Powered by Deep Web Technologies
Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electrical contact resistance degradation of a hot-switched simulated metal MEMS contact.  

SciTech Connect (OSTI)

Electrical contact resistance testing was performed by hot-switching a simulated gold-platinum metal microelectromechanical systems contact. The experimental objective was to determine the sensitivity of the contact resistance degradation to current level and environment. The contact resistance increased sharply after 100 hot-switched cycles in air. Hot-switching at a reduced current and in nitrogen atmosphere curtailed contact resistance degradation by several orders of magnitude. The mechanism responsible for the resistance degradation was found to be arc-induced decomposition of adsorbed surface contaminants.

Dugger, Michael Thomas; Dickrell, Daniel John, III

2005-03-01T23:59:59.000Z

2

Switch-reference and Omotic-Cushitic Language Contact in Southwest Ethiopia Yvonne Treis  

E-Print Network [OSTI]

1 Switch-reference and Omotic-Cushitic Language Contact in Southwest Ethiopia Yvonne Treis LLACAN. This study shows that there is a confined area in the South of Ethiopia where many Omotic languages and a few (Cushitic) and gives an overview of the distribution of switch-reference systems in Ethiopia in general

Paris-Sud XI, Université de

3

PERSPECTIVES Nano-to-Microscale Mechanical Switches and Fuses Mediate Adhesive Contacts between  

E-Print Network [OSTI]

PERSPECTIVES Nano-to-Microscale Mechanical Switches and Fuses Mediate Adhesive Contacts between to their molecular origins. The present work focuses on nano-to-microscale regulatory aspects that mediate and that they had to be primarily mechanical. Accordingly, our experimental approach was to study in vitro the nano

Heinrich, Volkmar

4

Switch contact device for interrupting high current, high voltage, AC and DC circuits  

DOE Patents [OSTI]

A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

2005-01-04T23:59:59.000Z

5

Low frequency noise in the unstable contact region of Au-to-Au microcontact for microelectromechanical system switches  

SciTech Connect (OSTI)

The noise behavior of Au-to-Au microcontact for microelectromechanical system switches has been experimentally studied in the unstable contact region. The results suggest that the electrical conduction remains nonmetallic at the initial stage during contact formation due to the existence of alien films, and traps in the alien layer located at the contact interface could play an important role in determining the conduction noise. The conduction fluctuation induced by electron trapping-detrapping associated with the hydrocarbon layer is found to be an intrinsic noise source contributing to the low frequency noise in the unstable contact region.

Qiu, Haodong; Wang, Hong, E-mail: ewanghong@ntu.edu.sg [NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ke, Feixiang [Temasek Laboratories at Nanyang Technological University, Research Techno Plaza, Singapore 637553 (Singapore)

2014-06-23T23:59:59.000Z

6

MEMS relays for make-break power switching applications : {111} silicon etched planar electrical contacts  

E-Print Network [OSTI]

Relays and switches are of interest in applications such as test equipment, radar, communications, and power systems, amongst others. Unlike solid state switches, mechanical relays provide galvanic isolation across the ...

Weber, Alexis Christian, 1974-

2008-01-01T23:59:59.000Z

7

Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts Contacts Bradbury Science Museum P.O. Box 1663 Mail Stop C330 Los Alamos National Laboratory Los Alamos, NM 87545 email: web-bsm@lanl.gov PHONE: 505-667-4444 FAX:...

8

Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - WorkingContactContact

9

Contacts:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-GovContacts News News Home

10

Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1Contact CommunityContact

11

Workshop Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 TableContacts Workshop Contacts Questions?

12

Design, fabrication and testing of a lateral self-cleaning MEMS switch  

E-Print Network [OSTI]

A lateral contact MEMS switch has been developed to address the need for a long life cycle, low contact resistance RF switch. At the present time, there is no commercial MEMS switch that meets all the requirements. The ...

Shi, Yong, 1965-

2004-01-01T23:59:59.000Z

13

Mercury switch with non-wettable electrodes  

DOE Patents [OSTI]

A mercury switch device comprising a pool of mercury and a plurality of electrical contacts made of or coated with a non-wettable material such as titanium diboride.

Karnowsky, Maurice M. (Albulquerque, NM); Yost, Frederick G. (Carlsbad, NM)

1987-01-01T23:59:59.000Z

14

Contact us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact us Participate with us Participate Become a Volunteer Share Your Stories Museum Fan Downloads Q&A Blog Contact us invisible utility element Contact us We want to hear from...

15

Contacts | NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

list of important phone numbers. Contact a Staff Member at NREL Our searchable staff directory has contact information for staff. Questions or Comments? Please use our feedback...

16

Silicone oil contamination and electrical contact resistance degradation of low-force gold contacts.  

SciTech Connect (OSTI)

Hot-switched low-force gold electrical contact testing was performed using a nanomechanical test apparatus to ascertain the sensitivity of simulated microelectromechanical systems (MEMS) contact to silicone oil contamination. The observed cyclic contact resistance degradation was dependent on both closure rate and noncontact applied voltage. The decomposition of silicone oil from electrical arcing was hypothesized as the degradation mechanism.

Dugger, Michael Thomas; Dickrell, Daniel John, III

2006-02-01T23:59:59.000Z

17

Advanced Soft Switching Inverter for Reducing Switching and Power...  

Broader source: Energy.gov (indexed) [DOE]

lai.pdf More Documents & Publications Advanced Soft Switching Inverter for Reducing Switching and Power Losses Advanced Soft Switching Inverter for Reducing Switching and Power...

18

All graphene electromechanical switch fabricated by chemical vapor deposition  

E-Print Network [OSTI]

We demonstrate an electromechanical switch comprising two polycrystalline graphene films; each deposited using ambient pressure chemical vapor deposition. The top film is pulled into electrical contact with the bottom film ...

Milaninia, Kaveh M.

19

Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContactContact Us Contact

20

Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContactContact Us Contact

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact InContactContact

22

Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContactContact Contact Us

23

E-Print Network 3.0 - au contact uranium-gaine Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MEMS switches using nano-indenter Rev.Adv. Mater. Sci. 28 (2011) 17-20 Summary: contact test is conducted to characterize reliability of the contact material. The reliability of...

24

Electro-mechanical heat switch for cryogenic applications  

DOE Patents [OSTI]

A heat switch includes two symmetric jaws. Each jaw is comprised of a link connected at a translatable joint to a flexible arm. Each arm rotates about a fixed pivot, and has an articulated end including a thermal contact pad connected to a heat sink. The links are joined together at a translatable main joint. To close the heat switch, a closing solenoid is actuated and forces the main joint to an over-center position. This movement rotates the arms about their pivots, respectively, forces each of them into a stressed configuration, and forces the thermal contact pads towards each other and into compressive contact with a cold finger. The closing solenoid is then deactivated. The heat switch remains closed due to a restoring force generated by the stressed configuration of each arm, until actuation of an opening solenoid returns the main joint to its starting open-switch position.

van den Berg, Marcel L. (Oakland, CA); Batteux, Jan D. (Hayward, CA); Labov, Simon E. (Berkeley, CA)

2003-01-01T23:59:59.000Z

25

Latching micro optical switch  

DOE Patents [OSTI]

An optical switch reliably maintains its on or off state even when subjected to environments where the switch is bumped or otherwise moved. In addition, the optical switch maintains its on or off state indefinitely without requiring external power. External power is used only to transition the switch from one state to the other. The optical switch is configured with a fixed optical fiber and a movable optical fiber. The movable optical fiber is guided by various actuators in conjunction with a latching mechanism that configure the switch in one position that corresponds to the on state and in another position that corresponds to the off state.

Garcia, Ernest J; Polosky, Marc A

2013-05-21T23:59:59.000Z

26

Website Contact  

Broader source: Energy.gov [DOE]

Contact the website administrator with questions, comments, or issues related to the Federal Energy Management Program website. If your inquiry is in regard to a specific Web page, please include...

27

Remote switch actuator  

DOE Patents [OSTI]

The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

2013-01-29T23:59:59.000Z

28

ARM - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love toContact Information Related Links TWP-ICE HomeContacts

29

Effective switching frequency multiplier inverter  

DOE Patents [OSTI]

A switching frequency multiplier inverter for low inductance machines that uses parallel connection of switches and each switch is independently controlled according to a pulse width modulation scheme. The effective switching frequency is multiplied by the number of switches connected in parallel while each individual switch operates within its limit of switching frequency. This technique can also be used for other power converters such as DC/DC, AC/DC converters.

Su, Gui-Jia (Oak Ridge, TN); Peng, Fang Z. (Okemos, MI)

2007-08-07T23:59:59.000Z

30

WINDExchange: Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Share Contacts

31

Thermally actuated thermionic switch  

DOE Patents [OSTI]

A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

Barrus, D.M.; Shires, C.D.

1982-09-30T23:59:59.000Z

32

Solid state switch  

DOE Patents [OSTI]

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA)

1994-01-01T23:59:59.000Z

33

Reusable fast opening switch  

DOE Patents [OSTI]

A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and metallic states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

Van Devender, J.P.; Emin, D.

1983-12-21T23:59:59.000Z

34

Reusable fast opening switch  

DOE Patents [OSTI]

A reusable fast opening switch for transferring energy, in the form of a high power pulse, from an electromagnetic storage device such as an inductor into a load. The switch is efficient, compact, fast and reusable. The switch comprises a ferromagnetic semiconductor which undergoes a fast transition between conductive and insulating states at a critical temperature and which undergoes the transition without a phase change in its crystal structure. A semiconductor such as europium rich europhous oxide, which undergoes a conductor to insulator transition when it is joule heated from its conductor state, can be used to form the switch.

Van Devender, John P. (Albuquerque, NM); Emin, David (Albuquerque, NM)

1986-01-01T23:59:59.000Z

35

Eyeglass allergic contact dermatitis  

E-Print Network [OSTI]

T, Iijima M, Maibach HI. Eyeglass frame allergic contactNakada T, Maibach HI. Eyeglass allergic contact dermatitis.Eyeglass allergic contact dermatitis Kimberly Scott 1 ,

Scott, Kimberly; Levender, Michelle M; Feldman, Steven R

2010-01-01T23:59:59.000Z

36

Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContact

37

ARM - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love toContact Information Related Links TWP-ICE Home

38

ARM - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love toContact Information Related Links TWP-ICE

39

LANL Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region serviceMission Statement Titan TargetInJupiter Lasertowards|Contacts

40

Contact Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact In

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact

42

Reflective HTS switch  

DOE Patents [OSTI]

A HTS (High Temperature Superconductor) switch includes a HTS conductor for providing a superconducting path for an electrical signal and an serpentine wire actuator for controllably heating a portion of the conductor sufficiently to cause that portion to have normal, and not superconducting, resistivity. Mass of the portion is reduced to decrease switching time. 6 figs.

Martens, J.S.; Hietala, V.M.; Hohenwarter, G.K.G.

1994-09-27T23:59:59.000Z

43

contacts | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscoveryCompletedContacts Operating

44

Erected mirror optical switch  

DOE Patents [OSTI]

A microelectromechanical (MEM) optical switching apparatus is disclosed that is based on an erectable mirror which is formed on a rotatable stage using surface micromachining. An electrostatic actuator is also formed on the substrate to rotate the stage and mirror with a high angular precision. The mirror can be erected manually after fabrication of the device and used to redirect an incident light beam at an arbitrary angel and to maintain this state in the absence of any applied electrical power. A 1.times.N optical switch can be formed using a single rotatable mirror. In some embodiments of the present invention, a plurality of rotatable mirrors can be configured so that the stages and mirrors rotate in unison when driven by a single micromotor thereby forming a 2.times.2 optical switch which can be used to switch a pair of incident light beams, or as a building block to form a higher-order optical switch.

Allen, James J.

2005-06-07T23:59:59.000Z

45

Solid state switch  

DOE Patents [OSTI]

A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

Merritt, B.T.; Dreifuerst, G.R.

1994-07-19T23:59:59.000Z

46

Magnetic switch for reactor control rod  

SciTech Connect (OSTI)

This patent describes a control rod system for a nuclear reactor utilizing an electromagnetic grapple mechanism for holding and releasing a control rod, the improvement comprising a magnetic reed switch assembly having a Curie-point magnetic shunt and responsive to reactor coolant temperature for short circuiting the electromagnetic grapple mechanism causing release of the control rod when the coolant temperature reaches the Curie-point of the magnetic shunt. The magnetic reed switch assembly includes a: a permanent magnet, a pair of magnetic pole pieces located at and in contact with opposite ends of the permanent magnet, the Curie-point magnetic shunt being positioned adjacent the permanent magnet and in contact with the pair of magnetic pole pieces, and a reed switch positioned intermediate the pole pieces and provided with a pair of ferromagnetic reeds, a nonmagnetic enclosure around the reeds, a first of the reeds being secured at one end to a first of the pair of pole pieces, a second of the reeds having one end extending into and secured to a hollow member positioned in and extending through a second of the pair of pole pieces, the one end of the second of the reeds secured to a condector adapted to be connected to the electromagnetic grapple mechanism.

Germer, J.H.

1986-04-15T23:59:59.000Z

47

An optical switch  

DOE Patents [OSTI]

The invention is a gas mixture for a diffuse discharge switch having an electron attaching gas wherein electron attachment is brought about by indirect excitation of molecules to long live states by exposure to laser light. 3 figs.

Christophorou, L.G.; Hunter, S.R.

1987-04-30T23:59:59.000Z

48

Plasmonic enhanced ultrafast switch.  

SciTech Connect (OSTI)

Ultrafast electronic switches fabricated from defective material have been used for several decades in order to produce picosecond electrical transients and TeraHertz radiation. Due to the ultrashort recombination time in the photoconductor materials used, these switches are inefficient and are ultimately limited by the amount of optical power that can be applied to the switch before self-destruction. The goal of this work is to create ultrafast (sub-picosecond response) photoconductive switches on GaAs that are enhanced through plasmonic coupling structures. Here, the plasmonic coupler primarily plays the role of being a radiation condenser which will cause carriers to be generated adjacent to metallic electrodes where they can more efficiently be collected.

Subramania,Ganapathi Subramanian; Reno, John Louis; Passmore, Brandon Scott; Harris, Tom.; Shaner, Eric Arthur; Barrick, Todd A.

2009-09-01T23:59:59.000Z

49

Cygnus PFL Switch Jitter  

SciTech Connect (OSTI)

The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources: Cygnus 1 and Cygnus 2. Each source has the following X-ray output: 1-mm diameter spot size, 4 rads at 1 m, 50-ns full-widthhalf-maximum. The diode pulse has the following electrical specifications: 2.25 MV, 60 kA, 60 ns. This Radiographic Facility is located in an underground tunnel test area at the Nevada Test Site (NTS). The sources were developed to produce high-resolution images on subcritical tests performed at NTS. Subcritical tests are single-shot, high-value events. For this application, it is desirable to maintain a high level of reproducibility in source output. The major components of the Cygnus machines are Marx generator, water-filled pulse forming line (PFL), water-filled coaxial transmission line, threecell inductive voltage adder, and rod-pinch diode. A primary source of fluctuation in Cygnus shot-to-shot performance may be jitter in breakdown of the main PFL switch, which is a “self-break” switch. The PFL switch breakdown time determines the peak PFL charging voltage, which ultimately affects the source X-ray spectrum and dose. Therefore, PFL switch jitter may contribute to shot-to-shot variation in these parameters, which are crucial to radiographic quality. In this paper we will present PFL switch jitter analysis for both Cygnus machines and present the correlation with dose. For this analysis, the PFL switch on each machine was maintained at a single gap setting, which has been used for the majority of shots at NTS. In addition the PFL switch performance for one larger switch gap setting will be examined.

C. Mitton, G. Corrow, M. Hansen, D. Henderson, et al.

2007-07-21T23:59:59.000Z

50

Cygnus Water Switch Jitter  

SciTech Connect (OSTI)

The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources - Cygnus 1 and Cygnus 2. Each source has the following x-ray output: 1-mm diameter spot size, 4 rad at 1 m, 50-ns Full Width Half Max. The diode pulse has the following electrical specifications: 2.25 MV, 60 kA, 60 ns. This Radiographic Facility is located in an underground tunnel test area at the Nevada Test Site (NTS). The sources were developed to produce high-resolution images on subcritical tests which are performed at NTS. Subcritical tests are single-shot, high-value events. For this application, it is desirable to maintain a high level of reproducibility in source output. The major components of the Cygnus machines are: Marx generator, water-filled pulse–forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. A primary source of fluctuation in Cygnus shot-to-shot performance is jitter in breakdown of the main PFL switch, which is a “self-break” switch. The PFL switch breakdown time determines the peak PFL charging voltage, which ultimately affects the diode pulse. Therefore, PFL switch jitter contributes to shot-to-shot variation in source endpoint energy and dose. In this paper we will present PFL switch jitter analysis for both Cygnus machines and give the correlation with diode performance. For this analysis the PFL switch on each machine was maintained at a single gap setting which has been used for the majority of shots at NTS. In addition to this analysis, PFL switch performance for different switch gap settings taken recently will be examined. Lastly, implications of source jitter for radiographic diagnosis of subcritical shots will be discussed.

Charles V. Mitton, George D. Corrow, Mark D. Hansen, David J. Henderson, et al.

2008-03-01T23:59:59.000Z

51

Robust metal contact and capacitive mini-MEMS switches  

E-Print Network [OSTI]

with Acetone, Methanol, IPA, and N 2 dry thoroughly. A.4in Acetone, Methanol, IPA, N 2 dry. 57. Wafer inspect towith Acetone, Methanol, IPA, and N 2 dry thoroughly. A.5

Sedaghat Pisheh, Hojr

2013-01-01T23:59:59.000Z

52

A radiation hard vacuum switch  

DOE Patents [OSTI]

A vacuum switch with an isolated trigger probe which is not directly connected to the switching electrodes. The vacuum switch within the plasmatron is triggered by plasma expansion initiated by the trigger probe which travels through an opening to reach the vacuum switch elements. The plasma arc created is directed by the opening to the space between the anode and cathode of the vacuum switch to cause conduction. 3 figs.

Boettcher, G.E.

1988-07-19T23:59:59.000Z

53

Thermionic gas switch  

DOE Patents [OSTI]

The present invention is directed to an improved temperature responsive thermionic gas switch utilizing a hollow cathode and a folded emitter surface area. The folded emitter surface area of the thermionic switch substantially increases the on/off ratio by changing the conduction surface area involved in the two modes thereof. The improved switch of this invention provides an on/off ratio of 450:1 compared to the 10:1 ratio of the prior known thermionic switch, while providing for adjusting the on current. In the improved switch of this invention the conduction area is made small in the off mode, while in the on mode the conduction area is made large. This is achieved by utilizing a folded hollow cathode configuration and utilizing a folded emitter surface area, and by making the dimensions of the folds small enough so that a space charge will develop in the convolutions of the folds and suppress unignited current, thus limiting the current carrying surface in the off mode.

Hatch, G.L.; Brummond, W.A.; Barrus, D.M.

1984-04-05T23:59:59.000Z

54

Switching power pulse system  

DOE Patents [OSTI]

A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

Aaland, K.

1983-08-09T23:59:59.000Z

55

Microfabricated triggered vacuum switch  

DOE Patents [OSTI]

A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

Roesler, Alexander W. (Tijeras, NM); Schare, Joshua M. (Albuquerque, NM); Bunch, Kyle (Albuquerque, NM)

2010-05-11T23:59:59.000Z

56

Switching power supply  

DOE Patents [OSTI]

The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.

Mihalka, A.M.

1984-06-05T23:59:59.000Z

57

High gain photoconductive semiconductor switch having tailored doping profile zones  

DOE Patents [OSTI]

A photoconductive semiconductor switch with tailored doping profile zones beneath and extending laterally from the electrical contacts to the device. The zones are of sufficient depth and lateral extent to isolate the contacts from damage caused by the high current filaments that are created in the device when it is turned on. The zones may be formed by etching depressions into the substrate, then conducting epitaxial regrowth in the depressions with material of the desired doping profile. They may be formed by surface epitaxy. They may also be formed by deep diffusion processes. The zones act to reduce the energy density at the contacts by suppressing collective impact ionization and formation of filaments near the contact and by reducing current intensity at the contact through enhanced current spreading within the zones.

Baca, Albert G. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Mar, Alan (Albuquerque, NM); Zutavern, Fred J (Albuquerque, NM); Hjalmarson, Harold P. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Zipperian, Thomas E. (Edgewood, NM); O'Malley, Martin W. (Edgewood, NM); Helgeson, Wesley D. (Albuquerque, NM); Denison, Gary J. (Sandia Park, NM); Brown, Darwin J. (Albuquerque, NM); Sullivan, Charles T. (Albuquerque, NM); Hou, Hong Q. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

58

Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof  

DOE Patents [OSTI]

In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

2013-11-26T23:59:59.000Z

59

High performance RF MEMS metal-contact switches and switching networks  

E-Print Network [OSTI]

is actuated). The equivalent DC resistance is 0.6-1.4 ? (is actuated). The equivalent DC resistance is 1.3-1.8 ?, andequivalent up-state capacitance, C u is 16 fF, while the down-state resistance and

Patel, Chirag D.; Patel, Chirag D.

2012-01-01T23:59:59.000Z

60

High performance RF MEMS metal-contact switches and switching networks  

E-Print Network [OSTI]

applications,” in Microelectromechanical Systems Conference,microscopy,” Microelectromechanical Systems, Journal of,applications,” Microelectromechanical Systems, Journal of,

Patel, Chirag D.; Patel, Chirag D.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Chemical Management Contacts  

Broader source: Energy.gov [DOE]

Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

62

Transparent electrode for optical switch  

DOE Patents [OSTI]

The invention relates generally to optical switches and techniques for applying a voltage to an electro-optical crystal, and more particularly, to transparent electodes for an optical switch. System architectures for very large inertial confinement fusion (ICF) lasers require active optical elements with apertures on the order of one meter. Large aperture optical switches are needed for isolation of stages, switch-out from regenerative amplifier cavities and protection from target retroreflections.

