National Library of Energy BETA

Sample records for momentive performance materials

  1. Momentive Performance Materials Inc MPM | Open Energy Information

    Open Energy Info (EERE)

    Momentive Performance Materials Inc MPM Jump to: navigation, search Name: Momentive Performance Materials Inc (MPM) Place: Albany, New York Zip: 12211 Product: New York-based...

  2. Multi-material incompressible flow simulation using the moment-of-fluid method

    SciTech Connect (OSTI)

    Garimella, R V; Schofield, S P; Lowrie, R B; Swartz, B K; Christon, M A; Dyadechko, V

    2009-01-01

    The Moment-of-Fluid interface reconstruction technique is implemented in a second order accurate, unstructured finite element variable density incompressible Navier-Stokes solver. For flows with multiple materials, MOF significantly outperforms existing first and second order interface reconstruction techniques. For two material flows, the performance of MOF is similar to other interface reconstruction techniques. For strongly driven bouyant flows, the errors in the flow solution dominate and all the interface reconstruction techniques perform similarly.

  3. High Performance Bulk Thermoelectric Materials

    SciTech Connect (OSTI)

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  4. Performance Assessment and Composit Analysis Material Disposal...

    Office of Environmental Management (EM)

    Performance Assessment and Composit Analysis Material Disposal Area G Revision 4 Performance Assessment and Composit Analysis Material Disposal Area G Revision 4 Los Alamos...

  5. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics...

  6. NREL: Photovoltaics Research - Materials Applications and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about the scientists specializing in each area of PV research: National Center for Photovoltaics research staff Materials Applications and Performance research staff Materials...

  7. Materials Performance in USC Steam

    SciTech Connect (OSTI)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 C).

  8. HIGH-PERFORMANCE COATING MATERIALS

    SciTech Connect (OSTI)

    SUGAMA,T.

    2007-01-01

    Corrosion, erosion, oxidation, and fouling by scale deposits impose critical issues in selecting the metal components used at geothermal power plants operating at brine temperatures up to 300 C. Replacing these components is very costly and time consuming. Currently, components made of titanium alloy and stainless steel commonly are employed for dealing with these problems. However, another major consideration in using these metals is not only that they are considerably more expensive than carbon steel, but also the susceptibility of corrosion-preventing passive oxide layers that develop on their outermost surface sites to reactions with brine-induced scales, such as silicate, silica, and calcite. Such reactions lead to the formation of strong interfacial bonds between the scales and oxide layers, causing the accumulation of multiple layers of scales, and the impairment of the plant component's function and efficacy; furthermore, a substantial amount of time is entailed in removing them. This cleaning operation essential for reusing the components is one of the factors causing the increase in the plant's maintenance costs. If inexpensive carbon steel components could be coated and lined with cost-effective high-hydrothermal temperature stable, anti-corrosion, -oxidation, and -fouling materials, this would improve the power plant's economic factors by engendering a considerable reduction in capital investment, and a decrease in the costs of operations and maintenance through optimized maintenance schedules.

  9. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C.

  10. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Ceramics Materials Research Advances Engine Performance ALS Ceramics Materials Research Advances Engine Performance Print Thursday, 27 September 2012 00:00 ritchie ceramics This 3D image of a ceramic composite specimen imaged under load at 1750C shows the detailed fracture patterns that researchers are able to view using ALS Beamline 8.3.2. The vertical white lines are the individual silicon carbide fibers in this sample about 500 microns in diameter. LBNL senior materials scientist and U.C.

  11. Waste Package Materials Performance Peer Review

    Broader source: Energy.gov [DOE]

    A consensus peer review of the current technical basis and the planned experimental and modeling program for the prediction of the long-term performance of waste package materials being considered...

  12. CASL - Materials and Performance Optimization (MPO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Performance Optimization (MPO) The Materials and Performance Optimization (MPO) focus area within CASL has recently developed and released a 3D modeling framework known as MAMBA (MPO Advanced Model for Boron Analysis) to predict CRUD deposition on nuclear fuel rods. CRUD, which refers to Chalk River Unidentified Deposit, is predominately a nickel-ferrite spinel corrosion product that deposits on hot fuel clad surfaces in nuclear reactors. CRUD has a lower thermal conductivity than

  13. High performance Zintl phase TE materials with embedded nanoparticles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy performance Zintl phase TE materials with embedded nanoparticles High performance Zintl phase TE materials with embedded nanoparticles Performance of zintl phase thermoelectric materials with embedded particles are evaluated PDF icon shakouri.pdf More Documents & Publications High performance Zintl phase TE materials with embedded nanoparticles High Performance Zintl Phase TE Materials with Embedded Particles Thermoelectrics Partnership: High Performance

  14. High performance Zintl phase TE materials with embedded nanoparticles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    performance Zintl phase TE materials with embedded nanoparticles High performance Zintl phase TE materials with embedded nanoparticles Performance of zintl phase thermoelectric...

  15. Materials Modeling for High-Performance Radiation Detectors ...

    Office of Scientific and Technical Information (OSTI)

    Materials Modeling for High-Performance Radiation Detectors Citation Details In-Document Search Title: Materials Modeling for High-Performance Radiation Detectors You are...

  16. High Performance Zintl Phase TE Materials with Embedded Particles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Zintl Phase TE Materials with Embedded Particles High Performance Zintl Phase TE Materials with Embedded Particles Presents results from embedding nanoparticles in...

  17. Integrated Performance Testing Workshop - Supplemental Materials (Scripts and Procedures)

    SciTech Connect (OSTI)

    Baum, Gregory A.

    2014-02-01

    A variety of performance tests are described relating to: Material Transfers; Emergency Evacuation; Alarm Response Assessment; and an Enhanced Limited Scope Performance Test (ELSPT). Procedures are given for: nuclear material physical inventory and discrepancy; material transfers; and emergency evacuation.

  18. Materials Performance in USC Steam Portland

    SciTech Connect (OSTI)

    G.R. Holcomb; J. Tylczak; R. Hu

    2011-04-26

    Goals of the U.S. Department of Energy's Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam conditions of up to 760 C and 340 atm, co-called advanced ultrasupercritical (A-USC) steam conditions. A limitation to achieving the goal is a lack of cost-effective metallic materials that can perform at these temperatures and pressures. Some of the more important performance limitations are high-temperature creep strength, fire-side corrosion resistance, and steam-side oxidation resistance. Nickel-base superalloys are expected to be the materials best suited for steam boiler and turbine applications above about 675 C. Specific alloys of interest include Haynes 230 and 282, Inconel 617, 625 and 740, and Nimonic 263. Further validation of a previously developed chromia evaporation model is shown by examining the reactive evaporation effects resulting from exposure of Haynes 230 and Haynes 282 to moist air environments as a function of flow rate and water content. These two alloys differ in Ti and Mn contents, which may form outer layers of TiO{sub 2} or Cr-Mn spinels. This would in theory decrease the evaporation of Cr{sub 2}O{sub 3} from the scale by decreasing the activity of chromia at the scale surface, and be somewhat self-correcting as chromia evaporation concentrates the Ti and Mn phases. The apparent approximate chromia activity was found for each condition and alloy that showed chromia evaporation kinetics. As expected, it was found that increasing the gas flow rate led to increased chromia evaporation and decreased chromia activity. However, increasing the water content in moist air increased the evaporation, but results were mixed with its effect on chromia activity.

  19. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LBNL senior materials scientist and U.C. Berkeley professor Rob Ritchie has been researching the fracture behavior of a wide array of materials for the past 40 years, the last...

  20. ALS Ceramics Materials Research Advances Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photo), are now studying can withstand temperatures that would melt current state-of-the-art engine material, alloy-based nickel. The heat-resistant properties of advanced ceramics...

  1. Wall System Innovations: Familiar Materials, Better Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: High-Performance Enclosure Strategies, Part I: Unvented Roof Systems and Innovative Advanced Framing Strategies Key Issues Building America Team (NAHBRC)...

  2. Project materials [Commercial High Performance Buildings Project

    SciTech Connect (OSTI)

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  3. Electrolyte Materials for AMFCs and AMFC Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolyte Materials for AMFCs and AMFC Performance Electrolyte Materials for AMFCs and AMFC Performance Presentation at the AMFC Workshop, May 8, 2011, Arlington, VA PDF icon amfc_050811_fukuta.pdf More Documents & Publications Breaking the Fuel Cell Cost Barrier 2011 Alkaline Membrane Fuel Cell Workshop Final Report MEA BREAKOUT GROUP

  4. Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for

    Office of Scientific and Technical Information (OSTI)

    Cooling and Power Generation (Conference) | SciTech Connect Conference: Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for Cooling and Power Generation Citation Details In-Document Search Title: Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for Cooling and Power Generation Thermoelectric materials can be made into coolers (TECs) that use electricity to develop a temperature difference, cooling something, or generators (TEGs) that convert heat

  5. DOE Hydrogen Storage Technical Performance Targets for Material Handling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Equipment | Department of Energy Material Handling Equipment DOE Hydrogen Storage Technical Performance Targets for Material Handling Equipment This table summarizes hydrogen storage technical performance targets for material handling equipment. These targets were developed with input to DOE through extensive communications with various stakeholders, industry developers, and end users, including through a 2012 request for information and workshops, as well as additional national lab

  6. Materials Modeling for High-Performance Radiation Detectors (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Materials Modeling for High-Performance Radiation Detectors Citation Details In-Document Search Title: Materials Modeling for High-Performance Radiation Detectors Abstract not provided. Authors: Lordi, V. [1] + Show Author Affiliations Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) Publication Date: 2014-10-30 OSTI Identifier: 1178392 Report Number(s): LLNL-TR--663544 DOE Contract Number: AC52-07NA27344 Resource Type: Technical Report

  7. New MEA Materials for Improved DMFC Performance, Durability and Cost |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy MEA Materials for Improved DMFC Performance, Durability and Cost New MEA Materials for Improved DMFC Performance, Durability and Cost Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon cox_polyfuel_kickoff.pdf More Documents & Publications Integration of a "Passive Water Recovery" MEA into a Portable DMFC Power Supply Fuel Cell Projects Kickoff Meeting Fuel Cell Projects Kickoff Meeting

  8. Enhanced High and Low Temperature Performance of NOx Reduction Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace026_peden_2013_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2015: CLEERS: Aftertreatment Modeling and Analysis CLEERS Aftertreatment Modeling and Analysis

  9. Achieving Transformational Materials Performance in a New Era of Science

    ScienceCinema (OSTI)

    John Sarrao

    2010-01-08

    The inability of current materials to meet performance requirements is a key stumbling block for addressing grand challenges in energy and national security. Fortunately, materials research is on the brink of a new era - a transition from observation and validation of materials properties to prediction and control of materials performance. In this talk, I describe the nature of the current challenge, the prospects for success, and a specific facility concept, MaRIE, that will provide the needed capabilities to meet these challenges, especially for materials in extreme environments. MaRIE, for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements to the current LANSCE accelerator, development of a fourth-generation x-ray light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect/structure link to materials performance.

  10. COLLOQUIUM: Controlling the Production and Performance of Materials at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesoscale: The Matter-Radiation Interactions in Extremes (MaRIE) Capability | Princeton Plasma Physics Lab January 27, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Controlling the Production and Performance of Materials at the Mesoscale: The Matter-Radiation Interactions in Extremes (MaRIE) Capability Dr. Cris Barnes Los Alamos National Laboratory The Matter-Radiation Interactions in Extremes (MaRIE) project will provide capability that will address the control of performance

  11. NREL: Photovoltaics Research - Materials Applications and Performance Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications & Performance Staff The materials applications & performance staff members at the National Renewable Energy Laboratory work within one of four groups: the High Efficiency Crystalline PV Group, the Electro-Optical Characterization Group, the Cell & Module Characterization Group, and the Reliability & Systems Engineering Group. Access the staff members' background, areas of expertise, and contact information below. Greg Wilson Director High Efficiency Crystalline PV

  12. High Performance Organic Photovoltaics via Novel Materials Combinations

    SciTech Connect (OSTI)

    Laird, Dr Darin; McGuiness, Dr Christine; Storch, Mark

    2011-01-20

    OPV cell efficiencies have increased significantly over the last decade and verified champion efficiencies are currently at 8.3% for both single and multi-junction device types. These increases in efficiency have been driven through the development and optimization of the donor and acceptor materials in bulk heterojunction active layers. Plextronics and Solarmer Energy Inc. are two of the world leading developers of these donor and acceptor materials. Solarmer Energy has reported NREL certified 6.77% efficiencies using optimized low band gap donor materials in combination with PC61BM and PC71BM acceptors and recently reported a champion NREL certified efficiency of 8.1%. Plextronics has reported Newport certified efficiencies of 6.7% using PC71BM acceptors with low band gap materials. In addition, Plextronics has also demonstrated that OPV efficiency of P3HT based materials can be improved by 50% by improving the Voc using alternative acceptors (indene substituted C60 and C70) to PC61BM and PC71BM. However, performance of these alternative acceptors in combination with low band gap materials has not been investigated and the potential for efficiency improvement is evident. In this collaboration, four low band gap donor materials from Solarmer Energy Inc were combined with Plextronics indene-class acceptors Plextronics indene substituted C60 and C70 acceptors to demonstrate OPV performance greater than 7%. Two main indene class C60 acceptors (codenamed Mono-indene[C60] Mono-indene[C60] , Bis-indene[C60] ) were screened with the Solarmer polymers. These four polymers were screened and optimized with the indene class acceptors at both Plextronics and Solarmer. A combination was identified which produced 6.7% (internal measurement) with a Solarmer polymer and a Plextronics fullerene acceptor. This was accomplished primarily by improving the Voc as well as improving the current (Jsc) and FF.

  13. Functionalized Materials From Elastomers to High Performance Thermoplastics

    SciTech Connect (OSTI)

    Laura Ann Salazar

    2003-05-31

    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis-polyisoprene, natural rubber is no longer needed for the manufacturing of tires, but vulcanization is still utilized.

  14. Nanotube composite anode materials improve lithium-ion battery performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ANL-09-034) - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Find More Like This Return to Search Nanotube composite anode materials improve lithium-ion battery performance (ANL-09-034) Argonne National Laboratory Contact ANL About This Technology Technology Marketing Summary Rechargeable lithium-ion batteries are a critical technology for many applications, including consumer electronics and electric vehicles. As the demand for hybrid and

  15. Enhanced High and Low Temperature Performance of NOx Reduction Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office 1 Enhanced High and Low Temperature Performance of NOx Reduction Materials 2014 DOE AMR Review This presentation does not contain any proprietary, confidential, or otherwise restricted information. The work was funded by the U.S. Department of Energy (DOE) Office of FreedomCar and Vehicle Technologies. Program Managers: Ken Howden and Gurpreet Singh June 19, 2014 Feng Gao, George Muntean, Janos Szányi, Chuck Peden Institute for Integrated Catalysis Pacific Northwest

  16. Enhanced High Temperature Performance of NOx Reduction Catalyst Materials

    SciTech Connect (OSTI)

    Gao, Feng; Kim, Do Heui; Luo, Jinyong; Muntean, George G.; Peden, Charles HF; Howden, Ken; Currier, Neal; Kamasamudram, Krishna; Kumar, Ashok; Li, Junhui; Stafford, Randy; Yezerets, Aleksey; Castagnola, Mario; Chen, Hai Ying; Hess, Howard ..

    2012-12-31

    Two primary NOx after-treatment technologies have been recognized as the most promising approaches for meeting stringent NOx emission standards for diesel vehicles within the Environmental Protection Agencys (EPAs) 2007/2010 mandated limits, NOx Storage Reduction (NSR) and NH3 selective catalytic reduction (SCR); both are, in fact being commercialized for this application. However, in looking forward to 2015 and beyond with expected more stringent regulations, the continued viability of the NSR technology for controlling NOx emissions from lean-burn engines such as diesels will require at least two specific, significant and inter-related improvements. First, it is important to reduce system costs by, for example, minimizing the precious metal content while maintaining, even improving, performance and long-term stability. A second critical need for future NSR systems, as well as for NH3 SCR, will be significantly improved higher and lower temperature performance and stability. Furthermore, these critically needed improvements will contribute significantly to minimizing the impacts to fuel economy of incorporating these after-treatment technologies on lean-burn vehicles. To meet these objectives will require, at a minimum an improved scientific understanding of the following things: i) the various roles for the precious and coinage metals used in these catalysts; ii) the mechanisms for these various roles; iii) the effects of high temperatures on the active metal performance in their various roles; iv) mechanisms for higher temperature NOx storage performance for modified and/or alternative storage materials; v) the interactions between the precious metals and the storage materials in both optimum NOx storage performance and long term stability; vi) the sulfur adsorption and regeneration mechanisms for NOx reduction materials; vii) materials degradation mechanisms in CHA-based NH3 SCR catalysts. The objective of this CRADA project between PNNL and Cummins, Inc. is to develop a fundamental understanding of the above-listed issues. Model catalysts that are based on literature formulations are the focus of the work being carried out at PNNL. In addition, the performance and stability of more realistic high temperature NSR catalysts, supplied by JM, are being studied in order to provide baseline data for the model catalysts that are, again, based on formulations described in the open literature. For this short summary, we will primarily highlight representative results from our recent studies of the stability of candidate high temperature NSR materials.

  17. Materials performance in fluidized-bed air heaters

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.

    1991-12-01

    Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

  18. Materials performance in fluidized-bed air heaters

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.

    1991-12-01

    Development of cogeneration systems that involve combustion of coal in a fluidized bed and use of air heaters to generate hot air for turbine systems has been in progress for a number of years. The US Department of Energy (DOE) sponsored the Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) to assess the performance of various heat exchanger materials and establish confidence in the resultant designs of fluidized-bed-combustion air heater systems. Westinghouse Electric Corporation, in association with Babcock & Wilcox, Foster Wheeler, and ABB/Combustion Engineering, prepared specifications and hardware for the ACAHE. Argonne National Laboratory, through a contract with the Rocketdyne Division of Rockwell International, conducted tests in the DOE 1.8 {times} 1.8 m atmospheric fluidized-bed combustion facility in El Segundo, California. This paper presents an assessment of the materials performance in fluidized bed environments and examines guidelines for materials selection on the basis of corrosion resistance in air and in combustion environments, mechanical properties, fabricability/thermal stability, and cost.

  19. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  20. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  1. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  2. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  3. Samuel Moment Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Library and Files as part of its archive documenting the early years of the agency . . . Sam Moment worked for the Bonneville Power Administration from 1940 to 1954. He specialized...

  4. Corrosion performance of advanced structural materials in sodium.

    SciTech Connect (OSTI)

    Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L.

    2012-05-16

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and dissolve into sodium. The method enables addition of dissolved carbon (without carb

  5. Blanket materials for fusion reactors: comparisons of thermochemical performance

    SciTech Connect (OSTI)

    Johnson, C.E.; Fischer, A.K.; Tetenbaum, M.

    1984-01-01

    Thermodynamic calculations have been made to predict the thermochemical performance of the fusion reactor breeder materials, Li/sub 2/O, LiAlO/sub 2/, and Li/sub 4/SiO/sub 4/ in the temperature range 900 to 1300/sup 0/K and in the oxygen activity range 10/sup -25/ to 10/sup -5/. Except for a portion of these ranges, the performance of LiAlO/sub 2/ is predicted to be better than that of Li/sub 2/O and Li/sub 4/SiO/sub 4/. The protium purge technique for enhancing tritium release is explored for the Li/sub 2/O system; it appears advantageous at higher temperatures but should be used cautiously at lower temperatures. Oxygen activity is an important variable in these systems and must be considered in executing and interpreting measurements on rates of tritium release, the form of released tritium, diffusion of tritiated species and their identities, retention of tritium in the condensed phase, and solubility of hydrogen isotope gases.

  6. New MEA Materials for Improved DMFC Performance, Durability and Cost

    SciTech Connect (OSTI)

    Fletcher, James H.; Campbell, Joseph L.; Cox, Philip; Harrington, William J.

    2013-09-16

    Abstract Project Title: New MEA Materials for Improved DMFC Performance, Durability and Cost The University of North Florida (UNF)--with project partners the University of Florida, Northeastern University, and Johnson Matthey--has recently completed the Department of Energy (DOE) project entitled “New MEA Materials for Improved DMFC Performance, Durability and Cost”. The primary objective of the project was to advance portable fuel cell MEA technology towards the commercial targets as laid out in the DOE R&D roadmap by developing a passive water recovery MEA (membrane electrode assembly). Developers at the University of North Florida identified water management components as an insurmountable barrier to achieving the required system size and weight necessary to achieve the energy density requirements of small portable power applications. UNF developed an innovative “passive water recovery” MEA for direct methanol fuel cells (DMFC) which provides a path to system simplification and optimization. The passive water recovery MEA incorporates a hydrophobic, porous, barrier layer within the cathode electrode, so that capillary pressure forces the water produced at the cathode through holes in the membrane and back to the anode. By directly transferring the water from the cathode to the anode, the balance of plant is very much simplified and the need for heavy, bulky water recovery components is eliminated. At the heart of the passive water recovery MEA is the UNF DM-1 membrane that utilizes a hydrocarbon structure to optimize performance in a DMFC system. The membrane has inherent performance advantages, such as a low methanol crossover (high overall efficiency), while maintaining a high proton conductivity (good electrochemical efficiency) when compared to perfluorinated sulfonic acid membranes such as Nafion. Critically, the membrane provides an extremely low electro-osmotic drag coefficient of approximately one water molecule per proton (versus the 2-3 for Nafion) that minimizes flooding issues at the cathode, which often fatally limit open cathode MEA performance. During this successfully completed DOE program the project team met all of the project goals. The team built and tested over 1,500 MEAs with a wide range of different manufacturing chemistries and process conditions. This project demonstrated that the UNF MEA design could be fabricated with a high degree of reproducibility and repeatability. Some specific achievements include: • Durability - The UNF MEA has demonstrated over 11,000 hours continuous operation in a short stack configuration. The root cause of an off-state degradation issue was successfully mitigated by modifying the manufacturing process by changing the wetting agents used in the catalyst printing. The stability of the anode electrode was increased by replacing the anode electrodes with a stabilized PtRu/C catalyst. The overall degradation rate was significantly reduced through optimization of the MEA operating conditions. • Performance - The project team optimized the performance of the critical MEA sub-components. By increasing the membrane thickness, the methanol crossover was reduced, thereby increasing the fuel utilization efficiency without sacrificing any electrochemical performance. The reduction in methanol crossover increased the fuel utilization efficiency from 78% to over 90%. The liquid barrier layer was optimized to provide improved reproducibility, thereby improving stack voltage uniformity and reliability. Additionally the barrier layer water permeability was lowered without sacrificing any power density, thereby enabling increased operating temperature. Improvements in the cathode catalyst selection and coating provided an additional 10% to 20% improvement in the MEA performance at the target operating range. • Cost - Commercially scalable processes were developed for all of the critical MEA components which led to improved yields and lower overall manufacturing costs. Furthermore, significant steps have been made in improving the process control, which increases MEA uniformity and control of the transport properties to ensure reliable performance. MEAs that were made using these improved process controls showed excellent reproducibility in 40 cell stacks, with as low as ± 6 mV voltage variation between the MEAs at the target 120 to 150 mA/cm2 operating range. Given that the catalyst is an important driver of the MEA cost, the project team has successfully demonstrated that the catalyst loading can be lowered to 3 mg/cm² Pt and excellent durability still be achieved with over 2000 hours of operation. UNF and its project partners have met all of the goals and milestones of this project. Additionally, MEA performance has been validated with a 20 W portable DMFC, which was developed in a separate DOE program.

  7. Comprehensive Creep and Thermophysical Performance of Refractory Materials

    SciTech Connect (OSTI)

    Ferber, M.K.; Wereszczak, A.; Hemrick, J.A.

    2006-06-29

    Furnace designers and refractory engineers recognize that optimized furnace superstructure design and refractory selection are needed as glass production furnaces are continually striving toward greater output and efficiencies. Harsher operating conditions test refractories to the limit, while changing production technology (such as the conversion to oxy-fuel from traditional air-fuel firing) can alter the way the materials perform [1-3]. Refractories for both oxy- and air-fuel fired furnace superstructures (see Fig. 1) are subjected to high temperatures that may cause them to creep excessively or subside during service if the refractory material is not creep resistant, or if it is subjected to high stress, or both. Furnace designers can ensure that superstructure structural integrity is maintained if the creep behavior of the refractory material is well understood and well represented by appropriate engineering creep models. Several issues limit the abilities of furnace designers to (1) choose the optimum refractory for their applications, (2) optimize the engineering design, or (3) predict the service mechanical integrity of their furnace superstructures. Published engineering creep data are essentially nonexistent for almost all commercially available refractories used for glass furnace superstructures. The limited data that do exist are supplied by the various refractory suppliers. Unfortunately, the suppliers generally have different ways of conducting their mechanical testing, and they interpret and report their data differently. This inconsistency makes it hard for furnace designers to draw fair comparisons between competing grades of candidate refractories. Furthermore, the refractory suppliers' data are often not available in a form that can be readily used for furnace design or for the prediction and design of long-term structural integrity of furnace superstructures. As a consequence, the U.S. Department of Energy (DOE) Industrial Technology Program (ITP) Glass Industry of the Future sponsored research and development at industry, university, and national laboratory sites with the intent to help domestic glass manufacturers improve their energy and operating efficiencies. The optimization of furnace superstructure design using valid engineering creep data is a means to achieving these ITP goals. The present project at Oak Ridge National Laboratory (ORNL) aided in this endeavor by conducting creep testing and analysis on refractories of interest to glass manufacturers at representative service temperatures, enabling the availability of new and improved refractories by refractories suppliers and by generating creep data on equivalent refractories that furnace designers could use for optimizing the design of their superstructures or for predicting their long-term structural integrity. Similar refractory creep-testing projects have been conducted at ORNL [4-6], so many of the unique experimental nuances and difficulties associated with the high-temperature creep testing of refractories have been encountered and overcome.

  8. Alternative High-Performance Motors with Non-Rare Earth Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Motors with Non-Rare Earth Materials Alternative High-Performance Motors with Non-Rare Earth Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  9. Achieving Transformational Materials Performance in a New Era...

    Office of Scientific and Technical Information (OSTI)

    for Matter-Radiation Interactions in Extremes, is Los Alamos' concept to realize this vision of 21st century materials research. This vision will be realized through enhancements...

  10. Achieving Transformational Materials Performance in a New Era...

    Office of Scientific and Technical Information (OSTI)

    light source co-located with the proton accelerator, and a comprehensive synthesis and characterization facility focused on controlling complex materials and the defect...

  11. Predicting the Performance of Edge Seal Materials for PV (Presentation)

    SciTech Connect (OSTI)

    Kempe, M.; Panchagade, D.; Dameron, A.; Reese, M.

    2012-03-01

    Edge seal materials were evaluated using a 100-nm film of Ca deposited on glass and laminated to another glass substrate. As moisture penetrates the package it converts the Ca metal to transparent CaOH2 giving a clear indication of the depth to which moisture has entered. Using this method, we have exposed test samples to a variety of temperature and humidity conditions ranging from 45C and 10% RH up to 85C and 85% RH, to ultraviolet radiation and to mechanical stress. We are able to show that edge seal materials are capable of keeping moisture away from sensitive cell materials for the life of a module.

  12. Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials...

    Office of Scientific and Technical Information (OSTI)

    Materials selection and processing has led to the development of several systems with a figure of merit, ZT, of nearly unity. By using non-equilibrium techniques, we have ...

  13. Alternative High-Performance Motors with Non-Rare Earth Materials |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Performance Motors with Non-Rare Earth Materials Alternative High-Performance Motors with Non-Rare Earth Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape045_elrefaie_2012_o.pdf More Documents & Publications Alternative High-Performance Motors with Non-Rare Earth Materials Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare

  14. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    SciTech Connect (OSTI)

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

    2014-11-01

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  15. Accident Performance of Light Water Reactor Cladding Materials

    SciTech Connect (OSTI)

    Nelson, Andrew T.

    2012-07-24

    During a loss of coolant accident as experienced at Fukushima, inadequate cooling of the reactor core forces component temperatures ever higher where they must withstand aggressive chemical environments. Conventional zirconium cladding alloys will readily oxidize in the presence of water vapor at elevated temperatures, rapidly degrading and likely failing. A cladding breach removes the critical barrier between actinides and fission products and the coolant, greatly increasing the probability of the release of radioactivity in the event of a containment failure. These factors have driven renewed international interest in both study and improvement of the materials used in commercial light water reactors. Characterization of a candidate cladding alloy or oxidation mitigation technique requires understanding of both the oxidation kinetics and hydrogen production as a function of temperature and atmosphere conditions. Researchers in the MST division supported by the DOE-NE Fuel Cycle Research and Development program are working to evaluate and quantify these parameters across a wide range of proposed cladding materials. The primary instrument employed is a simultaneous thermal analyzer (STA) equipped with a specialized water vapor furnace capable of maintaining temperatures above 1200 C in a range of atmospheres and water vapor contents. The STA utilizes thermogravimetric analysis and a coupled mass spectrometer to measure in situ oxidation and hydrogen production of candidate materials. This capability is unprecedented in study of materials under consideration for reactor cladding use, and is currently being expanded to investigate proposed coating techniques as well as the effect of coating defects on corrosion resistance.

  16. Performance and Reliability of Interface Materials for Automotive Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.; DeVoto, D.; Mihalic, M.; Paret, P.

    2013-07-01

    Thermal management and reliability are important because excessive temperature can degrade the performance, life, and reliability of power electronics and electric motors. Advanced thermal management technologies enable keeping temperature within limits; higher power densities; and lower cost materials, configurations and systems. Thermal interface materials, bonded interface materials and the reliability of bonded interfaces are discussed in this presentation.

  17. 9975 SHIPPING PACKAGE PERFORMANCE OF ALTERNATE MATERIALS FOR LONG-TERM STORAGE APPLICATION

    SciTech Connect (OSTI)

    Skidmore, E.; Hoffman, E.; Daugherty, W.

    2010-02-24

    The Model 9975 shipping package specifies the materials of construction for its various components. With the loss of availability of material for two components (cane fiberboard overpack and Viton{reg_sign} GLT O-rings), alternate materials of construction were identified and approved for use for transport (softwood fiberboard and Viton{reg_sign} GLT-S O-rings). As these shipping packages are part of a long-term storage configuration at the Savannah River Site, additional testing is in progress to verify satisfactory long-term performance of the alternate materials under storage conditions. The test results to date can be compared to comparable results on the original materials of construction to draw preliminary conclusions on the performance of the replacement materials.

  18. High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  19. Magnetic moments of light nuclei from lattice quantum chromodynamics

    SciTech Connect (OSTI)

    Beane, S.? R.; Chang, E.; Cohen, S.; Detmold, W.; Lin, H.? W.; Orginos, K.; Parreo, A.; Savage, M.? J.; Tiburzi, B.? C.

    2014-12-16

    We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to m? ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for the triton, ?3H ~ ?p. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.

  20. Magnetic moments of light nuclei from lattice quantum chromodynamics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beane, S.  R.; Chang, E.; Cohen, S.; Detmold, W.; Lin, H.  W.; Orginos, K.; Parreño, A.; Savage, M.  J.; Tiburzi, B.  C.

    2014-12-16

    We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to mπ ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures itsmore » dominant structure. Similarly a shell-model-like moment is found for the triton, μ3H ~ μp. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.« less

  1. A review of high magnetic moment thin films for microscale and...

    Office of Scientific and Technical Information (OSTI)

    A review of high magnetic moment thin films for microscale and ... Weizmann Institute of Science, 76100 Rehovot, Israel, ... BT7 1NN, United Kingdom Materials Science Division, ...

  2. Hyperon polarization and magnetic moments

    SciTech Connect (OSTI)

    Lach, J.

    1993-12-01

    Inclusively produced hyperons with significant polarization were first observed at Fermilab about seventeen years ago. This and subsequent experiments showed that {Lambda}{degree} were produced polarized while {bar {Lambda}}{degree} had no polarization in the same kinematical region. This set the stage for many experiments which showed that most hyperons are produced polarized. Recent Fermilab experiments have showed that this phenomena is even more complex and theoretical understanding is still lacking. Nevertheless polarized hyperon beams have been an extremely useful experimental tool in measuring hyperon magnetic moments. Recently, magnetic moment precession of channeled particles in bent crystals has been observed. This opens the possibility of measuring the magnetic moments of charmed baryons.

