Powered by Deep Web Technologies
Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Molten Salt Heat Transfer Fluid (HTF) - Energy Innovation Portal  

Solar Thermal Industrial Technologies Energy Storage Molten Salt Heat Transfer Fluid (HTF) Sandia National Laboratories. Contact SNL About This ...

2

MOLTEN SALT HEAT TRANSFER FLUID  

thermal energy storage tanks Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has a lower freezing point

3

Convective heat transfer in the laminar-turbulent transition region with molten salt in a circular tube  

SciTech Connect

In order to understand the heat transfer characteristics of molten salt and testify the validity of the well-known empirical convective heat transfer correlations, experimental study on transition convective heat transfer with molten salt in a circular tube was conducted. Molten salt circulations were realized and operated in a specially designed system over 1000 h. The average forced convective heat transfer coefficients of molten salt were determined by least-squares method based on the measured data of flow rates and temperatures. Finally, a heat transfer correlation of transition flow with molten salt in a circular tube was obtained and good agreement was observed between the experimental data of molten salt and the well-known correlations presented by Hausen and Gnielinski, respectively. (author)

Yu-ting, Wu; Bin, Liu; Chong-fang, Ma; Hang, Guo [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing municipality, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

2009-10-15T23:59:59.000Z

4

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants  

Science Conference Proceedings (OSTI)

A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

Mathur, Anoop [Terrafore Inc.] [Terrafore Inc.

2013-08-14T23:59:59.000Z

5

Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop  

SciTech Connect

This report develops a proposal to design and construct a forced convection test loop. A detailed test plan will then be conducted to obtain data on heat transfer, thermodynamic, and corrosion characteristics of the molten salts and fluid-solid interaction. In particular, this report outlines an experimental research and development test plan. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project highlighted how thermophysical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report describes the options available to reach such objectives. In particular, that report outlines an experimental research and development test plan that would include following steps: •Molten Salts: The candidate molten salts for investigation will be selected. •Materials of Construction: Materials of construction for the test loop, heat exchangers, and fluid-solid corrosion tests in the test loop will also be selected. •Scaling Analysis: Scaling analysis to design the test loop will be performed. •Test Plan: A comprehensive test plan to include all the tests that are being planned in the short and long term time frame will be developed. •Design the Test Loop: The forced convection test loop will be designed including extensive mechanical design, instrument selection, data acquisition system, safety requirements, and related precautionary measures. •Fabricate the Test Loop. •Perform the Tests. •Uncertainty Analysis: As a part of the data collection, uncertainty analysis will be performed to develop probability of confidence in what is measured in the test loop. Overall, the testing loop will allow development of needed heat transfer related thermophysical parameters for all the salts, validate existing correlations, validate measuring instruments under harsh environment, and have extensive corrosion testing of materials of construction.

Manohar S. Sohal; Piyush Sabharwall; Pattrick Calderoni; Alan K. Wertsching; S. Brandon Grover

2010-09-01T23:59:59.000Z

6

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

7

Mixed-convective, conjugate heat transfer during molten salt quenching of small parts  

Science Conference Proceedings (OSTI)

It is common in free quenching immersion heat treatment calculations to locally apply constant or surface-averaged heat-transfer coefficients obtained from either free or forced steady convection over simple shapes with small temperature differences from the ambient fluid. This procedure avoids the solution of highly transient, non-Boussinesq conjugate heat transfer problems which often involve mixed convection, but it leaves great uncertainty about the general adequacy of the results. In this paper we demonstrate for small parts (dimensions of the order of inches rather than feet) quenched in molten salt, that it is feasible to calculate such nonuniform surface heat transfer from first principles without adjustable empirical parameters. We use literature physical property salt data from the separate publications of Kirst et al., Nissen, Carling, and Teja, et al. for T800 F is not considered to be important due to the short time the surface temperature exceeds that value for small parts. Similarly, for small parts, the local Reynolds and Rayleigh numbers are below the corresponding critical values for most if not all of the quench, so that we see no evidence of the existence of significant turbulence effects, only some large scale unsteadiness for brief periods. The experimental data comparisons from the open literature include some probe cooling-rate results of Foreman, as well as some cylinder thermal histories of Howes.

Chenoweth, D.R.

1997-02-01T23:59:59.000Z

8

Mixed-convective, conjugate heat transfer during molten salt quenching of small parts  

SciTech Connect

It is common in free quenching immersion heat treatment calculations to locally apply constant or surface-averaged heat-transfer coefficients obtained from either free or forced steady convection over simple shapes with small temperature differences from the ambient fluid. This procedure avoids the solution of highly transient, non-Boussinesq conjugate heat transfer problems which often involve mixed convection, but it leaves great uncertainty about the general adequacy of the results. In this paper we demonstrate for small parts (dimensions of the order of inches rather than feet) quenched in molten salt, that it is feasible to calculate such nonuniform surface heat transfer from first principles without adjustable empirical parameters. We use literature physical property salt data from the separate publications of Kirst et al., Nissen, Carling, and Teja, et al. for T<1000 F, and then extrapolate it to the initial part temperature. The reported thermal/chemical breakdown of NaNO{sub 2} for T>800 F is not considered to be important due to the short time the surface temperature exceeds that value for small parts. Similarly, for small parts, the local Reynolds and Rayleigh numbers are below the corresponding critical values for most if not all of the quench, so that we see no evidence of the existence of significant turbulence effects, only some large scale unsteadiness for brief periods. The experimental data comparisons from the open literature include some probe cooling-rate results of Foreman, as well as some cylinder thermal histories of Howes.