Goldhar, J.; Henesian, M.A.

1984-10-19T23:59:59.000Z

63

Switching power pulse system  

DOE Patents [OSTI]

A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

Aaland, Kristian (Livermore, CA)

1983-01-01T23:59:59.000Z

64

The quantum cryptographic switch  

E-Print Network [OSTI]

We illustrate using a quantum system the principle of a cryptographic switch, in which a third party (Charlie) can control to a continuously varying degree the amount of information the receiver (Bob) receives, after the sender (Alice) has sent her information. Suppose Charlie transmits a Bell state to Alice and Bob. Alice uses dense coding to transmit two bits to Bob. Only if the 2-bit information corresponding to choice of Bell state is made available by Charlie to Bob can the latter recover Alice's information. By varying the information he gives, Charlie can continuously vary the information recovered by Bob. The performance of the protocol subjected to the squeezed generalized amplitude damping channel is considered. We also present a number of practical situations where a cryptographic switch would be of use.

Srinatha Narayanaswamy; Omkar Srikrishna; R. Srikanth; Subhashish Banerjee; Anirban Pathak

2011-11-21T23:59:59.000Z

65

CREE: Making the Switch  

SciTech Connect (OSTI)

CREE, with the help of ARPA-E funding, has developed a Silicon Carbide (SIC) transistor which can be used to create solid state transformers capable of meeting the unique needs of the emerging smart grid. SIC transistors are different from common silicon computer chips in that they handle grid scale voltages with ease and their high frequency switching is well suited to the intermittent nature of renewable energy generation.

Grider, David; Palmer, John

2014-03-06T23:59:59.000Z

66

CREE: Making the Switch  

ScienceCinema (OSTI)

CREE, with the help of ARPA-E funding, has developed a Silicon Carbide (SIC) transistor which can be used to create solid state transformers capable of meeting the unique needs of the emerging smart grid. SIC transistors are different from common silicon computer chips in that they handle grid scale voltages with ease and their high frequency switching is well suited to the intermittent nature of renewable energy generation.

Grider, David; Palmer, John

2014-04-09T23:59:59.000Z

67

Cygnus Diverter Switch Analysis  

SciTech Connect (OSTI)

The Cygnus Dual Beam Radiographic Facility consists of two 2.25-MV, 60-kA, 50-ns x-ray sources fielded in an underground laboratory at the Nevada Test Site. The tests performed in this laboratory involve study of the dynamic properties of plutonium and are called subcritical experiments. From end-to-end, the Cygnus machines utilize the following components: Marx generator, water-filled pulse-forming line (PFL), waterfilled coaxial transmission line (WTL), 3-cell inductive voltage adder (IVA), and rod-pinch diode. The upstream WTL interface to the PFL is via a radial insulator with coaxial geometry. The downstream WTL terminates in a manifold where the center conductor splits into three lines which individually connect to each of the IVA cell inputs. There is an impedance mismatch at this juncture. It is a concern that a reflected pulse due to anomalous behavior in the IVA or diode might initiate breakdown upon arrival at the upstream PFL/WTL insulator. Therefore near the beginning of the WTL a radial diverter switch is installed to protect the insulator from over voltage and breakdown. The diverter has adjustable gap spacing, and an in-line aqueous-solution (sodium thiosulfate) resistor array for energy dissipation. There are capacitive voltage probes at both ends of the WTL and on the diverter switch. These voltage signals will be analyzed to determine diverter performance. Using this analysis the usefulness of the diverter switch will be evaluated.

G. Corrow, M. Hansen, D. Henderson, C. Mitton et al.

2008-02-01T23:59:59.000Z

68

Ultrafast gas switching experiments  

SciTech Connect (OSTI)

We describe recent experiments which studied the physics of ultrafast gas breakdown under the extreme overvoltages which occur when a high pressure gas switch is pulse charged to hundreds of kV in 1 ns or less. The highly overvolted peaking gaps produce powerful electromagnetic pulses with risetimes < 100 ps which can be used for ultrawideband radar systems, particle accelerators, laser drivers, bioelectromagnetic studies, electromagnetic effects testing, and for basic studies of gas breakdown physics. We have produced and accurately measured pulses with 50 to 100 ps risetimes to peak levels of 75 to 160 kV at pulse repetition frequencies (PRF) to I kHz. A unique gas switch was developed to hold off hundreds of kV with parasitic inductance less than I nH. An advanced diagnostic system using Fourier compensation was developed to measure single-shot risetimes below 35 ps. The complete apparatus is described and wave forms are presented. The measured data are compared with a theoretical model which predicts key features including dependence on gas species and pressure. We have applied this technology to practical systems driving ultrawideband radiating antennas and bounded wave simulators. For example, we have developed a thyristor/pulse transformer based system using a highly overvolted cable switch. This pulser driving a Sandia- designed TEM cell, provides an ultra wideband impulse with < 200 ps risetime to the test object at a PRF > 1 kHz at > 100 kV/m E field.

Frost, C.A.; Martin, T.H.; Patterson, P.E.; Rinehart, L.F.; Rohwein, G.J.; Roose, L.D.; Aurand, J.F.; Buttram, M.T.

1996-11-01T23:59:59.000Z

69

Thermal contact resistance  

E-Print Network [OSTI]

This work deals with phenomena of thermal resistance for metallic surfaces in contact. The main concern of the work is to develop reliable and practical methods for prediction of the thermal contact resistance for various ...

Mikic, B. B.

1966-01-01T23:59:59.000Z

70

High-current, fast-switching transistor development  

SciTech Connect (OSTI)

Work that shows how the results obtained under a previous contract (NAS3-18916) have been applied to a larger-diameter (33-mm) transistor are described. An improved base contact for equalizing the base-emitter voltage at high currents has been developed along with an improved emitter contact preform which increases the silicon area available for current conduction. The electrical performance achieved is consistent with the proposed optimum design. The device design, wafer-processing techniques, and various measurements which include forward SOA, dc characteristics, and switching times are described.

Hower, P.L.

1981-03-15T23:59:59.000Z

71

Switching it up | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout »LabSustainability Ames Laboratory isSweetSwitching

72

Hybrid switch for resonant power converters  

DOE Patents [OSTI]

A hybrid switch comprising two semiconductor switches connected in parallel but having different voltage drop characteristics as a function of current facilitates attainment of zero voltage switching and reduces conduction losses to complement reduction of switching losses achieved through zero voltage switching in power converters such as high-current inverters.

Lai, Jih-Sheng; Yu, Wensong

2014-09-09T23:59:59.000Z

73

Electrochromic optical switching device  

DOE Patents [OSTI]

An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source.

Lampert, Carl M. (El Sobrante, CA); Visco, Steven J. (Berkeley, CA)

1992-01-01T23:59:59.000Z

74

Electrochromic optical switching device  

DOE Patents [OSTI]

An electrochromic cell is disclosed which comprises an electrochromic layer, a polymerizable organo-sulfur layer which comprises the counter electrode of the structure, and an ionically conductive electronically insulating material which comprises the separator between the electrodes. In a preferred embodiment, both the separator and the organo-sulfur electrode (in both its charged and uncharged states) are transparent either to visible light or to the entire solar spectrum. An electrochromic device is disclosed which comprises such electrodes and separator encased in glass plates on the inner surface of each of which is formed a transparent electrically conductive film in respective electrical contact with the electrodes which facilitates formation of an external electrical connection or contact to the electrodes of the device to permit electrical connection of the device to an external potential source. 3 figs.

Lampert, C.M.; Visco, S.J.

1992-08-25T23:59:59.000Z

75

Robust adaptive control of switched systems  

E-Print Network [OSTI]

In this thesis, robust adaptive controllers are developed for classes of switched nonlinear systems. Switched systems are those governed by differential equations, which undergo vector field switching due to sudden changes ...

El-Rifai, Khalid, 1979-

2007-01-01T23:59:59.000Z

76

Contacts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth CodestheatforContacts Contacts Contact Information

77

Contacts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth CodestheatforContacts Contacts Contact

78

Optimized scalable network switch  

DOE Patents [OSTI]

In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.

Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton On Hudson, NY); Coteus, Paul W. (Yorktown Heights, NY); Gara, Alan G. (Mount Kisco, NY); Giampapa, Mark E. (Irvington, NY); Heidelberger, Philip (Cortlandt Manor, NY); Steinmacher-Burow, Burkhard D. (Mount Kisco, NY); Takken, Todd E. (Mount Kisco, NY); Vranas, Pavlos M. (Bedford Hills, NY)

2007-12-04T23:59:59.000Z

79

Optimized scalable network switch  

DOE Patents [OSTI]

In a massively parallel computing system having a plurality of nodes configured in m multi-dimensions, each node including a computing device, a method for routing packets towards their destination nodes is provided which includes generating at least one of a 2m plurality of compact bit vectors containing information derived from downstream nodes. A multilevel arbitration process in which downstream information stored in the compact vectors, such as link status information and fullness of downstream buffers, is used to determine a preferred direction and virtual channel for packet transmission. Preferred direction ranges are encoded and virtual channels are selected by examining the plurality of compact bit vectors. This dynamic routing method eliminates the necessity of routing tables, thus enhancing scalability of the switch.

Blumrich, Matthias A. (Ridgefield, CT); Chen, Dong (Croton on Hudson, NY); Coteus, Paul W. (Yorktown Heights, NY)

2010-02-23T23:59:59.000Z

80

Federal NEPA Contacts  

Broader source: Energy.gov [DOE]

CEQ and most Federal agencies identify primary points of contact for NEPA compliance. Normally a senior environmental professional, environmental law attorney, or member of agency leadership, these...

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Optical contact micrometer  

SciTech Connect (OSTI)

Certain examples provide optical contact micrometers and methods of use. An example optical contact micrometer includes a pair of opposable lenses to receive an object and immobilize the object in a position. The example optical contact micrometer includes a pair of opposable mirrors positioned with respect to the pair of lenses to facilitate viewing of the object through the lenses. The example optical contact micrometer includes a microscope to facilitate viewing of the object through the lenses via the mirrors; and an interferometer to obtain one or more measurements of the object.

Jacobson, Steven D.

2014-08-19T23:59:59.000Z

82

Regenerative switching CMOS system  

DOE Patents [OSTI]

Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

Welch, J.D.

1998-06-02T23:59:59.000Z

83

Wide Bandgap Extrinsic Photoconductive Switches  

SciTech Connect (OSTI)

Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

Sullivan, J S

2012-01-17T23:59:59.000Z

84

Contact | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContact EnergyContact

85

Contact | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContactContact Science

86

Contact | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContactContact

87

Optical Packet Switching -1 Optical Networks  

E-Print Network [OSTI]

Optical Packet Switching - 1 Optical Networks: from fiber transmission to photonic switching Optical Packet Switching Fabio Neri and Marco Mellia TLC Networks Group ­ Electronics Department e.mellia@polito.it ­ tel. 011 564 4173 #12;Optical Packet Switching - 2 · This work is licensed under the Creative Commons

Mellia, Marco

88

Contact Us - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContactContact Contact

89

Contact | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1Contact CommunityContact SHARE Contact

90

Contacts & Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1Contact CommunityContactContacts &

91

Andreev-level spectroscopy and Josephson-current switching in a three-terminal Josephson junction  

E-Print Network [OSTI]

Andreev-level spectroscopy and Josephson-current switching in a three-terminal Josephson junction H held in thermodynamic equilibrium with the two superconducting contacts of a Josephson junction. When levels. The additional normal-metal probe coupled to the Josephson junction, shown in Fig. 1, models

Demir, Hilmi Volkan

92

Electronic logic for enhanced switch reliability  

DOE Patents [OSTI]

A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and fail-safe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

Cooper, J.A.

1984-01-20T23:59:59.000Z

93

Contact thermal lithography  

E-Print Network [OSTI]

Contact thermal lithography is a method for fabricating microscale patterns using heat transfer. In contrast to photolithography, where the minimum achievable feature size is proportional to the wavelength of light used ...

Schmidt, Aaron Jerome, 1979-

2004-01-01T23:59:59.000Z

94

Plasma flow switch experiment on Procyon  

SciTech Connect (OSTI)

This report presents the results obtained from a series of plasma flow switch experiments done on the Procyon explosive pulse power generator. These experiments involved switching into a fixed inductance dummy load and also into a dynamic implosion load. The results indicated that the switch did fairly well at switching current into the load, but the results for the implosion are more ambiguous. The results are compared to calculations and the implications for future plasma flow switch work are discussed.

Benage, J.F. Jr.; Bowers, R.; Peterson, D. [and others

1995-09-01T23:59:59.000Z

95

Contact urticaria to raw potato  

E-Print Network [OSTI]

allergen in latex-induced potato allergy. Ann Allergy Asthmaof allergy to cooked potatoes in children. Allergy 2007;62(contact dermatitis from potato flesh. Contact Dermatitis

Lagrán, Z Martínez de; Frutos, FJ Ortiz de; Arribas, M González de; Vanaclocha-Sebastián, F

2009-01-01T23:59:59.000Z

96

Bilevel contact solar cells  

SciTech Connect (OSTI)

This patent describes a solar cell. It comprises a body of semiconductor material having at least one P/N junction therein, the body including a front face having no electrodes thereon, and a bilevel elevation back face having at least one P-doped region at a first level interdigitated with at least one N-doped region at a second level, wherein the at least one P-doped region and the at least one N-doped region partially overlap to form at least one compensated region; and a positive electrode contacting the at lease one P-doped region and a negative electrode contacting the at least one N-doped region, both electrodes contacting the solar cell on the back face.

Sinton, R.A.

1991-10-01T23:59:59.000Z

97

Optical switch using Risley prisms  

DOE Patents [OSTI]

An optical switch using Risley prisms and rotary microactuators to independently rotate the wedge prisms of each Risley prism pair is disclosed. The optical switch comprises an array of input Risley prism pairs that selectively redirect light beams from a plurality of input ports to an array of output Risley prism pairs that similarly direct the light beams to a plurality of output ports. Each wedge prism of each Risley prism pair can be independently rotated by a variable-reluctance stepping rotary microactuator that is fabricated by a multi-layer LIGA process. Each wedge prism can be formed integral to the annular rotor of the rotary microactuator by a DXRL process.

Sweatt, William C. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

2003-04-15T23:59:59.000Z

98

Optical Switch Using Risley Prisms  

DOE Patents [OSTI]

An optical switch using Risley prisms and rotary microactuators to independently rotate the wedge prisms of each Risley prism pair is disclosed. The optical switch comprises an array of input Risley prism pairs that selectively redirect light beams from a plurality of input ports to an array of output Risley prism pairs that similarly direct the light beams to a plurality of output ports. Each wedge prism of each Risley prism pair can be independently rotated by a variable-reluctance stepping rotary microactuator that is fabricated by a multi-layer LIGA process. Each wedge prism can be formed integral to the annular rotor of the rotary microactuator by a DXRL process.

Sweatt, William C. (Albuquerque, NM); Christenson, Todd R. (Albuquerque, NM)

2005-02-22T23:59:59.000Z

99

Contact Us - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContactContact Us

100

Contacts | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnnProjectContacts

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Contacts: Tel: Locations: Tel:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-GovContacts News News

102

Contact JLab | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact InContact Visiting

103

Contact Us - Pantex Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContactContact

104

Contact Us | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working WithContact Us »

105

Contact Us | NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working WithContact Us

106

Contact: Nathan Howard  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1Contact CommunityContact SHARENathan

107

Contacts | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" ContactsContacts for the

108

Sandia National Laboratories: Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-Farm OwnersContacts SSLS Contacts On

109

CONTACT INFO BUILDING SHELTER  

E-Print Network [OSTI]

CONTACT INFO SIGNALS BUILDING SHELTER THE DISABLED B.E.R.T. TEAM B.E.R.T.* EMERGENCY RESPONSE GUIDE, SIUC*Building Emergency Response Team Siren* Long Blast: Tornado High/Low: Any Other Emergency Radio needed. 2. Find two or three B.E.R.T. "buddies" who are willing to help you in the event of an emergency

King, David G.

110

Technology Advertising Contact Information  

E-Print Network [OSTI]

Overview #12;Technology Advertising Contact Information Alex Sheath 8596 4063 asheath Overview Our online Technology section is geared towards an IT professional environment, reaching a range of technology enthusiasts from every day gadget consumers to business decision makers where enterprise solutions

Peters, Richard

111

Contact Center Sales Office  

E-Print Network [OSTI]

PSTN Contact Center India Plant Ohio Sales Office Russia Remote Worker Arizona Plant China GPS petrochemical industry. The demands to improve supply and demand balances and increase business velocity have of diverse organizations in the petrochemical industry ­ from crude oil to refinery to processing

Fisher, Kathleen

112

Switch for serial or parallel communication networks  

DOE Patents [OSTI]

A communication switch apparatus and a method for use in a geographically extensive serial, parallel or hybrid communication network linking a multi-processor or parallel processing system has a very low software processing overhead in order to accommodate random burst of high density data. Associated with each processor is a communication switch. A data source and a data destination, a sensor suite or robot for example, may also be associated with a switch. The configuration of the switches in the network are coordinated through a master processor node and depends on the operational phase of the multi-processor network: data acquisition, data processing, and data exchange. The master processor node passes information on the state to be assumed by each switch to the processor node associated with the switch. The processor node then operates a series of multi-state switches internal to each communication switch. The communication switch does not parse and interpret communication protocol and message routing information. During a data acquisition phase, the communication switch couples sensors producing data to the processor node associated with the switch, to a downlink destination on the communications network, or to both. It also may couple an uplink data source to its processor node. During the data exchange phase, the switch couples its processor node or an uplink data source to a downlink destination (which may include a processor node or a robot), or couples an uplink source to its processor node and its processor node to a downlink destination. 9 figs.

Crosette, D.B.

1994-07-19T23:59:59.000Z

113

Electronic logic to enhance switch reliability in detecting openings and closures of redundant switches  

DOE Patents [OSTI]

A logic circuit is used to enhance redundant switch reliability. Two or more switches are monitored for logical high or low output. The output for the logic circuit produces a redundant and failsafe representation of the switch outputs. When both switch outputs are high, the output is high. Similarly, when both switch outputs are low, the logic circuit's output is low. When the output states of the two switches do not agree, the circuit resolves the conflict by memorizing the last output state which both switches were simultaneously in and produces the logical complement of this output state. Thus, the logic circuit of the present invention allows the redundant switches to be treated as if they were in parallel when the switches are open and as if they were in series when the switches are closed. A failsafe system having maximum reliability is thereby produced.

Cooper, James A. (Albuquerque, NM)

1986-01-01T23:59:59.000Z

114

Contact stress sensor  

DOE Patents [OSTI]

A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

Kotovsky, Jack

2014-02-11T23:59:59.000Z

115

ARM - NSA Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethane Background Information OutreachContacts NSA

116

Contacts / Hours - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us -

117

Switch for Good Community Program  

SciTech Connect (OSTI)

Switch4Good is an energy-savings program that helps residents reduce consumption from behavior changes; it was co-developed by Balfour Beatty Military Housing Management (BB) and WattzOn in Phase I of this grant. The program was offered at 11 Navy bases. Three customer engagement strategies were evaluated, and it was found that Digital Nudges (a combination of monthly consumption statements with frequent messaging via text or email) was most cost-effective.

Crawford, Tabitha; Amran, Martha

2013-11-19T23:59:59.000Z

118

DOE Radiation Records Contacts List  

Broader source: Energy.gov [DOE]

DOE radiation records contact list for individuals to obtain records of occupational exposure directly from a DOE site.

119

Fast superconducting magnetic field switch  

DOE Patents [OSTI]

The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

Goren, Yehuda (Mountain View, CA); Mahale, Narayan K. (The Woodlands, TX)

1996-01-01T23:59:59.000Z

120

Uniform Methods Project Contacts | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contacts Uniform Methods Project Contacts The primary contacts for the Uniform Methods Project are: U.S. Department of Energy Michael Li Carla Frisch National Renewable Energy...

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

High speed transfer switch with 50 kA and 50 kV  

SciTech Connect (OSTI)

This paper gives the mechanical design and electrical parameters of a pneumatically operated transfer switch. This design is used to switch 3-second 50-kA current pulses, and is easily capable of 75 kA operation (2 {times} 10{sup 10} I{sup 2}t); with water-cooled versions capable of 20 kA continuously. Although the switch is not specifically designed to make or break 50 kA, it is provided with auxiliary Elkonite arcing contacts have proven their value in protecting the main electrodes even under repetitive (50 kA) fault conditions. Included in this presentation will be the results of extensive life testing and associated criteria. 6 figs., 1 tab.

Reass, W.A.; Kasik, R.J.; Wilds, W.A.

