for 30 chemicals. Section II provides the technical basis for the development of SSLs addressing direct ingestion of soil, inhalation of volatiles and fugitive dust, and the soil-to-ground-water exposure pathway, including the assumptions and theories used the their development.

  20. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Chang, Yale [JHU/APL; Thomas, Michael E. [JHU/APL; Siegrist, Karen M. [JHU/APL; Lennon, Andrew M. [JHU/APL; Hunter, Lawrence W. [JHU/APL; Oguz, Hasan O. [JHU/APL

    2014-07-01T23:59:59.000Z

    JHU/APL conducted solid propellant fire characterization tests in warm, humid, ambient conditions near sea level. Yttria and ceria surrogate materials were placed in the fires. The substrates simulating ground surfaces were concrete from a Kennedy Space Center launch pad, and steel covered with a protective ablative material representing a launch platform. In-situ instrumentation consisted of witness materials, thermocouples, air handlers, filters, and cascade impactors; remote instrumentation consisted of optical cameras and spectrometers. Test and analysis team members included the Naval Air Warfare Center Aircraft Division, Sandia National Laboratories (SNL), Alliant Techsystems, and the Johns Hopkins University. Test data were analyzed, reported, and delivered, including plume rise and transport captured on video. Derivation of the alumina particle size distributions formed the basis for condensing vapor and agglomeration estimates. Assessment of alumina mass in the plume, along with the surrogate fraction from filter forensics, provided an estimate of airborne surrogate mass. Technical interchange meetings were held with SNL and the Jet Propulsion Laboratory. Specifications for the fire environment were developed and delivered. A thermochemistry model that simultaneously provides the maximum temperature and heat flux was developed and delivered. An SPIE paper on 3D pyrometry of the fire was written and presented.

  1. Raciometry J. W. Griffin, Technical Monitor ARM Instrument Development Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITYResponses:December562 RevisionI:RachelRachnaJ. W.

  2. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    for the Lochside Emissions Test- ing Block (ETB). · Robert Mullins and Andrew West merged the Lochside ETB subsequently used as the basis of the ETB firmware). · Markus Kuhn provided scripts for instrument control

  3. Climate Vison: Resources and Links - Technical Information

    Office of Scientific and Technical Information (OSTI)

    Technical Information Publications Case Studies Publications DOE BestPractices Technical Publications The DOE BestPractices team offers a broad selection of technical publications...

  4. Technical Consultant RFP | Department of Energy

    Energy Savers [EERE]

    RFP Technical Consultant RFP Technical Consultant RFP, from the Tool Kit Framework: Small Town University Energy Program (STEP). C3b Technical Consultant RFP.pdf More Documents &...

  5. Technical basis for extending storage of the UK's advanced gas-cooled reactor fuel

    SciTech Connect (OSTI)

    Hambley, D.I. [National Nuclear Laboratory, Sellafield, Seascale, Cumbria, CA20 1PG (United Kingdom)

    2013-07-01T23:59:59.000Z

    The UK Nuclear Decommissioning Agency has recently declared a date for cessation of reprocessing of oxide fuel from the UK's Advanced Gas-cooled Reactors (AGRs). This will fundamentally change the management of AGR fuel: from short term storage followed by reprocessing to long term fuel storage followed, in all likelihood, by geological disposal. In terms of infrastructure, the UK has an existing, modern wet storage asset that can be adapted for centralised long term storage of dismantled AGR fuel under the required pond water chemistry. No AGR dry stores exist, although small quantities of fuel have been stored dry as part of experimental programmes in the past. These experimental programmes have shown concerns about corrosion rates.

  6. Residual radioactive contamination from decommissioning: Technical basis for translating contamination levels to annual dose

    SciTech Connect (OSTI)

    Kennedy, W.E. Jr.; Peloquin, R.A. (Pacific Northwest Lab., Richland, WA (USA))

    1990-01-01T23:59:59.000Z

    This document describes the generic modeling of the total effective dose equivalent (TEDE) to an individual in a population from a unit concentration of residual radioactive contamination. Radioactive contamination inside buildings and soil contamination are considered. Unit concentration TEDE factors by radionuclide, exposure pathway, and exposure scenario are calculated. Reference radiation exposure scenarios are used to derive unit concentration TEDE factors for about 200 individual radionuclides and parent-daughter mixtures. For buildings, these unit concentration factors list the annual TEDE for volume and surface contamination situations. For soil, annual TEDE factors are presented for unit concentrations of radionuclides in soil during residential use of contaminated land and the TEDE per unit total inventory for potential use of drinking water from a ground-water source. Because of the generic treatment of potentially complex ground-water systems, the annual TEDE factors for drinking water for a given inventory may only indicate when additional site data or modeling sophistication are warranted. Descriptions are provided of the models, exposure pathways, exposure scenarios, parameter values, and assumptions used. An analysis of the potential annual TEDE resulting from reference mixtures of residual radionuclides is provided to demonstrate application of the TEDE factors. 62 refs., 5 figs., 66 tabs.

  7. A Technical and Distributed Management Basis for an Environmentally Clean and Sustainable Energy Supply

    E-Print Network [OSTI]

    Wedde, Horst F.

    and balancing power capacities could obviously meet these demands. This was an encouraging incentive for our and sustainable technologies are based on solar or wind power, or on other renewable energy sources unpredictable. With our combined expertise in Real-Time systems and Electric Power Distribution we developed

  8. Defining a Technical Basis for Confidence in PV Investments - A Pathway to Service Life Prediction (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Kempe, M.; Bosco, N.; Hacke, P.; Jordan, D.; Miller, D.

    2013-09-01T23:59:59.000Z

    Four levels of accelerated test standards for PV modules are described in the context of how the community can most quickly begin using these.

  9. Draft Function Allocation Framework and Preliminary Technical Basis for Advanced SMR Concepts of Operations

    SciTech Connect (OSTI)

    Jacques Hugo; John Forester; David Gertman; Jeffrey Joe; Heather Medema; Julius Persensky; April Whaley

    2013-04-01T23:59:59.000Z

    This report presents preliminary research results from the investigation in to the development of new models and guidance for concepts of operations (ConOps) in advanced small modular reactor (aSMR) designs. In support of this objective, three important research areas were included: operating principles of multi-modular plants, functional allocation models and strategies that would affect the development of new, non-traditional concept of operations, and the requiremetns for human performance, based upon work domain analysis and current regulatory requirements. As part of the approach for this report, we outline potential functions, including the theoretical and operational foundations for the development of a new functional allocation model and the identification of specific regulatory requirements that will influence the development of future concept of operations. The report also highlights changes in research strategy prompted by confirmationof the importance of applying the work domain analysis methodology to a reference aSMR design. It is described how this methodology will enrich the findings from this phase of the project in the subsequent phases and help in identification of metrics and focused studies for the determination of human performance criteria that can be used to support the design process.

  10. Development of a Technical Basis and Guidance for Advanced SMR Function Allocation

    SciTech Connect (OSTI)

    Jacques Hugo; David Gertman; Jeffrey Joe; Ronal Farris; April Whaley; Heather Medema

    2013-09-01T23:59:59.000Z

    This report presents the results from three key activities for FY13 that influence the definition of new concepts of operations for advanced Small Modular Reactors (AdvSMR: a) the development of a framework for the analysis of the functional environmental, and structural attributes, b) the effect that new technologies and operational concepts would have on the way functions are allocated to humans or machines or combinations of the two, and c) the relationship between new concepts of operations, new function allocations, and human performance requirements.

  11. Technical Basis Agreement Document for UGTA CAU 99 RM/SM

    National Nuclear Security Administration (NNSA)

    D.L. Finnegan, J.L. Thompson, C.M. Miller, P.L. Baca, L.F. Olivas, C.G. Geoffrion, D.K. Smith, W. Goishi, B.K. Esser, J.W. Meadows, N. Namboodiri, J.F. Wild. 2001. Nevada Test Site...

  12. Technical Basis Agreement Document for UGTA CAU 99 RM/SM

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 | NationalThis1QA:2 42 45

  13. Review and Approval of Nuclear Facility Safety Basis Documents (Documented Safety Analyses and Technical Safety Requirements)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofitting Doors onNovember 14, DOE-STD-1104-96

  14. Writing and Monitoring in International Standardization, Theoretical Choices and Methodological Tools

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    organizations are in charge of global security management. To address this issue, ISO (International Standards Organization), the main international organization for technical standardization, has launched a set of studiesWriting and Monitoring in International Standardization, Theoretical Choices and Methodological

  15. FULL FIELD STRESS MEASUREMENT FOR IN SITU STRUCTURAL HEALTH MONITORING OF AIRFRAME COMPONENTS AND REPAIRS

    E-Print Network [OSTI]

    Boyer, Edmond

    FULL FIELD STRESS MEASUREMENT FOR IN SITU STRUCTURAL HEALTH MONITORING OF AIRFRAME COMPONENTS to structural health monitoring however is problematic. The reasons are manifold but a key one is that strain detector to furnish a basis for in situ structural health monitoring. It first covers some preliminaries

  16. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    for criminal activity. One general attack route to breach the security is to carry out physical attack afterTechnical Report Number 829 Computer Laboratory UCAM-CL-TR-829 ISSN 1476-2986 Microelectronic report is based on a dissertation submitted January 2009 by the author for the degree of Doctor

  17. MATHEMATICAL ENGINEERING TECHNICAL REPORTS

    E-Print Network [OSTI]

    Yamamoto, Hirosuke

    MATHEMATICAL ENGINEERING TECHNICAL REPORTS Modeling of Contagious Credit Events and Risk Analysis holder. #12;Modeling of Contagious Credit Events and Risk Analysis of Credit Portfolios Suguru YAMANAKA This paper presents a new model of the intensities of contagious credit events such as rating changes

  18. Final monitoring plan for site restoration at Murdock, Nebraska.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2006-02-28T23:59:59.000Z

    In early 2005, Argonne National Laboratory conducted an Engineering Evaluation/Cost Analysis (EE/CA; Argonne 2005b) to address carbon tetrachloride contamination identified in groundwater and surface water at Murdock, Nebraska, approximately 22 mi east-northeast of Lincoln (Figure 1.1). The EE/CA study was performed for the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA), as the technical basis for a proposed removal action for the Murdock site. The EE/CA was conducted in compliance with an Administrative Order on Consent issued for Murdock by the U.S. Environmental Protection Agency (EPA 1991). Three removal action alternatives were examined through the use of site-specific data and predictive simulations of groundwater flow and contaminant transport performed with calibrated numerical models. The alternatives were evaluated individually and compared against performance criteria established under the National Oil and Hazardous Substances Pollution Contingency Plan and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). On the basis of these evaluations, an alternative employing phytoremediation in conjunction with seasonal groundwater extraction and treatment by spray irrigation was recommended by the CCC/USDA to permanently reduce the carbon tetrachloride contaminant levels in groundwater and surface water at the site. The proposed alternative is being implemented in cooperation with the EPA. Under the direction of the CCC/USDA and the EPA, implementation of the chosen removal action occurred in phases, beginning in April 2005. Installation of all the required remediation systems was completed by the end of August 2005. Specific technical objectives of the removal action are as follows: (1) To eliminate pathways for potential human exposure to carbon tetrachloride concentrations above the regulatory limit of 44.2 {micro}g/L in surface water at the site. (2) To minimize or eliminate any detrimental environmental impacts of carbon tetrachloride discharge to the surface waters of a tributary creek located immediately north of the town. (3) To permanently reduce carbon tetrachloride concentrations in the groundwater and surface water at Murdock and hence restore these resources for potential beneficial use. To evaluate the effectiveness of the selected remedy and its ability to achieve the objectives specified for this site, monitoring is required. This document outlines the proposed scope of a long-term program for monitoring of the removal action at Murdock. In this section the specific remedial objectives of the action are summarized, and a brief overview of the chosen remedy is provided. Section 2 summarizes the results of a baseline sampling event that documented the distribution of carbon tetrachloride contamination in selected media at the Murdock site immediately before cleanup activities began. Section 3 recommends a strategy for subsequent monitoring of the removal action at Murdock, as well as criteria for evaluating the performance of the remedial systems and the progress of the restoration effort.

  19. TECHNICAL STANDARDS PROGRAM TOPICAL COMMITTEES

    Broader source: Energy.gov [DOE]

    PurposeThis procedure describes how topical committees are organized and recognized under the Technical Standards Program. 

  20. Quantum key distribution using entangled-photon trains with no basis selection

    SciTech Connect (OSTI)

    Inoue, Kyo [Osaka University, Osaka 565-0871 (Japan); NTT Basic Research Laboratories, NTT Corporation, Kanagawa 243-0198 (Japan); CREST, JST, Saitama 332-0012 (Japan); Takesue, Hiroki [NTT Basic Research Laboratories, NTT Corporation, Kanagawa 243-0198 (Japan); CREST, JST, Saitama 332-0012 (Japan)

    2006-03-15T23:59:59.000Z

    Conventional quantum key distribution (QKD) protocols include a basis selection process for providing a secure secret key. In contrast, this paper proposes an entanglement-based QKD with no basis selection procedure. Entangled-photon pulse trains with an average photon number less than one per pulse are sent to two legitimate parties, from which a secret key is created utilizing the entanglement nature. Eavesdropping on a transmission line is prevented by a condition of less than one photon per pulse, and sending classically correlated coherent pulses instead of quantum correlated ones is revealed by monitoring coincident count rate000.

  1. Business Case for Technical Qualification Program Accreditation...

    Broader source: Energy.gov (indexed) [DOE]

    Business Case for Technical Qualification Program Accreditation Incentives Business Case for Technical Qualification Program Accreditation Incentives TQP Accreditation standardize...

  2. F/H effluent treatment facility. Technical data summary

    SciTech Connect (OSTI)

    Ryan, J P; Stimson, R E

    1984-12-01T23:59:59.000Z

    This document provides the technical basis for the design of the facility. Some of the sections are described with options to permit simplification of the process, depending on the effluent quality criteria that the facility will have to meet. Each part of the F/HETF process is reviewed with respect to decontamination and concentration efficiency, operability, additional waste generation, energy efficiency, and compatability with the rest of the process.

  3. Ideal Based Cyber Security Technical Metrics for Control Systems

    SciTech Connect (OSTI)

    W. F. Boyer; M. A. McQueen

    2007-10-01T23:59:59.000Z

    Much of the world's critical infrastructure is at risk from attack through electronic networks connected to control systems. Security metrics are important because they provide the basis for management decisions that affect the protection of the infrastructure. A cyber security technical metric is the security relevant output from an explicit mathematical model that makes use of objective measurements of a technical object. A specific set of technical security metrics are proposed for use by the operators of control systems. Our proposed metrics are based on seven security ideals associated with seven corresponding abstract dimensions of security. We have defined at least one metric for each of the seven ideals. Each metric is a measure of how nearly the associated ideal has been achieved. These seven ideals provide a useful structure for further metrics development. A case study shows how the proposed metrics can be applied to an operational control system.

  4. 1990 Pacific Northwest Loads and Resources Study, Technical Appendix.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1990-12-01T23:59:59.000Z

    The 1990 Pacific Northwest Loads and Resources Study establishes the Bonneville Power Administration's (BPA) planning basis for supplying electricity to BPA customers. The Loads and Resources Study is presented in three documents: (1) this technical appendix detailing loads and resources for each major Pacific Northwest generating utility, (2) a summary of Federal system and Pacific Northwest region loads and resources, and (3) a technical appendix detailing forecasted Pacific Northwest economic trends and loads. This technical appendix provides utility-specific information that BPA uses in its long-range planning. It incorporates the following for each utility: electrical demand--firm loads--under the medium 1990 Draft Joint Load Forecast; generating resources; and contracts both inside and outside the region.

  5. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  6. The Equitable Basis for sl_2

    E-Print Network [OSTI]

    Benkart, Georgia

    2008-01-01T23:59:59.000Z

    This article contains an investigation of the equitable basis for the Lie algebra sl_2. Denoting this basis by {x,y,z}, we have [x,y] = 2x + 2y, [y,z] = 2y + 2z, [z, x] = 2z + 2x. One focus of our study is the group of automorphisms G generated by exp(ad x*), exp(ad y*), exp(ad z*), where {x*,y*,z*} is the basis for sl_2 dual to {x,y,z} with respect to the trace form (u,v) = tr(uv). We show that G is isomorphic to the modular group PSL_2(Z). Another focus of our investigation is the lattice L=Zx+Zy+Zz. We prove that the orbit G(x) equals {u in L |(u,u)=2}. We determine the precise relationship between (i) the group G, (ii) the group of automorphisms for sl_2 that preserve L, (iii) the group of automorphisms and antiautomorphisms for sl_2 that preserve L, and (iv) the group of isometries for (,) that preserve L. We obtain analogous results for the lattice L* =Zx*+Zy*+Zz*. Relative to the equitable basis, the matrix of the trace form is a Cartan matrix of hyperbolic type; consequently,we identify the equitable ...

  7. Routine Operational Environmental Monitoring schedule, CY 1994

    SciTech Connect (OSTI)

    Schmidt, J.W.

    1993-12-01T23:59:59.000Z

    This document provides Health Physics (HP) a schedule in accordance with the Environmental Compliance Manual, WHC-CM-7-5, of monitoring and sampling routines for the Operational Environmental Monitoring (OEM) Program during calendar year (CY) 1994. The survey frequencies for particular sites are determined by the technical judgment of EES and may depend on the site history, radiological status, use, and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive waste sites are scheduled to be surveyed annually at a minimum. Any newly discovered waste sites not documented by this schedule will be included in the revised schedule for CY 1995. This schedule does not discuss the manpower needs nor does it list the monitoring equipment to be used in completing specific routines.