Chenoweth, D.R.

1997-02-01T23:59:59.000Z

9

Molten Salt Heat Transport Loop: Materials Corrosion and Heat Transfer Phenomena  

SciTech Connect

An experimental system for corrosion testing of candidate materials in molten FLiNaK salt at 850 degree C has been designed and constructed. While molten FLiNaK salt was the focus of this study, the system can be utilized for evaluation of materials in other molten salts that may be of interest in the future. Using this system, the corrosion performance of a number of code-certified alloys of interest to NGNP as well as the efficacy of Ni-electroplating have been investigated. The mechanisums underlying corrosion processes have been elucidated using scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy of the materials after the corrosion tests, as well as by the post-corrosion analysis of the salts using inductively coupled plasma (ICP) and neutron activation analysis (NAA) techniques.

Dr. Kumar Sridharan; Dr. Mark Anderson; Dr. Michael Corradini; Dr. Todd Allen; Luke Olson; James Ambrosek; Daniel Ludwig

2008-07-09T23:59:59.000Z

10

Molten salt as a heat transfer fluid for heating a subsurface formation  

DOE Patents (OSTI)

A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.

Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

2010-11-16T23:59:59.000Z

11

Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants  

DOE Green Energy (OSTI)

The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

Mathur, Anoop [Terrafore Inc.

2013-08-14T23:59:59.000Z

12

Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint  

DOE Green Energy (OSTI)

Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

Turchi, C. S.; Ma, Z.

2011-08-01T23:59:59.000Z

13

Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.  

DOE Green Energy (OSTI)

Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

2004-07-01T23:59:59.000Z

14

Heat transfer and pressure drop measurements in an air/molten salt direct-contact heat exchanger  

SciTech Connect

This paper presents a comparison of experimental data with a recently published model of heat exchange in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610-mm bed of metal Pall rings. Molten nitrate salt and preheated air were the working fluids with a salt inlet temperature of approximately 440{degree}C and air inlet temperatures of approximately 230{degree}C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of air and salt flow rates tested, 0.3 to 1.2 kg/m{sup 2} s air flow and 6 to 18 kg/m{sup 2} s salt flow, the data agree with the model within 22% standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18% standard deviation over the range of column pressure drop from 40 to 1250 Pa/m. 25 refs., 7 figs., 2 tabs.

Bohn, M.S.

1988-11-01T23:59:59.000Z

15

An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems  

SciTech Connect

Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.

Pattrick Calderoni

2010-09-01T23:59:59.000Z

16

Colloidal stability of magnetic nanoparticles in molten salts  

E-Print Network (OSTI)

Molten salts are important heat transfer fluids used in nuclear, solar and other high temperature engineering systems. Dispersing nanoparticles in molten salts can enhance the heat transfer capabilities of the fluid. High ...

Somani, Vaibhav (Vaibhav Basantkumar)

2010-01-01T23:59:59.000Z

17

Molten salt test loop  

DOE Green Energy (OSTI)

The objective of the Molten Salt Test Loop Project was to design, construct, and demonstrate operation of an outdoor high temperature molten salt test facility. This facility is operational, and can now be used to evaluate materials and components, and the design features and operating procedures required for molten salt heat transport systems. The initial application of the loop was to demonstrate the feasibility of using molten salt as the heat transport medium for a high temperature distributed collector system. A commercially available eutectic salt blend is used as the heat transfer fluid. This salt has a composition of 40% NaNO/sub 2/, 7% NaNO/sub 3/, and 53% KNO/sub 3/ and is marketed under the trade name Hitec. It has a freezing (solidifying) point of 142/sup 0/C (288/sup 0/F) and has been satisfactorily used at temperatures as high as 594/sup 0/C (1100/sup 0/F). General Atomic (GA) installed a row of Fixed Mirror Solar Concentrators (FMSC's) in the loop. The system was started up and a test program conducted. Startup went smoothly, with the exception of some burned-out trace heaters. Salt temperatures as high as 571/sup 0/C (1060/sup 0/F) were achieved.

Schuster, J.R.; Eggers, G.H.