1989-01-01T23:59:59.000Z

122

Transmission - Contact Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-Transmission Sign In About |

123

Transmission Contact Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-Transmission Sign In

124

ARM - Instrument Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements MediagovCampaignsList ofgovInstrumentsContacts

125

SRNL LDRD - Program Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,#2446SmallnAbout LDRDProgram Contacts

126

FOR IMMEDIATE RELEASE CONTACT:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES Committees of9,of Energy8 CH2M CONTACT:

127

ARM - Contact Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformationbudapest Comments? We would love toContact Information Related Links TWP-ICE Home Tropical

128

Contacts | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2Administrative Operations Contacts for theAbout the State

129

Geothermal: Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning FunNeuTel2011Programmatic ReportsContact Us Geothermal

130

How to Contact NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAbout Energy.govHonorsAbout » Contact us

131

Climate VISION: Contact Us  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuring DopamineEnergy,6. Radiative Forcing of ClimateCONTACT US

132

Contact Us - SRSCRO  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContactContactcontact

133

Contacts | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - News Media Assembling A

134

Fermilab | Contact Fermilab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun OffTechnologies|21,Contact

135

NREL: Library - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResultsGeothermal Energy TheContacts A photo

136

Media Contact: Will Callicott  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey MathematicaMeasuring andSecurity Contact: Will

137

Contact | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 BuildingContactCoordinators|

138

Contact Issue 1  

E-Print Network [OSTI]

, '\\ ..... ,. '" ' ; ') I f. I , j ------------------~ The tall lean Earthman stepped up to the8!nterprise trio who had just beamed down onto his porch. "Welcome to the Kes sler Colonr.' gentlemen, " he greeted them. "I'm Leon Kessler at your service l' The man... DEDICATION This zi_e is dedicated to all STAR TREK raas who saw aad uaderstood that special quality ia the "Kirk/Spock Relatioash!p", aad to WILLIAM SHATNER .ad LEONARD NIMOY, who made it happe_. ? Copyright December, 1915, CONTACT. No reprlats...

Multiple Contributors

1976-01-01T23:59:59.000Z

139

Contact | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContact Energy Frontier

140

Contact | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContact Energy

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Contact | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContact

142

Who do I contact at the Labs? | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP SignInWho do I contact at the Labs?

143

Characteristics of trap-filled gallium arsenide photoconductive switches used in high gain pulsed power applications  

SciTech Connect (OSTI)

The electrical properties of semi-insulating (SI) Gallium Arsenide (GaAs) have been investigated for some time, particularly for its application as a substrate in microelectronics. Of late this material has found a variety of applications other than as an isolation region between devices, or the substrate of an active device. High resistivity SI GaAs is increasingly being used in charged particle detectors and photoconductive semiconductor switches (PCSS). PCSS made from these materials operating in both the linear and non-linear modes have applications such as firing sets, as drivers for lasers, and in high impedance, low current Q-switches or Pockels cells. In the non-linear mode, it has also been used in a system to generate Ultra-Wideband (UWB) High Power Microwaves (HPM). The choice of GaAs over silicon offers the advantage that its material properties allow for fast, repetitive switching action. Furthermore photoconductive switches have advantages over conventional switches such as improved jitter, better impedance matching, compact size, and in some cases, lower laser energy requirement for switching action. The rise time of the PCSS is an important parameter that affects the maximum energy transferred to the load and it depends, in addition to other parameters, on the bias or the average field across the switch. High field operation has been an important goal in PCSS research. Due to surface flashover or premature material breakdown at higher voltages, most PCSS, especially those used in high power operation, need to operate well below the inherent breakdown voltage of the material. The lifetime or the total number of switching operations before breakdown, is another important switch parameter that needs to be considered for operation at high bias conditions. A lifetime of {approximately} 10{sup 4} shots has been reported for PCSS's used in UWB-HPM generation [5], while it has exceeded 10{sup 8} shots for electro-optic drivers. Much effort is currently being channeled in the study related to improvements of these two parameters high bias operation and lifetime improvement for switches used in pulsed power applications. The contact material and profiles are another important area of study. Although these problems are being pursued through the incorporation of different contact materials and introducing doping near contacts, it is important that the switch properties and the conduction mechanism in these switches be well understood such that the basic nature of the problems can be properly addressed. In this paper the authors report on these two basic issues related to the device operation, i.e., mechanisms for increasing the hold-off characteristics through neutron irradiation, and the analysis of transport processes at varying field conditions in trap dominated SI GaAs in order to identify the breakdown mechanism during device operation. It is expected that this study would result in a better understanding of photoconductive switches, specifically those used in high power operation.

ISLAM,N.E.; SCHAMILOGLU,E.; MAR,ALAN; LOUBRIEL,GUILLERMO M.; ZUTAVERN,FRED J.; JOSHI,R.P.

2000-05-30T23:59:59.000Z

144

Multiprocessor switch with selective pairing  

DOE Patents [OSTI]

System, method and computer program product for a multiprocessing system to offer selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). Each paired microprocessor or processor cores that provide one highly reliable thread for high-reliability connect with a system components such as a memory "nest" (or memory hierarchy), an optional system controller, and optional interrupt controller, optional I/O or peripheral devices, etc. The memory nest is attached to a selective pairing facility via a switch or a bus

Gara, Alan; Gschwind, Michael K; Salapura, Valentina

2014-03-11T23:59:59.000Z

145

Microwave-triggered laser switch  

DOE Patents [OSTI]

A high-repetition rate switch is described for delivering short duration, high-powered electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.

Piltch, M.S.

1982-05-19T23:59:59.000Z

146

Microwave-triggered laser switch  

DOE Patents [OSTI]

A high-repetition rate switch for delivering short duration, high-power electrical pulses from a pulsed-charged dc power supply. The present invention utilizes a microwave-generating device such as a magnetron that is capable of producing high-power pulses at high-pulse repetition rates and fast-pulse risetimes for long periods with high reliability. The rail-gap electrodes provide a large surface area that reduces induction effects and minimizes electrode erosion. Additionally, breakdown is initiated in a continuous geometric fashion that also increases operating lifetime of the device.

Piltch, Martin S. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

147

Optical switching system and method  

DOE Patents [OSTI]

An optically bistable device is disclosed. The device includes a uniformly thick layer of amorphous silicon to constitute a Fabry-Perot chamber positioned to provide a target area for a probe beam. The probe beam has a maximum energy less than the energy band gap of the amorphous semiconductor. In a preferred embodiment, a multilayer dielectric mirror is positioned on the Fabry-Perot chamber to increase the finesse of switching of the device. The index of refraction of the amorphous material is thermally altered to alter the transmission of the probe beam.

Ranganathan, Radha (N. Tonawanda, NY); Gal, Michael (Engadine, AU); Taylor, P. Craig (Salt Lake City, UT)

1992-01-01T23:59:59.000Z

148

A magnetically switched kicker for proton extraction  

SciTech Connect (OSTI)

The application of magnetic current amplification and switching techniques to the generation of precise high current pulses for switching magnets is described. The square loop characteristic of Metglas tape wound cores at high excitation levels provides excellent switching characteristics for microsecond pulses. The rugged and passive nature of this type pulser makes it possible to locate the final stages of amplification at the load for maximum efficiency. 12 refs., 8 figs.

Dinkel, J.; Biggs, J.

1989-03-01T23:59:59.000Z

149

High-index-contrast electromechanical optical switches  

E-Print Network [OSTI]

System developers are looking to replace protocol-dependent, bandwidth-limited optical networks with intelligent optically-transparent integrated photonic networks. Several electromechanical optical switches are explored ...

Bryant, Reginald (Reginald Eugene), 1978-

2011-01-01T23:59:59.000Z

150

Method for forming metal contacts  

DOE Patents [OSTI]

Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

2013-09-17T23:59:59.000Z

151

A Comparison of High-Voltage Switches  

SciTech Connect (OSTI)

This report summarizes our work on high-voltage switches during the past few years. With joint funding from the Department of Energy (DOE) and the Department of Defense (DOD), we tested a wide variety of switches to a common standard. This approach permitted meaningful comparisons between disparate switches. Most switches were purchased from commercial sources, though some were experimental devices. For the purposes of this report, we divided the switches into three generic types (gas, vacuum, and semiconductor) and selected data that best illustrates important strengths and weaknesses of each switch type. Test techniques that indicate the state of health of the switches are emphasized. For example, a good indicator of residual gas in a vacuum switch is the systematic variation of the switching delay in response to changes in temperature and/or operating conditions. We believe that the presentation of this kind of information will help engineers to select and to test switches for their particular applications. Our work was limited to switches capable of driving slappers. Also known as exploding-foil initiators, slappers are detonators that initiate a secondary explosive by direct impact with a small piece of matter moving at the detonation velocity (several thousands of meters per second). A slapper is desirable for enhanced safety (no primary explosive), but it also places extra demands on the capacitor-discharge circuit to deliver a fast-rising current pulse (greater than 10 A/ns) of several thousand amperes. The required energy is substantially less than one joule; but this energy is delivered in less than one microsecond, taking the peak power into the megawatt regime. In our study, the switches operated in the 1 kV to 3 kV range and were physically small, roughly 1 cm{sup 3} or less. Although a fuze functions only once in actual use, multiple-shot capability is important for production testing and for research work. For this reason, we restricted this report to multiple-shot switches. Furthermore, our work included only switches with submicrosecond timing precision, thereby excluding mechanical switches.

Chu, K.W.; Scott, G.L.

1999-02-01T23:59:59.000Z

152

PBC: A Partially Buffered Crossbar Packet Switch  

E-Print Network [OSTI]

fabric is widely used as the interconnect of high-performance packet switches due to its low cost-performance packet switches because of its low cost and scalability. As a result, the vast majority and scalability. There are two main variants of the crossbar fabric: unbuffered and internally buffered. On one

Kuzmanov, Georgi

153

Seismic switch for strong motion measurement  

DOE Patents [OSTI]

A seismic switching device that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period.

Harben, Philip E. (Oakley, CA); Rodgers, Peter W. (Santa Barbara, CA); Ewert, Daniel W. (Patterson, CA)

1995-01-01T23:59:59.000Z

154

Seismic switch for strong motion measurement  

DOE Patents [OSTI]

A seismic switching device is described that has an input signal from an existing microseismic station seismometer and a signal from a strong motion measuring instrument. The seismic switch monitors the signal level of the strong motion instrument and passes the seismometer signal to the station data telemetry and recording systems. When the strong motion instrument signal level exceeds a user set threshold level, the seismometer signal is switched out and the strong motion signal is passed to the telemetry system. The amount of time the strong motion signal is passed before switching back to the seismometer signal is user controlled between 1 and 15 seconds. If the threshold level is exceeded during a switch time period, the length of time is extended from that instant by one user set time period. 11 figs.

Harben, P.E.; Rodgers, P.W.; Ewert, D.W.

1995-05-30T23:59:59.000Z

155

Optoelectronic switches based on diffusive conduction Hilmi Volkan Demira  

E-Print Network [OSTI]

Optoelectronic switches based on diffusive conduction Hilmi Volkan Demira and Fatih Hakan Koklu the process of diffusive conduction that we use in our optoelectronic switches to achieve rapid optical. We demonstrate the feasibility of using such diffusive conductive optoelectronic switches

Miller, David A. B.

156

Modeling Combustion Control for High Power Diesel Mode Switching...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Control for High Power Diesel Mode Switching Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in...

157

Flipping the switch on magnetism in strontium titanate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flipping the switch on magnetism in strontium titanate Flipping the switch on magnetism in strontium titanate Researchers have found a way to magnetize this material using light,...

158

Switch on Clean Energy Activity Book | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Switch on Clean Energy Activity Book Switch on Clean Energy Activity Book Games and activity book about energy efficiency and renewable energy technologies for kids....

159

Robust Diamond-Based RF Switch Yields Enhanced Communication...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Robust Diamond-Based RF Switch Yields Enhanced Communication Capabilities Technology available for licesning: A radio frequency (RF) microelectromechanical system (MEMS) switch...

160

Solar cell with back side contacts  

DOE Patents [OSTI]

A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

2013-12-24T23:59:59.000Z

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Energy Absorption and Storage in a Hamiltonian System in Partial Contact with a Heat Bath  

E-Print Network [OSTI]

To understand the mechanism allowing for long-term storage of excess energy in proteins, we study a Hamiltonian system consisting of several coupled pendula in partial contact with a heat bath. It is found that energy absorption and storage are possible when the motion of each pendulum switches between oscillatory (vibrational) and rotational modes. The relevance of our mechanism to protein motors is discussed.

Naoko Nakagawa; Kunihiko Kaneko

1999-03-02T23:59:59.000Z

162

Protein folding using contact maps  

E-Print Network [OSTI]

We present the development of the idea to use dynamics in the space of contact maps as a computational approach to the protein folding problem. We first introduce two important technical ingredients, the reconstruction of a three dimensional conformation from a contact map and the Monte Carlo dynamics in contact map space. We then discuss two approximations to the free energy of the contact maps and a method to derive energy parameters based on perceptron learning. Finally we present results, first for predictions based on threading and then for energy minimization of crambin and of a set of 6 immunoglobulins. The main result is that we proved that the two simple approximations we studied for the free energy are not suitable for protein folding. Perspectives are discussed in the last section.

Michele Vendruscolo; Eytan Domany

1999-01-21T23:59:59.000Z

163

Value iteration for (switched) homogeneous systems  

E-Print Network [OSTI]

In this note, we prove that dynamic programming value iteration converges uniformly for discrete-time homogeneous systems and continuous-time switched homogeneous systems. For discrete-time homogeneous systems, rather than ...

Dahleh, Munther A.

164

Clause chaining, switch reference and coordination  

E-Print Network [OSTI]

In this thesis I ponder over a constellation of phenomena that revolve around switch reference and coordination, drawing mainly on their instantiation in Kisedje (Je, Brazil). I start by investigating Klsedje's case system. ...

Nonato, Rafael

2014-01-01T23:59:59.000Z

165

Optoelectronic switching of addressable molecular crossbar junctions  

E-Print Network [OSTI]

This letter reports on the observation of optoelectronic switching in addressable molecular crossbar junctions fabricated using polymer stamp-printing method. The active medium in the junction is a molecular self-assembled monolayer softly sandwiched between gold electrodes. The molecular junctions are investigated through currentvoltage measurements at varied temperature (from 95 to 300 K) in high vacuum condition. The junctions show reversible optoelectronic switching with the highest on/off ratio of 3 orders of magnitude at 95 K. The switching behavior is independent of both optical wavelength and molecular structure, while it strongly depends on the temperature. Initial analysis indicates that the distinct binding nature of the molecule/electrode interfaces play a dominant role in the switching performance.

J. C. Li

2006-11-22T23:59:59.000Z

166

Method for lubricating contacting surfaces  

DOE Patents [OSTI]

A method is provided for tribological lubrication of sliding contact surfaces, where two surfaces are in contact and in motion relative to each other, operating in a vapor-phase environment containing at least one alcohol compound at a concentration sufficiently high to provide one monolayer of coverage on at least one of the surfaces, where the alcohol compound continuously reacts at the surface to provide lubrication.

Dugger, Michael T. (Tijeras, NM); Ohlhausen, James A. (Albuquerque, NM); Asay, David B. (Boalsburg, PA); Kim, Seong H. (State College, PA)

2011-12-06T23:59:59.000Z

167

FOIA Contacts | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange Visitors Program Exchange VisitorsContacts FOIA Contacts

168

Theory and inference for a Markov switching GARCH model  

E-Print Network [OSTI]

2007/55 Theory and inference for a Markov switching GARCH model Luc Bauwens, Arie Preminger and Jeroen V.K. Rombouts #12;CORE DISCUSSION PAPER 2007/55 Theory and inference for a Markov switching GARCH-switching GARCH model (MS-GARCH) wherein the conditional mean and variance switch in time from one GARCH process

Nesterov, Yurii

169

Utility Energy Service Contract Contacts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Contacts Utility Energy Service Contract Contacts For more information about utility energy service contracts, contact: Contact Organization David McAndrew 202-586-7722 Federal...

170

Video Switching in the Panopto Editor Video Switching in the Panopto Editor  

E-Print Network [OSTI]

Video Switching in the Panopto Editor Video Switching in the Panopto Editor In My Pitt Video (Panopto) you can control and edit which video streams the viewer sees by editing individual streams in the My Pitt Video (Panopto) Editor. Editing the primary video source will edit on all streams, editing

Benos, Panayiotis "Takis"

171

Photonic switching devices based on semiconductor nanostructures  

E-Print Network [OSTI]

Focusing and guiding light into semiconductor nanostructures can deliver revolutionary concepts for photonic devices, which offer a practical pathway towards next-generation power-efficient optical networks. In this review, we consider the prospects for photonic switches using semiconductor quantum dots (QDs) and photonic cavities which possess unique properties based on their low dimensionality. The optical nonlinearity of such photonic switches is theoretically analyzed by introducing the concept of a field enhancement factor. This approach reveals drastic improvement in both power-density and speed, which is able to overcome the limitations that have beset conventional photonic switches for decades. In addition, the overall power consumption is reduced due to the atom-like nature of QDs as well as the nano-scale footprint of photonic cavities. Based on this theoretical perspective, the current state-of-the-art of QD/cavity switches is reviewed in terms of various optical nonlinearity phenomena which have been utilized to demonstrate photonic switching. Emerging techniques, enabled by cavity nonlinear effects such as wavelength tuning, Purcell-factor tuning and plasmonic effects are also discussed.

Chao-Yuan Jin; Osamu Wada

2014-02-26T23:59:59.000Z

172

Contacts of space--times  

SciTech Connect (OSTI)

The concept of contact between manifolds is applied to space--times of general relativity. For a given background space--time a contact approximation of second order is defined and interpreted both from the point of view of a metric pertubation and of a higher order tangent manifold. In the first case, an application to the high frequency gravitational wave hypothesis is suggested. In the second case, a constant curvature tangent bundle is constructed and suggested as a means to define a ten parameter local space--time symmetry.

Maia, M.D.

1981-03-01T23:59:59.000Z

173

Non- contacting capacitive diagnostic device  

DOE Patents [OSTI]

A non-contacting capacitive diagnostic device includes a pulsed light source for producing an electric field in a semiconductor or photovoltaic device or material to be evaluated and a circuit responsive to the electric field. The circuit is not in physical contact with the device or material being evaluated and produces an electrical signal characteristic of the electric field produced in the device or material. The diagnostic device permits quality control and evaluation of semiconductor or photovoltaic device properties in continuous manufacturing processes.

Ellison, Timothy

2005-07-12T23:59:59.000Z

174

Contact Us | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs Contact UsContact

175

Contact Us | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs Contact UsContactUs

176

Contact Us | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUsContact UsContact Us

177

Sandia National Laboratories: Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScience SSRL ScienceCRFCareersandContact Us Contact Us

178

Contact OAK RIDGE NATIONAL LABORATORY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact InContact

179

Contact Us | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working With UsContact Us

180

Contact | Photosynthetic Antenna Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - WorkingContact

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Improved Electrical Contact For Dowhhole Drilling Networks  

DOE Patents [OSTI]

An electrical contact system for transmitting information across tool joints while minimizing signal reflections that occur at the tool joints includes a first electrical contact comprising an annular resilient material. An annular conductor is embedded within the annular resilient material and has a surface exposed from the annular resilient material. A second electrical contact is provided that is substantially equal to the first electrical contact. Likewise, the second electrical contact has an annular resilient material and an annular conductor. The two electrical contacts configured to contact one another such that the annular conductors of each come into physical contact. The annular resilient materials of each electrical contact each have dielectric characteristics and dimensions that are adjusted to provide desired impedance to the electrical contacts.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT)

2005-08-16T23:59:59.000Z

182

An evaluation of Access Tier local area network switches.  

SciTech Connect (OSTI)

This reports tabulates the Test and Evaluation results of the Access Class Switch tests conducted by members of Department 9336. About 15 switches were reviewed for use in the enterprise network as access tier switches as defined in a three tier architecture. The Access Switch Tier has several functions including: aggregate customer desktop ports, preserve and apply QoS tags, provide switched LAN access, provide VLAN assignment, as well as others. The typical switch size is 48 or less user ports. The evaluation team reviewed network switch evaluation reports from the Tolly Group as well as other sources. We then used these reports as a starting point to identify particular switches for evaluation. In general we reviewed the products of dominant equipment manufacturers. Also, based on architectural design requirements, the majority of the switches tested were of relatively small monolithic unit variety.

Eldridge, John M.; Olsberg, Ronald R.

2004-06-01T23:59:59.000Z

183

Compact high voltage solid state switch  

DOE Patents [OSTI]

A compact, solid state, high voltage switch capable of high conduction current with a high rate of current risetime (high di/dt) that can be used to replace thyratrons in existing and new applications. The switch has multiple thyristors packaged in a single enclosure. Each thyristor has its own gate drive circuit that circuit obtains its energy from the energy that is being switched in the main circuit. The gate drives are triggered with a low voltage, low current pulse isolated by a small inexpensive transformer. The gate circuits can also be triggered with an optical signal, eliminating the trigger transformer altogether. This approach makes it easier to connect many thyristors in series to obtain the hold off voltages of greater than 80 kV.

Glidden, Steven C.

2003-09-23T23:59:59.000Z

184

Magnetic switch for reactor control rod  

DOE Patents [OSTI]

A magnetic reed switch assembly for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electromagnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

Germer, John H. (San Jose, CA)

1986-01-01T23:59:59.000Z

185

Micro electro mechanical system optical switching  

DOE Patents [OSTI]

The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.

Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J

2013-12-17T23:59:59.000Z

186

Magnetic switch for reactor control rod. [LMFBR  

DOE Patents [OSTI]

A magnetic reed switch assembly is described for activating an electromagnetic grapple utilized to hold a control rod in position above a reactor core. In normal operation the magnetic field of a permanent magnet is short-circuited by a magnetic shunt, diverting the magnetic field away from the reed switch. The magnetic shunt is made of a material having a Curie-point at the desired release temperature. Above that temperature the material loses its ferromagnetic properties, and the magnetic path is diverted to the reed switch which closes and short-circuits the control circuit for the control rod electro-magnetic grapple which allows the control rod to drop into the reactor core for controlling the reactivity of the core.

Germer, J.H.

1982-09-30T23:59:59.000Z

187

Contact Symmetries and Hamiltonian Thermodynamics  

E-Print Network [OSTI]

It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher's Information Matrix. In this work we analyze several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.

