National Library of Energy BETA

Sample records for molts edas meteor

  1. Electrochemical Design Associates EDA | Open Energy Information

    Open Energy Info (EERE)

    Design Associates EDA Jump to: navigation, search Name: Electrochemical Design Associates (EDA) Place: California Zip: 94608-2513 Product: EDA is a technology development company...

  2. ITI Energy EDA JV | Open Energy Information

    Open Energy Info (EERE)

    EDA JV Jump to: navigation, search Name: ITI Energy & EDA JV Product: A joint venture between ITI Energy of Scotland and EDA of the US, through which ITI holds a non-equity stake...

  3. Meteor signature interpretation

    SciTech Connect (OSTI)

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  4. LANL analyzes meteor fragments nondestructively

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nondestructively LANL analyzes meteor fragments nondestructively Researchers and collaborators used the Los Alamos Neutron Science Center User Facility to perform novel...

  5. ARM - Datastreams - moltsedassndclass0

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Datastreamsmoltsedassndclass0 Documentation XDC documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : MOLTSEDASSNDCLASS0 Model Output Loc. Time Ser. (MOLTS): EDAS meteor. analy., basic soundings, params, stations Active Dates 1997.05.31 - 1999.09.27 Measurement Categories Atmospheric State Originating Instrument Model Output Location Time Series (MOLTS) Measurements The

  6. THE RETURN OF THE ANDROMEDIDS METEOR SHOWER

    SciTech Connect (OSTI)

    Wiegert, Paul A.; Brown, Peter G.; Weryk, Robert J.; Wong, Daniel K.

    2013-03-15

    The Andromedid meteor shower underwent spectacular outbursts in 1872 and 1885, producing thousands of visual meteors per hour and described as ''stars fell like rain'' in Chinese records of the time. The shower originates from comet 3D/Biela whose disintegration in the mid-1800's is linked to the outbursts, but the shower has been weak or absent since the late 19th century. This shower returned in 2011 December with a zenithal hourly rate of approximately 50, the strongest return in over a hundred years. Some 122 probable Andromedid orbits were detected by the Canadian Meteor Orbit Radar while one possible brighter Andromedid member was detected by the Southern Ontario Meteor Network and several single station possible Andromedids by the Canadian Automated Meteor Observatory. The shower outburst occurred during 2011 December 3-5. The radiant at R.A. +18 Degree-Sign and decl. +56 Degree-Sign is typical of the ''classical'' Andromedids of the early 1800s, whose radiant was actually in Cassiopeia. Numerical simulations of the shower were necessary to identify it with the Andromedids, as the observed radiant differs markedly from the current radiant associated with that shower. The shower's orbital elements indicate that the material involved was released before 3D/Biela's breakup prior to 1846. The observed shower in 2011 had a slow geocentric speed (V{sub G} = 16 km s{sup -1}) and was comprised of small particles: the mean measured mass from the radar is {approx}5 Multiplication-Sign 10{sup -7} kg, corresponding to radii of 0.5 mm at a bulk density of 1000 kg m{sup -3}. Numerical simulations of the parent comet indicate that the meteoroids of the 2011 return of the Andromedids shower were primarily ejected during 3D/Biela's 1649 perihelion passage. The orbital characteristics, radiant, and timing as well as the absence of large particles in the streamlet are all broadly consistent with simulations. However, simulations of the 1649 perihelion passage necessitate going back five Lyapunov times (which is only 25 yr for the highly perturbed parent). As a result, the stream evolution is somewhat uncertain and some discrepancy with the observations is to be expected: the radiant is 8 Degree-Sign off, the inclination 3 Degree-Sign higher, and the peak of the shower occurs a day earlier than predicted. Predictions are made regarding other appearances of the shower in the years 2000-2047 based on our numerical model. We note that the details of the 2011 return can, in principle, be used to better constrain the orbit of 3D/Biela prior to the comets first recorded return in 1772 and we address this issue briefly as well.

  7. ARM - Instrument - molts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are the hourly output at the selected locations that contain values for various surface parameters and "sounding" output at model levels. There are two possible classes assigned...

  8. DUST FROM COMET 209P/LINEAR DURING ITS 2014 RETURN: PARENT BODY OF A NEW METEOR SHOWER, THE MAY CAMELOPARDALIDS

    SciTech Connect (OSTI)

    Ishiguro, Masateru; Kuroda, Daisuke; Hanayama, Hidekazu; Takahashi, Jun; Takagi, Yuhei; Morihana, Kumiko; Honda, Satoshi; Arai, Akira; Hasegawa, Sunao; Sarugaku, Yuki; Watanabe, Makoto; Imai, Masataka; Goda, Shuhei; Akitaya, Hiroshi; Sekiguchi, Kazuhiro; Oasa, Yumiko; Saito, Yoshihiko; Morokuma, Tomoki; Murata, Katsuhiro; Nogami, Daisaku; and others

    2015-01-10

    We report a new observation of the Jupiter family comet 209P/LINEAR during its 2014 return. The comet is recognized as a dust source of a new meteor shower, the May Camelopardalids. 209P/LINEAR was apparently inactive at a heliocentric distance r{sub h} = 1.6 AU and showed weak activity at r{sub h} ? 1.4 AU. We found an active region of <0.001% of the entire nuclear surface during the comet's dormant phase. An edge-on image suggests that particles up to 1 cm in size (with an uncertainty of factor 3-5) were ejected following a differential power-law size distribution with index q = 3.25 0.10. We derived a mass-loss rate of 2-10 kg s{sup 1} during the active phase and a total mass of ?5נ10{sup 7} kg during the 2014 return. The ejection terminal velocity of millimeter- to centimeter-sized particles was 1-4 m s{sup 1}, which is comparable to the escape velocity from the nucleus (1.4 m s{sup 1}). These results imply that such large meteoric particles marginally escaped from the highly dormant comet nucleus via the gas drag force only within a few months of the perihelion passage.

  9. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, December 1992-January 1993)

    SciTech Connect (OSTI)

    Kozyr, A.

    1998-12-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and total alkalinity (TALK) at hydrographic stations, as well as the underway partial pressure of CO{sub 2} (pCO{sub 2}) during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (Section A10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Rio de Janeiro on December 27, 1992, and ended after 36 days at sea in Capetown, South Africa, on January 31, 1993. Measurements made along WOCE Section A10 included pressure, temperature, and salinity [measured by conductivity, temperature, and depth (CTD) sensor], bottle salinity, bottle oxygen, phosphate, nitrate, nitrite, silicate, chlorofluorocarbons (CFC-1 1 , CFC-12), TCO{sub 2}, TALK, and underway pCO{sub 2}. The TCO{sub 2} was measured by using two Single-Operator Multiparameter Metabolic Analyzers (SOMMAs) for extracting CO{sub 2} from seawater samples that were coupled to a coulometer for detection of the extracted CO{sub 2}. The overall precision and accuracy of the analyses was {+-} 1.9 {micro}mol/kg. Samples collected for TALK were measured by potentiometric titration; precision was {+-}2.0 {micro}mol/kg. Underway pCO{sub 2} was measured by infrared photometry with a precision of {+-} 2.0 {micro}atm. The work aboard the R/V Meteor was supported by the U.S. Department of Energy under contract DE-AC02-76CHOO016, and the Bundesministerium fir Forschung und Technologies through grants 03F0545A and MPG 099/1.

  10. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, March 29 - May 12, 1994)

    SciTech Connect (OSTI)

    Kozyr, A.

    2002-05-09

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and the fugacity of CO{sub 2} (fCO{sub 2}) at hydrographic stations during the R/V Meteor oceanographic cruise 28/1 in the South Atlantic Ocean (Section A8). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Recife, Brazil, on March 29, 1994, and ended after 35 days at sea in Walvis Bay, Namibia, on May 12, 1994. Instructions for accessing the data are provided. TCO{sub 2} was measured using two single-operator multiparameter metabolic analyzers (SOMMA) coupled to a coulometer for extracting and detecting CO{sub 2} from seawater samples. The overall precision and accuracy of the analyses was {+-}1.17 {micro}mol/kg. For the second carbonate system parameter, the fCO{sub 2} was measured in discrete samples by equilibrating a known volume of liquid phase (seawater) with a known volume of a gas phase containing a known mixture of CO{sub 2} in gaseous nitrogen (N{sub 2}). After equilibration, the gas phase CO{sub 2} concentration was determined by flame ionization detection following the catalytic conversion of CO{sub 2} to methane (CH{sub 4}). The precision of these measurements was less than or equal to 1.0%. The R/V Meteor Cruise 28/1 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 90 data retrieval routine files, a readme file, and this printed documentation that describes the contents and format of all files as well as the procedures and methods used to obtain the data.

  11. Colorado: Energy Modeling Products Support Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance (EDA) program. Through EDA, Xcel provides energy consulting services to construction projects to encourage efficient energy use. Xcel's new tool, the Energy Design...

  12. Sample Variant Provided by Panels | OSTI, US Dept of Energy, Office of

    Office of Scientific and Technical Information (OSTI)

    Scientific and Technical Information edae2a1e

  13. ARM - Measurement - Visibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Instruments LDIS : Laser Disdrometer MET : Surface Meteorological Instrumentation METTWR : Surface and Tower Meteorological Instrumentation at NSA External Instruments MOLTS : ...

  14. Sandia Energy - Mark Boslough Featured in NOVA Special about...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in NOVA Special about the Chelyabinsk Meteor Scientist Mark Boslough (Discrete Mathematics and Complex Systems Dept.) was featured in NOVA's special program "Meteor Strike,"...

  15. City of Halstad, Minnesota (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    utilities Facebook: https:www.facebook.compagesHalstad-EDA175407045845805?refhl Outage Hotline: 218-456-2128 References: EIA Form EIA-861 Final Data File for 2010 -...

  16. EERE News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Development Administration (EDA) and its Office of Innovation and Entrepreneurship today to announce the opening of the 12 million i6 Green Challenge, which will...

  17. Azuro Inc | Open Energy Information

    Open Energy Info (EERE)

    Azuro Inc Place: California Zip: CA 95054 Product: Azuro is a provider of electronic design automation (EDA) software for digital semiconductor chip design. References: Azuro...

  18. Energy Design Assistance Project Tracker (EDAPT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in 2012 and 2013 suggested market appetite for: * Broader adoption of EDAPT in other utility EDA programs * Extension of the web service to also manage retrofit incentive programs. ...

  19. ARM - Measurement - Atmospheric pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System MAPS : Mesoscale Analysis and Prediction System MOLTS : Model Output Location Time Series NOAASURF : NOAA Surface Meteorology Data, collected by NWS and NCDC NCEPGFS :...

  20. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesonet MAPS : Mesoscale Analysis and Prediction System MOLTS : Model Output Location Time Series NOAACRN : NOAA Climate Reference Network NOAASURF : NOAA Surface Meteorology...

  1. ARM - Measurement - Atmospheric moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mesonet MAPS : Mesoscale Analysis and Prediction System MOLTS : Model Output Location Time Series NOAASURF : NOAA Surface Meteorology Data, collected by NWS and NCDC NCEPGFS :...

  2. Colorado: Energy Modeling Products Support Energy Efficiency Projects

    Broader source: Energy.gov [DOE]

    Xcel Energy, a Minnesota-based utility that supplies electricity and natural gas to eight states, employed two EERE-developed products in developing a program management tool for its Energy Design Assistance (EDA) program. Through EDA, Xcel provides energy consulting services to construction projects to encourage efficient energy use.

  3. The TLR4 agonist fibronectin extra domain A is cryptic, exposed by elastase-2; use in a fibrin matrix cancer vaccine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Julier, Ziad; Martino, Mikaël M.; de Titta, Alexandre; Jeanbart, Laura; Hubbell, Jeffrey A.

    2015-02-24

    Fibronectin (FN) is an extracellular matrix (ECM) protein including numerous fibronectin type III (FNIII) repeats with different functions. The alternatively spliced FN variant containing the extra domain A (FNIII EDA), located between FNIII 11 and FNIII 12, is expressed in sites of injury, chronic inflammation, and solid tumors. Although its function is not well understood, FNIII EDA is known to agonize Toll-like receptor 4 (TLR4). Here, by producing various FN fragments containing FNIII EDA, we found that FNIII EDA's immunological activity depends upon its local intramolecular context within the FN chain. N-terminal extension of the isolated FNIII EDA with itsmore » neighboring FNIII repeats (FNIII 9-10-11) enhanced its activity in agonizing TLR4, while C-terminal extension with the native FNIII 12-13-14 heparin-binding domain abrogated it. We reveal that an elastase 2 cleavage site is present between FNIII EDA and FNIII 12. Activity of the C-terminally extended FNIII EDA could be restored after cleavage of the FNIII 12-13-14 domain by elastase 2. FN being naturally bound to the ECM, we immobilized FNIII EDA-containing FN fragments within a fibrin matrix model along with antigenic peptides. Such matrices were shown to stimulate cytotoxic CD8+ T cell responses in two murine cancer models.« less

  4. EERE Success Story—Colorado: Energy Modeling Products Support Energy Efficiency Projects

    Broader source: Energy.gov [DOE]

    Xcel Energy, a Minnesota-based utility that supplies electricity and natural gas to eight states, employed two EERE-developed products in developing a program management tool for its Energy Design Assistance (EDA) program. Through EDA, Xcel provides energy consulting services to construction projects to encourage efficient energy use.

  5. ARM XDC Datastreams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StreamsModel Output Location Time Series Documentation MOLTS Instrument External Datastream Descriptions ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Model Output Location Time Series (MOLTS) Information updated on July 12, 2005, 2:31 pm GMT General Data Description The Model Output Location Time Series (MOLTS) data are provided by the National Centers for Environmental Prediction (NCEP). Currently there are over

  6. Obama Administration Announces Launch of i6 Green Challenge to Promote Clean Energy Innovation and Economic Growth

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy joined with the U.S. Commerce Department's Economic Development Administration (EDA) and its Office of Innovation and Entrepreneurship today to announce the opening of...

  7. Microsoft Word - Transport-program.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    e & i Lower i Standard collisionality C-Mod EDA H-mode r mid 0.56a Kinetic electrons and ions (Turbulence near marginal stability) Plan: * Quantitative comparison...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the ARM External Data Center since the last update in 1999 (MOLTS, TOMS, 30 min OK Mesonet, CSPHOT, TWP AVHRR, ECMWF, RUC, TAO Buoy, IAP). We describe briefly the software...