  3. CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications | Energy Frontier Research Centers CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications Home Author: D.Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannawurf, M. Bastea, C. Uher, M. Kanatzidis Year: 2000 Abstract: Thermoelectric (Peltier) heat pumps are capable of refrigerating solid or fluid objects, and unlike conventional vapor compressor systems, they can be miniaturized without loss of efficiency. More efficient thermoelectric materials

  4. Developing standard performance testing procedures for material control and accounting components at a site

    SciTech Connect (OSTI)

    Scherer, Carolynn P; Bushlya, Anatoly V; Efimenko, Vladimir F; Ilyanstev, Anatoly; Regoushevsky, Victor I

    2010-01-01

    The condition of a nuclear material control and accountability system (MC&A) and its individual components, as with any system combining technical elements and documentation, may be characterized through an aggregate of values for the various parameters that determine the system's ability to perform. The MC&A system's status may be functioning effectively, marginally or not functioning based on a summary of the values of the individual parameters. This work included a review of the following subsystems, MC&A and Detecting Material Losses, and their respective elements for the material control and accountability system: (a) Elements of the MC&A Subsystem - Information subsystem (Accountancy/Inventory), Measurement subsystem, Nuclear Material Access subsystem, including tamper-indicating device (TID) program, and Automated Information-gathering subsystem; (b) Elements for Detecting Nuclear Material Loses Subsystem - Inventory Differences, Shipper/receiver Differences, Confirmatory Measurements and differences with accounting data, and TID or Seal Violations. In order to detect the absence or loss of nuclear material there must be appropriate interactions among the elements and their respective subsystems from the list above. Additionally this work includes a review of regulatory requirements for the MC&A system component characteristics and criteria that support the evaluation of the performance of the listed components. The listed components had performance testing algorithms and procedures developed that took into consideration the regulatory criteria. The developed MC&A performance-testing procedures were the basis for a Guide for MC&A Performance Testing at the material balance areas (MBAs) of State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering (SSC RF-IPPE).

  5. Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Modules for Low Cost, High Performance Fuel Cell Humidifiers Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon johnson_gore_kickoff.pdf More Documents & Publications Advance Patent Waiver W(A)2010-041 Kick-Off Meeting for New Fuel Cell Projects CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe

  6. High performance materials in coal conversion utilization. Final report, October 1, 1993--September 30, 1996

    SciTech Connect (OSTI)

    McCay, T.D.; Boss, W.H.; Dahotre, N.

    1996-12-01

    This report describes the research conducted at the University of Tennessee Space Institute on high performance materials for use in corrosive environments. The work was supported by a US Department of Energy University Coal Research grant. Particular attention was given to the silicon carbide particulate reinforced alumina matrix ceramic composite manufactured by Lanxide Corporation as a potential tubular component in a coal-fired recuperative high-temperature air heater. Extensive testing was performed to determine the high temperature corrosion effects on the strength of the material. A computer modeling of the corrosion process was attempted but the problem proved to be too complex and was not successful. To simplify the situation, a computer model was successfully produced showing the corrosion thermodynamics involved on a monolithic ceramic under the High Performance Power System (HIPPS) conditions (see Appendix A). To seal the material surface and thus protect the silicon carbide particulate from corrosive attack, a dense non porous alumina coating was applied to the material surface. The coating was induced by a defocused carbon dioxide laser beam. High temperature corrosion and strength tests proved the effectiveness of the coating. The carbon dioxide laser was also used to successfully join two pieces of the Lanxide material, however, resources did not allow for the testing of the resulting joint.

  7. FRAPCON-3: Modifications to fuel rod material properties and performance models for high-burnup application

    SciTech Connect (OSTI)

    Lanning, D.D.; Beyer, C.E.; Painter, C.L.

    1997-12-01

    This volume describes the fuel rod material and performance models that were updated for the FRAPCON-3 steady-state fuel rod performance code. The property and performance models were changed to account for behavior at extended burnup levels up to 65 Gwd/MTU. The property and performance models updated were the fission gas release, fuel thermal conductivity, fuel swelling, fuel relocation, radial power distribution, solid-solid contact gap conductance, cladding corrosion and hydriding, cladding mechanical properties, and cladding axial growth. Each updated property and model was compared to well characterized data up to high burnup levels. The installation of these properties and models in the FRAPCON-3 code along with input instructions are provided in Volume 2 of this report and Volume 3 provides a code assessment based on comparison to integral performance data. The updated FRAPCON-3 code is intended to replace the earlier codes FRAPCON-2 and GAPCON-THERMAL-2. 94 refs., 61 figs., 9 tabs.

  8. Key Elements of and Materials Performance Targets for Highly Insulating Window Frames

    SciTech Connect (OSTI)

    Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

    2011-03-28

    The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

  9. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments [OSTI]

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  10. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    SciTech Connect (OSTI)

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  11. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors

    SciTech Connect (OSTI)

    Zhang, Hongxin; Bhat, Vinay V; Gallego, Nidia C; Contescu, Cristian I

    2012-01-01

    Graphene materials were synthesized by reduction of exfoliated graphene oxide sheets by hydrazine hydrate and then thermally treated in nitrogen to improve the surface area and their electrochemical performance as electrical double-layer capacitor electrodes. The structural and surface properties of the prepared reduced graphite oxide (RGO) were investigated using atomic force microscopy, scanning electron microscopy, Raman spectra, X-ray diffraction, and nitrogen adsorption / desorption. RGO forms a continuous network of crumpled sheets, which consist of numerous few-layer and single-layer graphenes. Electrochemical studies were conducted by cyclic voltammetry, impedance spectroscopy, and galvanostatic charge-discharge measurements. The modified RGO materials showed enhanced electrochemical performance, with maximum specific capacitance of 96 F/g, energy density of 12.8 Wh/kg, and power density of 160 kW/kg. The results demonstrate that thermal treatment of RGO at selected conditions is a convenient and efficient method for improving specific capacitance, energy, and power density.

  12. FIELD PERFORMANCE OF EROSION RESISTANT MATERIALS ON BOILER INDUCED DRAFI' FAN BLADES

    Office of Scientific and Technical Information (OSTI)

    FIELD PERFORMANCE OF EROSION RESISTANT MATERIALS ON BOILER INDUCED DRAFI' FAN BLADES TENNESSEE VALLEY AUTHORIT!if KINGSTON FOSSIL PLANT M a y 1993 Prepared by TENNESSEE VALLEY AUTHORITY RESOURCE GROUP RESEARCH AND DEVELOPMENT GENERATIONS PROJECTS DEPARTMENT PRINCIPAL INVESTIGATORS 0 . F. Karr, Mechanical Engineer Generation Projects Department Research and Development J. B. Brooks, Metallurgist Generation Projects Department Research and Development Ed Seay, Manager of Modifications Kingston

  13. Evidence-Based Background Material Underlying Guidance for Federal Agencies in Implementing Strategic Sustainability Performance Plans

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3/107 Evidence-Based Background Material Underlying Guidance for Federal Agencies in Implementing Strategic Sustainability Performance Plans Implementing Sustainability: The Institutional-Behavioral Dimension Elizabeth L. Malone Tom Sanquist Amy K. Wolfe Rick Diamond Christopher Payne Jerry Dion January 2011 (Updated June 2013) Federal Energy Management Program U.S. Department of Energy DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S.

  14. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G.; Gerritsen, W.; Stewart, A.; Robinson, K.

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  15. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. ); Gerritsen, W.; Stewart, A.; Robinson, K. )

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  16. Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

    2013-10-01

    This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

  17. The electrochemical performance of ordered mesoporous carbon/nickel compounds composite material for supercapacitor

    SciTech Connect (OSTI)

    Feng, Jicheng; Zhao, Jiachang; Tang, Bohejin; Liu, Ping; Xu, Jingli

    2010-12-15

    A series of high performance ordered mesoporous carbon/nickel compounds composites have been synthesized by a combination of incipient wetness impregnation and hydrothermal method for the first time. X-ray diffraction (XRD), N{sub 2} adsorption/desorption isotherms and transmission electron microscopy (TEM) are used to characterize the composites derived at the hydrothermal temperature of 125, 150, 175, 200, 250, 275 and 300 {sup o}C. The formation of nanosized nickel compounds, fully inside the mesopore system, was confirmed with XRD and TEM. An N{sub 2} adsorption/desorption isotherms measurements still revealed mesoporosity for the host/guest compounds. It is noteworthy that an OMC/nickel nitrate hydroxide hydrate composite (OMCN-150) exhibits more excellent performance. Based on the various hydrothermal temperatures of the composite, the capacitance of an OMCN-150 delivering the best electrochemical performance is about 2.4 (5 mV s{sup -1}) and 1.5 (50 mV s{sup -1}) times of the pristine OMC. The capacitance retention of an OMCN-150 is 96.1%, which indicates that the electrochemical performance of the supercapacitor is improved greatly, and represents novel research and significant advances in the field of electrode composite materials for supercapacitor. -- Graphical abstract: A series of high performance nickel compound/ordered mesoporous carbon composites were synthesized by a combination of incipient wetness impregnation and hydrothermal method for the first time. Display Omitted

  18. Isentropic Compression Experiments Performed By LLNL On Energetic Material Samples Using The Z Accelerator

    SciTech Connect (OSTI)

    Vandersall, K S; Reisman, D B; Forbes, J W; Hare, D E; Garcia, F; Uphaus, T M; Elsholz, A J; Tarver, C M; Eggert, J H

    2007-10-25

    Several experiments have been conducted by LLNL researchers using isentropic compression experiments (ICE) on energetic materials as samples from Fiscal Year 2001 (FY01) to Fiscal Year 2005 (FY05). Over this span of time, advancements of the experimental techniques and modeling of the results have evolved to produce improved results. This report documents the experiments that have been performed, provides details of the results generated, and modeling and analysis advances to fully understand the results. Publications on the topics by the various principal investigators (PI's) are detailed in the Appendices for quick reference for the work as it progressed.

  19. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Materials Access to Hopper Phase II (Cray XE6) If you are a current NERSC user, you are enabled to use Hopper Phase II. Use your SSH client to connect to Hopper II:...

  20. Magnetic moments of light nuclei from lattice quantum chromodynamics

    SciTech Connect (OSTI)

    Beane, S.  R.; Chang, E.; Cohen, S.; Detmold, W.; Lin, H.  W.; Orginos, K.; Parreño, A.; Savage, M.  J.; Tiburzi, B.  C.

    2014-12-16

    We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to mπ ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for the triton, μ3H ~ μp. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.

  1. 70 proud moments in BPA's 70 years

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    computer program that can represent and evaluate fleeting moments of power system behavior. Previous programs had captured only continuing and stable conditions, not the transient...

  2. Sacrificial Protective Coating Materials That Can Be Regenerated In-Situ to Enable High-Performance Membranes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protective Coating Materials ADVANCED MANUFACTURING OFFICE Protective Coating Materials Sacrificial Protective Coating Materials That Can Be Regenerated In- Situ to Enable High-Performance Membranes Membrane Technology Provides Energy-Efficient Method to Concentrate Weak Black Liquor. Among the various manufacturing processes employed across all U.S. industries, the process of concentrating weak black liquor (WBL) in the pulp and paper industry is identifed as one of the largest energy reduction

  3. In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation

    SciTech Connect (OSTI)

    G. R. Odette; G. E. Lucas

    2005-11-15

    This final report on "In-Service Design & Performance Prediction of Advanced Fusion Material Systems by Computational Modeling and Simulation" (DE-FG03-01ER54632) consists of a series of summaries of work that has been published, or presented at meetings, or both. It briefly describes results on the following topics: 1) A Transport and Fate Model for Helium and Helium Management; 2) Atomistic Studies of Point Defect Energetics, Dynamics and Interactions; 3) Multiscale Modeling of Fracture consisting of: 3a) A Micromechanical Model of the Master Curve (MC) Universal Fracture Toughness-Temperature Curve Relation, KJc(T - To), 3b) An Embrittlement DTo Prediction Model for the Irradiation Hardening Dominated Regime, 3c) Non-hardening Irradiation Assisted Thermal and Helium Embrittlement of 8Cr Tempered Martensitic Steels: Compilation and Analysis of Existing Data, 3d) A Model for the KJc(T) of a High Strength NFA MA957, 3e) Cracked Body Size and Geometry Effects of Measured and Effective Fracture Toughness-Model Based MC and To Evaluations of F82H and Eurofer 97, 3-f) Size and Geometry Effects on the Effective Toughness of Cracked Fusion Structures; 4) Modeling the Multiscale Mechanics of Flow Localization-Ductility Loss in Irradiation Damaged BCC Alloys; and 5) A Universal Relation Between Indentation Hardness and True Stress-Strain Constitutive Behavior. Further details can be found in the cited references or presentations that generally can be accessed on the internet, or provided upon request to the authors. Finally, it is noted that this effort was integrated with our base program in fusion materials, also funded by the DOE OFES.

  4. Innovative Materials, Processes, and Tools Improve Performance, Quality of White LEDs

    Broader source: Energy.gov [DOE]

    Lumileds Lighting joined forces with Sandia National Laboratories to investigate critical materials issues related to solid-state lighting technology.

  5. Secretary Chu and the 'Sputnik Moment'

    Broader source: Energy.gov [DOE]

    U.S. Secretary of Energy Steven Chu speaks about China and the Sputnik Moment in US energy Policy at the National Press Club. Remarks followed by Q&A.

  6. ARM - Evaluation Product - Precipitation Radar Moments Mapped...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Precipitation Radar Moments Mapped to a Cartesian Grid The Scanning...

  7. Pinpointing the Magnetic Moments of Nuclear Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pinpointing the Magnetic Moments of Nuclear Matter Pinpointing the Magnetic Moments of Nuclear Matter Lattice QCD Calculations Reveal Inner Workings of Lightest Nuclei January 20, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov h3lattice Artist's impression of a triton, the atomic nucleus of a tritium atom. The image shows blue neutrons and a red proton with quarks inside; the arrows indicate the alignments of the spins. Image: William Detmold, MIT A team of nuclear physicists has

  8. Toroidal Dipole Moment of a Massless Neutrino

    SciTech Connect (OSTI)

    Cabral-Rosetti, L. G.; Mondragon, M.; Perez, E. Reyes

    2009-04-20

    We obtain the toroidal dipole moment of a massless neutrino {tau}{sub v{sub I}}{sup M} using the results for the anapole moment of a massless Dirac neutrino a{sub v{sub I}}{sup D}, which was obtained in the context of the Standard Model of the electroweak interactions (SM)SU(2){sub L} x U(1){sub Y}.

  9. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    SciTech Connect (OSTI)

    Crsico, A.H.; Althaus, L.G.; Garca-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (?{sub ?}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of ?{sub ?}?<10{sup -11}?{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  10. Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for Cooling and Power Generation

    SciTech Connect (OSTI)

    Li, Q.

    2011-05-18

    Thermoelectric materials can be made into coolers (TECs) that use electricity to develop a temperature difference, cooling something, or generators (TEGs) that convert heat directly to electricity. One application of TEGs is to place them in a waste heat stream to recuperate some of the power being lost and putting it to use more profitably. To be effective thermoelectrics, however, materials must have both high electrical conductivity and low thermal conductivity, a combination rarely found in nature. Materials selection and processing has led to the development of several systems with a figure of merit, ZT, of nearly unity. By using non-equilibrium techniques, we have fabricated higher efficiency thermoelectric materials. The process involves creating an amorphous material through melt spinning and then sintering it with either spark plasma or a hot press for as little as two minutes. This results in a 100% dense material with an extremely fine grain structure. The grain boundaries appear to retard phonons resulting in a reduced thermal conductivity while the electrons move through the material relatively unchecked. The techniques used are low-cost and scaleable to support industrial manufacturing.

  11. Refractory Materials based on Magnesia-Alumina Spinel for Improved Performance in Coal Gasification Environments

    SciTech Connect (OSTI)

    Hemrick, James Gordon; Armstrong, Beth L; Rodrigues-Schroer, Angela; Colavito,; Smith, Jeffrey D; O'Hara, Kelley

    2013-01-01

    As part of a larger project to develop novel refractory systems and techniques to reduce energy consumption of refractory lined vessels, a team composed of Oak Ridge National Laboratory, refractory manufacturer Minteq International, Inc., and academic partner Missouri University of Science and Technology have developed new refractory materials and coating systems specifically for application in coal gasification environments. Materials were developed under this U.S. DOE funded project to address the need for innovative refractory compositions by developing MgO-Al2O3 spinel gunnable refractory compositions utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques. Work was conducted to develop and deploy these new materials and to develop and apply low cost coatings using a colloidal approach for protection against attack of the refractory brick by the serviced environment. Additionally, a light-weight back-up refractory system was developed to help offset the high thermal conductivity inherent in spinel materials. This paper discusses the efforts involved in the development of these materials, along with the laboratory testing and evaluation of these materials leading to relevant results achieved toward the reduction of chemical reactions and mechanical degradation by the service environment though compositional and processing modifications.

  12. Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion

    Broader source: Energy.gov [DOE]

    Rapid solidified precursor converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal conductivity and increased power factor

  13. U.S. Department of Energy-Funded Performance Validation of Fuel Cell Material Handling Equipment (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

    2013-11-01

    This webinar presentation to the UK Hydrogen and Fuel Cell Association summarizes how the U.S. Department of Energy is enabling early fuel cell markets; describes objectives of the National Fuel Cell Technology Evaluation Center; and presents performance status of fuel cell material handling equipment.

  14. Nuclear power plant cable materials : review of qualification and currently available aging data for margin assessments in cable performance.

    SciTech Connect (OSTI)

    Celina, Mathias Christopher; Gillen, Kenneth Todd; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostlyinert' aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section - a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on original qualification testing data alone. The non-availability of conclusive predictions for the aging conditions of 40-year-old cables implies that the same levels of uncertainty will remain for any re-qualification or extended operation of these cables. The highly variable aging behavior of the range of materials employed also implies that simple, standardized aging tests are not sufficient to provide the required aging data and performance predictions for all materials. It is recommended that focused studies be conducted that would yield the material aging parameters needed to predict aging behaviors under low dose, low temperature plant equivalent conditions and that appropriately aged specimens be prepared that would mimic oxidatively-aged 40- to 60- year-old materials for confirmatory LOCA performance testing. This study concludes that it is not sufficient to expose materials to rapid, high radiation and high temperature levels with subsequent LOCA qualification testing in order to predictively quantify safety margins of existing infrastructure with regard to LOCA performance. We need to better understand how cable jacketing and insulation materials have degraded over decades of power plant operation and how this aging history relates to service life prediction and the performance of existing equipment to withstand a LOCA situation.

  15. A Virtual Test Approach to Incorporate Materials and Manufacturing Processes to Aid Design choices in High Performance Composites

    SciTech Connect (OSTI)

    Gonzalez-Murillo, C.; Price, M.

    2011-05-04

    The increasing use of fibre reinforced composites in structural components in the aerospace industry is providing many challenges to designers in understanding how they can be used more effectively to exploit their advantages. One of the main challenges is the selection of lay-ups for a given application. The difficulty lies in the variability that is achievable with composites. Each new layup or configuration is effectively a new material and requires and extensive test programme to validate the performance, from coupons which give basic material characteristics, up through the test pyramid through to large sub-component which contains basic assemblies. This variety of testing gives confidence in understanding the material behaviour and performance in structural assemblies. On the other hand, the manufacturing process is also important here with different processes sometimes needed for different materials or thicknesses. This is a time consuming and expensive process requiring many thousands of small tests leading up to a few major tests which are complex to set up and carry out. This research is attempting to address this by developing a virtual test system which will sit hand-in-hand with a physical test system. The goal of virtual tests appears reachable using the finite element analysis technique in which many experimental tests can be replaced by high fidelity simulations. The payoff in reduced cycle time and costs for designing and certifying composite structures is very attractive; and the possibility also arises of considering material configurations that are too complex to certify by purely empirical methods. The validated simulations could then be subsequently used for variants or derivatives of composites to inform design choices and establish new validation programmes where appropriate. This paper presents a series of simulations of the critical testing procedures needed to validate high performance composites materials using linear and non-linear models and compares the results with physical test performed in carbon fibre specimens.

  16. Nuclear moments of inertia at high spin

    SciTech Connect (OSTI)

    Deleplanque, M.A.

    1982-10-01

    The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in ..gamma..-..gamma.. correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum ..gamma..-ray spectra of rotational nuclei up to high frequencies. The evolution of ..gamma..-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei.

  17. Determination of the Neutron Magnetic Moment

    DOE R&D Accomplishments [OSTI]

    Greene, G. L.; Ramsey, N. F.; Mampe, W.; Pendlebury, J. M.; Smith, K.; Dress, W. B.; Miller, P. D.; Perrin, P.

    1981-06-01

    The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H{sub 2}O), we find ..mu..{sub n}/..mu..{sub p} = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units.

  18. Steam generator materials performance in high temperature gas-cooled reactors

    SciTech Connect (OSTI)

    Chafey, J.E.; Roberts, D.I.

    1980-11-01

    This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760/sup 0/C and produce superheated steam at 538/sup 0/C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10/sup 6/ MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc.

  19. Performance Assessment and Composit Analysis Material Disposal Area G Revision 4

    Broader source: Energy.gov [DOE]

    Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Most is low-level radioactive waste that is disposed of at Technical Area (TA) 54, Area G. U.S. Department of Energy (DOE) Order 435.1 requires that DOE field sites prepare and maintain site-specific radiological performance assessments and composite analyses for lowlevel radioactive waste disposal facilities that accept waste after September 26, 1988. This report presents the radiological performance assessment and composite analysis for TA 54, Area G. The performance assessment and composite analysis model the long-term performance of the Area G disposal facility so that the risk posed by the disposed waste to human health and safety and the environment can be determined. Rates of radionuclide release from the waste and the transport of these releases to locations accessible to humans are evaluated and used to project radiation doses that may be received by exposed persons. The release rates of radon gas from the disposal facility are also estimated. The dose and radon flux projections are compared to the performance objectives provided in DOE M 435.1 to evaluate the ability of the disposal facility to safely isolate the waste.

  20. Performance evaluation of booster materials in the plastic bonded explosive PBX 9502 in a hemispherical wave breakout test

    SciTech Connect (OSTI)

    Hooks, Daniel E; Morris, John S; Hill, Larry G; Francois, Elizabeth

    2008-01-01

    An explosive booster is normally required to initiate detonation in an insensitive high explosive (lHE). Booster materials must be ignitable by a conventional detonator and deliver sufficient energy and favorable pulse shape to initiate the IHE charge. The explosive booster should be as insensitive as reasonably possible to maintain the overall safety margin of the explosive assembly. A hemispherical wave breakout test termed the on ionskin test is one of the methods of testing the performance of booster materials in an initiation train assembly. There are several variations of this basic test which are known by other names. In this test, the wave breakout time-position history at the surface of a hemispherical IHE acceptor charge is recorded, and the relative uniformity of breakout allows qualitative comparison between booster candidates and quantitative comparison of several metrics. The results of a series of onionskin experiments evaluating the performance of some new booster formulations in the triaminotrinitrobenzene (TA TB) -based plastic bonded explosive PBX 9502 will be presented. The boosters were tested in an onionskin arrangement in which the booster pellet was cylindrical, and the tests were performed at a temperature of-55{sup o}C to emphasize variations in spreading performance. The modification from the traditional hemispherical geometry facilitated efficient explosive fabrication and charge assembly, but the results indicate that this geometry was not ideal for several reasons. Despite the complications arising from geometry, promising performance was observed from booster formulations including 3,3' -diamino-4,4'azoxyfurazan.

  1. Time-dependent first-principles approaches to PV materials

    SciTech Connect (OSTI)

    Miyamoto, Yoshiyuki

    2013-12-10

    Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.

  2. PERFORMANCE TESTING OF SPRING ENERGIZED C-RINGS FOR USE IN RADIOACTIVE MATERIAL PACKAGINGS CONTAINING TRITIUM

    SciTech Connect (OSTI)

    Blanton, P; Kurt Eberl, K

    2007-10-23

    This paper describes the sealing performance testing and results of silver-plated inconel Spring Energized C-Rings used for tritium containment in radioactive shipping packagings. The test methodology used follows requirements of the American Society of Mechanical Engineers (ASME) summarized in ASME Pressure Vessel Code (B&PVC), Section V, Article 10, Appendix IX (Helium Mass Spectrometer Test - Hood Technique) and recommendations by the American National Standards Institute (ANSI) described in ANSI N14.5-1997. The tests parameters bound the predicted structural and thermal responses from conditions defined in the Code of Federal Regulations 10 CFR 71. The testing includes an evaluation of the effects of pressure, temperature, flange deflection, surface roughness, permeation, closure torque, torque sequencing and re-use on performance of metal C-Ring seals.

  3. A comparative study of interface reconstruction methods for multi-material ALE simulations

    SciTech Connect (OSTI)

    Kucharik, Milan; Garimalla, Rao; Schofield, Samuel; Shashkov, Mikhail

    2009-01-01

    In this paper we compare the performance of different methods for reconstructing interfaces in multi-material compressible flow simulations. The methods compared are a material-order-dependent Volume-of-Fluid (VOF) method, a material-order-independent VOF method based on power diagram partitioning of cells and the Moment-of-Fluid method (MOF). We demonstrate that the MOF method provides the most accurate tracking of interfaces, followed by the VOF method with the right material ordering. The material-order-independent VOF method performs some-what worse than the above two while the solutions with VOF using the wrong material order are considerably worse.

  4. Impurity-induced moments in underdoped cuprates

    SciTech Connect (OSTI)

    Khaliullin, G.; Kilian, R.; Krivenko, S.; Fulde, P.

    1997-11-01

    We examine the effect of a nonmagnetic impurity in a two-dimensional spin liquid in the spin-gap phase, employing a drone-fermion representation of spin-1/2 operators. The properties of the local moment induced in the vicinity of the impurity are investigated and an expression for the nuclear-magnetic-resonance Knight shift is derived, which we compare with experimental results. Introducing a second impurity into the spin liquid an antiferromagnetic interaction between the moments is found when the two impurities are located on different sublattices. The presence of many impurities leads to a screening of this interaction as is shown by means of a coherent-potential approximation. Further, the Kondo screening of an impurity-induced local spin by charge carriers is discussed. {copyright} {ital 1997} {ital The American Physical Society}

  5. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    SciTech Connect (OSTI)

    Ogawa, Makoto; Morita, Masashi; Igarashi, Shota; Sato, Soh

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 m was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 C, though 600 C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassium lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: Potassium lithium titanate was prepared by solid-state reaction. Lower temperature reaction resulted in smaller sized particles of titanate. 600 C was good enough to obtain single phased potassium lithium titanate. The product exhibited better performance as photocatalyst.

  6. Electric dipole moment of light nuclei

    SciTech Connect (OSTI)

    Afnan, Iraj R.; Gibson, Benjamin F.

    2010-07-27

    We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.

  7. Electric dipole moment of light nuclei

    SciTech Connect (OSTI)

    Gibson, Benjamin; Afnan, I R

    2010-01-01

    We examine the sensitivity of the deuteron Electric Dipole Moment (EDM) to variation in the nucleon-nucleon interaction. In particular, we write the EDM as a sum of two terms, one depends on the target wave function, the second on intermediate multiple scattering states in the {sup 3}P{sub 1} channel. This second contribution is sensitive to off-shell behavior of the {sup 3}P{sub 1} amplitude.

  8. The MOMENT to search for CP violation

    SciTech Connect (OSTI)

    Blennow, Mattias; Coloma, Pilar; Fernndez-Martinez, Enrique

    2015-11-09

    In this letter, we analyze for the first time the physics reach in terms of sensitivity to leptonic CP violation of the proposed MuOn-decay MEdium baseline NeuTrino beam (MOMENT) experiment, a novel neutrino oscillation facility that would operate with neutrinos from muon decay. Apart from obtaining a sufficiently intense flux, the bottlenecks to the physics reach of this experiment will be achieving a high enough suppression of the atmospheric background and, particularly, attaining a sufficient level of charge identification. We thus present our results as a function of these two factors. We consider a very massive Gd-doped Water Cherenkov detector. We also find that MOMENT will be competitive with other currently planned future oscillation experiments if a charge identification of at least 80 % can be achieved at the same time that the atmospheric background can be suppressed by at least a factor of ten. We also find a large synergy of MOMENT with the current generation of neutrino oscillation experiments, T2K and NOvA, which significantly enhances its final sensitivity.

  9. Experimental estimation of dynamic plastic bending moments by plastic hinge models

    SciTech Connect (OSTI)

    Sogo, T.; Ujihashi, S.; Matsumoto, H.; Adachi, T.

    1995-12-31

    In the present paper, the experimental estimation of dynamic plastic bending moments for metallic materials is investigated. The three-point bending, test under impact and static loads is applied to aluminum alloy (JIS A6063S) and mild steel (JIS SS400). It is confirmed that tile dynamic bending deformations in three-point bending test can be modeled as a plastic hinge, tile experimental results show that the consumed energies of the specimens are proportional to the bending angles. The ratio of the consumed energy to the bending angle is approximately equal to the plastic bending moment. In the case of aluminum alloy, the dynamic plastic bending moments for the different average bending angular velocities coincide with the static plastic bending moments. On the other hand, in the case of mild steel, the dynamic plastic bending moments are proportional to the average bending angular velocities. As a result, we confirm that the present method based on the plastic hinge model and the consumed energy is efficient for determining tile dynamic plastic bending moment.

  10. Performance evaluation of diaminoazoxyfurazan (DAAF) as a booster material for insensitive high explosives using the onionskin test

    SciTech Connect (OSTI)

    Morris, John S; Francois, Elizabeth G; Hooks, Daniel E; Hill, Larry G; Harry, Herbert H

    2010-11-09

    Initiation of insensitive high explosive (IHE) formulations requires the use of a booster explosive in the initiation train. Booster material selection is crucial, as the initiation must reliably function across some spectrum of physical parameters. The interest in DAAF for this application stems from the fact that it possesses many traits of an IHE but is shock sensitive enough to serve as an explosive booster. A hemispherical wave breakout test, termed the onionskin test, is one of the methods used to evaluate the performance of a booster material. The wave breakout time-position history at the surface of a hemisphericallHE charge is recorded and the relative uniformity of the breakout can be quantitatively compared between booster materials. A series of onionskin tests were performed to investigate breakout and propagation diaminoazoxyfurazan (DAAF) at low temperatures to evaluate ignition and detonation spreading in comparison to other explosives commonly used in booster applications. Some wave perturbation was observed with the DAAF booster in the onionskin tests presented. The results of these tests will be presented and discussed.

  11. Material properties limiting the performance of CZT gamma-ray detectors

    SciTech Connect (OSTI)

    Bolotnikov,A.E.; Babalola, S.; Camarda, G. S.; Cui, Y.; Egarievwe, S. U.; Hossain, A.; Yang, G.; James, R. B.

    2009-03-16

    CdZnTe (CZT) nuclear radiation detectors are advanced sensors that utilize innovative technologies developed for wide band-gap semiconductor industry and microelectronics. They open opportunities for new types of room-temperature operating, field deployable instruments that provide accurate identification of potential radiological threats and timely awareness for both the civilian and military communities. Room-temperature radiation detectors are an emerging technology that relies on the use of high-quality CZT crystals whose availability is currently limited by material non-uniformities and the presence of extended defects. To address these issues, which are most critical to CZT sensor developments, we developed X-ray mapping and IR transmission microscopy systems to characterize both CZT crystals and devices. Since a customized system is required for such X-ray measurements, we use synchrotron radiation beams available at BNL's National Synchrotron Light Source. A highly-collimated and high-intensity X-ray beam supports measurements of areas as small as 10 x 10 {micro}m{sup 2}, and allowed us to see fluctuations in collected charge over the entire area of the detector in a reasonable time. The IR microscopy system allows for 3D visualization of Te inclusions and other extended defects. In this paper, we describe the experimental techniques used in our measurements and typical results obtained from CZT samples produced by different suppliers.

  12. Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery

    SciTech Connect (OSTI)

    Sahoo, Madhumita; Sreena, K.P.; Vinayan, B.P.; Ramaprabhu, S.

    2015-01-15

    Graphical abstract: Boron doped graphene (B-G), synthesized by simple hydrogen induced reduction technique using boric acid as boron precursor, have more uneven surface as a result of smaller bonding distance of boron compared to carbon, showed high capacity and high rate capability compared to pristine graphene as an anode material for Li ion battery application. - Abstract: The present work demonstrates a facile route for the large-scale, catalyst free, and green synthesis approach of boron doped graphene (B-G) and its use as high performance anode material for Li ion battery (LIB) application. Boron atoms were doped into graphene framework with an atomic percentage of 5.93% via hydrogen induced thermal reduction technique using graphite oxide and boric acid as precursors. Various characterization techniques were used to confirm the boron doping in graphene sheets. B-G as anode material shows a discharge capacity of 548 mAh g{sup ?1} at 100 mA g{sup ?1} after 30th cycles. At high current density value of 1 A g{sup ?1}, B-G as anode material enhances the specific capacity by about 1.7 times compared to pristine graphene. The present study shows a simplistic way of boron doping in graphene leading to an enhanced Li ion adsorption due to the change in electronic states.