A. Bravetti; C. S. Lopez-Monsalvo; F. Nettel

2015-02-22T23:59:59.000Z

188

University Assessment Contacts Academic Units  

E-Print Network [OSTI]

.j.arp@oregonstate.edu 541-737-2331 Notes: Agricultural and Resource Economics Assessment Rep: Email: Phone: Penelope DiebelUniversity Assessment Contacts Academic Units COLLEGE OF AGRICULTURAL SCIENCES Assessment Rep.Capalbo@oregonstate.edu 541-737-5639 Notes: Agricultural Education and Agricultural Sciences Assessment Rep: Email: Phone

Escher, Christine

189

Contact Information Elias M. Marvinney  

E-Print Network [OSTI]

Contact Information Elias M. Marvinney 619 Fillmore St Davis, CA 95616 Cell: 617-721-9636 Email: emarvinney@ucdavis.edu Employment History University of California Davis, College of Agriculture accounts for upstream emissions associated with material production and transport, fuel combustion

DeJong, Theodore

190

APRIL 18, 2013 Media Contact  

E-Print Network [OSTI]

Solar Project State Partners with Project Owners to Purchase Conservation Land The California Department of Fish and Wildlife (CDFW), the California Energy Commission (Energy Commission) and the Ivanpah SolarAPRIL 18, 2013 Media Contact: Jordan Traverso, CDFW Communications, (916) 654-9937 California

191

Ultrahigh density ferroelectric storage and lithography by high order ferroic switching  

DOE Patents [OSTI]

A method for switching the direction of polarization in a relatively small domain in a thin-film ferroelectric material whose direction of polarization is oriented normal to the surface of the material involves a step of moving an electrically-chargeable tip into contact with the surface of the ferroelectric material so that the direction of polarization in a region adjacent the tip becomes oriented in a preselected direction relative to the surface of the ferroelectric material. The tip is then pressed against the surface of the ferroelectric material so that the direction of polarization of the ferroelectric material within the area of the ferroelectric material in contact with the tip is reversed under the combined effect of the compressive influence of the tip and electric bias.

Kalinin, Sergei V. (Knoxville, TN); Baddorf, Arthur P. (Knoxville, TN); Lee, Ho Nyung (Oak Ridge, TN); Shin, Junsoo (Knoxville, TN); Gruverman, Alexei L. (Raleigh, NC); Karapetian, Edgar (Malden, MA); Kachanov, Mark (Arlington, MA)

2007-11-06T23:59:59.000Z

192

Explosive-driven, high speed, arcless switch  

DOE Patents [OSTI]

An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

Skogmo, P.J.; Tucker, T.J.

1986-05-02T23:59:59.000Z

193

Explosive-driven, high speed, arcless switch  

DOE Patents [OSTI]

An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed. 7 figs.

Skogmo, P.J.; Tucker, T.J.

1987-07-14T23:59:59.000Z

194

Optically triggered high voltage switch network and method for switching a high voltage  

DOE Patents [OSTI]

An optically triggered solid state switch and method for switching a high voltage electrical current. A plurality of solid state switches (350) are connected in series for controlling electrical current flow between a compensation capacitor (112) and ground in a reactive power compensator (50, 50') that monitors the voltage and current flowing through each of three distribution lines (52a, 52b and 52c), which are supplying three-phase power to one or more inductive loads. An optical transmitter (100) controlled by the reactive power compensation system produces light pulses that are conveyed over optical fibers (102) to a switch driver (110') that includes a plurality of series connected optical triger circuits (288). Each of the optical trigger circuits controls a pair of the solid state switches and includes a plurality of series connected resistors (294, 326, 330, and 334) that equalize or balance the potential across the plurality of trigger circuits. The trigger circuits are connected to one of the distribution lines through a trigger capacitor (340). In each switch driver, the light signals activate a phototransistor (300) so that an electrical current flows from one of the energy reservoir capacitors through a pulse transformer (306) in the trigger circuit, producing gate signals that turn on the pair of serially connected solid state switches (350).

El-Sharkawi, Mohamed A. (Renton, WA); Andexler, George (Everett, WA); Silberkleit, Lee I. (Mountlake Terrace, WA)

1993-01-19T23:59:59.000Z

195

Contact  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial Validation andPWRContaCt The nuclear

196

Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation AdministrationEnvironmental Review-NEPAContacts

197

Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation AdministrationEnvironmental

198

CONTACT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASL Symposium: CelebratingMission Welcomefor

199

Contact  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVision Predict,Researchhome /

200

Solar cell contact formation using laser ablation  

DOE Patents [OSTI]

The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.

Harley, Gabriel; Smith, David; Cousins, Peter

2012-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Solar cell contact formation using laser ablation  

DOE Patents [OSTI]

The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline materiat layer; and forming conductive contacts in the plurality of contact holes.

Harley, Gabriel; Smith, David D.; Cousins, Peter John

2014-07-22T23:59:59.000Z

202

Ternary gas mixture for diffuse discharge switch  

DOE Patents [OSTI]

A new diffuse discharge gas switch wherein a mixture of gases is used to take advantage of desirable properties of the respective gases. There is a conducting gas, an insulating gas, and a third gas that has low ionization energy resulting in a net increase in the number of electrons available to produce a current.

Christophorou, Loucas G. (Oak Ridge, TN); Hunter, Scott R. (Oak Ridge, TN)

1988-01-01T23:59:59.000Z

203

A thermodynamic switch for chromosome colocalization  

E-Print Network [OSTI]

A general model for the early recognition and colocalization of homologous DNA sequences is proposed. We show, on a thermodynamic ground, how the distance between two homologous DNA sequences is spontaneously regulated by the concentration and affinity of diffusible mediators binding them, which act as a switch between two phases corresponding to independence or colocalization of pairing regions.

M. Nicodemi; B. Panning; A. Prisco

2008-09-27T23:59:59.000Z

204

Isolated and soft-switched power converter  

DOE Patents [OSTI]

An isolated and soft-switched power converter is used for DC/DC and DC/DC/AC power conversion. The power converter includes two resonant tank circuits coupled back-to-back through an isolation transformer. Each resonant tank circuit includes a pair of resonant capacitors connected in series as a resonant leg, a pair of tank capacitors connected in series as a tank leg, and a pair of switching devices with anti-parallel clamping diodes coupled in series as resonant switches and clamping devices for the resonant leg. The power converter is well suited for DC/DC and DC/DC/AC power conversion applications in which high-voltage isolation, DC to DC voltage boost, bidirectional power flow, and a minimal number of conventional switching components are important design objectives. For example, the power converter is especially well suited to electric vehicle applications and load-side electric generation and storage systems, and other applications in which these objectives are important. The power converter may be used for many different applications, including electric vehicles, hybrid combustion/electric vehicles, fuel-cell powered vehicles with low-voltage starting, remote power sources utilizing low-voltage DC power sources, such as photovoltaics and others, electric power backup systems, and load-side electric storage and generation systems.

Peng, Fang Zheng (Knoxville, TN); Adams, Donald Joe (Knoxville, TN)

2002-01-01T23:59:59.000Z

205

Optically initiated silicon carbide high voltage switch  

DOE Patents [OSTI]

An improved photoconductive switch having a SiC or other wide band gap substrate material, such as GaAs and field-grading liners composed of preferably SiN formed on the substrate adjacent the electrode perimeters or adjacent the substrate perimeters for grading the electric fields.

Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Sullivan, James S. (Livermore, CA); Sanders; David M. (Livermore, CA)

2011-02-22T23:59:59.000Z

206

Thermionic converter in load-switching mode  

SciTech Connect (OSTI)

An electrical equivalent circuit is proposed for a thermionic electrogenerating element. It is suitable for calculation of transients in load-switching mode. Formulas are given for estimating circuit parameters. A sample numerical calculation is given for the transient between no-load and short-circuit regimes. The results may be employed to identify experimental data in the frequency domain.

Mendel'baum, M.A.; Es'kov, V.D.

1983-01-01T23:59:59.000Z

207

All-optical discrete vortex switch  

SciTech Connect (OSTI)

We introduce discrete vortex solitons and vortex breathers in circular arrays of nonlinear waveguides. The simplest vortex breather in a four-waveguide coupler is a nonlinear dynamic state changing its topological charge between +1 and -1 periodically during propagation. We find the stability domain for this solution and suggest an all-optical vortex switching scheme.

Desyatnikov, Anton S. [Nonlinear Physics Center, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Dennis, Mark R. [H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Ferrando, Albert [Interdisciplinary Modeling Group, InterTech and Departament d'Optica, Universitat de Valencia, E-46100 Burjassot (Spain)

2011-06-15T23:59:59.000Z

208

Switching dynamics in cholesteric blue phases  

E-Print Network [OSTI]

Blue phases are networks of disclination lines, which occur in cholesteric liquid crystals near the transition to the isotropic phase. They have recently been used for the new generation of fast switching liquid crystal displays. Here we study numerically the steady states and switching hydrodynamics of blue phase I (BPI) and blue phase II (BPII) cells subjected to an electric field. When the field is on, there are three regimes: for very weak fields (and strong anchoring at the boundaries) the blue phases are almost unaffected, for intermediate fields the disclinations twist (for BPI) and unzip (for BPII), whereas for very large voltages the network dissolves in the bulk of the cell. Interestingly, we find that a BPII cell can recover its original structure when the field is switched off, whereas a BPI cell is found to be trapped more easily into metastable configurations. The kinetic pathways followed during switching on and off entails dramatic reorganisation of the disclination networks. We also discuss the effect of changing the director field anchoring at the boundary planes and of varying the direction of the applied field.

A. Tiribocchi; G. Gonnella; D. Marenduzzo; E. Orlandini

2011-03-30T23:59:59.000Z

209

Carbon nano-relays for low power switching  

E-Print Network [OSTI]

In this thesis two unique carbon based nanoelectromechanical switches or carbon nano-relays are demonstrated as a toolkit for investigating NEMs based low power switching. The first is a vertical carbon nano-relay, consisting ...

Milaninia, Kaveh Mehdi

2009-01-01T23:59:59.000Z

210

Details of Forestry Commission and DARDNI Plant Health Contacts for UK Points of Entry UK Principle Ports Contacts Contact Details  

E-Print Network [OSTI]

Ports Contacts Contact Details Felixstowe Richard Fergusson Pat Mitchell Philip Evans Roland Fry Fax Other GB Ports John Hunter Joanne McAuley Fax 0131-314-6148 Tel : 0131-314-6182 or Tel : 0131

211

Invertibility of Nonlinear Switched Systems Aneel Tanwani and Daniel Liberzon  

E-Print Network [OSTI]

Invertibility of Nonlinear Switched Systems Aneel Tanwani and Daniel Liberzon Abstract-- This article addresses the invertibility problem for switched nonlinear systems affine in controls. The problem and sufficient condition for a switched system to be invertible, which says that the subsystems should

212

OPTICAL PACKET SWITCHING George N. Rouskas, Lisong Xu  

E-Print Network [OSTI]

Chapter 1 OPTICAL PACKET SWITCHING George N. Rouskas, Lisong Xu Department of Computer Science of optical packet switching (OPS) is emerging as an alter- native to coarser-grained switching in the optical reconfigurable, bandwidth-efficient, and flexible optical layer. In this chapter we study some

213

RF-MEMS capacitive switches with high reliability  

DOE Patents [OSTI]

A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

2013-09-03T23:59:59.000Z

214

A Brain-Switch using Riemannian Geometry A. Barachant1  

E-Print Network [OSTI]

A Brain-Switch using Riemannian Geometry A. Barachant1 , S. Bonnet1 , M. Congedo2 , C. Jutten2 1 the issue of asynchronous brain-switch. The detection of a specific brain pattern from the ongoing EEG-time EEG segments contain all the desired information. Such a brain-switch is valuable as it is easy to set

Paris-Sud XI, Université de

215

Energy and Switch Area Optimizations for FPGA Global Routing Architectures  

E-Print Network [OSTI]

13 Energy and Switch Area Optimizations for FPGA Global Routing Architectures YI ZHU, YUANFANG HU and wire style optimization, to reduce the energy and switch area of FPGA global routing architectures achieve up to 10% to 15% energy savings and up to 20% switch area savings in average for a set of seven

Fainman, Yeshaiahu

216

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides contact information for program staff of the U.S. Department of Energy's Clean Cities program, as well as contact information for the nearly 100 local Clean Cities coalitions across the country.

Not Available

2012-03-01T23:59:59.000Z

217

University of Michigan -Traveler Contact Information Name __________________________________  

E-Print Network [OSTI]

University of Michigan - Traveler Contact Information Name __________________________________ Phone __________________________________ Email __________________________________ University of Michigan/Clinic __________________________________ Address __________________________________ Phone __________________________________ University of Michigan

Eustice, Ryan

218

Electrical Contacts to Individual Colloidal Semiconductor Nanorods  

E-Print Network [OSTI]

stable nanostructured electrical devices with interestingElectrical Contacts to Individual Colloidal Semiconductorand its effect on electrical properties has important

Trudeau, Paul-Emile

2008-01-01T23:59:59.000Z

219

E-Print Network 3.0 - artificial molecular switch Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

variation in which they evade immunity by switching... transmission. mathematical model Typanosoma brucei variant surface glycoprotein switching hierarchy Source: Read,...

220

Float level switch for a nuclear power plant containment vessel  

DOE Patents [OSTI]

This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel.

Powell, James G. (Clifton Park, NY)

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Float level switch for a nuclear power plant containment vessel  

DOE Patents [OSTI]

This invention is a float level switch used to sense rise or drop in water level in a containment vessel of a nuclear power plant during a loss of coolant accident. The essential components of the device are a guide tube, a reed switch inside the guide tube, a float containing a magnetic portion that activates a reed switch, and metal-sheathed, ceramic-insulated conductors connecting the reed switch to a monitoring system outside the containment vessel. Special materials and special sealing techniques prevent failure of components and allow the float level switch to be connected to a monitoring system outside the containment vessel. 1 figures.

Powell, J.G.

1993-11-16T23:59:59.000Z

222

High-speed, sub-pull-in voltage MEMS switching.  

SciTech Connect (OSTI)

We have proposed and demonstrated MEMS switching devices that take advantage of the dynamic behavior of the MEMS devices to provide lower voltage actuation and higher switching speeds. We have explored the theory behind these switching techniques and have demonstrated these techniques in a range of devices including MEMS micromirror devices and in-plane parallel plate MEMS switches. In both devices we have demonstrated switching speeds under one microsecond which has essentially been a firm limit in MEMS switching. We also developed low-loss silicon waveguide technology and the ability to incorporate high-permittivity dielectric materials with MEMS. The successful development of these technologies have generated a number of new projects and have increased both the MEMS switching and optics capabilities of Sandia National Laboratories.

Spahn, Olga Blum; Brewer, Steven; Olsson, Roy H.; Bogart, Gregory R.; Luck, David L.; Watts, Michael R.; Shaw, Michael J.; Nielson, Gregory N.; Resnick, Paul James; Tigges, Christopher P.; Grossetete, Grant David

2008-01-01T23:59:59.000Z

223

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 5, NO. 2, MARCH/APRIL 1999 261 The AMOEBA Switch: An Optoelectronic Switch  

E-Print Network [OSTI]

The AMOEBA Switch: An Optoelectronic Switch for Multiprocessor Networking Using Dense-WDM Ashok V- cessor optoelectronic bit-sliced arrayed (AMOEBA) crossbar switch. The AMOEBA switch addresses directly onto silicon VLSI circuits. Optoelectronic-VLSI technology is used to integrate the switch fabric

Ford, Joseph E.

224

Flexoelectric switching in cholesteric blue phases  

E-Print Network [OSTI]

We present computer simulations of the response of a flexoelectric blue phase network, either in bulk or under confinement, to an applied field. We find a transition in the bulk between the blue phase I disclination network and a parallel array of disclinations along the direction of the applied field. Upon switching off the field, the system is unable to reconstruct the original blue phase but gets stuck in a metastable phase. Blue phase II is comparatively much less affected by the field. In confined samples, the anchoring at the walls and the geometry of the device lead to the stabilisation of further structures, including field-aligned disclination loops, splayed nematic patterns, and yet more metastable states. Our results are relevant to the understanding of the switching dynamics for a class of new, "superstable", blue phases which are composed of bimesogenic liquid crystals, as these materials combine anomalously large flexoelectric coefficients, and low or near-zero dielectric anisotropy.

A. Tiribocchi; M. E. Cates; G. Gonnella; D. Marenduzzo; E. Orlandini

2013-03-25T23:59:59.000Z

225

Advanced Source/Drain and Contact Design for Nanoscale CMOS  

E-Print Network [OSTI]

Barrier Modeling of Metal and Silicide Contacts,” IEEE Elec.Redistributions in Metal and Silicide Contacts,” IEEE Trans.Redistributions in Metal and Silicide Contacts,” IEEE Trans.

Vega, Reinaldo

2010-01-01T23:59:59.000Z

226

Contact DMSE | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial Validation andPWRContaCt TheContact

227

Contact Information | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial Validation andPWRContaCtContact

228

Contact Information | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContact Information Human

229

Contact Us | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)Don HillebrandContact Us

230

Contact Us | DOE Data Explorer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)Don HillebrandContact

231

Contact Us | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs Contact Us For

232

Contact Us | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs Contact Us

233

Contact Us | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs Contact

234

Contact Us | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUsContact Us

235

Contacts | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov

236

Contact EM | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAbout Us » Contact

237

Contact Us | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAbout Us »Contact Us

238

Contact Us | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAbout Us »Contact

239

Contact Us | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAbout UsContact Us

240

Contact Us | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAbout UsContact UsUs

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Contact Us | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAbout UsContact

242

Contact Us | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAboutUs » Contact Us

243

Contact Us | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChief MedicalDepartmentWorking withAboutUs » Contact

244

contact | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean EnergyContact NETL Technology

245

contact | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean EnergyContact NETL TechnologyOn-Site

246

contacts | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean EnergyContact NETL

247

contacts | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean EnergyContact NETLcontacts

248

EMSL Integration 2015: Contacts | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironment > Voluntary ReportingAbout Us Doc.prepared2Contacts

249

Sandia National Laboratories: PV Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong RangePILSResourcesPV Contacts PV

250

Media Contacts | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fund LasDubey MathematicaMeasuring andSecurity Contact:

251

Contact Information | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 Building 9201-1 wasFAboutContact

252

Contact Information | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 Building 9201-1 wasFAboutContact

253

Contact Information | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 Building 9201-1 wasFAboutContact

254

Contact Us | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 BuildingContact UsNNSAContact Us

255

University of Delaware | Contact CCEI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEIResearch Thrust PyrolysisContact

256

Gas mixture for diffuse-discharge switch  

DOE Patents [OSTI]

Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF/sub 4/, C/sub 2/F/sub 6/, C/sub 3/F/sub 8/, n-C/sub 4/F/sub 10/, WF/sub 6/, (CF/sub 3/)/sub 2/S and (CF/sub 3/)/sub 2/O.

Christophorou, L.G.; Carter, J.G.; Hunter, S.R.

1982-08-31T23:59:59.000Z

257

Multiple acousto-optic q-switch  

DOE Patents [OSTI]

An improved dynamic moire interferometer comprised of a lasing medium providing a plurality of beams of coherent light, a multiple q-switch producing multiple trains of 100,000 or more pulses per second, a combining means collimating multiple trains of pulses into substantially a single train and directing beams to specimen gratings affixed to a test material, and a controller, triggering and sequencing the emission of the pulses with the occurrence and recording of a dynamic loading event.

Deason, Vance A. (Idaho Falls, ID)

1993-01-01T23:59:59.000Z

259

Rolling Contact Fatigue of Ceramics  

SciTech Connect (OSTI)

High hardness, low coefficient of thermal expansion and high temperature capability are properties also suited to rolling element materials. Silicon nitride (Si{sub 3}N{sub 4}) has been found to have a good combination of properties suitable for these applications. However, much is still not known about rolling contact fatigue (RCF) behavior, which is fundamental information to assess the lifetime of the material. Additionally, there are several test techniques that are employed internationally whose measured RCF performances are often irreconcilable. Due to the lack of such information, some concern for the reliability of ceramic bearings still remains. This report surveys a variety of topics pertaining to RCF. Surface defects (cracks) in Si{sub 3}N{sub 4} and their propagation during RCF are discussed. Five methods to measure RCF are then briefly overviewed. Spalling, delamination, and rolling contact wear are discussed. Lastly, methods to destructively (e.g., C-sphere flexure strength testing) and non-destructively identify potential RCF-limiting flaws in Si{sub 3}N{sub 4} balls are described.

Wereszczak, Andrew A [ORNL; Wang, W. [Bournemouth University, Bournemouth, United Kingdom; Wang, Y. [Bournemouth University, Bournemouth, United Kingdom; Hadfield, M. [Bournemouth University, Bournemouth, United Kingdom; Kanematsu, W. [National Institute of Advanced Industrial Science and Technology, Japan; Kirkland, Timothy Philip [ORNL; Jadaan, Osama M. [University of Wisconsin, Platteville

2006-09-01T23:59:59.000Z

260

Switch Switch  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon...

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Switch Switch  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline GalliumSuppressionSustainable SuccessSustainableL L 2

262

Model-based statistical estimation of Sandia RF ohmic switch dynamic operation form stroboscopic, x-ray imaging.  

SciTech Connect (OSTI)

We define a new diagnostic method where computationally-intensive numerical solutions are used as an integral part of making difficult, non-contact, nanometer-scale measurements. The limited scope of this report comprises most of a due diligence investigation into implementing the new diagnostic for measuring dynamic operation of Sandia's RF Ohmic Switch. Our results are all positive, providing insight into how this switch deforms during normal operation. Future work should contribute important measurements on a variety of operating MEMS devices, with insights that are complimentary to those from measurements made using interferometry and laser Doppler methods. More generally, the work opens up a broad front of possibility where exploiting massive high-performance computers enable new measurements.

Diegert, Carl F.