  9. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Office of Environmental Management (EM)

    Abengoa Solar Sunshot Conf erence Project Review Development of M olt en-Salt Heat Transf ... generat ion of organic heat t ransport f luids w it h low f reeze point molt en salt s. ...

  10. February

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    small samples of the Chelyabinsk meteor. - 4115 Carl Ekdahl Ekdahl named IEEE Fellow The IEEE cited Ekdahl "for contributions to high-power accelerator development...

  11. Fluid-inclusion evidence for past temperature fluctuations in...

    Open Energy Info (EERE)

    of the inclusion fluids range from dilute meteoric water to highly modified sea water concentrated by boiling. Comparison of measured drill-hole temperatures with...

  12. CV-3: Extensional Domain | Open Energy Information

    Open Energy Info (EERE)

    in a higher geothermal gradient within the crust. Meteoric water circulates through deep faults or permeable formations in the crust and becomes heated. Typical faults formed...

  13. Radiometrics At Salt Wells Area (Coolbaugh, Et Al., 2006) | Open...

    Open Energy Info (EERE)

    precipitation and the susceptibility of NaCl to remobilization in meteoric water at low temperature. Remote sensing methods for identifying regional-scale zoning of these...

  14. liesvend-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spring. J. Appl. Meteor., 34, 2076-2082. Twomey, S., 1977: Atmospheric Aerosols. Elsevier Scientific Publishing. Tsay, Si-Chee, and K. Jayaweera, 1984: Physical charac-...

  15. MGR External Events Hazards Analysis

    SciTech Connect (OSTI)

    L. Booth

    1999-11-06

    The purpose and objective of this analysis is to apply an external events Hazards Analysis (HA) to the License Application Design Selection Enhanced Design Alternative 11 [(LADS EDA II design (Reference 8.32))]. The output of the HA is called a Hazards List (HL). This analysis supersedes the external hazards portion of Rev. 00 of the PHA (Reference 8.1). The PHA for internal events will also be updated to the LADS EDA II design but under a separate analysis. Like the PHA methodology, the HA methodology provides a systematic method to identify potential hazards during the 100-year Monitored Geologic Repository (MGR) operating period updated to reflect the EDA II design. The resulting events on the HL are candidates that may have potential radiological consequences as determined during Design Basis Events (DBEs) analyses. Therefore, the HL that results from this analysis will undergo further screening and analysis based on the criteria that apply during the performance of DBE analyses.

  16. Final report on the developmental toxicity of ethylenediamine (CAS No. 107-15-3) in New Zealand white rabbits. Report for November-February 1992

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    Ethylenediamine (EDA) is a major industrial chemical with an estimated U.S. production of 64 million pounds in 1985. EDA is used as a chemical intermediate or solvent in manufacturing, as a paint thinner, and as a constituent of certain cosmetic, pharmaceutical and veterinary products. Based upon its widespread applications and the potential for exposure in pregnant women, EDA was evaluated for maternal and developmental toxicity using a laboratory animal model. Artificially-inseminated New Zealand White rabbits (26/group) were administered ethylenediamine (0, 10, 40 or 80 mg/kg/day) by gavage on gestational days (gd) 6 through 19. The doses administered were equivalent to 0, 22, 89 or 178 of EDA.2HC1. Maternal clinical signs, body weight, and food consumption were monitored at regular intervals throughout gestation. At termination (gd 30), the uterus was removed and examined to determine pregnancy status and to evaluate the number of resorptions, and dead or live fetuses. Dead or live fetuses were weighed, and live fetuses examined for external, visceral and skeletal defects.

  17. Optical sensor for measuring American Lobster vitality

    SciTech Connect (OSTI)

    Tomassetti, Brian R. A.; Vetelino, John F.

    2011-06-10

    The vitality of the American Lobster (Homarus americanus) is correlated to the total hemolymph protein (THP) in lobster hemolymph (blood). The standard technique for determining lobster vitality is to draw blood from a lobster and measure THP with a refractometer. This technique is invasive and endangers the lobster's health since blood must be drawn from the lobster. In the present work an optical sensor is developed to measure a lobster's vitality in vivo. It is comprised of a broadband light source, a monochromator, a fiber optic reflection probe, a spectrometer and a computer. This sensor measures protein concentrations by exciting a lobster with 280 nm and 334 nm wavelength light sources and measuring the corresponding absorbance peaks for THP and the fluorescence peak for hemocyanin (Hc), the majority protein in hemolymph. In this work several lobsters are tested. For each lobster, absorbance and fluorescence peaks are measured using the sensor and compared to protein concentrations measured using a refractometer. It is found that the shell thickness and muscle density, which correspond directly to protein concentration and the molting stage of the lobster have a significant effect on the absorbance and fluorescence measurements. It is also found that within specific molting stages, such as pre-molt and post-molt, protein concentration measured with a refractometer correlates linearly to absorbance and fluorescence measurements with the optical sensor.

  18. ARM - VAP Process - armbe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G. Palanisamy, Y. Shi, and D.D. Turner, 2010: CLOUDS AND MORE: ARM Climate Modeling Best Estimate Data. Bull. Amer. Meteor. Soc., 91, 13-20. DOI: 10.11752009BAMS2891.1. Data...

  19. Trishchenko(1)-AP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (ERBS, NOAA-9 and -10), ScaRaB-1 on the METEOR-37, ScaRaB-2 on the RESSURS (Kandel et al. 1998) and CERES on the TRMM platform. We applied the algorithms of Li et al....

  20. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In Proceedings of the 24th Conference on Radar Meteorology. Amer. Meteor. Soc., pp. 666-671, Tallahassee, Florida, March 27-31, 1989. Babb, D. M., J Verlinde, and B. A. Albrecht, ...

  1. Chemistry of spring and well waters on Kilauea Volcano, Hawaii...

    Open Energy Info (EERE)

    determine the chemistry of dilute meteoric water, mixtures with sea water,and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea...

  2. Studying Mixed-Phased Clouds Using Ground-Based Active and Passive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... J. Appl. Meteor., 40, 1967-1983. Fleishauer, R. P., V. E. Larson, and T. H. Vonder Haar, 2002: Observed microphysical structure of midlevel, mixed-phase clouds. J. Atmos. Sci., 59, ...

  3. Posters Sensitivity of Cirrus Cloud Radiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Takahashi, T., and K. Kuhara. 1993. Precipitation mechanisms of cumulonimbus clouds at Pohnpei, Micronesia. Meteor. Soc. Japan 71:21-31. Takano, Y., and K. N. Liou. 1989. Radiative ...

  4. Studying Altocumulus Plus Virga with Ground-based Active and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    41, 218-229. Wang, Z., K. Sassen, D. Whiteman, and B. Demoz, 2004: Studying altocumulus plus virga with ground-based active and passive remote sensors. J. Appl. Meteor.,43,...

  5. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analyzes meteor fragments nondestructively April 1, 2015 Laboratory researchers and collaborators used the Los Alamos Neutron Science Center (LANSCE) User Facility to perform novel compositional tomography characterizing small samples of the Chelyabinsk meteor, the largest fireball to strike Earth in 100 years. The team employed LANSCE's combination of proton and neutron radiography and neutron diffraction tools to gain deeper insights into the meteorite's physical structure, chemical

  6. 6/17/10 11:48 AM

    Office of Environmental Management (EM)

    8 AM mail 2552×3320 pixels Page 1 of 1 https://mail.google.com/mail/?ui=2&ik=a8112e8de8&view=att&th=12946e1921eda067&attid=0.3&disp=inline&realattid=f_gajudmr22&zw 6/17/10 11:50 AM mail 2552×3340 pixels Page 1 of 1 https://mail.google.com/mail/?ui=2&ik=a8112e8de8&view=att&th=12946e1921eda067&attid=0.5&disp=inline&realattid=f_gajue1sa4&zw 6/17/10 11:50 AM mail 2548×3348 pixels Page 1 of 1

  7. Obama Adminstration Announces Launch of i6 Green Challenge to Promote Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Innovation and Economic Growth | Department of Energy Adminstration Announces Launch of i6 Green Challenge to Promote Clean Energy Innovation and Economic Growth Obama Adminstration Announces Launch of i6 Green Challenge to Promote Clean Energy Innovation and Economic Growth March 10, 2011 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy joined with the U.S. Commerce Department's Economic Development Administration (EDA) and its Office of Innovation and Entrepreneurship

  8. Hydrology of the Greater Tongonan geothermal system, Philippines, as deduced from geochemical and isotopic data

    SciTech Connect (OSTI)

    Alvis-Isidro, R.R.; Solana, R.R.; D`amore, F.; Nuti, S.; Gonfiantini, R.

    1993-10-01

    Fluids in the Greater Tongonan geothermal system exhibit a large positive {sup 18}O shift from the Leyte meteoric water line. However, there is also a significant shift in {sup 2}H. The {delta}{sup 2}H-{delta}{sup 18}O plot shows that the geothermal fluids may be derived by the mixing of meteoric water with local magmatic water. The most enriched water in the Greater Tongonan system, in terms of {delta}{sup 18}O, {delta}{sup 2}H and Cl, is comprised of approximately 40% magmatic water. Baseline isotope results support a hydrogeochemical model in which there is increasing meteoric water dilution to the southeast, from Mahiao to Sambaloran and towards Malitbog. The Cl-{delta}{sup 18}O plot confirms that the geothermal fluid in Mahanagdong, further southeast, is distinct from that of the Mahiao-Sambaloran-Malitbog system.

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Data Streams Available for ARM Mobile Facility Deployment Sites Bookmark and Share The pyeruc20isobX1.c1 datastream originates from data in a grid of points bordered by latitudes 34.300 and 42.539 and by longitudes -127.607 and -120.862; the RUC "bounding box." This area is indicated by the blue corner squares; purple dots indicate MOLTS stations, and green triangles indicate ECMWF stations. New climate datastreams are now available from Point Reyes National Seashore in California,

  10. Preparation of highly luminescent and color tunable carbon nanodots under visible light excitation for in vitro and in vivo bio-imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Min; Li, Jing; Xie, Zhigang; Qu, Dan; Miao, Xiang; Jing, Xiabing; Sun, Zaicheng; Fan, Hongyou; Liu, Shi

    2016-01-01

    Carbon nanodots (CDs) have generated enormous excitement because of their superiority in water solubility, chemical inertness, low toxicity, ease of functionalization and resistance to photobleaching. Here we report a facile thermal pyrolysis route to prepare CDs with high quantum yield (QY) using citric acid as the carbon source and ethylene diamine derivatives (EDAs) including triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and polyene polyamine (PEPA) as the passivation agents. We find that the CDs prepared from EDAs, such as TETA, TEPA and PEPA, show relatively high photoluminescence (PL) QY (11.4, 10.6, and 9.8%, respectively) at 1ex of 465 nm. The cytotoxicity of themore » CDs has been investigated through in vitro and in vivo bio-imaging studies. The results indicate that these CDs possess low toxicity and good biocompatibility. As a result, the unique properties such as the high PL QY at large excitation wave length and the low toxicity of the resulting CDs make them promising fluorescent nanoprobes for applications in optical bio-imaging and biosensing.« less

  11. Controlling Non-Covalent Interactions to Modulate the Dispersion of Fullerenes in Polymer Nanocomposites

    SciTech Connect (OSTI)

    Linton, Dias; Dadmun, Mark D; Sumpter, Bobby G; Teh, Say-Lee

    2011-01-01

    Polymer nanocomposites (PNCs) are materials based on a class of filled plastics that contain relatively small amounts of nanoparticles, which can impart improved structural, mechanical, and thermal properties relative to the neat polymer. However, the homogeneous dispersion of the nanoparticles into a polymer matrix is critical and an impeding factor for the controlled enhancement of PNC properties. In this work, we provide new insight into the importance of polymer chain connectivity and nanoparticle shape and curvature on the formation of noncovalent electron donoracceptor (EDA) interactions between polymers and nanoparticles. This is accomplished by experimentally monitoring the dispersion of nanoparticles in copolymers containing varying amounts of functional moieties that can form noncovalent interactions with carbon nanoparticles with corroboration through density functional calculations. The results show that the presence of a minority of interacting functional groups within a polymer chain leads to an optimum interaction between the polymer and fullerene. Density functional theory calculations that identify the binding energy and geometry of the interaction between the functional monomers and fullerenes correspond very well with the experimental results. Moreover, comparison of these results to similar studies with single-walled carbon nanotubes (SWNT) indicate a distinct difference in the ability of EDA interactions to improve the dispersion of fullerenes relative to their impact on SWNT. Thus, the polymer chain connectivity, the polymer chain conformation, and size and shape of the nanoparticle modulate the formation of intermolecular interactions and directly impact the dispersion of the resultant nanocomposite.

  12. Controlling Non-Covalent Interactions to Modulate the Dispersion of Fullerenes in Polymer Nanocomposites

    SciTech Connect (OSTI)

    Sumpter, Bobby G

    2011-01-01

    Polymer nanocomposites (PNCs) are materials based on a class of filled plastics that contain relatively small amounts of nanoparticles, which can impart improved structural, mechanical, and thermal properties relative to the neat polymer. However, the homogeneous dispersion of the nanoparticles into a polymer matrix is critical and an impeding factor for the controlled enhancement of PNC properties. In this work, we provide new insight into the importance of polymer chain connectivity and nanoparticle shape and curvature on the formation of noncovalent electron donor-acceptor (EDA) interactions between polymers and nanoparticles. This is accomplished by experimentally monitoring the dispersion of nanoparticles in copolymers containing varying amounts of functional moieties that can form noncovalent interactions with carbon nanoparticles with corroboration through density functional calculations. The results show that the presence of a minority of interacting functional groups within a polymer chain leads to an optimum interaction between the polymer and fullerene. Density functional theory calculations that identify the binding energy and geometry of the interaction between the functional monomers and fullerenes correspond very well with the experimental results. Moreover, comparison of these results to similar studies with single-walled carbon nanotubes (SWNT) indicate a distinct difference in the ability of EDA interactions to improve the dispersion of fullerenes relative to their impact on SWNT. Thus, the polymer chain connectivity, the polymer chain conformation, and size and shape of the nanoparticle modulate the formation of intermolecular interactions and directly impact the dispersion of the resultant nanocomposite.