  8. Electronics of LHCb calorimeter monitoring system

    E-Print Network [OSTI]

    Konoplyannikov, A

    2008-01-01T23:59:59.000Z

    All calorimeter sub-detectors in LHCb, the Scintillator Pad Detector (SPD), the Preshower detector (PS), the Electromagnetic Calorimeter (ECAL) and the Hadron Calorimeter (HCAL) are equipped with the Hamamatsu photomultiplier tubes (PMT) as devices for light to electrical signal conversion [1]. The PMT gain behaviour is not stable in a time, due to changes in the load current and due to ageing. The calorimeter light emitting diode (LED) monitoring system has been developed to monitor the PMT gain over time during data taking. Furthermore the system will play an important role during the detector commissioning and during LHC machine stops, in order to perform tests of the PMTs, cables and FE boards and measurements of relative time alignment. The aim of the paper is to describe the LED monitoring system architecture, some technical details of the electronics implementation based on radiation tolerant components and to summarize the system performance.

  9. Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Documents

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-12-19T23:59:59.000Z

    This Standard describes a framework and the criteria to be used for approval of (1) safety basis documents, as required by 10 Code of Federal Regulation (C.F.R.) 830, Nuclear Safety Management, and (2) safety design basis documents, as required by Department of Energy (DOE) Standard (STD)-1189-2008, Integration of Safety into the Design Process.

  10. Final Technical Report

    SciTech Connect (OSTI)

    Maxwell, Mike, J., P.E.

    2012-08-30T23:59:59.000Z

    The STI product is the Final Technical Report from ReliOn, Inc. for contract award DE-EE0000487: Recovery Act PEM Fuel Cell Systems Providing Emergency Reserve and Backup Power. The program covered the turnkey deployment of 431 ReliOn fuel cell systems at 189 individual sites for AT&T and PG&E with ReliOn functioning as the primary equipment supplier and the project manager. The Final Technical Report provides an executive level summary, a comparison of the actual accomplishments vs. the goals and objectives of the project, as well as a summary of the project activity from the contract award date of August 1, 2009 through the contract expiration date of December 31, 2011. Two photos are included in the body of the report which show hydrogen storage and bulk hydrogen refueling technologies developed as a result of this program.

  11. Honda Transmission Technical Center

    High Performance Buildings Database

    Russells Point, OH The Honda Transmission Technical Center is located on the Honda of America Manufacturing Plant facility site in Russells Point, Ohio. This facility is used for product engineering and market quality testing and analysis of automatic transmissions. The building contains a large workshop area for ten cars, a future dynamometer, two laboratories, an open office area, three conference rooms, a break room, restrooms, and related support areas.

  12. Technical Surveillance Countermeasures Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-06-18T23:59:59.000Z

    To prescribe policies, responsibilities and authorities to establish Department of Energy (DOE) Technical Surveillance Countermeasures (TSCM) Program. This order implements the DOE TSCM Procedural Guide, DOE TSCM Operations Manual, DOE TSCM Report Writing Guide and Threat Assessment Scheduling System (TASS) which contain classified policies and procedures concerning the DOE TSCM Program. Cancels DOE 5636.3A. Canceled by DOE O 471.2 dated 9-28-95.

  13. Technical approach document

    SciTech Connect (OSTI)

    Not Available

    1989-12-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law 95-604 (PL95-604), grants the Secretary of Energy the authority and responsibility to perform such actions as are necessary to minimize radiation health hazards and other environmental hazards caused by inactive uranium mill sites. This Technical Approach Document (TAD) describes the general technical approaches and design criteria adopted by the US Department of Energy (DOE) in order to implement remedial action plans (RAPS) and final designs that comply with EPA standards. It does not address the technical approaches necessary for aquifer restoration at processing sites; a guidance document, currently in preparation, will describe aquifer restoration concerns and technical protocols. This document is a second revision to the original document issued in May 1986; the revision has been made in response to changes to the groundwater standards of 40 CFR 192, Subparts A--C, proposed by EPA as draft standards. New sections were added to define the design approaches and designs necessary to comply with the groundwater standards. These new sections are in addition to changes made throughout the document to reflect current procedures, especially in cover design, water resources protection, and alternate site selection; only minor revisions were made to some of the sections. Sections 3.0 is a new section defining the approach taken in the design of disposal cells; Section 4.0 has been revised to include design of vegetated covers; Section 8.0 discusses design approaches necessary for compliance with the groundwater standards; and Section 9.0 is a new section dealing with nonradiological hazardous constituents. 203 refs., 18 figs., 26 tabs.

  14. Plume measurement system (PLUMES) technical manual and data analysis procedures. Final report

    SciTech Connect (OSTI)

    Tubman, M.W.

    1995-02-01T23:59:59.000Z

    The PLUmes MEasurement System (PLUMES) was developed under the Measurement of Entrainment and Transport work unit, Dredging Research Program Technical Area 1, Analysis of Dredged Material Placed in Open Water, to monitor the transport of suspended sediment from dredging and dredged material disposal operations. This system can monitor the transport nearly synoptically, both horizontally and vertically. This report provides technical information on the overall system, guidance on locating specific information in the standard technical manuals provided by the manufacturers of the individual system components, technical information on special features of the system components not included in the manufacturer`s manuals, information on system operation and deployment procedures, descriptions of the PLUMES software, and information on the data analysis procedures.

  15. Safety basis for the 241-AN-107 mixer pump installation and caustic addition

    SciTech Connect (OSTI)

    Van Vleet, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-10-05T23:59:59.000Z

    This safety Basis was prepared to determine whether or not the proposed activities of installing a 76 HP jet mixer pump and the addition of approximately 50,000 gallons of 19 M (50:50 wt %) aqueous caustic are within the safety envelope as described by Tank Farms (chapter six of WHC-SD-WM-ISB-001, Rev. 0). The safety basis covers the components, structures and systems for the caustic addition and mixer pump installation. These include: installation of the mixer pump and monitoring equipment; operation of the mixer pump, process monitoring equipment and caustic addition; the pump stand, caustic addition skid, the electrical skid, the video camera system and the two densitometers. Also covered is the removal and decontamination of the mixer pump and process monitoring system. Authority for this safety basis is WHC-IP-0842 (Waste Tank Administration). Section 15.9, Rev. 2 (Unreviewed Safety Questions) of WHC-IP-0842 requires that an evaluation be performed for all physical modifications.

  16. Functional Monitoring Without Monotonicity Chrisil Arackaparambil Joshua Brody Amit Chakrabarti

    E-Print Network [OSTI]

    }@cs.dartmouth.edu Dartmouth Computer Science Technical Report TR2008-639 Abstract The notion of distributed functional monitoring was recently introduced by Cormode, Muthukr- ishnan and Yi [CMY08] to initiate a formal study, Muthukrishnan and Yi [CMY08], who introduced a clean formal model to study this issue. The formalization, known

  17. HP Steam Trap Monitoring

    E-Print Network [OSTI]

    Pascone, S.

    2011-01-01T23:59:59.000Z

    STEAM MONITORING HP Steam Trap Monitoring HP Steam Trap Monitoring ? 12-18 months payback! ? 3-5% permanent reduction in consumption ? LEED Pt.? Innovation in Operations EB O&M ? Saved clients over $1,000,000 Annual consumption... Steam Trap Monitoring ? Real-time monitoring for high-pressure critical traps (>15 PSIG) ? Average total system cost $25K - $50K ? Web-Based or Modbus/BMS Integration Basic Installation Wireless Signal Transmitter Receiver Repeater...

  18. Integrated Safety Management System as the Basis for Work Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Safety Management System as the Basis for Work Planning and Control for Research and Development Integrated Safety Management System as the Basis for Work Planning and...

  19. ORISE: The Medical Basis for Radiation-Accident Preparedness...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Medical Basis for Radiation-Accident Preparedness: Medical Management Proceedings of the Fifth International REACTS Symposium on the Medical Basis for Radiation-Accident...

  20. Process monitoring in international safeguards for reprocessing plants: A demonstration

    SciTech Connect (OSTI)

    Ehinger, M.H.

    1989-01-01T23:59:59.000Z

    In the period 1985--1987, the Oak Ridge National Laboratory investigated the possible role of process monitoring for international safeguards applications in fuel reprocessing plants. This activity was conducted under Task C.59, ''Review of Process Monitoring Safeguards Technology for Reprocessing Facilities'' of the US program of Technical Assistance to the International Atomic Energy Agency (IAEA) Safeguards program. The final phase was a demonstration of process monitoring applied in a prototypical reprocessing plant test facility at ORNL. This report documents the demonstration and test results. 35 figs.

  1. Technical Support Document for Version 3.6.1 of the COMcheck Software

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Connell, Linda M.; Gowri, Krishnan; Halverson, Mark A.; Lucas, Robert G.; Richman, Eric E.; Schultz, Robert W.; Winiarski, David W.

    2009-09-29T23:59:59.000Z

    This technical support document (TSD) is designed to explain the technical basis for the COMcheck software as originally developed based on the ANSI/ASHRAE/IES Standard 90.1-1989 (Standard 90.1-1989). Documentation for other national model codes and standards and specific state energy codes supported in COMcheck has been added to this report as appendices. These appendices are intended to provide technical documentation for features specific to the supported codes and for any changes made for state-specific codes that differ from the standard features that support compliance with the national model codes and standards.

  2. Systematic expansion for infrared oscillator basis extrapolations

    E-Print Network [OSTI]

    R. J. Furnstahl; S. N. More; T. Papenbrock

    2014-03-20T23:59:59.000Z

    Recent work has demonstrated that the infrared effects of harmonic oscillator basis truncations are well approximated by imposing a partial-wave Dirichlet boundary condition at a properly identified radius L. This led to formulas for extrapolating the corresponding energy E_L and other observables to infinite L and thus infinite basis size. Here we reconsider the energy for a two-body system with a Dirichlet boundary condition at L to identify and test a consistent and systematic expansion for E_L that depends only on observables. We also generalize the energy extrapolation formula to nonzero angular momentum, and apply it to the deuteron. Formulas given previously for extrapolating the radius are derived in detail.

  3. Chopped random-basis quantum optimization

    E-Print Network [OSTI]

    Tommaso Caneva; Tommaso Calarco; Simone Montangero

    2011-08-22T23:59:59.000Z

    In this work we describe in detail the "Chopped RAndom Basis" (CRAB) optimal control technique recently introduced to optimize t-DMRG simulations [arXiv:1003.3750]. Here we study the efficiency of this control technique in optimizing different quantum processes and we show that in the considered cases we obtain results equivalent to those obtained via different optimal control methods while using less resources. We propose the CRAB optimization as a general and versatile optimal control technique.

  4. Standard technical specifications: Babcock and Wilcox Plants. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS), Revision 1 for Babcock & Wilcox Plants. The changes reflected in Revision 1 resulted from the experience gained from license amendment applications to convert to these improved STS or to adopt partial improvements to existing technical specifications. This NUREG is the result of extensive public technical meetings and discussions between the Nuclear Regulatory Commission (NRC) staff and various nuclear power plant licensees, Nuclear Steam Supply System (NSSS) Owners Groups, NSSS vendors, and the Nuclear Energy Institute (NEI). The improved STS were developed based on the criteria in the Final Commission Policy Statement on Technical Specifications Improvements for Nuclear Power Reactors, dated July 22, 1993. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. Volume 1 contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Chapters 2.0 and 3.0, and Sections 3.1--3.3 of the improved STS. Volume 3 contains the Bases for Sections 3.4--3.9 of the improved STS.

  5. Review and Approval of Nuclear Facility Safety Basis and Safety Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray ScatteringBenefitsReversingReviewBasis

  6. RADTRAN 6 technical manual.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Neuhauser, Karen Sieglinde; Heames, Terence John; O'Donnell, Brandon M.; Dennis, Matthew L.

    2014-01-01T23:59:59.000Z

    This Technical Manual contains descriptions of the calculation models and mathematical and numerical methods used in the RADTRAN 6 computer code for transportation risk and consequence assessment. The RADTRAN 6 code combines user-supplied input data with values from an internal library of physical and radiological data to calculate the expected radiological consequences and risks associated with the transportation of radioactive material. Radiological consequences and risks are estimated with numerical models of exposure pathways, receptor populations, package behavior in accidents, and accident severity and probability.

  7. Boiler MACT Technical Assistance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureCommentsEnergyandapproximately 10|BlueFireBoiler MACT Technical

  8. Final Technical Report

    SciTech Connect (OSTI)

    Sobecky, Patricia A; Taillefert, Martial

    2013-03-29T23:59:59.000Z

    This final technical report describes results and findings from a research project to examine the role of microbial phosphohydrolase enzymes in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of the radionuclide uranium through the production of insoluble uranium phosphate minerals. The research project investigated the microbial mechanisms and the physical and chemical processes promoting uranium biomineralization and sequestration in oxygenated subsurface soils. Uranium biomineralization under aerobic conditions can provide a secondary biobarrier strategy to immobilize radionuclides should the metal precipitates formed by microbial dissimilatory mechanisms remobilize due to a change in redox state.

  9. SPEAR3 | Technical Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u a l r e p o Technical

  10. Technical Review Panel Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon | DepartmentEnergyOffice -TechnicalTRP

  11. External Technical Review Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOEDepartment of EnergyEric J.ExploringExternal Technical

  12. ARM - Technical Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become a UsergovAboutRecoverygovPublicationsTechnical

  13. Mechanical Engineering Department Technical Review

    SciTech Connect (OSTI)

    Carr, R.B.; Denney, R.M. (eds.)

    1981-07-01T23:59:59.000Z

    The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication.

  14. Mechanical Engineering Department technical abstracts

    SciTech Connect (OSTI)

    Denney, R.M. (ed.)

    1982-07-01T23:59:59.000Z

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts.

  15. Mechanical engineering department technical review

    SciTech Connect (OSTI)

    Carr, R.B. Denney, R.M. (eds.)

    1981-01-01T23:59:59.000Z

    The Mechanical Engineering Department Technical Review is published to: (1) inform the readers of various technical activities within the department, (2) promote exchange of ideas, and (3) give credit to the personnel who are achieving the results. The report is formatted into two parts: technical acievements and publication abstracts. The first is divided into eight sections, one for each division in the department providing the reader with the names of the personnel and the division accomplishing the work.

  16. WIPP Transparency Project - container tracking and monitoring demonstration using the Authenticated Tracking and Monitoring System (ATMS)

    SciTech Connect (OSTI)

    SCHOENEMAN, J. LEE; SMARTT, HEIDI ANNE; HOFER, DENNIS

    2000-01-27T23:59:59.000Z

    The Authenticated Tracking and Monitoring System (ATMS) is designed to answer the need for global monitoring of the status and location of proliferation-sensitive items on a worldwide basis, 24 hours a day. ATMS uses wireless sensor packs to monitor the status of the items within the shipment and surrounding environmental conditions. Receiver and processing units collect a variety of sensor event data that is integrated with GPS tracking data. The collected data are transmitted to the International Maritime Satellite (INMARSAT) communication system, which then sends the data to mobile ground stations. Authentication and encryption algorithms secure the data during communication activities. A typical ATMS application would be to track and monitor the stiety and security of a number of items in transit along a scheduled shipping route. The resulting tracking, timing, and status information could then be processed to ensure compliance with various agreements.

  17. Scientific and Technical Information Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-14T23:59:59.000Z

    The Order establishes requirements and responsibilities for managing DOE's scientific and technical information. Cancels DOE O 241.1. Canceled by DOE O 241.1B.

  18. Technical Services | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    noteworthy for their unique technical capabilities: Central Shops facility performs welding and brazing for high-vacuum applications, machining of radioactive materials, and a...

  19. Hydrogen Storage Technical Team Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and technology pathways are impacted by their analyses. These technical teams include Fuel Cells, Fuel Pathway Integration, Hydrogen Delivery, Hydrogen Production, Materials,...

  20. Final Technical Report

    SciTech Connect (OSTI)

    drucker, jeff

    2014-08-18T23:59:59.000Z

    This project investigated the fundamental science of nanowire epitaxy using vapor-liquid-solid growth in the silicon-germanium material system. Ultrahigh vacuum chemical vapor deposition (UHV CVD) was the primary deposition method. Nanowires grown using UHV CVD were characterized ex situ using scanning electron microscopy and a variety of transmission electron microscopy techniques. In situ transmission electron microscopy was also employed to monitor growth in real time and was instrumental in elucidating growth mechanisms.

  1. MILITARY TECHNICAL ACADEMY Vol. XXII, No. 4

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    #12;MILITARY TECHNICAL ACADEMY Vol. XXII, No. 4 © Military Technical Academy Publishing House Technical Academy of Bucharest, Romania Col. Prof. Eng. IOAN NICOLAESCU, Ph.D. The Military Technical Academy of Bucharest, Romania Prof. Eng. VICTOR-VALERIU PATRICIU, Ph.D. The Military Technical Academy

  2. Joint Technical Operations Team | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Render Safe Joint Technical Operations Team Joint Technical Operations Team JTOT Logo NNSA's Joint Technical Operations Team (JTOT) provides specialized technical...

  3. Factors Influencing Water Heating Energy Use and Peak Demand in a Large Scale Residential Monitoring Study

    E-Print Network [OSTI]

    Bouchelle, M. P.; Parker, D. S.; Anello, M. T.

    2000-01-01T23:59:59.000Z

    , as well as obtain improved appliance energy consumption indexes and load profiles. A portion of the monitoring measures water heater energy use and demand in each home on a 15-minute basis....

  4. Portal radiation monitor

    DOE Patents [OSTI]

    Kruse, Lyle W. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  5. APS Building Monitors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Monitors For non-401 Building Monitors, select: LOMs Other APS Buildings 401 West WCtr Lab Wing ECtr East 5th Floor Yiying Ge na na na na 4th Floor Rick Fenner Karen...