2006-12-01T23:59:59.000Z

263

Fuel Switching Strategies for the 1990s  

E-Print Network [OSTI]

, petroleum coke, waste hydrocarbons (such as recovered from lubricants), biomass, and in the near future, methanol and other oxygenates or alcohols. Coal may also conceivably be a long-term sWitching candidate when utilized in a number of advanced open... under mos t conditions, in a manner that generates less NO x than heavier fuels such as coal, coke, and residual oil. Achieving NO x reductions with the latter is often a matter of capital investments and operating costs in either combustion...

Cascone, R.

264

Q switching by self-focusing  

SciTech Connect (OSTI)

A novel passive technique for obtaining short-laser-pulse emission is presented. A cell with a high-second-order refractive-index liquid is included in an unstable laser cavity. The external self-focusing introduced by the cell at higher optical intensities reduces the diffraction losses, producing modulation of the gain and Q switching of the cavity. Compared with saturable absorbers, this method provides better mode quality, avoids filamentary emission, and is not restricted in wavelength. Experimental results are presented that are in good agreement with the numerical model developed.

Marconi, M.C.; Martinez, O.E.; Diodati, F.P.

1985-08-01T23:59:59.000Z

265

The World Behind Your Light Switch (1966)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceThe publication of theWork

266

Flipping the switch | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" | NationalFlipping the switch To

267

BISON Contact Improvements CASL FY14 Report  

SciTech Connect (OSTI)

The BISON code is the foundation for multiple fuel performance modeling efforts, and is cur- rently under heavy development. For a variety of fuel forms, the effects of heat conduction across a gap and mechanical contact between components of a fuel system are very significant. It is thus critical that BISON have robust capabilities for enforcement of thermal and mechanical contact. BISON’s solver robustness has generally been quite good before mechanical contact between the fuel and cladding occurs, but there have been significant challenges obtaining converged so- lutions once that contact occurs and the solver begins to enforce mechanical contact constraints. During the current year, significant development effort has been focused on the enforcement of mechanical contact to provide improved solution robustness. In addition to this work to improve mechanical contact robustness, an investigation into ques- tionable results attributable to thermal contact has been performed. This investigation found that the order of integration typically used on the surfaces involved in thermal contact was not suffi- ciently high. To address this problem, a new option was provided to permit the use of a different integration order for surfaces, and new usage recommendations were provided.

B. W. Spencer; J. D. Hales; D. R. Gaston; D. A. Karpeev; R. L. Williamson; S. R. Novascone; D. M. Perez; R. J. Gardner; K. A. Gamble

2014-09-01T23:59:59.000Z

268

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

Not Available

2012-10-01T23:59:59.000Z

269

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

Not Available

2013-01-01T23:59:59.000Z

270

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet contains contact information for program staff and coalition coordinators for the U.S. Department of Energy's Clean Cities program.

Not Available

2012-09-01T23:59:59.000Z

271

Contact Form - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Form by Diane Johnson Directives are the Department of Energy's Primary means of establishing policies, requirements, responsibilities, and procedures for Departmental...

272

Organic solid state optical switches and method for producing organic solid state optical switches  

DOE Patents [OSTI]

This invention consists of a light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, and a method for making said compound.

Wasielewski, M.R.; Gaines, G.L.; Niemczyk, M.P.; Johnson, D.G.; Gosztola, D.J.; O`Neil, M.P.

1993-01-01T23:59:59.000Z

273

Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch  

SciTech Connect (OSTI)

Properties of ultrafast switching in a bulk gallium arsenide (GaAs) avalanche semiconductor switch based on semi-insulating wafer, triggered by an optical pulse, were analyzed using physics-based numerical simulations. It has been demonstrated that when a voltage with amplitude of 5.2?kV is applied, after an exciting optical pulse with energy of 1??J arrival, the structure with thickness of 650??m reaches a high conductivity state within 110 ps. Carriers are created due to photons absorption, and electrons and holes drift to anode and cathode terminals, respectively. Static ionizing domains appear both at anode and cathode terminals, and create impact-generated carriers which contribute to the formation of electron-hole plasma along entire channel. When the electric field in plasma region increases above the critical value (?4?kV/cm) at which the electrons drift velocity peaks, a domain comes into being. An increase in carrier concentration due to avalanche multiplication in the domains reduces the domain width and results in the formation of an additional domain as soon as the field outside the domains increases above ?4?kV/cm. The formation and evolution of multiple powerfully avalanching domains observed in the simulations are the physical reasons of ultrafast switching. The switch exhibits delayed breakdown with the characteristics affected by biased electric field, current density, and optical pulse energy. The dependence of threshold energy of the exciting optical pulse on the biased electric field is discussed.

Hu, Long, E-mail: hulong-1226@126.com [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049 (China); Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Yuan, Xuelin [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024 (China)

2014-03-07T23:59:59.000Z

274

A New Class of Switched Reluctance Motors without Permanent Magnets...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A New Class of Switched Reluctance Motors without Permanent Magnets A Segmented Drive Inverter Topology with a Small DC Bus Capacitor A Segmented Drive Inverter Topology with a...

275

Multi-gap high impedance plasma opening switch  

DOE Patents [OSTI]

A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode is disclosed. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources. 12 figs.

Mason, R.J.

1996-10-22T23:59:59.000Z

276

Multi-gap high impedance plasma opening switch  

DOE Patents [OSTI]

A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources.

Mason, Rodney J. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

277

Get Current: Switch on Clean Energy Coloring Book | Department...  

Broader source: Energy.gov (indexed) [DOE]

Coloring book of energy efficiency and renewable energy technologies for kids. coloringbook2010.pdf More Documents & Publications Get Current: Switch on Clean Energy Coloring Book...

278

Electrocaloric devices based on thini-film heat switches  

SciTech Connect (OSTI)

We describe a new approach to refrigeration and electrical generation that exploits the attractive properties of thin films of electrocaloric materials. Layers of electrocaloric material coupled with thin-film heat switches can work as either refrigerators or electrical generators, depending on the phasing of the applied voltages and heat switching. With heat switches based on thin layers of liquid crystals, the efficiency of these thin-film heat engines can be at least as high as that of current thermoelectric devices. Advanced heat switches would enable thin-film heat engines to outperform conventional vaporcompression devices.

Epstein, Richard I [Los Alamos National Laboratory; Malloy, Kevin J [UNM

2009-01-01T23:59:59.000Z

279

Modeling Combustion Control for High Power Diesel Mode Switching  

Broader source: Energy.gov (indexed) [DOE]

and Emissions Research Conference 2010 Modeling Combustion Control for High Power Diesel Mode Switching P-20 Motivation * High power LTC-diesel mode operation * Transient...

280

Probabilistic Bisimulations of Switching and Resetting Diffusions Alessandro Abate  

E-Print Network [OSTI]

Probabilistic Bisimulations of Switching and Resetting Diffusions Alessandro Abate Delft Center for Systems and Control, TU Delft, The Netherlands a.abate@tudelft.nl Abstract-- This contribution presents

Abate, Alessandro

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Single-crystalline monolayer and multilayer graphene nano switches  

SciTech Connect (OSTI)

Growth of monolayer, bi-layer, and tri-layer single-crystalline graphene (SCG) using chemical vapor deposition method is reported. SCG's mechanical properties and single-crystalline nature were characterized and verified by atomic force microscope and Raman spectroscopy. Electro-mechanical switches based on mono- and bi-layer SCG were fabricated, and the superb properties of SCG enable the switches to operate at pull-in voltage as low as 1?V, and high switching speed about 100?ns. These devices exhibit lifetime without a breakdown of over 5000 cycles, far more durable than any other graphene nanoelectromechanical system switches reported.

Li, Peng; Cui, Tianhong, E-mail: tcui@me.umn.edu [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Jing, Gaoshan [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China); Zhang, Bo; Sando, Shota [Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

2014-03-17T23:59:59.000Z

282

Microsoft Word - CX-Hat_Rock_Switch_14June2013  

Broader source: Energy.gov (indexed) [DOE]

7, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Glenn Russell Project Manager -TPCV-TPP-4 Proposed Action: Hat Rock Switching Station Replacement...

283

A New Class of Switched Reluctance Motors without Permanent Magnets  

Broader source: Energy.gov (indexed) [DOE]

switched reluctance motor benefits: - Low material and fabrication cost - No permanent magnet material * Back-emf and demagnetization is not an issue * Permits operation...

284

Power Control for Crossbar-based Input-Queued Switches  

E-Print Network [OSTI]

, if f is the maximum digital signal frequency, the power consumption of a CMOS device is proportional number of data simultaneously flowing across the switching fabric. Thermal power dissipation is becoming1 Power Control for Crossbar-based Input-Queued Switches Andrea Bianco, Paolo Giaccone, Guido

285

Bandwidth Efficient All-to-All Broadcast on Switched Clusters  

E-Print Network [OSTI]

Bandwidth Efficient All-to-All Broadcast on Switched Clusters Ahmad Faraj Pitch Patarasuk Xin Yuan}@cs.fsu.edu Abstract We develop an all-to-all broadcast scheme that achieves maximum bandwidth efficiency for clusters all- to-all broadcast as efficiently as a single switch connect- ing all machines when the message

Yuan, Xin

286

Interactive Visibility Culling in Complex Environments using Occlusion-Switches  

E-Print Network [OSTI]

Categories and Subject Descriptors: I.3.5 [Com- puter Graphics]: Computational Geometry and Object ModelingInteractive Visibility Culling in Complex Environments using Occlusion-Switches Naga K. Govindaraju culling in complex 3D environments. An occlusion- switch consists of two GPUs (graphics processing units

North Carolina at Chapel Hill, University of

287

Valuation of Energy Storage: An Optimal Switching Rene Carmona  

E-Print Network [OSTI]

Valuation of Energy Storage: An Optimal Switching Approach Ren´e Carmona Department of Operations://www.pstat.ucsb.edu/faculty/ludkovski We consider the valuation of energy storage facilities within the framework of stochastic control;Carmona and Ludkovski: Optimal Switching for Energy Storage 2 in the commodity financial markets. Storage

Carmona, Rene

288

A distributed scheduling algorithm for an optical switching fabric  

E-Print Network [OSTI]

, energy consumption and dissipation issues. Introducing optical technologies to implement switching different input/output ports. Electronic switching fabrics have scaled remarkably and can still keep up, they have almost reached their limits. Indeed, to support an increasing number of ports and higher data

289

Multistage-Based Switching Fabrics for Scalable Routers  

E-Print Network [OSTI]

with distributed packet routing to achieve high scalability and low costs. Our fabrics are based on a multistage patterns are evaluated and discussed as well. Being scalable and of low costs, the proposed switching their arrival LCs toward their destined LCs. Switching fabrics naturally affect overall router perfor- mance

Tzeng, Nian-Feng

290

Pulse and Hold Switching Current Readout of Superconducting Quantum Circuits  

E-Print Network [OSTI]

;#12;Abstract Josephson junction qubits are promising candidates for a scalable quantum processor. Such qubits on the switching of a Josephson junction from the zero voltage state to a finite voltage state. The Josephson a switching current detector by analyzing the phase space of a Josephson junction circuit with frequency

Haviland, David

291

Hybrid Dynamical Systems, or HDS: The Ultimate Switching Experience  

E-Print Network [OSTI]

Hybrid Dynamical Systems, or HDS: The Ultimate Switching Experience Michael S. Branicky Laboratory concentrated on formalizing the notion of a hybrid system as switching among an indexed collection of dynamical give a quick overview of the area of hybrid systems. I also briefly review the formal definition

Branicky, Michael S.

292

Comparative Study of Switched Reluctance Motors Performances for Two Current  

E-Print Network [OSTI]

of machines as high torque ripple, high acoustic noise and vibration limit their industrial applications [1Comparative Study of Switched Reluctance Motors Performances for Two Current Distributions a 3-phase, 6-slot, and 4-pole Mutually Coupled Switched Reluctance Motor (MCSRM 6/4) with new current

Paris-Sud XI, Université de

293

A Software Engineering Framework for Switched Fuzzy Systems  

E-Print Network [OSTI]

of switched fuzzy systems, in which the discrete characteristics of the mode-switching logic are implemented the intuitive nature of fuzzy logic. Our approach is backed by a Java package that provides an initial that this approach is useful as a tool for the natural development of control systems. Specifically, fuzzy set theory

Weiss, Gera

294

Semiconductor switch geometry with electric field shaping  

DOE Patents [OSTI]

An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium.

Booth, Rex (Livermore, CA); Pocha, Michael D. (Livermore, CA)

1994-01-01T23:59:59.000Z

295

Semiconductor switch geometry with electric field shaping  

DOE Patents [OSTI]

An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium. 10 figs.

Booth, R.; Pocha, M.D.

1994-08-23T23:59:59.000Z

296

Eddy-current-damped microelectromechanical switch  

DOE Patents [OSTI]

A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

Christenson, Todd R. (Albuquerque, NM); Polosky, Marc A. (Tijeras, NM)

2007-10-30T23:59:59.000Z

297

Eddy-current-damped microelectromechanical switch  

DOE Patents [OSTI]

A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).

Christenson, Todd R. (Albuquerque, NM); Polosky, Marc A. (Tijeras, NM)

2009-12-15T23:59:59.000Z

298

High voltage photo switch package module  

DOE Patents [OSTI]

A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.

Sullivan, James S; Sanders, David M; Hawkins, Steven A; Sampayan, Stephen E

2014-02-18T23:59:59.000Z

299

Contact SSRL | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact InContactContact Us

300

Contact Us | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - WorkingContact Us Contact

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Contact us | Energy Frontier Research Centers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - WorkingContact UsContact us

302

Contact | MIT-Harvard Center for Excitonics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - WorkingContact UsContact

303

Contact Us | Linac Coherent Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 BuildingContact Us ContactContact

304

E-Print Network 3.0 - automotive switch-mode audio Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

advantages and problems when implementing direct energy conversion switching-mode audio power... on a direct-conversion switching-mode audio power ampli- ... Source: Ris National...

305

E-Print Network 3.0 - activation switch macs-index Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical Summary: quadratically with switching node degree when active optoelectronic devices are used as switching elements 2... is presented. Because of the high cost of...

306

E-Print Network 3.0 - ab switched current Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering 16 Switch Detection in Genetic Regulatory Riccardo Porreca1 Summary: CRP, Fis, GyrAB, and stable RNAs. Vertical lines denote detected switches, while crosses...

307

A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics  

E-Print Network [OSTI]

A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric; accepted 30 January 2002 Abstract A phenomenological constitutive law for ferroelectric switching due

308

E-Print Network 3.0 - assisted auxiliary switch Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

quasiresonant tank soft- switching inverter," in Proc. IEEE Ind... IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 19, NO. 2, MARCH 2004 363 A Passive Soft-Switching... for...

309

E-Print Network 3.0 - antihypertrophic molecular switch Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Steps... identifies and distinguishes between two distinct molecular mechanisms for generating stochastic switches... . In one class of switches, the stochasticity of a...

310

E-Print Network 3.0 - a-site molecular switches Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Steps... identifies and distinguishes between two distinct molecular mechanisms for generating stochastic switches... . In one class of switches, the stochasticity of a...

311

2005, in Etudes croles nXXVIII n1,Contacts de croles, croles en contacts, L'Harmattan, 23-57. CONTACTS DE CREOLES A MANA (GUYANE FRANAISE)  

E-Print Network [OSTI]

2005, in Etudes créoles n°XXVIII n°1,Contacts de créoles, créoles en contacts, L'Harmattan, 23°1,Contacts de créoles, créoles en contacts, L'Harmattan, 23-57. 2 de langues, notamment à la gestion

Paris-Sud XI, Université de

312

Contact Information College of Business and Economics  

E-Print Network [OSTI]

Contact Information College of Business and Economics Center for Business Research and Economic Research and Economic Development Center What's your challenge? We help businesses and organizations can lie in Accountancy, Economics, Information Technology and Supply Chain Management, International

Barrash, Warren

313

Front contact solar cell with formed emitter  

SciTech Connect (OSTI)

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John

2014-11-04T23:59:59.000Z

314

Front contact solar cell with formed emitter  

DOE Patents [OSTI]

A bipolar solar cell includes a backside junction formed by an N-type silicon substrate and a P-type polysilicon emitter formed on the backside of the solar cell. An antireflection layer may be formed on a textured front surface of the silicon substrate. A negative polarity metal contact on the front side of the solar cell makes an electrical connection to the substrate, while a positive polarity metal contact on the backside of the solar cell makes an electrical connection to the polysilicon emitter. An external electrical circuit may be connected to the negative and positive metal contacts to be powered by the solar cell. The positive polarity metal contact may form an infrared reflecting layer with an underlying dielectric layer for increased solar radiation collection.

Cousins, Peter John (Menlo Park, CA)

2012-07-17T23:59:59.000Z

315

Contact fatigue : life prediction and palliatives  

E-Print Network [OSTI]

Fretting fatigue is defined as damage resulting from small magnitude (0.5-50 microns) displacement between contacting bodies where at least one of the bodies has an applied bulk stress. The applicability and limits of a ...

Conner, Brett P. (Brett Page), 1975-

2002-01-01T23:59:59.000Z

316

DOE Headquarters Contact Information: Employee Concerns Program...  

Broader source: Energy.gov (indexed) [DOE]

Office ECP Contact Information: Albuquerque Complex (NNSA) Eva Glow Brownlow Michelle Rodriguez de Varela Hotline: 800-688-5713 Fax: 505-845-4020 E-mail: ecp@nnsa.doe.gov...

317

NUMERICAL MODELING OF CATHODE CONTACT MATERIAL DENSIFICATION  

SciTech Connect (OSTI)

Numerical modeling was used to simulate the constrained sintering process of the cathode contact layer during assembly of solid oxide fuel cells (SOFCs). A finite element model based on the continuum theory for sintering of porous bodies was developed and used to investigate candidate low-temperature cathode contact materials. Constitutive parameters for various contact materials under investigation were estimated from dilatometry screening tests, and the influence of processing time, processing temperature, initial grain size, and applied compressive stress on the free sintering response was predicted for selected candidate materials. The densification behavior and generated stresses within a 5-cell planar SOFC stack during sintering, high temperature operation, and room temperature shutdown were predicted. Insufficient constrained densification was observed in the stack at the proposed heat treatment, but beneficial effects of reduced grain size, compressive stack preload, and reduced thermal expansion coefficient on the contact layer densification and stresses were observed.

Koeppel, Brian J.; Liu, Wenning N.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

2011-11-01T23:59:59.000Z

318

Clean Cities Program Contacts (Fact Sheet)  

SciTech Connect (OSTI)

Contact information for the U.S. Department of Energy's Clean Cities program staff and for the coordinators of the nearly 100 local Clean Cities coalitions across the country.

Not Available

2013-12-01T23:59:59.000Z

319

The contact angle in inviscid fluid mechanics  

E-Print Network [OSTI]

We show that in general, the specification of a contact angle condition at the contact line in inviscid fluid motions is incompatible with the classical field equations and boundary conditions generally applicable to them. The limited conditions under which such a specification is permissible are derived; however, these include cases where the static meniscus is not flat. In view of this situation, the status of the many `solutions' in the literature which prescribe a contact angle in potential flows comes into question. We suggest that these solutions which attempt to incorporate a phenomenological, but incompatible, condition are in some, imprecise sense `weak-type solutions'; they satisfy or are likely to satisfy, at least in the limit, the governing equations and boundary conditions everywhere except in the neighbourhood of the contact line. We discuss the implications of the result for the analysis of inviscid flows with free surfaces.

P N Shankar; R Kidambi

2005-08-17T23:59:59.000Z

320

Louise Guy, Administrative Contact College of Education  

E-Print Network [OSTI]

provide leadership, scholarship and training across the following programs: · Educational Specialist/Severe Disabilities, Orientation & Mobility, and Vocational Special Education). · Certificate programs offeredLouise Guy, Administrative Contact College of Education Department of Special Education 1600

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Cooperativity and Contact Order in Protein Folding  

E-Print Network [OSTI]

The effects of cooperativity are studied within Go-Lennard-Jones models of proteins by making the contact interactions dependent on the proximity to the native conformation. The kinetic universality classes are found to remain the same as in the absence of cooperativity. For a fixed native geometry, small changes in the effective contact map may affect the folding times in a chance way and to the extent that is comparable to the shift in the folding times due to cooperativity. The contact order controlls folding scenarios: the average times necessary to bring pairs of amino acids into their near native separations depend on the sequential distances within the pairs. This dependence is largely monotonic, regardless of the cooperativity, and the dominant trend could be described by a single parameter like the average contact order. However, it is the deviations from the trend which are usually found to set the net folding times.

Marek Cieplak

2004-01-11T23:59:59.000Z

322

Colorado State University Extension Contact: Joanne Littlefield  

E-Print Network [OSTI]

Colorado State University Extension Contact: Joanne Littlefield Director, Outreach and Engagement weather situation in Colorado is requiring often quick property and safety decisions; recovery efforts and rapidly shifting conditions along Colorado's Front Range. From food safety issues related to crops

Stephens, Graeme L.

323

Elastic–Plastic Spherical Contact Modeling Including Roughness Effects  

E-Print Network [OSTI]

A multilevel model for elastic–plastic contact between ajunction growth of an elastic–plastic spherical contact. J.nite element based elastic–plastic model for the contact of

Li, L.; Etsion, I.; Talke, F. E.