  13. Preparation of highly luminescent and color tunable carbon nanodots under visible light excitation for in vitro and in vivo bio-imaging

    SciTech Connect (OSTI)

    Zheng, Min; Li, Jing; Xie, Zhigang; Qu, Dan; Miao, Xiang; Jing, Xiabing; Sun, Zaicheng; Fan, Hongyou; Liu, Shi

    2016-01-01

    Carbon nanodots (CDs) have generated enormous excitement because of their superiority in water solubility, chemical inertness, low toxicity, ease of functionalization and resistance to photobleaching. Here we report a facile thermal pyrolysis route to prepare CDs with high quantum yield (QY) using citric acid as the carbon source and ethylene diamine derivatives (EDAs) including triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and polyene polyamine (PEPA) as the passivation agents. We find that the CDs prepared from EDAs, such as TETA, TEPA and PEPA, show relatively high photoluminescence (PL) QY (11.4, 10.6, and 9.8%, respectively) at 1ex of 465 nm. The cytotoxicity of the CDs has been investigated through in vitro and in vivo bio-imaging studies. The results indicate that these CDs possess low toxicity and good biocompatibility. As a result, the unique properties such as the high PL QY at large excitation wave length and the low toxicity of the resulting CDs make them promising fluorescent nanoprobes for applications in optical bio-imaging and biosensing.

  14. Magmatic tritium

    SciTech Connect (OSTI)

    Goff, F.; Aams, A.I.; McMurtry, G.M.; Shevenell, L.; Pettit, D.R.; Stimac, J.A.; Werner, C.

    1997-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. Detailed geochemical sampling of high-temperature fumaroles, background water, and fresh magmatic products from 14 active volcanoes reveal that they do not produce measurable amounts of tritium ({sup 3}H) of deep origin (<0.1 T.U. or <0.32 pCi/kg H{sub 2}O). On the other hand, all volcanoes produce mixtures of meteoric and magmatic fluids that contain measurable {sup 3}H from the meteoric end-member. The results show that cold fusion is probably not a significant deep earth process but the samples and data have wide application to a host of other volcanological topics.

  15. Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pre-dawn hours of January 24, 1978, a Canadian Mounted Police corporal located in Hay River, in the Canadian Northwest Territories, reported a meteor sighting. One hundred and twenty-fve miles north, in Yellowknife, a night janitor reported mysterious lights streaking across the darkened sky. What these eye-witnesses actually saw was the re-entry of the Soviet satellite Cosmos 954 into Earth's atmosphere. Background Cosmos 954 launched into orbit on September 18, 1977. The satellite was designed

  16. Press Releases - 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases - 2016 March 14, 2016 Shock compression research shows hexagonal diamond could serve as meteor impact marker Researchers report new insights into the process of the shock-induced transition from graphite to diamond during meteorite impacts. February 24, 2016 Lawrence Livermore physicist receives Presidential honor Lawrence Livermore National Laboratory physicist Tammy Ma has been selected for a 2016 Presidential Early Career Award for Science and Engineering (PECASE). February 10, 2016

  17. Sensitivity analysis of sluicing-leak parameters for the 241-AX tank farm

    SciTech Connect (OSTI)

    Davis, J.D., Westinghouse Hanford

    1996-12-12

    The scope of this work was to analyze the sensitivity of contaminant fluxes from the vadose zone to the water table, to several parameters. Some of these parameters are controllable. The results were evaluated with respect to their sensitivity to the following types of parameters: hydrostratigraphy and hydraulic properties; volume, duration, and source area of leakage; simultaneous leakage from multiple tanks; pre-existing leaks; barriers to infiltration of meteoric water; and contaminant concentrations and geochemistry.

  18. AMF ARM Mobile FAcility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Mobile FAcility Details on the AMF proposal process can be found at http://www.arm.gov/acrf/submit_proposals.stm. For more information, contact: Mark Miller Mary Jane Bartholomew AMF Site Scientist Assoc. Site Scientist (631) 344-2958 (631) 344-2444 miller@bnl.gov bartholomew@bnl.gov baseline capabilities Measurement capabilities include the standard meteor- ological instrumentation, broadband and spectral radi- ometer suite, and remote sensing instruments. The ARM Mobile Facility (AMF) can

  19. Comparison of filter with Prairie and European Network data

    SciTech Connect (OSTI)

    Canavan, G.H.

    1997-10-01

    Earlier notes derived a model for the hydrodynamics, ablation, and radiation of meteor impacts at the level needed to infer meteor parameters from observations and extended it to objects that fragment during entry, using models based on related cometary studies. This note completes the comparison of the resulting filter model to European and Prairie Network (EN and PN) data and models of meteor impact. In cases of mutual applicability, US and European models give broadly consistent results. The quantitative analysis of the EN and PN data is best discussed in conjunction with the Russian program of its analysis, because the Russian program has bypassed the large reported photometrically based masses to derive more plausible estimates of sizes, masses, and radiation efficiencies, which are the primary quantities of concern here. This note completes the discussion of the PN and EN data begun earlier, uses the data to produce filter predictions, and compares it with observations and the predictions of the Russian analytic effort. The overall agreement is useful in that the Russian efforts have employed more complex models that use observational data directly, while the filter model is at a level of simplification much better suited to data inversion.

  20. The geochemistry of formation waters in the Molasse basin of upper Austria

    SciTech Connect (OSTI)

    Andrews, J.N.; Youngman, M.J. ); Goldbrunner, J.E. ); Darling, W.G. )

    1987-01-01

    The geochemistry of formation waters in the Molasse basin of Upper Austria has been investigated to ascertain the extent of meteoric water replacement of the connate interstitial fluids in these sediments. The chemistry, isotopic composition, and dissolved gas contents of the groundwaters and of oil and gas associated brines have been determined. The most superficial sediments of the basin, the Innviertel (Miocene), have been completely flushed by meteoric waters within the last 200 ka. The underlying Hall and Puchkirchen formations (Miocene/Oligocene) form gas reservoirs for biogenic methane, and the associated formation water are chemically and isotopically modified connate brines of the original marine deposition. In the northeastern part of the basin, the connate brines of the deeper sediments (Cretaceous/Jurassic) have been partially or completely replaced by meteoric waters, whereas in the south of the basin these sediments contain high salinity fluids which are substantially of connate origin. These conclusions are supported by the stable isotope composition of the various brines. Oil-associated brines from the Eocene sediments contain large amounts of dissolved radiogenic {sup 40}Ar, which suggests that the oils have migrated from high-temperature environments. The overall geochemical situation confirms the existence of separate hydraulic systems with little interconnection in the several overlying geological horizons.

  1. Water/rock interaction efficiency and seawater dolomitization in the Eocene Avon Park Formation, Floridan Aquifer

    SciTech Connect (OSTI)

    Cander, H.S. )

    1990-05-01

    The Floridan aquifer has often been proposed as a system of extensive meteoric carbonate diagenesis and mixing zone dolomitization. However, the dominance of marine isotope (C, O, {sup 87}Sr/{sup 86}Sr) and trace element (Sr, Fe, Mn) compositions in dolomites and limestones in the Eocene Avon Park Formation, Floridan aquifer, suggests that the very active low temperature meteoric groundwater system has, over the past 40 m.y., been an inefficient mechanism of diagenesis. {delta}{sup 18}O values of all but two replacement dolomites sampled range from +2.0 to +5.1 (PDB) with high Sr concentrations (90-325 ppm), indicating dolomitization by near-normal marine water involving no significant interaction with meteoric groundwater. The two {delta}{sup 18}O-depleted (0.0 {plus minus} 1) dolomites have low Sr concentrations ({approximately}100 ppm) suggesting limited recrystallization in meteoric water. Several dolomite samples have radiogenic {sup 87}Sr/{sup 86}Sr compositions (0.70810-0.70883 {plus minus} 2), but have heavy oxygen isotope compositions (> +2.0) and high Sr concentrations (<200 ppm) suggesting precipitation from cold Miocene age or younger seawater that circulated through the Florida platform. Most limestone stable isotope compositions cluster around marine values (({delta}{sup 18}O = {minus}1 to +1, PDB) {delta}{sup 13}C = +0.5 to +2.5) and have Eocene seawater {sup 87}Sr/{sup 86}Sr compositions (0.70775 {plus minus} 2 to 0.70779 {plus minus} 2) with 400 to 500 ppm Sr. Isotopic compositions of limestones from the east coast of Florida are all within these ranges. Only some limestones from central Florida and the west coast contain depleted stable isotopic compositions and low Sr concentrations. The sample with the most depleted stable isotope values has a radiogenic {sup 87}Sr/{sup 86}Sr composition (0.70870 {plus minus} 2), suggesting that diagenetic meteoric water migrated through post-Miocene strata.

  2. FORMATION OF CALCIUM AND SILICA FROM PERCOLATION IN A HYDROLOGICALLY UNSATURATED SETTING, Y.M.,NV

    SciTech Connect (OSTI)

    J.B. Paces; J.F. Whelan; Z.E. Peterman; B.D. Marshall

    2000-07-27

    Geological, mineralogical, chemical, and isotopic evidence from coatings of calcite and silica on open fractures and lithophysal cavities within welded tuffs at Yucca Mountain indicate an origin from meteoric water percolating through a thick (500 to 700 m) unsaturated zone (UZ) rather than from pulses of ascending ground water. Geologic evidence for a UZ setting includes the presence of coatings in only a small percentage of cavities, the restriction of coatings to fracture footwalls and cavity floors, and an absence of mineral high-water marks indicative of water ponding. Systematic mineral sequences (early calcite, followed by chalcedony with minor quartz and fluorite, and finally calcite with intercalated opal forming the bulk of the coatings) indicate progressive changes in UZ conditions through time, rather than repeated saturation by flooding. Percolation under the influence of gravity also results in mineral textures that vary between steeply dipping sites (thinner coatings of blocky calcite) and shallowly dipping sites (thicker coatings of coarse, commonly bladed calcite, with globules and sheets of opal). Micrometer-scale growth banding in both calcite and opal reflects slow average growth rates (scale of mm/m.y.) over millions of years rather than only a few rapidly deposited growth episodes. Isotopic compositions of C, O, Sr, and U from calcite and opal indicate a percolation-modified meteoric water source, and collectively refute a deeper ground-water source. Chemical and isotopic variations in coatings also indicate long-term evolution of water compositions. Although some compositional changes are related to shifts in climate, growth rates in the deeper UZ are buffered from large changes in meteoric input. Coatings most likely formed from films of water flowing down connected fracture pathways. Mineral precipitation is consistent with water vapor and carbon dioxide loss from films at very slow rates. Data collectively indicate that mineral coatings formed in a UZ setting that has been hydrologically stable over million-year time scales.

  3. Sedimentology and diagenesis of windward-facing fore-reef calcarenites, Late Pleistocene of Barbados, West Indies

    SciTech Connect (OSTI)

    Humphrey, J.D.; Kimbell, T.N.

    1989-03-01

    Late Pleistocene reef terraces in southeastern Barbardos developed extensive fore-reef sand facies during deposition in response to high-energy windward-facing conditions. Sedimentology and diagenesis of these deposits illustrate significant contrasts with previous studies from the leeward west coast. These calcarenites are dominantly skeletal packstones with less common grainstones and wackestones present. The fore-reef sand facies occurs within progradational reef sequences, being conformably overlain by deep-water head coral facies. Medium-bedded, laterally continuous sand sheets retain original depositional slopes, dipping seaward at 10/degrees/-15/degrees/. These fore-reef deposits, in places, are over 30 m thick (average 20 m) and developed rapidly during late Pleistocene glacio-eustatic sea level highstands. Sedimentation rate ranges from 2 to 5 m/1000 years. Areal extent of fore-reef calcarenites in southeastern Barbados is estimated to be 8-10 km/sup 2/. Lithologically, the packstones are composed of an abundance of coralline red algae and the benthic foraminifer Amphistegina sp. Other volumetrically significant allochems include echinoids, mollusks, rhodoliths, peloids, and micritized grains. Micrite in the wackestone and packstone lithologies is likely derived from intense physical/mechanical abrasion of shoal-water reef facies. Diagenesis of these lithologies reflects a complex interplay of meteoric, mixing zone, and marine environments as a result of glacio-eustasy. Differences in diagenetic character are derived from differences in terrace ages, terrace geometry, a paleotopographic control on meteoric ground-water distribution, and high-energy coastal conditions. Diagenetic fabrics include equant, blocky meteoric phreatic calcite; limpid dolomite of mixing zone origin: and peloidal and isopachous fibrous cements from marine precipitation.

  4. Sandia National Laboratories: News: Publications: Lab Accomplishments:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pulsed power In 2015, experiments on Sandia's Z machine and quantum simulations in the Z Fundamental Science Program made discoveries that help explain iron rain when the moon was formed, the age of Saturn, and the abundances of heavy elements in the sun. Facebook Twitter YouTube Flickr RSS News Pulsed power The conditions created on Sandia's Z machine are literally out of this world - states of matter found in giant planets, meteor impacts, or in the sun are attracting scientists to

  5. Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection

    SciTech Connect (OSTI)

    Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

    2010-10-01

    The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision points such as; crash, location, etc. For each pass through the routines, when a crash is randomly selected, crash parameters are then used to determine if failure has occurred using either external look up tables, correlations functions from deterministic calculations, or built in data libraries. The effectiveness of the software was recently demonstrated in safety analyses of the transportation of radioisotope systems for the US Dept. of Energy. These methods are readily adaptable to estimating risks associated with a variety of hazardous shipments such as spent nuclear fuel, explosives, and chemicals.

  6. 9 M.y. record of southern Nevada climate from Yucca Mountain secondary minerals

    SciTech Connect (OSTI)

    Whelan, J.F.; Moscati, R.J.