  13. DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

    SciTech Connect (OSTI)

    Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L; Dannenberg, J; Lavernia, E; Schoenung, J; Branagan, D; Blue, C; Peter, B; Beardsley, B; Graeve, O; Aprigliano, L; Yang, N; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Lewandowski, J; Boudreau, J

    2007-09-21

    The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.

  14. Spin and orbital moments in actinide compounds (invited)

    SciTech Connect (OSTI)

    Lebech, B. ); Wulff, M.; Lander, G.H. )

    1991-04-15

    The extended spatial distribution of both the transition-metal 3{ital d} electrons and the actinide 5{ital f} electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single-electron band-structure calculations, is that the orbital moments of the actinide 5{ital f} electrons are considerably reduced from the values anticipated by a simple application of Hund's rules. To test these ideas, and thus to obtain a measure of the hybridization, we have performed a series of neutron scattering experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe{sub 2}, NpCo{sub 2}, and PuFe{sub 2} and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced as compared to the free-ion expectations. In addition there is qualitative agreement with theory, although the latter predicts values of both components that are larger than those found by experiment. Because {bold L} and {bold S} are opposed in the light actinides, and {ital L} is usually greater than {ital S}, the reduction of {ital L} can result in a situation for which {ital L}{minus}{ital S}{congruent}0. This almost occurs in UFe{sub 2}. However, neutrons are capable of observing the individual components at finite wave vector ({bold Q}), although the total component (observed at {bold Q}={bold 0}) may indeed be close to zero.

  15. Electric dipole moments (EDM) of ionic atoms

    SciTech Connect (OSTI)

    Oshima, Sachiko

    2010-03-15

    Recent investigations show that the second-order perturbation calculations of electric dipole moments (EDM) from the finite nuclear size as well as the relativistic effects are all canceled out by the third-order perturbation effects and that this is due to electron screening. To derive the nucleon EDM from the nucleus, we propose to measure the EDM of an ionic system. In this case, it is shown that the nucleon EDM can survive by the reduction factor of 1/Z for the ionic system with one electron stripped off.

  16. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    SciTech Connect (OSTI)

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna

    2015-05-15

    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  17. Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.

    SciTech Connect (OSTI)

    Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L.

    2010-01-01

    Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

  18. High Performance Valve Materials

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  19. Search for the Neutron Electric Dipole Moment

    SciTech Connect (OSTI)

    Plaster, Brad

    2010-08-04

    Searches for the neutron electric dipole moment (EDM) are motivated by their highly suppressed Standard Model value. The observation of a non-zero signal in the next generation of experiments would point unambiguously to the existence of new physics beyond the Standard Model. Several ongoing efforts worldwide hold the potential for an up to two-orders-of-magnitude improvement beyond the current upper limit on the neutron EDM of 2.9x10{sup -6} e-cm. In this talk, I review the basic measurement principles of neutron EDM searches, then discuss a new experiment to be carried out in the United States at the Spallation Neutron Source with ultracold neutrons and an in-situ '3He''co-magnetometer'.

  20. Identification of Explosives from Porous Materials: Applications Using Reverse Phase High Performance Liquid Chromatography and Gas Chromatography

    SciTech Connect (OSTI)

    C.J. Miller; G. Elias; N.C. Schmitt; C. Rae

    2010-06-01

    High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that were used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.

  1. Magnetic dipole moments of {sup 57,58,59}Cu

    SciTech Connect (OSTI)

    Cocolios, T. E.; Andreyev, A. N.; Bastin, B.; Bree, N.; Buescher, J.; Elseviers, J.; Gentens, J.; Huyse, M.; Kudryavtsev, Yu.; Pauwels, D.; Bergh, P. Van den; Van Duppen, P.; Sonoda, T.

    2010-01-15

    In-gas-cell laser spectroscopy of the isotopes {sup 57,58,59,63,65}Cu has been performed at the LISOL facility using the 244.164-nm optical transition from the atomic ground state of copper. A detailed discussion on the hyperfine structure of {sup 63}Cu is presented. The magnetic dipole moments of the isotopes {sup 57,58,59,65}Cu are extracted based on that of {sup 63}Cu. The new value mu=+0.479(13)mu{sub N} is proposed for {sup 58}Cu, consistent with that of a pip{sub 3/2} x nup{sub 3/2} ground-state configuration. Spin assignments for the radioactive isotopes {sup 57,58,59}Cu are confirmed. The isotope shifts between the different isotopes are also given and discussed.

  2. Community Reflects on Pivotal Moment in History with B Reactor | Department

    Office of Environmental Management (EM)

    of Energy Reflects on Pivotal Moment in History with B Reactor Community Reflects on Pivotal Moment in History with B Reactor September 29, 2014 - 12:00pm Addthis David Klaus, Deputy Under Secretary for Management and Performance, was joined by Mindi Linquist, State Director for U.S. Sen. Patty Murray, right, and Erik Olds, Chief of Staff, EM’s Office or River Protection, second from left, for an explanation of B Reactor operations from Gene Weisskopf with the B Reactor Museum

  3. Piecewise moments method: Generalized Lanczos technique for nuclear

    Office of Scientific and Technical Information (OSTI)

    response surfaces (Journal Article) | SciTech Connect Piecewise moments method: Generalized Lanczos technique for nuclear response surfaces Citation Details In-Document Search Title: Piecewise moments method: Generalized Lanczos technique for nuclear response surfaces For some years Lanczos moments methods have been combined with large-scale shell-model calculations in evaluations of the spectral distributions of certain operators. This technique is of great value because the alternative, a

  4. On the moment of inertia of a quantum harmonic oscillator

    SciTech Connect (OSTI)

    Khamzin, A. A. Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.

    2013-04-15

    An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.

  5. ARM - Evaluation Product - Corrected Precipitation Radar Moments in Antenna

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coordinates ProductsCorrected Precipitation Radar Moments in Antenna Coordinates Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Corrected Precipitation Radar Moments in Antenna Coordinates Raw moments from the scanning ARM precipitation radars (SAPRs) are subject to a number of instrumental and atmospheric phenomena that must be

  6. CFD Combustion Modeling with Conditional Moment Closure using Tabulated

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry | Department of Energy Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry CFD Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry A method is presented that allows for efficient conditional moment closure combustion simulations through the use of a progress variable based parameterization of the combustion chemistry. PDF icon p-15_borg.pdf More Documents & Publications Advanced CFD Models for High Efficiency Compression

  7. Neutron Electric Dipole Moments from Beyond the Standard Model...

    Office of Scientific and Technical Information (OSTI)

    Electric Dipole Moments from Beyond the Standard Model Physics Bhattacharya, Tanmoy Los Alamos National Laboratory Los Alamos National Laboratory; Cirigliano, Vincenzo Los...

  8. Neutron Electric Dipole Moments from Beyond the Standard Model...

    Office of Scientific and Technical Information (OSTI)

    Beyond the Standard Model Physics Citation Details In-Document Search Title: Neutron Electric Dipole Moments from Beyond the Standard Model Physics Authors: Bhattacharya, Tanmoy ...

  9. Direct Measurement of the Neutral Weak Dipole Moments of the...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... We present direct measurements of the neutral weak anomalous magnetic dipole moment, asub ...

  10. The search for permanent electric dipole moments

    SciTech Connect (OSTI)

    Kirch, Klaus

    2013-02-13

    Permanent electric dipole moments (EDMs) of fundamental systems with spin - particles, nuclei, atoms or molecules violate parity and time reversal invariance. Invoking the CPT theorem, time reversal violation implies CP violation. Although CP-violation is implemented in the standard electro-weak theory, EDM generated this way remain undetectably small. However, this CP-violation also appears to fail explaining the observed baryon asymmetry of our universe. Extensions of the standard theory usually include new sources of CP violation and often predict sizeable EDMs. EDM searches in different systems are complementary and various efforts worldwide are underway and no finite value has been established yet. The prototype of an EDM search is the pursuit of the EDM of the neutron. It has the longest history and at the same time is at the forefront of present research. The talk aims at giving an overview of the field with emphasis on our efforts within an international collaboration at PSI, nedm.web.psi.ch.

  11. Materials Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Videos Materials

  12. Stabilizing and increasing the magnetic moment of half-metals...

    Office of Scientific and Technical Information (OSTI)

    N , P , Si ) Citation Details In-Document Search Title: Stabilizing and increasing the magnetic moment of half-metals: The role of Li in half-Heusler LiMn Z ( Z N , P , Si ) ...

  13. Evaluation of Double-moment Microphysical Parameterization with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model?" Because of the lack of data with detailed MCS cloud components, a detailed evaluation of double-moment schemes has not yet been undertaken. During April and May of 2011,...

  14. Neutron Electric Dipole Moment from Beyond the Standard Model (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Conference: Neutron Electric Dipole Moment from Beyond the Standard Model Citation Details In-Document Search Title: Neutron Electric Dipole Moment from Beyond the Standard Model Authors: Bhattacharya, Tanmoy [1] ; Cirigliano, Vincenzo [1] ; Gupta, Rajan [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2012-12-10 OSTI Identifier: 1057140 Report Number(s): LA-UR-12-26831 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource

  15. Neutron Electric Dipole Moments from Beyond the Standard Model Physics

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Neutron Electric Dipole Moments from Beyond the Standard Model Physics Citation Details In-Document Search Title: Neutron Electric Dipole Moments from Beyond the Standard Model Physics × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in

  16. Forces and moments on a slender, cavitating body

    SciTech Connect (OSTI)

    Hailey, C.E.; Clark, E.L.; Buffington, R.J.

    1988-01-01

    Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with this code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.

  17. Multiconfiguration Dirac-Hartree-Fock calculations of the electric dipole moment of radium induced by the nuclear Schiff moment

    SciTech Connect (OSTI)

    Bieron, Jacek; Gaigalas, Gediminas; Gaidamauskas, Erikas; Fritzsche, Stephan; Indelicato, Paul; Joensson, Per

    2009-07-15

    The multiconfiguration Dirac-Hartree-Fock theory has been employed to calculate the electric dipole moment of the 7s6d {sup 3}D{sub 2} state of radium induced by the nuclear Schiff moment. The results are dominated by valence and core-valence electron correlation effects. We show that the correlation effects can be evaluated in a converged series of multiconfiguration expansions.

  18. Compressible, multiphase semi-implicit method with moment of fluid interface representation

    SciTech Connect (OSTI)

    Jemison, Matthew; Sussman, Mark; Arienti, Marco

    2014-09-16

    A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities are tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large impedance mismatch.

  19. Engineered Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Engineered Materials Materials design, fabrication, assembly, and characterization for national security needs. Contact Us Group Leader Ross Muenchausen Email Deputy Group Leader Dominic Peterson Email Group Office (505)-667-6887 We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly, characterization, and field support. We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly,

  20. Magnetic Moment Enhancement for Mn7 Cluster on Graphene

    SciTech Connect (OSTI)

    Liu, Xiaojie; Wang, Cai-Zhuang; Lin, Hai-Qing; Ho, Kai-Ming

    2014-08-21

    Mn7 cluster on graphene with different structural motifs and magnetic orders are investigated systematically by first-principles calculations. The calculations show that Mn7 on graphene prefers a two-layer motif and exhibits a ferrimagnetic coupling. The magnetic moment of the Mn7 cluster increases from 5.0 ?B at its free-standing state to about 6.0 ?B upon adsorption on graphene. Mn7 cluster also induces about 0.3 ?B of magnetic moment in the graphene layer, leading to an overall enhancement of 1.3 ?B magnetic moment for Mn7 on graphene. Detail electron transfer and bonding analysis have been carried out to investigate the origin of the magnetic enhancement.

  1. Electric dipole moments from flavored CP violation in supersymmetry

    SciTech Connect (OSTI)

    Calibbi, L.; Perez, J. Jones; Vives, O.

    2008-10-01

    The so-called supersymmetric flavor and CP problems are deeply related to the origin of flavor and hence to the origin of the standard model Yukawa couplings themselves. We show that realistic SU(3) flavor symmetries with spontaneous CP violation reproducing correctly the standard model Yukawa matrices can simultaneously solve both problems without ad hoc modifications of the supersymmetric model. We analyze the leptonic electric dipole moments and lepton flavor violation processes in these models. We show that the electron electric dipole moment and the decay {mu}{yields}e{gamma} are naturally within reach of the proposed experiments if the sfermion masses are measurable at the LHC.

  2. Validation Methodology to Allow Simulated Peak Reduction and Energy Performance Analysis of Residential Building Envelope with Phase Change Materials: Preprint

    SciTech Connect (OSTI)

    Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.

    2012-08-01

    Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conduction Finite Difference (CondFD) algorithms.

  3. High-Performance Corrosion-Resistant Materials: Iron-Based Amorphous-Metal Thermal-Spray Coatings: SAM HPCRM Program ? FY04 Annual Report ? Rev. 0 - DARPA DSO & DOE OCRWM Co-Sponsored Advanced Materials Program

    SciTech Connect (OSTI)

    Farmer, J; Haslam, J; Wong, F; Ji, S; Day, S; Branagan, D; Marshall, M; Meacham, B; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Buffa, E; Blue, C; Rivard, J; Beardsley, M; Weaver, D; Aprigliano, L; Kohler, L; Bayles, R; Lemieux, E; Wolejsza, T; Martin, F; Yang, N; Lucadamo, G; Perepezko, J; Hildal, K; Kaufman, L; Heuer, A; Ernst, F; Michal, G; Kahn, H; Lavernia, E

    2007-09-19

    The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.

  4. Stratus Cloud Drizzle Retrieval During SHEBA from MMCR Doppler Moments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drizzle Retrieval During SHEBA from MMCR Doppler Moments A. S. Frisch National Oceanic and Atmospheric Administration Environmental Technology Laboratory Colorado State University Boulder, Colorado M. D. Shupe Science Technology Corporation National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado Introduction The National Oceanic and Atmospheric Administration/Environmental Technology Laboratory (NOAA/ETL) operated a 35-GHz cloud radar during the

  5. Is the Energy Race our new "Sputnik" Moment? | Department of Energy

    Energy Savers [EERE]

    Is the Energy Race our new "Sputnik" Moment? Is the Energy Race our new "Sputnik" Moment? A report that analyzes the "Sputnik" moment and how it correlates to today's energy race. PDF icon Is the Energy Race our new "Sputnik" Moment? More Documents & Publications Is the Energy Race our new "Sputnik" Moment? Chu_NationalPressClub112910.pdf Energizing American Competitiveness in Solar Technologies

  6. Hybrid CuO/SnO{sub 2} nanocomposites: Towards cost-effective and high performance binder free lithium ion batteries anode materials

    SciTech Connect (OSTI)

    Xing, G. Z.; Wang, Y.; Wong, J. I.; Shi, Y. M.; Huang, Z. X.; Yang, H. Y.; Li, S.

    2014-10-06

    Hybrid CuO/SnO{sub 2} nanocomposites are synthesized by a facile thermal annealing method on Cu foils. Compared to pristine CuO and SnO{sub 2} nanostructures, hybrid CuO/SnO{sub 2} nanocomposites exhibit the enhanced electrochemical performances as the anode material of lithium ion batteries (LIBs) with high specific capacity and excellent rate capability. The binder free CuO/SnO{sub 2} nanocomposites deliver a specific capacity of 718 mA h g{sup ?1} at a current density of 500?mA g{sup ?1} even after 200 cycles. The enhanced electrochemical performances are attributed to the synergistic effect between SnO{sub 2} nanoparticles and CuO nanoarchitectures. Such hybrid CuO/SnO{sub 2} nanocomposites could open up a new route for the development of next-generation high-performance and cost-effective binder free anode material of LIBs for mass production.

  7. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating

    SciTech Connect (OSTI)

    Benli, Hueseyin; Durmus, Aydin

    2009-12-15

    The continuous increase in the level of greenhouse gas emissions and the rise in fuel prices are the main driving forces behind the efforts for more effectively utilize various sources of renewable energy. In many parts of the world, direct solar radiation is considered to be one of the most prospective sources of energy. In this study, the thermal performance of a phase change thermal storage unit is analyzed and discussed. The storage unit is a component of ten pieced solar air collectors heating system being developed for space heating of a greenhouse and charging of PCM. CaCl{sub 2}6H{sub 2}O was used as PCM in thermal energy storage with a melting temperature of 29 C. Hot air delivered by ten pieced solar air collector is passed through the PCM to charge the storage unit. The stored heat is utilized to heat ambient air before being admitted to a greenhouse. This study is based on experimental results of the PCM employed to analyze the transient thermal behavior of the storage unit during the charge and discharge periods. The proposed size of collectors integrated PCM provided about 18-23% of total daily thermal energy requirements of the greenhouse for 3-4 h, in comparison with the conventional heating device. (author)

  8. Material Performance of Fully-Ceramic Micro-Encapsulated Fuel under Selected LWR Design Basis Scenarios: Final Report

    SciTech Connect (OSTI)

    B. Boer; R. S. Sen; M. A. Pope; A. M. Ougouag

    2011-09-01

    The extension to LWRs of the use of Deep-Burn coated particle fuel envisaged for HTRs has been investigated. TRISO coated fuel particles are used in Fully-Ceramic Microencapsulated (FCM) fuel within a SiC matrix rather than the graphite of HTRs. TRISO particles are well characterized for uranium-fueled HTRs. However, operating conditions of LWRs are different from those of HTRs (temperature, neutron energy spectrum, fast fluence levels, power density). Furthermore, the time scales of transient core behavior during accidents are usually much shorter and thus more severe in LWRs. The PASTA code was updated for analysis of stresses in coated particle FCM fuel. The code extensions enable the automatic use of neutronic data (burnup, fast fluence as a function of irradiation time) obtained using the DRAGON neutronics code. An input option for automatic evaluation of temperature rise during anticipated transients was also added. A new thermal model for FCM was incorporated into the code; so-were updated correlations (for pyrocarbon coating layers) suitable to estimating dimensional changes at the high fluence levels attained in LWR DB fuel. Analyses of the FCM fuel using the updated PASTA code under nominal and accident conditions show: (1) Stress levels in SiC-coatings are low for low fission gas release (FGR) fractions of several percent, as based on data of fission gas diffusion in UO{sub 2} kernels. However, the high burnup level of LWR-DB fuel implies that the FGR fraction is more likely to be in the range of 50-100%, similar to Inert Matrix Fuels (IMFs). For this range the predicted stresses and failure fractions of the SiC coating are high for the reference particle design (500 {micro}mm kernel diameter, 100 {micro}mm buffer, 35 {micro}mm IPyC, 35 {micro}mm SiC, 40 {micro}mm OPyC). A conservative case, assuming 100% FGR, 900K fuel temperature and 705 MWd/kg (77% FIMA) fuel burnup, results in a 8.0 x 10{sup -2} failure probability. For a 'best-estimate' FGR fraction of 50% and a more modest burnup target level of 500 MWd/kg ,the failure probability drops below 2.0 x 10{sup -5}, the typical performance of TRISO fuel made under the German HTR research program. An optimization study on particle design shows improved performance if the buffer size is increased from 100 to 120 {micro}mm while reducing the OPyC layer. The presence of the latter layer does not provide much benefit at high burnup levels (and fast fluence levels). Normally the shrinkage of the OPyC would result in a beneficial compressive force on the SiC coating. However, at high fluence levels the shrinkage is expected to turn into swelling, resulting in the opposite effect. However, this situation is different when the SiC-matrix, in which the particles are embedded, is also considered: the OPyC swelling can result in a beneficial compressive force on the SiC coating since outward displacement of the OPyC outer surface is inhibited by the presence of the also-swelling SiC matrix. Taking some credit for this effect by adopting a 5 {micro}mm SiC-matrix layer, the optimized particle (100 {micro}mm buffer and 10 {micro}mm OPyC), gives a failure probability of 1.9 x 10{sup -4} for conservative conditions. During a LOCA transient, assuming core re-flood in 30 seconds, the temperature of the coated particle can be expected to be about 200K higher than nominal temperature (900K). For this event the particle failure fraction for a conservative case is 1.0 x 10{sup -2}, for the optimized particle design. For a FGR-fraction of 50% this value reduces to 6.4 x 10{sup -4}.

  9. Higgs-Higgsino-gaugino induced two loop electric dipole moments

    SciTech Connect (OSTI)

    Li Yingchuan; Profumo, Stefano; Ramsey-Musolf, Michael

    2008-10-01

    We compute the complete set of Higgs-mediated chargino-neutralino two-loop contributions to the electric dipole moments of the electron and neutron in the minimal supersymmetric standard model (MSSM). We study the dependence of these contributions on the parameters that govern CP-violation in the MSSM gauge-gaugino-Higgs-Higgsino sector. We find that contributions mediated by the exchange of WH{sup {+-}} and ZA{sup 0} pairs, where H{sup {+-}} and A{sup 0} are the charged and CP-odd Higgs scalars, respectively, are comparable to or dominate over those mediated by the exchange of neutral gauge bosons and CP-even Higgs scalars. We also emphasize that the result of this complete set of diagrams is essential for the full quantitative study of a number of phenomenological issues, such as electric dipole moment searches and their implications for electroweak baryogenesis.

  10. LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIMIT ON THE MUON NEUTRINO MAGNETIC MOMENT AND A MEASUREMENT OF THE CCPIP TO CCQE CROSS SECTION RATIO A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Physics And Astronomy by Serge Ouedraogo B.S. in Physics, University of Arkansas at Little Rock, 2001 M.S., Louisiana State University, 2004 December 2008 In loving memory

  11. Seismic moment summation for historical earthquakes in Italy - tectonic implications

    SciTech Connect (OSTI)

    Westaway, R. )

    1992-10-01

    Tectonic deformation rates in and around the Apennine mountains of Italy are studied using seismic moments estimated from macroseismic effects of historical earthquakes. Northeastward extension in the northern Apennines (north of about 42.5 deg N) accompanies shortening along their northeast flank. Since the seventeenth century, the sparce seismicity in these two zones has included no earthquake with magnitude greater than 6.5 or seismic moment above about 6x10 exp 18 N m. Their spatially averaged deformation rates are only about 0.3 mm/yr, but are equal, such that the extention and shortening balance with no relative motion between their external surroundings. In contrast, the numerous historical earthquakes in the central and southern Apennines with magnitude about 7 and seismic moment about 20x10 exp 18 N m require northeastward relative velocity across the deforming zone up to about 5 mm/yr, matching the expected relative motion of their surroundings. The northern Apennines thus show different senses and rates of deformation from localities farther south, and are thus tectonically distinct at present, in contrast with previous interpretations. 82 refs.

  12. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Hui; Yu, Xiqian; Bai, Ying; Wu, Feng; Wu, Chuan; Liu, Liang-Yu; Yang, Xiao-Qing

    2015-01-01

    Na3V2-xMgx(PO4)3/C composites with different Mg2+ doping contents (x=0, 0.01, 0.03, 0.05, 0.07 and 0.1) were prepared by a facile sol-gel method. The doping effects on the crystal structure were investigated by XRD, XPS and EXAFS. The results show that low dose doping Mg2+ does not alter the structure of the material, and magnesium is successfully substituted for vanadium site. The Mg doped Na3V2-xMgx(PO4)3/C composites exhibit significant improvements on the electrochemistry performances in terms of the rate capability and cycle performance, especially for the Na3V1.95Mg0.05(PO4)3/C. For example, when the current density increased from 1 C to 30 C, the specific capacitymore » only decreased from 112.5 mAh g-1 to 94.2 mAh g-1 showing very good rate capability. Moreover, even cycling at a high rate of 20 C, an excellent capacity retention of 81% is maintained from the initial value of 106.4 mAh g-1 to 86.2 mAh g-1 at the 50th cycle. Enhanced rate capability and cycle performance can be attributed to the optimized particle size, structural stability and enhanced ionic and electronic conductivity induced by Mg doping.« less

  13. Lightweight high performance ceramic material

    DOE Patents [OSTI]

    Nunn, Stephen D [Knoxville, TN

    2008-09-02

    A sintered ceramic composition includes at least 50 wt. % boron carbide and at least 0.01 wt. % of at least one element selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy Ho, Er, Tm, Yb, and Lu, the sintered ceramic composition being characterized by a density of at least 90% of theoretical density.

  14. Experimental Evaluation of Beam to Diamond Box Column Connection with Through Plate in Moment Frames

    SciTech Connect (OSTI)

    Keshavarzi, Farhad; Torabian, Shahabeddin; Imanpour, Ali; Mirghaderi, Rasoul

    2008-07-08

    Moment resisting frames with built up section have very enhanced features due to high bending stiffness and strength characteristics in two principal axes and access to column faces for beam to column easy connections. But due to proper transfer of beam stresses to column faces there were always some specific controvertibly issues that how to make the load transfer through and in plane manner in order to mobilize the forces in column faces. Using diamond column instead of box column provide possibility to mobilize the load transfer mechanism in column faces. This section as a column has considerable benefit such as high plastic to elastic section modulus ratio which is an effective factor for force controlled components. Typical connection has no chance to be applied with diamond column.This paper elucidates the seismic behavior of through-plates moment connections to diamond box columns for use in steel moment resisting frames. This connection has a lot of economical benefits such as no need to horizontal continuity plates and satisfying the weak beam--strong column criteria in the connection region. They might serve as panel zone plates as well. According to high shear demand in panel zone of beam to column joint one should use the doublers plates in order to decrease the shear strength demand in this sensitive part of structure but these plates have no possibility to mobilize the load transfer mechanism in column web and transfer them to column flanges. In this type of connection, column faces have effective role in order to decrease the demands on through plate and they are impressive factors for improving the performance of the connection.Experimental analysis was conducted to elucidate the seismic behavior of this connection. The results of Experimental analysis established the effectiveness of the through plate in mitigating local stress concentrations and forming the plastic hinge zone in the beam away from the beam to column interface. The moment-rotation graphs form sub-assemblage show a desirable seismic performance of this connection.

  15. Magnetism of j = 1/2 moments on the fcc lattice in double perovskite...

    Office of Scientific and Technical Information (OSTI)

    Magnetism of j 12 moments on the fcc lattice in double perovskite Mott insulators Citation Details In-Document Search Title: Magnetism of j 12 moments on the fcc lattice in...

  16. WAFER TEST CAVITY -Linking Surface Microstructure to RF Performance: a ‘Short-­‐Sample Test Facility’ for characterizing superconducting materials for SRF cavities.

    SciTech Connect (OSTI)

    Pogue, Nathaniel; Comeaux, Justin; McIntyre, Peter

    2014-05-30

    The Wafer Test cavity was designed to create a short sample test system to determine the properties of the superconducting materials and S‐I‐S hetero‐structures. The project, funded by ARRA, was successful in accomplishing several goals to achieving a high gradient test system for SRF research and development. The project led to the design and construction of the two unique cavities that each severed unique purposes: the Wafer test Cavity and the Sapphire Test cavity. The Sapphire Cavity was constructed first to determine the properties of large single crystal sapphires in an SRF environment. The data obtained from the cavity greatly altered the design of the Wafer Cavity and provided the necessary information to ascertain the Wafer Test cavity’s performance.

  17. Beam hardening and smoothing correction effects on performance of micro-ct SkyScan 1173 for imaging low contrast density materials

    SciTech Connect (OSTI)

    Sriwayu, Wa Ode; Haryanto, Freddy; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar

    2015-04-16

    We have designed and fabricated phantom mimicking breast cancer composition known as a region that has low contrast density. The used compositions are a microcalcifications, fatty tissues and tumor mass by using Al{sub 2}O{sub 3}, C{sub 27}H{sub 46}O, and hard nylon materials. Besides, phantom also has a part to calculate low cost criteria /CNR (Contrast to Noise Ratio). Uniformity will be measured at water distillation medium located in a part of phantom scale contrast. Phantom will be imaged by using micro ct-sky scan 1173 high energy type, and then also can be quantified CT number to examine SkyScan 1173 performance in imaging low contrast density materials. Evaluation of CT number is done at technique configuration parameter using voltage of 30?kV, exposure 0.160 mAs, and camera resolution 560x560 pixel, the effect of image quality to reconstruction process is evaluated by varying image processing parameters in the form of beam hardening corrections with amount of 25%, 66% and100% with each smoothing level S10,S2 and S7. To obtain the better high quality image, the adjustment of beam hardening correction should be 66% and smoothing level reach maximal value at level 10.

  18. Moments of the neutron g₂ structure function at intermediate Q²

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solvignon-Slifer, Patricia H.

    2015-07-15

    We present new experimental results of the ³He spin structure function g₂ in the resonance region at Q² values between 1.2 and 3.0 (GeV/c)². Spin dependent moments of the neutron were then extracted.Our main result, the inelastic contribution to the neutron d₂ matrix element, was found to be small (Q²) = 2.4 (GeV/c)² and in agreement with the Lattice QCD calculation. The Burkhardt-Cottingham sum rule for ³He neutron was tested with the measured data and using the Wandzura-Wilczek relation for the low x unmeasured region.

  19. Evidence-Based Background Material Underlying Guidance for Federal Agencies in Implementing Strategic Sustainability Performance Plans - Implementing Sustainability: The Institutional-Behavioral Dimension

    SciTech Connect (OSTI)

    Malone, Elizabeth L.; Sanquist, Tom; Wolfe, Amy K.; Diamond, Rick; Payne, Christopher; Dion, Jerry

    2013-06-01

    This document is part of a larger, programmatic effort to assist federal agencies in taking action and changing their institutions to achieve and maintain federal sustainability goals, while meeting their mission goals. FEMP is developing guidance for federal agency efforts to enable institutional behavior change for sustainability, and for making sustainability “business as usual.” The driving requirement for this change is Executive Order (EO) 13514, Federal Leadership in Environmental, Energy, and Economic Performance. FEMP emphasizes strategies for increasing energy efficiency and renewable energy utilization as critical components of attaining sustainability, and promotes additional non-energy action pathways contained in EO 13514. This report contributes to the larger goal by laying out the conceptual and evidentiary underpinnings of guidance to federal agencies. Conceptual frameworks focus and organize the development of guidance. We outline a series of progressively refined conceptual frameworks, including a multi-layer approach, key steps in sustainability implementation, a process view of specific approaches to institutional change, the agency Strategic Sustainability Performance Plans (SSPPs), and concepts related to context-specific rules, roles and tools for sustainability. Additionally, we tap pertinent bodies of literature in drawing eight evidence-based principles for behavior change. These principles are important foundations upon which to build in selecting strategies to effect change in organizations. Taken together, this report presents a suite of components that inform the training materials, presentations, web site, and other products that provide guidance to federal agencies.

  20. Compressible, multiphase semi-implicit method with moment of fluid interface representation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jemison, Matthew; Sussman, Mark; Arienti, Marco

    2014-09-16

    A unified method for simulating multiphase flows using an exactly mass, momentum, and energy conserving Cell-Integrated Semi-Lagrangian advection algorithm is presented. The deforming material boundaries are represented using the moment-of-fluid method. Our new algorithm uses a semi-implicit pressure update scheme that asymptotically preserves the standard incompressible pressure projection method in the limit of infinite sound speed. The asymptotically preserving attribute makes the new method applicable to compressible and incompressible flows including stiff materials; enabling large time steps characteristic of incompressible flow algorithms rather than the small time steps required by explicit methods. Moreover, shocks are captured and material discontinuities aremore » tracked, without the aid of any approximate or exact Riemann solvers. As a result, wimulations of underwater explosions and fluid jetting in one, two, and three dimensions are presented which illustrate the effectiveness of the new algorithm at efficiently computing multiphase flows containing shock waves and material discontinuities with large “impedance mismatch.”« less

  1. Chapter 6: Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Materials Material Selection Sustainable Building Materials System Integration Issues | Chapter 6 Material Selection Materials The use of durable, attractive, and environmentally responsible building materials is a key element of any high-performance building effort. The use of natural and healthy materials contributes to the well-being of the occupants and to a feeling of connection with the bounty of the natural world. Many construction materials have significant environ- mental impacts from

  2. The electric dipole moment of cobalt monoxide, CoO

    SciTech Connect (OSTI)

    Zhuang, Xiujuan; Steimle, Timothy C.