1980-01-01T23:59:59.000Z

18

Optical properties of a solar-absorbing molten salt heat transfer fluid. [Eutectic mixture of KNO3, NaNO2, and NaNO3 with particle suspensions of cobalt oxides or copper oxides  

DOE Green Energy (OSTI)

The optical absorption properties of a high temperature molten salt heat transfer fluid were measured from 0.35 ..mu..m to 2.5 ..mu..m using both hemispherical transmission and reflection techniques. This fluid has application as a direct-absorbing working fluid in a high temperature central receiver solar energy facility. The absorption spectrum of the pure molten fluid--a eutectic mixture of KNO/sub 3/, NaNO/sub 2/, and NaNO/sub 3/, known as Hitec (Du Pont trade name)--displays a fundamental absorption edge near 410 nm, which was found to shift to longer wavelength linearly with temperature. Throughout the remainder of the visible spectrum, the fluid is transparent. To enhance its solar absorption, particulate metallic oxides of Co or Cu were introduced into the fluid. Absorption spectra of these oxide particle suspensions in the molten salt were determined as a function of dopant concentration ranging from 0 to 0.1 wt% metal nitrate added to the Hitec. These measurements were carried out at 200/sup 0/C under flow conditions to cause a homogeneous suspension of particles. Special transmission and reflection flow cells were designed and constructed to handle 200/sup 0/C fluids. The suspended particles cause an additional optical absorption throughout the visible spectrum which is characteristic of the particular metallic oxide and closely follows a Beer-Lambert concentration dependence. The solar averaged absorption in a fixed layer thickness was calculated for various concentrations of the fluid-oxide mixtures. The fluid without oxide particles absorbs approximately 8% of the solar spectrum per cm of path length. Addition of 0.1 wt% of Co(NO/sub 3/)/sub 2/.6H/sub 2/O increases this absorption to approximately 90% per cm. Of the oxides studied, Co/sub 3/O/sub 4/ particle suspensions offer better solar absorption characteristics than CuO. Effects of particulate scattering on the measurements are discussed.

Drotning, W.D.

1977-06-01T23:59:59.000Z

19

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

Raistrick, I.D.; Poris, J.; Huggins, R.A.

1980-07-18T23:59:59.000Z

20

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1982-02-09T23:59:59.000Z

22

Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory  

SciTech Connect

This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material - There are likely multiple phases of material in the salt (metal or compound), either suspended through the salt matrix, layered in the bottom of the tank, or both. These phases may contribute to plugging during any planned transfer. There is not enough data to know for sure. (4) Probe heat trace - The alternate transfer method does not include heat tracing of the bottom of the probe. There is a concern that this may cool the salt and other phases of materials present enough to block the flow of salt. (5) Stress-corrosion cracking - Additionally, there is a concern regarding moisture that may have been introduced into the tanks. Due to time constraints, this concern was not validated. However, if moisture was introduced into the tanks and not removed during heating the tanks before HF and F2 sparging, there would be an additional concern regarding the potential for stress-corrosion cracking of the tank walls.

Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

2009-09-30T23:59:59.000Z

23

Study on the Interfacial Heat Transfer Coefficient of High Pressure ...  

Science Conference Proceedings (OSTI)

The heat transfer behavior between an AM60B alloy casting and die during .... for Spent Nuclear Fuel and Measuring the Composition of Molten Salt by Using ...

24

Overview on Use of a Molten Salt HTF in a Trough Solar Field (Presentation)  

DOE Green Energy (OSTI)

This presentation discusses the utilization of molten salt as the heat transfer fluid in a parabolic trough solar field to improve system performance and to reduce the levelized electricity.

Kearney, D.; Kelly, B.; Cable, R.; Potrovitza, N.; Herrmann, U.; Nava, P.; Mahoney, R.; Pacheco, J.; Blake, D.; Price, H.

2003-02-01T23:59:59.000Z

25

Molten salt electrolyte separator  

DOE Patents (OSTI)

A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

Kaun, Thomas D. (New Lenox, IL)

1996-01-01T23:59:59.000Z

26

Batteries using molten salt electrolyte  

SciTech Connect

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

27

Molten salt electrolyte separator  

DOE Patents (OSTI)

The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

Kaun, T.D.

1996-07-09T23:59:59.000Z

28

Molten salts database for energy applications  

E-Print Network (OSTI)

The growing interest in energy applications of molten salts is justified by several of their properties. Their possibilities of usage as a coolant, heat transfer fluid or heat storage substrate, require thermo-hydrodynamic refined calculations. Many researchers are using simulation techniques, such as Computational Fluid Dynamics (CFD) for their projects or conceptual designs. The aim of this work is providing a review of basic properties (density, viscosity, thermal conductivity and heat capacity) of the most common and referred salt mixtures. After checking data, tabulated and graphical outputs are given in order to offer the most suitable available values to be used as input parameters for other calculations or simulations. The reviewed values show a general scattering in characterization, mainly in thermal properties. This disagreement suggests that, in several cases, new studies must be started (and even new measurement techniques should be developed) to obtain accurate values.