  6. Corrosion monitoring apparatus

    DOE Patents [OSTI]

    Isaacs, Hugh S. (Shoreham, NY); Weeks, John R. (Stony Brook, NY)

    1980-01-01T23:59:59.000Z

    A corrosion monitoring device in an aqueous system which includes a formed crevice and monitoring the corrosion of the surfaces forming the crevice by the use of an a-c electrical signal.

  7. Reduced Basis Method for Nanodevices Simulation

    SciTech Connect (OSTI)

    Pau, George Shu Heng

    2008-05-23T23:59:59.000Z

    Ballistic transport simulation in nanodevices, which involves self-consistently solving a coupled Schrodinger-Poisson system of equations, is usually computationally intensive. Here, we propose coupling the reduced basis method with the subband decomposition method to improve the overall efficiency of the simulation. By exploiting a posteriori error estimation procedure and greedy sampling algorithm, we are able to design an algorithm where the computational cost is reduced significantly. In addition, the computational cost only grows marginally with the number of grid points in the confined direction.

  8. Structural Basis for Activation of Cholera Toxin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900SteepStrengthening northern NewStructural Basis for

  9. Structural Basis for Activation of Cholera Toxin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900SteepStrengthening northern NewStructural Basis

  10. Structural Basis for Activation of Cholera Toxin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900SteepStrengthening northern NewStructural BasisStructural

  11. NDRPProtocolTechBasisCompiled020705.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate - Events - Fermilab atNovelNC π5,NDLGS:Basis

  12. Margin of Safety Definition and Examples Used in Safety Basis Documents and the USQ Process

    SciTech Connect (OSTI)

    Beaulieu, R. A.

    2013-10-03T23:59:59.000Z

    The Nuclear Safety Management final rule, 10 CFR 830, provides an undefined term, margin of safety (MOS). Safe harbors listed in 10 CFR 830, Table 2, such as DOE?STD?3009 use but do not define the term. This lack of definition has created the need for the definition. This paper provides a definition of MOS and documents examples of MOS as applied in a U.S. Department of Energy (DOE) approved safety basis for an existing nuclear facility. If we understand what MOS looks like regarding Technical Safety Requirements (TSR) parameters, then it helps us compare against other parameters that do not involve a MOS. This paper also documents parameters that are not MOS. These criteria could be used to determine if an MOS exists in safety basis documents. This paper helps DOE, including the National Nuclear Security Administration (NNSA) and its contractors responsible for the safety basis improve safety basis documents and the unreviewed safety question (USQ) process with respect to MOS.

  13. Texas Phosphorus Index TECHNICAL NOTES

    E-Print Network [OSTI]

    Mukhtar, Saqib

    for West Texas, see Figure 1. NRCS and Extension Service specialists in Texas developed the P indicesTexas Phosphorus Index TECHNICAL NOTES U.S. DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE TEXAS Revised December, 2012 AGRONOMY TECHNICAL NOTE NUMBER ­ 15 PHOSPHORUS ASSESSMENT

  14. Computer Science Department Technical Report

    E-Print Network [OSTI]

    Shahriar, Selim

    of computing #12;Virtuoso: A System for Virtual Machine Marketplaces Technical Report NWU-CS-04-39 Alex that presents the abstraction of a new raw physical machine on the buyer's network. This report describesComputer Science Department Technical Report NWU-CS-04-39 July 20, 2004 Virtuoso: A System

  15. Technical planning activity: Final report

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    In April 1985, the US Department of Energy's (DOE's) Office of Fusion Energy commissioned the Technical Planning Activity (TPA). The purpose of this activity was to develop a technical planning methodology and prepare technical plans in support of the strategic and policy framework of the Magnetic Fusion Program Plan issued by DOE in February 1985. Although this report represents the views of only the US magnetic fusion community, it is international in scope in the sense that the technical plans contained herein describe the full scope of the tasks that are prerequisites for the commercialization of fusion energy. The TPA has developed a well-structured methodology that includes detailed definitions of technical issues, definitions of program areas and elements, statements of research and development objectives, identification of key decision points and milestones, and descriptions of facility requirements.

  16. Monitoring solar-thermal systems: An outline of methods and procedures

    SciTech Connect (OSTI)

    Rosenthal, A. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1994-04-01T23:59:59.000Z

    This manual discusses the technical issues associated with monitoring solar-thermal systems. It discusses some successful monitoring programs that have been implemented in the past. It gives the rationale for selecting a program of monitoring and gives guidelines for the design of new programs. In this report, solar thermal monitoring systems are classified into three levels. For each level, the report discusses the kinds of information obtained by monitoring, the effort needed to support the monitoring program, the hardware required, and the costs involved. Ultimately, all monitoring programs share one common requirement: the collection of accurate data that characterize some aspect or aspects of the system under study. This report addresses most of the issues involved with monitoring solar thermal systems. It does not address such topics as design fundamentals of thermal systems or the relative merits of the many different technologies employed for collection of solar energy.

  17. Technical applications of aerogels

    SciTech Connect (OSTI)

    Hrubesh, L.W.

    1997-08-18T23:59:59.000Z

    Aerogel materials posses such a wide variety of exceptional properties that a striking number of applications have developed for them. Many of the commercial applications of aerogels such as catalysts, thermal insulation, windows, and particle detectors are still under development and new application as have been publicized since the ISA4 Conference in 1994: e.g.; supercapacitors, insulation for heat storage in automobiles, electrodes for capacitive deionization, etc. More applications are evolving as the scientific and engineering community becomes familiar with the unusual and exceptional physical properties of aerogels, there are also scientific and technical application, as well. This paper discusses a variety of applications under development at Lawrence Livermore National Laboratory for which several types of aerogels are formed in custom sizes and shapes. Particular discussions will focus on the uses of aerogels for physics experiments which rely on the exceptional, sometimes unique, properties of aerogels.

  18. FINAL/ SCIENTIFIC TECHNICAL REPORT

    SciTech Connect (OSTI)

    McDonald, Henry; Singh, Suminderpal

    2006-08-28T23:59:59.000Z

    The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion America’s technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee – Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

  19. LLNL 1981: technical horizons

    SciTech Connect (OSTI)

    Not Available

    1981-07-01T23:59:59.000Z

    Research programs at LLNL for 1981 are described in broad terms. In his annual State of the Laboratory address, Director Roger Batzel projected a $481 million operating budget for fiscal year 1982, up nearly 13% from last year. In projects for the Department of Energy and the Department of Defense, the Laboratory applies its technical facilities and capabilities to nuclear weapons design and development and other areas of defense research that include inertial confinement fusion, nonnuclear ordnances, and particle-beam technology. LLNL is also applying its unique experience and capabilities to a variety of projects that will help the nation meet its energy needs in an environmentally acceptable manner. A sampling of recent achievements by LLNL support organizations indicates their diversity. (GHT)

  20. VAX/VMS file protection on the STC (Scientific and Technical Computing) VAXES

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    This manual is a guide to use the file protection mechanisms available on the Martin Marietta Energy Systems, Inc. Scientific and Technical Computing (STC) System VAXes. User identification codes (UICs) and general identifiers are discussed as a basis for understanding UIC-based and access control list (ACL) protection. 5 figs.

  1. Seismic Imaging and Monitoring

    SciTech Connect (OSTI)

    Huang, Lianjie [Los Alamos National Laboratory

    2012-07-09T23:59:59.000Z

    I give an overview of LANL's capability in seismic imaging and monitoring. I present some seismic imaging and monitoring results, including imaging of complex structures, subsalt imaging of Gulf of Mexico, fault/fracture zone imaging for geothermal exploration at the Jemez pueblo, time-lapse imaging of a walkway vertical seismic profiling data for monitoring CO{sub 2} inject at SACROC, and microseismic event locations for monitoring CO{sub 2} injection at Aneth. These examples demonstrate LANL's high-resolution and high-fidelity seismic imaging and monitoring capabilities.

  2. Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Holland, R.C. [Science Applications International Corp., San Diego, CA (United States)

    1993-07-01T23:59:59.000Z

    This Environmental Monitoring Plan was written to fulfill the requirements of Department of Energy (DOE) Order 5400.1 and DOE Environmental Regulatory Guide DOE/EH 0173T. This Plan documents the background, organizational structure, and methods used for effluent monitoring and environmental surveillance at Sandia National Laboratories/California. The design, rationale, and historical results of the environmental monitoring system are discussed in detail. Throughout the Plan, recommendations for improvements to the monitoring system are made. This revision to the Environmental Monitoring Plan was written to document the changes made to the Monitoring Program during 1992. Some of the data (most notably the statistical analyses of past monitoring data) has not been changed.

  3. Boiler Maximum Achievable Control Technology (MACT) Technical...

    Energy Savers [EERE]

    Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact Sheet, April 2015 Boiler Maximum Achievable Control Technology (MACT) Technical Assistance - Fact...

  4. Building America Residential Energy Efficiency Technical Update...

    Energy Savers [EERE]

    Residential Energy Efficiency Technical Update Meeting: August 2011 Building America Residential Energy Efficiency Technical Update Meeting: August 2011 On this page, you may link...

  5. Low Emission Development Strategies (LEDS): Technical, Institutional...

    Open Energy Info (EERE)

    Strategies (LEDS): Technical, Institutional and Policy Lessons Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Emission Development Strategies (LEDS): Technical,...

  6. Independent Oversight Review, Babcock & Wilcox Technical Services...

    Office of Environmental Management (EM)

    Independent Oversight Review, Babcock & Wilcox Technical Services Y-12, LLC - July 2012 Independent Oversight Review, Babcock & Wilcox Technical Services Y-12, LLC - July 2012 July...

  7. Federal Energy Management Program (FEMP) Technical Assistance...

    Energy Savers [EERE]

    Federal Energy Management Program (FEMP) Technical Assistance Request Portal User Guide Federal Energy Management Program (FEMP) Technical Assistance Request Portal User Guide...

  8. Vice President, Engineering and Technical Services

    Broader source: Energy.gov [DOE]

    The Engineering and Technical Services organization is responsible for implementing the transmission capital program, providing technical support for the transmission maintenance program and...

  9. A Technical Databook for Geothermal Energy Utilization

    E-Print Network [OSTI]

    Phillips, S.L.

    1981-01-01T23:59:59.000Z

    A TECHNICAL DATABOOK FOR GEOTHERMAL ENERGY UTILIZATION S.L.Technical Databook for Geothermal Energy Utilization* s. L.Survey, Menlo Park, CA. Geothermal Energy Development, CA.

  10. Space Conditioning Standing Technical Commitee Presentation ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commitee Presentation Space Conditioning Standing Technical Commitee Presentation This presentation outlines the goals of the Space Conditioning Standing Technical ommittee, as...

  11. Technical Consultant Report Template | Department of Energy

    Energy Savers [EERE]

    C3d Technical Consultant Report Template.pdf More Documents & Publications External Independent Review (EIR) Report Template Technical Consultant Contract Evaluation Consultant RFP...

  12. Previous Technical Assistance | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technical assistance provided to WGAWIEB by the Electricity Market Studies Group of LBNL and The Regulatory Assistance Project (RAP); and More limited technical assistance...

  13. Energy Department Technical Assistance Bolsters Tribal Clean...

    Energy Savers [EERE]

    Technical Assistance Bolsters Tribal Clean Energy Deployment Energy Department Technical Assistance Bolsters Tribal Clean Energy Deployment December 2, 2011 - 3:39pm Addthis The...

  14. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal...

  15. Sandia Energy - Structural Health Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structural Health Monitoring Home Stationary Power Energy Conversion Efficiency Wind Energy Materials, Reliability, & Standards Structural Health Monitoring Structural Health...

  16. Final technical report

    SciTech Connect (OSTI)

    J.A. Rial; J. Lees

    2009-03-31T23:59:59.000Z

    As proposed, the main effort in this project is the development of software capable of performing real-time monitoring of micro-seismic activity recorded by an array of sensors deployed around an EGS. The main milestones are defined by the development of software to perform the following tasks: • Real-time micro-earthquake detection and location • Real-time detection of shear-wave splitting • Delayed-time inversion of shear-wave splitting These algorithms, which are discussed in detail in this report, make possible the automatic and real-time monitoring of subsurface fracture systems in geothermal fields from data collected by an array of seismic sensors. Shear wave splitting (SWS) is parameterized in terms of the polarization of the fast shear wave and the time delay between the fast and slow shear waves, which are automatically measured and stored. The measured parameters are then combined with previously measured SWS parameters at the same station and used to invert for the orientation (strike and dip) and intensity of cracks under that station. In addition, this grant allowed the collection of seismic data from several geothermal regions in the US (Coso) and Iceland (Hengill) to use in the development and testing of the software.

  17. Technical Journal The Bendix Technical Journal publishes noteworthy results of

    E-Print Network [OSTI]

    Rathbun, Julie A.

    ADVISORY BOARD E. C. Johnson, Chairman R. E. Esch W. E. Kock L. J. Larsen TECHNICAL CONSULTANTS ALSEP: The Scientific Voice of the Moon L. R. Lewis Some Aspects of ALSEP Structural/Thermal Design J. L

  18. The Independent Technical Analysis Process

    SciTech Connect (OSTI)

    Duberstein, Corey A.; Ham, Kenneth D.; Dauble, Dennis D.; Johnson, Gary E.

    2007-04-13T23:59:59.000Z

    The Bonneville Power Administration (BPA) contracted with the Pacific Northwest National Laboratory (PNNL) to provide technical analytical support for system-wide fish passage information (BPA Project No. 2006-010-00). The goal of this project was to produce rigorous technical analysis products using independent analysts and anonymous peer reviewers. In the past, regional parties have interacted with a single entity, the Fish Passage Center to access the data, analyses, and coordination related to fish passage. This project provided an independent technical source for non-routine fish passage analyses while allowing routine support functions to be performed by other well-qualified entities.

  19. Technical efforts focus on cutting LNG plant costs

    SciTech Connect (OSTI)

    Aoki, Ichizo; Kikkawa, Yoshitsugi [Chiyoda Corp., Yokohama (Japan)

    1995-07-03T23:59:59.000Z

    LNG demand is growing due to the nuclear setback and environmental issues spurred by concern about the greenhouse effect and acid rain, especially in the Far East. However, LNG is expensive compared with other energy sources. Efforts continue to minimize capital and operating costs and to increase LNG plant availability and safety. Technical trends in the LNG industry aim at reducing plant costs in pursuit of a competitive LNG price on an energy value basis against the oil price. This article reviews key areas of technical development. Discussed are train size, liquefaction processes, acid gas removal, heavy end removal, nitrogen rejection, refrigeration compressor and drivers, expander application, cooling media selection, LNG storage and loading system, and plant availability.

  20. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1--July 31, 1998

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    Progress is reported on research projects related to the following: Electronic resource library; Environment, safety, and health; Communication, education, training, and community involvement; Nuclear and other materials; and Reporting, evaluation, monitoring, and administration. Technical studies investigate remedial action of high explosives-contaminated lands, radioactive waste management, nondestructive assay methods, and plutonium processing, handling, and storage.

  1. Advanced Structural Health Monitoring based on Multi-Agent Technology Kay Smarsly and Kincho H. Law

    E-Print Network [OSTI]

    Stanford University

    , dams, or wind turbines are complex systems that are vital to the well-being of our society. Safety is installed permanently on a structure to monitor its conditions on a continuous basis. SHM systems the sensor data, and to work collaboratively in assessing the conditions of the monitored structure. Moreover

  2. Office of Nuclear Safety Basis and Facility Design

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

  3. Nuclear Facility Safety Basis Fundamentals Self-Study Guide ...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1) November 2002 Nuclear...

  4. CRAD, Integrated Safety Basis and Engineering Design Review ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Safety Basis and Engineering Design Review - August 20, 2014 (EA CRAD 31-4, Rev. 0) CRAD, Integrated Safety Basis and Engineering Design Review - August 20, 2014 (EA...

  5. Authorization basis status report (miscellaneous TWRS facilities, tanks and components)

    SciTech Connect (OSTI)

    Stickney, R.G.

    1998-04-29T23:59:59.000Z

    This report presents the results of a systematic evaluation conducted to identify miscellaneous TWRS facilities, tanks and components with potential needed authorization basis upgrades. It provides the Authorization Basis upgrade plan for those miscellaneous TWRS facilities, tanks and components identified.

  6. Cooperative monitoring of regional security agreements

    SciTech Connect (OSTI)

    Pregenzer, A.L.; Vannoni, M.; Biringer, K.L. [Sandia National Labs., Albuquerque, NM (United States). Nonproliferation and Arms Control Analysis Dept.

    1996-11-01T23:59:59.000Z

    This paper argues that cooperative monitoring plays a critical role in the implementation of regional security agreements and confidence building measures. A framework for developing cooperative monitoring options is proposed and several possibilities for relating bilateral and regional monitoring systems to international monitoring systems are discussed. Three bilateral or regional agreements are analyzed briefly to illustrate different possibilities. These examples illustrate that the relationship of regional or bilateral arms control or security agreements to international agreements depends on a number of factors: the overlap of provisions between regional and international agreements; the degree of interest in a regional agreement among the international community; efficiency in implementing the agreement; and numerous political considerations. Given the importance of regional security to the international community, regions should be encouraged to develop their own infrastructure for implementing regional arms control and other security agreements. A regional infrastructure need not preclude participation in an international regime. On the contrary, establishing regional institutions for arms control and nonproliferation could result in more proactive participation of regional parties in developing solutions for regional and international problems, thereby strengthening existing and future international regimes. Possible first steps for strengthening regional infrastructures are identified and potential technical requirements are discussed.