    2014-03-28

    A number of low-rotational lines of the E{sup 4}?{sub 7/2}???X{sup 4}?{sub 7/2} (1,0) band system of cobalt monoxide, CoO, were recorded field free and in the presence of a static electric field. The magnetic hyperfine parameter, h{sub 7/2}, and the electron quadrupole parameter, eQq{sub 0}, for the E{sup 4}?{sub 7/2}(? = 1) state were optimized from the analysis of the field-free spectrum. The permanent electric dipole moment, ?{sup -vector}{sub el}, for the X{sup 4}?{sub 7/2} (? = 0) and E{sup 4}?{sub 7/2} (? = 1) states were determined to be 4.18 0.05 D and 3.28 0.05 D, respectively, from the analysis of the observed Stark spectra of F? = 7???F? = 6 branch feature in the Q(7/2) line and the F? = 8???F? = 7 branch feature in the R(7/2) line. The measured dipole moments of CoO are compared to those from theoretical predictions and the trend across the 3d-metal monoxide series discussed.

  3. Combinatorial theory of the semiclassical evaluation of transport moments. I. Equivalence with the random matrix approach

    SciTech Connect (OSTI)

    Berkolaiko, G.; Kuipers, J.

    2013-11-15

    To study electronic transport through chaotic quantum dots, there are two main theoretical approaches. One involves substituting the quantum system with a random scattering matrix and performing appropriate ensemble averaging. The other treats the transport in the semiclassical approximation and studies correlations among sets of classical trajectories. There are established evaluation procedures within the semiclassical evaluation that, for several linear and nonlinear transport moments to which they were applied, have always resulted in the agreement with random matrix predictions. We prove that this agreement is universal: any semiclassical evaluation within the accepted procedures is equivalent to the evaluation within random matrix theory. The equivalence is shown by developing a combinatorial interpretation of the trajectory sets as ribbon graphs (maps) with certain properties and exhibiting systematic cancellations among their contributions. Remaining trajectory sets can be identified with primitive (palindromic) factorisations whose number gives the coefficients in the corresponding expansion of the moments of random matrices. The equivalence is proved for systems with and without time reversal symmetry.

  4. Itinerant electrons, local moments, and magnetic correlations in the pnictide superconductors CeFeAsO₁₋xFxand Sr(Fe₁₋xCox)₂As₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vilmercati, Paolo; Fedorov, Alexei; Bondino, Federica; Offi, Francesco; Panaccione, Giancarlo; Lacovig, Paolo; Simonelli, Laura; McGuire, Michael A.; Sefat, Athena S. M.; Mandrus, David; et al

    2012-06-15

    A direct and element-specific measurement of the local Fe spin moment has been provided by analyzing the Fe 3s core level photoemission spectra in the parent and optimally doped CeFeAsO₁₋xFx (x = 0, 0.11) and Sr(Fe₁₋xCox)2As2 (x = 0, 0.10) pnictides. The rapid time scales of the photoemission process allowed the detection of large local spin moments fluctuating on a 10⁻¹⁵ s time scale in the paramagnetic, antiferromagnetic, and superconducting phases, indicative of the occurrence of ubiquitous strong Hund's magnetic correlations. The magnitude of the spin moment is found to vary significantly among different families, 1.3μB in CeFeAsO and 2.1μBmore » in SrFe₂As₂. Surprisingly, the spin moment is found to decrease considerably in the optimally doped samples, 0.9μB in CeFeAsO₀.₈₉F₀.₁₁ and 1.3μB in Sr(Fe₀.₉Co₀.₁)₂As₂. The strong variation of the spin moment against doping and material type indicates that the spin moments and the motion of itinerant electrons are influenced reciprocally in a self-consistent fashion, reflecting the strong competition between the antiferromagnetic superexchange interaction among the spin moments and the kinetic energy gain of the itinerant electrons in the presence of a strong Hund's coupling. By describing the evolution of the magnetic correlations concomitant with the appearance of superconductivity, these results constitute a fundamental step toward attaining a correct description of the microscopic mechanisms shaping the electronic properties in the pnictides, including magnetism and high-temperature superconductivity.« less

  5. Reply to "Comment on `Axion Induced Oscillating Electric Dipole Moments' "

    SciTech Connect (OSTI)

    Hill, Christopher T.

    2015-10-19

    A recent paper of Flambaum, Roberts and Stadnik, [1], claims there is no induced oscillating electric dipole moment (OEDM), eg, for the electron, arising from the oscillating cosmic axion background via the anomaly. This claim is based upon the assumption that electric dipoles always be defined by their coupling to static (constant in time) electric fields. The relevant Feynman diagram, as computed by [1], then becomes a total divergence, and vanishes in momentum space. However, an OEDM does arise from the anomaly, coupled to time dependent electric fields. It shares the decoupling properties with the anomaly. The full action, in an arbitrary gauge, was computed in [2], [3]. It is nonvanishing with a time dependent outgoing photon, and yields physics, eg, electric dipole radiation of an electron immersed in a cosmic axion field.

  6. Nuclear electric dipole moment of {sup 3}He

    SciTech Connect (OSTI)

    Stetcu, I.; Friar, J. L.; Hayes, A. C.; Liu, C.-P.; Navratil, P.

    2009-01-28

    In the no-core shell model (NCSM) framework, we calculate the {sup 3}He electric dipole moment (EDM) generated by parity- and time-reversal violation in the nucleon-nucleon interaction. While the results are somehow sensitive to the interaction model chosen for the strong two- and three-body interactions, we demonstrate the pion-exchange dominance to the EDM of {sup 3}He, if the coupling constants for {pi}, {rho} and {omega}-exchanges are of comparable magnitude, as expected. Finally, our results suggest that a measurement of {sup 3}He EDM would be complementary to the currently planned neutron and deuteron experiments, and would constitute a powerful constraint to the models of the pion P- and T-violating interactions.

  7. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore » XEFT predictions to order N3LO.« less

  8. Measurement and Interpretation of Moments of the Combined Hadronic Mass and Energy Spectrum in Inclusive Semileptonic B-Meson Decays

    SciTech Connect (OSTI)

    Klose, Verena; /Dresden, Tech. U.

    2011-08-12

    This thesis presents first measurements of moments of the hadronic n{sub X}{sup 2} distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B {yields} X{sub c}{ell}{nu}. The variable n{sub X}{sup 2} is a combination of the invariant mass of the charmed meson m{sub X}, its energy in the B-meson rest-frame E{sub X;BRF}, and a constant {tilde {Lambda}} = 0.65 GeV, n{sub X}{sup 2} = m{sub X}{sup 2}c{sup 4}-2{tilde {Lambda}}E{sub X,BRF} + {tilde {Lambda}}{sup 2}. The moments with k = 2,4,6 are measured as proposed by theory to constrain assumptions made in the theoretical description of inclusive observables in semileptonic B-meson decays. This description uses Heavy Quark Expansion (HQE), an effective QCD combined with an Operator Product Expansion. The measurement is based on a sample of 231.6 million e{sup +}e{sup -} {yields} {Upsilon}(4S) {yields} B{bar B} events recorded with the BABAR experiment at the PEP-II e{sup +}e{sup -}-storage rings at SLAC. We reconstruct the semileptonic decay by identifying a charged lepton in events tagged by a fully reconstructed hadronic decay of the second B meson. Correction procedures are derived from Monte Carlo simulations to ensure an unbiased measurement of the moments of the n{sub X}{sup 2} distribution. All moments are measured requiring minimum lepton momenta between 0.8 GeV/c and 1.9 GeV/c in the rest frame of the B meson. Performing a simultaneous fit to the measured moments up to order k = 6 combined with other measurements of moments of the lepton-energy spectrum in decays B {yields} X{sub c}{ell}{nu} and moments of the photon-energy spectrum in decays B {yields} X{sub s}{gamma}, we determine the quark-mixing parameter |V{sub cb}|, the bottom and charm quark masses, the semileptonic branching fraction {Beta}(B {yields} X{sub c}{ell}{nu}), and four non-perturbative heavy quark parameters. Using HQE calculations in the kinetic scheme up to order 1/m{sub b}{sup 3} we find |V{sub cb}| = (41.65 {+-} 0.43 {+-} 0.40 {+-} 0.58) {center_dot} 10{sup -3} and m{sub b} = (4.570 {+-} 0.033 {+-} 0.043) GeV/c{sup 2}, where the first uncertainty refers to experimental contributions, the second to uncertainties in the HQE, and the third to theoretical uncertainties in the calculations of the semileptonic decay rate {Lambda}(B {yields} X{sub c}{ell}{nu}). All obtained results are consistent with previous determinations. The inclusion of the moments decreases the uncertainty on the HQE parameters {mu}{sub {pi}}{sup 2} and {rho}{sub D}{sup 3}. Furthermore, the theoretical treatment of higher order corrections in the HQE used for the moments has been verified with these new measurements.

  9. Shell model estimate of electric dipole moment in medium and heavy nuclei

    SciTech Connect (OSTI)

    Yoshinaga, Naotaka; Higashiyama, Koji

    2011-05-06

    The nuclear electric dipole moment (EDM) and the nuclear Schiff moment for the lowest 1/2{sup +} state of {sup 129}Xe are investigated in terms of the nuclear shell model. We estimate the upper limit for the EDM of neutral {sup 129}Xe atom using the Schiff moment. We also estimate the upper limit of the nuclear EDM, which may be directly measured through ionic atoms.

  10. Is the Energy Race our new "Sputnik" Moment? | Department of Energy

    Office of Environmental Management (EM)

    Is the Energy Race our new "Sputnik" Moment? Is the Energy Race our new "Sputnik" Moment? National Press Club Washington, D.C. 29 November, 2010 Office presentation icon Chu_NationalPressClub112910.ppt More Documents & Publications Is the Energy Race our new "Sputnik" Moment? Chu_NationalPressClub112910.pdf US-China clean energy report

  11. Model dependence of the {sup 2}H electric dipole moment

    SciTech Connect (OSTI)

    Afnan, I. R.; Gibson, B. F.

    2010-12-15

    Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the {sup 3}P{sub 1} channel, the latter being sensitive to the off-shell behavior of the {sup 3}P{sub 1} amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the {sup 2}H EDM until such time as a measurement better than 10% is obtained.

  12. Combinational pixel-by-pixel and object-level classifying, segmenting, and agglomerating in performing quantitative image analysis that distinguishes between healthy non-cancerous and cancerous cell nuclei and delineates nuclear, cytoplasm, and stromal material objects from stained biological tissue materials

    DOE Patents [OSTI]

    Boucheron, Laura E

    2013-07-16

    Quantitative object and spatial arrangement-level analysis of tissue are detailed using expert (pathologist) input to guide the classification process. A two-step method is disclosed for imaging tissue, by classifying one or more biological materials, e.g. nuclei, cytoplasm, and stroma, in the tissue into one or more identified classes on a pixel-by-pixel basis, and segmenting the identified classes to agglomerate one or more sets of identified pixels into segmented regions. Typically, the one or more biological materials comprises nuclear material, cytoplasm material, and stromal material. The method further allows a user to markup the image subsequent to the classification to re-classify said materials. The markup is performed via a graphic user interface to edit designated regions in the image.

  13. Experimental and Numerical Assessment of a New Alternative of RBS Moment Connection

    SciTech Connect (OSTI)

    Mirghaderi, Rasoul; Imanpour, Ali; Keshavarzi, Farhad; Torabian, Shahab

    2008-07-08

    Reduced beam section (RBS) connection has been known as a famous connection for steel moment-resisting seismic frames in high-rise buildings, because of their economical advantages and seismic ductility. In the ordinary RBS connection, often portions of the beam flanges are selectively trimmed in the region adjacent to the beam-to-column connection, and beam section is weakened in the plastic hinge region; section weakening concept in the plastic hinge region of beam cause to reduction of beam plastic section modulus in this region, and force plastic hinge to occur within the reduced section.This paper presents a new alternative of RBS connection that has been used aforesaid weakening concept in it, with this difference that corrugated steel plate webs instead of beam flange cutting has been used in limited specific length near the column face. Corrugated steel plates because of their accordion effect don't have bending rigidity, then using of these plates in plastic hinge region reduces the beam plastic section modulus and plastic hinge is formed in corrugated region. For investigating the seismic behavior and performance of new RBS moment connection, experimental specimen of new RBS connection were subjected to cyclic load, and finite element analysis were executed. The result of cyclic test and numerical analysis specified that the corrugated webs improved the plastic stability and provided capability of large plastic rotation at the plastic hinge location without any appreciable buckling and brittle fractures in this region. The test observations also showed that the specimens' plastic rotations exceeded 0.04 rad without any local and global buckling. All of the analytical results for proposed connection are generally in good agreement with the test observations.

  14. Magnetic Dipole Moment of {sup 57,59}Cu Measured by In-Gas-Cell Laser Spectroscopy

    SciTech Connect (OSTI)

    Cocolios, T. E.; Andreyev, A. N.; Bastin, B.; Bree, N.; Buescher, J.; Elseviers, J.; Gentens, J.; Huyse, M.; Kudryavtsev, Yu.; Pauwels, D.; Van den Bergh, P.; Van Duppen, P.; Sonoda, T.

    2009-09-04

    For the first time, in-gas-cell laser spectroscopy study of the {sup 57,59,63,65}Cu isotopes has been performed using the 244.164 nm optical transition from the atomic ground state of copper. The nuclear magnetic dipole moments for {sup 57,59,65}Cu relative to that of {sup 63}Cu have been extracted. The new value for {sup 57}Cu of mu({sup 57}Cu)=+2.582(7)mu{sub N} is in strong disagreement with the previous literature value but in good agreement with recent theoretical and systematic predictions.

  15. Characterization and Electrochemical Performance of SubstitutedLiNi0.4Co0.2-yAlyMn0.4O2 (0<_y<_0.2) Cathode Materials

    SciTech Connect (OSTI)

    Wilcox, James D.; Doeff, Marca M.

    2007-11-28

    A complete series of LiNi0.4Co0.2-yAlyMn0.4O2 (0<_y<_0.2) materials have been synthesized and investigated as cathode materials for lithium ion batteries. When cycled between 2.0 and 4.3 V vs. Li/Li+ at a current density of 0.1 mA/cm2, stable capacities of ~;;160 mAh/g for y=0 to ~;;110 mAh/g for y=0.2 are achieved. Upon increasing the current density, it is found that all materials containing aluminum show reduced polarization and improved rate performance. The optimal performance at all current densities was found for the compound with y=0.05. The effect of aluminumsubstitution on the crystal structure of the host is discussed.

  16. Thermoelectrics Partnership: High Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric...

  17. Role of fourth-order phase-space moments in collective modes of trapped Fermi gases

    SciTech Connect (OSTI)

    Chiacchiera, Silvia; Lepers, Thomas; Davesne, Dany; Urban, Michael

    2011-10-15

    We study the transition from hydrodynamic to collisionless behavior in collective modes of ultracold trapped Fermi gases. To that end, we solve the Boltzmann equation for the trapped Fermi gas via the moments method. We showed previously that it is necessary to go beyond second-order moments if one wants to reproduce the results of a numerical solution of the Boltzmann equation. Here, we will give the detailed description of the method including fourth-order moments. We apply this method to the case of realistic parameters, and compare the results for the radial quadrupole and scissors modes at unitarity to experimental data obtained by the Innsbruck group. It turns out that the inclusion of fourth-order moments clearly improves the agreement with the experimental data. In particular, the fourth-order moments reduce the effect of collisions and therefore partially compensate the effect of the enhanced in-medium cross section at low temperatures.

  18. Electric Dipole Moments in Radioactive Nuclei, Tests of Time Reversal Symmetry

    SciTech Connect (OSTI)

    Auerbach, N.

    2010-11-24

    The research of radioactive nuclei opens new possibilities to study fundamental symmetries, such as time reversal and reflection symmetry. Such nuclei often provide conditions to check in an optimal way certain symmetries and the violation of such symmetries. We will discuss the possibility of obtaining improved limits on violation of time reversal symmetry using pear shaped radioactive nuclei. An effective method to test time reversal invariance in the non-strange sector is to measure parity and time reversal violating (T-P-odd) electromagnetic moments, (such as the static electric dipole moment). Parity and time reversal violating components in the nuclear force may produce P-T-odd moments in nuclei which in turn induce such moments in atoms. We will discuss the possibility that in some reflection asymmetric, heavy nuclei (which are radioactive) these moments are enhanced by several orders of magnitude. Present and future experiments, which will test this idea, will be mentioned.

  19. Multiferroicity and spiral magnetism in FeVO{sub 4} with quenched Fe orbital moments

    SciTech Connect (OSTI)

    Daoud-Aladine, A.; Chapon, L. C.; Kundys, B.; Martin, C.; Simon, C.; Radaelli, P. G.; Brown, P. J.

    2009-12-01

    FeVO{sub 4} has been studied by heat capacity, magnetic susceptibility, electric polarization and single-crystal neutron-diffraction experiments. The triclinic crystal structure is made of S-shaped clusters of six Fe{sup 3+} ions, linked by VO{sub 4}{sup 3-} groups. Two long-range magnetic ordering transitions occur at T{sub N1}=22 K and T{sub N2}=15 K. Both magnetic structures are incommensurate and below T{sub N2}, FeVO{sub 4} becomes weakly ferroelectric coincidentally with the loss of the collinearity of the magnetic structure in a very similar fashion than in the classical TbMnO{sub 3} multiferroic material. However we argue that the symmetry considerations and the mechanisms invoked to explain these properties in TbMnO{sub 3} do not straightforwardly apply to FeVO{sub 4}. First, the magnetic structures, even the collinear structure, are all acentric so that ferroelectricity in FeVO{sub 4} is not correlated with the fact magnetic ordering is breaking inversion symmetry. Regarding the mechanism, FeVO{sub 4} has quenched orbital moments that questions the exact role of the spin-orbit interactions.

  20. On the possibility of observing variations of the positron magnetic moment in crystals

    SciTech Connect (OSTI)

    Tikhomirov, V.V.

    1994-12-01

    An analysis of the interaction of e{sup {+-}} with a crossed field revealed that the anomalous magnetic moment {mu}{prime} must differ considerably from its Schwinger value for a field strength E, H {approx} H{sub 0} = m{sup 2}c{sup 3}/e{h_bar} = 4.41{times}10{sup 13}G in the intrinsic reference frame. Such a crossed-field strength can be attained in the intrinsic reference frame of e{sup {+-}} that move along the crystallographic axes. This is due to the fact that the field strength E along the axes is {approx} Z{times}10{sup 10}V/cm (Z is the atomic number of the crystal material), while the field strength E{prime}{approx_equal}H{prime}{approx_equal}{gamma}E in the intrinsic system of e{sup {+-}} that have an energy En {approx} 50 GeV is larger than E by a factor of {gamma} = En/m {approx} 10{sup 5}. The effect of spin rotation in bent crystals can be used to observe the variation of {mu}{prime} in a high-intensity crystal field.

  1. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules

    SciTech Connect (OSTI)

    Fu, Li-juan E-mail: juha.vaara@iki.fi; Vaara, Juha E-mail: juha.vaara@iki.fi

    2014-01-14

    Nuclear magneto-optic effects could make important contributions to novel, high-sensitivity, and high-resolution spectroscopic and imaging methods that provide nuclear site-specific structural and dynamic information on molecular and materials systems. Here we present a first-principles electronic structure formulation of nuclear quadrupole moment-induced Cotton-Mouton effect in terms of response theory, as well as ab initio and density-functional theory calculations of this phenomenon for a series of molecular liquids: H{sub 2}O, CH{sub 3}NO{sub 2}, CH{sub 3}CH{sub 2}OH, C{sub 6}H{sub 6}, C{sub 6}H{sub 12} (cyclohexane), HI, XeF{sub 2}, WF{sub 5}Cl, and Pt(C{sub 2}dtp){sub 2}. The roles of basis-set convergence, electron correlation, and relativistic effects are discussed. The estimated order of magnitude of the overall ellipticities induced to linearly polarized light is 10{sup ?3}10{sup ?7} rad/(Mcm) for fully spin polarized nuclei. The cases with the largest presently obtained ellipticities should be detectable with modern instrumentation in the Voigt magneto-optic setup, particularly for the heavy nuclei.

  2. Magnetic-Compton-scattering study of spin moments in UFe{sub 2}

    SciTech Connect (OSTI)

    Lawson, P.K.; Cooper, M.J.; Dixon, M.A.; Timms, D.N.; Zukowski, E.; Itoh, F.; Sakurai, H.

    1997-08-01

    Spin moments were derived from the magnetic-Compton profile of UFe{sub 2}, which was measured using 59.38-keV circularly polarized synchrotron radiation from the Accumulation Ring Source at KEK, Japan. Although the net moment on the uranium site is no more than a tenth of a Bohr magneton, the individual spin and orbital moments, which are coupled antiparallel, are much larger and it is the spin moment that can be determined in magnetic-Compton scattering. The data have been analyzed in terms of the U 5f, Fe 3d and delocalized spin moments. The observed uranium-5f spin moment is less than half (i.e., {lt}0.25{mu}{sub B}) and the diffuse spin moment more than double (i.e., {gt}0.20{mu}{sub B}) those predicted from theory. These values compare favorably with those deduced from neutron measurements of the total magnetization. {copyright} {ital 1997} {ital The American Physical Society}

  3. Moment enhancement in dilute magnetic semiconductors: MnxSi1-x with x =

    Office of Scientific and Technical Information (OSTI)

    0.1% (Journal Article) | SciTech Connect Moment enhancement in dilute magnetic semiconductors: MnxSi1-x with x = 0.1% Citation Details In-Document Search Title: Moment enhancement in dilute magnetic semiconductors: MnxSi1-x with x = 0.1% The experimentally determined magnetic moments/Mn, M, in Mn{sub x}Si{sub 1-x} are considered, with particular attention to the case with 5.0 {micro}{sub B}/Mn, obtained for x = 0.1%. The existing theoretical M values for neutral Mn range from 2.83 to 3.78

  4. So You Missed Secretary Chu's "Sputnik Moment" Speech? | Department of

    Energy Savers [EERE]

    Energy So You Missed Secretary Chu's "Sputnik Moment" Speech? So You Missed Secretary Chu's "Sputnik Moment" Speech? November 29, 2010 - 4:46pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs Just a few hours ago, Secretary Chu finished a major address at the National Press Club in which he cited recent clean technology successes by China and other industrial nations as a "Sputnik Moment" for the United States

  5. Waste Form Degradation Model Integration for Engineered Materials...

    Office of Environmental Management (EM)

    Waste Form Degradation Model Integration for Engineered Materials Performance Waste Form Degradation Model Integration for Engineered Materials Performance The collaborative ...

  6. Curvature of a cantilever beam subjected to an equi-biaxial bending moment

    SciTech Connect (OSTI)

    Krulevitch, P.; Johnson, G.C.

    1998-04-28

    Results from a finite element analysis of a cantilever beam subjected to an equi-biaxial bending moment demonstrate that the biaxial modulus E/(I-v) must be used even for narrow beams.

  7. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  8. Characterization and Simulation of Transient Vibrations Using Band Limited Temporal Moments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smallwood, David O.

    1994-01-01

    A method is described to characterize shocks (transient time histories) in terms of the Fourier energy spectrum and the temporal moments of the shock passed through a contiguous set of band pass filters. The product model is then used to generate of a random process as simulations that in the mean will have the same energy and moments as the characterization of the transient event.

  9. Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD Citation Details In-Document Search This content will become publicly available on November 16, 2016 Title: Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD Authors: Bhattacharya, Tanmoy ; Cirigliano, Vincenzo ; Gupta, Rajan ; Lin, Huey-Wen ; Yoon, Boram ; PNDME Collaboration Publication Date: 2015-11-17 OSTI Identifier: 1226378 Grant/Contract Number: KA-1401020; AC02-05CH11231;

  10. A review of high magnetic moment thin films for microscale and

    Office of Scientific and Technical Information (OSTI)

    nanotechnology applications (Journal Article) | DOE PAGES A review of high magnetic moment thin films for microscale and nanotechnology applications This content will become publicly available on February 17, 2017 « Prev Next » Title: A review of high magnetic moment thin films for microscale and nanotechnology applications Authors: Scheunert, G. [1] Search DOE PAGES for author "Scheunert, G." Search DOE PAGES for ORCID "0000000294068094" Search orcid.org for ORCID

  11. Jetting into the Moments after the Big Bang | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Jetting into the Moments after the Big Bang Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 06.01.15 Jetting into the Moments after the Big Bang Upgraded

  12. Electrochemical performance of polyaniline coated LiMn{sub 2}O{sub 4} cathode active material for lithium ion batteries

    SciTech Connect (OSTI)

    ?ahan, Halil Dokan, Fatma K?l?c Ayd?n, Abdlhamit zdemir, Burcu zdemir, Nazl? Patat, ?aban

    2013-12-16

    LiMn{sub 2}O{sub 4} compound are synthesized by combustion method using glycine as a fuel at temperature (T), 800C which was coated by a polyaniline. The goal of this procedure is to promote better electronic conductivity of the LiMn{sub 2}O{sub 4} particles in order to improve their electrochemical performance for their application as cathodes in secondary lithium ion batteries. The structures of prepared products have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). To investigate the effect of polyaniline coating galvanostatic charge-discharge cycling (148 mA g{sup ?1}) studies are made in the voltage range of 3.5-4.5 V vs. Li at room temperature. Electrochemical performance of the LiMn{sub 2}O{sub 4} was significantly improved by the polaniline coating.

  13. Nuclear Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Nuclear Materials Science Our multidisciplinary expertise comprises the core actinide materials science and metallurgical capability within the nuclear weapons production and surveillance communities. Contact Us Group Leader David Pugmire (acting) Email Group Office (505) 667-4665 The evaluations performed by our group are essential for the nuclear weapons program as well as nuclear materials storage, forensics, and actinide fundamental science. The evaluations performed by our group are

  14. Viscous-Fluid-Spring Damper Retrofit of a Steel Moment Frame Structure

    SciTech Connect (OSTI)

    Hussain, Saif; Van Benschoten, Paul; Al Satari, Mohamed; Lin, Silian

    2008-07-08

    The subject building is a peculiar pre-Northridge steel moment resisting frame building. Upon investigating the existing lateral resisting system, numerous significant deficiencies were identified; inherent lack of redundancy, poor geometry and inadequate stiffness of the lateral resisting system. All of which resulted in an extremely soft 5-story structure with a primary torsional mode of vibration at T{sub 1} = 5.46 s. Significant structural modifications were deemed necessary to meet the 'life-safety' performance objective as outlined in rehabilitation standards such as ASCE 41. Both increased stiffness and damping were required to adequately retrofit the building. Furthermore, adjacent building separation as well as deformation compatibility issues needed to be addressed and resolved. A three-dimensional computer model of the building was created using ETABS mathematically simulating the building's dynamic characteristics in its current condition. Multiple seismic retrofit systems were investigated such as Buckling Restrained Braced Frames (BRBF's). However, based on the performance effectiveness and constructability of the retrofit schemes studied, the Viscous-Fluid-Spring Damper (VFSD) system was proposed as the 'optimum' solution for the building. The VFSD, was chosen because it combines the relatively compact size and minimally invasive constructability with the required properties (an elastomeric spring in parallel with a nonlinear velocity dependent viscous damper). A site-specific response spectrum was developed for the Design Basis Earthquake (DBE, 475 year return period) event, and three pairs of representative earthquake horizontal ground motion time-histories were scaled to match this DBE. The proposed scheme reduced the building maximum inter-story drift ratio from 5.4% to about 1%. Similarly, the maximum roof displacement was reduced by about 70% (23'' to 7'')

  15. Application of high performance computing to automotive design and manufacturing: Composite materials modeling task technical manual for constitutive models for glass fiber-polymer matrix composites

    SciTech Connect (OSTI)

    Simunovic, S; Zacharia, T

    1997-11-01

    This report provides a theoretical background for three constitutive models for a continuous strand mat (CSM) glass fiber-thermoset polymer matrix composite. The models were developed during fiscal years 1994 through 1997 as a part of the Cooperative Research and Development Agreement, "Application of High-Performance Computing to Automotive Design and Manufacturing." The full derivation of constitutive relations in the framework of the continuum program DYNA3D and have been used for the simulation and impact analysis of CSM composite tubes. The analysis of simulation and experimental results show that the model based on strain tensor split yields the most accurate results of the three implemented models. The parameters used in the models and their derivation from the physical tests are documented.

  16. Investigation into the semimagic nature of the tin isotopes through electromagnetic moments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Allmond, J. M.; Stuchbery, A. E.; Galindo-Uribarri, A.; Padilla-Rodal, E.; Radford, D. C.; Batchelder, J. C.; Bingham, C. R.; Howard, M. E.; Liang, J. F.; Manning, B.; et al

    2015-10-19

    A complete set of electromagnetic moments, B(E2;0+1 2+1), Q(2+1), and g(2+1), have been measured from Coulomb excitation of semi-magic 112,114,116,118,120,122,124Sn (Z = 50) on natural carbon and titanium targets. The magnitude of the B(E2) values, measured to a precision of ~4%, disagree with a recent lifetime study [Phys. Lett. B 695, 110 (2011)] that employed the Doppler- shift attenuation method. The B(E2) values show an overall enhancement compared with recent theoretical calculations and a clear asymmetry about midshell, contrary to naive expectations. A new static electric quadrupole moment, Q(2+1), has been measured for 114Sn. The static quadrupole moments are generallymore » consistent with zero but reveal an enhancement near midshell; this had not been previously observed. The magnetic dipole moments are consistent with previous measurements and show a near monotonic decrease in value with neutron number. The current theory calculations fail to reproduce the electromagnetic moments of the tin isotopes. The role of 2p-2h and 4p-4h intruders, which are lowest in energy at mid shell and outside of current model spaces, needs to be investigated in the future.« less

  17. Investigation into the semimagic nature of the tin isotopes through electromagnetic moments

    SciTech Connect (OSTI)

    Allmond, J. M.; Stuchbery, A. E.; Galindo-Uribarri, A.; Padilla-Rodal, E.; Radford, D. C.; Batchelder, J. C.; Bingham, C. R.; Howard, M. E.; Liang, J. F.; Manning, B.; Pain, S. D.; Stone, N. J.; Varner, R. L.; Yu, C. -H.

    2015-10-19

    A complete set of electromagnetic moments, B(E2;0+1 2+1), Q(2+1), and g(2+1), have been measured from Coulomb excitation of semi-magic 112,114,116,118,120,122,124Sn (Z = 50) on natural carbon and titanium targets. The magnitude of the B(E2) values, measured to a precision of ~4%, disagree with a recent lifetime study [Phys. Lett. B 695, 110 (2011)] that employed the Doppler- shift attenuation method. The B(E2) values show an overall enhancement compared with recent theoretical calculations and a clear asymmetry about midshell, contrary to naive expectations. A new static electric quadrupole moment, Q(2+1), has been measured for 114Sn. The static quadrupole moments are generally consistent with zero but reveal an enhancement near midshell; this had not been previously observed. The magnetic dipole moments are consistent with previous measurements and show a near monotonic decrease in value with neutron number. The current theory calculations fail to reproduce the electromagnetic moments of the tin isotopes. The role of 2p-2h and 4p-4h intruders, which are lowest in energy at mid shell and outside of current model spaces, needs to be investigated in the future.

  18. Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propulsion Materials FY 2013 Progress Report ii CONTENTS INTRODUCTION ....................................................................................................................................... 1 Project 18516 - Materials for H1ybrid and Electric Drive Systems ...................................................... 4 Agreement 19201 - Non-Rare Earth Magnetic Materials ............................................................................ 4 Agreement 23278 - Low-Cost

  19. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science /science-innovation/_assets/images/icon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Materials Physics and Applications» Materials Science and Technology» Institute for Materials Science» Materials Science Rob Dickerson uses a state-of-the-art transmission electron microscope at

  20. Probing CP Violation with the Electric Dipole Moment of Atomic Mercury

    SciTech Connect (OSTI)

    Latha, K. V. P.; Das, B. P.; Angom, D.; Mukherjee, D.

    2009-08-21

    The electric dipole moment of atomic {sup 199}Hg induced by the nuclear Schiff moment and the tensor-pseudotensor electron-nucleus interactions are calculated. For this, we develop and employ a novel method based on the relativistic coupled-cluster theory. The results of our theoretical calculations, combined with the latest experimental result of the {sup 199}Hg electric dipole moment, provide new bounds on the T reversal or CP violation parameters theta{sub QCD}, the tensor-pseudotensor coupling constant C{sub T}, and (d-tilde{sub u}-d-tilde{sub d}). This is the most accurate calculation of these parameters to date. We highlight the crucial role of electron correlation effects in their interplay with the P, T violating interactions. Our results demonstrate substantial changes in the results of earlier calculations of these parameters which can be attributed to the more accurate inclusion of important correlation effects.