Serrano-López, Roberto; Cuesta-López, Santiago

2013-01-01T23:59:59.000Z

29

Direct-contact air/molten salt heat exchange for solar-thermal systems  

DOE Green Energy (OSTI)

Heat exchangers employing direct contact between molten draw salt and air were studied for use in solar industrial process heat (IPH) systems. Direct-contact systems consisting of a fin-tube preheater and a spray or packed column were compared to conventional heat exchangers. Direct contact reduced the IPH system cost by 5% to 10%. The direct-contact heat exchangers cost only 15% to 30% as much as comparable conventional exchangers. However, the rate of salt degradation by CO/sup 2/ and H/sub 2/O must be determined to see if it is acceptable.

Wright, J.D.; d'Agincourt, C.

1982-05-01T23:59:59.000Z

30

The design and testing of a molten salt steam generator for solar application  

SciTech Connect

This paper describes the design and testing of the Steam Generator Subsystem (SGS) for the Molten Salt Electric Experiment at Sandia Laboratories in Albuquerque, New Mexico. The Molten Salt Electric Experiment (MSEE) has been established to demonstrate the feasibility of the molten salt central receiver concept. The experiment is capable of generating 0.75 megawatts of electric power from solar energy, with the capability of storing seven megawatt-hours of thermal energy. The steam generator subsystem transfers sensible heat from the solar-heated molten nitrate salt to produce steam to drive a conventional turbine. This paper discusses the design requirements dictated by the steam generator application and also reviews the process conditions. Details of each of the SGS components are given, featuring the aspects of the design and performance unique to the solar application. The paper concludes with a summary of the test results confirming the overall design of the subsystem.

Allman, W.A.; Smith, D.C.; Kakarala, C.R.

1988-02-01T23:59:59.000Z

31

Molten Salts, Magnesium and Aluminum  

Science Conference Proceedings (OSTI)

Mar 1, 2011 ... Chloride 2011: Practice and Theory of Chloride-Based Metallurgy: Molten Salts, Magnesium and Aluminum Sponsored by: The Minerals, ...

32

Extracting information from the molten salt database  

Science Conference Proceedings (OSTI)

Molten salt technology is a catchall phrase that includes some very diverse ... nologies are linked by the general characteristics of molten salts that can function

33

RECHARGEABLE MOLTEN-SALT CELLS  

E-Print Network (OSTI)

KC! /FeS 2 cell lithium-silicon magnesium oxide molten-saltmolten-salt cells Na/Na glass/Na:z.Sn-S cell Na/NazO•xA!Symposium on Molten Salts, Physical Electrochemistry

Cairns, Elton J.

2013-01-01T23:59:59.000Z

34

Enhanced molten salt purification by electrochemical methods: feasibility experiments with flibe  

SciTech Connect

Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The most important initial requirement for heat transfer test of molten salt systems is the establishment of reference coolant materials to use in the experiments. An earlier report produced within the same project (INL/EXT-10-18297) highlighted how thermo-physical properties of the materials that directly impact the heat transfer behavior are strongly correlated to the of composition and impurities concentration of the melt. It is therefore essential to establish laboratory techniques that can measure the melt composition, and to develop purification methods that would allow the production of large quantities of coolant with the desired purity. A companion report titled ‘An experimental test plan for the characterization of molten salt thermo-chemistry properties in heat transport systems’ describes the options available to reach such objectives and contains extended references to published work. The report highlights how electrochemical methods are the most promising techniques for the development of instrumentation aimed at the measurement of melts composition and for enhanced purification systems. The purpose of this work is to summarize preliminary experimental activities performed at the INL Safety and Tritium Applied Research facility in support of the development of electrochemistry based instrumentation and purification systems. The experiments have been focused on the LiF-BeF2 eutectic (67 and 33 mol%, respectively), also known as flibe.

Alan K Wertsching; Brandon S Grover; Pattrick Calderoni

2010-09-01T23:59:59.000Z

35

Molten Salt Mixture Properties (KF-ZrF4 and KCl-MgCl2) for Use in RELAP5-3D for High Temperature Reactor Application  

SciTech Connect

Molten salt coolants are being investigated as primary coolants for a fluoride high-temperature reactor and as secondary coolants for high temperature reactors such as the next generation nuclear plant. This work provides a review of the thermophysical properties of candidate molten salt coolants for use as a secondary heat transfer medium from a high temperature reactor to a processing plant. The molten salts LiF-NaF-KF, KF-ZrF4 and KCl-MgCl2 were considered for use in the secondary coolant loop. The thermophysical properties necessary to add the molten salts KF-ZrF4 and KCl-MgCl2 to RELAP5-3D were gathered for potential modeling purposes. The properties of the molten salt LiF-NaF-KF were already available in RELAP5-3D. The effect that the uncertainty in individual properties had on the Nusselt number was evaluated. This uncertainty in the Nusselt number was shown to be nearly independent of the molten salt temperature.