  7. Evaluation of workplace air monitoring locations

    SciTech Connect (OSTI)

    Stoetzel, G.A.; Cicotte, G.R.; Lynch, T.P. (Pacific Northwest Lab., Richland, WA (United States)); Aldrich, L.K. (Westinghouse Hanford Co., Richland, WA (United States))

    1991-10-01T23:59:59.000Z

    Current federal guidance on occupational radiation protection recognizes the importance of conducting air flow studies to assist in the placement of air sampling and monitoring equipment. In support of this, Pacific Northwest Laboratory has provided technical assistance to Westinghouse Hanford Company for the purpose of evaluating the adequacy of air sampling and monitoring locations at selected Hanford facilities. Qualitative air flow studies were performed using smoke aerosols to visually determine air movement. Three examples are provided of how air flow studies results, along with information on the purpose of the air sample being collected, were used as a guide in placing the air samplers and monitors. Preparatory steps in conducting an air flow study should include: (1) identifying type of work performed in the work area including any actual or potential release points; (2) determining the amounts of radioactive material available for release and its chemical and physical form; (3) obtaining accurate work area descriptions and diagrams; (4) identifying the location of existing air samplers and monitors; (5) documenting physical and ventilation configurations; (6) notifying appropriate staff of the test; and (7) obtaining necessary equipment and supplies. The primary steps in conducting an air flow study are measurements of air velocities in the work area, release of the smoke aerosol at selected locations in the work area and the observation of air flow patterns, and finally evaluation and documentation of the results. 2 refs., 3 figs.

  8. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    SciTech Connect (OSTI)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01T23:59:59.000Z

    In support of expanding the use of nuclear power, interest is growing in methods of determining the feasibility of longer term operation for the U.S. fleet of nuclear power plants, particularly operation beyond 60 years. To help establish the scientific and technical basis for such longer term operation, the DOE-NE has established a research and development (R&D) objective. This objective seeks to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of current reactors. The Light Water Reactor Sustainability (LWRS) Program, which addresses the needs of this objective, is being developed in collaboration with industry R&D programs to provide the technical foundations for licensing and managing the long-term, safe, and economical operation of nuclear power plants. The LWRS Program focus is on longer-term and higher-risk/reward research that contributes to the national policy objectives of energy and environmental security. In moving to identify priorities and plan activities, the Light Water Reactor Sustainability Workshop on On-Line Monitoring (OLM) Technologies was held June 10–12, 2010, in Seattle, Washington. The workshop was run to enable industry stakeholders and researchers to identify the nuclear industry needs in the areas of future OLM technologies and corresponding technology gaps and research capabilities. It also sought to identify approaches for collaboration that would be able to bridge or fill the technology gaps. This report is the meeting proceedings, documenting the presentations and discussions of the workshop and is intended to serve as a basis for a plan which is under development that will enable the I&C research pathway to achieve its goals. Benefits to the nuclear industry accruing from On Line Monitoring Technology cannot be ignored. Information gathered thus far has contributed significantly to the Department of Energy’s Light Water Reactor Sustainability Program. DOE has shown great interest in supplying necessary support to help this industry to move forward as indicated by the recent workshop conducted in support of this interest. The Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies provided an opportunity for industry stakeholders and researchers to gather in order to collectively identify the nuclear industry’s needs in the areas of OLM technologies including diagnostics, prognostics, and RUL. Additionally, the workshop provided the opportunity for attendees to pinpoint technology gaps and research capabilities along with the fostering of future collaboration in order to bridge the gaps identified. Attendees concluded that a research and development program is critical to future nuclear operations. Program activities would result in enhancing and modernizing the critical capabilities of instrumentation, information, and control technologies for long-term nuclear asset operation and management. Adopting a comprehensive On Line Monitoring research program intends to: • Develop national capabilities at the university and laboratory level • Create or renew infrastructure needed for long-term research, education, and testing • Support development and testing of needed I&C technologies • Improve understanding of, confidence in, and decisions to employ these new technologies in the nuclear power sector and achieve successful licensing and deployment.

  9. GEM Technical Design Report

    SciTech Connect (OSTI)

    Not Available

    1993-07-31T23:59:59.000Z

    The GEM collaboration was formed in June 1991 to develop a major detector for the SSC. The primary physics objectives of GEM are those central to the motivation for the SSC, to study high p{sub T} physics - exemplified by the search for Higgs bosons - and to search for new physics beyond the standard model. The authors present in this Technical Design Report (TDR) a detector with broad capabilities for the discovery and subsequent study of electroweak symmetry breaking, the origin of mass and flavor, and other physics requiring precise measurements of gammas, electrons, and muons - hence the name, GEM. In addition, as a design goal, they have taken care to provide the robustness needed to do the physics that requires high luminosity. Finally, good coverage and hermeticity allow the detection of missing transverse energy, E{sub T}. The GEM design emphasizes clean identification and high resolution measurement of the primary physics signatures for high p{sub T} physics. The approach is to make precise energy measurements that maximize the sensitivity to rare narrow resonances, to detect the elementary interaction products (quarks, leptons, and photons), and to build in the features required to reduce backgrounds.

  10. Final Technical Report

    SciTech Connect (OSTI)

    Stoessel, Chris

    2013-11-13T23:59:59.000Z

    This project developed a new high-performance R-10/high SHGC window design, reviewed market positioning and evaluated manufacturing solutions required for broad market adoption. The project objectives were accomplished by: identifying viable technical solutions based on modeling of modern and potential coating stacks and IGU designs; development of new coating material sets for HM thin film stacks, as well as improved HM IGU designs to accept multiple layers of HM films; matching promising new coating designs with new HM IGU designs to demonstrate performance gains; and, in cooperation with a window manufacturer, assess the potential for high-volume manufacturing and cost efficiency of a HM-based R-10 window with improved solar heat gain characteristics. A broad view of available materials and design options was applied to achieve the desired improvements. Gated engineering methodologies were employed to guide the development process from concept generation to a window demonstration. The project determined that a slightly de-rated window performance allows formulation of a path to achieve the desired cost reductions to support end consumer adoption.

  11. FINAL TECHNICAL REPORT

    SciTech Connect (OSTI)

    STEFAN VASILE; ZHENG LI

    2010-06-17T23:59:59.000Z

    High-resolution tracking detectors based on Active Pixel Sensor (APS) have been valuable tools in Nuclear Physics and High-Energy Physics research, and have contributed to major discoveries. Their integration time, radiation length and readout rate is a limiting factor for the planed luminosity upgrades in nuclear and high-energy physics collider-based experiments. The goal of this program was to demonstrate and develop high-gain, high-resolution tracking detector arrays with faster readout, and shorter radiation length than APS arrays. These arrays may operate as direct charged particle detectors or as readouts of high resolution scintillating fiber arrays. During this program, we developed in CMOS large, high-resolution pixel sensor arrays with integrated readout, and reset at pixel level. Their intrinsic gain, high immunity to surface and moisture damage, will allow operating these detectors with minimal packaging/passivation requirements and will result in radiation length superior to APS. In Phase I, we designed and fabricated arrays with calorimetric output capable of sub-pixel resolution and sub-microsecond readout rate. The technical effort was dedicated to detector and readout structure development, performance verification, as well as to radiation damage and damage annealing.

  12. Final Technical Report

    SciTech Connect (OSTI)

    Mark H. Dawson

    2005-06-30T23:59:59.000Z

    This variable length wind turbine blade project met the project objectives by successfully completing the task schedule. A set of variable length blades (8 to 12 meters in length) is now flying, in a configuration that is representative of a commercial blade designed to replace a standard 9 meter blade. Static testing and operations show that the blades are durable and stiff enough to prevent tower strikes. Power curve testing shows significant gains in low wind speed power production. An improved controller and drive mechanism have now been working for six months. Moving forward, we continue to monitor power curve, controller performance, and durability data. The project has made good progress towards understanding the costs and challenges associated with commercial production of variable length blades. Items that will require further study are: tip airfoil; blade pitching, tip and root interface design; jigs for more efficient construction, and optimization of subsystems

  13. Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.

    SciTech Connect (OSTI)

    Griswold, Jim

    2007-01-01T23:59:59.000Z

    Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.

  14. Fuel Cycle Research & Development Technical Monthly - June 2012

    SciTech Connect (OSTI)

    Miller, Michael C. [Los Alamos National Laboratory

    2012-07-25T23:59:59.000Z

    Topics are: (1) MPACT Campaign - (a) Management and Integration - Coordination meetings between NE and NA-22, NA-24, and NA-82 were conducted the week of June 11th. Preparations are being made for the next MPACT working group meeting, scheduled for Aug 28-30 at Idaho Falls. In addition to covering accomplishments and discussing future plans, a site tour of INL facilities (MFC, EBR, ATR, INTEC) is being organized. (2) Accounting and Control Technologies - (a) Microcalorimetry - Now operating 256-pixel array at LANL. We are in the process of tuning detector parameters to improve and optimize performance. Preliminary measurements show approximate number of live pixels is similar to that observed previously at NIST. Continuing to study contribution to systematic error from uncertainties in tabulated gamma-ray energies. (b) Electrochemical Sensor - Testing of sensors fashioned from different precursor materials continued. SEM analysis of all used sensors has been or will be performed. (c) Lead Slowing Down Spectrometer - Ongoing perturbation calculations are providing information on the fundamental systematic error limits of LSDS. In order to achieve separating the contribution of Pu and 235U to the signal, there will need to be tight controls on systematic errors. Continuing to look into a He4 detector. Research into local construction of a He4 detector continued. We have started to apply the algorithm to test the LSDS using experimental data from previous RPI measurements. PNNL also developed a plan to address the lack of statistics in the MCNP modeling of the NGSI 64 assemblies. The ISU graduate student built and tested a fission chamber to gain experience with them. (d) Fast Neutron Imaging to Quantify Nuclear Materials - The imaging detector design was modified for each pixel to have an 8 x 8 pixel array. Quotations and purchasing process for components, including the new PSD scintillator are in progress. (e) Fast Neutron Multiplicity Analysis - The team submitted two papers to the upcoming INMM meeting that are related to the fast neutron multiplicity R&D effort. Progress was made on the project's main goal of designing a concept for a prototype fast-neutron multiplicity counter. We started laying out the outline for the final report. We have been working with our ORNL collaborators to develop a new digitizer system to support our experimental campaign planned for next year. (3) MPACT Analysis Tools - (a) Multi-isotope Process Monitor - Fuel characterization framework development continued during June. A report describing the methodologies is being completed. Kenneth Dayman, from University of Texas, spent a week at PNNL wrapping up his master's research and working on a journal submission covering that work. The target journal is the IEEE transactions on Nuclear Science; submission is planned for the end of July. A proposal to instrument H-Canyon is being prepared in conjunction with SRNL and the NNSA's NGSI program. The impact of gamma-ray spectrum counting statistics on the precision of relative radioisotope component intensities as reconstructed via Principal Component Regression (PCR) continued in June with Monte Carlo simulations of a two-component (i.e., two radioisotope) system. This work generalizes earlier studies in FY12 in which Poisson counting variations of only a single spectrum component were simulated. (b) Modeling and Simulation for Analysis of Safeguards Performance (Electrochemical) - Preliminary insights into safeguards challenges and the initial design for an electrochemical plant have been written up into an INMM paper and will be presented at the INMM Summer Meeting. Work is currently adding a new visualization capability for integrating materials accountancy with physical protection. (c) Material Control including Process Monitoring (Pattern Recognition, Sensors) - Fabrication of quartz chips continued at an external foundry. Awaiting delivery of the heat exchange manifold and chip holder. (d) MPACT System Integration and Technical Support - The initial report on cost-basis metrics for nucle

  15. Istanbul Technical University Istanbul, Turkey

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    and ocean engineering Faculty of science and letters Faculty of management Faculty of Aeronautics Engineering Shipbuilding and Ocean Engineering Mathematics Engineering Physics Engineering Chemistry distinguished in Turkey with its engineering and architecture education. Istanbul Technical University

  16. Offshoring and Directed Technical Change

    E-Print Network [OSTI]

    Acemoglu, Daron

    2012-11-24T23:59:59.000Z

    To study the short-run and long-run implications on wage inequality, we introduce directed technical change into a Ricardian model of offshoring. A unique final good is produced by combining a skilled and an unskilled ...

  17. Monitoring and optimization of energy consumption of base transceiver stations

    E-Print Network [OSTI]

    Spagnuolo, Antonio; Vetromile, Carmela; Formosi, Roberto; Lubritto, Carmine

    2015-01-01T23:59:59.000Z

    The growth and development of the mobile phone network has led to an increased demand for energy by the telecommunications sector, with a noticeable impact on the environment. Monitoring of energy consumption is a great tool for understanding how to better manage this consumption and find the best strategy to adopt in order to maximize reduction of unnecessary usage of electricity. This paper reports on a monitoring campaign performed on six Base Transceiver Stations (BSs) located central Italy, with different technology, typology and technical characteristics. The study focuses on monitoring energy consumption and environmental parameters (temperature, noise, and global radiation), linking energy consumption with the load of telephone traffic and with the air conditioning functions used to cool the transmission equipment. Moreover, using experimental data collected, it is shown, with a Monte Carlo simulation based on power saving features, how the BS monitored could save energy.

  18. Parallel ozone monitoring study performed in the Ojai Valley, California

    SciTech Connect (OSTI)

    Mikel, D.K. [Ventura County Air Pollution Control District, CA (United States)

    1998-12-31T23:59:59.000Z

    The Ventura County Air Pollution Control District (also known as the District) Monitoring and Technical Services Division, relocated the State and Local Air Monitoring Station (SLAMS) for the Ojai Valley. The SLAMS was located on property that was being abandoned and sold by the County of Ventura, thus necessitating a station relocation. From August 3, through October 31, 1995, the District performed parallel ozone monitoring at two sites. The former site was located at 1768 Maricopa Road, Ojai, California (AIRS Site 06111-1003) and the existing site at 1201 Ojai Avenue, Ojai California (County Fire Station {number_sign}21). This paper outlines the process of parallel monitoring, the statistical tests used and their justification. In addition, there is a discussion on station equivalency.

  19. EPA's Financial and Technical Resources

    E-Print Network [OSTI]

    Perea, S. M.

    2011-01-01T23:59:59.000Z

    EPA?s Financial and Technical Resources Suzanna M. Perea, EPA Region VI CATEE Conference November 9, 2011 EPA?s Primary Role Where and how communities are built has a major impact on the environment and on public health. Many programs... are aimed at supporting activities that build more sustainable communities. Protecting Human Health and the Environment Smart Growth Implementation Assistance (SGIA) Grants http://www.epa.gov/smartgrowth/sgia.htm Building Blocks Technical...

  20. Guam Initial Technical Assessment Report

    SciTech Connect (OSTI)

    Baring-Gould, I.; Conrad, M.; Haase, S.; Hotchkiss, E.; McNutt, P.

    2011-04-01T23:59:59.000Z

    Under an interagency agreement, funded by the Department of Interior's (DOI) Office of Insular Affairs (OIA), the National Renewable Energy Laboratory (NREL) was tasked to deliver technical assistance to the island of Guam by conducting an island initial technical assessment that would lay out energy consumption and production data and establish a baseline. This assessment will be used to conduct future analysis and studies by NREL that will estimate energy efficiency and renewable energy potential for the island of Guam.

  1. Gravitational lens modeling with basis sets

    E-Print Network [OSTI]

    Birrer, Simon; Refregier, Alexandre

    2015-01-01T23:59:59.000Z

    We present a strong lensing modeling technique based on versatile basis sets for the lens and source planes. Our method uses high performance Monte Carlo algorithms, allows for an adaptive build up of complexity and bridges the gap between parametric and pixel based reconstruction methods. We apply our method to a HST image of the strong lens system RXJ1131-1231 and show that our method finds a reliable solution and is able to detect substructure in the lens and source planes simultaneously. Using mock data we show that our method is sensitive to sub-clumps with masses four orders of magnitude smaller than the main lens, which corresponds to about $10^8 M_{\\odot}$, without prior knowledge on the position and mass of the sub-clump. The modelling approach is flexible and maximises automation to facilitate the analysis of the large number of strong lensing systems expected in upcoming wide field surveys. The resulting search for dark sub-clumps in these systems, without mass-to-light priors, offers promise for p...

  2. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, J.E.; Bolton, R.D.

    1999-03-02T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  3. Radiation monitor for liquids

    DOE Patents [OSTI]

    Koster, James E. (Los Alamos, NM); Bolton, Richard D. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  4. October 2007 monitoring results for Morrill, Kansas.

    SciTech Connect (OSTI)

    LaFreniere, L. M.; Environmental Science Division

    2008-03-26T23:59:59.000Z

    In September 2005, the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) initiated periodic sampling of groundwater in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Morrill, Kansas. On the basis of available information, the CCC/USDA believes that one or more third parties operated this facility after termination of the CCC/USDA's lease in 1971. The sampling at Morrill is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE), to monitor levels of carbon tetrachloride contamination identified in the groundwater at this site (Argonne 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater has been sampled twice yearly for a recommended period of two years. The samples are analyzed for volatile organic compounds (VOCs), as well as for selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The sampling is presently conducted in a network of 12 monitoring wells and 3 private wells (Figure 1.1), at locations approved by the KDHE. The scope of the originally approved monitoring has been expanded to include vegetation sampling (initiated in October 2006) and surface water and stream bed sediment sampling (initiated in March 2007). The analytical results for groundwater sampling events at Morrill in September 2005, March 2006, September 2006, and March 2007 were documented previously (Argonne 2006a, 2007c,e). The results have demonstrated the presence of carbon tetrachloride contamination, at levels exceeding the KDHE Tier 2 Risk-Based Screening Level (5.0 {micro}g/L) for this compound, in a groundwater plume extending generally south-southeastward from the former CCC/USDA facility, toward Terrapin Creek at the south edge of the town. Little clear pattern of change in the concentrations observed at the individual monitoring points and little plume migration have been observed in previous monitoring events. Low levels ({le} 1.3 {micro}g/L) of carbon tetrachloride have persistently been detected at monitoring well MW8S, however, along an intermittent tributary to Terrapin Creek. This observation suggests a possible risk of contamination of the surface waters of the creek. In light of these findings, in 2006 the CCC/USDA recommended expansion of the approved monitoring program to include the collection and analysis of surface water samples along Terrapin Creek (Argonne 2007e). At the request of the KDHE (KDHE 2007a), locations for both surface water and shallow sediment sampling were discussed with the KDHE in January 2007. An addendum to the existing monitoring plan and a standard operating procedure (SOP AGEM-15) for sediment sampling were submitted to the KDHE on the basis of these discussions (Argonne 2007a,b). This report presents the results of groundwater, surface water, and sediment sampling performed at Morrill in October 2007, in accord with the monitoring plan (Argonne 2005b) and the addendum to that plan (Argonne 2007a). To supplement these studies, Argonne also sampled natural vegetation along Terrapin Creek in October 2006, April 2007, and July 2007 for analyses for VOCs. The results of the plant tissue analyses are included in this report. The October 2007 groundwater sampling at Morrill represents the fifth and final monitoring event performed under the recommended two-year monitoring program approved by the KDHE.