  1. First Passage Moments of Finite-State Semi-Markov Processes

    SciTech Connect (OSTI)

    Warr, Richard; Cordeiro, James

    2014-03-31

    In this paper, we discuss the computation of first-passage moments of a regular time-homogeneous semi-Markov process (SMP) with a finite state space to certain of its states that possess the property of universal accessibility (UA). A UA state is one which is accessible from any other state of the SMP, but which may or may not connect back to one or more other states. An important characteristic of UA is that it is the state-level version of the oft-invoked process-level property of irreducibility. We adapt existing results for irreducible SMPs to the derivation of an analytical matrix expression for the first passage moments to a single UA state of the SMP. In addition, consistent point estimators for these first passage moments, together with relevant R code, are provided.

  2. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter...

  3. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation...

  4. 2013 Annual Merit Review Results Report - Materials Technologies: Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7. Materials Technologies: Propulsion Materials Advanced materials are essential for boosting the fuel economy of modern automobiles while maintaining safety and performance. Propulsion materials enable higher efficiencies in propulsion systems of all types. For example, many combustion engine components require advanced propulsion materials so they can withstand the high pressures and temperatures of high-efficiency combustion regimes. Similarly, novel propulsion materials may be able to

  5. CRAD, Packaging and Transfer of Hazardous Materials and Materials of

    Office of Environmental Management (EM)

    National Security Interest Assessment Plan | Department of Energy Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders

  6. The measurement of the magnetic moment of sigma plus using channeling in bent crystals

    SciTech Connect (OSTI)

    Chen, D.

    1992-01-01

    The measurement of baryon magnetic moments has played an important role in determining the inner structures of baryons and constraining the quark models. The magnetic moments of the spin one-half baryons have been measured with good accuracy. The measurement of the magnetic moment of charm and beauty baryons is a challenge to experimental physics because their life-times are a factor of 1000 shorter than conventional hyperons. A new technique for measuring the magnetic moment of short-lived positively charged particles by using channeling in bent crystals has been tested in Fermilab Proton Center by using a polarized hyperon beam, specifically a [Sigma][sup +] beam. Two 4.5 cm long silicon crystals were bent by 1.6 mrad. There are eight implanted detectors on the surface of each crystal. These detectors are designed to measure the energy loss of those particles which pass through the crystal, and therefore allow selection of channeling particles. The bent crystal can provide to a relativistic channeling particle a very strong effective magnetic field. Under such a field, the author observed spin precession of the channeled [Sigma][sup +] by an angle of the order of one radian. By measuring this precession angle, the value was found for the magnetic moment of the [Sigma][sup +], 2.40 [+-] 0.46 [+-] 0.40 [mu][sub N], the uncertainties being statistical and systematical, respectively. This value is consistent with the world average value of 2.42 [+-] 0.05 [mu][sub N]. This new technique may be applied to measure the magnetic moments of short-lived positively charged particle such as [Lambda][sup +][sub c] in the future.

  7. Quadrupole moments of some doubly-even molibden nuclei and the onset of collectivity

    SciTech Connect (OSTI)

    Turkan, N.; Ibis, I.; Maras, I.

    2012-07-15

    A good description of the quadrupole moments is obtained by investigating {sup 94,96,98,100,102,104,106,108}Mo isotopes in terms of the interacting boson model. After the positiveparity states and electromagnetic-transition rates B(E2) of even-mass Mo nuclei were calculated it was seen that there is a good agreement between the obtained results and some previous experimental data. At the end of the quadrupole moment calculations it was proved that the results agree well with the previous experimental data.

  8. First observation of magnetic moment precession of channeled particles in bent crystals

    SciTech Connect (OSTI)

    Chen, D.; Albuquerque, I.F.; Baublis, V.V.; Bondar, N.F.; Carrigan, R.A. Jr.; Cooper, P.S.; Lisheng, D.; Denisov, A.S.; Dobrovolsky, A.V.; Dubbs, T.; Endler, A.M.F.; Escobar, C.O.; Foucher, M.; Golovtsov, V.L.; Goritchev, P.A.; Gottschalk, H.; Gouffon, P.; Grachev, V.T.; Khanzadeev, A.V.; Kubantsev, M.A.; Kuropatkin, N.P.; Lach, J.; Lang Pengfei; Lebedenko, V.N.; Li Chengze; Li Yunshan; Mahon, J.R.P.; McCliment, E.; Morelos, A.; Newsom, C.; Pommot Maia, M.C.; Samsonov, V.M.; Schegelsky, V.A.; Shi Huanzhang; Smith, V.J.; Sun, C.R.; Tang Fukun; Terentyev, N.K.; Timm, S.; Tkatch, I.I.; Uvarov, L.N.; Vorobyov, A.A.; Yan Jie; Zhao Wenheng; Zheng Shuchen; Zhong Yuanyuan Institute of High Energy Physics, Beijing H. H. Wills Physics Laboratory, University of Bristol Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Fermi National Accelerator Laboratory, Batavia, Illinois 60510

    1992-12-07

    Spin precession of channeled particles in bent crystals has been observed for the first time. Polarized [Sigma][sup +] were channeled using bent Si crystals. These crystals provided an effective magnetic field of 45 T which resulted in a measured spin precession of 60[plus minus]17[degree]. This agrees with the prediction of 62[plus minus]2[degree] using the world average of [Sigma][sup +] magnetic moment measurements. This new technique gives a [Sigma][sup +] magnetic moment of (2.40[plus minus]0.46[plus minus]0.40)[mu][sub [ital N

  9. Multi-Moment ADER-Taylor Methods for Systems of Conservation Laws With

    Office of Scientific and Technical Information (OSTI)

    Source Terms in One Dimension (Journal Article) | SciTech Connect Journal Article: Multi-Moment ADER-Taylor Methods for Systems of Conservation Laws With Source Terms in One Dimension Citation Details In-Document Search Title: Multi-Moment ADER-Taylor Methods for Systems of Conservation Laws With Source Terms in One Dimension Authors: Finkel, H. ; Norman, M.R. [1] + Show Author Affiliations (LCF) [LCF Publication Date: 2012-08-15 OSTI Identifier: 1115873 Report Number(s): ANL/LCF/JA-71879

  10. X-ray Detection of Transient Magnetic Moments Induced by a Spin Current in

    Office of Scientific and Technical Information (OSTI)

    Cu (Journal Article) | DOE PAGES Publisher's Accepted Manuscript: X-ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu This content will become publicly available on August 23, 2016 Title: X-ray Detection of Transient Magnetic Moments Induced by a Spin Current in Cu Authors: Kukreja, R. ; Bonetti, S. ; Chen, Z. ; Backes, D. ; Acremann, Y. ; Katine, J. A. ; Kent, A. D. ; Dürr, H. A. ; Ohldag, H. ; Stöhr, J. Publication Date: 2015-08-24 OSTI Identifier: 1212488

  11. Fast, moment-based estimation methods for delay network tomography (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Fast, moment-based estimation methods for delay network tomography Citation Details In-Document Search Title: Fast, moment-based estimation methods for delay network tomography Consider the delay network tomography problem where the goal is to estimate distributions of delays at the link-level using data on end-to-end delays. These measurements are obtained using probes that are injected at nodes located on the periphery of the network and sent to other nodes also

  12. Search for the Neutron Electric Dipole Moment at the SNS at Oak Ridge

    SciTech Connect (OSTI)

    Kolarkar, Ameya

    2010-02-10

    The possible existence of a non-zero electric dipole moment (EDM) of the neutron is of fundamental interest for our understanding of the nature of electro-weak and strong interactions. The experimental search for this moment has the potential to reveal new sources of T and CP violation and to challenge calculations that propose extensions to the Standard Model. A new experiment being developed at the Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory seeks to lower the current EDM limit of the neutron by a factor of 50 to 100 over the present upper limit of 2.9x10{sup -26} e cm.

  13. ARM - PI Product - Merged and corrected 915 MHz Radar Wind Profiler moments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsMerged and corrected 915 MHz Radar Wind Profiler moments ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Merged and corrected 915 MHz Radar Wind Profiler moments [ ARM research ] The radar wind profiler (RWP) present at the SGP central facility operates at 915 MHz and was reconfigured in early 2011, to collect key sets of measurements for precipitation and boundary layer studies. The RWP is

  14. Stabilizing and increasing the magnetic moment of half-metals: The role of

    Office of Scientific and Technical Information (OSTI)

    Li in half-Heusler LiMn Z ( Z = N , P , Si ) (Journal Article) | SciTech Connect Journal Article: Stabilizing and increasing the magnetic moment of half-metals: The role of Li in half-Heusler LiMn Z ( Z = N , P , Si ) Citation Details In-Document Search Title: Stabilizing and increasing the magnetic moment of half-metals: The role of Li in half-Heusler LiMn Z ( Z = N , P , Si ) Authors: Damewood, L. ; Busemeyer, B. ; Shaughnessy, M. ; Fong, C. Y. ; Yang, L. H. ; Felser, C. Publication Date:

  15. An Azimuthal, Fourier Moment-Based Axial SN Solver for the 2D/1D Scheme

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    49-000 An Azimuthal, Fourier Moment-Based Axial SN Solver for the 2D/1D Scheme Shane G. Stimpson University of Michigan May 19, 2015 CASL-U-2015-0149-000 An Azimuthal, Fourier Moment-Based Axial S N Solver for the 2D/1D Scheme by Shane Gray Stimpson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Nuclear Engineering and Radiological Sciences and Scientific Computing) in the University of Michigan 2015 Doctoral Committee: Professor

  16. President Obama in North Carolina: "Our Generation's Sputnik Moment is

    Energy Savers [EERE]

    Now" | Department of Energy in North Carolina: "Our Generation's Sputnik Moment is Now" President Obama in North Carolina: "Our Generation's Sputnik Moment is Now" December 6, 2010 - 4:53pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Ed. Note cross posted from the White House Blog. As America fights to recover from the economic catastrophe that began almost three years ago, it's important to remember that America had already been

  17. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

  18. Making, Measuring, and Modeling Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Making, Measuring, and Modeling Materials Making, Measuring, and Modeling Materials M4 facility aims to accelerate the transition from observation to control of materials providing unique synthesis and characterization tools to advance the frontiers of materials design and discovery. CONTACT Cris W. Barnes (505) 665-5687 Email Predicting and Controlling Materials' Performance MaRIE's Making, Measuring, and Modeling Materials (M4) Facility aims to accelerate the transition from observation to

  19. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  20. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  1. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  2. Materials Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Materials Science Applications VASP VASP is a plane wave ab initio code for quantum mechanical molecular dynamics. It is highly scalable and shows very good parallel performance for a variety of chemical and materials science calculations. VASP is available to NERSC users who already have a VASP license. Read More » Quantum ESPRESSO/PWscf Quantum Espresso is an integrated suite of computer codes for electronic structure calculations and materials modeling at the nanoscale. It builds on

  3. Materials Analysis and Modeling of Underfill Materials.

    SciTech Connect (OSTI)

    Wyatt, Nicholas B; Chambers, Robert S.

    2015-08-01

    The thermal-mechanical properties of three potential underfill candidate materials for PBGA applications are characterized and reported. Two of the materials are a formulations developed at Sandia for underfill applications while the third is a commercial product that utilizes a snap-cure chemistry to drastically reduce cure time. Viscoelastic models were calibrated and fit using the property data collected for one of the Sandia formulated materials. Along with the thermal-mechanical analyses performed, a series of simple bi-material strip tests were conducted to comparatively analyze the relative effects of cure and thermal shrinkage amongst the materials under consideration. Finally, current knowledge gaps as well as questions arising from the present study are identified and a path forward presented.

  4. Prediction of magnetic moment collapse in ZrFe{sub 2} under hydrostatic pressure

    SciTech Connect (OSTI)

    Zhang, Wenxu; Zhang, Wanli

    2015-04-28

    Electronic structure and magnetic properties of ZrFe{sub 2} in the cubic Laves phase are investigated by calculations based on density functional theory. The magnetic moment decreases with the increase of the hydrostatic pressure in an unusual way: Two-step magnetic collapse is predicted. The first one is a continuous change from 1.53??{sub B}/Fe to 0.63??{sub B}/Fe at about 3.6?GPa, and the other is from 0.25??{sub B}/Fe to the nonmagnetic state at about 15?GPa in a first order manner under the local spin density approximation of the exchange correlation potential. A metastable state with intermediate spin moment about 0.15??{sub B}/Fe may exist before that. We understand this process by the changes of density of states during it. The magnetic moment decreases under the pressure in the vicinity of the experimental lattice constant with dlnm/dp=?0.038 GPa{sup ?1}. The spontaneous volume magnetostriction is 3.6%, which is huge enough to find potential applications in magnetostriction actuators and sensors. We suggest that the Invar effect of this compound may be understood when considering the magnetic moment variation according to the magnetostrictive model of Invar.

  5. Institute for Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Institute for Materials Science x

  6. Wall System Innovations: Familiar Materials, Better Performance

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado.

  7. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Basic Energy Sciences February 9-10, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors Last edited: 2016-02-01 08:07:17

  8. Investigation into the effect of Si doping on the cell symmetry and performance of Sr{sub 1−y}Ca{sub y}FeO{sub 3−δ} SOFC cathode materials

    SciTech Connect (OSTI)

    Porras-Vazquez, Jose M.; Smith, R.I.; Slater, Peter R.

    2014-05-01

    In this paper we report the successful incorporation of silicon into Sr{sub 1−y}Ca{sub y}FeO{sub 3−δ} perovskite materials for potential applications as electrode materials for Solid Oxide Fuel Cells. It is observed that Si doping leads to a change from a tetragonal or orthorhombic structure (with partial ordering of oxygen vacancies) to a cubic one (with the oxygen vacancies disordered). The structures of the phases, SrFe{sub 0.85}Si{sub 0.15}O{sub 3−δ}, Sr{sub 0.75}Ca{sub 0.25}Fe{sub 0.85}Si{sub 0.15}O{sub 3−δ} and Sr{sub 0.5}Ca{sub 0.5}Fe{sub 0.85}Si{sub 0.15}O{sub 3−δ}, were analysed using neutron powder diffraction. The data confirmed the cubic unit cell, with no long range oxygen vacancy ordering. Conductivity measurements showed an improvement in the conductivity on Si doping, especially for samples with high Ca content. Composite electrodes comprising 50% Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} and 50% Sr{sub 1−y}Ca{sub y}(Fe/Si)O{sub 3−δ} on dense Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} pellets were therefore examined in air. An improvement in the area specific resistances (ASR) values is observed for the Si-doped samples with respect to the undoped samples. Thus the results show that silicon can be incorporated into Sr{sub 1−y}Ca{sub y}FeO{sub 3−δ}-based materials and can have a beneficial effect on the performance, making them potentially suitable for use as cathode material in Solid Oxide Fuel Cells (SOFC). - Graphical abstract: X-ray diffraction patterns for: (left) Sr{sub 0.75}Ca{sub 0.25}Fe{sub 1−x}Si{sub x}O{sub 3−δ} (x=0, 0.05, 0.10 and 0.15) and (right) Sr{sub 0.25}Ca{sub 0.75}Fe{sub 1−x}Si{sub x}O{sub 3−δ} (x=0, 0.05, 0.10 and 0.15), showing the stabilization of the cubic form of these series through silicon doping. For the latter Sr{sub 0.25}Ca{sub 0.75}Fe{sub 1−x}Si{sub x}O{sub 3−δ} phase, the stabilisation is not quite complete at 15% Si doping. - Highlights: • In Sr{sub 1−y}Ca{sub y}Fe{sub 1−x}Si{sub x}O{sub 3−δ} materials Si doping results in a change from tetragonal or orthorhombic symmetry. • An improvement in the conductivity is observed on Si doping. • An improvement in the area specific resistances (ASR) values is observed on Si doping. • Silicon can have a beneficial effect on the performance in perovskite materials.

  9. Overview of DOE-NE Structural Materials Research, Materials Challenges and Operating Conditions

    SciTech Connect (OSTI)

    Maloy, Stuart A.; Busby, Jeremy T.

    2012-06-12

    This presentation summarized materials conditions for application of nanomaterials to reactor components. Material performance is essential to reactor performance, economics, and safety. A modern reactor design utilizes many different materials and material systems to achieve safe and reliable performance. Material performance in these harsh environments is very complex and many different forms of degradation may occur (often together in synergistic fashions). New materials science techniques may also help understand degradation modes and develop new manufacturing and fabrication techniques.

  10. FY 2009 Progress Report for Lightweighting Materials - 12. Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crosscutting Research and Development | Department of Energy 2. Materials Crosscutting Research and Development FY 2009 Progress Report for Lightweighting Materials - 12. Materials Crosscutting Research and Development The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability. PDF icon 12_materials_crosscutting_rd.pdf More Documents & Publications FY 2008 Progress Report

  11. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental, theoretical, and computational capabilities to establish the state of the art in materials science and technology. Materials science professionals at Sandia perform...

  12. Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen...

    Office of Scientific and Technical Information (OSTI)

    Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via inelastic neutron scattering Prev Next Title: Local-moment magnetism in superconducting FeTe0.35Se0.65 as ...

  13. Berkeley Lab - Materials Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How to Train Your Bacterium Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, and his researchers are using the bacterium Moorella thermoacetica to perform...

  14. Materials Physics | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics A photo of laser light rays going in various directions atop a corrugated metal substrate In materials physics, NREL focuses on realizing materials that transcend the present constraints of photovoltaic (PV) and solid-state lighting technologies. Through materials growth and characterization, coupled with theoretical modeling, we seek to understand and control fundamental electronic and optical processes in semiconductors. Capabilities Optimizing New Materials An illustration showing

  15. TIMING NOISE IN PULSARS AND MAGNETARS AND THE MAGNETOSPHERIC MOMENT OF INERTIA

    SciTech Connect (OSTI)

    Tsang, David; Gourgouliatos, Konstantinos N. E-mail: kostasg@physics.mcgill.ca

    2013-08-10

    We examine timing noise in both magnetars and regular pulsars, and find that there exists a component of the timing noise ({sigma}{sub TN}) with strong magnetic field dependence ({sigma}{sub TN}{approx}B{sub o}{sup 2}{Omega}T{sup 3/2}) above B{sub o} {approx} 10{sup 12.5} G. The dependence of the timing noise floor on the magnetic field is also reflected in the smallest observable glitch size. We find that magnetospheric torque variation cannot explain this component of timing noise. We calculate the moment of inertia of the magnetic field outside of a neutron star and show that this timing noise component may be due to variation of this moment of inertia, and could be evidence of rapid global magnetospheric variability.

  16. THIRD MOMENTS AND THE ROLE OF ANISOTROPY FROM VELOCITY SHEAR IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Stawarz, Joshua E.; Vasquez, Bernard J.; Smith, Charles W.; Forman, Miriam A.; Klewicki, Joseph E-mail: Bernie.Vasquez@unh.edu E-mail: Miriam.Forman@sunysb.edu

    2011-07-20

    We have extended the recent analyses of magnetohydrodynamic third moments as they relate to the turbulent energy cascade in the solar wind to consider the effects of large-scale shear flows. Moments from a large set of Advanced Composition Explorer data have been taken, and chosen data intervals are characterized by the rate of change in the solar wind speed. Mean dissipation rates are obtained in accordance with the predictions of homogeneous shear-driven turbulence. Agreement with predictions is best made for rarefaction intervals where the solar wind speed is decreasing with time. For decreasing speed intervals, we find that the dissipation rates increase with increasing shear magnitude and that the shear-induced fluctuation anisotropy is consistent with a relatively small amount.

  17. Itinerancy enhanced quantum fluctuation of magnetic moments in iron-based superconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tam, Yu -T.; Ku, W.; Yao, D. -X.

    2015-09-10

    We investigate the influence of itinerant carriers on dynamics and fluctuation of local moments in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both itinerant and local degrees of freedom. Surprisingly against the common lore, instead of enhancing the (π,0) order, itinerant carriers with well nested Fermi surfaces is found to induce significant amount of spatial and temporal quantum fluctuation that leads to the observed small ordered moment. Interestingly, the underlying mechanism is shown to be intra-pocket nesting-associated long-range coupling, rather than the previously believed ferromagnetic double-exchange effect. This challenges the validity of ferromagnetically compensated first-neighbor couplingmore » reported from short-range fitting to the experimental dispersion, which turns out to result instead from the ferro-orbital order that is also found instrumental in stabilizing the magnetic order.« less

  18. Magnetism of j = 1/2 moments on the fcc lattice in double perovskite Mott insulators

    SciTech Connect (OSTI)

    Aczel, Adam A [ORNL; Cook, Ashley [University of Toronto, Canada; Matern, Stephanie [University of Cologne, Germany; Hickey, Ciaran [University of Toronto, Canada; Paramekanti, Arun [University of Toronto, Canada

    2015-01-01

    Motivated by experiments on La2ZnIrO6 and La2MgIrO6, we study the magnetism of spin-orbit coupled jeff = 1/2 iridium moments on the three-dimensional geometrically-frustrated face-centered cubic lattice. The symmetry-allowed nearest-neighbor interaction includes Heisenberg, Kitaev, and symmetric off-diagonal exchange. Using Luttinger-Tisza and Monte Carlo simulations, we find a rich variety of orders, including collinear A-type antiferromagnetism, collinear stripe order with moments along the {111}-direction, and incommensurate non-coplanar spirals, and determine their magnetic ordering transition temperatures. We argue that thermodynamic data on these iridates underscore the presence of a dominant Kitaev exchange, and suggest a possible resolution to the puzzle of why La2ZnIrO6, but not La2MgIrO6, exhibits 'weak' ferromagnetism.

  19. Itinerancy enhanced quantum fluctuation of magnetic moments in iron-based superconductors

    SciTech Connect (OSTI)

    Tam, Yu -T.; Ku, W.; Yao, D. -X.

    2015-09-10

    We investigate the influence of itinerant carriers on dynamics and fluctuation of local moments in Fe-based superconductors, via linear spin-wave analysis of a spin-fermion model containing both itinerant and local degrees of freedom. Surprisingly against the common lore, instead of enhancing the (?,0) order, itinerant carriers with well nested Fermi surfaces is found to induce significant amount of spatial and temporal quantum fluctuation that leads to the observed small ordered moment. Interestingly, the underlying mechanism is shown to be intra-pocket nesting-associated long-range coupling, rather than the previously believed ferromagnetic double-exchange effect. This challenges the validity of ferromagnetically compensated first-neighbor coupling reported from short-range fitting to the experimental dispersion, which turns out to result instead from the ferro-orbital order that is also found instrumental in stabilizing the magnetic order.

  20. Probing top-Z dipole moments at the LHC and ILC

    SciTech Connect (OSTI)

    Röntsch, Raoul; Schulze, Markus

    2015-08-11

    We investigate the weak electric and magnetic dipole moments of top quark-Z boson interactions at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). Their vanishingly small magnitude in the Standard Model makes these couplings ideal for probing New Physics interactions and for exploring the role of top quarks in electroweak symmetry breaking. In our analysis, we consider the production of two top quarks in association with a Z boson at the LHC, and top quark pairs mediated by neutral gauge bosons at the ILC. These processes yield direct sensitivity to top quark-Z boson interactions and complement indirect constraints from electroweak precision data. Our computation is accurate to next-to-leading order in QCD, we include the full decay chain of top quarks and the Z boson, and account for theoretical uncertainties in our constraints. Furthermore, we find that LHC experiments will soon be able to probe weak dipole moments for the first time.

  1. Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries

    SciTech Connect (OSTI)

    Li, Hui; Yu, Xiqian; Bai, Ying; Wu, Feng; Wu, Chuan; Liu, Liang-Yu; Yang, Xiao-Qing

    2015-01-01

    Na3V2-xMgx(PO4)3/C composites with different Mg2+ doping contents (x=0, 0.01, 0.03, 0.05, 0.07 and 0.1) were prepared by a facile sol-gel method. The doping effects on the crystal structure were investigated by XRD, XPS and EXAFS. The results show that low dose doping Mg2+ does not alter the structure of the material, and magnesium is successfully substituted for vanadium site. The Mg doped Na3V2-xMgx(PO4)3/C composites exhibit significant improvements on the electrochemistry performances in terms of the rate capability and cycle performance, especially for the Na3V1.95Mg0.05(PO4)3/C. For example, when the current density increased from 1 C to 30 C, the specific capacity only decreased from 112.5 mAh g-1 to 94.2 mAh g-1 showing very good rate capability. Moreover, even cycling at a high rate of 20 C, an excellent capacity retention of 81% is maintained from the initial value of 106.4 mAh g-1 to 86.2 mAh g-1 at the 50th cycle. Enhanced rate capability and cycle performance can be attributed to the optimized particle size, structural stability and enhanced ionic and electronic conductivity induced by Mg doping.

  2. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers

    SciTech Connect (OSTI)

    Fedorov, Dmitry A.; Varganov, Sergey A.; Derevianko, Andrei

    2014-05-14

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X{sup 1}?{sup +} electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-? basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-? quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm{sup ?1} for LiNa and by no more than 114 cm{sup ?1} for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm{sup ?1}, and the discrepancies for the anharmonic correction are less than 0.1 cm{sup ?1}. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrdinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.

  3. Torque for electron spin induced by electron permanent electric dipole moment

    SciTech Connect (OSTI)

    Senami, Masato E-mail: akitomo@scl.kyoto-u.ac.jp; Fukuda, Masahiro E-mail: akitomo@scl.kyoto-u.ac.jp; Ogiso, Yoji E-mail: akitomo@scl.kyoto-u.ac.jp; Tachibana, Akitomo E-mail: akitomo@scl.kyoto-u.ac.jp

    2014-10-06

    The spin torque of the electron is studied in relation to the electric dipole moment (EDM) of the electron. The spin dynamics is known to be given by the spin torque and the zeta force in quantum field theory. The effect of the EDM on the torque of the spin brings a new term in the equation of motion of the spin. We study this effect for a solution of the Dirac equation with electromagnetic field.

  4. Measurement of the Moments of the Hadronic Invariant Mass Distribution in Semileptonic Beta Decays

    SciTech Connect (OSTI)

    Acosta, D.; The CDF Collaboration TITLE=Measuremen

    2005-03-13

    Using 180 pb{sup -1} of data collected with the CDF II detector at the Tevatron, we measure the first two moments of the hadronic invariant mass-squared distribution in charmed semileptonic B decays. From these we determine the non-perturbative Heavy Quark Effective Theory parameters {Lambda} and {lambda}{sub 1} used to relate the B meson semileptonic branching ratio to the CKM matrix element |V{sub cb}|.

  5. Moment-Based Probability Modeling and Extreme Response Estimation, The FITS Routine Version 1.2

    SciTech Connect (OSTI)

    MANUEL,LANCE; KASHEF,TINA; WINTERSTEIN,STEVEN R.

    1999-11-01

    This report documents the use of the FITS routine, which provides automated fits of various analytical, commonly used probability models from input data. It is intended to complement the previously distributed FITTING routine documented in RMS Report 14 (Winterstein et al., 1994), which implements relatively complex four-moment distribution models whose parameters are fit with numerical optimization routines. Although these four-moment fits can be quite useful and faithful to the observed data, their complexity can make them difficult to automate within standard fitting algorithms. In contrast, FITS provides more robust (lower moment) fits of simpler, more conventional distribution forms. For each database of interest, the routine estimates the distribution of annual maximum response based on the data values and the duration, T, over which they were recorded. To focus on the upper tails of interest, the user can also supply an arbitrary lower-bound threshold, {chi}{sub low}, above which a shifted distribution model--exponential or Weibull--is fit.

  6. Leptophilic dark matter and the anomalous magnetic moment of the muon

    SciTech Connect (OSTI)

    Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.

    2014-08-26

    We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between the standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.

  7. Leptophilic dark matter and the anomalous magnetic moment of the muon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Prateek; Chacko, Zackaria; Verhaaren, Christopher B.

    2014-08-26

    We consider renormalizable theories such that the scattering of dark matter off leptons arises at tree level, but scattering off nuclei only arises at loop. In this framework, the various dark matter candidates can be classified by their spins and by the forms of their interactions with leptons. In this study, we determine the corrections to the anomalous magnetic moment of the muon that arise from its interactions with dark matter. We then consider the implications of these results for a set of simplified models of leptophilic dark matter. When a dark matter candidate reduces the existing tension between themore » standard model prediction of the anomalous magnetic moment and the experimental measurement, the region of parameter space favored to completely remove the discrepancy is highlighted. Conversely, when agreement is worsened, we place limits on the parameters of the corresponding simplified model. These bounds and favored regions are compared against the experimental constraints on the simplified model from direct detection and from collider searches. Although these constraints are severe, we find there do exist limited regions of parameter space in these simple theories that can explain the observed anomaly in the muon magnetic moment while remaining consistent with all experimental bounds.« less

  8. Magnetism in Non-Traditional Materials

    SciTech Connect (OSTI)

    Menon, Madhu

    2013-09-17

    We performed a systematic microscopic investigation of two completely dissimilar materials (namely, ZnO and rhombohedral-C{sub 60} polymers) exhibiting ferromagnetism in the presence of defects, and showed that this new phenomena has a common origin and the mechanism responsible can be used as a powerful tool for inducing and tailoring magnetic features in systems which are not magnetic otherwise. Based on our findings we proposed a general recipe for developing ferromagnetism in new materials of great technological interest. Our results support the role of complimentary pairs of defects in inducing magnetism in otherwise non-magnetic materials belonging to two widely differing classes with no apparent correlation between them. In both classes, ferromagnetism is found to be enhanced when the two kinds of defects form structures (pathways) of alternating effective donor and acceptor crystal sites leading to the development of electron charge and spin density like waves. Using ab initio density functional theory calculations we predicted the existence of a new class of carbon cages formed via hybrid connection between planar graphene sheets and carbon nanotubes. The resulting novel structure has the appearance of ?nano-drum? and offers the exciting prospect of integrating useful device properties of both graphene as well as the nanotube into a single unit with tunable electronic properties. Creation of a hexagonal hole in the graphene portion of this structure results in significant magnetic moments for the edge atoms. The structure appears to be capable of sustaining ferrimagnetic state with the assistance of topological defects. The charge and spin distributions obtained in our calculations for the nano-drums are in striking contrast to those in planar graphene nanoribbons with a central hole. In this case, the central hole appears as the complimentary defect to those of the ribbon edges. Similar situation is found in case of the nano-drum in which the complimentary to the hole defects appear to be the pentagons along the curved surface of the drum. Charge oscillations found in the nano-drum are minimized in the nanoribbons. But more importantly, the hole edge atoms in the nano-drums retain significant magnetic moments; almost twice those of the corresponding ones in hydrogenated graphene nanoribbons (H-GNRs). These results suggest that the topological defects in the nano-drums may act like blocks to keep magnetic moments from ?leaking? out from the hole defects. This may have significant implications for the the use of nano-drums in magnetic storage technology where the ratio, magnetic-moment/weight, is of paramount importance in any futuristic device applications. One of the basic problems of the DFT/LSDA+U theory is the efficient evaluation of the U-term. With this in mind we proposed an alternative approach for its calculation which is based on the knowledge of the Hartree-Fock wave functions of the system under consideration. As a result, the proposed approach is closer to the basic definition of the DFT/LSDA+U scheme and its hybrid-DFT nature. According to our approach, the U value is obtained in a consistent and ab-initio way using the self-consistently calculated wave functions of the given system at the level of the HF approximation. Our method is applicable for systems which include more than one type of elements with localized d-orbitals. The method has been applied the case of the doped Zn(Co)O systems successfully. Currently, theories based on conventional superexchange or double-exchange interactions cannot explain long range magnetic order at concentrations below percolation threshold in dilute magnetic semiconductors. On the other hand, the codoping induced magnetism, which can justify magnetic interactions below percolation threshold, has eluded explanation. With this in mind, we proposed that defect-induced magnetism in codoped non-magnetic materials can be viewed within a molecular generalization of the atomic double-exchange and superexchange interactions applied to an arbitrary bipartite lattice host

  9. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  10. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  11. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  12. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  13. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials (continued) * Generators are required to avoid Las Vegas metropolitan area and Hoover Dam (Section 6.4 of NNSS Waste Acceptance Criteria, available at ...

  14. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  15. Performance testing accountability measurements

    SciTech Connect (OSTI)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    1993-12-31

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay) measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.

  16. Post-Doc Researchers Needed | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for material property optimization. Designing and performing chemical and structural analysis of materials at the micro-nano scale. This will include performing advanced...