N. A. Anderson; P. Sabharwall

2012-06-01T23:59:59.000Z

36

Cathode for molten salt batteries  

DOE Patents (OSTI)

A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

Mamantov, Gleb (Knoxville, TN); Marassi, Roberto (Camerino, IT)

1977-01-01T23:59:59.000Z

37

Thermal analysis of solar thermal energy storage in a molten-salt thermocline  

SciTech Connect

A comprehensive, two-temperature model is developed to investigate energy storage in a molten-salt thermocline. The commercially available molten salt HITEC is considered for illustration with quartzite rocks as the filler. Heat transfer between the molten salt and quartzite rock is represented by an interstitial heat transfer coefficient. Volume-averaged mass and momentum equations are employed, with the Brinkman-Forchheimer extension to the Darcy law used to model the porous-medium resistance. The governing equations are solved using a finite-volume approach. The model is first validated against experiments from the literature and then used to systematically study the discharge behavior of thermocline thermal storage system. Thermal characteristics including temperature profiles and discharge efficiency are explored. Guidelines are developed for designing solar thermocline systems. The discharge efficiency is found to be improved at small Reynolds numbers and larger tank heights. The filler particle size strongly influences the interstitial heat transfer rate, and thus the discharge efficiency. (author)

Yang, Zhen; Garimella, Suresh V. [Cooling Technologies Research Center, NSF I/UCRC, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2088 (United States)

2010-06-15T23:59:59.000Z

38

Applications of molten salts in plutonium processing  

Science Conference Proceedings (OSTI)

Plutonium is efficiently recovered from scrap at Los Alamos by a series of chemical reactions and separations conducted at temperatures ranging from 700 to 900/sup 0/C. These processes usually employ a molten salt or salt eutectic as a heat sink and/or reaction medium. Salts for these operations were selected early in the development cycle. The selection criteria are being reevaluated. In this article we describe the processes now in use at Los Alamos and our studies of alternate salts and eutectics.

Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

1987-01-01T23:59:59.000Z

39

Assessment of molten-salt solar central-receiver freeze-up and recovery events  

DOE Green Energy (OSTI)

Molten salt used as a heat transfer fluid in central-receiver so ar power plants has a high freezing point (430{degrees}F (221{degrees}C)). It is very likely during the life of the plant that the receiver will accidentally freeze up due to equipment malfunction or operator error. Experiments were conducted to measure the effects of a molten salt receiver freeze-up and recovery event and methods to thaw the receiver. In addition, simulated freeze/thaw experiments were conducted to determine what happens when salt freezes and is thawed in receiver tubes and to quantify the damage caused to candidate receiver tube materials. Fourteen tube samples of various materials, diameters and wall thicknesses were tested to destruction. Results of these tests are presented in this paper.

Pacheco, J.E.; Dunkin, S.R.

1996-02-01T23:59:59.000Z

40

LIFE Materails: Molten-Salt Fuels Volume 8  

SciTech Connect

The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

2008-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Modeling of Porous Electrodes in Molten-Salt Systems  

E-Print Network (OSTI)

of Porous Electrodes in Molten-Salt Systems^ John Newmanon High-Temperature Molten Salt B a t - teries, Argonneby the modeling of molten-salt cells, including some

Newman, John

1986-01-01T23:59:59.000Z

42

Molten Salt Breeder Reactors Academia Sinica, ITRI, NTHU  

E-Print Network (OSTI)

Power 4/8/12 Frank H. Shu Gen IV MSBR/LFTR Liquid fuel (molten salt) Molten salt coolant (unpopulated

Wang, Ming-Jye

43

Molten salt safety study. Final report  

DOE Green Energy (OSTI)

The considerations concerning safety in using molten salt (40% potassium nitrate, 60% sodium nitrate) in a solar central receiver plant are addressed. The considerations are of a general nature and do not cover any details of equipment or plant operation. The study includes salt chemical reaction, experiments with molten salt, dry storage and handling constraints, and includes data from the National Fire Protection Association. The contents of this report were evaluated by two utility companies and they concluded that no major safety problems exist in using a molten salt solar system.

Not Available

1980-01-01T23:59:59.000Z

44

Molten salt destruction of energetic waste materials  

DOE Patents (OSTI)

A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Pruneda, Cesar O. (Livermore, CA)

1995-01-01T23:59:59.000Z

45

Molten salt destruction of energetic waste materials  

DOE Patents (OSTI)

A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

1995-07-18T23:59:59.000Z

46

Dysprosium Extraction Using Molten Salt Electrolysis Process  

Science Conference Proceedings (OSTI)

AlCl3 was used as a chlorinating agent in order to enable an efficient dissolution of metal in the molten salt phase in the salt bath. The metal chloride which is ...

47

Molten Salt Solar-Electric Experiment: Volumes 1 and 2  

Science Conference Proceedings (OSTI)

The Molten Salt Electric Experiment assembled and tested the first full-system experiment of a solar central receiver plant employing molten nitrate salt as the heat transport fluid and thermal storage medium. This report focuses on the last two phases of the project: testing/operation and evaluation. Overall project data will help utilities evaluate the central receiver concept's technical status, development requirements, and potential as a renewable source of electricity.