  5. The Office of Environmental Management technical reports: A bibliography

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Office of Environmental Management`s (EM) technical reports bibliography is an annual publication that contains information on scientific and technical reports sponsored by the Office of Environmental Management added to the Energy Science and Technology Database from July 1, 1995--that were published from October 1, 1996--September 30, 1997. This information is divided into the following categories: Miscellaneous, Focus Areas and Crosscutting Programs, Support Programs, Technology Integration and International Technology Exchange, are now included in the Miscellaneous category. The Office of Environmental Management within the Department of Energy (DOE) is responsible for environmental restoration, waste management, technology development and facility transition and management. Subjects include: subsurface contaminants; mixed waste characterization, treatment and disposal; radioactive tank waste remediation; plutonium; deactivation and decommissioning; robotics; characterization, monitoring, and sensor technology; and efficient separations. 880 refs.

  6. Demonstrating Structural Adequacy of Nuclear Power Plant Containment Structures for Beyond Design-Basis Pressure Loadings

    SciTech Connect (OSTI)

    Braverman, J.I.; Morante, R.

    2010-07-18T23:59:59.000Z

    ABSTRACT Demonstrating the structural integrity of U.S. nuclear power plant (NPP) containment structures, for beyond design-basis internal pressure loadings, is necessary to satisfy Nuclear Regulatory Commission (NRC) requirements and performance goals. This paper discusses methods for demonstrating the structural adequacy of the containment for beyond design-basis pressure loadings. Three distinct evaluations are addressed: (1) estimating the ultimate pressure capacity of the containment structure (10 CFR 50 and US NRC Standard Review Plan, Section 3.8) ; (2) demonstrating the structural adequacy of the containment subjected to pressure loadings associated with combustible gas generation (10 CFR 52 and 10 CFR 50); and (3) demonstrating the containment structural integrity for severe accidents (10 CFR 52 as well as SECY 90-016, SECY 93-087, and related NRC staff requirements memoranda (SRMs)). The paper describes the technical basis for specific aspects of the methods presented. It also presents examples of past issues identified in licensing activities related to these evaluations.

  7. Final Technical Report

    SciTech Connect (OSTI)

    Joel Walls, Richard Uden, Scott Singleton, Rone Shu, Gary Mavko

    2005-04-12T23:59:59.000Z

    Using current methods, oil and gas in the subsurface cannot be reliably predicted from seismic data. This causes domestic oil and gas fields to go undiscovered and unexploited, thereby increasing the need to import energy. The general objective of this study was to demonstrate a simple and effective methodology for estimating reservoir properties (gas saturation in particular, but also including lithology, net to gross ratios, and porosity) from seismic attenuation and other attributes using P and S-waves. Phase I specific technical objectives: • Develop Empirical or Theoretical Rock Physics Relations for Qp and Qs • Create P-wave and S-wave Synthetic Seismic Modeling Algorithms with Q • Compute P-wave and S-wave Q Attributes from Multi-component Seismic Data All objectives defined in the Phase I proposal were accomplished. During the course of this project, a new class of seismic analysis was developed based on compressional and shear wave inelastic rock properties (attenuation). This method provides a better link between seismic data and the presence of hydrocarbons. The technique employs both P and S-wave data to better discriminate between attenuation due to hydrocarbons versus energy loss due to other factors such as scattering and geometric spreading. It was demonstrated that P and S attenuation can be computed from well log data and used to generate synthetic seismograms. Rock physics models for P and S attenuation were tested on a well from the Gulf of Mexico. The P and S-wave Q attributes were computed on multi-component 2D seismic data intersecting this well. These methods generated reasonable results, and most importantly, the Q attributes indicated gas saturation.

  8. Final Technical Report

    SciTech Connect (OSTI)

    Juan Camilo Serrano

    2011-12-16T23:59:59.000Z

    New and novel material and process technologies applied in wind blade designs and production are critical to increasing the competitiveness of wind power generation against traditional sources of energy. In this project, through collaboration between PPG Industries and MAG Industrial Automation Systems, the potential of using automated manufacturing for the production of fiber glass composite wind blades was evaluated from both technical and economic points of view. Further, it was demonstrated that by modifying the standard blade raw material forms through the use of cost effective pre-impregnated rovings coupled with using an automated fiber placement machine to lay up the parts, it is possible to produce state of the art composite laminates with significantly improved mechanical performance and with higher processing rates than standard blade production technology allows for today, thereby lowering the cost of energy over turbine blades made using traditional processes and materials. In conformity with the scope of work of the submitted proposal, the project team completed each task and documented and reported its findings on the appropriate quarterly report submitted to the DOE project team. The activities and this report are divided into 5 subtasks: (1) Material Investigation - Reviews traditional materials and key specifications and testing methods; (2) Manufacturing and Automation - Identifies new candidate material forms and automated layup processes; (3) Process Development - Performs trials of candidate materials and processes; (4) Predictive Analysis - Assesses impact of new material forms and automated processes on a model blade design; and (5) Feasibility Assessment - Compares traditional manufacturing processes and materials to new candidate material forms and automated processes.

  9. Global nuclear material monitoring

    SciTech Connect (OSTI)

    Howell, J.A.; Monlove, H.O.; Goulding, C.A.; Martinez, B.J.; Coulter, C.A.

    1997-08-01T23:59:59.000Z

    This is the final report of a one-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project provided a detailed systems design for advanced integrated facility monitoring and identified the components and enabling technologies required to facilitate the development of the monitoring system of the future.

  10. Transmission Line Security Monitor

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  11. Transmission Line Security Monitor

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    The Transmission Line Security Monitor is a multi-sensor monitor that mounts directly on high-voltage transmission lines to detect, characterize and communicate terrorist activity, human tampering and threatening conditions around support towers. For more information about INL's critical infrastructure protection research, visit http://www.facebook.com/idahonationallaboratory.

  12. The NOvA Technical Design Report

    SciTech Connect (OSTI)

    Ayres, D.S.; Drake, G.R.; Goodman, M.C.; Grudzinski, J.J.; Guarino, V.J.; Talaga, R.L.; Zhao, A.; /Argonne; Stamoulis, P.; Stiliaris, E.; Tzanakos, G.; Zois, M.; /Athens U. /Caltech /UCLA /Fermilab /College de France /Harvard U. /Indiana U. /Lebedev Inst. /Michigan State U. /Minnesota U., Duluth /Minnesota U.

    2007-10-08T23:59:59.000Z

    Technical Design Report (TDR) describes the preliminary design of the NOvA accelerator upgrades, NOvA detectors, detector halls and detector sites. Compared to the March 2006 and November 2006 NOvA Conceptual Design Reports (CDR), critical value engineering studies have been completed and the alternatives still active in the CDR have been narrowed to achieve a preliminary technical design ready for a Critical Decision 2 review. Many aspects of NOvA described this TDR are complete to a level far beyond a preliminary design. In particular, the access road to the NOvA Far Detector site in Minnesota has an advanced technical design at a level appropriate for a Critical Decision 3a review. Several components of the accelerator upgrade and new neutrino detectors also have advanced technical designs appropriate for a Critical Decision 3a review. Chapter 1 is an Executive Summary with a short description of the NOvA project. Chapter 2 describes how the Fermilab NuMI beam will provide a narrow band beam of neutrinos for NOvA. Chapter 3 gives an updated overview of the scientific basis for the NOvA experiment, focusing on the primary goal to extend the search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations and measure the sin{sup 2}(2{theta}{sub 13}) parameter. This parameter has not been measured in any previous experiment and NOvA would extend the search by about an order of magnitude beyond the current limit. A secondary goal is to measure the dominant mode oscillation parameters, sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sub 32}{sup 2} to a more precise level than previous experiments. Additional physics goals for NOvA are also discussed. Chapter 4 describes the Scientific Design Criteria which the Fermilab accelerator complex, NOvA detectors and NOvA detector sites must satisfy to meet the physics goals discussed in Chapter 3. Chapter 5 is an overview of the NOvA project. The changes in the design relative to the NOvA CDR are discussed. Chapter 6 summarizes the NOvA design performance relative to the Design Criteria set out in Chapter 4. Chapter 7 presents the Work Breakdown Structure dictionary at Level 3 and the Milestone dictionary. Chapters 8 through 17 then take each Level 2 WBS element of the NOvA project and present each part of the design in more detail than the overview given in Chapter 5. Specific technical design criteria are delineated for each part of the project in addition to the scientific design criteria outlined in Chapter 4. Changes in the design since the NOvA CDR are discussed in detail. The work remaining to bring each part of this preliminary design to a final design is outlined. Appendix A is a guide to other NOvA Project documentation with links to those documents.

  13. UMTRA technical assistance contractor quality assurance program plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAc Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements.

  14. DOWNHOLE VIBRATION MONITORING & CONTROL SYSTEM

    SciTech Connect (OSTI)

    Martin E. Cobern

    2005-07-27T23:59:59.000Z

    The objective of this program is to develop a system to both monitor the vibration of a bottomhole assembly, and to adjust the properties of an active damper in response to these measured vibrations. Phase I of this program, which entailed modeling and design of the necessary subsystems and design, manufacture and test of a full laboratory prototype, was completed on May 31, 2004. The principal objectives of Phase II are: more extensive laboratory testing, including the evaluation of different feedback algorithms for control of the damper; design and manufacture of a field prototype system; and, testing of the field prototype in drilling laboratories and test wells. Work during this quarter centered on the rebuilding of the prototype using the improved valve design described in the last report. Most of the components have been received and assembly has begun. Testing is expected to resume in August. In April, a paper was presented at the American Association of Drilling Engineers National Technical Conference in Houston. The paper was well received, and several oilfield service and supply companies sent inquiries regarding commercial distribution of the system. These are currently being pursued, but none have yet been finalized.

  15. In-line real time air monitor

    DOE Patents [OSTI]

    Wise, Marcus B. (Kingston, TN); Thompson, Cyril V. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds.

  16. In-line real time air monitor

    DOE Patents [OSTI]

    Wise, M.B.; Thompson, C.V.

    1998-07-14T23:59:59.000Z

    An in-line gas monitor capable of accurate gas composition analysis in a continuous real time manner even under strong applied vacuum conditions operates by mixing an air sample with helium forming a sample gas in two complementary sample loops embedded in a manifold which includes two pairs of 3-way solenoid valves. The sample gas is then analyzed in an ion trap mass spectrometer on a continuous basis. Two valve drivers actuate the two pairs of 3-way valves in a reciprocating fashion, so that there is always flow through the in-line gas monitor via one or the other of the sample loops. The duty cycle for the two pairs of 3-way valves is varied by tuning the two valve drivers to a duty cycle typically between 0.2 to 0.7 seconds. 3 figs.

  17. Millimeter wave sensor for monitoring effluents

    DOE Patents [OSTI]

    Gopalsami, Nachappa (Naperville, IL); Bakhtiari, Sasan (Bolingbrook, IL); Raptis, Apostolos C. (Downers Grove, IL); Dieckman, Stephen L. (Downers Grove, IL)

    1995-01-01T23:59:59.000Z

    A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.

  18. Leak detection, monitoring, and mitigation technology trade study update

    SciTech Connect (OSTI)

    HERTZEL, J.S.

    1998-11-10T23:59:59.000Z

    This document is a revision and update to the initial report that describes various leak detection, monitoring, and mitigation (LDMM) technologies that can be used to support the retrieval of waste from the single-shell tanks (SST) at the Hanford Site. This revision focuses on the improvements in the technical performance of previously identified and useful technologies, and it introduces new technologies that might prove to be useful.

  19. Technical Support and Transfer of Geothrmal Technical Knowledge and Information

    SciTech Connect (OSTI)

    John W. Lund

    2007-11-14T23:59:59.000Z

    The Geo-Heat Center (GHC) staff provided responses to 1442 technical support requests during the contract period (April 1, 2006 to September 30, 2007), which were six quarters under this contract. Our website, consisting of 1900 files, also contributes to our technical assistance activity. Downloaded files were 1,889,323 (3,448 per day) from our website, the total number of users was 1,365,258 (2,491 per day), and the total number of hits were 6,008,500 (10,064 per day). The GHC staff attended 60 workshops, short course and professional meeting and made 29 technical presentations. The staff also prepared and mailed out 2,000 copies of each of five issues of the GHC Quaterly Bulletin which contained 26 articles. We also mailed out approximately 5,000 papers and publications to interested individuals and organizations.

  20. Nutrient Management TrainingNutrient Management Training for Technical Service Providersfor Technical Service Providers

    E-Print Network [OSTI]

    Nutrient ManagementNutrient Management ­­ Record KeepingRecord Keeping ­­ Feed ManagementFeed ManagementNutrient Management TrainingNutrient Management Training for Technical Service Providersfor Management Planning Technical Guidance.Management Planning Technical Guidance. Manure and Wastewater Handling

  1. TECHNICAL PROPOSAL Table of Contents

    E-Print Network [OSTI]

    ____________________________________________ 13 A.4.5 Energy Management ____________________________________________ 14 Related Work, the DSG has proposed building a test bed patient monitoring system in the Emergency Department monitoring system. The three main components of this system are (1) a patient­ based sensor system; (2

  2. Plume measurement system (plumes) calibration experiment. Final technical report

    SciTech Connect (OSTI)

    Lohrmann, A.; Huhta, C.

    1994-08-01T23:59:59.000Z

    The Measurement of Entrainment and Transport work unit under the Dredging Research Program's Technical Area 1, entitled' Analysis of Dredged Material Placed in Open Water,' developed the PLUmes MEasurement System (PLUMES) to monitor the transport of suspended sediment from dredging and dredged material disposal operations. This acoustic system can monitor nearly synoptically, both horizontally and vertically. To determine the relationship between PLUMES acoustic measurements and suspended sediment concentrations, a laboratory sediment calibration experiment was conducted. The experiment studied acoustic backscattering from particles equivalent in size to those commonly found at dredging and dredged material disposal sites. These particles were suspended in a calibration chamber built for the study. The experiment showed that backscatterance could be predicted and concentrations calculated using Rayleigh scattering theory and an acoustic calibration of PLUMES. This report describes the experiment and the results of the experiment. Data from each calibration run are presented in the Appendices.

  3. Technical Progress Report

    SciTech Connect (OSTI)

    Paul D. Ronney

    2004-08-26T23:59:59.000Z

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. The corona generator can also be used as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. Higher peak pressures and faster pressure rise times were realized consistently in all test chambers versus standard spark plug ignition. A test engine was purchased for the project that has two spark plug ports per cylinder to The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions including cylinder pressure monitoring. A ceramic corona electrode has been designed that fits in the new test engine and is capable of withstanding the pressures and temperatures encountered inside the combustion chamber. The corona ignition system was tested on the engine and an increase in both peak pressure and IMEP were seen in the initial test. There are issues that must be addressed before on-engine testing can continue such as EMF interference from the corona generator and electrical insulation on portions of the piston and cylinder head to prevent arcing. The EMF issue can be solved with proper shielding and grounding and various ceramic coatings are being researched for electrical insulation.

  4. Cooperative monitoring of regional security agreements

    SciTech Connect (OSTI)

    Pregenzer, A.L.; Vannoni, M.; Biringer, K.L.

    1995-08-01T23:59:59.000Z

    This paper argues that cooperative monitoring plays a critical role in the implementation of regional security agreements and confidence building measures. A framework for developing cooperative monitoring options is proposed and several possibilities for relating bilateral and regional monitoring systems to international monitoring systems are discussed. Three bilateral or regional agreements are analyzed briefly to illustrate different possibilities: (1) the demilitarization of the Sinai region between Israel and Egypt in the 1970s; (2) the 1991 quadripartite agreement for monitoring nuclear facilities among Brazil, Argentina, The Argentine-Brazilian Agency for Accounting and Control of Nuclear Materials and the International Atomic Energy Agency; and (3) a bilateral Open Skies agreement between Hungary and Romania in 1991. These examples illustrate that the relationship of regional or bilateral arms control or security agreements to international agreements depends on a number of factors: the overlap of provisions between regional and international agreements; the degree of interest in a regional agreement among the international community; efficiency in implementing the agreement; and numerous political considerations.Given the importance of regional security to the international community, regions should be encouraged to develop their own infrastructure for implementing regional arms control and other security agreements. A regional infrastructure need not preclude participation in an international regime. On the contrary, establishing regional institutions for arms control and nonproliferation could result in more proactive participation of regional parties in developing solutions for regional and international problems, thereby strengthening existing and future international regimes. Possible first steps for strengthening regional infrastructures are identified and potential technical requirements are discussed.

  5. High-temperature Pump Monitoring - High-temperature ESP Monitoring...

    Broader source: Energy.gov (indexed) [DOE]

    7 4.4.4 High-temperature Pump Monitoring - High-temperature ESP Monitoring Presentation Number: 018 Investigator: Dhruva, Brindesh (Schlumberger Technology Corp.) Objectives: To...