  17. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Advanced Scientific Computing Research January 5-6, 2011 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  18. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Biological and Environmental Research May 7-8, 2009 Invitation Workshop Invitation Letter from DOE Associate Directors Workshop Invitation Letter from DOE ASCR Program Manager Yukiko Sekine Last edited: 2016-02-01 08:06:5

  19. Composite material

    DOE Patents [OSTI]

    Hutchens, Stacy A. (Knoxville, TN); Woodward, Jonathan (Solihull, GB); Evans, Barbara R. (Oak Ridge, TN); O'Neill, Hugh M. (Knoxville, TN)

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  20. Cermet materials

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID)

    2008-12-23

    A self-cleaning porous cermet material, filter and system utilizing the same may be used in filtering particulate and gaseous pollutants from internal combustion engines having intermetallic and ceramic phases. The porous cermet filter may be made from a transition metal aluminide phase and an alumina phase. Filler materials may be added to increase the porosity or tailor the catalytic properties of the cermet material. Additionally, the cermet material may be reinforced with fibers or screens. The porous filter may also be electrically conductive so that a current may be passed therethrough to heat the filter during use. Further, a heating element may be incorporated into the porous cermet filter during manufacture. This heating element can be coated with a ceramic material to electrically insulate the heating element. An external heating element may also be provided to heat the cermet filter during use.

  1. Materials Discovery | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Images of red and yellow particles NREL's research in materials discovery serves as a foundation for technological progress in renewable energies. Our experimental activities in inorganic solid-state materials innovation span a broad range of technological readiness levels-from basic science through applied research to device development-relying on a high-throughput combinatorial materials science approach, followed by traditional targeted experiments. In addition, our researchers work

  2. Theoretical investigations of two Si-based spintronic materials

    SciTech Connect (OSTI)

    Fong, C Y; Snow, R; Shaughnessy, M; Pask, J E; Yang, L H

    2007-08-03

    Two Si-based spintronic materials, a Mn-Si digital ferromagnetic heterostructure ({delta}-layer of Mn doped in Si) with defects and dilutely doped Mn{sub x}Si{sub 1-x} alloy are investigated using a density-functional based approach. We model the heterostructure and alloy with a supercell of 64 atoms and examine several configurations of the Mn atoms. We find that 25% substitutional defects without vacancies in the {delta} layer diminishes half metallicity of the DFH substantially. For the alloy, the magnetic moment M ranges from 1.0-9.0 {mu}{sub B}/unit-cell depending on impurity configuration and concentration. Mn impurities introduce a narrow band of localized states near E{sub F}. These alloys are not half metals though their moments are integer. We explain the substantially different magnetic moments.

  3. Evidence-Based Background Material Underlying Guidance for Federal...

    Energy Savers [EERE]

    Strategic Sustainability Performance Plans Evidence-Based Background Material Underlying Guidance for Federal Agencies in Implementing Strategic Sustainability Performance ...

  4. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:nnsa.energy.govaboutusourprogramsdnnm3remove

    Page...

  5. Complex Materials

    ScienceCinema (OSTI)

    Cooper, Valentino

    2014-05-23

    Valentino Cooper uses some of the world's most powerful computing to understand how materials work at subatomic levels, studying breakthroughs such as piezoelectrics, which convert mechanical stress to electrical energy.

  6. material removal

    National Nuclear Security Administration (NNSA)

    %2A en Nuclear Material Removal http:www.nnsa.energy.govaboutusourprogramsdnnm3remove

    Pag...

  7. Propulsion materials

    SciTech Connect (OSTI)

    Wall, Edward J.; Sullivan, Rogelio A.; Gibbs, Jerry L.

    2008-01-01

    The Department of Energy’s (DOE’s) Office of Vehicle Technologies (OVT) is pleased to introduce the FY 2007 Annual Progress Report for the Propulsion Materials Research and Development Program. Together with DOE national laboratories and in partnership with private industry and universities across the United States, the program continues to engage in research and development (R&D) that provides enabling materials technology for fuel-efficient and environmentally friendly commercial and passenger vehicles.

  8. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for Fusion Energy Sciences August 3-4, 2010 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors [not available] NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion

  9. Reference Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials Reference Materials Large Scale Computing and Storage Requirements for High Energy Physics November 12-13, 2009 Official DOE Invitation Workshop Invitation Letter from DOE Associate Directors NERSC Documents NERSC science requirements home page NERSC science requirements workshop page NERSC science requirements case study FAQ Workshop Agenda Previous NERSC Requirements Workshops Biological and Environmental Research (BER) Basic Energy Sciences (BES) Fusion Energy Sciences

  10. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BER Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and BER usage as a function of time A powerpoint template you can use at the requirements review Downloads RequirementsWorkshopCaseStudyTemplate.doc | Word document

  11. Meeting Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Meeting Materials Meeting Materials Here you will find various items to be used before and during the requirements review. The following documents are included: Case study worksheet to be filled in by meeting participants Sample of a completed case study from a Nuclear Physics requirements workshop held in 2011 A graph of NERSC and HEP usage as a function of time A powerpoint template you can use at the requirements review Downloads CaseStudyTemplate.docx | unknown Case Study Worksheet -

  12. Immobilized lipid-bilayer materials

    DOE Patents [OSTI]

    Sasaki, Darryl Y.; Loy, Douglas A.; Yamanaka, Stacey A.

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  13. Energy Materials Network

    Broader source: Energy.gov [DOE]

    High performance materials hold the key to innovation in many critical clean energy technologies. But with ambitious national targets to reduce America’s carbon footprint, advanced materials’ traditional 15-20 years-to-market timeframe isn’t keeping pace with America’s goals to achieve a clean energy economy. Through the Energy Materials Network (EMN), the Energy Department is taking a different approach to materials research and development (R&D) that aims to solve industry’s toughest clean energy materials challenges. EMN’s targeted, growing network of consortia led by the Energy Department’s national labs is better integrating all phases of R&D, from discovery through deployment, and facilitating industry access to its national laboratories’ capabilities, tools, and expertise to accelerate the materials development cycle and enable U.S. manufacturers to deliver innovative, made-in-America products to the world market. This effort supports the President’s Materials Genome Initiative, which is working to discover, manufacture, and deploy advanced materials twice as fast, at a fraction of the cost. EMN also supports the recommendations of the Advanced Manufacturing Partnership 2.0, a working group with leaders from industry, academia, and labor, which highlighted the importance of producing advanced materials for technologies critical to U.S. competitiveness in manufacturing.

  14. Method of multi-dimensional moment analysis for the characterization of signal peaks

    DOE Patents [OSTI]

    Pfeifer, Kent B; Yelton, William G; Kerr, Dayle R; Bouchier, Francis A

    2012-10-23

    A method of multi-dimensional moment analysis for the characterization of signal peaks can be used to optimize the operation of an analytical system. With a two-dimensional Peclet analysis, the quality and signal fidelity of peaks in a two-dimensional experimental space can be analyzed and scored. This method is particularly useful in determining optimum operational parameters for an analytical system which requires the automated analysis of large numbers of analyte data peaks. For example, the method can be used to optimize analytical systems including an ion mobility spectrometer that uses a temperature stepped desorption technique for the detection of explosive mixtures.

  15. Improved Limit on the Permanent Electric Dipole Moment of {sup 199}Hg

    SciTech Connect (OSTI)

    Griffith, W. C.; Swallows, M. D.; Loftus, T. H.; Romalis, M. V.; Heckel, B. R.; Fortson, E. N.

    2009-03-13

    We report the results of a new experimental search for a permanent electric dipole moment of {sup 199}Hg utilizing a stack of four vapor cells. We find d({sup 199}Hg)=(0.49{+-}1.29{sub stat}{+-}0.76{sub syst})x10{sup -29} e cm, and interpret this as a new upper bound, |d({sup 199}Hg)|<3.1x10{sup -29} e cm (95% C.L.). This result improves our previous {sup 199}Hg limit by a factor of 7, and can be used to set new constraints on CP violation in physics beyond the standard model.

  16. Local spin torque induced by electron electric dipole moment in the YbF molecule

    SciTech Connect (OSTI)

    Fukuda, Masahiro; Senami, Masato; Ogiso, Yoji; Tachibana, Akitomo

    2014-10-06

    In this study, we show the modification of the equation of motion of the electronic spin, which is derived by the quantum electron spin vorticity principle, by the effect of the electron electric dipole moment (EDM). To investigate the new contribution to spin torque by EDM, using first principle calculations, we visualize distributions of the local spin angular momentum density and local spin torque density of the YbF molecule on which the static electric field and magnetic field are applied at t = 0.

  17. CASL-U-2015-0178-000 An Azimuthal, Fourier Moment-based Transverse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8-000 An Azimuthal, Fourier Moment-based Transverse Leakage Approximation for the MPACT 2D/1D Method Shane Stimpson, Thomas Downar University of Michigan Benjamin Collins, Oak Ridge National Laboratory April 19, 2015 CASL-U-2015-0178-000 ANS MC2015 - Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method * Nashville, TN * April 19-23, 2015, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2015)

  18. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD

    SciTech Connect (OSTI)

    Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku

    2015-01-07

    The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed. Statistically significant signals are obtained. Initial results appear promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.

  19. A MATERIAL WORLD Tailoring Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WINTER* 2000-2001 A MATERIAL WORLD Tailoring Materials for the Future A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 4 ALSO: New Materials for Microsystems Predictive Modeling Meets the Challenge S A N D I A T E C H N O L O G Y ON THE COVER: Bonnie Mckenzie operates a dual beam Focused Ion Beam/Scanning Electron Microscope (FIB/SEM). The image on the computer screen shows a cross section of a radiation-hardened device. The cross section was rendered with the FIB/SEM and allowed the

  20. Hardfacing material

    DOE Patents [OSTI]

    Branagan, Daniel J. (Iona, ID)

    2012-01-17

    A method of producing a hard metallic material by forming a mixture containing at least 55% iron and at least one of boron, carbon, silicon and phosphorus. The mixture is formed into an alloy and cooled to form a metallic material having a hardness of greater than about 9.2 GPa. The invention includes a method of forming a wire by combining a metal strip and a powder. The metal strip and the powder are rolled to form a wire containing at least 55% iron and from two to seven additional elements including at least one of C, Si and B. The invention also includes a method of forming a hardened surface on a substrate by processing a solid mass to form a powder, applying the powder to a surface to form a layer containing metallic glass, and converting the glass to a crystalline material having a nanocrystalline grain size.

  1. Covariant Spectator Theory of np scattering: Deuteron magnetic moment and form factors

    SciTech Connect (OSTI)

    Gross, Franz L.

    2014-06-01

    The deuteron magnetic moment is calculated using two model wave functions obtained from 2007 high precision fits to $np$ scattering data. Included in the calculation are a new class of isoscalar $np$ interaction currents which are automatically generated by the nuclear force model used in these fits. After normalizing the wave functions, nearly identical predictions are obtained: model WJC-1, with larger relativistic P-state components, gives 0.863(2), while model WJC-2 with very small $P$-state components gives 0.864(2) These are about 1\\% larger than the measured value of the moment, 0.857 n.m., giving a new prediction for the size of the $\\rho\\pi\\gamma$ exchange, and other purely transverse interaction currents that are largely unconstrained by the nuclear dynamics. The physical significance of these results is discussed, and general formulae for the deuteron form factors, expressed in terms of deuteron wave functions and a new class of interaction current wave functions, are given.

  2. Probing top-Z dipole moments at the LHC and ILC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Röntsch, Raoul; Schulze, Markus

    2015-08-11

    We investigate the weak electric and magnetic dipole moments of top quark-Z boson interactions at the Large Hadron Collider (LHC) and the International Linear Collider (ILC). Their vanishingly small magnitude in the Standard Model makes these couplings ideal for probing New Physics interactions and for exploring the role of top quarks in electroweak symmetry breaking. In our analysis, we consider the production of two top quarks in association with a Z boson at the LHC, and top quark pairs mediated by neutral gauge bosons at the ILC. These processes yield direct sensitivity to top quark-Z boson interactions and complement indirectmore » constraints from electroweak precision data. Our computation is accurate to next-to-leading order in QCD, we include the full decay chain of top quarks and the Z boson, and account for theoretical uncertainties in our constraints. Furthermore, we find that LHC experiments will soon be able to probe weak dipole moments for the first time.« less

  3. Reference Material

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy Nevada Field Office webpage Public Reading Room NTA Public Reading Facility Open Monday through Friday, 7:30 am to 4:30 pm (except holidays) 755C East Flamingo Road Las Vegas, Nevada 89119 Phone (702) 794-5106 http://www.nv.doe.gov/library/testingarchive.aspx DOE Electronic Database Also available to the public is an

  4. Enhanced High and Low Temperature Performance of NOx Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Low Temperature Performance of NOx Reduction Materials Enhanced High and Low Temperature Performance of NOx Reduction Materials 2013 DOE Hydrogen and Fuel Cells Program and...

  5. Materials at LANL

    SciTech Connect (OSTI)

    Taylor, Antoinette J

    2010-01-01

    Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

  6. Critical Materials:

    Office of Environmental Management (EM)

    Critical Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 2. Technology Assessment and Potential ................................................................................................. 5 5 2.1 Major Trends in Selected Clean Energy Application Areas ........................................................... 5 6 2.1.1 Permanent Magnets for Wind

  7. The influence of Nd dopants on spin and orbital moments in Nd-doped permalloy thin films

    SciTech Connect (OSTI)

    Luo, Chen Zhang, Wen E-mail: yazhai@seu.edu.cn; Zhai, Ya E-mail: yazhai@seu.edu.cn; Wong, P. K. J.; You, Biao; Du, Jun; Zhai, Hongru

    2014-08-25

    Magnetic properties of Nd{sub X}-Ni{sub 80}Fe{sub 20(1?X)} thin films have been investigated using x-ray absorption spectroscopy and x-ray magnetic circular dichroism (XMCD) at room temperature. With the Nd concentration increasing, the ratio of orbital-to-spin moment of Ni and Fe increases significantly, indicating that the spin-orbit coupling in permalloy thin films is enhanced due to the Nd impurities. The spin and orbital moments have been obtained by the sum rules analysis, which shows that the Nd impurities lead to a strong dispersion of spin moments of Fe and Ni while have no effect on orbital moments in Nd-doped permalloy thin films. Element-specific XMCD hysteresis loops suggest an antiferromagnetic coupling between the magnetic moments of Nd and permalloy at room temperature. The static magnetic properties have been studied by vibrating sample magnetometer for comparison, which shows a nice agreement with the XMCD results.

  8. Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint

    SciTech Connect (OSTI)

    Guo, Y.; Keller, J.; LaCava, W.

    2012-09-01

    This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planet load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.

  9. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    SciTech Connect (OSTI)

    Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.

    2014-02-24

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, a?hvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of a ?hvp. The final result involving an estimate of the systematic uncertainty a?hvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.

  10. Four-flavour leading-order hadronic contribution to the muon anomalous magnetic moment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burger, Florian; Feng, Xu; Hotzel, Grit; Jansen, Karl; Petschlies, Marcus; Renner, Dru B.

    2014-02-24

    We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, aμhvp, arising from quark-connected Feynman graphs. It is based on ensembles featuring Nf=2+1+1 dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Including the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of amore » μhvp. The final result involving an estimate of the systematic uncertainty aμhvp=6.74 (21)(18) 10-8 shows a good overall agreement with these computations.« less

  11. Using magnetic moments to study the nuclear structure of I{>=} 2 states

    SciTech Connect (OSTI)

    Torres, D. A.

    2013-05-06

    The experimental study of magnetic moments for nuclear states near the ground state, I{>=} 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions have been utilized to study low spin states, mostly I= 2. The use of alternative reaction channels, such as {alpha} transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I{>=} 2, using Coulomb excitation and {alpha}-transfer reactions. Recent examples of experimental results near the N= 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.

  12. Chemical Hydrogen Storage Materials | Department of Energy

    Office of Environmental Management (EM)

    Storage » Materials-Based Storage » Chemical Hydrogen Storage Materials Chemical Hydrogen Storage Materials The Fuel Cell Technologies Office's (FCTO's) chemical hydrogen storage materials research focuses on improving the volumetric and gravimetric capacity, transient performance, and efficient, cost-effective regeneration of the spent storage material. Technical Overview The category of chemical hydrogen storage materials generally refers to covalently bound hydrogen in either solid or

  13. Hazardous Material Shipments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Material Shipments GET (General Employee Training): General Information: Materials and Transportation personnel perform domestic and international shipping activities associated with hazardous materials transported onsite and offsite. All activities are performed by personnel who have been trained for their respective transportation functions, as required by the Code of Federal Regulations (CFR) and International Air Transport Association (IATA). Shipments are made for the research and

  14. Thermoelectric Materials, Devices and Systems:

    Energy Savers [EERE]

    DRAFT - PRE-DECISIONAL -DRAFT - FOR OFFICIAL USE ONLY - DRAFT Thermoelectric Materials, Devices and Systems: 1 Technology Assessment 2 Contents 3 1. Thermoelectric Generation ................................................................................................................... 2 4 2. Technology Assessment and Potential ................................................................................................. 3 5 2.1 Performance Advances

  15. A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results

    SciTech Connect (OSTI)

    Gettelman, A.; Morrison, H.; Ghan, Steven J.

    2008-08-11

    The global performance of a new 2-moment cloud microphysics scheme for a General Circulation Model (GCM) is presented and evaluated relative to observations. The scheme produces reasonable representations of cloud particle size and number concentration when compared to observations, and represents expected and observed spatial variations in cloud microphysical quantities. The scheme has smaller particles and higher number concentrations over land than the standard bulk microphysics in the GCM, and is able to balance the radiation budget of the planet with 60% the liquid water of the standard scheme, in better agreement with observations. The new scheme treats both the mixing ratio and number concentration of rain and snow, and is therefore able to differentiate the two key regimes, consisting of drizzle in shallow warm clouds and larger rain drops in deeper cloud systems. The modeled rain and snow size distributions are consistent with observations.

  16. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

  17. Alloy materials

    DOE Patents [OSTI]

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  18. Construction material

    DOE Patents [OSTI]

    Wagh, Arun S. (Orland Park, IL); Antink, Allison L. (Bolingbrook, IL)

    2008-07-22

    A structural material of a polystyrene base and the reaction product of the polystyrene base and a solid phosphate ceramic is applied as a slurry which includes one or more of a metal oxide or a metal hydroxide with a source of phosphate to produce a phosphate ceramic and a poly (acrylic acid or acrylate) or combinations or salts thereof and polystyrene or MgO applied to the polystyrene base and allowed to cure so that the dried aqueous slurry chemically bonds to the polystyrene base. A method is also disclosed of applying the slurry to the polystyrene base.

  19. Casting materials

    DOE Patents [OSTI]

    Chaudhry, Anil R. (Xenia, OH); Dzugan, Robert (Cincinnati, OH); Harrington, Richard M. (Cincinnati, OH); Neece, Faurice D. (Lyndurst, OH); Singh, Nipendra P. (Pepper Pike, OH)

    2011-06-14

    A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.

  20. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  1. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  2. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization » Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2016-02-01 08:06:18

  3. Optimizing Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Performance Optimizing Performance Storage Optimization Optimizing the sizes of the files you store in HPSS and minimizing the number of tapes they are on will lead to...

  4. Performance Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance Monitoring Performance Monitoring A redirector page has been set up without anywhere to redirect to. Last edited: 2014-08-25 14:37:27...

  5. Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via

    Office of Scientific and Technical Information (OSTI)

    inelastic neutron scattering (Journal Article) | DOE PAGES Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via inelastic neutron scattering « Prev Next » Title: Local-moment magnetism in superconducting FeTe0.35Se0.65 as seen via inelastic neutron scattering Authors: Xu, Zhijun ; Wen, Jinsheng ; Xu, Guangyong ; Chi, Songxue ; Ku, Wei ; Gu, Genda ; Tranquada, J. M. Publication Date: 2011-08-11 OSTI Identifier: 1100533 Type: Publisher's Accepted Manuscript Journal Name:

  6. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  7. Atomic moments in Mn{sub 2}CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M. E.; Assaf, B. A.; Heiman, D.; Sterbinsky, G. E.; Arena, D. A.

    2014-12-07

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn{sub 2}CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  8. Supercapacitors specialities - Materials review

    SciTech Connect (OSTI)

    Obreja, Vasile V. N.

    2014-06-16

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.

  9. BUILDING MATERIALS RECLAMATION PROGRAM

    SciTech Connect (OSTI)

    David C. Weggel; Shen-En Chen; Helene Hilger; Fabien Besnard; Tara Cavalline; Brett Tempest; Adam Alvey; Madeleine Grimmer; Rebecca Turner

    2010-08-31

    This report describes work conducted on the Building Materials Reclamation Program for the period of September 2008 to August 2010. The goals of the project included selecting materials from the local construction and demolition (C&D) waste stream and developing economically viable reprocessing, reuse or recycling schemes to divert them from landfill storage. Educational resources as well as conceptual designs and engineering feasibility demonstrations were provided for various aspects of the work. The project was divided into two distinct phases: Research and Engineering Feasibility and Dissemination. In the Research Phase, a literature review was initiated and data collection commenced, an advisory panel was organized, and research was conducted to evaluate high volume C&D materials for nontraditional use; five materials were selected for more detailed investigations. In the Engineering Feasibility and Dissemination Phase, a conceptual study for a regional (Mecklenburg and surrounding counties) collection and sorting facility was performed, an engineering feasibility project to demonstrate the viability of recycling or reuse schemes was created, the literature review was extended and completed, and pedagogical materials were developed. Over the two-year duration of the project, all of the tasks and subtasks outlined in the original project proposal have been completed. The Final Progress Report, which briefly describes actual project accomplishments versus the tasks/subtasks of the original project proposal, is included in Appendix A of this report. This report describes the scientific/technical aspects (hypotheses, research/testing, and findings) of six subprojects that investigated five common C&D materials. Table 1 summarizes the six subprojects, including the C&D material studied and the graduate student and the faculty advisor on each subproject.

  10. Materials Genome Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Materials Genome Initiative Materials Genome Initiative Credit: The White House Credit: The White House Lead Performers: -- National Renewable Energy Laboratory - Golden, CO -- Lawrence Berkeley National Laboratory - Berkeley, CA Project Term: October 2014 to July 2015 Project Background The development of new higher performing materials for buildings and building systems will be a key element of making the high-efficiency, high-performing buildings of the future. The

  11. Innovative Nano-structuring Routes for Novel ThermoelectricMaterials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new concepts for high performance nanostructured bulk thermoelectric materials PDF icon lee.pdf More Documents & Publications Thermoelectric Materials for Automotive Applications...

  12. Dynamical description of the moments of the energy distribution of fission fragments and scission of a fissile nucleus

    SciTech Connect (OSTI)

    Borunov, M. V., E-mail: bmv@opsb.ru; Nadtochy, P. N.; Adeev, G. D. [Omsk State University (Russian Federation)

    2007-11-15

    A multidimensional stochastic approach to fission dynamics on the basis of three-dimensional Langevin equations is applied systematically to calculating the first four moments of the energy distribution of fission fragments over a broad range of Coulomb parameter values (700 < Z{sup 2}/A{sup 1/3} < 1700). For the scission of a fissile nucleus into fragments, use was made of various criteria traditional in modern fission theory: the vanishing of the neck radius at the scission instant and the equality of the neck radius to about 0.3R{sub 0} at this instant. In calculating the energy distribution, both of the criteria used lead to a fairly good description of experimental data on the first two moments and to a satisfactory description of data on the third and fourth moments of the distribution. However, the quality of the description of available experimental data is insufficiently good for giving preference to any of these criteria. Within three-dimensional Langevin dynamics, it is shown that the vanishing-radius criterion leads to unexpectably good agreement with experimental data on the first four moments of the energy distribution. A modified version of one-body dissipation where the coefficient that takes into account the reduction of the wall-formula contribution was set to k{sub s} = 0.25 was used in the calculations.

  13. Impact of high-order moments on the statistical modeling of transition arrays

    SciTech Connect (OSTI)

    Gilleron, Franck; Pain, Jean-Christophe; Bauche, Jacques; Bauche-Arnoult, Claire

    2008-02-15

    The impact of high-order moments on the statistical modeling of transition arrays in complex spectra is studied. It is shown that a departure from the Gaussian, which is usually employed in such an approach, may be observed even in the shape of unresolved spectra due to the large value of the kurtosis coefficient. The use of a Gaussian shape may also overestimate the width of the spectra in some cases. Therefore, it is proposed to simulate the statistical shape of the transition arrays by the more flexible generalized Gaussian distribution which introduces an additional parameter--the power of the argument in the exponential--that can be constrained by the kurtosis value. The relevance of the statistical line distribution is checked by comparisons with smoothed spectra obtained from detailed line-by-line calculations. The departure from the Gaussian is also confirmed through the analysis of 2p-3d transitions of recent absorption measurements. A numerical fit is proposed for an easy implementation of the statistical profile in atomic-structure codes.

  14. The search for permanent electric dipole moments, in particular for the one of the neutron

    ScienceCinema (OSTI)

    None

    2011-10-06

    Nonzero permanent electric dipole moments (EDM) of fundamental systems like particles, nuclei, atoms or molecules violate parity and time reversal invariance. Invoking the CPT theorem, time reversal violation implies CP violation. Although CP-violation is implemented in the standard electro-weak theory, EDM generated this way remain undetectably small. However, this CP-violation also appears to fail explaining the observed baryon asymmetry of our universe. Extensions of the standard theory usually include new CP violating phases which often lead to the prediciton of larger EDM. EDM searches in different systems are complementary and various efforts worldwide are underway, but no finite value could be established yet. An improved search for the EDM of the neutron requires, among other things, much better statistics. At PSI, we are presently commissioning a new high intensity source of ultracold neutrons. At the same time, with an international collaboration, we are setting up for a new measurement of the neutron EDM which is starting this year.

  15. Yukawa coupling and anomalous magnetic moment of the muon: An update for the LHC era

    SciTech Connect (OSTI)

    Crivellin, Andreas; Girrbach, Jennifer; Nierste, Ulrich

    2011-03-01

    We study the interplay between a soft muon Yukawa coupling generated radiatively with the trilinear A-terms of the minimal supersymmetric standard model (MSSM) and the anomalous magnetic moment of the muon. In the absence of a tree-level muon Yukawa coupling the lightest smuon mass is predicted to be in the range between 600 GeV and 2200 GeV at 2{sigma}, if the bino mass M{sub 1} is below 1 TeV. Therefore, a detection of a smuon (in conjunction with a sub-TeV bino) at the LHC would directly imply a nonzero muon Yukawa coupling in the MSSM superpotential. Inclusion of slepton flavor mixing could in principle lower the mass of one smuonlike slepton below 600 GeV. However, the experimental bounds on radiative lepton decays instead strengthen the lower mass bound, with larger effects for smaller M{sub 1}, We also extend the analysis to the electron case and find that a light selectron close to the current experimental search limit may prove the MSSM electron Yukawa coupling to be nonzero.

  16. Center for Lightweighting Automotive Materials and Processing...

    Broader source: Energy.gov (indexed) [DOE]

    GATE Center of Excellence in Lightweight Materials and Manufacturing Technologies Vehicle Technologies Office Merit Review 2014: Improving Fatigue Performance of AHSS Welds

  17. Vehicle Technologies Office: Materials Technologies | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced materials are essential for boosting the fuel economy of modern automobiles while maintaining safety and performance. Because it takes less energy to accelerate a lighter...

  18. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are ...

  19. R25 Polyisocyanurate Composite Insulation Material | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material R25 Polyisocyanurate Composite Insulation Material Lead Performer: Oak Ridge National Laboratory (ORNL) - Oak Ridge, TN Partners: -- NanoPore, Inc. - Albuquerque, NM; -- Firestone Building Products Company - Indianapolis, IN DOE Funding:

  20. Critical Materials Institute

    ScienceCinema (OSTI)

    Alex King

    2013-06-05

    Ames Laboratory Director Alex King talks about the goals of the Critical Materials Institute in diversifying the supply of critical materials, developing substitute materials, developing tools and techniques for recycling critical materials, and forecasting materials needs to avoid future shortages.

  1. Nuclear Material Variance Calculation

    Energy Science and Technology Software Center (OSTI)

    1995-01-01

    MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet that significantly reduces the effort required to make the variance and covariance calculations needed to determine the detection sensitivity of a materials accounting system and loss of special nuclear material (SNM). The user is required to enter information into one of four data tables depending on the type of term in the materials balance (MB) equation. The four data tables correspond to input transfers, output transfers,more » and two types of inventory terms, one for nondestructive assay (NDA) measurements and one for measurements made by chemical analysis. Each data entry must contain an identification number and a short description, as well as values for the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements during an accounting period. The user must also specify the type of error model (additive or multiplicative) associated with each measurement, and possible correlations between transfer terms. Predefined spreadsheet macros are used to perform the variance and covariance calculations for each term based on the corresponding set of entries. MAVARIC has been used for sensitivity studies of chemical separation facilities, fuel processing and fabrication facilities, and gas centrifuge and laser isotope enrichment facilities.« less

  2. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2014-11-25

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  3. Gas storage materials, including hydrogen storage materials

    DOE Patents [OSTI]

    Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

    2013-02-19

    A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

  4. Overview of Propulsion Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Vehicles Technologies Materials Program Jerry Gibbs Technology Development Manager Propulsion Materials Vehicle Technologies Program Overview of Propulsion Materials Project ID PM000 Vehicle Technologies Program eere.energy.gov Materials for Combustion Systems / High Efficiency Engines Turbocharger, Valve Train, Fuel Injection, Structural Components Head/Block, Sensors, Materials/Fuel Compatibility Materials for Exhaust and Energy Recovery DPFs, Catalysts, Thermoelectric Materials,

  5. Materials Project: A Materials Genome Approach

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ceder, Gerbrand [MIT; Persson, Kristin [LBNL

    Technological innovation - faster computers, more efficient solar cells, more compact energy storage - is often enabled by materials advances. Yet, it takes an average of 18 years to move new materials discoveries from lab to market. This is largely because materials designers operate with very little information and must painstakingly tweak new materials in the lab. Computational materials science is now powerful enough that it can predict many properties of materials before those materials are ever synthesized in the lab. By scaling materials computations over supercomputing clusters, this project has computed some properties of over 80,000 materials and screened 25,000 of these for Li-ion batteries. The computations predicted several new battery materials which were made and tested in the lab and are now being patented. By computing properties of all known materials, the Materials Project aims to remove guesswork from materials design in a variety of applications. Experimental research can be targeted to the most promising compounds from computational data sets. Researchers will be able to data-mine scientific trends in materials properties. By providing materials researchers with the information they need to design better, the Materials Project aims to accelerate innovation in materials research.[copied from http://materialsproject.org/about] You will be asked to register to be granted free, full access.

  6. Performance Characterization

    Broader source: Energy.gov [DOE]

    Performance characterization efforts within the SunShot Systems Integration activities focus on collaborations with U.S. solar companies to:

  7. Performance Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) regulations as a process to be used in estimating the long-term performance of deep...

  8. Performance Modeling

    Office of Scientific and Technical Information (OSTI)

    ... of these components on our testbed machines using a minimal number of input attributes. ... that can predict an algorithm's performance using a minimal set of input parameters. ...

  9. Sacrificial Protective Coating Materials That Can Be Regenerated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Enable High-Performance Membranes Sacrificial Protective Coating Materials That Can Be Regenerated In-Situ to Enable High-Performance Membranes PDF icon protectivecoatingma...

  10. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    The Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability (MC&A) program within the U.S. Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), and for DOE owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). Admin Chg 3, dated 5-15-15 supersedes Admin Chg 2.

  11. Synthetic thermoelectric materials comprising phononic crystals

    DOE Patents [OSTI]

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  12. Flexible moldable conductive current-limiting materials

    DOE Patents [OSTI]

    Shea, John Joseph (Pittsburgh, PA); Djordjevic, Miomir B. (Milwaukee, WI); Hanna, William Kingston (Pittsburgh, PA)

    2002-01-01

    A current limiting PTC device (10) has two electrodes (14) with a thin film of electric conducting polymer material (20) disposed between the electrodes, the polymer material (20) having superior flexibility and short circuit performance, where the polymer material contains short chain aliphatic diepoxide, conductive filler particles, curing agent, and, preferably, a minor amount of bisphenol A epoxy resin.