1990-01-03T23:59:59.000Z

48

Preliminary safety calculations to improve the design of Molten Salt Fast Reactor  

SciTech Connect

Molten salt reactors are liquid fuel reactors so that they are flexible in operation but very different in the safety approach from solid fuel reactors. This study bears on the specific concept named Molten Salt Fast Reactor (MSFR). Since this new nuclear technology is in development, safety is an essential point to be considered all along the R and D studies. This paper presents the first step of the safety approach: the systematic description of the MSFR, limited here to the main systems surrounding the core. This systematic description is the basis on which we will be able to devise accidental scenarios. Thanks to the negative reactivity feedback coefficient, most accidental scenarios lead to reactor shut down. Because of the decay heat generated in the fuel salt, it must be cooled. After the description of the tools developed to calculate the residual heat, the different contributions are discussed in this study. The decay heat of fission products in the MSFR is evaluated to be low (3% of nominal power), mainly due to the reprocessing that transfers the fission products to the gas reprocessing unit. As a result, the contribution of the actinides is significant (0.5% of nominal power). The unprotected loss of heat sink transients are studied in this paper. It appears that slow transients are favorable (> 1 min) to minimize the temperature increase of the fuel salt. This work will be the basis of further safety studies as well as an essential parameter for the design of the draining system. (authors)

Brovchenko, M.; Heuer, D.; Merle-Lucotte, E.; Allibert, M.; Capellan, N.; Ghetta, V.; Laureau, A. [LPSC, CNRS/IN2P3, Grenoble INP, 53,rue des Martyrs, 38026 Grenoble Cedex (France)

2012-07-01T23:59:59.000Z

49

Molten salt thermal energy storage systems: salt selection  

DOE Green Energy (OSTI)

A research program aimed at the development of a molten salt thermal energy storage system commenced in June 1976. This topical report describes Work performed under Task I: Salt Selection is described. A total of 31 inorganic salts and salt mixtures, including 9 alkali and alkaline earth carbonate mixtures, were evaluated for their suitability as heat-of-fusion thermal energy storage materials at temperatures of 850 to 1000/sup 0/F. Thermophysical properties, safety hazards, corrosion, and cost of these salts were compared on a common basis. We concluded that because alkali carbonate mixtures show high thermal conductivity, low volumetric expansion on melting, low corrosivity and good stability, they are attractive as heat-of-fusion storage materials in this temperature range. A 35 wt percent Li/sub 2/CO/sub 3/-65 wt percent K/sub 2/CO/sub 3/ (50 mole percent Li/sub 2/CO/sub 3/-50 mole percent K/sub 2/CO/sub 3/) mixture was selected as a model system for further experimental work. This is a eutectoid mixture having a heat of fusion of 148 Btu/lb (82 cal/g) that forms an equimolar compound, LiKCO/sub 3/. The Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ mixture is intended to serve as a model system to define heat transfer characteristics, potential problems, and to provide ''first-cut'' engineering data required for the prototype system. The cost of a thermal energy storage system containing this mixture cannot be predicted until system characteristics are better defined. However, our comparison of different salts indicated that alkali and alkaline earth chlorides may be more attractive from a salt cost point of view. The long-term corrosion characteristics and the effects of volume change on melting for the chlorides should be investigated to determine their overall suitability as a heat-of-fusion storage medium.

Maru, H.C.; Dullea, J.F.; Huang, V.S.

1976-08-01T23:59:59.000Z

50

CO2 Emission Reduction through Innovative Molten Salt Electrolysis ...  

Science Conference Proceedings (OSTI)

Electrochemical metallurgy especially through high temperature molten salt electrolysis with renewable electricity stands for a great opportunity for producing

51

Accelerators for Subcritical Molten-Salt Reactors  

SciTech Connect

Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

Johnson, Roland (Muons, Inc.)

2011-08-03T23:59:59.000Z

52

Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)  

DOE Green Energy (OSTI)

This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

Turchi, C. S.; Heath, G. A.

2013-02-01T23:59:59.000Z

53

Diffusion Welding of Alloys for Molten Salt Service - Status Report  

SciTech Connect

The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C. (RR E) A different set of alloys, such as Alloy N and 242, are needed to handle molten salts at this temperature. The diffusion welding development work described here builds on techniques developed during the NGNP work, as applied to these alloys. There is also the matter of dissimilar metal welding, since alloys suitable for salt service are generally not suited for service in gaseous oxidizing environments, and vice versa, and welding is required for the Class I boundaries in these systems, as identified in the relevant ASME codes.