2010-01-01T23:59:59.000Z

324

JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 17, NO. 6, DECEMBER 2008 1439 Schottky Barrier Contact-Based RF MEMS Switch  

E-Print Network [OSTI]

is with Raytheon Company, Dallas, TX 75243 USA, and also with The University of Texas at Dallas, Richardson, TX 75080 USA (e-mail: b-pillans@raytheon.com). F. Morris and G. Frazier are with Raytheon Company, Dallas, TX 75243 USA. P. Chahal was with Raytheon Company, Dallas, TX 75243 USA. He is now with Abbott

Lee, Jeong-Bong

325

Exploring Korean Americans’ Interracial Contact Experiences During Recreational Sport Activities  

E-Print Network [OSTI]

This thesis follows the style of Journal of Leisure Research. 2 of friendship, as an essential condition for successful intergroup contact (Pettigrew, 1997; Pettigrew & Tropp, 2006). Since the contact hypothesis was first introduced, intergroup contact... conditions for successful intergroup contact. Their meta-analysis of 713 independent samples from 515 intergroup contact studies revealed four important findings First, 17 intergroup contact typically reduces intergroup prejudice. Second, the positive...

Lee, Kang Jae

2010-07-14T23:59:59.000Z

326

Photo-induced micro-mechanical optical switch  

DOE Patents [OSTI]

An optical switch is formed by introducing light lengthwise to a microcantilever waveguide directed toward a second waveguide. The microcantilever is caused to bend by light emitted from a laser diode orthogonal to the microcantilever and at an energy above the band gap, which induces stress as a result of the generation of free carriers. The bending of the waveguide directs the carrier frequency light to a second receptor waveguide or to a non-responsive surface. The switch may be combined in an array to perform multiple switching functions rapidly and at low energy losses.

Rajic, Slobodan (Knoxville, TN); Datskos, Panagiotis George (Knoxville, TN); Egert, Charles M. (late of Oak Ridge, TN)

2002-01-01T23:59:59.000Z

327

EERE Information Center Contact, PIA, The Office of Energy Efficiency...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Information Center Contact, PIA, The Office of Energy Efficiency and Renewable Energy (EERE) EERE Information Center Contact, PIA, The Office of Energy Efficiency and Renewable...

328

Cell Phone Allergic Contact Dermatitis: Case Report and Review  

E-Print Network [OSTI]

testing in a sample of cell phones in Denmark. ContactCell phone allergic contact dermatitis: Case report andcombination of increased cell phone ownership and unlimited

Rajpara, Anand; Feldman, Steven R

2010-01-01T23:59:59.000Z

329

Bayesian Nonparametric Methods for Learning Markov Switching Processes  

E-Print Network [OSTI]

In this article, we explored a Bayesian nonparametric approach to learning Markov switching processes. This framework requires one to make fewer assumptions about the underlying dynamics, and thereby allows the data to ...

Fox, Emily Beth

330

Development and application of an advanced switched reluctance generator drive  

E-Print Network [OSTI]

This dissertation contains the results of research conducted on the design and control characterization of a Switched Reluctance Generator (SRG) for maximum output power. The SRG is an attractive solution to the increasing worldwide demand...

Asadi, Peyman

2009-05-15T23:59:59.000Z

331

Throughput-cost analysis of optical flow switching  

E-Print Network [OSTI]

In this paper, we employ a cost model embodying major sources of capital expenditure (CapEx) to compare the throughput-cost tradeoff offered by optical flow switching to that of more traditional optical network architectures.

Chan, Vincent W. S.

332

Integrated optical switching using titanium nitride micro electromechanical systems  

E-Print Network [OSTI]

This thesis reports an integrated optical wavelength specific switching device for applications in optical integrated circuits (OICs) based on micro electromechanical systems (MEMS). The device consists of a ring resonator ...

Takahashi, Satoshi, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

333

AlGaN/GaN-based power semiconductor switches  

E-Print Network [OSTI]

AlGaN/GaN-based high-electron-mobility transistors (HEMTs) have great potential for their use as high efficiency and high speed power semiconductor switches, thanks to their high breakdown electric field, mobility and ...

Lu, Bin, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

334

arterial switch operation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

interfaces with the ac grid using a pulsewidth-modulation (PWM) inverter. In 3, a variable-speed wind turbine for a Switched Reluctance Wind Generator, Based on Current...

335

Data Parallel SwitchLevel Simulation \\Lambda Randal E. Bryant  

E-Print Network [OSTI]

Data Parallel Switch­Level Simulation \\Lambda Randal E. Bryant Computer Science Department Carnegie the bit­level paral­ lelism inherent in conventional machine operations. Bryant---Data Parallel Simulation

Bryant, Randal E.

336

Combining Genetic Oscillators and Switches using Evolutionary Algorithms  

E-Print Network [OSTI]

motifs, one toggle switch and one self- sustained oscillator using an evolutionary algorithm, which can]. Of particular interest in biology are those network motifs that produce self-sustained oscillations and bistable

Jin, Yaochu

337

Coordinated Variable Structure Switching Attacks for Smart Grid  

E-Print Network [OSTI]

attacks for smart grid systems has the potential to disrupt large-scale power system operation within a short interval of time. Through successful cyber intrusion, an opponent can remotely apply a state- dependent coordinated switching sequence on one...

Liu, Shan

2013-02-11T23:59:59.000Z

338

Using Multiprotocol Label Switching in Virtual Private Networks  

E-Print Network [OSTI]

This thesis presents the design of Multiprotocol Label Switching Virtual Private Networks(MPLS VPN). MPLS VPNs are true peer models, which perform traffic separation at Layer 3, through the implementation of separate IP VPN forwarding tables. MPLS...

Doddapaneni, Krishnamohan

2001-01-01T23:59:59.000Z

339

RF-MEMS Switched Varactors for Medium Power Applications  

E-Print Network [OSTI]

In RF (Radio Frequency) domain, one of the limitations of using MEMS (Micro Electromechanical Systems) switching devices for medium power applications is RF power. Failure phenomena appear even for 500 mW. A design of MEMS switched capacitors with an enhanced topology is presented in this paper to prevent it. This kind of device and its promising performances will serve to fabricate a MEMS based phase shifter able to work under several watts.

Maury, F; Crunteanu, A; Conseil, F; Blondy, P

2008-01-01T23:59:59.000Z

340

Electronically commutated serial-parallel switching for motor windings  

DOE Patents [OSTI]

A method and a circuit for controlling an ac machine comprises controlling a full bridge network of commutation switches which are connected between a multiphase voltage source and the phase windings to switch the phase windings between a parallel connection and a series connection while providing commutation discharge paths for electrical current resulting from inductance in the phase windings. This provides extra torque for starting a vehicle from lower battery current.

Hsu, John S. (Oak Ridge, TN)

2012-03-27T23:59:59.000Z

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

All-optical switching in optically induced nonlinear waveguide couplers  

SciTech Connect (OSTI)

We experimentally demonstrate all-optical vortex switching in nonlinear coupled waveguide arrays optically induced in photorefractive media. Our technique is based on multiplexing of nondiffracting Bessel beams to induce various types of waveguide configurations. Using double- and quadruple-well potentials, we demonstrate precise control over the coupling strength between waveguides, the linear and nonlinear dynamics and symmetry-breaking bifurcations of guided light, and a power-controlled optical vortex switch.

Diebel, Falko, E-mail: falko.diebel@uni-muenster.de; Boguslawski, Martin; Rose, Patrick; Denz, Cornelia [Institut für Angewandte Physik and Center for Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, 48149 Münster (Germany); Leykam, Daniel; Desyatnikov, Anton S. [Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200 (Australia)

2014-06-30T23:59:59.000Z

342

Current rectification, switching, polarons, and defects in molecular electronic devices  

E-Print Network [OSTI]

Devices for nano- and molecular size electronics are currently a focus of research aimed at an efficient current rectification and switching. A few generic molecular scale devices are reviewed here on the basis of first-principles and model approaches. Current rectification by (ballistic) molecular quantum dots can produce the rectification ratio ~100. Current switching due to conformational changes in the molecules is slow, on the order of a few kHz. Fast switching (~1THz) may be achieved, at least in principle, in a degenerate molecular quantum dot with strong coupling of electrons with vibrational excitations. We show that the mean-field approach fails to properly describe intrinsic molecular switching and present an exact solution to the problem. Defects in molecular films result in spurious peaks in conductance, apparent negative differential resistance, and may also lead to unusual temperature and bias dependence of current. The observed switching in many cases is_extrinsic_, caused by changes in molecule-electrode geometry, molecule reconfiguration, metallic filament formation through, and/or changing amount of disorder in a molecular film. We give experimental examples of telegraph "switching" and "hot spot" formation in the molecular films.

A. M. Bratkovsky

2006-11-06T23:59:59.000Z

343

Spin-polarized currents in the tunnel contact of a normal conductor and a two-dimensional topological insulator  

SciTech Connect (OSTI)

The spin filtering of electrons tunneling from the edge states of a two-dimensional topological insulator into a normal conductor under a magnetic field (external or induced due to proximity to a magnetic insulator) is studied. Calculations are performed for a tunnel contact of finite length between the topological insulator and an electronic multimode quantum strip. It is shown that the flow of tunneling electrons is split in the strip, so that spin-polarized currents arise in its left and right branches. These currents can be effectively controlled by the contact voltage and the chemical potential of the system. The presence of a magnetic field, which splits the spin subbands of the electron spectrum in the strip, gives rise to switching of the spin current between the strip branches.

Sukhanov, A. A., E-mail: AASukhanov@yandex.ru; Sablikov, V. A. [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Fryazino branch) (Russian Federation)] [Russian Academy of Sciences, Kotel'nikov Institute of Radio Engineering and Electronics (Fryazino branch) (Russian Federation)

2013-11-15T23:59:59.000Z

344

In-situ observation of self-regulated switching behavior in WO{sub 3-x} based resistive switching devices  

SciTech Connect (OSTI)

The transmittance of tungsten oxides can be adjusted by oxygen vacancy (V{sub o}) concentration due to its electrochromic property. Here, we report an in-situ observation of resistive switching phenomenon in the oxygen-deficient WO{sub 3-x} planar devices. Besides directly identifying the formation/rupture of dark-colored conductive filaments in oxide layer, the stripe-like WO{sub 3-x} device demonstrated self-regulated switching behavior during the endurance testing, resulting in highly consistent switching parameters after a stabilizing process. For very high V{sub o}s mobility was demonstrated in the WO{sub 3-x} film by the pulse experiment, we suggested that the electric-field-induced homogeneous migration of V{sub o}s was the physical origin for such unique switching characteristics.

Hong, D. S.; Wang, W. X.; Chen, Y. S., E-mail: yschen@aphy.iphy.ac.cn; Sun, J. R.; Shen, B. G. [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academic of Sciences, Beijing 100190 (China)

2014-09-15T23:59:59.000Z

345

Efficient Switches for Solar Power Conversion: Four Quadrant GaN Switch Enabled Three Phase Grid-Tied Microinverters  

SciTech Connect (OSTI)

Solar ADEPT Project: Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home. Transphorm’s transistors will enable a single semiconductor device to switch electrical currents at high-voltage in both directions—making the inverter more compact and reliable. Transphorm is using Gallium Nitride (GaN) as a semiconductor material in its transistors instead of silicon, which is used in most conventional transistors, because GaN transistors have lower losses at higher voltages and switching frequencies.

None

2012-02-13T23:59:59.000Z

346

Electric Field and Humidity Trigger Contact Electrification  

E-Print Network [OSTI]

Here, we study the old problem of why identical insulators can charge one another on contact. We perform several experiments showing that, if driven by a preexisting electric field, charge is transferred between contacting insulators. This happens because the insulator surfaces adsorb small amounts of water from a humid atmosphere. We believe the electric field then separates positively from negatively charged ions prevailing within the water, which we believe to be hydronium and hydroxide ions, such that at the point of contact, positive ions of one insulator neutralize negative ions of the other one, charging both of them. This mechanism can explain for the first time the observation made four decades ago that wind-blown sand discharges in sparks if and only if a thunderstorm is nearby.

Zhang, Yanzhen; Liu, Yonghong; Wang, Xiaolong; Zhang, Rui; Shen, Yang; Ji, Renjie; Cai, Baoping

2015-01-01T23:59:59.000Z

347

Electric Field and Humidity Trigger Contact Electrification  

E-Print Network [OSTI]

Here, we study the old problem of why identical insulators can charge one another on contact. We perform several experiments showing that, if driven by a preexisting electric field, charge is transferred between contacting insulators. This happens because the insulator surfaces adsorb small amounts of water from a humid atmosphere. We believe the electric field then separates positively from negatively charged ions prevailing within the water, which we believe to be hydronium and hydroxide ions, such that at the point of contact, positive ions of one insulator neutralize negative ions of the other one, charging both of them. This mechanism can explain for the first time the observation made four decades ago that wind-blown sand discharges in sparks if and only if a thunderstorm is nearby.

Yanzhen Zhang; Thomas Pähtz; Yonghong Liu; Xiaolong Wang; Rui Zhang; Yang Shen; Renjie Ji; Baoping Cai

2015-01-14T23:59:59.000Z

348

Contacts for Integrating Renewable Energy into Federal Construction Projects  

Broader source: Energy.gov [DOE]

Contacts to learn more about integrating renewable energy technologies into Federal construction projects.

349

Ohmic contacts to n-GaSb  

E-Print Network [OSTI]

in the semiconductor is measured during the deposition of the metal contact. In using method 1, the I-V characteristics is plotted. The thermionic emission theory predicts the current-voltage characteristics of Schottky diodes as [13]: J(rhcrmionic) = A" T' exp... of different work functions. This situation is also true for metal contacts to n-GaSb. Polyakov et al. [14] examined the Schottky diodes of Al, Au, In, Pd, Ga, and Sb on Te doped n-GaSb. They used the C-V measurements methods. They reported that barrier...

Yang, Zhengchong

2012-06-07T23:59:59.000Z

350

Contact Us | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the GrandSr:s I1Us |Contact Us Contact

351

Contact Upper Great Plains Regional Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContact InformationContact

352

Contact Us | Photosynthetic Antenna Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs ContactLosContact

353

Contact Us | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUsContact UsContact

354

Contacts for Services | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnnProjectContacts for

355

Contact Information | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact InContact

356

Contact Us - Working With Us | NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working With Us Contact us

357

Contact Us | Center for Energy Efficient Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working With UsContact

358

Contact Us | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 BuildingContact UsNNSAContactContact

359

Contacts For "A" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA" Contacts For

360

Contacts For "B" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA" Contacts ForB"

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Contacts For "C" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA" Contacts

362

Contacts For "D" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA" ContactsD"

363

Contacts For "E" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA" ContactsD"E"

364

Contacts For "G" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G" Contacts For

365

Contacts For "H" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G" Contacts

366

Contacts For "I" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G" ContactsI"

367

Contacts For "K" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G"K" Contacts

368

Contacts For "S" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts ForS" Contacts For

369

Contacts For "T" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts ForS" Contacts

370

Contacts | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" ContactsContacts for

371

Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices  

SciTech Connect (OSTI)

We depart from first-principle simulations of electron transport along paths of oxygen vacancies in HfO{sub 2} to reformulate the Quantum Point Contact (QPC) model in terms of a bundle of such vacancy paths. By doing this, the number of model parameters is reduced and a much clearer link between the microscopic structure of the conductive filament (CF) and its electrical properties can be provided. The new multi-scale QPC model is applied to two different HfO{sub 2}-based devices operated in the unipolar and bipolar resistive switching (RS) modes. Extraction of the QPC model parameters from a statistically significant number of CFs allows revealing significant structural differences in the CF of these two types of devices and RS modes.

Lian, Xiaojuan, E-mail: xjlian2005@gmail.com; Cartoixŕ, Xavier; Miranda, Enrique; Suńé, Jordi [Departament d'Enginyeria Electrňnica, Universitat Autňnoma de Barcelona, 08193 Bellaterra (Spain); Perniola, Luca [CEA-LETI, MINATEC, Grenoble (France); Rurali, Riccardo [Institut de Cičncia de Materials de Barcelona (ICMAB-CSIC), Campus de Bellaterra, 08193 Bellaterra (Spain); Long, Shibing; Liu, Ming [Laboratory of Nanofabrication and Novel Device Integration, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)

2014-06-28T23:59:59.000Z

372

CONTACT INFORMATION The KAVLI NANOSCIENCE INSTITUTE  

E-Print Network [OSTI]

CONTACT INFORMATION The KAVLI NANOSCIENCE INSTITUTE California Institute of Technology 1200 E structures. The Holliston Parking Structure is nearest Steele Laboratory. rev052708 The KAVLI NANOSCIENCE to users from academia, government, and industry. The Kavli Nanoscience Institute has been founded through

373

Thermodynamics of nuclei in thermal contact  

E-Print Network [OSTI]

The behaviour of a di-nuclear system in the regime of strong pairing correlations is studied with the methods of statistical mechanics. It is shown that the thermal averaging is strong enough to assure the application of thermodynamical methods to the energy exchange between the two nuclei in contact. In particular, thermal averaging justifies the definition of a nuclear temperature.

Karl-Heinz Schmidt; Beatriz Jurado

2010-10-05T23:59:59.000Z

374

Thin Silicon MEMS Contact-Stress Sensor  

SciTech Connect (OSTI)

This work offers the first, thin, MEMS contact-stress (CS) sensor capable of accurate in situ measruement of time-varying, contact-stress between two solid interfaces (e.g. in vivo cartilage contact-stress and body armor dynamic loading). This CS sensor is a silicon-based device with a load sensitive diaphragm. The diaphragm is doped to create piezoresistors arranged in a full Wheatstone bridge. The sensor is similar in performance to established silicon pressure sensors, but it is reliably produced to a thickness of 65 {micro}m. Unlike commercial devices or other research efforts, this CS sensor, including packaging, is extremely thin (< 150 {micro}m fully packaged) so that it can be unobtrusively placed between contacting structures. It is built from elastic, well-characterized materials, providing accurate and high-speed (50+ kHz) measurements over a potential embedded lifetime of decades. This work explored sensor designs for an interface load range of 0-2 MPa; however, the CS sensor has a flexible design architecture to measure a wide variety of interface load ranges.

Kotovsky, J; Tooker, A; Horsley, D A

2009-12-07T23:59:59.000Z

375

For additional information, contact: Department of Ecology  

E-Print Network [OSTI]

For additional information, contact: Department of Ecology Montana State University 310 Lewis Hall P.O. Box 173460 Bozeman, MT 59717-3460 Tel: 406-994-4548 Fax: 406-994-3190 www.montana.edu/ecology/ ecology@montana.edu The Department of Ecology at Montana State University offers undergraduate majors

Maxwell, Bruce D.

376

subcollector Schottky collector contact & interconnect metals  

E-Print Network [OSTI]

base collector depletion layer subcollector ohmic metal (a) base collector depletion layer Schottky metal base emitter collector collector We emitter base emitter emitter We Wc Wc (b) Schottky collector contact & interconnect metals Emitter & collector Ohmics undoped collector depletion layer base N

Rodwell, Mark J. W.

377

Contact Anosov flows and the FBI transform  

E-Print Network [OSTI]

This paper is about spectral properties of transfer operators for contact Anosov flows. The main result gives the essential spectral radius of the transfer operators acting on the so-called anisotropic Sobolev space exactly in terms of dynamical exponents. Also we provide a simplified proof by using the FBI transform.

Tsujii, Masato

2010-01-01T23:59:59.000Z

378

Contact Details Journeying Beyond Breast Cancer  

E-Print Network [OSTI]

Home About Contact Details Facebook Search Journeying Beyond Breast Cancer making sense of the cancer experience Feeds: Posts Comments Cancer-fighting fountain pen May 20, 2009 by JBBC A research team be used both as a research tool in the development of next-generation cancer treatments

Espinosa, Horacio D.

379

Contact details: School of Architecture, BCU  

E-Print Network [OSTI]

With 90% of the UK population living in urban areas, improving urban sustainability has become a pressing Economic Fabric This work package investigated opportunities and barriers to achieving sustainable is to be sustainable in the widest sense. Contact details: Centre for Urban and Regional Studies, U0B Dr. Austin Barber

Birmingham, University of

380

For more information, contact University Parking  

E-Print Network [OSTI]

.275.4524 Have a Flat Tire? Car Won't Start? Need Directions? V.A.P. VEHICLE ASSISTANCE PROGRAM University Tire? Car Won't Start? Contact University Parking and Transportation's Vehicle Assistance Program (V-icer assistance during winter months ·Tire inflations Inclement Travel Information When inclement weather

Mahon, Bradford Z.

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ferroelectric opening switches for large-scale pulsed power drivers.  

SciTech Connect (OSTI)

Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

2009-11-01T23:59:59.000Z

382

Uniform Methods Project Contacts | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23,Diversity of SignalLabeffects»

383

Working with SRNL - Technology Transfer - Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1 Table 1.14WorkingPrimaryWaste

384

Lactation Room Locations Building Location Room Details Contact Name Contact Info Instructions  

E-Print Network [OSTI]

, hot water heater, educational info Natalie Blais narnold@pitt.edu Contact Natalie to receive and request a key to this locked room. Public Health A712 Crabtree Hall table, chairs, storage cabinet, fridge

Jiang, Huiqiang

385

Spark gap switch system with condensable dielectric gas  

DOE Patents [OSTI]

A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

Thayer, III, William J. (Kent, WA)

1991-01-01T23:59:59.000Z

386

Stochastic Switching Games and Duopolistic Competition in Emissions Markets  

E-Print Network [OSTI]

We study optimal behavior of energy producers under a CO_2 emission abatement program. We focus on a two-player discrete-time model where each producer is sequentially optimizing her emission and production schedules. The game-theoretic aspect is captured through a reduced-form price-impact model for the CO_2 allowance price. Such duopolistic competition results in a new type of a non-zero-sum stochastic switching game on finite horizon. Existence of game Nash equilibria is established through generalization to randomized switching strategies. No uniqueness is possible and we therefore consider a variety of correlated equilibrium mechanisms. We prove existence of correlated equilibrium points in switching games and give a recursive description of equilibrium game values. A simulation-based algorithm to solve for the game values is constructed and a numerical example is presented.