    1998-12-01

    Yucca Mountain, Nevada, is presently the object of intense study as a potential permanent repository for the Nation`s high-level radioactive wastes. The mountain consists of a thick sequence of volcanic tuffs within which the depth to water table ranges from 500 to 700 meters below the land surface. This thick unsaturated zone (UZ), which would host the projected repository, coupled with the present day arid to semi-arid climate, is considered a favorable attribute of the site. Evaluation of the site includes defining the relation between climate variability, as the input function or driver of site- and regional-scale ground-water flow, and the possible future transport and release of radionuclides to the accessible environment. Secondary calcite and opal have been deposited in the UZ by meteoric waters that infiltrated through overlying soils and percolated through the tuffs. The oxygen isotopic composition ({delta}{sup 18}O values) of these minerals reflect contemporaneous meteoric waters and the {delta}{sup 13}C values reflect soil organic matter, and hence the resident plant community, at the time of infiltration. Recent U/Pb age determinations of opal in these occurrences, coupled with the {delta}{sup 13}C values of associated calcite, allow broadbrush reconstructions of climate patterns during the past 9 M.y.

  7. UNSATURATED ZONE CALCITE 813C EVIDENCE OF SOUTHERN NEVADA CLIMATES DURING THE PAST 9 MILLION YEARS

    SciTech Connect (OSTI)

    JOSEPH F. WHELAN AND RICHARD J. MOSCATI

    1998-01-26

    Yucca Mountain, Nevada, is presently the object of intense study as a potential permanent repository for the Nation's high-level radioactive wastes. The mountain consists of a thick sequence of volcanic tuffs in which the depth to the water table ranges from 500 to 700 meters below the land surface. This thick unsaturated zone (UZ), which would host the projected repository, coupled with the present-day arid to semi-arid environment, is considered a positive argument for the site. Evaluation of the site includes defining the relationship between climate variability, as the input function or driver of site- and regional-scale ground-water flow, and the possible transport and release of radionuclides. Secondary calcite and opal have been deposited in the UZ by meteoric waters that infiltrated through overlying soils and percolated through the tuffs. The oxygen isotopic composition ({delta}{sup 18}O values) of these minerals reflect contemporaneous meteoric waters and the {delta}{sup 13}C values reflect soil organic matter, and hence the resident plant community, at the time of infiltration (Whelan et al., 1994). Recent U/Pb age determinations of opal in these occurrences allows the {delta}{sup 13}C values of associated calcite to be used to reconstruct general climate variations during the past 9 M.y.

  8. Isotopic evidence for a magmatic contribution to fluids of the geothermal systems of Larderello, Italy, and the Geysers, California

    SciTech Connect (OSTI)

    D'Amore, F.; Bolognesi, L. . Italian National Research Council)

    1994-02-01

    The isotopic composition of steam from the Larderello, Italy, and The Geysers, California, geothermal fields is used to determine the source(s) of the fluid in these two vapor-dominated systems. Previous interpretations suggested the isotopic composition of the two systems was mainly the result of reactions at high temperature between deeply circulating meteoric water and largely sedimentary host rocks. The authors interpret the data for the Larderello and The Geysers fluids as indicating that meteoric water, exchanged with host rocks, mixes with local magnetic water. The isotopic composition of end-member magmatic water at The Geysers is typical of convergent plate boundaries ([delta][sup 18]O = +5 to +11 per mil; [delta]D = [minus]10 to [minus]35 per mil); a local isotopic composition of +11 to +15 per mil [delta][sup 18]O and [minus]15 to [minus]35 per mil [delta]D is suggested for the Larderello magmatic water. The magmatic water derived from the crystallization of underlying magma. Metamorphic waters, derived from dehydration reactions of OH-bearing minerals, may also make a minor contribution to the geothermal fluids.

  9. Experimental investigation of factors limiting slow axis beam quality in 9xx nm high power broad area diode lasers

    SciTech Connect (OSTI)

    Winterfeldt, M. Crump, P.; Wenzel, H.; Erbert, G.; Trnkle, G.

    2014-08-14

    GaAs-based broad-area diode lasers are needed with improved lateral beam parameter product (BPP{sub lat}) at high power. An experimental study of the factors limiting BPP{sub lat} is therefore presented, using extreme double-asymmetric (EDAS) vertical structures emitting at 910?nm. Continuous wave, pulsed and polarization-resolved measurements are presented and compared to thermal simulation. The importance of thermal and packaging-induced effects is determined by comparing junction -up and -down devices. Process factors are clarified by comparing diodes with and without index-guiding trenches. We show that in all cases studied, BPP{sub lat} is limited by a non-thermal BPP ground-level and a thermal BPP, which depends linearly on self-heating. Measurements as a function of pulse width confirm that self-heating rather than bias-level dominates. Diodes without trenches show low BPP ground-level, and a thermal BPP which depends strongly on mounting, due to changes in the temperature profile. The additional lateral guiding in diodes with trenches strongly increases the BPP ground-level, but optically isolates the stripe from the device edges, suppressing the influence of the thermal profile, leading to a BPP-slope that is low and independent of mounting. Trenches are also shown to initiate strain fields that cause parasitic TM-polarized emission with large BPP{sub lat}, whose influence on total BPP{sub lat} remains small, provided the overall polarization purity is >95%.

  10. EQ6 Calculations for Chemical Degradation of Navy Waste Packages

    SciTech Connect (OSTI)

    S. LeStrange

    1999-11-15

    The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package. The water may gradually leach the fissile components and neutron absorbers out of the waste package. In addition, the accumulation of silica (SiO{sub 2}) in the waste package over time may further affect the neutronics of the system. This study presents calculations of the long-term geochemical behavior of waste packages containing the Enhanced Design Alternative (EDA) II inner shell, Navy canister, and basket components. The calculations do not include the Navy SNF in the waste package. The specific study objectives were to determine the chemical composition of the water and the quantity of silicon (Si) and other solid corrosion products in the waste package during the first million years after the waste package is breached. The results of this calculation will be used to ensure that the type and amount of criticality control material used in the waste package design will prevent criticality.

  11. Rock-brine chemical interactions. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    The results of experimental interaction of powdered volcanic rock with aqueous solutions are presented at temperatures from 200 to 400/sup 0/C, 500 to 1000 bars fluid pressure, with reaction durations of approximately 30 days under controlled laboratory conditions. The aim of this research is to develop data on the kinetics and equilibria of rock solution interactions that will provide insight into the complex geochemical processes attending geothermal reservoir development, stimulation, and reinjection. The research was done in the Stanford Hydrothermal Lab using gold cell equipment of the Dickson design. This equipment inverts the solution rock mixture several times a minute to ensure thorough mixing. Solution samples were periodically withdrawn without interruption of the experimental conditions. The data from these experiments suggests a path dependent series of reactions by which geothermal fluids might evolve from meteoric or magmatic sources.

  12. Method for identifying anomalous terrestrial heat flows

    DOE Patents [OSTI]

    Del Grande, Nancy Kerr

    1977-01-25

    A method for locating and mapping the magnitude and extent of terrestrial heat-flow anomalies from 5 to 50 times average with a tenfold improved sensitivity over orthodox applications of aerial temperature-sensing surveys as used for geothermal reconnaissance. The method remotely senses surface temperature anomalies such as occur from geothermal resources or oxidizing ore bodies by: measuring the spectral, spatial, statistical, thermal, and temporal features characterizing infrared radiation emitted by natural terrestrial surfaces; deriving from these measurements the true surface temperature with uncertainties as small as 0.05 to 0.5 K; removing effects related to natural temperature variations of topographic, hydrologic, or meteoric origin, the surface composition, detector noise, and atmospheric conditions; factoring out the ambient normal-surface temperature for non-thermally enhanced areas surveyed under otherwise identical environmental conditions; distinguishing significant residual temperature enhancements characteristic of anomalous heat flows and mapping the extent and magnitude of anomalous heat flows where they occur.

  13. Summary of the chemical characteristics of the HGP-A well; Puna, Hawaii

    SciTech Connect (OSTI)

    Thomas, D.M.

    1982-01-01

    The HGP-A geothermal well is located on the Lower East Rift Zone of Kilauea Volcano. It was completed in 1976 to a depth of 1966 meters and has a bottomhole temperature of 360/sup 0/C. Evaluation of the chemistry of the fluids produced indicate that recharge to the reservoir discovered by the HGP-A well is largely fresh meteoric water with smaller amounts of seawater recharge. The changes in fluid chemistry during production suggest that at least two separate aquifers are providing fluids to the well and that silica deposition is occurring in the reservoir formation. Isotopic data indicate that the fluid circulation and residence times in the reservoir are relatively short and that the heat source for this part of the rift zone is either very young or relatively large.

  14. Instabilities during liquid migration into superheated hydrothermal systems

    SciTech Connect (OSTI)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    1995-01-26

    Hydrothermal systems typically consist of hot permeable rock which contains either liquid or liquid and saturated steam within the voids. These systems vent fluids at the surface through hot springs, fumaroles, mud pools, steaming ground and geysers. They are simultaneously recharged as meteoric water percolates through the surrounding rock or through the active injection of water at various geothermal reservoirs. In a number of geothermal reservoirs from which significant amounts of hot fluid have been extracted and passed through turbines, superheated regions of vapor have developed. As liquid migrates through a superheated region of a hydrothermal system, some of the liquid vaporizes at a migrating liquid-vapor interface. Using simple physical arguments, and analogue laboratory experiments we show that, under the influence of gravity, the liquid-vapor interface may become unstable and break up into fingers.

  15. Dialogs by Jerry Szymanski regarding the Yucca Mountain controversy from December, 1990 to March, 1991: Volume 3. Special report number 9, Contract number 92/94.0004

    SciTech Connect (OSTI)

    1993-07-01

    This report is a critical review of a US Geological Survey (USGS) paper regarding the origin of the Yucca Mountain calcite-opaline silica deposits. The report is in the form of a letter to the original authors in the USGS detailing the criticism regarding the origin of calcitic veins in the Yucca Mountain region. The USGS paper contributed most of these calcrete deposits to meteoric dissolution and precipitation mechanisms while the author presents his case for hydrothermal and magmatic origins. The paper presents strong isotopic characterization of these deposits to demonstrate a volcanic influence or source of this mineralization. Strontium, uranium, and carbon isotopes are graphed and compared from the numerous geologic and ground water samples available.

  16. Uranium mineralization in fluorine-enriched volcanic rocks

    SciTech Connect (OSTI)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  17. Ordovician carbonate formation waters in the Illinois Basin: Chemical and isotopic evolution beneath a regional aquitard

    SciTech Connect (OSTI)

    Stueber, A.M. ); Walter, L.M. . Dept. of Geological Sciences)

    1992-01-01

    Formation waters from carbonate reservoirs in the upper Ordovician Galena Group of the Illinois Basin have been analyzed geochemically to study origin of salinity, chemical and isotopic evolution, and relation to paleohydrologic flow systems. These carbonate reservoirs underlie the Maquoketa Shale Group of Cincinnatian age, which forms a regional aquitard. Cl-Br relations and Na/Br-Cl/Br systematics indicate that initial brine salinity resulted from subaerial evaporation of seawater to a point not significantly beyond halite saturation. Subsequent dilution in the subsurface by meteoric waters is supported by delta D-delta O-18 covariance. Systematic relations between Sr-87/Sr-86 and 1/Sr suggest two distinct mixing events: introduction of a Sr-87 enriched fluid from a siliciclastic source, and a later event which only affected reservoir waters from the western shelf of the basin. The second mixing event is supported by covariance between Sr-87/Sr-86 and concentrations of cations and anions; covariance between Sr and O-D isotopes suggests that the event is related to meteoric water influx. Systematic geochemical relations in ordovician Galena Group formation waters have been preserved by the overlying Maquoketa shale aquitard. Comparison with results from previous studies indicates that waters from Silurian-Devonian carbonate strata evolved in a manner similar to yet distinct from that of the Ordovician carbonate waters, whereas waters from Mississippian-Pennsylvanian strata that overlie the New Albany Shale Group regional aquitard are marked by fundamentally different Cl-Br-Na and Sr isotope systematics. Evolution of these geochemical formation-water regimes apparently has been influenced significantly by paleohydrologic flow systems.

  18. SURVEYING THE DYNAMIC RADIO SKY WITH THE LONG WAVELENGTH DEMONSTRATOR ARRAY

    SciTech Connect (OSTI)

    Lazio, T. Joseph W.; Clarke, Tracy E.; Lane, W. M.; Gross, C.; Kassim, N. E.; Hicks, B.; Polisensky, E.; Stewart, K.; Ray, P. S.; Wood, D.; York, J. A.; Kerkhoff, A.; Dalal, N. Paravastu; Cohen, A. S.; Erickson, W. C.

    2010-12-15

    This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the site of the Very Large Array in New Mexico. The field of view of the individual dipoles was essentially the entire sky, and the number of dipoles was sufficiently small that a simple software correlator could be used to make all-sky images. From 2006 October to 2007 February, we conducted an all-sky transient search program, acquiring a total of 106 hr of data; the time sampling varied, being 5 minutes at the start of the program and improving to 2 minutes by the end of the program. We were able to detect solar flares, and in a special-purpose mode, radio reflections from ionized meteor trails during the 2006 Leonid meteor shower. We detected no transients originating outside of the solar system above a flux density limit of 500 Jy, equivalent to a limit of no more than about 10{sup -2} events yr{sup -1} deg{sup -2}, having a pulse energy density {approx}>1.5 x 10{sup -20} J m{sup -2} Hz{sup -1} at 73.8 MHz for pulse widths of about 300 s. This event rate is comparable to that determined from previous all-sky transient searches, but at a lower frequency than most previous all-sky searches. We believe that the LWDA illustrates how an all-sky imaging mode could be a useful operational model for low-frequency instruments such as the Low Frequency Array, the Long Wavelength Array station, the low-frequency component of the Square Kilometre Array, and potentially the Lunar Radio Array.

  19. Environmental Resources of Selected Areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii (DRAFT)

    SciTech Connect (OSTI)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17,1994 (Fed Regis. 5925638), withdrawing its notice of intent (Fed. Regis. 575433) of February 14,1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii (hereinafter referred to as Hawaii). Groundwater quality inside and outside the lower east rift zone (LERZ) of Kilauea is compared with that of meteoric water, seawater, and geothermal fluid. The degree of mixing between meteoric water, sea water, and geothermal water in and adjacent to the LERZ also is discussed. Finally, groundwater pathways and use in the Puna District are discussed. Most of the information contained herein is compiled from recent U.S. Geological Survey publications and open-file reports.