  13. MCNP simulations of material exposure experiments (u) (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect MCNP simulations of material exposure experiments (u) Citation Details In-Document Search Title: MCNP simulations of material exposure experiments (u) Simulations of proposed material exposure experiments were performed using MCNP6. The experiments will expose ampules containing different materials of interest with radiation to observe the chemical breakdown of the materials. Simulations were performed to map out dose in materials as a function of distance from the source,

  14. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Reistance FY05 HPCRM Annual Report # Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    SciTech Connect (OSTI)

    Farmer, J C; Haslam, J J; Day, S D

    2007-09-19

    New corrosion-resistant, iron-based amorphous metals have been identified from published data or developed through combinatorial synthesis, and tested to determine their relative corrosion resistance. Many of these materials can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in some very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Two Fe-based amorphous metal formulations have been found that appear to have corrosion resistance comparable to, or better than that of Ni-based Alloy C-22, based on breakdown potential and corrosion rate. Both Cr and Mo provide corrosion resistance, B enables glass formation, and Y lowers critical cooling rate (CCR). SAM1651 has yttrium added, and has a nominal critical cooling rate of only 80 Kelvin per second, while SAM2X7 (similar to SAM2X5) has no yttrium, and a relatively high critical cooling rate of 610 Kelvin per second. Both amorphous metal formulations have strengths and weaknesses. SAM1651 (yttrium added) has a low critical cooling rate (CCR), which enables it to be rendered as a completely amorphous thermal spray coating. Unfortunately, it is relatively difficult to atomize, with powders being irregular in shape. This causes the powder to be difficult to pneumatically convey during thermal spray deposition. Gas atomized SAM1651 powder has required cryogenic milling to eliminate irregularities that make flow difficult. SAM2X5 (no yttrium) has a high critical cooling rate, which has caused problems associated with devitrification. SAM2X5 can be gas atomized to produce spherical powders of SAM2X5, which enable more facile thermal spray deposition. The reference material, nickel-based Alloy C-22, is an outstanding corrosion-resistant engineering material. Even so, crevice corrosion has been observed with C-22 in hot sodium chloride environments without buffer or inhibitor. Comparable metallic alloys such as SAM2X5 and SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Accelerated crevice corrosion tests are now being conducted to intentionally induce crevice corrosion, and to determine those environmental conditions where such localized attack occurs. Such materials are extremely hard, and provide enhanced resistance to abrasion and gouges (stress risers) from backfill operations, and possibly even tunnel boring. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN. These new materials provide a viable coating option for repository engineers. SAM2X5 and SAM1651 coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying. Containers for the transportation, storage and disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) with corrosion resistant coatings are envisioned. For example, an enhanced multi-purpose container (MPC) could be made with such coatings, leveraging existing experience in the fabrication of such containers. These coating materials could be used to protect the final closure weld on SNF/HLW disposal containers, eliminate need for stress mitigation. Integral drip shield could be produced by directly spraying it onto the disposal container, thereby eliminating the need for an expensive titanium drip shield. In specific areas where crevice corrosion is anticipated, such as the contact point between the disposal container and pallet, HVOF coatings could be used to buildup thickness, thereby selectively adding corrosion life where it is needed. Both SAM2X5 & SAM1651 have high boron content which enable them to absorb neutrons and therefore be used for criticality control in baskets. Alloy C-22 and 316L have no neutron absorber, and cannot be used for such functions. Borated stainless steel and G

  15. Electronic Structure Theory | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure Theory An image of multiple, interconnecting red and blue particles Using high-performance computing, NREL applies electronic structure theory to design and discover materials for energy applications. This includes detailed studies of the physical mechanisms that determine the material's behavior on an atomistic level. Learn more about high-performance computing. Key Research Areas Materials by Design NREL leads the U.S. Department of Energy's Center for Next Generation of

  16. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (LNT) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Deactivation Mechanisms of Base MetalZeolite Urea Selective Catalytic Reduction...

  17. Chapter 6: Materials

    Broader source: Energy.gov [DOE]

    Chapter 6 of the LANL Sustainable Design Guide contains information on material selection, sustainable building materials, and system integration issues.

  18. Optimizing Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Performance Optimizing Performance Storage Optimization Optimizing the sizes of the files you store in HPSS and minimizing the number of tapes they are on will lead to the most effient use of NERSC HPSS: File sizes of about 1 GB or larger will give the best network performance (see graph below) Files sizes greater than about 500 GB can be more difficult to work with and lead to longer transfer times. Files larger than 15 TB cannot be uploaded to HPSS. Aggregate groups of small files

  19. Presidential Performance Contracting Challenge: Performance Toward...

    Office of Environmental Management (EM)

    Presidential Performance Contracting Challenge: Performance Toward New 4 Billion Goal Presidential Performance Contracting Challenge: Performance Toward New 4 Billion Goal...

  20. Composite material dosimeters

    DOE Patents [OSTI]

    Miller, Steven D. (Richland, WA)

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  1. materials technologies | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Technologies Advanced materials are essential for boosting the fuel economy of modern automobiles while maintaining safety and performance. Because it takes less energy to accelerate a lighter object than a heavier one, lightweight materials offer great potential for increasing vehicle efficiency. Replacing cast iron and traditional steel components with lightweight materials such as high-strength steel, magnesium (Mg) alloys, aluminum (Al) alloys, carbon fiber, and polymer composites

  2. Method for forming materials

    DOE Patents [OSTI]

    Tolle, Charles R.; Clark, Denis E.; Smartt, Herschel B.; Miller, Karen S.

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  3. Quantum calculations of the IR spectrum of liquid water using ab initio and model potential and dipole moment surfaces and comparison with experiment

    SciTech Connect (OSTI)

    Liu, Hanchao; Wang, Yimin; Bowman, Joel M.

    2015-05-21

    The calculation and characterization of the IR spectrum of liquid water have remained a challenge for theory. In this paper, we address this challenge using a combination of ab initio approaches, namely, a quantum treatment of IR spectrum using the ab initio WHBB water potential energy surface and a refined ab initio dipole moment surface. The quantum treatment is based on the embedded local monomer method, in which the three intramolecular modes of each embedded H{sub 2}O monomer are fully coupled and also coupled singly to each of six intermolecular modes. The new dipole moment surface consists of a previous spectroscopically accurate 1-body dipole moment surface and a newly fitted ab initio intrinsic 2-body dipole moment. A detailed analysis of the new dipole moment surface in terms of the coordinate dependence of the effective atomic charges is done along with tests of it for the water dimer and prism hexamer double-harmonic spectra against direct ab initio calculations. The liquid configurations are taken from previous molecular dynamics calculations of Skinner and co-workers, using the TIP4P plus E3B rigid monomer water potential. The IR spectrum of water at 300 K in the range of 04000 cm{sup ?1} is calculated and compared with experiment, using the ab initio WHBB potential and new ab initio dipole moment, the q-TIP4P/F potential, which has a fixed-charged description of the dipole moment, and the TTM3-F potential and dipole moment surfaces. The newly calculated ab initio spectrum is in very good agreement with experiment throughout the above spectral range, both in band positions and intensities. This contrasts to results with the other potentials and dipole moments, especially the fixed-charge q-TIP4P/F model, which gives unrealistic intensities. The calculated ab initio spectrum is analyzed by examining the contribution of various transitions to each band.

  4. Evidence for near-Surface NiOOH Species in Solution-Processed NiOx Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics

    SciTech Connect (OSTI)

    Ratcliff, Erin L.; Meyer, Jens; Steirer, K. Xerxes; Garcia, Andres; Berry, Joseph J.; Ginley, David S.; Olson, Dana C.; Kahn, Antoine; Armstrong, Neal R.

    2011-11-22

    The characterization and implementation of solution-processed, wide bandgap nickel oxide (NiO{sub x}) hole-selective interlayer materials used in bulk-heterojunction (BHJ) organic photovoltaics (OPVs) are discussed. The surface electrical properties and charge selectivity of these thin films are strongly dependent upon the surface chemistry, band edge energies, and midgap state concentrations, as dictated by the ambient conditions and film pretreatments. Surface states were correlated with standards for nickel oxide, hydroxide, and oxyhydroxide components, as determined using monochromatic X-ray photoelectron spectroscopy. Ultraviolet and inverse photoemission spectroscopy measurements show changes in the surface chemistries directly impact the valence band energies. O?-plasma treatment of the as-deposited NiO{sub x} films was found to introduce the dipolar surface species nickel oxyhydroxide (NiOOH), rather than the p-dopant Ni?O?, resulting in an increase of the electrical band gap energy for the near-surface region from 3.1 to 3.6 eV via a vacuum level shift. Electron blocking properties of the as-deposited and O?-plasma treated NiO{sub x} films are compared using both electron-only and BHJ devices. O?-plasma-treated NiO{sub x} interlayers produce electron-only devices with lower leakage current and increased turn on voltages. The differences in behavior of the different pretreated interlayers appears to arise from differences in local density of states that comprise the valence band of the NiO{sub x} interlayers and changes to the band gap energy, which influence their hole-selectivity. The presence of NiOOH states in these NiO{sub x} films and the resultant chemical reactions at the oxide/organic interfaces in OPVs is predicted to play a significant role in controlling OPV device efficiency and lifetime.

  5. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and...

  6. The Critical Materials Institute | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Critical Materials Institute Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Photo left to right: CMI Director Alex King, Operations Manager Cynthia Feller, Jenni Brockpahler and Melinda Thach. Not pictured: Carol Bergman. CMI staff phone 515-296-4500, e-mail CMIdirector@ameslab.gov The Critical Materials Institute focuses on technologies that make better use of materials and eliminate the need for materials that are subject to supply disruptions.

  7. About Critical Materials | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Critical Materials Critical materials are found in many commonly used tools, including batteries, cell phones and vehicles. 10 things you didn't know about critical materials Rare Earths -- The Fraternal Fifteen CMI factsheet What would we do without rare earths? The Ames Laboratory channel on YouTube Timelines related to rare earth elements and materials Other sources of information about rare earths: GE: Understanding rare earth metals, includes links to a whitepaper "Understanding

  8. Materials Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MST Materials Science and Technology Providing world-leading, innovative, and agile materials science and technology solutions for national security missions. MST is metallurgy. The Materials Science and Technology Division provides scientific and technical leadership in materials science and technology for Los Alamos National Laboratory. READ MORE MST is engineered materials. The Materials Science and Technology Division provides scientific and technical leadership in materials science and

  9. Application Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NESAP Application Porting and Performance IXPUG Performance and Debugging Tools Measuring Arithmetic Intensity Training & Tutorials Software Policies User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support https://nim.nersc.gov accounts@nersc.gov 1-800-66-NERSC, option 2 or 510-486-8612 Consulting http://help.nersc.gov consult@nersc.gov

  10. Spin and orbital moments of nanoscale Fe{sub 3}O{sub 4} epitaxial thin film on MgO/GaAs(100)

    SciTech Connect (OSTI)

    Liu, W. Q.; Xu, Y. B. E-mail: rzhang@nju.edu.cn; Wong, P. K. J.; Maltby, N. J.; Li, S. P.; Wang, X. F.; Zhang, R. E-mail: rzhang@nju.edu.cn; Du, J.; You, B.; Wu, J.; Bencok, P.

    2014-04-07

    Nanoscale Fe{sub 3}O{sub 4} epitaxial thin film has been synthesized on MgO/GaAs(100) spintronic heterostructure, and studied with X-ray magnetic circular dichroism. We have observed a total magnetic moment (m{sub l+s}) of (3.32 ± 0.1)μ{sub B}/f.u., retaining 83% of the bulk value. Unquenched orbital moment (m{sub l}) of (0.47 ± 0.05)μ{sub B}/f.u. has been confirmed by carefully applying the sum rule. The results offer direct experimental evidence of the bulk-like total magnetic moment and a large orbital moment in the nanoscale fully epitaxial Fe{sub 3}O{sub 4}/MgO/GaAs(100) heterostructure, which is significant for spintronics applications.

  11. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, Richard W. (Hinsdale, IL); Nieman, G. William (Evanston, IL); Weertman, Julia R. (Evanston, IL)

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  12. Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Vehicle Technologies Plenary PDF icon vtpn04_schutte_lm_2011_o.pdf More Documents & Publications Overview of Lightweight Materials Lightweight Materials Overview Summary of the Output from the VTP Advanced Materials Workshop

  13. Systematics of ground-state quadrupole moments of odd-A deformed nuclei determined with muonic M x rays

    SciTech Connect (OSTI)

    Tanaka, Y.; Steffen, R.M.; Shera, E.B.; Reuter, W.; Hoehn, M.V.; Zumbro, J.D.

    1984-05-01

    The ground-state quadrupole moments of /sup 151/Eu, /sup 153/Eu, /sup 159/Tb, /sup 163/Dy, /sup 167/Er, /sup 177/Hf, /sup 179/Hf, /sup 191/Ir, and /sup 193/Ir were determined by measuring the quadrupole hyperfine-splitting energies of muonic M x rays. The results are Q = 0.903(10) e b for /sup 151/Eu, Q = 2.412(21) e b for /sup 153/Eu, Q = 1.432(8) e b for /sup 159/Tb, Q = 2.648(21) e b for /sup 163/Dy, Q = 3.565(29) e b for /sup 167/Er, Q = 3.365(29) e b for /sup 177/Hf, Q = 3.793(33) e b for /sup 179/Hf, Q = 0.816(9) e b for /sup 191/Ir, and Q = 0.751(9) e b for /sup 193/Ir. The present quadrupole moments, compared with values obtained from electronic-atom hyperfine measurements, show that the Sternheimer correction factors used in the rare-earth electronic-atom analysis are unreliable. Systematics of deformation parameters ..beta../sub 2/ calculated from the present quadrupole moments for odd-A nuclei, and from B(E2) values of Coulomb excitation measurements for even-A nuclei, also indicate that the largest deformation change so far known exists between /sup 151/Eu and /sup 153/Eu. Except at the onset of nuclear deformation, the deformation parameters of the odd-A nuclei are quite consistent with those of the even-A neighbors.

  14. DPC materials and corrosion environments.

    SciTech Connect (OSTI)

    Ilgen, Anastasia Gennadyevna; Bryan, Charles R.; Teich-McGoldrick, Stephanie; Hardin, Ernest; Clarity, J.

    2014-10-01

    After an exposition of the materials used in DPCs and the factors controlling material corrosion in disposal environments, a survey is given of the corrosion rates, mechanisms, and products for commonly used stainless steels. Research needs are then identified for predicting stability of DPC materials in disposal environments. Stainless steel corrosion rates may be low enough to sustain DPC basket structural integrity for performance periods of as long as 10,000 years, especially in reducing conditions. Uncertainties include basket component design, disposal environment conditions, and the in-package chemical environment including any localized effects from radiolysis. Prospective disposal overpack materials exist for most disposal environments, including both corrosion allowance and corrosion resistant materials. Whereas the behavior of corrosion allowance materials is understood for a wide range of corrosion environments, demonstrating corrosion resistance could be more technically challenging and require environment-specific testing. A preliminary screening of the existing inventory of DPCs and other types of canisters is described, according to the type of closure, whether they can be readily transported, and what types of materials are used in basket construction.

  15. Electric dipole moment in KH{sub 2}PO{sub 4} systematically modified by proton irradiation

    SciTech Connect (OSTI)

    Jin Kweon, Jung; Lee, Cheol Eui; Noh, S. J.; Kim, H. S.

    2012-01-01

    We have carried out an impedance spectroscopy study on a series of proton-irradiated KH{sub 2}PO{sub 4} (KDP) systems. A systematic modification was observed in the transverse dipole moment of the proton-irradiated KDP systems, associated with hydrogen-ion displacements, as obtained from dielectric constant measurements by using a mean-field approximation. Besides, intercorrelation of the charge transport with the dielectric properties was revealed, both having closely to do with the hydrogen-bond modification.

  16. Watch it Live at 1pm: Secretary Chu Talks "Sputnik Moment" at Press Club |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy At 1pm ET today, Secretary Chu will deliver a speech at the National Press Club in DC calling on the United States to sharply accelerate innovations in clean energy -- citing China and other countries' recent advances in clean technology as a critical "Sputnik Moment" for the U.S. The event will begin at 12:30, and Chu will deliver his remarks at 1, followed by a question and answer session. You'll be able to watch live online here. UPDATE: Follow along with

  17. Encapsulating Materials and Associated Devices - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search Encapsulating Materials and Associated Devices National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Encapsulant materials are used in a variety of applications to isolate components, areas, or other materials from potentially stressful conditions that can adversely affect the performance of a device. For example, the performance of photovoltaic (PV) modules may decrease over

  18. NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery NSFDOE Thermoelectric Partnership: High-Performance Thermoelectric...

  19. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High Temperature Performance of NOx StorageReduction (NSR) Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  20. Enhanced High Temperature Performance of NOx Storage/Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx StorageReduction (NSR) ...

  1. Print-based Manufacturing of Integrated, Low Cost, High Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Print-based Manufacturing of Integrated, Low Cost, High Performance SSL Luminaires Lead Performer: Eaton Corporation - Menomonee Falls, WI Partners: - Heraeus Materials Technology, ...

  2. Performance Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Characterization for Fusion Co-design Applications Praveen Narayanan, Alice Koniges, Leonid Oliker, Robert Preissl, Samuel Williams, Nicholas J. Wright, Lawrence Berkeley National Laboratory Maxim Umansky, Xueqiao Xu, Lawrence Livermore National Laboratory Benjamin Dudson, University of York Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Jeff Candy, General Atomics John R. Cary, Tech-X ABSTRACT: Magnetic fusion is a long-term solution for producing electrical

  3. Economic Performance

    Office of Environmental Management (EM)

    09 Executive Order 13514-Federal Leadership in Environmental, Energy, and Economic Performance October 5, 2009 By the authority vested in me as President by the Constitution and the laws of the United States of America, and to establish an integrated strategy towards sustainability in the Federal Government and to make reduction of greenhouse gas emissions a priority for Federal agencies, it is hereby ordered as follows: Section 1. Policy. In order to create a clean energy economy that will

  4. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Kristin Persson is one of the founding scientists behind the Materials Project, a computational tool aimed at taking the guesswork out of new materials discoveries, especially those aimed at energy applications like batteries. (Roy Kaltschmidt, LBNL) New materials are crucial to building a clean energy

  5. Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Innovating tomorrow's materials today New high-tech materials are the key to breakthroughs in biology, the environment, nuclear energy, transportation and national security. Argonne continues to make revolutionary advances in the science of materials discovery and synthesis, and is designing new materials with advantageous properties - one atom at a time. Examples of these include Argonne's patented technologies for nanoparticle applications, heat transfer and materials for advanced

  6. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Co-ordinator & Visiting Professor Oxford University Materials United Kingdom "Magnetic" Molecular Dynamics and Other Models for Fusion Reactor Materials Tuesday, September 15,...

  7. Materials Science Research | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research For photovoltaics and other energy applications, NREL's primary research in materials science includes the following core competencies. A photo of laser light rays going in various directions atop a corrugated metal substrate Materials Physics Through materials growth and characterization, we seek to understand and control fundamental electronic and optical processes in semiconductors. An image of multiple, interconnecting red and blue particles Electronic Structure Theory We

  8. Materials Discovery across Technological Readiness Levels | Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science | NREL Materials Discovery across Technological Readiness Levels Materials discovery is important across technology readiness levels: basic science, applied research, and device development. Over the past several years, NREL has worked at each of these levels, demonstrating our competence in a broad range of materials discovery problems. Basic Science An image of a triangular diagram with tantalum-cobalt-tin at the top vertex, tantalum at the lower left vertex, and cobalt at the

  9. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6, Admin Chg 1, 8-26-05. Admin Chg 2, dated 11-19-12, cancels DOE M 474.2 Admin Chg 1. Admin Chg 3, dated 5-15-15, cancels Admin Chg 2.

  10. Synthesis and electrochemical performance of high-capacity 0.34Li{sub 2}MnO{sub 3}0.66LiMn{sub 0.63}Ni{sub 0.24}Co{sub 0.13}O{sub 2} cathode materials using a CouetteTaylor reactor

    SciTech Connect (OSTI)

    Choi, Mansoo; Kim, Hyun-Soo; Kim, Jik-Soo; Park, Suk-Joon; Lee, Young Moo; Jin, Bong-Soo

    2014-10-15

    Highlights: The cathode material synthesized by co-precipitation using a CouetteTaylor reactor. The first and second discharge capacities were measured to be 311 and 307 mA h g{sup ?1}. The material has an excellent rate capability. - Abstract: The 0.34Li{sub 2}MnO{sub 3}0.66LiMn{sub 0.63}Ni{sub 0.24}Co{sub 0.13}O{sub 2} cathode material for the Li-ion battery is synthesized by co-precipitation using a CouetteTaylor reactor. Particle size analysis (PSA) and a field emission-scanning electron microscopy (FE-SEM) images show that the obtained precursor and cathode material exhibit a narrow particle size distribution and spherical shape. The structure and composition of the 0.34Li{sub 2}MnO{sub 3}0.66LiMn{sub 0.63}Ni{sub 0.24}Co{sub 0.13}O{sub 2} are confirmed by X-ray diffraction (XRD) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). The first and second discharge capacities of 0.34Li{sub 2}MnO{sub 3}0.66LiMn{sub 0.63}Ni{sub 0.24}Co{sub 0.13}O{sub 2} are measured to be 311 and 307 mA h g{sup ?1}, respectively. The material also has an excellent rate capability (250 and 180 mA h g{sup ?1} at 1 C and 5 C, respectively). In the rate capability test at 60 C, 0.34Li{sub 2}MnO{sub 3}0.66LiMn{sub 0.63}Ni{sub 0.24}Co{sub 0.13}O{sub 2} has a higher capacity of over 210 mA h g{sup ?1} in the range 0.110 C. In the cyclic performance test, the capacity retention at high temperature is over 85% after 50 cycles, which is similar to that at room temperature. The 0.34Li{sub 2}MnO{sub 3}0.66LiMn{sub 0.63}Ni{sub 0.24}Co{sub 0.13}O{sub 2} is therefore a high-capacity material with potential for use as an electrode in Li-ion batteries.

  11. Coated ceramic breeder materials

    DOE Patents [OSTI]

    Tam, Shiu-Wing; Johnson, Carl E.

    1987-01-01

    A breeder material for use in a breeder blanket of a nuclear reactor is disclosed. The breeder material comprises a core material of lithium containing ceramic particles which has been coated with a neutron multiplier such as Be or BeO, which coating has a higher thermal conductivity than the core material.

  12. Tritium breeding materials

    SciTech Connect (OSTI)

    Hollenberg, G.W.; Johnson, C.E.; Abdou, M.

    1984-03-01

    Tritium breeding materials are essential to the operation of D-T fusion facilities. Both of the present options - solid ceramic breeding materials and liquid metal materials are reviewed with emphasis not only on their attractive features but also on critical materials issues which must be resolved.

  13. Hydrogen Compatibility of Materials

    Broader source: Energy.gov [DOE]

    Presentation slides from the Energy Department webinar, Hydrogen Compatibility of Materials, held August 13, 2013.

  14. High-performance steels

    SciTech Connect (OSTI)

    Barsom, J.M.

    1996-03-01

    Steel is the material of choice in structures such as storage tanks, gas and oil distribution pipelines, high-rise buildings, and bridges because of its strength, ductility, and fracture toughness, as well as its repairability and recyclability. Furthermore, these properties are continually being improved via advances in steelmaking, casting, rolling, and chemistry. Developments in steelmaking have led to alloys having low sulfur, sulfide shape control, and low hydrogen. They provide reduced chemical segregation, higher fracture toughness, better through-thickness and weld heat-affected zone properties, and lower susceptibility to hydrogen cracking. Processing has moved beyond traditional practices to designed combinations of controlled rolling and cooling known as thermomechanical control processes (TMCP). In fact, chemical composition control and TMCP now enable such precise adjustment of final properties that these alloys are now known as high-performance steels (HPS), engineered materials having properties tailored for specific applications.

  15. Materials sciences programs, Fiscal year 1997

    SciTech Connect (OSTI)

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  16. Investigation of Microscopic Materials Limitations of Superconducting...

    Office of Scientific and Technical Information (OSTI)

    An understanding of these links would provide a clear roadmap for improvement of SRF cavity performance, and establish a cause-and-effect 'RF materials science' of Nb. We propose ...

  17. Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles | Department of Energy High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon

  18. Materials Science in Radiation and Dynamics Extremes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Materials Science in Radiation and Dynamics Extremes Our combination of modeling and experimental testing capabilities opens up unparalleled opportunities to do fundamental research leading to physics-based predictive models. Contact Us Group Leader Ellen Cerreta Email Deputy Group Leader (acting) Christopher Stanek Email Group Office (505) 665-4735 We predict structure/property relationships of materials, perform computational materials modeling, characterize thermophysical properties, and

  19. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, Robert E. (Los Alamos, NM); Ramsey, David R. (Bothel, WA); Stampfer, Joseph F. (Santa Fe, NM); Macdonald, John M. (Santa Fe, NM)

    1998-01-01

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material.

  20. Nanocrystalline ceramic materials

    DOE Patents [OSTI]

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  1. Material Transfer Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Transfer Agreements Material Transfer Agreements Enables the transfer of tangible consumable research materials between two organizations, when the recipient intends to use the material for research purposes Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Overview The ability to exchange materials freely and without delay is an important part of a healthy scientific laboratory. Los Alamos National

  2. Materials for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials for the Future Materials for the Future The Lab's four Science Pillars harness our scientific capabilities for national security solutions. Contacts Pillar Champion Mary Hockaday Email Pillar Contact Toni Taylor Email Pillar Contact David Teter Email Materials for the Future Science Overview At Los Alamos National Laboratory, we anticipate the advent of a new era in materials science, when we will transition from observing and exploiting the properties of materials to a science-based

  3. Multi Material Paradigm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi Material Paradigm Glenn S. Daehn Department of Materials Science and Engineering, The Ohio State University Advanced Composites (FRP) Steel Spaceframe Multi Material Concept Composites Advanced Steel body Coil-coated shell Steel thin wall casting High strength Steels Al-Spaceframe Steel Unibody Stainless Steel Spaceframe Affordability of weight reduction Design Materials Processes Approach Advanced M-Spaceframe L > 2012 Multi Material Paradigm Joining problems and methods f Joining

  4. Chemical Hydrogen Storage Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Troy A. Semelsberger Los Alamos National Laboratory Hydrogen Storage Summit Jan 27-29, 2015 Denver, CO Chemical Hydrogen Storage Materials 2 Objectives 1. Assess chemical hydrogen storage materials that can exceed 700 bar compressed hydrogen tanks 2. Status (state-of-the-art) of chemical hydrogen storage materials 3. Identify key material characteristics 4. Identify obstacles, challenges and risks for the successful deployment of chemical hydrogen materials in a practical on-board hydrogen

  5. Materials at the Mesoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    » Materials at the Mesoscale 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues » submit Materials at the Mesoscale Los Alamos's bold proposal to understand and control material properties December 12, 2015 Materials at the Mesoscale Between the atomic and macro scales lies a gap in our knowledge of materials known as the mesoscale. A gap remains in the understanding of mesoscale properties and responses, especially in extreme temperature,

  6. Puncture detecting barrier materials

    DOE Patents [OSTI]

    Hermes, R.E.; Ramsey, D.R.; Stampfer, J.F.; Macdonald, J.M.

    1998-03-31

    A method and apparatus for continuous real-time monitoring of the integrity of protective barrier materials, particularly protective barriers against toxic, radioactive and biologically hazardous materials has been developed. Conductivity, resistivity or capacitance between conductive layers in the multilayer protective materials is measured by using leads connected to electrically conductive layers in the protective barrier material. The measured conductivity, resistivity or capacitance significantly changes upon a physical breach of the protective barrier material. 4 figs.

  7. FY 2012 Lightweight Materials Annual Report

    SciTech Connect (OSTI)

    Warren, David C.

    2013-04-15

    The FY 2012 Annual Progress Report for Lightweight Materials provides a detailed description of the activities and technical accomplishments which focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  8. 2011 Annual Progress Report for Lightweighting Materials

    Broader source: Energy.gov [DOE]

    As part of the U.S. Department of Energys (DOEs) Vehicle Technologies Program (VTP), the Lightweight Materials (LM) activity focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce light and heavy duty vehicle weight without compromising other attributes such as safety, performance, recyclability, and cost.

  9. Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec; Peng, Ivy Bo; Laure, Erwin; Markidis, Stefano

    2015-06-01

    A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instabilitymore » test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.« less

  10. Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments

    SciTech Connect (OSTI)

    Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec; Peng, Ivy Bo; Laure, Erwin; Markidis, Stefano

    2015-06-01

    A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instability test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.

  11. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    SciTech Connect (OSTI)

    Talman, Richard

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such an electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)

  12. DOE Hydrogen Storage Technical Performance Targets for Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    bar (abs) 3 3 Max delivery pressure from storage system bar (abs) 12 12 Shock and Vibration Shock g 40 40 Vibration g 5@10Hz-0.75@200Hz 10@10Hz-1@200Hz ChargingDischarging ...

  13. FIELD PERFORMANCE OF EROSION RESISTANT MATERIALS ON BOILER INDUCED...

    Office of Scientific and Technical Information (OSTI)

    PROJECTS DEPARTMENT PRINCIPAL INVESTIGATORS 0 . F. Karr, Mechanical Engineer Generation Projects Department Research and Development J. B. Brooks, Metallurgist Generation...

  14. Materials and Modules for Low Cost, High Performance Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Advance Patent Waiver W(A)2010-041 Kick-Off Meeting for New Fuel Cell Projects CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europe...

  15. Design of High Performance, High Energy Cathode Materials

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Silver particles improve performance of battery material | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the battery wears out after only 10 to 40 charge-discharge cycles; a typical electric vehicle requires a thousand cycles or more. It is believed that once these issues are...

  17. Materials Scale-up and Cell Performance Analysis

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  18. High Performance Zintl Phase TE Materials with Embedded Particles

    Broader source: Energy.gov [DOE]

    Presents results from embedding nanoparticles in magnesium silicide alloy matrix reducing thermal conductivity by phonon scattering and increasing power factor by selective scattering of hot carriers

  19. Method for improving performance of irradiated structural materials

    DOE Patents [OSTI]

    Megusar, Janez (Belmont, MA); Harling, Otto K. (Hingham, MA); Grant, Nicholas J. (Winchester, MA)

    1989-01-01

    Method for extending service life of nuclear reactor components prepared from ductile, high strength crystalline alloys obtained by devitrification of metallic glasses. Two variations of the method are described: (1) cycling the temperature of the nuclear reactor between the operating temperature which leads to irradiation damage and a l The U.S. Government has rights in this invention by virtue of Department of Energy, Office of Fusion Energy, Grant No. DE-AC02-78ER-10107.

  20. Commercialization of Bulk Thermoelectric Materials for Power Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are discussed PDF icon kossakovski.pdf More Documents & Publications Commercialization of Bulk Thermoelectric Materials for Power Generation Fact #897:

  1. Center for Nanophase Materials Sciences (CNMS) - Core Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization Core materials characterization

  2. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  3. Packaging - Materials review

    SciTech Connect (OSTI)

    Herrmann, Matthias

    2014-06-16

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device, valve, etc.), chemical inertness, cost issues, and others. Finally, proper cell design has to be considered for effective thermal management (i.e. cooling and heating) of battery packs.

  4. Recent Advances in Two-Dimensional Materials Beyond Graphene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meunier, Vincent; Sumpter, Bobby G.; Terrones Maldonado, Mauricio; Terrones Maldonado, Humberto; Liang, Liangbo; Cooper, Valentino R.; Bhimanapati, Ganesh; Lin, Zhong; Jung, Yeongwoong; Cha, Judy; et al

    2015-11-06

    The isolation of graphene in 2004 by peeling apart the atomically-thin sheets that comprise graphite was a defining moment for the birth of a field: Two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here we review significant recent advances and important new developments in 2D materials beyond graphene . We provide insight into the theoretical modeling and understanding of the van der Waals forces that hold together the 2D layers in bulkmore » solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene, which enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene.« less

  5. Recent Advances in Two-Dimensional Materials Beyond Graphene

    SciTech Connect (OSTI)

    Meunier, Vincent; Sumpter, Bobby G.; Terrones Maldonado, Mauricio; Terrones Maldonado, Humberto; Liang, Liangbo; Cooper, Valentino R.; Bhimanapati, Ganesh; Lin, Zhong; Jung, Yeongwoong; Cha, Judy; Das, Saptarshi; Xiao, Di; Son, Youngwoo; Strano, Michael; Louie, Steven G.; Ringe, Emilie; Xia, Fengnian; Wang, Yeliang; Akinwande, Deji; Zhu, Jun; Schuller, John; Schaak, Raymond; Robinson, Joshua A

    2015-11-06

    The isolation of graphene in 2004 by peeling apart the atomically-thin sheets that comprise graphite was a defining moment for the birth of a field: Two-dimensional (2D) materials. In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement. Here we review significant recent advances and important new developments in 2D materials beyond graphene . We provide insight into the theoretical modeling and understanding of the van der Waals forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies. Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (i.e., silicene, phosphorene, etc.) and transition metal carbide- and carbon nitride-based MXenes. We then discuss the doping and functionalization of 2D materials beyond graphene, which enable device applications, followed by advances in electronic, optoelectronic, and magnetic devices and theory. Finally, we provide perspectives on the future of 2D materials beyond graphene.