Ludkovski, Michael

2010-01-01T23:59:59.000Z

387

Utilizing zero-sequence switchings for reversible converters  

DOE Patents [OSTI]

A method for providing additional dc inputs or outputs (49, 59) from a dc-to-ac inverter (10) for controlling motor loads (60) comprises deriving zero-sequence components (V.sub.ao, V.sub.bo, and V.sub.co) from the inverter (10) through additional circuit branches with power switching devices (23, 44, 46), transforming the voltage between a high voltage and a low voltage using a transformer or motor (42, 50), converting the low voltage between ac and dc using a rectifier (41, 51) or an H-bridge (61), and providing at least one low voltage dc input or output (49, 59). The transformation of the ac voltage may be either single phase or three phase. Where less than a 100% duty cycle is acceptable, a two-phase modulation of the switching signals controlling the inverter (10) reduces switching losses in the inverter (10). A plurality of circuits for carrying out the invention are also disclosed.

Hsu, John S.; Su, Gui-Jia; Adams, Donald J.; Nagashima, James M.; Stancu, Constantin; Carlson, Douglas S.; Smith, Gregory S.

2004-12-14T23:59:59.000Z

388

High peak power test of S-band waveguide switches  

SciTech Connect (OSTI)

The injector and source of particles for the Advanced Photon Source (APS) is a 2856-MHz S-band electron-positron linear accelerator (linac) which produces electrons with energies up to 650 MeV or positrons with energies up to 450 MeV. To improve the linac rf system availability, an additional modulator-klystron subsystem is being constructed to provide a switchable hot spare unit for each of the five existing S-band transmitters. The switching of the transmitters will require the use of SF6-pressurized waveguide switches at a peak operating power of 35 MW. A test stand was set up at the Stanford Linear Accelerator Center (SLAC) Klystron-Microwave laboratory to conduct tests characterizing the power handling capability of these waveguide switches. Test results are presented.

Nassiri, A.; Grelick, A.; Kustom, R.L.; White, M.

1997-08-01T23:59:59.000Z

389

Design of switched-resistor monolithic filters using NMOS technology  

E-Print Network [OSTI]

MOS Capacitors 19 Parasitics Capacitances on MOS Transrstor 21 10 Typical plot of different value MOS Switch I vs. frequen s of V and W/ gs 23 cy for L = 0. 3 , . 22 SR basic element 25 12 Operation of switched-resistor nique tech- 27..., the individual capac- itors must be closely matched. The drawbacks of this tech- nique are several. First, it requires a large number of taps for interconnections which usually results in an in- crease of chip area. Second, there is an error caused...

Ngo, Dinh Tai

1981-01-01T23:59:59.000Z

390

Ultrafast thermally induced magnetic switching in synthetic ferrimagnets  

SciTech Connect (OSTI)

Synthetic ferrimagnets are composite magnetic structures formed from two or more anti-ferromagnetically coupled magnetic sublattices with different magnetic moments. Here, we report on atomistic spin simulations of the laser-induced magnetization dynamics on such synthetic ferrimagnets and demonstrate that the application of ultrashort laser pulses leads to sub-picosecond magnetization dynamics and all-optical switching in a similar manner as in ferrimagnetic alloys. Moreover, we present the essential material properties for successful laser-induced switching, demonstrating the feasibility of using a synthetic ferrimagnet as a high density magnetic storage element without the need of a write field.

Evans, Richard F. L., E-mail: richard.evans@york.ac.uk; Ostler, Thomas A.; Chantrell, Roy W. [Department of Physics, University of York, Heslington, York YO10 5DD (United Kingdom); Radu, Ilie [Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin (Germany); Rasing, Theo [Radboud University, Institute for Molecules and Materials, Heyendaalsewg 135, 6525 AJ Nijmegen (Netherlands)

2014-02-24T23:59:59.000Z

391

The design and characterization of switched-resistor filters  

E-Print Network [OSTI]

THE DESIGN AND CHARACTERIZATION OF SWITCHED-RESISTOR FILTERS A Thesis by JAMES TRAUGOTT BASS Submitted to t'ne Graduate College of Texas ARM University in partial fulf'llment of the requirement. for the degree of MASTER OF SCIENCE August... 1983 Major Subjec : Electrical Engineering THE DESIGN AND CHARACTERIZATION OF SWITCHED-RESISTOR FILTERS A THESIS BY JAMES TRAUGOTT BASS Approved as to style and content by: an a I . caper (Chairman of Committee) Nor. an C. GriswoI, d (Member...

Bass, James Traugott

1983-01-01T23:59:59.000Z

392

Electrical contact arrangement for a coating process  

DOE Patents [OSTI]

A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

2013-09-17T23:59:59.000Z

393

Direct contact, binary fluid geothermal boiler  

DOE Patents [OSTI]

Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

Rapier, Pascal M. (Richmond, CA)

1982-01-01T23:59:59.000Z

394

Active alignment/contact verification system  

DOE Patents [OSTI]

A system involving an active (i.e. electrical) technique for the verification of: 1) close tolerance mechanical alignment between two component, and 2) electrical contact between mating through an elastomeric interface. For example, the two components may be an alumina carrier and a printed circuit board, two mating parts that are extremely small, high density parts and require alignment within a fraction of a mil, as well as a specified interface point of engagement between the parts. The system comprises pairs of conductive structures defined in the surfaces layers of the alumina carrier and the printed circuit board, for example. The first pair of conductive structures relate to item (1) above and permit alignment verification between mating parts. The second pair of conductive structures relate to item (2) above and permit verification of electrical contact between mating parts.

Greenbaum, William M. (Modesto, CA)

2000-01-01T23:59:59.000Z

395

Non-Contact Gaging with Laser Probe  

SciTech Connect (OSTI)

A gage has been constructed using conventional (high end) components for the application of measuring fragile syntactic foam parts in a non-contact mode. Success with this approach has been achieved through a novel method of transferring (mapping) high accuracy local measurements of a coated aluminum master, taken on a Leitz Coordinate Measurement Machine (CMM), to the gage software system. The mapped data is then associated with local voltage readings from two (inner and outer) laser triangulating probes. This couples discreet laser probe offset and linearity characteristics to the measured master geometry. The gage software compares real part measured data against the master data to provide non-contact part inspection that results in a high accuracy and low uncertainty performance. Uncertainty from the part surface becomes the prevailing contributor to the gaging process. The gaging process provides a high speed, hands off measurement with nearly zero impedance.

Clinesmith, Mike

2009-03-20T23:59:59.000Z

396

Photoinduced electron transfer in contact ion pairs  

SciTech Connect (OSTI)

Contact ion pair (CIP) formation is especially relevant to the reactivity of organic and organometallic nucleophiles and electrophiles in solution. The authors felt that the intermolecular charge-transfer (CT) absorptions which commonly accompany the interaction of uncharged nucleophiles (donors) with electrophiles (acceptors) could also provide the experimental means to assess CIP behavior. Accordingly they examined the CT excitations from CIPs of carbonylmetallate anions in this study, since they are known to be effective nucleophiles with relatively low ionization potentials.

Bockman, T.M.; Kochi, J.K.

1988-02-17T23:59:59.000Z

397

Renewable Energy Contacts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and LaunchesRelated FinancialUtility District |Contacts

398

Property:Geothermal/Contact | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormatGeothermal/Contact" Showing 25

399

Photovoltaic Electrical Contact and Cell Coating Basics | Department...  

Broader source: Energy.gov (indexed) [DOE]

p-type seminconductor, and back contact. A typical solar cell consists of a glass or plastic cover, an antireflective coating, a front contact to allow electrons to enter a...

400

Oak Ridge Site Specific Advisory Board Contacts | Department...  

Office of Environmental Management (EM)

Contacts Oak Ridge Site Specific Advisory Board Contacts Mailing Address Oak Ridge Site Specific Advisory Board P.O. Box 2001, EM-91 Oak Ridge, TN 37831 Phone Numbers (865)...

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Protein folding using contact maps Michele Vendruscolo and Eytan Domany  

E-Print Network [OSTI]

Protein folding using contact maps Michele Vendruscolo and Eytan Domany Department of Physics 26 I. INTRODUCTION Computational approaches to protein folding are divided into two main categories protein fold prediction. Contact maps are a particularly manageable representation of protein structure

Domany, Eytan

402

atomic aluminum contacts: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rear-contact solar cell, we 59 LOSS ANALYSIS OF BACK-CONTACT BACK-JUNCTION THIN-FILM MONOCRYSTALLINE SILICON SOLAR CELLS Renewable Energy Websites Summary: of the...

403

Quantum coherent switch utilizing commensurate nanoelectrode and charge density periodicities  

DOE Patents [OSTI]

A quantum coherent switch having a substrate formed from a density wave (DW) material capable of having a periodic electron density modulation or spin density modulation, a dielectric layer formed onto a surface of the substrate that is orthogonal to an intrinsic wave vector of the DW material; and structure for applying an external spatially periodic electrostatic potential over the dielectric layer.

Harrison, Neil (Santa Fe, NM); Singleton, John (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

2008-08-05T23:59:59.000Z

404

Digit switch evaluations and capillary IPA (isopropyl alcohol) study  

SciTech Connect (OSTI)

Capillary flow of isopropyl alcohol under the wire insulation of an eleven-wire cable dissolved trapped flux from the pretinning and soldering operations and caused it to deposit on the circuit board inside a digit switch. Conformal coatings were successful in sealing the wire insulation gap to prevent solvent flow. 16 figs., 2 tabs.

Mizik, P.M.; Kibalo, E.F.

1990-12-01T23:59:59.000Z

405

Chiral imides as potential chiroptical switches: synthesis and optical properties  

E-Print Network [OSTI]

of a molecule upon application of electric fields to the switching cell or de- vice.5­7 Electrochromic compounds different. Aromatic imides are known to be electrochromic with intense UV­vis absorptions in their neutral; Naphthalene imides; Electrochromic; Fluorescence. * Corresponding author. Tel.: +1 613 520 2600x2713; fax: +1

Wan, Xin-hua

406

ORIGINAL ARTICLE Single ferroelectric-domain photovoltaic switch based  

E-Print Network [OSTI]

ORIGINAL ARTICLE Single ferroelectric-domain photovoltaic switch based on lateral BiFeO3 cells Ji serves as a basis for solid-state memory. This phenomenon can also yield an interesting photovoltaic imposed by the ferroelectric polarization vectors. Here, we demonstrate a single-domain photovoltaic

Jo, Moon-Ho

407

Optically-initiated silicon carbide high voltage switch  

DOE Patents [OSTI]

An improved photoconductive switch having a SIC or other wide band gap substrate material, such as GaAs and field-grading liners composed of preferably SiN formed on the substrate adjacent the electrode perimeters or adjacent the substrate perimeters for grading the electric fields.

Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Sullivan, James S. (Livermore, CA); Sanders, David M. (Livermore, CA)

2012-02-28T23:59:59.000Z

408

Energy Aware Computing through Probabilistic Switching: A Study of Limits  

E-Print Network [OSTI]

Energy Aware Computing through Probabilistic Switching: A Study of Limits Krishna V. Palem, Fellow developed here for building energy-aware networks for computing, using PBITs. Interesting examples thermodynamics and, hence, can serve as a basis for energy-aware computing. While the estimates of the energy

409

no switch: spontaneous actin polymerization (MINIMAL ACTIVTY) FractionActin  

E-Print Network [OSTI]

polymerization (MINIMAL ACTIVTY) FractionActin Polymerization relative activity = t1/2 / t1/2 max actin polymerization in presence of constitutively active output domain (VCA) (MAXIMAL ACTIVITY) experimental point: actin polymerization of switch in presence/absence of inputs (EXPERIMENTAL ACTIVITY) t1/2 = time

Lim, Wendell

410

Deep subwavelength plasmonic waveguide switch in double graphene layer structure  

E-Print Network [OSTI]

Deep subwavelength plasmonic waveguide switch in double graphene layer structure Hideo Iizuka in double graphene layer structure Hideo Iizuka1,a) and Shanhui Fan2,b) 1 Toyota Central Research December 2013) Graphene provides excellent prospects of the dynamic tunability, low propagation loss

Fan, Shanhui

411

WDM Burst Switching for Petabit Data Networks Jonathan S. Turner  

E-Print Network [OSTI]

protocols, like IP. This paper briefly summarizes the operational principles of WDM burst switchingnetworks Principles. Burst switching systems assign user data bursts to channels in WDM links on-the-fly in order to provide efficient statistical multiplexing of high rate data channels. The transmission links in a burst

Turner, Jonathan S.

412

Valuation of Energy Storage: An Optimal Switching Mike Ludkovski  

E-Print Network [OSTI]

Valuation of Energy Storage: An Optimal Switching Approach Mike Ludkovski Department of Mathematics University, Princeton, NJ 08544 rcarmona@princeton.edu, We consider the valuation of energy storage facilities within the framework of stochastic control. Our two main examples are natural gas dome storage

Ludkovski, Mike

413

Task Assignment in a Server Farm with Switching Delays and  

E-Print Network [OSTI]

costs Holding costs (per job) Objective to balance between Energy consumption Performance (e.g., latency Energy- and Delay-aware cost structure Switching costs Running costs Holding costs (per job) Objective to balance between Energy consumption Performance (e.g., latency) Heterogeneous servers, job-specific costs

Hyytiä, Esa

414

Left invertibility, flatness and identifiability of switched linear dynamical systems: a framework  

E-Print Network [OSTI]

Left invertibility, flatness and identifiability of switched linear dynamical systems: a framework invertibility and flatness, dynamical systems are structurally equivalent to some specific cryptographic invertibility, flatness and identifiability of discrete- time switched linear systems are investigated

Paris-Sud XI, Université de

415

Energy Efficient Optical Burst Switched (OBS) Balagangadhar G. Bathula, Jaafar M. H. Elmirghani  

E-Print Network [OSTI]

Energy Efficient Optical Burst Switched (OBS) Networks Balagangadhar G. Bathula, Jaafar M. H for optical burst switched networks that reduces energy consumption without significantly degrading and hence energy efficiency is an important issue. Due to the advances in optical transmission

Bathula, Balagangadhar G

416

A scalable silicon photonic chip-scale optical switch for high performance computing systems  

E-Print Network [OSTI]

A scalable silicon photonic chip-scale optical switch for high performance computing systems-scale optical switch for scalable interconnect network in high performance computing systems. The proposed

Yoo, S. J. Ben

417

Utility External Disconnect Switch: Practical, Legal, and Technical Reasons to Eliminate the Requirement  

Broader source: Energy.gov [DOE]

This report documents the safe operation of PV systems without a utility external disconnect switch in several large jurisdictions. It includes recommendations for regulators contemplating utility external disconnect switch requirements.

418

ASYMPTOTIC SHAPE FOR THE CONTACT PROCESS IN RANDOM ENVIRONMENT  

E-Print Network [OSTI]

ASYMPTOTIC SHAPE FOR THE CONTACT PROCESS IN RANDOM ENVIRONMENT OLIVIER GARET AND R´EGINE MARCHAND in stationary random environment. These theorems gen- eralize known results for the classical contact process environment, when the contact process survives, the set Ht/t almost surely converges to a compact set

Paris-Sud XI, Université de

419

Ohmic contact metallization on p-type indium phosphide  

E-Print Network [OSTI]

contact resistivities comparable to those of Au-based contacts, determined by the Cox and Strack structure, can be obtained for a pure Pd contact on p-InP (hole concentration -3xlOl' cm-'). The defects can be identified to be related with phosphorus...

Park, Moonho

1993-01-01T23:59:59.000Z

420

Electrical Contacts to Molecular Layers by Nanotransfer Printing  

E-Print Network [OSTI]

Electrical Contacts to Molecular Layers by Nanotransfer Printing Yueh-Lin Loo, David V. Lang, John of electrical contact. Results show that the nTP method produces superior devices in which the electrical for making electrical contacts in molecular electronics. Organic molecules whose electronic properties can

Rogers, John A.

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Optical Label Switching Technology and Energy-Efficient Future Networks S. J. Ben Yoo  

E-Print Network [OSTI]

Optical Label Switching Technology and Energy-Efficient Future Networks S. J. Ben Yoo Department traffic with extremely low energy consumption and high goodput. Keywords: Optical packet switching, optical label switching, energy efficient networks. 1. Introduction The future Internet is rapidly

Kolner, Brian H.

422

Design and simulation of planar electro-optic switches in ferroelectrics Mahesh Krishnamurthi,a  

E-Print Network [OSTI]

Design and simulation of planar electro-optic switches in ferroelectrics Mahesh Krishnamurthi polarization dependent planar optical switches based on the electro-optic effect in ferroelectrics operating at 1.55 m wavelength are presented. The first design is a 3 3 optical switch based entirely on electro-optic

Gopalan, Venkatraman

423

Fig. 1: Schematic of the optoelectronic switch. Source/drain and channel regions formed in Si.  

E-Print Network [OSTI]

Si Ge E-field Fig. 1: Schematic of the optoelectronic switch. Source/drain and channel regions (z) energy Novel Si-based CMOS Optoelectronic Switching Device Operating in the Near Infrared Ali K, high performance optoelectronic switch is introduced. The device is a Si- MOSFET with Ge gate that can

Miller, David A. B.

424

Integrated packaging allows for improvement in switching characteristics of silicon carbide devices  

E-Print Network [OSTI]

Integrated packaging allows for improvement in switching characteristics of silicon carbide devices will be available after the conference. Abstract Silicon Carbide devices can achieve very high switching speed-mode filtering). The consequences on the switching speed are discussed. 1. Introduction Silicon carbide (Si

Paris-Sud XI, Université de

425

A Novel MEMS LTCC Switch Matrix Bahram Yassini, Savio Choi, Andre Zybura, Ming Yu,  

E-Print Network [OSTI]

A Novel MEMS LTCC Switch Matrix Bahram Yassini, Savio Choi, Andre Zybura, Ming Yu, Robert. E planar 4x4 switch matrix using microelectromechanical system (MEMS) switches and Low Temperature Cofired Ceramic (LTCC) substrate is presented for the first time. Together a 9-layer LTCC substrate and 32 MEMS

Yu, Ming

426

The effects of mobile ATM switches on PNNI peer group operation  

SciTech Connect (OSTI)

This contribution discusses why, and how, mobile networks and mobile switches might be discussed during Phase 1 of the WATM standards process. Next, it reviews mobile routers within Mobile IP. That IP mobility architecture may not apply to the proposed mobile ATM switches. Finally, it discusses problems with PNNI peer group formation and operation when mobile ATM switches are present.

Martinez, L.; Sholander, P.; Tolendino, L.

1997-04-01T23:59:59.000Z

427

Dynamic Overlay Single-Domain Contracting for End-to-End Contract-Switching  

E-Print Network [OSTI]

and business relation- ships with other providers as well as users. To allow these much needed economic-switched inter-network will enable flexible and eco- nomically efficient management of risks and value flows as a "packet- switched" network. A contract-switched architecture will enable flexible and eco- nomically

Yuksel, Murat

428

Design and Evaluation of Scalable Switching Fabrics for High-Performance Routers  

E-Print Network [OSTI]

high scalability and low costs. The considered switching fabrics are based on a multistage structure. The buffered switching fabrics under our consideration are scalable and of low costs, ideally suitable's for packets to move from their arrival LC's toward their destined LC's. Switching fabrics naturally affect

Tzeng, Nian-Feng

429

Role of chemical termination in edge contact to graphene  

SciTech Connect (OSTI)

Edge contacts to graphene can offer excellent contact properties. Role of different chemical terminations is examined by using ab initio density functional theory and quantum transport simulations. It is found that edge termination by group VI elements O and S offers considerably lower contact resistance compared to H and group VII element F. The results can be understood by significantly larger binding energy and shorter binding distance between the metal contact and these group VI elements, which results in considerably lower interface potential barrier and larger transmission. The qualitative conclusion applies to a variety of contact metal materials.

Gao, Qun; Guo, Jing, E-mail: guoj@ufl.edu [Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611 (United States)

2014-05-01T23:59:59.000Z

430

Silicon point contact concentrator solar cells  

SciTech Connect (OSTI)

Experimental results are presented for thin high resistivity concentrator silicon solar cells which use a back-side point-contact geometry. Cells of 130 and 233 micron thickness were fabricated and characterized. The thin cells were found to have efficiencies greater than 22 percent for incident solar intensities of 3 to 30 W/sq cm. Efficiency peaked at 23 percent at 11 W/sq cm measured at 22-25 C. Strategies for obtaining higher efficiencies with this solar cell design are discussed. 8 references.

Sinton, R.A.; Kwark, Y.; Swirhun, S.; Swanson, R.M.