Denis Clark; Ronald Mizia

2012-05-01T23:59:59.000Z

54

Diffusion Welding of Alloys for Molten Salt Service - Status Report  

Science Conference Proceedings (OSTI)

The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 °C. (RR E) A different set of alloys, such as Alloy N and 242, are needed to handle molten salts at this temperature. The diffusion welding development work described here builds on techniques developed during the NGNP work, as applied to these alloys. There is also the matter of dissimilar metal welding, since alloys suitable for salt service are generally not suited for service in gaseous oxidizing environments, and vice versa, and welding is required for the Class I boundaries in these systems, as identified in the relevant ASME codes.

Denis Clark; Ronald Mizia; Piyush Sabharwall

2012-09-01T23:59:59.000Z

55

Molten salt battery having inorganic paper separator  

DOE Patents (OSTI)

A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

Walker, Jr., Robert D. (Gainesville, FL)

1977-01-01T23:59:59.000Z

56

Thermal Characterization of Molten Salt Systems  

Science Conference Proceedings (OSTI)

The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

Toni Y. Gutknecht; Guy L. Fredrickson

2011-09-01T23:59:59.000Z

57

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems  

Office of Scientific and Technical Information (OSTI)

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report March 31, 2012 Michael Schuller, Frank Little, Darren Malik, Matt Betts, Qian Shao, Jun Luo, Wan Zhong, Sandhya Shankar, Ashwin Padmanaban The Space Engineering Research Center Texas Engineering Experiment Station Texas A&M University Abstract We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials,

58

Delivery system for molten salt oxidation of solid waste  

DOE Patents (OSTI)

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

59

Electrochemical Behavior of Calcium-Bismuth Alloys in Molten Salt ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The electrochemical properties of calcium-bismuth alloys were investigated to ... Behavior of Silicon Electrodepositing in Fluoride Molten Salts.

60

Molten salt bath circulation design for an electrolytic cell  

DOE Patents (OSTI)

An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

Dawless, Robert K. (Monroeville, PA); LaCamera, Alfred F. (Trafford, PA); Troup, R. Lee (Murrysville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Corrosion of High Temperature Alloys in Molten Salts  

Science Conference Proceedings (OSTI)

Fluoride and chloride salts are among the candidates for this application. However, materials corrosion is an issue in these molten salts, particularly in molten ...

62

Ion Beam Experiment to Simulate Simultaneous Molten Salt ...  

Science Conference Proceedings (OSTI)

Experiments to expose candidate materials to simultaneous molten salt corrosion and ion-beam damage are staged at the Ion Beam Materials Laboratory at Los ...

63

Molten Salt Electrolysis for the Synthesis of Elemental Boron  

Science Conference Proceedings (OSTI)

An alternative method using molten salt electrolysis was developed in this work. The electrolyte system evaluated was MgF2-NaF-LiF with ...

64

Molten salt bath circulation design for an electrolytic cell  

DOE Patents (OSTI)

An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

1999-08-17T23:59:59.000Z

65

Sensor Technology for Real Time Monitoring of Molten Salt ...  

Science Conference Proceedings (OSTI)

Presentation Title, Sensor Technology for Real Time Monitoring of Molten Salt Electrolytes During Nuclear Fuel Electrorefining. Author(s), Michael F. Simpson, ...

66

Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel  

DOE Green Energy (OSTI)

The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [{approx}1000 Mw(e)] with passive safety systems to provide the potential for improved economics.

Forsberg, C.W.

2002-02-21T23:59:59.000Z

67

Developments in Molten Salt and Liquid-Salt-Cooled Reactors  

Science Conference Proceedings (OSTI)

In the last 5 years, there has been a rapid growth in interest in the use of high-temperature (700 to 1000 deg C) molten and liquid fluoride salts as coolants in nuclear systems. This renewed interest is a consequence of new applications for high-temperature heat and the development of new reactor concepts. Fluoride salts have melting points between 350 and 500 deg C; thus, they are of use only in high-temperature systems. Historically, steam cycles with temperature limits of {approx}550 deg C have been the only efficient method to convert heat to electricity. This limitation produced few incentives to develop high-temperature reactors for electricity production. However, recent advances in Brayton gas turbine technology now make it possible to convert higher-temperature heat efficiency into electricity on an industrial scale and thus have created the enabling technology for more efficient nuclear reactors. Simultaneously, there is a growing interest in using high-temperature nuclear heat for the production of hydrogen and shale oil. Five nuclear-related applications are being investigated: (1) liquid-salt heat-transport systems in hydrogen and shale oil production systems; (2) the advanced high-temperature reactor, which uses a graphite-matrix coated-particle fuel and a liquid salt coolant; (3) the liquid-salt-cooled fast reactor which uses metal-clad fuel and a liquid salt coolant; (4) the molten salt reactor, with the fuel dissolved in the molten salt coolant; and (5) fusion energy systems. The reasons for the new interest in liquid salt coolants, the reactor concepts, and the relevant programs are described. (author)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

2006-07-01T23:59:59.000Z

68

A MOLTEN SALT NATURAL CONVECTION REACTOR SYSTEM  

SciTech Connect

Fuel-salt volumes external to the core of a molten-salt reactor are calculated for a system in which the fuel salt circulates through the core and primary exchanger by free convection. In the calculation of these volumes, the exchanger heights above the core top range from 5 to 20 ft. Coolants considered for the primary exchanger are a second molten salt and helium. External fuel holdup is found to be the same with either coolant. Two sets of terminal temperatures are selected for the helium. The first combination permits steam generation at 850 psia, 900 deg F. The second set is selected for a closed gas turbine cycle with an 1100 deg F turbine inlet temperature. Specific power (thermal kw/kg 235) is found to be about 900 Mv/kg, based on initial, clean conditions and a 60 Mw (thermal) output. A specific power of 1275 kw/kg is estimated for a forced convection system of the same rating. (auth)

Romie, F.E.; Kinyon, B.W.