  6. Enhanced magnetocaloric effect material

    DOE Patents [OSTI]

    Lewis, Laura J. H.

    2006-07-18

    A magnetocaloric effect heterostructure having a core layer of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, and a constricting material layer coated on at least one surface of the magnetocaloric material core layer. The constricting material layer may enhance the magnetocaloric effect by restriction of volume changes of the core layer during application of a magnetic field to the heterostructure. A magnetocaloric effect heterostructure powder comprising a plurality of core particles of a magnetostructural material with a giant magnetocaloric effect having a magnetic transition temperature equal to or greater than 150 K, wherein each of the core particles is encapsulated within a coating of a constricting material is also disclosed. A method for enhancing the magnetocaloric effect within a giant magnetocaloric material including the step of coating a surface of the magnetocaloric material with a constricting material is disclosed.

  7. Joining of dissimilar materials

    DOE Patents [OSTI]

    Tucker, Michael C; Lau, Grace Y; Jacobson, Craig P

    2012-10-16

    A method of joining dissimilar materials having different ductility, involves two principal steps: Decoration of the more ductile material's surface with particles of a less ductile material to produce a composite; and, sinter-bonding the composite produced to a joining member of a less ductile material. The joining method is suitable for joining dissimilar materials that are chemically inert towards each other (e.g., metal and ceramic), while resulting in a strong bond with a sharp interface between the two materials. The joining materials may differ greatly in form or particle size. The method is applicable to various types of materials including ceramic, metal, glass, glass-ceramic, polymer, cermet, semiconductor, etc., and the materials can be in various geometrical forms, such as powders, fibers, or bulk bodies (foil, wire, plate, etc.). Composites and devices with a decorated/sintered interface are also provided.

  8. Novel materials for laser refrigeration

    SciTech Connect (OSTI)

    Hehlen, Markus P

    2009-01-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which {Dirac_h}{omega}{sub max} < E{sub p}/8, where {Dirac_h}{omega}{sub max} is the maximum phonon energy of the host material and E{sub p} is the pump energy of the rare-earth dopant. Transition-metal and OH{sup -}impurities at levels >100 ppb are believed to be the main factors for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF{sub 3}-LiF are considered as alternatives to ZBLAN. The crystalline system KPb{sub 2}CI{sub 5} :Dy{sup 3+} is identified as a prime candidate for high-efficiency laser cooling.

  9. Precision muonic-atom measurements of nuclear quadrupole moments and the Sternheimer effect in rare-earth atoms

    SciTech Connect (OSTI)

    Tanaka, Y.; Steffen, R.M.; Shera, E.B.; Reuter, W.; Hoehn, M.V.; Zumbro, J.D.

    1983-10-31

    The ground-state quadrupole moments of /sup 151/Eu, /sup 153/Eu, /sup 155/Gd, /sup 157/Gd, /sup 159/Tb, /sup 163/Dy, /sup 167/Er, /sup 177/Hf, /sup 179/Hf, /sup 191/Ir, and /sup 193/Ir were determined with an uncertainty of less than one percent by measuring the quadrupole hyperfine-splitting energies of muonic M x rays. The results are used to determine experimentally Sternheimer shielding factors for the 4f, 5d, and 6p electronic states of the respective atoms. The deduced shielding factors for the 5d electronic states were found to vary considerably among these elements, presumably as a result of configuration mixing.

  10. DWPF MATERIALS EVALUATION SUMMARY REPORT

    SciTech Connect (OSTI)

    Gee, T.; Chandler, G.; Daugherty, W.; Imrich, K.; Jankins, C.

    1996-09-12

    To better ensure the reliability of the Defense Waste Processing Facility (DWPF) remote canyon process equipment, a materials evaluation program was performed as part of the overall startup test program. Specific test programs included FA-04 ('Process Vessels Erosion/Corrosion Studies') and FA-05 (melter inspection). At the conclusion of field testing, Test Results Reports were issued to cover the various test phases. While these reports completed the startup test requirements, DWPF-Engineering agreed to compile a more detailed report which would include essentially all of the materials testing programs performed at DWPF. The scope of the materials evaouation programs included selected equipment from the Salt Process Cell (SPC), Chemical Process Cell (CPC), Melt Cell, Canister Decon Cell (CDC), and supporting facilities. The program consisted of performing pre-service baseline inspections (work completed in 1992) and follow-up inspections after completion of the DWPF cold chemical runs. Process equipment inspected included: process vessels, pumps, agitators, coils, jumpers, and melter top head components. Various NDE (non-destructive examination) techniques were used during the inspection program, including: ultrasonic testing (UT), visual (direct or video probe), radiography, penetrant testing (PT), and dimensional analyses. Finally, coupon racks were placed in selected tanks in 1992 for subsequent removal and corrosion evaluation after chemical runs.

  11. Nondestructive material characterization

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Johnson, John A. (Idaho Falls, ID); Telschow, Kenneth L. (Idaho Falls, ID)

    1991-01-01

    A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.

  12. EC Transmission Line Materials

    SciTech Connect (OSTI)

    Bigelow, Tim S

    2012-05-01

    The purpose of this document is to identify materials acceptable for use in the US ITER Project Office (USIPO)-supplied components for the ITER Electron cyclotron Heating and Current Drive (ECH&CD) transmission lines (TL), PBS-52. The source of material property information for design analysis shall be either the applicable structural code or the ITER Material Properties Handbook. In the case of conflict, the ITER Material Properties Handbook shall take precedence. Materials selection, and use, shall follow the guidelines established in the Materials Assessment Report (MAR). Materials exposed to vacuum shall conform to the ITER Vacuum Handbook. [Ref. 2] Commercial materials shall conform to the applicable standard (e.g., ASTM, JIS, DIN) for the definition of their grade, physical, chemical and electrical properties and related testing. All materials for which a suitable certification from the supplier is not available shall be tested to determine the relevant properties, as part of the procurement. A complete traceability of all the materials including welding materials shall be provided. Halogenated materials (example: insulating materials) shall be forbidden in areas served by the detritiation systems. Exceptions must be approved by the Tritium System and Safety Section Responsible Officers.

  13. Geopolymer Sealing Materials

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop and characterize field-applicable geopolymer temporary sealing materials in the laboratory and to transfer this developed material technology to geothermal drilling service companies as collaborators for field validation tests.

  14. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  15. Cybersecurity Awareness Materials

    Broader source: Energy.gov [DOE]

    The OCIO develops and distributes a variety of materials to enhance cyber awareness campaigns, address emerging cyber threats, and examine hot topics. These materials are available to all DOE organizations, and public and private institutions.

  16. Nuclear Materials Disposition

    Broader source: Energy.gov [DOE]

    In fulfilling its mission, EM frequently manages and completes disposition of surplus nuclear materials and spent nuclear fuel.  These are not waste. They are nuclear materials no longer needed for...

  17. Instructions and Materials

    Broader source: Energy.gov [DOE]

    The following are 2012 Program Peer Review Meeting instructions, materials and resource links for presenters and reviewers.

  18. Materials Physics and Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS » MPA Materials Physics and Applications We develop new technologies that solve pressing national energy and security challenges by exploring and exploiting materials and their properties; developing practical applications of materials, and providing world-class user facilities. Contact Us Division Leader (acting) Michael Hundley Email Deputy Division Leader Rick Martineau Email Chief of Staff Jeff Willis Email Division Office (505) 665-1131 Materials Physics Applications Division

  19. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials/Condensed Matter Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied

  20. ARM - Public Information Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govPublicationsPublic Information Materials Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information...

  1. Critical Materials Workshop

    Broader source: Energy.gov [DOE]

    AMO hosted a public workshop on Tuesday, April 3, 2012 in Arlington, VA to provide background information on critical materials assessment, the current research within DOE related to critical materials, and the foundational aspects of Energy Innovation Hubs. Additionally, the workshop solicited input from the critical materials community on R&D gaps that could be addressed by DOE.

  2. A Google for Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kristin Persson A Google for Materials February 4, 2014 Kirstin Persson, Berkeley Lab Downloads Persson-Materials-NUG2014.pdf | Adobe Acrobat PDF file A Google For Materials? - Kirstin Persson, Berkeley Lab Last edited: 2016-02-01 08:07:07

  3. Advanced neutron absorber materials

    DOE Patents [OSTI]

    Branagan, Daniel J. (Idaho Falls, ID); Smolik, Galen R. (Idaho Falls, ID)

    2000-01-01

    A neutron absorbing material and method utilizing rare earth elements such as gadolinium, europium and samarium to form metallic glasses and/or noble base nano/microcrystalline materials, the neutron absorbing material having a combination of superior neutron capture cross sections coupled with enhanced resistance to corrosion, oxidation and leaching.

  4. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M. E.; Assaf, B. A.; Sterbinsky, G. E.; Arena, D. A.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. Results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value.

  5. Atomic moments in Mn2CoAl thin films analyzed by X-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Jamer, M.; Sterbinsky, G.; Assaf, B.; Arena, D.; Heiman, D.

    2014-12-05

    Spin gapless semiconductors are known to be strongly affected by structural disorder when grown epitaxially as thin films. The magnetic properties of Mn2CoAl thin films grown on GaAs (001) substrates are investigated here as a function of annealing. This study investigates the atomic-specific magnetic moments of Mn and Co atoms measured through X-ray magnetic circular dichroism as a function of annealing and the consequent structural ordering. The results indicate that the structural distortion mainly affects the Mn atoms as seen by the reduction of the magnetic moment from its predicted value. (auth)

  6. Self-organised aggregation of a pair of particles with different resonant frequencies and electric dipole moments of transitions, controlled by an external quasi-resonant field

    SciTech Connect (OSTI)

    Slabko, V V; Tsipotan, A S; Aleksandrovsky, A S

    2013-05-31

    The influence of the oscillation phases of the dipole moments induced in metal nanoparticles and quantum dots by an external laser field on their interaction energy is considered. It is shown that a difference in resonant frequencies leads to the formation of additional minima and maxima, which are absent in the spectral dependence of the interaction energy of identical particles at similar orientations of the pair of particles with respect to the plane of polarisation of radiation. These features are due to the fact that the oscillation phase difference of the induced dipole moments of particles reaches values close to {pi}. (interaction of laser radiation with matter. laser plasma)

  7. Charge trapping and de-trapping in isolated CdSe/ZnS nanocrystals under an external electric field: Indirect evidence for a permanent dipole moment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zang, Huidong; Cristea, Mihail; Shen, Xuan; Liu, Mingzhao; Camino, Fernando; Cotlet, Mircea

    2015-08-05

    Single nanoparticle studies of charge trapping and de-trapping in core/shell CdSe/ZnS nanocrystals incorporated into an insulating matrix and subjected to an external electric field demonstrate the ability to reversibly modulate the exciton dynamics and photoluminescence blinking while providing indirect evidence for the existence of a permanent ground state dipole moment in such nanocrystals. A model assuming the presence of energetically deep charge traps physically aligned along the direction of the permanent dipole is proposed in order to explain the dynamics of nanocrystal blinking in the presence of a permanent dipole moment.

  8. Catalyzed Ceramic Burner Material

    SciTech Connect (OSTI)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  9. Multidimensional Fuel Performance Code: BISON

    SciTech Connect (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.

  10. Multidimensional Fuel Performance Code: BISON

    Energy Science and Technology Software Center (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficientlymore » solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less

  11. MCNP simulations of material exposure experiments (u) (Technical...

    Office of Scientific and Technical Information (OSTI)

    Information Service, Springfield, VA at www.ntis.gov. Simulations of proposed material exposure experiments were performed using MCNP6. The experiments will expose ampules...

  12. Design and Evaluation of Novel High Capacity Cathode Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Lithium Source For High Performance Li-ion Cells Design and Evaluation of Novel High Capacity Cathode Materials Lithium Source For High...

  13. Commercialization of Bulk Thermoelectric Materials for Power Generation

    Broader source: Energy.gov [DOE]

    Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are discussed

  14. Advanced Light Extraction Material for OLED Lighting | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Extraction Material for OLED Lighting Lead Performer: Pixelligent Technologies LLC - Baltimore, MD Partners: OLEDWorks LLC DOE Total Funding: 1,000,000 Project Term: April 6,...

  15. FY 2009 Progress Report for Lightweighting Materials - Cover...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicle weight while maintaining safety, performance, and reliability. PDF icon covertoc.pdf More Documents & Publications FY 2008 Progress Report for Lightweighting Materials...

  16. The Model 9977 Radioactive Material Packaging Primer (Technical...

    Office of Scientific and Technical Information (OSTI)

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of ...

  17. Comparison of Materials for Use in the Precision Grinding of...

    Office of Scientific and Technical Information (OSTI)

    and deterministically fabrication optical surfaces to final or near-final surface finish and figure. In this paper, a comparison of grinding techniques and materials is performed. ...

  18. FY 2009 Progress Report for Lightweighting Materials- Cover and Contents

    Broader source: Energy.gov [DOE]

    The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction in total vehicle weight while maintaining safety, performance, and reliability.

  19. Functionally Graded Materials for Manufacturing Tools and Dies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Material Processes Improve the Performance and Lifetime of Tools and Dies Tools, dies, and process equipment currently used in the metal casting, forging, and glass ...

  20. Material Disposal Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf).

  1. Meet CMI Researcher Patrice Turchi | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrice Turchi Image of Patrice Turchi, researcher at Critical Materials Institute For the Critical Materials Institute, Patrice Turchi is leading a project entitled "Materials Design Simulator - Efficient Prototyping of Rare Earth-Based Alloys from ab initio Electronic Structure and Thermodynamics." That is about the development of a Materials Design Simulator (MDS) for guiding the search for solute replacements to Rare Earth Elements that provide materials stability and performance.

  2. Nanoscale Material Properties | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology Drives New Levels of Performance Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Nanotechnology Drives New Levels of Performance GE scientists are discovering new material properties at the nanoscale that drive new performance levels in jet engines, gas and steam turbines, electronic devices and disease

  3. Materials sciences programs, fiscal year 1994

    SciTech Connect (OSTI)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  4. Enhanced High Temperature Performance of NOx Storage/Reduction (NSR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace026_peden_2012_o.pdf More Documents & Publications Enhanced High and Low Temperature Performance of NOx Reduction Materials Enhanced High Temperature Performance of NOx Storage/Reduction (NSR) Materials CLEERS Aftertreatment Modeling and Analysis

  5. Performance Engineering Research Center and RECOVERY. Performance

    Office of Scientific and Technical Information (OSTI)

    Engineering Research Institution SciDAC-e Augmentation. Performance enhancement (Technical Report) | SciTech Connect Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement Citation Details In-Document Search Title: Performance Engineering Research Center and RECOVERY. Performance Engineering Research Institution SciDAC-e Augmentation. Performance enhancement This project concentrated on various ways to

  6. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  7. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  8. Materials/Condensed Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials/Condensed Matter Print Materials research provides the foundation on which the economic well being of our high-tech society rests. The impact of advanced materials ranges dramatically over every aspect of our modern world from the minutiae of daily life to the grand scale of our national economy. Invariably, however, breakthroughs to new technologies trace their origin both to fundamental research in the basic properties of condensed matter and to applied research aimed at manipulating

  9. ANS materials databook

    SciTech Connect (OSTI)

    Marchbanks, M.F.

    1995-08-01

    Technical development in the Advanced Neutron Source (ANS) project is dynamic, and a continuously updated information source is necessary to provide readily usable materials data to the designer, analyst, and materials engineer. The Advanced Neutron Source Materials Databook (AMBK) is being developed as a part of the Advanced Neutron Source Materials Information System (AMIS). Its purpose is to provide urgently needed data on a quick-turnaround support basis for those design applications whose schedules demand immediate estimates of material properties. In addition to the need for quick materials information, there is a need for consistent application of data throughout the ANS Program, especially where only limited data exist. The AMBK is being developed to fill this need as well. It is the forerunner to the Advanced Neutron Source Materials Handbook (AMHB). The AMHB, as reviewed and approved by the ANS review process, will serve as a common authoritative source of materials data in support of the ANS Project. It will furnish documented evidence of the materials data used in the design and construction of the ANS system and will serve as a quality record during any review process whose objective is to establish the safety level of the ANS complex. The information in the AMBK and AMHB is also provided in electronic form in a dial-up computer database known as the ANS Materials Database (AMDB). A single consensus source of materials information prepared and used by all national program participants has several advantages. Overlapping requirements and data needs of various sub-projects and subcontractors can be met by a single document which is continuously revised. Preliminary and final safety analysis reports, stress analysis reports, equipment specifications, materials service reports, and many other project-related documents can be substantially reduced in size and scope by appropriate reference to a single data source.

  10. Critical Materials Strategy Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials Strategy Summary 2010 T he United States is on the cusp of a clean energy rev- olution. In its first Critical Materials Strategy, the U.S. Department of Energy (DOE) focuses on materials used in four clean energy technologies: wind turbines, elec- tric vehicles, solar cells and energy-efficient lighting (Table 1). The Strategy evaluates the extent to which widespread deployment of these technologies may increase worldwide demand for rare earth elements and certain other

  11. Materials in the news

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Materials in the news Discover more about the wide-ranging scope of materials research at Los Alamos National Laboratory. Contact Us ADEPS Communications Email Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells Scientists Aditya Mohite, left, and Wanyi Nie are perfecting a crystal production technique to improve perovskite crystal production for solar cells Read more... Materials science at Los

  12. Hydrocarbon sensors and materials therefor

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

    2000-01-01

    An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

  13. Radioactive Material or Multiple Hazardous Materials Decontamination

    Broader source: Energy.gov [DOE]

    The purpose of this procedure is to provide guidance for performing decontamination of individuals who have entered a “hot zone” during transportation incidents involving  radioactive.

  14. Uranium Bioreduction Rates across Scales: Biogeochemical Hot Moments and Hot Spots during a Biostimulation Experiment at Rifle, Colorado

    SciTech Connect (OSTI)

    Bao, Chen; Wu, Hongfei; Li, Li; Newcomer, Darrell R.; Long, Philip E.; Williams, Kenneth H.

    2014-09-02

    We aim to understand the scale-dependent evolution of uranium bioreduction during a field experiment at a former uranium mill site near Rifle, Colorado. Acetate was injected to stimulate Fe-reducing bacteria (FeRB) and to immobilize aqueous U(VI) to insoluble U(IV). Bicarbonate was coinjected in half of the domain to mobilize sorbed U(VI). We used reactive transport modeling to integrate hydraulic and geochemical data and to quantify rates at the grid block (0.25 m) and experimental field scale (tens of meters). Although local rates varied by orders of magnitude in conjunction with biostimulation fronts propagating downstream, field-scale rates were dominated by those orders of magnitude higher rates at a few selected hot spots where Fe(III), U(VI), and FeRB were at their maxima in the vicinity of the injection wells. At particular locations, the hot moments with maximum rates negatively corresponded to their distance from the injection wells. Although bicarbonate injection enhanced local rates near the injection wells by a maximum of 39.4%, its effect at the field scale was limited to a maximum of 10.0%. We propose a rate-versus-measurement-length relationship (log R' = -0.63

  15. Radiation Safety Training Materials

    Broader source: Energy.gov [DOE]

    The following Handbooks and Standard provide recommended hazard specific training material for radiological workers at DOE facilities and for various activities.

  16. Management of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-08-17

    To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

  17. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, C.E.; Morrow, M.S.

    1994-07-19

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  18. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  19. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  20. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  1. Composite of refractory material

    DOE Patents [OSTI]

    Holcombe, Cressie E. (Knoxville, TN); Morrow, Marvin S. (Kingston, TN)

    1994-01-01

    A composite refractory material composition comprises a boron carbide matrix and minor constituents of yttrium-boron-oxygen-carbon phases uniformly distributed throughout the boron carbide matrix.

  2. Critical Materials Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Critical Materials Workshop U.S. Department of Energy April 3, 2012 eere.energy.gov Dr. Leo Christodoulou Program Manager Advanced Manufacturing Office Energy Efficiency and...

  3. High Risk Material Studies

    Broader source: Energy.gov [DOE]

    Spent Fuel Working Group Report on inventory and storage of the Department's spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities.

  4. Material Safety Data Sheets

    Broader source: Energy.gov [DOE]

    Material Safety Data Sheets (MSDSs) provide workers and emergency personnel with ways for handling and working with a hazardous substance and other health and safety information.

  5. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties. In this talk, I will discuss our recent research in the area of nanoscale materials modeling, using various atomistic simulation techniques, aimed at uncovering the...

  6. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  7. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources The Critical Materials Institute offers connections to resources, including: List of resources U.S. Rare Earth Magnet Patents Table Government agency contacts CMI unique...

  8. FY 2008 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2. Materials Crosscutting Research and Development FY 2008 Progress Report for ... Lightweighting Materials focuses on the development and validation of advanced materials ...

  9. FY 2009 Progress Report for Lightweighting Materials - 12. Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials - 12. Materials Crosscutting Research and Development Overview of Lightweight Materials Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus

  10. Linking Electrochemical Performance with Microstructural Evolution in High Performance Cathode Materials

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Moment free toroidal magnet

    DOE Patents [OSTI]

    Bonanos, Peter (East Brunswick, NJ)

    1983-01-01

    A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.

  12. DETERMINATION OF RADIAL MOMENTS ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SIZE DISTRIBUTION FROM MEASUREMENTS OF LIGHT TRANSMITTANCE AND SCATTERING Ernie R. Lewis and Stephen E. Schwartz Brookhaven National Laboratory, Upton, NY 11933 ses@bnl.gov...

  13. Integrated Performance Testing for Nonproliferation Support Project

    SciTech Connect (OSTI)

    Johns, Russell; Bultz, Garl Alan; Byers, Kenneth R.; Yaegle, William

    2013-08-20

    The objective of this workshop is to provide participants with training in testing techniques and methodologies for assessment of the performance of: Physical Protection system elements; Material Control and Accounting (MC&A) system elements.

  14. High Performance Dielectrics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Materials Advanced Materials Find More Like This Return to Search High Performance Dielectrics Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (342 KB) Technology Marketing Summary Current dielectric materials are limited and unable to meet all operating, temperature, response frequency, size, and reliability requirements needed for uncooled high-reliability electronics. To address this problem, scientists at Sandia have

  15. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    SciTech Connect (OSTI)

    2010-03-01

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.

  16. Hydrocarbonaceous material upgrading method

    DOE Patents [OSTI]

    Brecher, Lee E.; Mones, Charles G.; Guffey, Frank D.

    2015-06-02

    A hydrocarbonaceous material upgrading method may involve a novel combination of heating, vaporizing and chemically reacting hydrocarbonaceous feedstock that is substantially unpumpable at pipeline conditions, and condensation of vapors yielded thereby, in order to upgrade that feedstock to a hydrocarbonaceous material condensate that meets crude oil pipeline specification.

  17. Measurements and material accounting

    SciTech Connect (OSTI)

    Hammond, G.A. )

    1989-11-01

    The DOE role for the NBL in safeguarding nuclear material into the 21st century is discussed. Development of measurement technology and reference materials supporting requirements of SDI, SIS, AVLIS, pyrochemical reprocessing, fusion, waste storage, plant modernization program, and improved tritium accounting are some of the suggested examples.

  18. Procurement and Materials Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement and Materials Management U.S. Department of Energy | Who We Are | Current Requests for Proposal | Requests for Information | Expression of Interest | Subcontractor Information | Small Business Home Washington River Protection Solutions | Hanford.gov | Energy.gov Procurement and Materials Management Small Business Resources Small Business Calendar Terms & Conditions Procedures to Subcontractors Instructions Forms Vendor Registration Solicitations Small Bus. Events Procedures

  19. Nanocrystalline heterojunction materials

    DOE Patents [OSTI]

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  20. Nanocrystalline Heterojunction Materials

    DOE Patents [OSTI]

    Elder, Scott H. (Portland, OR); Su, Yali (Richland, WA); Gao, Yufei (Blue Bell, PA); Heald, Steve M. (Downers Grove, IL)

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  1. Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance and Optimization Performance Monitoring Last edited: 2012-01-09 12:31:03

  2. Performance and Optimization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimization Performance and Optimization Performance Monitoring Last edited: 2012-01-09 12:31:03...

  3. Sandia Energy - Wavelength Conversion Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wavelength Conversion Materials Home Energy Research EFRCs Solid-State Lighting Science EFRC Overview Wavelength Conversion Materials Wavelength Conversion MaterialsTara...

  4. The Effective Thermoelectric Properties of Composite Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy The Effective Thermoelectric Properties of Composite Materials The Effective Thermoelectric Properties of Composite Materials Rigorous mathematical analysis of electric conduction and heat transfer in heterogeneous thermoelectric composites, showing higher conversion efficiency than all its constituents is possible PDF icon li.pdf More Documents & Publications Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials

  5. Patent: Electrode material comprising graphene-composite materials in a

    Office of Scientific and Technical Information (OSTI)

    graphite network | DOEpatents Electrode material comprising graphene-composite materials in a graphite network Citation Details Title: Electrode material comprising graphene-composite materials in a graphite network

  6. Materials of Gasification

    SciTech Connect (OSTI)

    2005-09-15

    The objective of this project was to accumulate and establish a database of construction materials, coatings, refractory liners, and transitional materials that are appropriate for the hardware and scale-up facilities for atmospheric biomass and coal gasification processes. Cost, fabricability, survivability, contamination, modes of corrosion, failure modes, operational temperatures, strength, and compatibility are all areas of materials science for which relevant data would be appropriate. The goal will be an established expertise of materials for the fossil energy area within WRI. This would be an effort to narrow down the overwhelming array of materials information sources to the relevant set which provides current and accurate data for materials selection for fossil fuels processing plant. A significant amount of reference material on materials has been located, examined and compiled. The report that describes these resources is well under way. The reference material is in many forms including texts, periodicals, websites, software and expert systems. The most important part of the labor is to refine the vast array of available resources to information appropriate in content, size and reliability for the tasks conducted by WRI and its clients within the energy field. A significant has been made to collate and capture the best and most up to date references. The resources of the University of Wyoming have been used extensively as a local and assessable location of information. As such, the distribution of materials within the UW library has been added as a portion of the growing document. Literature from recent journals has been combed for all pertinent references to high temperature energy based applications. Several software packages have been examined for relevance and usefulness towards applications in coal gasification and coal fired plant. Collation of the many located resources has been ongoing. Some web-based resources have been examined.

  7. MCU MATERIALS COMPATIBILITY WITH CSSX SOLVENT

    SciTech Connect (OSTI)

    Fondeur, F

    2006-01-13

    The Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) plans to use several new materials of construction not previously used with CSSX solvent. SRNL researchers tested seven materials proposed for service in seal and gasket applications. None of the materials leached detectable amounts of components into the CSSX solvent during 96 hour tests. All are judged acceptable for use based on their effect on the solvent. However, some of the materials adsorbed solvent or changed dimensions during contact with solvent. Consultation with component and material vendors with regard to performance impact and in-use testing of the materials is recommended. Polyetheretherketone (PEEK), a material selected for use in contactor bearing seals, did not gain weight or change dimensions on contact with CSSX solvent. Analysis of the solvent contacted with this material showed no impurities and the standard dispersion test gave acceptable phase separation results. The material contains a leachable hydrocarbon substance, detectable on exposed surfaces, that did not adversely contaminate the solvent within the limits of the testing. We recommend contacting the vendor to determine the source and purpose of this component, or, alternatively, pursue the infrared analysis of the PEEK in an effort to better define potential impacts.

  8. Sol-gel processing of energetic materials

    SciTech Connect (OSTI)

    Tillotson, T.M.; Hrubesh, L.H.; Fox, G.L.; Simpson, R.L.; Lee, R.W.; Swansiger, R.W.; Simpson, L.R.

    1997-08-18

    As part of a new materials effort, we are exploring the use of sol- gel chemistry to manufacture energetic materials. Traditional manufacturing of energetic materials involves processing of granular solids. One application is the production of detonators where powders of energetic material and a binder are typically mixed and compacted at high pressure to make pellets. Performance properties are strongly dependent on particle size distribution, surface area of its constituents, homogeneity of the mix, and void volume. The goal is to produce detonators with fast energy release rate the are insensitive to unintended initiation. In this paper, we report results of our early work in this field of research, including the preparation of detonators from xerogel molding powders and aerogels, comparing the material properties with present state-of-the-art technology.

  9. FY 2008 Progress Report for Lightweighting Materials - 12. Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crosscutting Research and Development | Department of Energy 2. Materials Crosscutting Research and Development FY 2008 Progress Report for Lightweighting Materials - 12. Materials Crosscutting Research and Development Lightweighting Materials focuses on the development and validation of advanced materials and manufacturing technologies to reduce automobile weight without compromising other attributes. PDF icon 12_materials_crosscutting_rd.pdf More Documents & Publications FY 2009

  10. Corrosion reference for geothermal downhole materials selection

    SciTech Connect (OSTI)

    Ellis, P.F. II, Smith, C.C.; Keeney, R.C.; Kirk, D.K.; Conover, M.F.

    1983-03-01

    Geothermal downhole conditions that may affect the performance and reliability of selected materials and components used in the drilling, completion, logging, and production of geothermal wells are reviewed. The results of specific research and development efforts aimed at improvement of materials and components for downhole contact with the hostile physicochemical conditions of the geothermal reservoir are discussed. Materials and components covered are tubular goods, stainless steels and non-ferrous metals for high-temperature downhole service, cements for high-temperature geothermal wells, high-temperature elastomers, drilling and completion tools, logging tools, and downhole pumps. (MHR)

  11. Battery Electrode Materials with High Cycle Lifetimes

    SciTech Connect (OSTI)

    Prof. Brent Fultz

    2001-06-29

    In an effort to understand the capacity fade of nickel-metal hydride (Ni-MH) batteries, we performed a systematic study of the effects of solute additions on the cycle life of metal hydride electrodes. We also performed a series of measurements on hydrogen absorption capacities of novel carbon and graphite-based materials including graphite nanofibers and single-walled carbon nanotubes. Towards the end of this project we turned our attention to work on Li-ion cells with a focus on anode materials.

  12. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  13. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A. )

    1988-01-01

    The true goal of Nuclear Materials MANAGEMENT (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. it is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how ''what is and what if'' questions are handled, and in overall decision-making methods.

  14. Nuclear materials management overview

    SciTech Connect (OSTI)

    DiGiallonardo, D.A.

    1988-01-01

    The true goal of Nuclear Materials Management (NMM) is the strategical and economical management of all nuclear materials. Nuclear Materials Management's role involves near-term and long-term planning, reporting, forecasting, and reviewing of inventories. This function is administrative in nature. It is a growing area in need of future definition, direction, and development. Improvements are required in program structure, the way residues and wastes are determined, how /open quotes/What is and what if/close quotes/ questions are handled, and in overall decision-making methods. 2 refs.

  15. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  16. Electrically conductive composite material

    DOE Patents [OSTI]

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  17. Critical Materials Hub

    Broader source: Energy.gov [DOE]

    Critical materials, including some rare earth elements that possess unique magnetic, catalytic, and luminescent properties, are key resources needed to manufacture products for the clean energy economy. These materials are so critical to the technologies that enable wind turbines, solar panels, electric vehicles, and energy-efficient lighting that DOE's 2010 and 2011 Critical Materials Strategy reported that supply challenges for five rare earth metals—dysprosium, neodymium, terbium, europium, and yttrium—could affect clean energy technology deployment in the coming years.1, 2

  18. Fissile material detector

    DOE Patents [OSTI]

    Ivanov, Alexander I. (Dubna, RU); Lushchikov, Vladislav I. (Dubna, RU); Shabalin, Eugeny P. (Dubna, RU); Maznyy, Nikita G. (Dubna, RU); Khvastunov, Michael M. (Dubna, RU); Rowland, Mark (Alamo, CA)

    2002-01-01

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  19. Overview of VTO Material Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of VTO Material Technologies Stephen Goguen, Jerry Gibbs, Carol Schutte, and Will Joost LM000 June 9, 2015 VEHICLE TECHNOLOGIES OFFICE eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $35.6 M Lightweight Materials $28.5 M Values are FY15 enacted Propulsion Materials $7.1 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials,

  20. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M