  6. Environmental monitoring plan - environmental monitoring section. Revision 1

    SciTech Connect (OSTI)

    Wilt, G.C. [ed.; Tate, P.J.; Brigdon, S.L. [and others

    1994-11-01T23:59:59.000Z

    This report presents the environmental monitoring plan for the Lawrence Livermore National Laboratory. A site characterization is provided along with monitoring and measurement techniques and quality assurance measures.

  7. Radionuclide Sensors for Water Monitoring

    SciTech Connect (OSTI)

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2003-06-01T23:59:59.000Z

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particles in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

  8. Radionuclide Sensors for Water Monitoring

    SciTech Connect (OSTI)

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2004-06-29T23:59:59.000Z

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particle s in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

  9. Superfund record of decision (EPA Region 2): Federal Aviation Administration Technical Center (Area B Navy Fire Test Facility), Atlantic County, Atlantic City International Airport, NJ, September 20, 1996

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This decision document presents the selected remedial action for Area B, the Navy Fire Test Facility, at the FAA Technical Center, Atlantic City Internatioal Airport, New Jersey. The selected remedy for Area B includes: Installation of additional monitoring wells; Continued ground water and surface water monitoring; Installation and operation of air sparging wells, vapor extraction wells and monitoring probes; On-site vapor treatment (if necessary); and Five year reviews.

  10. Online Monitoring of Plant Assets in the Nuclear Industry

    SciTech Connect (OSTI)

    Nancy Lybeck; Vivek Agarwal; Binh Pham; Richard Rusaw; Randy Bickford

    2013-10-01T23:59:59.000Z

    Today’s online monitoring technologies provide opportunities to perform predictive and proactive health management of assets within many different industries, in particular the defense and aerospace industries. The nuclear industry can leverage these technologies to enhance safety, productivity, and reliability of the aging fleet of existing nuclear power plants. The U.S. Department of Energy’s Light Water Reactor Sustainability Program is collaborating with the Electric Power Research Institute’s (EPRI’s) Long-Term Operations program to implement online monitoring in existing nuclear power plants. Proactive online monitoring in the nuclear industry is being explored using EPRI’s Fleet-Wide Prognostic and Health Management (FW-PHM) Suite software, a set of web-based diagnostic and prognostic tools and databases that serves as an integrated health monitoring architecture. This paper focuses on development of asset fault signatures used to assess the health status of generator step-up transformers and emergency diesel generators in nuclear power plants. Asset fault signatures describe the distinctive features based on technical examinations that can be used to detect a specific fault type. Fault signatures are developed based on the results of detailed technical research and on the knowledge and experience of technical experts. The Diagnostic Advisor of the FW-PHM Suite software matches developed fault signatures with operational data to provide early identification of critical faults and troubleshooting advice that could be used to distinguish between faults with similar symptoms. This research is important as it will support the automation of predictive online monitoring techniques in nuclear power plants to diagnose incipient faults, perform proactive maintenance, and estimate the remaining useful life of assets.

  11. Individual Radiation Protection Monitoring in the Marshall Islands: Enewetak Atoll (2002-2004)

    SciTech Connect (OSTI)

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Johannes, K; Henry, D

    2006-01-17T23:59:59.000Z

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake of fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Enewetak Island (Figure 1) (Bell et al., 2002). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance programs are helping meet the informational needs of the U.S. DOE and the Republic of the Marshall Islands. Our updated environmental assessments provide a strong scientific basis for predicting future change in exposure conditions especially in relation to changes in lifestyle, diet and/or land-use patterns. This information has important implications in addressing questions about existing (and future) radiological conditions on the islands, in determining the cost and estimating the effectiveness of potential remedial measures, and in general policy support considerations. Perhaps most importantly, the recently established individual radiological surveillance programs provide affected atoll communities with an unprecedented level of radiation protection monitoring where, for the first time, local resources are being made available to monitor resettled and resettling populations on a continuous basis. As a hard copy supplement to Marshall Islands Program website (http://eed.llnl.gov/mi/), this document provides an overview of the individual radiation protection monitoring program established for the Enewetak Atoll population group along with a full disclosure of all verified measurement data (2002-2004). Readers are advised that an additional feature of the associated web site is a provision where users are able calculate and track doses delivered to volunteers (de-identified information only) participating in the Marshall Islands Radiological Surveillance Program.

  12. Individual Radiation Protection Monitoring in the Marshall Islands: Rongelap Atoll (2002-2004)

    SciTech Connect (OSTI)

    Hamilton, T F; Kehl, S; Hickman, D; Brown, T; Marchetti, A A; Martinelli, R; Arelong, E; Langinbelik, S

    2006-01-17T23:59:59.000Z

    The United States Department of Energy (U.S. DOE) has recently implemented a series of strategic initiatives to address long-term radiological surveillance needs at former U.S. nuclear test sites in the Marshall Islands. The plan is to engage local atoll communities in developing shared responsibilities for implementing radiation protection monitoring programs for resettled and resettling populations in the northern Marshall Islands. Using the pooled resources of the U.S. DOE and local atoll governments, individual radiological surveillance programs have been developed in whole body counting and plutonium urinalysis in order to accurately assess radiation doses resulting from the ingestion and uptake of fallout radionuclides contained in locally grown foods. Permanent whole body counting facilities have been established at three separate locations in the Marshall Islands including Rongelap Atoll (Figure 1). These facilities are operated and maintained by Marshallese technicians with scientists from the Lawrence Livermore National Laboratory (LLNL) providing on-going technical support services. Bioassay samples are collected under controlled conditions and analyzed for plutonium isotopes at the Center for Accelerator Mass Spectrometry at LLNL using state-of-the art measurement technologies. We also conduct an on-going environmental monitoring and characterization program at selected sites in the northern Marshall Islands. The aim of the environmental program is to determine the level and distribution of important fallout radionuclides in soil, water and local foods with a view towards providing more accurate and updated dose assessments, incorporating knowledge of the unique behaviors and exposure pathways of fallout radionuclides in coral atoll ecosystems. These scientific studies have also been essential in helping guide the development of remedial options used in support of island resettlement. Together, the individual and environmental radiological surveillance programs are helping meet the informational needs of the U.S. DOE and the Republic of the Marshall Islands. Our updated environmental assessments provide a strong scientific basis for predicting future change in exposure conditions especially in relation to changes in lifestyle, diet and/or land-use patterns. This information has important implications in addressing questions about existing (and future) radiological conditions on the islands, in determining as well as the implementation, cost and effectiveness of potential intervention options, and in general policy support considerations. Perhaps most importantly, the recently established individual radiological surveillance programs provide affected atoll communities with an unprecedented level of radiation protection monitoring where, for the first time, local resources are being made available to monitor resettled and resettling populations on a continuous basis. As a hard copy supplement to Marshall Islands Program website (http://eed.llnl.gov/mi/), this document provides an overview of the individual radiation protection monitoring program established for resettlement workers living on Rongelap Island along with a full disclosure of all verified measurement data (2002-2004). Readers are advised that an additional feature of the associated web site is a provision where users are able calculate and track doses delivered to volunteers (de-identified information only) participating the Marshall Islands Radiological Surveillance Program.

  13. Concepts for Environmental Radioactive Air Sampling and Monitoring

    SciTech Connect (OSTI)

    Barnett, J. M.

    2011-11-04T23:59:59.000Z

    Environmental radioactive air sampling and monitoring is becoming increasingly important as regulatory agencies promulgate requirements for the measurement and quantification of radioactive contaminants. While researchers add to the growing body of knowledge in this area, events such as earthquakes and tsunamis demonstrate how nuclear systems can be compromised. The result is the need for adequate environmental monitoring to assure the public of their safety and to assist emergency workers in their response. Two forms of radioactive air monitoring include direct effluent measurements and environmental surveillance. This chapter presents basic concepts for direct effluent sampling and environmental surveillance of radioactive air emissions, including information on establishing the basis for sampling and/or monitoring, criteria for sampling media and sample analysis, reporting and compliance, and continual improvement.

  14. Monitoring apparatus and method for battery power supply

    DOE Patents [OSTI]

    Martin, Harry L. (Knoxville, TN); Goodson, Raymond E. (West Lafayette, IN)

    1983-01-01T23:59:59.000Z

    A monitoring apparatus and method are disclosed for monitoring and/or indicating energy that a battery power source has then remaining and/or can deliver for utilization purposes as, for example, to an electric vehicle. A battery mathematical model forms the basis for monitoring with a capacity prediction determined from measurement of the discharge current rate and stored battery parameters. The predicted capacity is used to provide a state-of-charge indication. Self-calibration over the life of the battery power supply is enacted through use of a feedback voltage based upon the difference between predicted and measured voltages to correct the battery mathematical model. Through use of a microprocessor with central information storage of temperature, current and voltage, system behavior is monitored, and system flexibility is enhanced.

  15. Technical Publications | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy Solar Decathlon | Department ofHeating1TechnicalTechnical

  16. US DRIVE Materials Technical Team Roadmap | Department of Energy

    Energy Savers [EERE]

    Materials Technical Team Roadmap US DRIVE Materials Technical Team Roadmap The Materials Technical Team (MTT) focuses primarily on reducing the mass of structural systems such as...

  17. FreedomCAR and Fuel Partnership 2008 Highlights of Technical...

    Energy Savers [EERE]

    8 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2008 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  18. FreedomCAR and Fuel Partnership 2007 Highlights of Technical...

    Energy Savers [EERE]

    7 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2007 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  19. FreedomCAR and Fuel Partnership 2009 Highlights of Technical...

    Energy Savers [EERE]

    9 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2009 Highlights of Technical Accomplishments This report summarizes key technical accomplishments achieved...

  20. FreedomCAR and Fuel Partnership 2010 Highlights of Technical...

    Energy Savers [EERE]

    10 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2010 Highlights of Technical Accomplishments This report summarizes key technical accomplishments...

  1. FreedomCAR and Fuel Partnership 2006 Highlights of Technical...

    Energy Savers [EERE]

    6 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2006 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  2. FreedomCAR and Fuel Partnership 2005 Highlights of Technical...

    Energy Savers [EERE]

    5 Highlights of Technical Accomplishments FreedomCAR and Fuel Partnership 2005 Highlights of Technical Accomplishments Report containing brief summaries of key technical...

  3. Table I: Technical Targets for Catalyst Coated Membranes (CCMs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Table I: Technical Targets for Catalyst Coated Membranes (CCMs): Automotive Technical targets for fuel cell...

  4. Scientific basis for risk assessment and management of uranium mill tailings

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    A National Research Council study panel, convened by the Board on Radioactive Waste Management, has examined the scientific basis for risk assessment and management of uranium mill tailings and issued this final report containing a number of recommendations. Chapter 1 provides a brief introduction to the problem. Chapter 2 examines the processes of uranium extraction and the mechanisms by which radionuclides and toxic chemicals contained in the ore can enter the environment. Chapter 3 is devoted to a review of the evidence on health risks associated with radon and its decay products. Chapter 4 provides a consideration of conventional and possible new technical alternatives for tailings management. Chapter 5 explores a number of issues of comparative risk, provides a brief history of uranium mill tailings regulation, and concludes with a discussion of choices that must be made in mill tailing risk management. 211 refs., 30 figs., 27 tabs.

  5. Engineering Design and Safety Basis Inspection Criteria, Inspection...

    Broader source: Energy.gov (indexed) [DOE]

    to this is our commitment to enhance our program. Therefore, we have developed the Engineering Design and Safety Basis Inspection Criteria, Inspection Activities, and Lines of...

  6. ORISE: Media Analysis and Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Analysis and Monitoring The Oak Ridge Institute for Science and Education (ORISE) uses comprehensive media analysis and monitoring tools to define media interest and the...

  7. Technical Support Section annual work plan for FY 1995

    SciTech Connect (OSTI)

    Adkisson, B.P.; Hess, R.A.; Kunselman, C.W.; Millet, A.J.; Smelcer, D.R.

    1994-10-01T23:59:59.000Z

    The Technical Support Section (TSS) of the Instrumentation and Controls (I and C) Division of Oak Ridge National Laboratory (ORNL) provides technical services such as fabrication, modification, installation, calibration, operation, repair, and preventive maintenance of instruments and other related equipment. Work performed by TSS is in support of basic and applied research and development (R and D), engineering, and instrument and computer systems managed by ORNL. Because the activities and priorities of TSS must be adapted to the technical support needs of ORNL, the TSS Annual Work Plan is derived from and driven directly by current trends in the budgets and activities of each ORNL division for which TSS provides support. Trends that will affect TSS planning during this period are reductions in the staffing levels of some R and D programs because of attrition or budget cuts and the establishment of new facilities or environmental safety and health programs. The ``Long-Range Work Plan`` is based on estimates of impact of the long-range priorities and directions of the Laboratory. Identifiable proposed new facilities and programs provide additional basis for long-range planning. After identifying long-range initiatives, TSS planning includes future training requirements, reevaluation of qualifications for new-hires, and identification of essential test equipment needed in new work.

  8. Federal Radiological Monitoring and Assessment Center Monitoring Manual Volume 2, Radiation Monitoring and Sampling

    SciTech Connect (OSTI)

    NSTec Aerial Measurement Systems

    2012-07-31T23:59:59.000Z

    The FRMAC Monitoring and Sampling Manual, Volume 2 provides standard operating procedures (SOPs) for field radiation monitoring and sample collection activities that are performed by the Monitoring group during a FRMAC response to a radiological emergency.

  9. Multidimensionality of parental monitoring

    E-Print Network [OSTI]

    Secrest, Laura A

    2001-01-01T23:59:59.000Z

    whether the monitoring construct is unitary or multidimensional. The LISREL 8.3 program was used to perform confirmatory factor analyses and structural modeling analyses on the proposed theoretical models. A total of 419 elementary school children...

  10. CEEM Final Technical Report

    SciTech Connect (OSTI)

    Bowers, John

    2014-11-26T23:59:59.000Z

    The mission of the Center for Energy Efficient Materials (CEEM) was to serve the Department of Energy and the nation as a center of excellence dedicated to advancing basic research in nano-structured materials and devices for applications to solar electricity, thermoelectric conversion of waste heat to electricity, and solidstate lighting. The foundation of CEEM was based on the unique capabilities of UCSB and its partner institutions to control, synthesize, characterize, model, and apply materials at the nanoscale for more efficient sustainable energy resources. This unique expertise was a key source of the synergy that unified the research of the Center. Although the Center’s focus was basic research, It’s longer-term objective has been to transfer new materials and devices into the commercial sector where they will have a substantial impact on the nation’s need for efficient sustainable energy resources. As one measure of the impact of the Center, two start-up companies were formed based on its research. In addition, Center participants published a total of 210 archival journal articles, of which 51 were exclusively sponsored by the DOE grant. The work of the Center was structured around four specific tasks: Organic Solar Cells, Solid-State Lighting, Thermoelectrics, and High Efficiency Multi-junction Photovoltaic devices. A brief summary of each follows – detailed descriptions are in Sections 4 & 5 of this report. Research supported through CEEM led to an important shift with respect to the choice of materials used for the fabrication of solution deposited organic solar cells. Solution deposition opens the opportunity to manufacture solar cells via economically-viable high throughput tools, such as roll to roll printing. Prior to CEEM, most organic semiconductors utilized for this purpose involved polymeric materials, which, although they can form thin films reliably, suffer from batch to batch variations due to the statistical nature of the chemical reactions that produce them. In response, the CEEM team developed well-defined molecular semiconductors that produce active layers with very high power conversion efficiencies, in other words they can convert a very high fraction of sunlight into useful electrical power. The fact that the semiconductor is formed from molecular species provides the basis for circumventing the unreliability of polymer counterparts and, as an additional bonus, allows one to attain much grater insight into the structure of the active layer. The latter is particularly important because efficient conversion is the result of a complex arrangement of two semiconductors that need to phase separate in a way akin to oil and water, but with domains that are described by nanoscale dimensions. CEEM was therefore able to provide deep insight into the influence of nanostructure, through the application of structural characterization tools and theoretical methods that describe how electrical charges migrate through the organic layer. Our research in light emitting diode (LED)-based solid state lighting (SSL) was directed at improving efficiency and reducing costs to enable the widespread deployment of economically-viable replacements for inefficient incandescent, halogen, and fluorescent-based lighting. Our specific focus was to advance the fundamental science and technology of light emitting diodes to both understand factors that limit efficiencies and to provide innovative and viable solutions to the current impediments. One of the main challenges we faced is the decrease in efficiency when LEDs are driven harder to increase light output---the so called “droop” effect. It requires large emitting surfaces to reach a desired optical output, and necessitates the use of costly heat sinks, both of which increase the cost. We successfully reduced droop by growing LED crystals having non-conventional orientations. As recognized by the award of the 2014 Nobel prize to the inventors of the nitride LEDs (one of whom was a member of CEEM), LEDs already have a large societal impact in both developed (l

  11. Final Technical Report

    SciTech Connect (OSTI)

    Shayya, Walid

    2007-03-20T23:59:59.000Z

    The state of New York through the New York State Energy Research and Development Authority (NYSERDA) has developed a suite of digester projects throughout the state to assess the potential for anaerobic digestion systems to improve manure management and concurrently produce energy through the production of heat and electrical power using the biogas produced from the digesters. Dairies comprise a significant part of the agribusiness and economy of the state of New York. Improving the energy efficiency and environmental footprint of dairies is a goal of NYSERDA. SUNY Morrisville State College (MSC) is part of a collection of state universities, dairy farms, cooperatives, and municipalities examining anaerobic digestion systems to achieve the goals of NYSERDA, the improvement of manure management, and reducing emissions to local dairy animal sites. The process for siting a digester system at the MSC’s free-stall Dairy Complex was initiated in 2002. The project involved the construction of an anaerobic digester that can accommodate the organic waste generated at Dairy complex located about a mile southeast of the main campus. Support for the project was provided through funding from the New York State Energy Research and Development Authority (NYSERDA) and the New York State Department of Agriculture and Markets. The DOE contribution to the project provided additional resources to construct an expanded facility to handle waste generated from the existing free-stall dairy and the newly-constructed barns. Construction on the project was completed in 2006 and the production of biogas started soon after the tanks were filled with the effluent generated at the Dairy Complex. The system has been in operation since December 17, 2006. The generated biogas was consistently flared starting from December 20, 2006, and until the operation of the internal combustion engine/generator set were first tested on the 9th of January, 2007. Flaring the biogas continued until the interconnect with the power grid was approved by NYSEG (the electrical power provider) and the combined heat and power generation (CHP) system was authorized to start on February 27, 2007. The system has been in operation since February 28, 2007, and is generating 45 to 50 kW of electrical power on continuous basis. The completed project will ultimately allow for investigating the facility of utilizing organic waste from a dairy operation in a hard-top plug-flow methane digester with the ultimate goal of reducing environmental risk, increasing economic benefits, and demonstrating the viability of an anaerobic methane digestion system. Many benefits are expected as a result of the completed project including our better understanding of the anaerobic digestion process and its management as well as the facility to utilize the methane digester as a demonstration site for dairy producers, farmers, and organic waste producers in New York State and the Northeast. Additional benefits include helping current and future students in dairy science and technology, agricultural business, environmental sciences, agricultural engineering, and other disciplines develop better understanding of underutilized biomass alternative energy technologies, environmental conservation, environmental stewardship, and sustainable agriculture.