  20. Environmental resources of selected areas of Hawaii: Groundwater in the Puna District of the Island of Hawaii

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on groundwater during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the withdrawing its notice of intent of February 14, 1992, to prepare the HGP EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The background scientific data and related information presented in this report were collected for the geothermal resource subzones in the Puna District on the island of Hawaii. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied and does not represent an assessment of environmental impacts. This paper summarizes the current state of knowledge with respect to groundwater in the Puna District of the island of Hawaii. Groundwater quality in and adjacent to Kilauea`s east rift zone (KERZ), is compared with that of meteoric water, seawater, and geothermal fluid. Two segments of KERZ lie within the Puna District. These segments are the middle east rift zone (KERZ) and lower east rift zone (LERZ). The degree of mixing between meteoric water, seawater, and geothermal water in and adjacent to the also is discussed.

  1. Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) • Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) • Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 – 081103) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) • Global Ocean Data Analysis Project GLODAP: Results and Data • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 – 120596) and A24, A20, and A22 (053097 – 090397) • Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 – 012296) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) • Global Distribution of Total Inorganic Carbon and Total Alkalinity below the deepest winter mixed layer depths • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, 080492 – 102192) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Hesperides Cruise in the Atlantic Ocean (WOCE Section A5, 071492 - 081592) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean (WOCE Section P10, 100593 – 111093) • The International Intercomparison Exercise of Underway fCO2 Systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean • Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, Dec. 1992-Jan, 1993) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr , Oct. 1992-April 1993) • Surface Water and Atmospheric Underway Carbon Data Obtained During the World Ocean Circulation Experiment Indian Ocean Survey Cruises (R/V Knorr, Dec. 1994 – Jan, 1996) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Akademik Ioffe Cruise in the South Pacific Ocean (WOCE Section S4P, Feb.-April 1992) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-1 in the Equatorial Pacific Ocean (WOCE section P17C) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-3 in the Equatorial Pacific Ocean (WOCE section P16C) • Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the Central South Pacific Ocean (WOCE Sections P17S and P16S) during the TUNES-2 Expedition of the R/V Thomas Washington, July-August, 1991 • Total Carbon Dioxide, Hydrographic, and Nitrate Measurements in the Southwest Pacific during Austral Autumn, 1990: Results from NOAA/PMEL CGC-90 Cruise • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 15/3 in the South Atlantic Ocean (WOCE Section A9, February March 1991) • Carbon Dioxide Concentrations in Surface Water and the Atmosphere During 1986-1989 NOAA/PMEL Cruises in the Pacific and Indian Oceans • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 11/5 in the South Atlantic and Northern Weddell Sea Areas (WOCE sections A-12 and A-21) • Surface Water and Atmospheric Carbon Dioxide and Nitrous Oxide Observations by Shipboard Automated Gas Chromatography: Results from Expeditions Between 1977 and 1990 • Indian Ocean Radiocarbon: Data from the INDIGO 1, 2, and 3 Cruises • Carbonate Chemistry of the North Pacific Ocean • Carbonate Chemistry of the Weddell Sea • GEOSECS Atlantic, Pacific, Indian, and Mediterranean Radiocarbon Data •\tTransient Tracers in the Oceans (TTO) - Hydrographic Data and Carbon Dioxide Systems with Revised Carbon Chemistry Data.

  2. R-matrix Analysis of Reactions in the {sup 9}B Compound System

    SciTech Connect (OSTI)

    Paris, M. Hale, G.; Hayes-Sterbenz, A.; Jungman, G.

    2014-06-15

    Recent activity in solving the lithium problem in big bang nucleosynthesis has focused on the role that putative resonances may play in resonance-enhanced destruction of {sup 7}Li. Particular attention has been paid to the reactions involving the {sup 9}B compound nuclear system, d+{sup 7}Be?{sup 9}B. These reactions are analyzed via the multichannel, two-body unitary R-matrix method using the code EDA developed by Hale and collaborators. We employ much of the known elastic and reaction data, in a four-channel treatment. The data include elastic {sup 3}He+{sup 6}Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for {sup 6}Li({sup 3}He,p){sup 8}Be{sup *} and from 0.4 to 5.0 MeV for the {sup 6}Li({sup 3}He,d){sup 7}Be reaction. Capture data have been added to an earlier analysis with integrated cross section measurements from 0.7 to 0.825 MeV for {sup 6}Li({sup 3}He,?){sup 9}B. The resulting resonance parameters are compared with tabulated values, and previously unidentified resonances are noted. Our results show that there are no near d+{sup 7}Be threshold resonances with widths that are 10's of keV and reduce the likelihood that a resonance-enhanced mass-7 destruction mechanism, as suggested in recently published work, can explain the {sup 7}Li problem.

  3. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    SciTech Connect (OSTI)

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  4. O and H diffusion in uraninite: Implications for fluid-uraninite interactions, nuclear waste disposal, and nuclear forensics

    SciTech Connect (OSTI)

    Fayek, Mostafa [University of Manitoba, Canada; Anovitz, Lawrence {Larry} M [ORNL; Cole, David [Ohio State University; Bostick, Debra A [ORNL

    2011-01-01

    Diffusion coefficients for oxygen and hydrogen were determined from a series of natural uraninite H2O experiments between 50 and 700 C. Under hydrous conditions there are two diffusion mechanisms: (1) an initial extremely fast-path diffusion mechanism that overprinted the oxygen isotopic composition of the entire crystals regardless of temperature and (2) a slower volume-diffusive mechanism dominated by defect clusters that displace or eject nearest neighbor oxygen atoms to form two interstitial sites and two partial vacancies, and by vacancy migration. Using the volume diffusion coefficients in the temperature range of 400 600 C, diffusion coefficients for oxygen can be represented by D = 1.90e5 exp (123,382 J/RT) cm2/s and for temperatures between 100 and 300 C the diffusion coefficients can be represented by D = 1.95e10 exp (62484 J/ RT) cm2/s, where the activation energies for uraninite are 123.4 and 62.5 kJ/mol, respectively. Hydrogen diffusion in uraninite appears to be controlled by similar mechanisms as oxygen. Using the volume diffusion coefficients for temperatures between 50 and 700 C, diffusion coefficients for hydrogen can be represented by D = 9.28e6 exp (156,528 J/RT) cm2/s for temperatures between 450 and 700 C and D = 1.39e14 exp (34518 J/RT) cm2/s for temperatures between 50 and 400 C, where the activation energies for uraninite are 156.5 and 34.5 kJ/mol, respectively. Results from these new experiments have implications for isotopic exchange during natural UO2 water interactions. The exceptionally low d18O values of natural uraninites (i.e. 32& to 19.5&) from unconformity-type uranium deposits in Saskatchewan, in conjunction with theoretical and experimental uraninite water and UO3 water fractionation factors, suggest that primary uranium mineralization is not in oxygen isotopic equilibrium with coeval clay and silicate minerals. The low d18O values have been interpreted as resulting from the low temperature overprinting of primary uranium mineralization in the presence of relatively modern meteoric fluids having d18O values of ca. 18&, despite petrographic and U Pb isotope data that indicate limited alteration. Our data show that the anomalously low oxygen isotopic composition of the uraninite from the Athabasca Basin can be due to meteoric water overprinting under reducing conditions, and meteoric water or groundwater can significantly affect the oxygen isotopic composition of spent nuclear fuel in a geologic repository, with minimal change to the chemical composition or texture. Moreover, the rather fast oxygen and hydrogen diffusion coefficients for uraninite, especially at low temperatures, suggest that oxygen and hydrogen diffusion may impart characteristic isotopic signals that can be used to track the route of fissile material.

  5. Resource investigation of low- and moderate-temperature geothermal areas in Paso Robles, California

    SciTech Connect (OSTI)

    Campion, L.F.; Chapman, R.H.; Chase, G.W.; Youngs, L.G.

    1983-01-01

    Ninety-eight geothermal wells and springs were identified and plotted, and a geologic map and cross sections were compiled. Detailed geophysical, geochemical, and geological surveys were conducted. The geological and geophysical work delineated the basement highs and trough-like depressions that can exercise control on the occurrence of the thermal waters. The Rinconada fault was also evident. Cross sections drawn from oil well logs show the sediments conforming against these basement highs and filling the depressions. It is along the locations where the sediments meet the basement highs that three natural warm springs in the area occur. Deep circulation of meteoric waters along faults seems to be a reasonable source for the warm water. The Santa Margarita, Pancho Rico, and Paso Robles Formations would be the first permeable zones that abut the faults through which water would enter. Temperatures and interpretation of well logs indicate the warmest aquifer at the base of the Paso Robles Formation. Warm water may be entering higher up in the section, but mixing with water from cooler zones seems to be evident. Geothermometry indicates reservoir temperatures could be as high as 91/sup 0/C (196/sup 0/F).

  6. Evidence for an unsaturated-zone origin of secondary minerals in Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Whelan, Joseph F.; Roedder, Edwin; Paces, James B.

    2001-04-29

    The unsaturated zone (UZ) in Miocene-age welded tuffs at Yucca Mountain, Nevada, is under consideration as a potential site for the construction of a high-level radioactive waste repository. Secondary calcite and silica minerals deposited on fractures and in cavities in the UZ tuffs are texturally, isotopically, and geochemically consistent with UZ deposition from meteoric water infiltrating at the surface and percolating through the UZ along fractures. Nonetheless, two-phase fluid inclusions with small and consistent vapor to liquid (V:L) ratios that yield consistent temperatures within samples and which range from about 35 to about 80 C between samples have led some to attribute these deposits to formation from upwelling hydrothermal waters. Geochronologic studies have shown that calcite and silica minerals began forming at least 10 Ma and continued to form into the Holocene. If their deposition were really from upwelling water flooding the UZ, it would draw into question the suitability of the site as a waste repository.

  7. Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 081103) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) Global Ocean Data Analysis Project GLODAP: Results and Data Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 120596) and A24, A20, and A22 (053097 090397) Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 012296) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) Global Distribution of Total Inorganic Carbon and Total Alkalinity below the deepest winter mixed layer depths Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, 080492 102192) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Hesperides Cruise in the Atlantic Ocean (WOCE Section A5, 071492 - 081592) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean (WOCE Section P10, 100593 111093) The International Intercomparison Exercise of Underway fCO2 Systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, Dec. 1992-Jan, 1993) Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr , Oct. 1992-April 1993) Surface Water and Atmospheric Underway Carbon Data Obtained During the World Ocean Circulation Experiment Indian Ocean Survey Cruises (R/V Knorr, Dec. 1994 Jan, 1996) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Akademik Ioffe Cruise in the South Pacific Ocean (WOCE Section S4P, Feb.-April 1992) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-1 in the Equatorial Pacific Ocean (WOCE section P17C) Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-3 in the Equatorial Pacific Ocean (WOCE section P16C) Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 Carbon Dioxide, Hydrographic, and Chemical Data Obtained During R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E) Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the Central South Pacific Ocean (WOCE Sections P17S and P16S) during the TUNES-2 Expedition of the R/V Th

  8. Installation of a Hydrologic Characterization Network for Vadose Zone Monitoring of a Single-Shell Tank Farm at the U. S. Department of Energy Hanford Site

    SciTech Connect (OSTI)

    Gee, Glendon W. ); Ward, Anderson L. ); Ritter, Jason C. ); Sisson, James B.; Hubbell, Joel M.; Sydnor, Harold A.

    2001-10-30

    The Pacific Northwest National Laboratory, in collaboration with the Idaho National Engineering and Environmental Laboratory and Duratek Federal Services, deployed a suite of vadose-zone instruments at the B Tank Farm in the 200 E Area of the Hanford Site, near Richland, Washington, during the last quarter of FY 2001. The purpose of the deployment was to obtain in situ hydrologic characterization data within the vadose zone of a high-level-waste tank farm. Eight sensor nests, ranging in depth from 67 m (220 ft) below ground surface (bgs) to 0.9 m (3 ft) bgs were placed in contact with vadose-zone sediments inside a recently drilled, uncased, borehole (C3360) located adjacent to Tank B-110. The sensor sets are part of the Vadose Zone Monitoring System and include advanced tensiometers, heat dissipation units, frequency domain reflectometers, thermal probes, and vadose zone solution samplers. Within the top meter of the surface, a water flux meter was deployed to estimate net infiltration from meteoric water (rain and snowmelt) sources. In addition, a rain gage was located within the tank farm to document on-site precipitation events. All sensor units, with the exception of the solution samplers, were connected to a solar-powered data logger located within the tank farm. Data collected from these sensors are currently being accessed by modem and cell phone and will be analyzed as part of the DOE RL31SS31 project during the coming year (FY 2001).

  9. Stable isotopes of authigenic minerals in variably-saturated fractured tuff

    SciTech Connect (OSTI)

    Weber, D.S.; Evans, D.D.

    1988-11-01

    Identifying stable isotope variation and mineralogical changes in fractured rock may help establish the history of climatic and geomorphological processes that might affect the isolation properties of a waste repository site. This study examines the use of the stable isotope ratios of oxygen ({sup 18}O/{sup 16}O) and carbon ({sup 13}C/{sup 12}C) in authigenic minerals as hydrogeochemical tools tracing low-temperature rock-water interaction in variably-saturated fractured stuff. Isotopic compositions of fracture-filling and rock matrix minerals in the Apache Leap tuff, near Superior, Arizona were concordant with geothermal temperatures and in equilibrium with water isotopically similar to present-day meteoric water and groundwater. Oxygen and carbon isotope ratios of fracture-filling, in unsaturated fractured tuff, displayed an isotopic gradient believed to result from near-surface isotopic enrichment due to evaporation rather than the effects of rock-water interaction. Oxygen isotope ratios of rock matrix opal samples exhibited an isotopic gradient believed to result from, leaching and reprecipitation of silica at depth. Methods and results can be used to further define primary flowpaths and the movement of water in variably-saturated fractured rock. 71 refs., 23 figs., 3 tabs.

  10. Raft River geoscience case study

    SciTech Connect (OSTI)

    Dolenc, M.R.; Hull, L.C.; Mizell, S.A.; Russell, B.F.; Skiba, P.A.; Strawn, J.A.; Tullis, J.A.