1985-08-01T23:59:59.000Z

431

Federal NEPA Contacts | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergy Federal EfficiencyReportingNEPA Contacts Federal

432

Center for Advanced Solar Photophysics | Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAYCareersCathy-Ehli Sign InCenterContacts

433

Contact Information | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial Validation andPWRContaCtContact

434

Contact OSUR Program | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group andCompositionalInitial ValidationContact Information

435

Contact Us | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUs ContactLos Alamos

436

Contact Us-About-PHaSe-EFRC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformation Administration (EIA)DonUsContact

437

Contacts for Enterprise Architecture | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnn Oliver

438

Contacts for IT Planning | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov Contacts for E-Gov LeAnn

439

NREL: Email Contact for NREL Newsroom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version Email Contact for NREL

440

NREL: Energy Systems Integration Facility - Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintableContact Us For more information

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geothermal Technologies Office Contacts | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermal Technologies Office Contacts Geothermal

442

ORISE: Contact Us | Worker Health Studies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping Application ORISECenterMaking aContact Us

443

Laboratory Equipment Donation Program - Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011 LOSEngineering&Dynamos ProfessorContact Us

444

DOE Research and Development Accomplishments Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2BlogContact

445

ARM - ARM Engineering and Operations Contacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |NovemberARMContactsARM Engineering and Operations Contacts About

446

RAPID/Contact | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellheadWahkiakum CountyPzero JumpQuestionQuinhagakContact

447

Contact CEFRC - Combustion Energy Frontier Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact In This

448

Contact Hanford Fire Department - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimony |IdahoVisionContact In ThisDepartment

449

Contact Us | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporousTestimonyContact Us - Working With Us

450

Fermilab | Illinois Accelerator Research Center | Contact IARC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto Fermilab atContact

451

SciTech Connect: Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialstheterahertzon HomeScholarshipsSciDBsmartContact

452

Contact Information Systems | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 Building 9201-1 wasFAbout UsContact

453

Contact Us | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1 BuildingContact UsNNSAContact

454

Contacts For "F" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"

455

Contacts For "J" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G"

456

Contacts For "L" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G"K"

457

Contacts For "M" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008 To1ContactA"G"K"M"

458

Contacts For "O" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts For "O" Shaun

459

Contacts For "P" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts For "O"

460

Contacts For "Q" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts For "O"Q"

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Contacts For "R" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts For

462

Contacts For "V" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts ForS"

463

Contacts For "W" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts ForS"W"

464

Contacts For "Z" | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationCleanCommunity2Workshops 2008O" Contacts ForS"W"Z"

465

Air Entrainment by Viscous Contact Lines  

E-Print Network [OSTI]

The entrainment of air by advancing contact lines is studied by plunging a solid plate into a very viscous liquid. Above a threshold velocity, we observe the formation of an extended air film, typically 10 microns thick, which subsequently decays into air bubbles. Exploring a large range of viscous liquids, we find an unexpectedly weak dependence of entrainment speed on liquid viscosity, pointing towards a crucial role of the flow inside the air film. This induces a striking asymmetry between wetting and dewetting: while the breakup of the air film strongly resembles the dewetting of a liquid film, the wetting speeds are larger by orders of magnitude.

Marchand, Antonin; Snoeijer, Jacco H; Andreotti, Bruno

2011-01-01T23:59:59.000Z

466

Method of forming contacts for a back-contact solar cell  

DOE Patents [OSTI]

Methods of forming contacts for back-contact solar cells are described. In one embodiment, a method includes forming a thin dielectric layer on a substrate, forming a polysilicon layer on the thin dielectric layer, forming and patterning a solid-state p-type dopant source on the polysilicon layer, forming an n-type dopant source layer over exposed regions of the polysilicon layer and over a plurality of regions of the solid-state p-type dopant source, and heating the substrate to provide a plurality of n-type doped polysilicon regions among a plurality of p-type doped polysilicon regions.

Manning, Jane

2013-07-23T23:59:59.000Z

467

Spin-transfer switching of orthogonal spin-valve devices at cryogenic temperatures  

SciTech Connect (OSTI)

We present the quasi-static and dynamic switching characteristics of orthogonal spin-transfer devices incorporating an out-of-plane magnetized polarizing layer and an in-plane magnetized spin valve device at cryogenic temperatures. Switching at 12?K between parallel and anti-parallel spin-valve states is investigated for slowly varied current as well as for current pulses with durations as short as 200 ps. We demonstrate 100% switching probability with current pulses 0.6?ns in duration. We also present a switching probability diagram that summarizes device switching operation under a variety of pulse durations, amplitudes, and polarities.

Ye, L., E-mail: ly17@nyu.edu; Gopman, D. B.; Rehm, L.; Backes, D.; Wolf, G.; Kent, A. D. [Department of Physics, New York University, New York, New York 10003 (United States); Ohki, T. [Raytheon BBN Technologies, Cambridge, Massachusetts 02138 (United States); Kirichenko, A. F.; Vernik, I. V.; Mukhanov, O. A. [HYPRES, 175 Clearbrook Road, Elmsford, New York 10523 (United States)

2014-05-07T23:59:59.000Z

468

Design of high order switched resistor momolithic filters using NMOS technology  

E-Print Network [OSTI]

-aliasing filter is used to band-limit the input signal. 3 Switched Capacitor representation of a resistor, a) Switched Capacitor, b) Fixed Resistor. . . . . . . . . . Basic Switched Resistor Block. a) Switched Resistor, b) Fixed Resistor. 5 Switched.... VBS for depletion and enhancement transistors. 18 9 IO vs YDS curves for depletion (a, c), and enhancement (b, d) transistors (YBS= 0 V). a) II/L= 1, b) M/L= 1, c) Vi/L= . 5, d) V(/L= 5 19 10 DC resistance for an NMOS transistor vs. VGS (W/L= . 3...

Aguilar, Raul Antonio

1983-01-01T23:59:59.000Z

469

The Usefulness of Bi-Level Switching; Original Technical Note: November 1998. Revised August, 1999  

SciTech Connect (OSTI)

California's Title 24 Energy Efficiency Building Standard requires multiple lighting level control in all individual offices. Usually, this requirement is fulfilled using bi-level switching. With bi-level switching, each office occupant is provided with two wall switches near the doorway to control their lights. In a typical installation, one switch would control 1/3 of the fluorescent lamps in the ceiling lighting system, while the other switch would control the remaining 2/3 of the lamps. This allows four possible light levels: OFF, 1/3, 2/3 and FULL lighting. Because it has been required by building code since 1983, bi-level switching is common in California office buildings. However, there is no published evidence showing that occupants sometimes use just one switch rather than just switching on both switches when entering the room. Consequently, some have questioned whether bi-level switching is a necessary or desirable requirement for typical office buildings. In fact, the draft national standard, ASHRAE Standard 90.1-1989K apparently does not require bi-level switching at all.

Building Technologies Department

1998-11-01T23:59:59.000Z

470

Microwave pulse compression from a storage cavity with laser-induced switching  

DOE Patents [OSTI]

A laser-induced switch and a multiple cavity configuration are disclosed for producing high power microwave pulses. The microwave pulses are well controlled in wavelength and timing, with a quick rise time and a variable shape and power of the pulse. In addition, a method of reducing pre-pulse leakage to a low level is disclosed. Microwave energy is directed coherently to one or more cavities that stores the energy in a single mode, represented as a standing wave pattern. In order to switch the stored microwave energy out of the main cavity and into the branch waveguide, a laser-actuated switch is provided for the cavity. The switch includes a laser, associated optics for delivering the beam into the main cavity, and a switching gas positioned at an antinode in the main cavity. When actuated, the switching gas ionizes, creating a plasma, which becomes reflective to the microwave energy, changing the resonance of the cavity, and as a result the stored microwave energy is abruptly switched out of the cavity. The laser may directly pre-ionize the switching gas, or it may pump an impurity in the switching gas to an energy level which switches when a pre-selected cavity field is attained. Timing of switching the cavities is controlled by varying the pathlength of the actuating laser beam. For example, the pathlengths may be adjusted to output a single pulse of high power, or a series of quick lower power pulses.

Bolton, Paul R. (Menlo Park, CA)

1992-01-01T23:59:59.000Z

471

An experimental study of VBR video over various ATM switch architectures  

SciTech Connect (OSTI)

One of the most important components of an Asynchronous Transfer Mode (ATM) network is the switch. Switch design is not a part of the ATM standards so vendors use a wide variety of techniques to build their switches. In this paper, the authors present experimental results of switching and multiplexing real-time Variable Bit Rate (VBR) video traffic (JPEG, MPEG-1, and MPEG-2) through two different ATM switch architectures. Real-time VBR traffic, such as digital video, is particularly interesting due to its high demands in terms of bandwidth, real-time delivery and processing requirements. The experiments show that the fastest switches, i.e., lowest latencies, do not necessarily perform better when transmitting VBR video. The impact of the high speed network components; characteristics, such as switch fabric architecture, buffering strategies, and higher layer transport protocols (i.e., UDP, TCP/IP), are illustrated through the experimental results.

Tsang, R.P. [Sandia National Labs., Livermore, CA (United States); Hsieh, J.; Du, D.H.C. [Univ. of Minnesota, Minneapolis, MN (United States)

1997-12-31T23:59:59.000Z

472

Interprocessor bus switching system for simultaneous communication in plural bus parallel processing system  

DOE Patents [OSTI]

A bus switching apparatus and method for multiple processor computer systems comprises a plurality of bus switches interconnected by branch buses. Each processor or other module of the system is connected to a spigot of a bus switch. Each bus switch also serves as part of a backplane of a modular crate hardware package. A processor initiates communication with another processor by identifying that other processor. The bus switch to which the initiating processor is connected identifies and secures, if possible, a path to that other processor, either directly or via one or more other bus switches which operate similarly. If a particular desired path through a given bus switch is not available to be used, an alternate path is considered, identified and secured. 11 figures.

Atac, R.; Fischler, M.S.; Husby, D.E.

1991-01-15T23:59:59.000Z

473

Interprocessor bus switching system for simultaneous communication in plural bus parallel processing system  

DOE Patents [OSTI]

A bus switching apparatus and method for multiple processor computer systems comprises a plurality of bus switches interconnected by branch buses. Each processor or other module of the system is connected to a spigot of a bus switch. Each bus switch also serves as part of a backplane of a modular crate hardware package. A processor initiates communication with another processor by identifying that other processor. The bus switch to which the initiating processor is connected identifies and secures, if possible, a path to that other processor, either directly or via one or more other bus switches which operate similarly. If a particular desired path through a given bus switch is not available to be used, an alternate path is considered, identified and secured.

Atac, Robert (Aurora, IL); Fischler, Mark S. (Warrenville, IL); Husby, Donald E. (DeKalb, IL)

1991-01-01T23:59:59.000Z

474

Heat transfer between anisotropic nanopartricles: Enhancement and switching  

E-Print Network [OSTI]

We theoretically study heat transfer between two anisotropic nanoparticles in vacuum, and derive closed expressions in terms of the anisotropic dipole polarizabilities. We show that transfer between two small spheroids can be many times as large as the one for two spheres of same volumes. Such increase with anisotropy is also found for the heat emission of an isolated small spheroid. Furthermore, we observe a strong dependence of transfer on the relative orientation, yielding the interpretation as a heat transfer switch. The switch quality, given as the ratio of transfer in the ``on'' and ``off'' positions, is observed to be as large as $10^3$ in the near field and even larger in the far field.

Roberta Incardone; Thorsten Emig; Matthias Krüger

2014-02-21T23:59:59.000Z

475

Plasma Switch for High-Power Active Pulse Compressor  

SciTech Connect (OSTI)

Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ? 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.

Hirshfield, Jay L. [Omega-P, Inc.] [Omega-P, Inc.

2013-11-04T23:59:59.000Z

476

Distribution of supercurrent switching in graphene under the proximity effect.  

SciTech Connect (OSTI)

We study the stochastic nature of switching current in hysteretic current-voltage characteristics of superconductor-graphene-superconductor junctions. We find that the dispersion of the switching current distribution scales with temperature as {sigma}{sub I} {proportional_to} T{sup {alpha}{sub G}} with {alpha}{sub G} as low as 1/3. This observation is in sharp contrast to the known Josephson junction behavior where {sigma}{sub I} {proportional_to} T{sup {alpha}{sub J}} with {alpha}{sub J} = 2/3. We propose an explanation using a generalized version of Kurkijaervi's theory for the flux stability in rf-SQUID and attribute this anomalous effect to the temperature dependence of the critical current which persists down to low temperatures.

Coskun, U. C.; Brenner, M.; Hymel, T.; vakaryuk, V.; Levchenko, A.; Bezryadin, A. (Materials Science Division); (Univ. Illinois-Urbana); (Univ. Texas); (Michigan State Univ.)

2012-01-01T23:59:59.000Z

477

Electro-optical switching and memory display device  

DOE Patents [OSTI]

An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

Skotheim, T.A.; O'Grady, W.E.; Linkous, C.A.

1983-12-29T23:59:59.000Z

478

Parallel Routing Algorithms for Nonblocking Electronic and Photonic Switching Networks  

E-Print Network [OSTI]

Parallel Routing Algorithms for Nonblocking Electronic and Photonic Switching Networks Enyue Lu for the RNB networks of complexities ranging from OĂ°N lg NĂ? to OĂ°N1:5 lg NĂ? crosspoints and parallel algorithms that run in OĂ°minfdĂ? lg N; ffiffiffiffiffi N p gĂ? time for the SNB networks of OĂ°N1:5 lg NĂ?

Lu, Enyue "Annie"

479

Device having two optical ports for switching applications  

DOE Patents [OSTI]

A two-sided light-activatable semiconductor switch device having an optical port on each side thereof. The semiconductor device may be a p-i-n diode or of bulk intrinsic material. A two ported p-i-n diode, reverse-biased to "off" by a 1.3 kV dc power supply, conducted 192 A when activated by two 1 kW laser diode arrays, one for each optical port.

Rosen, Ayre (Cherry Hill, NJ); Stabile, Paul J. (Langehorne, PA)

1991-09-24T23:59:59.000Z

480

Active high-power RF switch and pulse compression system  

DOE Patents [OSTI]

A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

Tantawi, Sami G. (San Mateo, CA); Ruth, Ronald D. (Woodside, CA); Zolotorev, Max (Mountain View, CA)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "momentary contact switch" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Contact structure for use in catalytic distillation  

DOE Patents [OSTI]

A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

Jones, E.M. Jr.

1984-03-27T23:59:59.000Z

482

Contact structure for use in catalytic distillation  

DOE Patents [OSTI]

A method and apparatus are disclosed for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

Jones, E.M. Jr.

1985-08-20T23:59:59.000Z

483

Contact structure for use in catalytic distillation  

DOE Patents [OSTI]

A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

Jones, Jr., Edward M. (Friendswood, TX)

1984-01-01T23:59:59.000Z

484

Contact structure for use in catalytic distillation  

DOE Patents [OSTI]

A method and apparatus for conducting catalytic chemical reactions and fractionation of the reaction mixture, comprising and feeding reactants into a distillation column reactor contracting said reactant in a liquid phase with a fixed bed catalyst in the form of a contact catalyst structure, consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

Jones, Jr., Edward M. (Friendswood, TX)

1985-01-01T23:59:59.000Z

485

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 3, MARCH 2009 817 Sensorless Control for a Switched Reluctance Wind  

E-Print Network [OSTI]

for a Switched Reluctance Wind Generator, Based on Current Slopes and Neural Networks Estanislao Echenique, Juan

Catholic University of Chile (Universidad CatĂłlica de Chile)

486

4 ESS (trademark) switch electromagnetic-pulse assessment. Volume 2. Task 3 laboratory testing of the 4 ESS Switch. Final report  

SciTech Connect (OSTI)

The 4ESS Switch was subjected to test sequences representative of electromagnetic stresses following a high-altitude nuclear blast. These laboratory tests revealed some potential equipment sensitivities requiring only minor modifications. With these modifications implemented, the 4 ESS Switch demonstrated considerable robustness in servicing calls following current injection stress. (jhd)

Not Available

1989-12-01T23:59:59.000Z

487

The contact of elastic regular wavy surfaces revisited  

E-Print Network [OSTI]

We revisit the classic problem of an elastic solid with a two-dimensional wavy surface squeezed against an elastic flat half-space from infinitesimal to full contact. Through extensive numerical calculations and analytic derivations, we discover previously overlooked transition regimes. These are seen in particular in the evolution with applied load of the contact area and perimeter, the mean pressure and the probability density of contact pressure. These transitions are correlated with the contact area shape, which is affected by long range elastic interactions. Our analysis has implications for general random rough surfaces, as similar local transitions occur continuously at detached areas or coalescing contact zones. We show that the probability density of null contact pressures is non-zero at full contact. This might suggest revisiting the conditions necessary for applying Persson's model at partial contacts and guide the comparisons with numerical simulations. We also address the evaluation of the contact perimeter for discrete geometries and the applicability of Westergaard's solution for three-dimensional geometries.

Vladislav A. Yastrebov; Guillaume Anciaux Jean-Francois Molinari

2014-09-05T23:59:59.000Z

488

Nanoscale contact engineering for Si/Silicide nanowire devices.  

E-Print Network [OSTI]

??Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide… (more)

Lin, Yung-Chen

2012-01-01T23:59:59.000Z

489

Contacts for the Assistant General Counsel for Legislation, Regulation...  

Energy Savers [EERE]

Legislation, Regulation, and Energy Efficiency Contacts for the Assistant General Counsel for Legislation, Regulation, and Energy Efficiency Office of the Assistant General Counsel...

490

Contacts for the Assistant General Counsel for Technology Transfer...  

Broader source: Energy.gov (indexed) [DOE]

Technology Transfer and Procurement Contacts for the Assistant General Counsel for Technology Transfer and Procurement Subject MatterFunctional Area Lead Backup Technology...

491

Registered_Lobbyist_Contact_Disclosure_Form.pdf | Department...  

Broader source: Energy.gov (indexed) [DOE]

egisteredLobbyistContactDisclosureForm.pdf More Documents & Publications Lobbyist Disclosure Form - AltEn Interested Parties - Shipp Interested Parties - Smith Dawson & Andrews...

492

Ohmic contacts for high-temperature GaP devices  

E-Print Network [OSTI]

REMOVAL 10 13 24 24 26 50 50 52 78 80 83 98 98 99 100 TABLE OF CONTENTS (Continued) APPENDIX D ? 6 LIFT-OFF PREMETAL PREPARATION APPENDIX D ? 7 METAL LIFTOFF Page 100 100 vi LIST OP TABLES Table I Relative High Temperature... with a variety of III-V compound semi- conductors and contact metals. By using a ruby or a COe laser with Au-Sn or Ag-Sn contact metals, specific contact resistances as low as 8. 6 x 19 " 0-cm were reported. (The specific contact resistance...

Van der Hoeven, Willem Bernard

2012-06-07T23:59:59.000Z

493

A Drucker-Prager model for elastic contact with friction; A Drucker-Prager model for elastic contact with friction.  

E-Print Network [OSTI]

?? In mumerical contact simulations with friction, the simple Coloumb law is usually employed. Standard plasticity models are difficult to use since the balance enforced… (more)

wu, yunxian

2011-01-01T23:59:59.000Z

494

Thermally activated switching of perpendicular magnet by spin-orbit spin torque  

SciTech Connect (OSTI)

We theoretically investigate the threshold current for thermally activated switching of a perpendicular magnet by spin-orbit spin torque. Based on the Fokker-Planck equation, we obtain an analytic expression of the switching current, in agreement with numerical result. We find that thermal energy barrier exhibits a quasi-linear dependence on the current, resulting in an almost linear dependence of switching current on the log-scaled current pulse-width even below 10?ns. This is in stark contrast to standard spin torque switching, where thermal energy barrier has a quadratic dependence on the current and the switching current rapidly increases at short pulses. Our results will serve as a guideline to design and interpret switching experiments based on spin-orbit spin torque.

Lee, Ki-Seung [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Spin Convergence Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, Seo-Won [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Min, Byoung-Chul [Spin Convergence Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Lee, Kyung-Jin, E-mail: kj-lee@korea.ac.kr [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Spin Convergence Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-713 (Korea, Republic of)

2014-02-17T23:59:59.000Z

495

Enhancement of proton energy by polarization switch in laser acceleration of multi-ion foils  

SciTech Connect (OSTI)

We present a scheme to significantly increase the energy of quasi-monoenergetic protons accelerated by a laser beam without increasing the input power. This improvement is accomplished by first irradiating the foil several wave periods with circular polarization and then switching the laser to linear polarization. The polarization switch increases the electron temperature and thereby moves more electrons ahead of the proton layer, resulting in a space charge electric field pushing the protons forwards. The scaling of the proton energy evolution with respect to the switching time is studied, and an optimal switching time is obtained. The proton energy for the case with optimal switching time can reach about 80 MeV with an input laser power of 70 TW, an improvement of more than 30% compared to the case without polarization switch.

Liu, Tung-Chang; Shao, Xi; Liu, Chuan-Sheng [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States)] [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Eliasson, Bengt [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States) [Department of Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland (United Kingdom); Wang, Jyhpyng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China) [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Department of Physics, National Central University, Taoyuan 32001, Taiwan (China); Chen, Shih-Hung [Department of Physics, National Central University, Taoyuan 32001, Taiwan (China)] [Department of Physics, National Central University, Taoyuan 32001, Taiwan (China)

2013-10-15T23:59:59.000Z

496

Klystron switching power supplies for the Internation Linear Collider  

SciTech Connect (OSTI)

The International Linear Collider is a majestic High Energy Physics particle accelerator that will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. ILC will complement the Large Hadron Collider (LHC), a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, by producing electron-positron collisions at center of mass energy of about 500 GeV. In particular, the subject of this dissertation is the R&D for a solid state Marx Modulator and relative switching power supply for the International Linear Collider Main LINAC Radio Frequency stations.

Fraioli, Andrea; /Cassino U. /INFN, Pisa

2009-12-01T23:59:59.000Z

497

Commute Mode Switching Impact Tool | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 InjectionDepartment ofFresno U.S.Commute Mode Switching

498

Lyons Switch, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynn County,119. It isLyonSwitch,

499

Contact Information: Jeff Williams, MLIS phone (858) 822-2218  

E-Print Network [OSTI]

Contact Information: Jeff Williams, MLIS phone (858) 822-2218 Biology Librarian fax (858) 822-2219 UCSD Biomedical Library j12williams@ucsd.edu Life Sciences Newsletter UCSD Biomedical Library Fall 2004 contact me at (858) 822-2218 or j12williams@ucsd.edu Top Biology Resources ­ http

California at San Diego, University of

500

RELATIVISTIC HEAVY-ION PHYSICS WITHOUT NUCLEAR CONTACT  

E-Print Network [OSTI]

RELATIVISTIC HEAVY-ION PHYSICS WITHOUT NUCLEAR CONTACT The large electromagnetic field generated physics research--for example, for investigating nuclear structure, hadronic structure, atomic physics Berkeley Laboratory--it became clear that heavy-ion physics without nuclear contact could be very useful

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University