  12. Non-storm water discharges technical report

    SciTech Connect (OSTI)

    Mathews, S.

    1994-07-01T23:59:59.000Z

    Lawrence Livermore National Laboratory (LLNL) submitted a Notice of Intent to the California State Water Resources Control Board (hereafter State Board) to discharge storm water associated with industrial activities under the California General Industrial Activity Storm Water National Pollutant Elimination System Discharge Permit (hereafter General Permit). As required by the General Permit, LLNL provided initial notification of non-storm water discharges to the Central Valley Regional Water Quality Control Board (hereafter Regional Board) on October 2, 1992. Additional findings and progress towards corrective actions were reported in subsequent annual monitoring reports. LLNL was granted until March 27, 1995, three years from the Notice of Intent submission date, to eliminate or permit the non-storm water discharges. On May 20, 1994, the Regional Board issued Waste Discharge Requirements (WDR Board Order No. 94-131, NPDES No. CA0081396) to LLNL for discharges of non-contact cooling tower wastewater and storm water related to industrial activities. As a result of the issuance of WDR 94-131, LLNL rescinded its coverage under the General Permit. WDR 94-131 allowed continued non-storm water discharges and requested a technical report describing the discharges LLNL seeks to permit. For the described discharges, LLNL anticipates the Regional Board will either waive Waste Discharge Requirements as allowed for in The Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region (hereafter Basin Plan) or amend Board Order 94-131 as appropriate.

  13. Molecular Design Basis for Hydrogen Storage in Clathrate Hydrates

    SciTech Connect (OSTI)

    John, Vijay T [Tulane University] [Tulane University; McPherson, Gary L [Tulane University] [Tulane University; Ashbaugh, Hank [Tulane University] [Tulane University; Johnes, Camille Y [Columbia University] [Columbia University

    2013-06-28T23:59:59.000Z

    We attach a final technical report for the project. The report contains the list of all peer reviewed publications that have resulted from the contract. I will be happy to send the pdf files of the papers.

  14. Monitoring Energy Losses

    E-Print Network [OSTI]

    Eulinger, R. D.

    control systems. Older power plants may have nothing but gauges and dials on a control board. Plants such as these are not typically candidates for a performance monitor unless they ere also being considered for a control system upgrade, including a... planned future control system upgrade. With this method, a utility can have the benefits of a performance monitor prior to a major control system upgrade. When the system is finally upgraded, the data logger can be moved to another unit and reused...

  15. Structure function monitor

    DOE Patents [OSTI]

    McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM); Ackermann, Mark R. (Albuquerque, NM)

    2012-01-24T23:59:59.000Z

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  16. Routine environmental monitoring schedule, calendar year 1998

    SciTech Connect (OSTI)

    McKinney, S.M.

    1997-11-24T23:59:59.000Z

    This document provides the Environmental Restorations Contractor (ERC) and the Project Hanford Management Contractor (PHMC) a schedule in accordance with the HNF-PRO-454, Inactive Waste Sites` HNF-PRO-455, Solid Waste 3 Management4 and BHI-EE-02, Environmental Requirements, of monitoring and sampling, routines for the near-facility environmental monitoring program during calendar year (CY) 1998. Every attempt will be made to consistently follow this schedule; any deviation from this schedule will be documented by an internal memorandum (DSI) explaining the reason for the deviation. The DSI will be issued by the scheduled performing organization and directed to Environmental Monitoring and Investigations. The survey frequencies for particular sites are determined by the technical judgment of Environmental Monitoring and investigations and may depend on the site history, radiological status, use, and general conditions. Additional surveys may be requested at irregular frequencies if conditions warrant. All radioactive wastes sites are scheduled to be surveyed at least annually. Any newly discovered wastes sites not documented by this schedule will be included in the revised schedule for CY 1999. The outside perimeter road surveys of 200 East and West Area and the rail survey from the 300 Area to Columbia Center will be performed in the year 2000 per agreement with Department of Energy, Richland Field Office. This schedule does not discuss staffing needs, nor does it list the monitoring equipment to be used in completing specific routines. Personnel performing routines to meet this schedule shall communicate any need for 1332 assistance in completing these routines to Radiological Control management and Environmental Monitoring and Investigations. After each routine survey is completed, a copy of the survey record, maps, and data sheets will be forwarded to Environmental Monitoring and Investigations. These routine surveys will not be considered complete until this documentation is received. At the end of each month, the ERC and PHMC radiological control organizations shall forward a copy of the Routine Signoff Sheet and a DSI validating the completion of the scheduled routine surveys for that month.

  17. The Office of Environmental Management Technical Reports: A Bibliography. Fiscal Year 1999

    SciTech Connect (OSTI)

    none

    2000-08-01T23:59:59.000Z

    The Department of Energy's Office of Environmental Management's (EM) technical reports bibliography is an annual publication that contains information on scientific and technical reports sponsored by the Office of Environmental Management. This bibliography contains citations for reports published in Fiscal Year 1999 (October 1, 1998 - September 30, 1999). EM's Office of Science and Technology (OST) sponsors this bibliography that covers EM's activities in environmental restoration, waste management, technology development, and facility transition and management. Subjects include subsurface contaminants; mixed waste characterization, treatment and disposal; radioactive tank waste remediation; plutonium; deactivation and decommissioning; robotics; characterization, monitoring, and sensor technology; and efficient separations.

  18. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements.

  19. NOAA Technical Memorandum ERL GLERL-44 ICE-COVER GROWTH RATES AT NEARSHORE LOCATIONS IN THE GREAT LAKES

    E-Print Network [OSTI]

    NOAA Technical Memorandum ERL GLERL-44 ICE-COVER GROWTH RATES AT NEARSHORE LOCATIONS IN THE GREAT of such products is not authorized. ii #12;CONTENTS Abstract 1. INTRODUCTION 2. THE THEORETICAL BASIS OF THE ICE GROWTH EQUATION 3. THE INFLUENCE OF SNOW COVER 4. THE DEGREE-DAY LINEAR MODEL 5. THE DATA SETS 5.1 Ice

  20. Invite Paper Fall Technical Meeting

    E-Print Network [OSTI]

    Gomez, Alessandro

    within which it is sensible to make predictions, combustion is here to stay. In addition to oil1 Invite Paper Fall Technical Meeting of the Eastern States Section of the Combustion Institute: A Laboratory-Scale Benchmark for Turbulent Combustion Studies Alessandro Gomez Department of Mechanical

  1. Technical Note 499 December1990

    E-Print Network [OSTI]

    Technical Note 499 · December1990 Interpretation as Abduction Jerry R. Hobbs, Mark Stickel;Interpretation as Abduction Jerry R. Hobbs, Mark Stickel, Douglas Appelt, and Paul Martin Artificial Intelligence Center SRI International Abstract Abduction is inference to the best explanation. In the TACITUS project

  2. Modularized training for technical editors

    SciTech Connect (OSTI)

    Murphy, P.W.

    1988-09-08T23:59:59.000Z

    This paper outlines the editorial services provided at the Lawrence Livermore National Laboratory (LLNL), sketches a syllabus of basic training for technical editors, describes the approach being used to develop this cost-effective individualized instruction for editors (experienced or not) new to work at LLNL, and enumerates the advantages of this approach. 8 refs.

  3. Defense Technical Information Center thesaurus

    SciTech Connect (OSTI)

    Dickert, J.H. [ed.] [comp.

    1996-10-01T23:59:59.000Z

    This DTIC Thesaurus provides a basic multidisciplinary subject term vocabulary used by DTIC to index and retrieve scientific and technical information from its various data bases and to aid DTIC`s users in their information storage and retrieval operations. It includes an alphabetical posting term display, a hierarchy display, and a Keywork Out of Context (KWOC) display.

  4. Mechanical Engineering Department technical review

    SciTech Connect (OSTI)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E (eds.) [eds.

    1982-01-01T23:59:59.000Z

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  5. Deleware Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    of best management practices (BMPs) by private businesses, and improved storm water management & wetlandsDeleware Water Resources Center Annual Technical Report FY 2002 Introduction Delaware Water Resources Center Annual Technical Report Introduction and Program Management/Administration Description FY

  6. Biodiesel ASTM Update and Future Technical Needs

    Broader source: Energy.gov (indexed) [DOE]

    ASTM Update and Future Technical Needs Steve Howell Technical Director National Biodiesel Board ASTM Current Status ASTM D6751 is the approved standard for B100 for blending up to...

  7. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-00-1795-S 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  8. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-05/0-4485-1 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  9. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-00/0-1843-1 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  10. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-03/4083-2 2. Government Accession No. 3. This document is available to the public through the National Technical Information Service, Springfield

  11. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Technical Report Documentation Page 1. Report No. FHWA/TX-12/5-4829-01-3 2. Government Accession No No restrictions. This document is available to the public through the National Technical Information Service

  12. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-0-1814-1 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  13. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Technical Report Documentation Page 1. Report No. FHWA/TX-10/0-5812-1 2. Government Accession No. 3. This document is available to the public through the National Technical Information Service, Springfield

  14. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-03-1838-8 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  15. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-00/1754-1 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  16. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-05/9-580/589-2 2. Government Accession No. Distribution Statement No restrictions. This document is available to the public through the National Technical

  17. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-04/1778-4 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  18. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-04/0-1734-S 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  19. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-11/0-6348-1 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  20. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-00/1785-2 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  1. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-03/4386-1 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  2. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-06/0-4085-5 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  3. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-06/0-1401-2 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  4. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-10/0-5974-1 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  5. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-04/0-1471-4 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  6. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-0-1748-2 2. Government Accession No. 3. This document is available to the public through the National Technical Information Service, Springfield

  7. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-04/0-4808-1 2. Government Accession No. 3. This document is available to the public through the National Technical Information Service, Springfield

  8. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-04/5-3933-01-P1-4 2. Government Accession No restrictions. This document is available to the public through the National Technical Information Service

  9. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-06/0-4437-1 2. Government Accession No. 3. This document is available to the public through the National Technical Information Service, Springfield

  10. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-06/5-4975-01-1 2. Government Accession No. This document is available to the public through the National Technical Information Service, Springfield

  11. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-06/0-4185-4 2. Government Accession No. 3. This document is available to the public through the National Technical Information Service, Springfield

  12. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-06/0-4958-1 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  13. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-11/0-6095-2 2. Government Accession No. 3 Statement No restrictions. This document is available to the public through the National Technical

  14. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-07/0-1700-7 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  15. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-07/0-5410-1 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  16. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-05/0-4661-1 2. Government Accession No. 3. This document is available to the public through the National Technical Information Service, Springfield

  17. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-04/0-1700-1 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  18. PRELIMINARY REVIEW COPY Technical Report Documentation Page

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    PRELIMINARY REVIEW COPY Technical Report Documentation Page 1. Report No. FHWA/TX-13/0-6603-2 2 No restrictions. This document is available to the public through the National Technical Information Service

  19. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-04/4576-3 2. Government Accession No. 3 Statement No restrictions. This document is available to the public through the National Technical

  20. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-09/0-5799-1 2. Government Accession No. 3 Statement No restrictions. This document is available to the public through the National Technical

  1. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-7-4957-1 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  2. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-05/0-4416-1 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  3. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-07/0-1895-1 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  4. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-0-2129-1 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  5. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-07/0-5068-2 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  6. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-05/0-4410-2 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  7. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-09/0-5830-1 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  8. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-05/0-4069-1 2. Government Accession No. 3. This document is available to the public through the National Technical Information Service, Springfield

  9. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. 9-572-1 2. Government Accession No. 3. Recipient Statement No restrictions. This document is available to the public through the National Technical

  10. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-06/0-4661-2 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  11. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-05/0-1713-1 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  12. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Technical Report Documentation Page 1. Report No. FHWA/TX-07/0-5202-2 2. Government Accession No. 3 No restrictions. This document is available to the public through the National Technical Information Service

  13. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-05/0-4185-3 2. Government Accession No. 3 Statement No restrictions. This document is available to the public through the National Technical

  14. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-10/0-5973-2 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  15. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Technical Report Documentation Page 1. Report No. FHWA/TX-13/5-4829-01-2 2. Government Accession No. This document is available to the public through the National Technical Information Service, Springfield

  16. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-05/0-1713-2 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  17. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-07/0-5176-2 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  18. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-05/5-1924-01-1 2. Government Accession No No restrictions. This document is available to the public through the National Technical Information Service

  19. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-09/0-5668-1 2. Government Accession No. 3. Distribution Statement No restrictions. This document is available to the public through the National Technical

  20. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-04-15T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local and/or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This semi-annual Technical Progress Report summarizes the data analyses and interpretations conducted during the period from October 2003 through March 2004. This report was organized in accordance with the Guidelines for Organization of Technical Reports (September 2003).

  1. COMPARATIVE EVALUATION OF AMBIENT FINE PARTICULATE MATTER (PM2.5) DATA OBTAINED FROM URBAN AND RURAL MONITORING SITES ALONG THE UPPER OHIO RIVER VALLEY

    SciTech Connect (OSTI)

    Robinson P. Khosah; John P. Shimshock; Jerry L. Penland

    2004-12-27T23:59:59.000Z

    Advanced Technology Systems, Inc. (ATS), with Desert Research Institute (DRI) and Ohio University as subcontractors, was contracted by the NETL in September 1998 to manage the Upper Ohio River Valley Project (UORVP), which included the establishment and operation of four ambient air monitoring sites located in the Upper Ohio River Valley (UORV). Two urban and two rural monitoring sites were included in the UORVP. The four sites selected for the UOVRP were collocated at existing local or state air quality monitoring stations. The goal of the UORVP was to characterize the nature and composition of PM{sub 2.5} and its precursor gases. In the process, the objectives of the UORVP were to examine the ambient air concentrations of PM{sub 2.5} as compared with the promulgated PM{sub 2.5} standards, the geographical, seasonal and temporal variations of ambient air concentrations of PM{sub 2.5}, the primary chemical constituents of PM{sub 2.5}, and the correlations between ambient air concentrations of PM{sub 2.5} and its precursor gases, other gaseous pollutants and meteorological parameters. A variety of meteorological and pollutant measurement devices, including several different PM{sub 2.5} samplers that provided either real-time or integrated concentration data, were deployed at the monitoring sites. The frequency of integrated sampling varied throughout the UORVP study period and was as follows: (1) ''Intensive'' sampling periods were defined as periods in which samples were collected on a relatively frequent basis (ranged from 6-hour integrated samples collected round-the-clock to one 24-hour integrated sample collected every third day). (2) ''Background'' sampling periods were defined as periods in which 24-hour integrated samples were collected every third or sixth day. Sampling activities for the UORVP were initiated in February 1999 and concluded in February 2003. This Final Technical Progress Report summarizes the data analyses and interpretations conducted during the period from October 1998 through December 2004. This report was organized in accordance with the Guidelines for Organization of Technical Reports (September 2003).

  2. Final Technical Report

    SciTech Connect (OSTI)

    Sara Bergan, Executive Director; Brendan Jordan, Program Manager; Subcontractors as listed on the report.