    1981-11-01

    The Raft River Geothermal Site has been evaluated over the past eight years by the United States Geological Survey and the Idaho National Engineering Laboratory as a moderate-temperature geothermal resource. The geoscience data gathered in the drilling and testing of seven geothermal wells suggest that the Raft River thermal reservoir is: (a) produced from fractures found at the contact metamorphic zone, apparently the base of detached normal faulting from the Bridge and Horse Well Fault zones of the Jim Sage Mountains; (b) anisotropic, with the major axis of hydraulic conductivity coincident to the Bridge Fault Zone; (c) hydraulically connected to the shallow thermal fluid of the Crook and BLM wells based upon both geochemistry and pressure response; (d) controlled by a mixture of diluted meteoric water recharging from the northwest and a saline sodium chloride water entering from the southwest. Although the hydrogeologic environment of the Raft River geothermal area is very complex and unique, it is typical of many Basin and Range systems.

  11. Response to"Analysis of the Treatment, by the U.S. Department of Energy, of the FEP Hydrothermal Activity in the Yucca Mountain Performance Assessment" by Yuri Dublyansky

    SciTech Connect (OSTI)

    Houseworth, J.E.; Hardin, E.

    2008-11-17

    This paper presents a rebuttal to Dublyansky (2007), which misrepresents technical issues associated with hydrothermal activity at the proposed Yucca Mountain nuclear waste repository and their importance to the long-term performance of the repository. In this paper, questions associated with hydrothermal activity are reviewed and the justification for exclusion of hydrothermal activity from performance assessment is presented. The hypothesis that hydrothermal upwelling into the present-day unsaturated zone has occurred at Yucca Mountain is refuted by the unambiguous evidence that secondary minerals and fluid inclusions in the unsaturated zone formed in an unsaturated environment from downward percolating meteoric waters. The thermal history at Yucca Mountain, inferred from fluid inclusion and isotopic data, is explained in terms of the tectonic extensional environment and associated silicic magmatism. The waning of tectonic extension over millions of years has led to the present-day heat flux in the Yucca Mountain region that is below average for the Great Basin. The long time scales of tectonic processes are such that any effects of a resumption of extension or silicic magmatism on hydrothermal activity at Yucca Mountain over the 10,000-year regulatory period would be negligible. The conclusion that hydrothermal activity was incorrectly excluded from performance assessment as asserted in Dublyansky (2007) is contradicted by the available technical and regulatory information.

  12. Uranium, thorium isotopic analyses and uranium-series ages of calcite and opal, and stable isotopic compositions of calcite from drill cores UE25a No. 1, USW G-2 and USW G-3/GU-3, Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Szabo, B.J.; Kyser, T.K.

    1985-12-31

    Fracture and cavity filling calcite and opal in the unsaturated zone of three drill cores at Yucca Mountain were analyzed for uranium and stable isotope contents, and were dated by the uranium-series method. Stable isotope data indicate that the water from which the calcite precipitated was meteoric in origin. The decrease in {sup 18}O and increase in {sup 13}C with depth are interpreted as being due to the increase in temperature in drill holes corresponding to an estimated maximum geothermal gradient of 43{sup 0} per km. Of the eighteen calcite and opal deposits dated, four of the calcite and all four of the opal deposits yield dates older than 400,000 years and ten of the remaining calcite deposits yield dates between 26,000 and 310,000 years. The stable isotope and uranium data together with the finite uranium-series dates of precipitation suggest a complex history of fluid movements, rock and water interactions, and episodes of fracture filling during the last 310,000 years. 10 refs., 7 figs., 4 tabs.

  13. DRBE comet trails

    SciTech Connect (OSTI)

    Arendt, Richard G.

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/SchwassmannWachmann 3 are also seen. The dust trails have 12 and 25 ?m surface brightnesses of <0.1 and <0.15 MJy sr{sup ?1}, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBE data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.

  14. Chemical relationship between discharging fluids in the Siena-Radicofani Graben and the deep fluids produced by the geothermal fields of Mt Amiata, torre Afina and Latera (Central Italy)

    SciTech Connect (OSTI)

    Duchi, V.; Paolieri, M.; Prati, F ); Minissale, A. Centro di Studio per Mineralogia e la Geochimica dei Sedimenti, Via La Pira 4, 50121 Firenze ); Valori, A )

    1992-06-01

    This paper reports that the thermal springs discharging in the Siena-Radicofani basin and the deep fluids within the geothermal systems of Piancastagnaio (Mt Amiata), Torre Alfina and Latera (Vulsini Mts) have a common origin. The chemical composition and evolution towards the low enthalpy of the springs as compared to the high enthalpy of the geothermal fluids are affected by both the structural setting of the region and the deep hydraulic conditions. Recharge of both the shallow thermal aquifer and the deep geothermal systems takes place in the outcrop areas of Mesozoic carbonate rocks, which constitute the main potential geothermal reservoir in central Italy. The waters of meteoric origin are heated at depth, as a consequence of anomalous heat flow in the region; these waters acquire a CO[sub 2]-rich rising gas phase, equilibrate with the reservoir rocks and, finally, assume their Ca--HCO[sub 3]--SO[sub 4] composition. If these waters discharge rapidly from the border fault systems of the Siena-Radicofani basin they maintain their original composition. If, instead, they emerge from the inner faults of the graben, their temperature and dissolved solids increase so that they become Na--Cl with a high content of NH[sub 4], and H[sub 3]BO[sub 3].

  15. Middle Triassic paleokarst surfaces and associated stratigraphic patterns in platform carbonates: Evidence from sedimentology and diagenesis, southern Alps, Italy

    SciTech Connect (OSTI)

    Mutti, M.; Jadoul, F. )

    1991-03-01

    Triassic carbonate platforms are superbly exposed in the Southern Alps. A regional paleokarst surface occurs in the Middle Triassic, at the Ladinian-Carnian stage boundary, and is well recognized throughout the Tethyan region. The authors describe the characteristics of the paleokarst and the stratigraphic patterns of the strata deposited immediately after the formation of the surface in the Brembana Valley. The paleokarst cuts up to tens of meters into the underlying Esino Limestone massive platform facies and forms a lens-shaped depression filled by peritidal cyclic facies intensively deformed in tepees. The origin of this geometry can be explained either as a tectonic-controlled feature or as a karst-processes related incised-valley associated to a major eustatic cycle. Depression-filling peritidal facies are intensively deformed in senile tepees and are periodically interbedded with 'terra rossa' soils and tend to pinchout at the margins of the depression. Several orders of cyclicity are recognized in peritidal carbonates. Diagenetic features are exceptionally complex and record a wide variety of superimposing environments ranging from normal marine to early meteoric and can be related to major cyclic stratigraphic patterns. Syndepositional cements form up to 80% of the present rock.

  16. Polycyclic aromatic hydrocarbons in surface waters of Alessandria District, South Eastern Piedmont (Italy)

    SciTech Connect (OSTI)

    Trova, C.; Cossa, G.; Gandolfo, G.

    1992-10-01

    Polynuclear aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. Because of the high toxicity of some polycyclic compounds, such as benzopyrenes, the determination of their levels in air, water, soil and aquatic organisms was the object of several papers. Anthropogenic pyrolitic and combustion processes, related to industrial plants, domestic heating, automobile traffic, are the major sources of these compounds; from these sources they enter atmospheric environment where their concentration is reduced by scavenging during precipitation events: rain, snow and fog in urban areas usually show high contents of PAHs. Dry and wet atmospheric polluted depositions effluents transport appreciable amounts of PAHs to aquatic environment, where they are rapidly taken up and accumulated by both fish and shellfish. Alessandria District, in South-Eastern Piedmont (Italy), lies in the middle of Torino-Milano-Genova industrial area: in addition to local sources, a relatively long range transport of polluted air masses may conduct to this region atmospheric contaminants, such as polynuclear compounds, that can enter fluvial environments through meteoric precipitation. The object of this work was to evaluate PAH content in surface waters flowing across the described territory. Samplings were carried on during winter season, when the concentration of these pollutants usually reaches the highest levels. 8 refs., 4 figs., 2 tabs.

  17. Chemical behaviour of geothermal silica after precipitation from geothermal fluids with inorganic flocculating agents at the Hawaii Geothermal Project Well-A (HGP-A)

    SciTech Connect (OSTI)

    De Carlo, E.H.

    1987-01-01

    The report summarizes the results of experiments dealing with the problem of removal of waste-silica from spent fluids at the experimental power generating facility in the Puna District of the island of Hawaii. Geothermal discharges from HGP-A represent a mixture of meteoric and seawaters which has reacted at depth with basalts from the Kilauea East Rift Zone under high pressure and temperature. After separation of the steam phase of the geothermal fluid from the liquid phase and a final flashing stage to 100 degrees Celsius and atmospheric pressure, the concentration of the silica increases to approximately 1100 mg/L. This concentration represents five to six times the solubility of amorphous silica in this temperature range. We have evaluated and successfully developed bench scale techniques utilizing adsorptive bubble flotation for the removal of colloidal silica from the spent brine discharge in the temperature range of 60 to 90 degrees C. The methods employed resulted in recovery of up to 90% of the silica present above its amorphous solubility in the experimental temperature range studied.

  18. Chemistry of spring and well waters on Kilauea Volcano, Hawaii, and vicinity

    SciTech Connect (OSTI)

    Janik, C.J.; Nathenson, M.; Scholl, M.A.

    1994-12-31

    Published and new data for chemical and isotopic samples from wells and springs on Kilauea Volcano and vicinity are presented. These data are used to understand processes that determine the chemistry of dilute meteoric water, mixtures with sea water, and thermal water. Data for well and spring samples of non-thermal water indicate that mixing with sea water and dissolution of rock from weathering are the major processes that determine the composition of dissolved constituents in water. Data from coastal springs demonstrate that there is a large thermal system south of the lower east rift of Kilauea. Samples of thermal water from shallow wells in the lower east rift and vicinity have rather variable chemistry indicating that a number of processes operate in the near surface. Water sampled from the available deep wells is different in composition from the shallow thermal water, indicating that generally there is not a significant component of deep water in the shallow wells. Data for samples from available deep wells show significant gradients in chemistry and steam content of the reservoir fluid. These gradients are interpreted to indicate that the reservoir tapped by the existing wells is an evolving vapor-dominated system.

  19. Virginia Regional Seismic Network. Final report (1986--1992)

    SciTech Connect (OSTI)

    Bollinger, G.A.; Sibol, M.S.; Chapman, M.C.; Snoke, J.A. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (US). Seismological Observatory

    1993-07-01

    In 1986, the Virginia Regional Seismic Network was one of the few fully calibrated digital seismic networks in the United States. Continued operation has resulted in the archival of signals from 2,000+ local, regional and teleseismic sources. Seismotectonic studies of the central Virginia seismic zone showed the activity in the western part to be related to a large antiformal structure while seismicity in the eastern portion is associated spatially with dike swarms. The eastern Tennessee seismic zone extends over a 300x50 km area and is the result of a compressive stress field acting at the intersection between two large crustal blocks. Hydroseismicity, which proposes a significant role for meteoric water in intraplate seismogenesis, found support in the observation of common cyclicities between streamflow and earthquake strain data. Seismic hazard studies have provided the following results: (1) Damage areas in the eastern United States are three to five times larger than those observed in the west. (2) Judged solely on the basis of cataloged earthquake recurrence rates, the next major shock in the southeast region will probably occur outside the Charleston, South Carolina area. (3) Investigations yielded necessary hazard parameters (for example, maximum magnitudes) for several sites in the southeast. Basic to these investigations was the development and maintenance of several seismological data bases.

  20. Distribution of fast hydrologic paths in the unsaturated zone at Yucca Mountain

    SciTech Connect (OSTI)

    Fabryka-Martin, J.T.; Wolfsberg, A.V.; Levy, S.S.; Roach, J.L.; Winters, S.T.; Wolfsberg, L.E.; Elmore, D.; Sharma, P.

    1998-12-31

    Development and testing of conceptual flow and transport models for hydrologic systems are strengthened when natural environmental tracers are incorporated into the process. One such tracer is chlorine-36 ({sup 36}Cl, half-life, 301,000 years), a radioactive isotope produced in the atmosphere and carried underground with percolating groundwater. High concentrations of this isotope were also added to meteoric water during a period of global fallout from atmospheric testing of nuclear devices, primarily in the 1950s. This bomb-pulse signal has been used to test for the presence of fast transport paths in the unsaturated zone at Yucca Mountain and to provide the basis for a conceptual model for their distribution. Yucca Mountain is under investigation by the US Department of Energy as a potential site at which to host an underground high-level radioactive waste repository. Under wetter climatic conditions, fast-flow pathways will respond quickly to increases in infiltration and have the potential to become seeps in the tunnel drifts. The {sup 36}Cl data are also being used in numerical flow and transport models to establish lower bounds on infiltration rates, estimate ground water ages, and establish bounding values for hydrologic flow parameters governing fracture transport.

  1. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    SciTech Connect (OSTI)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-07-01

    The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

  2. Stable isotopes composition of precipitation fallen over Cluj-Napoca, Romania, between 2009-2012

    SciTech Connect (OSTI)

    Puscas, R.; Feurdean, V.; Simon, V.

    2013-11-13

    The paper presents the deuterium and oxygen 18 content from All precipitations events, which have occured over Cluj-Napoca, Romania from 2009 until 2012. Time series for δ{sup 2}H and δ{sup 18}O values point out both the seasonal variation that has increased amplitude reflecting the continental character of the local climate as well as dramatic variations of isotopic content of successive precipitation events, emphasizing the anomalous values. These fluctuations are the footprint of the variations and trends in climate events. Local Meteoric Water Line (LMWL), reflecting the δ{sup 2}H - δ{sup 18}O correlation, has the slop and the intercept slightly deviated from the GMWL, indicating that the dominant process affecting local precipitations are close to the equilibrium condition. LMWL has a slope smaller then that of the GMWL in the warm season due to lower humidity and a slope closest to the slop of GMWL in cold season with high humidity. The δ{sup 2}H and δ{sup 18}O values both for the precipitation events and monthly mean values are positively correlated with the temperature values with a very good correlation factor. The values of δ{sup 2}H and δ{sup 18}O are not correlated with amount of precipitation, the 'amount effect' of isotopic composition of precipitation is not observed for this site.

  3. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    SciTech Connect (OSTI)

    Young, H.W.; Lewis, R.E.

    1982-01-01

    Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium carbonate or bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/ Celsius. Concentration of tritium in the thermal water is near zero. Depletion of stable isotopes in the hot waters relative to present-day meteoric waters indicates recharge to the system probably occurred when the climate averaged 3/sup 0/ to 5/sup 0/ Celsius colder than at present. Temperatures about 3.5/sup 0/ Celsius colder than at present occurred during periods of recorded Holocene glacial advances and indicate a residence time of water in the system of at least several thousand years. Residence time calculated on the basis of reservoir volume and thermal-water discharge is 3400 to 6800 years for an effective reservoir porosity of 0.05 and 0.10, respectively. Preliminary analyses of carbon-14 determinations indicate an age of the hot waters of about 18,000 to 25,000 years. The proposed conceptual model for the area is one of an old system, where water has circulated for thousands, even tens of thousands, of years. Within constraints imposed by the model described, reservoir thermal energy for the geothermal system in southwestern Idaho and north-central Nevada is about 130 x 10/sup 18/ calories.

  4. Solar UV radiation exposure of seamen - Measurements, calibration and model calculations of erythemal irradiance along ship routes

    SciTech Connect (OSTI)

    Feister, Uwe; Meyer, Gabriele; Kirst, Ulrich

    2013-05-10

    Seamen working on vessels that go along tropical and subtropical routes are at risk to receive high doses of solar erythemal radiation. Due to small solar zenith angles and low ozone values, UV index and erythemal dose are much higher than at mid-and high latitudes. UV index values at tropical and subtropical Oceans can exceed UVI = 20, which is more than double of typical mid-latitude UV index values. Daily erythemal dose can exceed the 30-fold of typical midlatitude winter values. Measurements of erythemal exposure of different body parts on seamen have been performed along 4 routes of merchant vessels. The data base has been extended by two years of continuous solar irradiance measurements taken on the mast top of RV METEOR. Radiative transfer model calculations for clear sky along the ship routes have been performed that use satellite-based input for ozone and aerosols to provide maximum erythemal irradiance and dose. The whole data base is intended to be used to derive individual erythemal exposure of seamen during work-time.

  5. Object detection utilizing a linear retrieval algorithm for thermal infrared imagery

    SciTech Connect (OSTI)

    Ramsey, M.S. [Arizona State Univ., Tempe, AZ (United States)

    1996-11-01

    Thermal infrared (TIR) spectroscopy and remote sensing have been proven to be extremely valuable tools for mineralogic discrimination. One technique for sub-pixel detection and data reduction, known as a spectral retrieval or unmixing algorithm, will prove useful in the analysis of data from scheduled TIR orbital instruments. This study represents the first quantitative attempt to identify the limits of the model, specifically concentrating on the TIR. The algorithm was written and applied to laboratory data, testing the effects of particle size, noise, and multiple endmembers, then adapted to operate on airborne Thermal Infrared Multispectral Scanner data of the Kelso Dunes, CA, Meteor Crater, AZ, and Medicine Lake Volcano, CA. Results indicate that linear spectral unmixmg can produce accurate endmember detection to within an average of 5%. In addition, the effects of vitrification and textural variations were modeled. The ability to predict mineral or rock abundances becomes extremely useful in tracking sediment transport, decertification, and potential hazard assessment in remote volcanic regions. 26 refs., 3 figs.

  6. An early look of comet C/2013 A1 (Siding Spring): Breathtaker or nightmare?

    SciTech Connect (OSTI)

    Ye, Quan-Zhi; Hui, Man-To

    2014-06-01

    The dynamically new comet, C/2013 A1 (Siding Spring), is to make a close approach to Mars on 2014 October 19 at 18:30 UT at a distance of 40 1 Martian radii. Such an extremely rare event offers a precious opportunity for the spacecrafts on Mars to closely study a dynamically new comet itself as well as the planet-comet interaction. Meanwhile, the high-speed meteoroids released from C/Siding Spring also pose a threat to physically damage the spacecrafts. Here we present our observations and modeling results of C/Siding Spring to characterize the comet and assess the risk posed to the spacecrafts on Mars. We find that the optical tail of C/Siding Spring is dominated by larger particles at the time of the observation. Synchrone simulation suggests that the comet was already active in late 2012 when it was more than 7 AU from the Sun. By parameterizing the dust activity with a semi-analytic model, we find that the ejection speed of C/Siding Spring is comparable to comets such as the target of the Rosetta mission, 67P/Churyumov-Gerasimenko. Under a nominal situation, the simulated dust cone will miss the planet by about 20 Martian radii. At the extreme ends of uncertainties, the simulated dust cone will engulf Mars, but the meteoric influx at Mars is still comparable to the nominal sporadic influx, seemly indicating that an intense and enduring meteoroid bombardment due to C/Siding Spring is unlikely. Further simulation also suggests that gravitational disruption of the dust tail may be significant enough to be observable at Earth.

  7. Silver Peak Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    2010-01-01

    Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a “deep-circulation (amagmatic)” meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or “core,” of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.

  8. Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klaus, J.; McDonnell, J. J.; Jackson, C. R.; Du, E.; Griffiths, N. A.

    2015-01-08

    The time and geographic sources of streamwater in low-relief watersheds are poorly understood. This is partly due to the difficult combination of low runoff coefficients and often damped streamwater isotopic signals precluding traditional hydrograph separation and convolution integral approaches. Here we present a dual-isotope approach involving 18O and 2H of water in a low-angle forested watershed to determine streamwater source components and then build a conceptual model of streamflow generation. We focus on three headwater lowland sub-catchments draining the Savannah River Site in South Carolina, USA. Our results for a 3-year sampling period show that the slopes of the meteoricmore » water lines/evaporation water lines (MWLs/EWLs) of the catchment water sources can be used to extract information on runoff sources in ways not considered before. Our dual-isotope approach was able to identify unique hillslope, riparian and deep groundwater, and streamflow compositions. Thus, the streams showed strong evaporative enrichment compared to the local meteoric water line (δ2H = 7.15 · δ18O +9.28‰) with slopes of 2.52, 2.84, and 2.86. Based on the unique and unambiguous slopes of the EWLs of the different water cycle components and the isotopic time series of the individual components, we were able to show how the riparian zone controls baseflow in this system and how the riparian zone "resets" the stable isotope composition of the observed streams in our low-angle, forested watersheds. Although this approach is limited in terms of quantifying mixing percentages between different end-members, our dual-isotope approach enabled the extraction of hydrologically useful information in a region with little change in individual isotope time series.« less

  9. Geothermal prospecting by geochemical methods on natural gas and water discharges in the Vulsini Mts Volcanic District (Central Italy)

    SciTech Connect (OSTI)

    Duchi, V.; Minissale, A.A.; Ortino, S.; Romani, L.

    1987-01-01

    The Latera and Torre Alfina geothermal fields were discovered in the Vulsini Mts district (central Italy) in the 70s. The fluid produced by the two geothermal systems is a high rhoCO/sub 2/(around 7 MPa) sodium chloride solution (T.D.S. is 9200 ppm at Latera and 7800 at Torre Alfina), with high SiO/sub 2/ and H/sub 3/BO/sub 3/ contents. The fluid temperature taken at well bottom is about 155/sup 0/C at Torre Alfina, whereas at Latera it ranges from 200 to over 350/sup 0/C. In spite of these temperatures, recorded in producing wells, previous geochemical prospectings using geothermometers in natural thermal manifestations had predicted temperatures no higher than 140/sup 0/C in all the Vulsini district. This contrasting feature between real temperatures and those evaluated during prospecting is caused by the fast circulation of large amounts of meteoric waters in the aquifer located in the shallow parts of the carbonate reservoir formations, and by the short interaction between the latter and the deep geothermal fluids. In the present study a new geochemical survey on thermal and cold springs, stream samples, as well as natural gas emissions has been carried out. A critical review of the main geothermometers, some considerations about the hydraulic behavior of the reservoir formations, and the cross comparison between NH/sub 4//sup +//B ratio, rhoCO/sub 2/ and SiO/sub 2/ content in both cold and thermal waters, have led to the conclusion that in the Vulsini Mts there are no shallow anomalous areas apart from those already discovered at Latera and Torre Alfina. The present method could be successfully applied in other geothermal systems, where the potential reservoir is represented by carbonate formations.

  10. Silver Peak Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    2010-01-01

    Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a deep-circulation (amagmatic) meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or core, of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.

  11. Temporal relations of volcanism and hydrothermal systems in two areas of the Jemez volcanic field, New Mexico

    SciTech Connect (OSTI)

    WoldeGabriel, G.; Goff, F. )

    1989-11-01

    Two hydrothermal alteration events (8.07 Ma, one sample; 6.51-5.60 Ma, six samples) related to the waning stages of late Miocene volcanism ({ge} 13 to {le} 5.8 Ma) are recognized at the Cochiti district (southeast Jemez Mountains). Most of the K/Ar dates (0.83 {plus minus} 0.11-0.66 {plus minus} 0.21 Ma, four samples) in the hydrothermally altered, caldera-fill rocks of core hole VC-2A at Sulfur Springs, Valles caldera, indicate post-Valles caldera hydrothermal alteration. A sample from acid-altered landslide debris of postcaldera tuffs from the upper 13 m of the core hole was too young to be dated by the K/Ar method and is possibly associated with current hot-spring activity and the youngest pulses of volcanism. Oxygen-isotope data from illite/smectite clays in the Cochiti district are zonally distributed and range from {minus}2.15{per thousand} to {plus}7.97{per thousand} (SMOW), depending upon temperature, extent of rock-fluid interaction, and composition. The samples from VC-2A get lighter with depth ({minus}0.20{per thousand} to {plus}1.62{per thousand}). The K/Ar and oxygen-isotope data provide strong evidence that the epithermal quartz-vein-hosted gold-silver mineralization at Cochiti and the sub-ore grade molybdenite at VC-2A were deposited in the late Miocene (5.99-5.60 Ma) and mid-Quaternary ({approximately}0.66 Ma), respectively, by hydrothermal fluids composed primarily of meteoric water.

  12. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    SciTech Connect (OSTI)

    West, H.B.; Delanoy, G.A.; Thomas, D.M. . Hawaii Inst. of Geophysics); Gerlach, D.C. ); Chen, B.; Takahashi, P.; Thomas, D.M. Evans and Associates, Redwood City, CA )

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  13. The sup 36 Cl ages of the brines in the Magadi-Natron basin, east Africa

    SciTech Connect (OSTI)

    Kaufman, A.; Margaritz, M.A.; Hollos, G. ); Paul, M.; Boaretto, E. ); Hillaire-Marcel, C. ); Taieb, M. )

    1990-10-01

    The depression in the East African Rift which includes both Lake Magadi and Lake Natron forms a closed basin within which almost all the dissolved chloride originates in precipitation, since there is no important source of very ancient sedimentary chloride. This provides an ideal setting for the evaluation of the {sup 36}Cl methodology as a geochemical and hydrological tracer. The main source of recent water, as represented by the most dilute samples measured, is characterized by a {sup 36}Cl/Cl ratio of 2.5 {times} 10{sup {minus}14}, in agreement with the calculated value expected in precipitation. Surface evaporation increases the chlorinity of the local freshwater inflow by about a factor of 110 without changing the isotopic ratio, indicating that little chloride enters the system in the form of sediment leachate. A second type of brine found in the basin occurs in a hot deep groundwater reservoir and is characterized by lower {sup 36}Cl/Cl ratios (<1.2 {times} 10{sup {minus}14}). By comparing this value with the 2.5 {times} 10{sup {minus}14} in recent recharge, one obtains an approximate salt accumulation age of 760 Ka which is consistent with thee time of the first appearance of the lake. These older brines also have lower {sup 18}O and {sup 2}H values which indicate that they were recharged during a climatically different era. The {sup 36}Cl/Cl ratios in the inflowing waters and in the accumulated brine, together with the known age of the Lake Magadi basin, may be used to estimate the importance of the hypogene and epigene, as opposed to the meteoric, mode of {sup 36}Cl production. Such a calculation shows that the hypogene and epigene processes together contribute less than 6% of the total {sup 36}Cl present in the lake.

  14. Paint Rock and southwest Paint Rock fields, Concho County, Texas: Strawn analogs of modern island carbonate facies of Ambergris Cay, Belize

    SciTech Connect (OSTI)

    Reid, A.M.; Mazzullo, S.J.

    1987-02-01

    Lower Strawn (Desmoinesian Goen Limestone) reservoirs at Paint Rock and Southwest Paint Rock fields are a complex of carbonate and associated facies interpreted as having been deposited in various environments on and around large, emergent islands on shallow carbonate shelves. The origin and geometries of the component lithofacies in these fields, and their reservoir diagenetic histories, are similar to those presently accumulating on Ambergris Cay, a linear island complex on the northern shelf of Belize. Paint Rock field originated as a narrow, elongate Chaetetes reef trend that formed the foundation on which the overlying island facies were deposited. As on Ambergris Cay, these reef limestones developed extensive porosity during postdepositional subaerial exposure due to meteoric leaching. In contrast, Southwest Paint Rock field is cored by older island deposits rather than reef limestones. With ensuing stillstand or subsequent sea level rise, beach grainstones were deposited along the windward and leeward margins of the foundation highs in these fields. Tight lagoonal micrites and coals (peat-swamp facies) comprise the inner island facies, and are locally associated with porous supratidal dolomites. These island complexes are transected locally by tidal channels that are filled with nonporous micrites. Repeated sea level fluctuations during the history of these fields resulted in a characteristic cyclic stratigraphy of stacked island facies and reservoirs. The reservoirs in the field are developed in the bedrock or older island cores, as well as in the overlying beach facies and supratidal dolomites. These fields are mappable as linear stratigraphic traps with low-relief closure, and are readily identified by subsurface geologic and facies analyses. Similar shelf island-type fields analogous to these strawn and Holocene Belizean examples are found throughout the Midland basin and Eastern shelf.

  15. Application of seismic tomographic techniques in the investigation of geothermal systems

    SciTech Connect (OSTI)

    Romero, A.E. Jr.