    2007-06-06T23:59:59.000Z

    The following report contributes to our knowledge of how to economically produce wildlife-friendly grass mixtures for future fuel feedstocks in the northern plains. It investigates northern-adapted cultivars; management and harvest regimes that are good for yields, soils and wildlife; comparative analysis of monocultures and simple mixtures of native grasses; economic implications of growing grasses for fuel feedstocks in specific locations in the northern plains; and conversion options for turning the grasses into useful chemicals and fuels. The core results of this study suggest the following: ? Native grasses, even simple grass mixtures, can be produced profitably in the northern plains as far west as the 100th meridian with yields ranging from 2 to 6 tons per acre. ? Northern adapted cultivars may yield less in good years, but have much greater long-term sustainable yield potential than higher-yielding southern varieties. ? Grasses require very little inputs and stop economically responding to N applications above 56kg/hectare. ? Harvesting after a killing frost may reduce the yield available in that given year but will increase overall yields averaged throughout multiple years. ? Harvesting after a killing frost or even in early spring reduces the level of ash and undesirable molecules like K which cause adverse reactions in pyrolysis processing. Grasses can be managed for biomass harvest and maintain or improve overall soil-health and carbon sequestration benefits of idled grassland ? The carbon sequestration activity of the grasses seems to follow the above ground health of the biomass. In other words plots where the above ground biomass is regularly removed can continue to sequester carbon at the rate of 2 tons/acre/year if the stand health is strong and yielding significant amounts of biomass. ? Managing grasses for feedstock quality in a biomass system requires some of the same management strategies as managing for wildlife benefit. We believe that biomass development can be done in such a way that also maximizes or improves upon conservation and other environmental goals (in some cases even when compared to idled land). ? Switchgrass and big bluestem work well together in simple mixture plots where big bluestem fills in around the switchgrass which alone grows in bunches and leaves patches of bare soil open and susceptible to erosion. ? Longer-term studies in the northern plains may also find that every other year harvest schemes produce as much biomass averaged over the years as annual harvests ? Grasses can be grown for between $23 and $54/ton in the northern plains at production rates between 3 and 5 tons/acre. ? Land costs, yields, and harvest frequency are the largest determining factors in the farm scale economics. Without any land rent offset or incentive for production, and with annual harvesting, grass production is likely to be around $35/ton in the northern plains (farm gate). ? Average transportation costs range from $3 to $10/ton delivered to the plant gate. Average distance from the plant is the biggest factor - $3/ton at 10 miles, $10/ton at 50 miles. ? There is a substantial penalty paid on a per unit of energy produced basis when one converts grasses to bio-oil, but the bio-oil can then compete in higher priced fuel markets whereas grasses alone compete directly with relatively cheap coal. ? Bio oil or modified bio-oil (without the HA or other chemical fraction) is a suitable fuel for boiler and combustion turbines that would otherwise use residual fuel oil or number 2 diesel. ? Ensyn has already commercialized the use of HA in smokey flavorants for the food industry but that market is rather small. HA, however, is also found to be a suitable replacement for the much larger US market for ethanolamines and ethalyne oxides that are used as dispersants. ? Unless crude oil prices rise, the highest and best use of grass based bio-oil is primarily as a direct fuel. As prices rise, HA, phenol and other chemical fractions may become more attractive ? Although we were

  3. Space Conditioning Standing Technical Committee Strategic Plan

    Broader source: Energy.gov [DOE]

    This strategic plan document outlines the gaps, barriers, and opportunities identified by the Building America Space Conditioning Standing Technical Committee.

  4. Supporting Technical Documents | Department of Energy

    Office of Environmental Management (EM)

    Environmental Department (NMED) Los Alamos National Laboratory (LANL) Hazardous Waste Facility Permit Supporting Technical Document for the Radiological Release Accident...

  5. UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

    E-Print Network [OSTI]

    UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD 2300 Clarendon Boulevard, Suite 1300 Arlington are pleased to transmit a technical report prepared by the Nuclear Waste Technical Review Board (Board. Based on its review of data gathered by the DOE and the Center for Nuclear Waste Regulatory Analyses

  6. Effective Community-Wide Policy Technical Assistance

    E-Print Network [OSTI]

    Effective Community-Wide Policy Technical Assistance: The DOE/NREL Approach NREL is a national: The DOE/NREL Approach Effective Community-Wide Policy Technical Assistance: The DOE/NREL Approach HelpingVoss, Sarah Busche, Eric Lantz, Lynn Billman, and Dan Beckley. The layout and technical editing were

  7. Monitoring: The missing piece

    SciTech Connect (OSTI)

    Bjorkland, Ronald, E-mail: r_bjorkland@hotmail.com

    2013-11-15T23:59:59.000Z

    The U.S. National Environmental Policy Act (NEPA) of 1969 heralded in an era of more robust attention to environmental impacts resulting from larger scale federal projects. The number of other countries that have adopted NEPA's framework is evidence of the appeal of this type of environmental legislation. Mandates to review environmental impacts, identify alternatives, and provide mitigation plans before commencement of the project are at the heart of NEPA. Such project reviews have resulted in the development of a vast number of reports and large volumes of project-specific data that potentially can be used to better understand the components and processes of the natural environment and provide guidance for improved and efficient environmental protection. However, the environmental assessment (EA) or the more robust and intensive environmental impact statement (EIS) that are required for most major projects more frequently than not are developed to satisfy the procedural aspects of the NEPA legislation while they fail to provide the needed guidance for improved decision-making. While NEPA legislation recommends monitoring of project activities, this activity is not mandated, and in those situations where it has been incorporated, the monitoring showed that the EIS was inaccurate in direction and/or magnitude of the impact. Many reviews of NEPA have suggested that monitoring all project phases, from the design through the decommissioning, should be incorporated. Information gathered though a well-developed monitoring program can be managed in databases and benefit not only the specific project but would provide guidance how to better design and implement future activities designed to protect and enhance the natural environment. -- Highlights: • NEPA statutes created profound environmental protection legislative framework. • Contrary to intent, NEPA does not provide for definitive project monitoring. • Robust project monitoring is essential for enhanced environmental management. • Adaptive database framework is needed to accommodate project-monitoring data.

  8. High Performance Network Monitoring

    SciTech Connect (OSTI)

    Martinez, Jesse E [Los Alamos National Laboratory

    2012-08-10T23:59:59.000Z

    Network Monitoring requires a substantial use of data and error analysis to overcome issues with clusters. Zenoss and Splunk help to monitor system log messages that are reporting issues about the clusters to monitoring services. Infiniband infrastructure on a number of clusters upgraded to ibmon2. ibmon2 requires different filters to report errors to system administrators. Focus for this summer is to: (1) Implement ibmon2 filters on monitoring boxes to report system errors to system administrators using Zenoss and Splunk; (2) Modify and improve scripts for monitoring and administrative usage; (3) Learn more about networks including services and maintenance for high performance computing systems; and (4) Gain a life experience working with professionals under real world situations. Filters were created to account for clusters running ibmon2 v1.0.0-1 10 Filters currently implemented for ibmon2 using Python. Filters look for threshold of port counters. Over certain counts, filters report errors to on-call system administrators and modifies grid to show local host with issue.

  9. Photon beam position monitor

    DOE Patents [OSTI]

    Kuzay, T.M.; Shu, D.

    1995-02-07T23:59:59.000Z

    A photon beam position monitor is disclosed for use in the front end of a beamline of a high heat flux and high energy photon source such as a synchrotron radiation storage ring detects and measures the position and, when a pair of such monitors are used in tandem, the slope of a photon beam emanating from an insertion device such as a wiggler or an undulator inserted in the straight sections of the ring. The photon beam position monitor includes a plurality of spaced blades for precisely locating the photon beam, with each blade comprised of chemical vapor deposition (CVD) diamond with an outer metal coating of a photon sensitive metal such as tungsten, molybdenum, etc., which combination emits electrons when a high energy photon beam is incident upon the blade. Two such monitors are contemplated for use in the front end of the beamline, with the two monitors having vertically and horizontally offset detector blades to avoid blade ''shadowing''. Provision is made for aligning the detector blades with the photon beam and limiting detector blade temperature during operation. 18 figs.

  10. Technical safety requirements control level verification

    SciTech Connect (OSTI)

    STEWART, J.L.

    1999-05-21T23:59:59.000Z

    A Technical Safety Requirement (TSR) control level verification process was developed for the Tank Waste Remediation System (TWRS) TSRs at the Hanford Site in Richland, WA, at the direction of the US. Department of Energy, Richland Operations Office (RL). The objective of the effort was to develop a process to ensure that the TWRS TSR controls are designated and managed at the appropriate levels as Safety Limits (SLs), Limiting Control Settings (LCSs), Limiting Conditions for Operation (LCOs), Administrative Controls (ACs), or Design Features. The TSR control level verification process was developed and implemented by a team of contractor personnel with the participation of Fluor Daniel Hanford, Inc. (FDH), the Project Hanford Management Contract (PHMC) integrating contractor, and RL representatives. The team was composed of individuals with the following experience base: nuclear safety analysis; licensing; nuclear industry and DOE-complex TSR preparation/review experience; tank farm operations; FDH policy and compliance; and RL-TWRS oversight. Each TSR control level designation was completed utilizing TSR control logic diagrams and TSR criteria checklists based on DOE Orders, Standards, Contractor TSR policy, and other guidance. The control logic diagrams and criteria checklists were reviewed and modified by team members during team meetings. The TSR control level verification process was used to systematically evaluate 12 LCOs, 22 AC programs, and approximately 100 program key elements identified in the TWRS TSR document. The verification of each TSR control required a team consensus. Based on the results of the process, refinements were identified and the TWRS TSRs were modified as appropriate. A final report documenting key assumptions and the control level designation for each TSR control was prepared and is maintained on file for future reference. The results of the process were used as a reference in the RL review of the final TWRS TSRs and control suite. RL concluded that the TSR control level verification process is clear and logically based upon DOE Order 5480.22, Technical Safety Requirements, and other TSR control selection guidelines. The process provides a documented, traceable basis for TSR level decisions and is a valid reference for preparation of new TSRs.

  11. Weather Radar Monitoring using the Sun Iwan Holleman and Hans Beekhuis

    E-Print Network [OSTI]

    Stoffelen, Ad

    Weather Radar Monitoring using the Sun Iwan Holleman and Hans Beekhuis Technical Report, KNMI TR and azimuthal averaging 13 2.5 Corrected solar power 15 3 Position of the sun 17 3.1 Celestial sphere and equatorial coordinates 17 3.2 Equatorial coordinates of the sun 18 3.3 Conversion to elevation and azimuth 20

  12. Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1, 7/11

    Broader source: Energy.gov [DOE]

    It is the policy of the Department of Energy (DOE) to design, construct, operate anddecommission its nuclear facilities in a manner that ensures adequate protection ofworkers, the public, and the...

  13. Los Alamos National Laboratory Environmental Restoration Project quarterly technical report, April--June 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-18T23:59:59.000Z

    This quarterly report describes the technical status of activities in the Los Alamos National Laboratory Environmental Restoration (ER) Project. Each activity is identified by an activity data sheet number, a brief title describing the activity or the technical area where the activity is located, and the name of the project leader. The Hazardous and Solid Waste Amendments (HSWA) portion of the facility operating permit requires the submission of a technical progress report on a quarterly basis. This report, submitted to fulfill the permit`s requirement, summarizes the work performed and the results of sampling and analysis in the ER Project. Suspect waste found include: Radionuclides, high explosives, metals, solvents and organics. The data provided in this report have not been validated. These data are considered ``reviewed data.``

  14. Performance monitoring of active solar energy systems

    SciTech Connect (OSTI)

    Yarosh, M. (ed.)

    1983-06-01T23:59:59.000Z

    For purposes of the workship, performance of systems was defined to include not just the thermal performance of the system, but also the operational reliability of the system and its components over the expected system life. Specific papers were invited on the most significant programs of field monitoring currently underway. These papers and the experience of the participants formed the basis for extended discussions held during the workshop. Performance monitoring of active solar systems has been conducted both in the field and under more controlled conditions in the laboratory. Extensive discussion was undertaken on the merits of testing systems in the field and testing systems in the laboratory. There was general agreement that both types of testing are needed, but substantial disagreement on the value of a particular kind of test to meet a specific need. There was strong support for the premise that field monitoring is the only method that determines what is being delivered in the field. There were mixed views on the preferred method for model validation and on the trustworthiness of laboratory versus field data. Extensive discussion occurred on the value of different levels of sophistication of instrumentation. The quality of the data obtained, the cost of such data and the tradeoffs in cost, quality and reliability for differing instrumentation and data acquisition systems were addressed. Among those most familiar with problems of system reliability was the feeling that the potential for system performance improvement lay more strongly in the development of greater reliability rather than through improvements in thermal performance.

  15. International Linear Collider-A Technical Progress Report

    SciTech Connect (OSTI)

    Elsen, Eckhard; /DESY; Harrison, Mike; /Brookhaven; Hesla, Leah; /Fermilab; Ross, Marc; /Fermilab; Royole-Degieux, Perrine; /Paris, IN2P3; Takahashi, Rika; /KEK, Tsukuba; Walker, Nicholas; /DESY; Warmbein, Barbara; /DESY; Yamamoto, Akira; /KEK, Tsukuba; Yokoya, Kaoru; /KEK, Tsukuba; Zhang, Min; /Beijing, Inst. High Energy Phys.

    2011-11-04T23:59:59.000Z

    The International Linear Collider: A Technical Progress Report marks the halfway point towards the Global Design Effort fulfilling its mandate to follow up the ILC Reference Design Report with a more optimised Technical Design Report (TDR) by the end of 2012. The TDR will be based on much of the work reported here and will contain all the elements needed to propose the ILC to collaborating governments, including a technical design and implementation plan that are realistic and have been better optimised for performance, cost and risk. We are on track to develop detailed plans for the ILC, such that once results from the Large Hadron Collider (LHC) at CERN establish the main science goals and parameters of the next machine, we will be in good position to make a strong proposal for this new major global project in particle physics. The two overriding issues for the ILC R&D programme are to demonstrate that the technical requirements for the accelerator are achievable with practical technologies, and that the ambitious physics goals can be addressed by realistic ILC detectors. This GDE interim report documents the impressive progress on the accelerator technologies that can make the ILC a reality. It highlights results of the technological demonstrations that are giving the community increased confidence that we will be ready to proceed with an ILC project following the TDR. The companion detector and physics report document likewise demonstrates how detector designs can meet the ambitious and detailed physics goals set out by the ILC Steering Committee. LHC results will likely affect the requirements for the machine design and the detectors, and we are monitoring that very closely, intending to adapt our design as those results become available.

  16. Web-based Training for Development of Traffic Analysis Technical Skills SP&R, Part I Special Studies Request

    E-Print Network [OSTI]

    Detwiler, Russell

    ) to include system monitoring and evaluation, maintenance and preservation, transportation demand management regional/local partners that will provide a foundation for traffic analysis technical skills. The knowledge base will help managers and staff within our Department to make practical and realistic decisions

  17. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    SciTech Connect (OSTI)

    Patrick, W.C. (comp.)

    1986-03-30T23:59:59.000Z

    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs.

  18. Mescalero Apache Tribe Monitored Retrievable Storage (MRS)

    SciTech Connect (OSTI)

    Peso, F.

    1992-03-13T23:59:59.000Z

    The Nuclear Waste Policy Act of 1982, as amended, authorizes the siting, construction and operation of a Monitored Retrievable Storage (MRS) facility. The MRS is intended to be used for the temporary storage of spent nuclear fuel from the nation's nuclear power plants beginning as early as 1998. Pursuant to the Nuclear Waste Policy Act, the Office of the Nuclear Waste Negotiator was created. On October 7, 1991, the Nuclear Waste Negotiator invited the governors of states and the Presidents of Indian tribes to apply for government grants in order to conduct a study to assess under what conditions, if any, they might consider hosting an MRS facility. Pursuant to this invitation, on October 11, 1991 the Mescalero Apache Indian Tribe of Mescalero, NM applied for a grant to conduct a phased, preliminary study of the safety, technical, political, environmental, social and economic feasibility of hosting an MRS. The preliminary study included: (1) An investigative education process to facilitate the Tribe's comprehensive understanding of the safety, environmental, technical, social, political, and economic aspects of hosting an MRS, and; (2) The development of an extensive program that is enabling the Tribe, in collaboration with the Negotiator, to reach an informed and carefully researched decision regarding the conditions, (if any), under which further pursuit of the MRS would be considered. The Phase 1 grant application enabled the Tribe to begin the initial activities necessary to determine whether further consideration is warranted for hosting the MRS facility. The Tribe intends to pursue continued study of the MRS in order to meet the following objectives: (1) Continuing the education process towards a comprehensive understanding of the safety, environmental, technical, social and economic aspects of the MRS; (2) Conducting an effective public participation and information program; (3) Participating in MRS meetings.

  19. Wireless Technologies for Structural Wireless Technologies for Structural Health MonitoringHealth Monitoring

    E-Print Network [OSTI]

    Wireless Technologies for Structural Wireless Technologies for Structural Health MonitoringHealth responses · Structural monitoring structural health monitoring: ­ Very few structural "health" monitoring and buildings · Future directions and technology trends Structural Monitoring SystemsStructural Monitoring

  20. The Community Environmental Monitoring Program in the 21st Century: The Evolution of a Monitoring Network

    SciTech Connect (OSTI)

    Hartwell, W.T.; Tappen, J.; Karr, L.

    2007-01-19T23:59:59.000Z

    This paper focuses on the evolution of the various operational aspects of the Community Environmental Monitoring Program (CEMP) network following the transfer of program administration from the U.S. Environmental Protection Agency (EPA) to the Desert Research Institute (DRI) of the Nevada System of Higher Education in 1999-2000. The CEMP consists of a network of 29 fixed radiation and weather monitoring stations located in Nevada, Utah, and California. Its mission is to involve stakeholders directly in monitoring for airborne radiological releases to the off site environment as a result of past or ongoing activities on the Nevada Test Site (NTS) and to make data as transparent and accessible to the general public as feasible. At its inception in 1981, the CEMP was a cooperative project of the U.S. Department of Energy (DOE), DRI, and EPA. In 1999-2000, technical administration of the CEMP transitioned from EPA to DRI. Concurrent with and subsequent to this transition, station and program operations underwent significant enhancements that furthered the mission of the program. These enhancements included the addition of a full suite of meteorological instrumentation, state-of-the-art electronic data collectors, on-site displays, and communications hardware. A public website was developed. Finally, the DRI developed a mobile monitoring station that can be operated entirely on solar power in conjunction with a deep-cell battery, and includes all meteorological sensors and a pressurized ion chamber for detecting background gamma radiation. Final station configurations have resulted in the creation of a platform that is well suited for use as an in-field multi-environment test-bed for prototype environmental sensors and in interfacing with other scientific and educational programs. Recent and near-future collaborators have included federal, state, and local agencies in both the government and private sectors. The CEMP also serves as a model for other programs wishing to involve stakeholders with a meaningful role in the process of monitoring and data collection.