    1995-05-01

    The utility of microearthquake data for characterizing the Northwest Geysers geothermal field and the Long Valley Caldera (LVC) was investigated. Three-dimensional (3-D) P- and S-wave seismic velocity models were estimated for the Coldwater Creek Steam Field (CCSF) in the Northwest Geysers region. Hypocenters relocated using these 3-D models appear to be associated with the steam producing zone, with a deeper cluster of hypocenters beneath an active injection well. Spatial and temporal patterns of seismicity exhibit strong correlation with geothermal exploitation. A 3-D differential attenuation model was also developed for the CCSF from spectral ratios corrected for strong site effects. High-velocity anomalies and low attenuation in the near surface correspond to Franciscan metagraywacke and greenstone units. Microearthquakes recorded at seismographic stations located near the metagraywacke unit exhibit high corner frequencies. Low-velocity anomalies and higher attenuation in the near surface are associated with sections of Franciscan melange. Near-surface high attenuation and high Vp/Vs are interpreted to indicate liquid-saturated regions affected by meteoric recharge. High attenuation and low Vp/Vs marks the steam producing zone, suggesting undersaturation of the reservoir rocks. The extent of the high attenuation and low Vp/Vs anomalies suggest that the CCSF steam reservoir may extend northwestward beyond the known producing zone. This study concludes that microearthquake monitoring may be useful as an active reservoir management tool. Seismic velocity and attenuation structures as well as the distribution of microearthquake activity can be used to identify and delineate the geothermal reservoir, while temporal variations in these quantities would be useful in tracking changes during exploitation.

  16. Silver Peak Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a deep-circulation (amagmatic) meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or core, of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.

  17. Ambient H sub 2 S monitoring in the vicinity of Hawaii's first geothermal power plant

    SciTech Connect (OSTI)

    Morrow, J.W. ); Thomas, D.M. ); Burkard, H.D. )

    1988-01-01

    In December, 1975, work began on Hawaii's first successful geothermal well in the East Rift Zone of Kilauea Volcano on the Island of Hawaii (Figure 1). By July, 1976, the well, named Hawaii Geothermal Project - A (HGP-A), was complete to a depth of almost 2 km and had encountered a volcanically driven hydrothermal system having a temperature in excess of 358{degrees} C and a fluid chemistry composed of a mixture of seawater, meteoric water, and volcanic volatiles. The principal chemical constituents of the fluid are listed in Table I. Note the relatively high H{sub 2}S concentration which ranged 900 - 1,000 ppmw. During the early testing of the well, the superheated geothermal fluid was allowed to flash at normal atmospheric pressure with steam and noncondensable gases being released unabated into the atmosphere. The high H{sub 2}S and noise (120 dBA) levels and the close proximity of the Leilani Estates residential subdivision were cause for concern and efforts were thus made to mitigate these impacts. Certain elements of the initial test protocol required that the well be allowed to flow freely and unabated. During these periods public notice and prewarning were the most feasible means of mitigation. At other times, the mixed fluid is separated into steam and brine phases with the steam phase being treated with NaOH and then released through a rock muffler. The brine phase is released through a separate muffling system. Chemical treatment of the stream with NaOH converts the H{sub 2}S into a soluble sulfide salt through the following reaction: H{sub 2}S(g) + NaOH {r arrow} NaHS(s) + H{sub 2}O. This paper discusses early flow testing revealed that the well was able to produce a steady flow of approximately 50,000 kg per hour of steam and water at a pressure of 1200 kPA and thus appeared suitable for power generation.

  18. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    SciTech Connect (OSTI)

    Parker, Frank L.

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions), long term care, reduced access to 'dirty' bomb materials, the social and political costs of siting new facilities and the psychological impact of no solution to the nuclear waste problem, were taken into account, the costs would be far lower than those of the present fuel cycle. (authors)

  19. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    SciTech Connect (OSTI)

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production tends to decline hyperbolically. Hyperbolic decline indicates that water volume is of greatest concern early in the life of a coalbed methane project. Regional mapping indicates that gas production is controlled primarily by the ability to depressurize permeable coal seams that are natively within the steep part of the adsorption isotherm. Water production is greatest within the freshwater intrusion and below thick Cretaceous cover strata and is least in areas of underpressure. Water management strategies include instream disposal, which can be applied effectively in most parts of the basin. Deep disposal may be applicable locally, particularly where high salinity limits the ability to dispose into streams. Artificial wetlands show promise for the management of saline water, especially where the reservoir yield is limited. Beneficial use options include municipal water supply, agricultural use, and industrial use. The water may be of use to an inland shrimp farming industry, which is active around the southwestern coalbed methane fields. The best opportunities for beneficial use are reuse of water by the coalbed methane industry for drilling and hydraulic fracturing. This research has further highlighted opportunities for additional research on treatment efficiency, the origin of nitrogen compounds, organic geochemistry, biogenic gas generation, flow modeling, and computer simulation. Results of this study are being disseminated through a vigorous technology transfer program that includes web resources, numerous presentations to stakeholders, and a variety of technical publications.

  20. Porosity and surface area evolution during weathering of two igneous rocks

    SciTech Connect (OSTI)

    Navarre-Sitchler, Alexis; Cole, David; Rother, Gernot; Jin, Lixin; Buss, Heather; Brantley, S. L.

    2013-01-01

    During weathering, rocks release nutrients and storewater vital for growth ofmicrobial and plant life. Thus, the growth of porosity as weathering advances into bedrock is a life-sustaining process for terrestrial ecosystems. Here, we use small-angle and ultra small-angle neutron scattering to show how porosity develops during initial weathering under tropical conditions of two igneous rock compositions, basaltic andesite and quartz diorite. The quartz diorite weathers spheroidally while the basaltic andesite does not. The weathering advance rates of the two systems also differ, perhaps due to this difference in mechanism, from 0.24 to 100 mm kyr1, respectively. The scattering data document how surfaces inside the feldspar-dominated rocks change as weathering advances into the protolith. In the unaltered rocks, neutrons scatter fromtwo types of featureswhose dimensions vary from6 nmto 40 lm: pores and bumps on pore grain surfaces. These features result in scattering data for both unaltered rocks that document multi-fractal behavior: scattering is best described by amass fractal dimension (Dm) and a surface fractal dimension (Ds) for features of length scales greater than and less than 1 lm, respectively. In the basaltic andesite, Dm is approximately 2.9 and Ds is approximately 2.7. The mechanism of solute transport during weathering of this rock is diffusion. Porosity and surface area increase from 1.5%to 8.5%and 3 to 23 m2 g1 respectively in a relatively consistent trend across themm-thick plagioclase reaction front. Across this front, both fractal dimensions decrease, consistentwith development of amoremonodisperse pore networkwith smoother pore surfaces. Both changes are consistent largely with increasing connectivity of pores without significant surface roughening, as expected for transport-limited weathering. In contrast, porosity and surface area increase from 1.3% to 9.5% and 1.5 to 13 m2 g1 respectively across a many cm-thick reaction front in the spheroidally weathering quartz diorite. In that rock, Dm is approximately 2.8 andDs is approximately 2.5 prior to weathering. These two fractals transform during weathering to multiple surface fractals as micro-cracking reduces the size of diffusion-limited subzones of thematrix.Across the reaction front of plagioclase in the quartz diorite, the specific surface area and porosity change very little until the pointwhere the rock disaggregates into saprolite. The different patterns in porosity development of the two rocks are attributed to advective infiltration plus diffusion in the rock that spheroidally fractures versus diffusion-only in the rock that does not. Fracturing apparently diminishes the size of the diffusion-limited parts of the spheroidally weathering rock system to promote infiltration of meteoric fluids, thereforeexplaining the faster weathering advance rate into that rock.

  1. T Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY09 Report

    SciTech Connect (OSTI)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2010-01-01

    DOEs Office of River Protection constructed a temporary surface barrier over a portion of the T Tank Farm as part of the T Farm Interim Surface Barrier Demonstration Project. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barrier at reducing soil moisture. A solar-powered system was installed to continuously monitor soil water conditions at four locations (i.e., instrument Nests A, B, C, and D) beneath the barrier and outside the barrier footprint as well as site meteorological conditions. Nest A is placed in the area outside the barrier footprint and serves as a control, providing subsurface conditions outside the influence of the surface barrier. Nest B provides subsurface measurements to assess surface-barrier edge effects. Nests C and D are used to assess changes in soil-moisture conditions beneath the interim surface barrier. Each instrument nest is composed of a capacitance probe (CP) with multiple sensors, multiple heat-dissipation units (HDUs), and a neutron probe (NP) access tube. The monitoring results in FY09 are summarized below. The solar panels functioned normally and could provide sufficient power to the instruments. The CP in Nest C after September 20, 2009, was not functional. The CP sensors in Nest B after July 13 and the 0.9-m CP sensor in Nest D before June 10 gave noisy data. Other CPs were functional normally. All the HDUs were functional normally but some pressure-head values measured by HDUs were greater than the upper measurement-limit. The higher-than-upper-limit values might be due to the very wet soil condition and/or measurement error but do not imply the malfunction of the sensors. Similar to FY07 and FY08, in FY09, the soil under natural conditions (Nest A) was generally recharged during the winter period (October-March) and discharged during the summer period (April-September). Soil water conditions above about 1.5-m to 2-m depth from all three types of measurements (i.e., CP, NP and HDU) showed relatively large variation during the seasonal wetting-drying cycle. For the soil below 2-m depth, the seasonal variation of soil water content was relatively small. The construction of the surface barrier was completed in April 2008. In the soil below the surface barrier (Nests C and D), the CP measurements showed that water content at the soil between 0.6-m and 2.3-m depths was very stable, indicating no climatic impacts on soil water condition beneath the barrier. The NP-measured water content showed that soil water drainage seemed occurring in the soil between about 3.4 m (11 ft) and 9.1 m (30 ft) in FY09. The HDU-measured water pressure decreased consistently in the soil above 5-m depth, indicating soil water drainage at these depths of the soil. In the soil below the edge of the surface barrier (Nest B), the CP-measured water content was relatively stable through the year except at the 0.9-m depth; the NP-measured water content showed that soil water drainage was occurring in the soil between about 3.4 m (11 ft) and 9.1 m (30 ft) but at a slightly smaller magnitude than those in Nests C and D; the HDU-measurements show that the pressure head changes in FY09 in Nest B were less than those for C and D but more than those for A. The soil-water-pressure head was more sensitive to soil water regime changes under dry conditions. In the soil beneath the barrier, the theoretical steady-state values of pressure head is equal to the negative of the distance to groundwater table. Hence, it is expected that, in the future, while the water content become stable, the pressure head will keep decreasing for a long time (e.g., many years). These results indicate that the T Tank Farm surface barrier was performing as expected by intercepting the meteoric water from infiltrating into the soil and the soil was becoming drier gradually. The barrier also has some effects on the soil below the barrier edge but at a reduced magnitude.

  2. T-TY Tank Farm Interim Surface Barrier Demonstration - Vadose Zone Monitoring FY10 Report

    SciTech Connect (OSTI)

    Zhang, Z. F.; Strickland, Christopher E.; Field, Jim G.; Parker, Danny L.

    2011-01-24

    The U.S. Department of Energys Office of River Protection has constructed interim surface barriers over a portion of the T and TY tank farms as part of the Interim Surface Barrier Demonstration Project. The interim surface barriers (hereafter referred to as the surface barriers or barriers) are designed to minimize the infiltration of precipitation into the soil zones containing radioactive contaminants and minimize the movement of the contaminants. As part of the demonstration effort, vadose zone moisture is being monitored to assess the effectiveness of the barriers at reducing soil moisture. Solar-powered systems were installed to continuously monitor soil water conditions at four locations in the T (i.e., instrument Nests TA, TB, TC, and TD) and the TY (i.e., instrument Nests TYA and TYB) Farms beneath the barriers and outside the barrier footprint as well as site meteorological conditions. Nests TA and TYA are placed in the area outside the barrier footprint and serve as controls, providing subsurface conditions outside the influence of the surface barriers. Nest TB provides subsurface measurements to assess surface-barrier edge effects. Nests TC, TD, and TYB are used to assess changes in soil-moisture conditions beneath the interim surface barriers. Except for occasional times for TC and TD and planned dates for TYB, during FY10, the battery voltage at the TMS and instrument Nests in both T and TY tank farms remained above 12.0 V, denoting that the battery voltages were sufficient for the stations to remain functional. All the HDUs were functioning normally, but some pressure-head values were greater than the upper measurement limit. The values that exceeded the upper limit may indicate wet soil conditions and/or measurement error, but they do not imply a malfunction of the sensors. Similar to FY07 through FY09, in FY10, the soil under natural conditions in the T Farm (Nest TA) was generally recharged during the winter period (OctoberMarch), and they discharged during the summer period (AprilSeptember). Soil water conditions above about 1.5-m to 2-m depth from all three types of measurements (i.e., CP, NP, and HDU) showed relatively large variation during the seasonal wetting-drying cycle. For the soil below 2-m depth, the seasonal variation of soil water content was relatively small. The construction of the TISB was completed in April 2008. In the soil below the TISB (Nests TC and TD), the CP-measured water content showed that ? at the soil between 0.6-m and 2.3-m depths was stable, indicating no climatic impacts on soil water conditions beneath the barrier. The NP-measured water content in the soil between about 3.4 m (11 ft) and 12.2 m (40 ft) since the completion of the barrier decreased by 0.007 to 0.014 m3 m-3. The HDU-measured soil-water pressure at 1-m, 2-m, and 5-m depths decreased by 0.7 to 2.4 m, indicating soil water drainage at these depths of the soil. In the soil below the edge of the TISB (Nest TB), the CP-measured water content was relatively stable through the year; the NP-measured water content showed that soil water drainage was occurring in the soil between about 3.4 m (11 ft) and 12.2 m (40 ft) but at a slightly smaller magnitude than in Nests TC and TD; the HDU-measurements show that the pressure head changes at Nest TB since the completion of the barrier were generally less than those at TC and TD, but more than those at TA. These results indicate that the TISB is performing as expected by intercepting the meteoric water from infiltrating into the soil, and the soil is becoming drier gradually. The barrier also had some effects on the soil below the barrier edge, but at a reduced magnitude. There was no significant difference in soil-water regime between the two nests in the TY tank farm because the barrier at the TY Farm was just completed one month before the end of the FY.