1958-02-01T23:59:59.000Z

69

Fast Spectrum Molten Salt Reactor Options  

DOE Green Energy (OSTI)

During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

2011-07-01T23:59:59.000Z

70

Molten Salt Fuel Version of Laser Inertial Fusion Fission Energy (LIFE)  

SciTech Connect

Molten salt with dissolved uranium is being considered for the Laser Inertial Confinement Fusion Fission Energy (LIFE) fission blanket as a backup in case a solid-fuel version cannot meet the performance objectives, for example because of radiation damage of the solid materials. Molten salt is not damaged by radiation and therefore could likely achieve the desired high burnup (>99%) of heavy atoms of {sup 238}U. A perceived disadvantage is the possibility that the circulating molten salt could lend itself to misuse (proliferation) by making separation of fissile material easier than for the solid-fuel case. The molten salt composition being considered is the eutectic mixture of 73 mol% LiF and 27 mol% UF{sub 4}, whose melting point is 490 C. The use of {sup 232}Th as a fuel is also being studied. ({sup 232}Th does not produce Pu under neutron irradiation.) The temperature of the molten salt would be {approx}550 C at the inlet (60 C above the solidus temperature) and {approx}650 C at the outlet. Mixtures of U and Th are being considered. To minimize corrosion of structural materials, the molten salt would also contain a small amount ({approx}1 mol%) of UF{sub 3}. The same beryllium neutron multiplier could be used as in the solid fuel case; alternatively, a liquid lithium or liquid lead multiplier could be used. Insuring that the solubility of Pu{sup 3+} in the melt is not exceeded is a design criterion. To mitigate corrosion of the steel, a refractory coating such as tungsten similar to the first wall facing the fusion source is suggested in the high-neutron-flux regions; and in low-neutron-flux regions, including the piping and heat exchangers, a nickel alloy, Hastelloy, would be used. These material choices parallel those made for the Molten Salt Reactor Experiment (MSRE) at ORNL. The nuclear performance is better than the solid fuel case. At the beginning of life, the tritium breeding ratio is unity and the plutonium plus {sup 233}U production rate is {approx}0.6 atoms per 14.1 MeV neutron.

Moir, R W; Shaw, H F; Caro, A; Kaufman, L; Latkowski, J F; Powers, J; Turchi, P A

2008-10-24T23:59:59.000Z

71

The Thorium Molten Salt Reactor Moving on from the MSBR  

E-Print Network (OSTI)

A re-evaluation of the Molten Salt Breeder Reactor concept has revealed problems related to its safety and to the complexity of the reprocessing considered. A reflection is carried out anew in view of finding innovative solutions leading to the Thorium Molten Salt Reactor concept. Several main constraints are established and serve as guides to parametric evaluations. These then give an understanding of the influence of important core parameters on the reactor's operation. The aim of this paper is to discuss this vast research domain and to single out the Molten Salt Reactor configurations that deserve further evaluation.

Mathieu, L; Brissot, R; Le Brun, C; Liatard, E; Loiseaux, J M; Méplan, O; Merle-Lucotte, E; Nuttin, A; Wilson, J; Garzenne, C; Lecarpentier, D; Walle, E

2006-01-01T23:59:59.000Z

72

The Thorium Molten Salt Reactor : Moving on from the MSBR  

E-Print Network (OSTI)

A re-evaluation of the Molten Salt Breeder Reactor concept has revealed problems related to its safety and to the complexity of the reprocessing considered. A reflection is carried out anew in view of finding innovative solutions leading to the Thorium Molten Salt Reactor concept. Several main constraints are established and serve as guides to parametric evaluations. These then give an understanding of the influence of important core parameters on the reactor's operation. The aim of this paper is to discuss this vast research domain and to single out the Molten Salt Reactor configurations that deserve further evaluation.

L. Mathieu; D. Heuer; R. Brissot; C. Le Brun; E. Liatard; J. M. Loiseaux; O. Méplan; E. Merle-Lucotte; A. Nuttin; J. Wilson; C. Garzenne; D. Lecarpentier; E. Walle; the GEDEPEON Collaboration

2005-06-02T23:59:59.000Z

73

Molten salt electrolyte battery cell with overcharge tolerance  

SciTech Connect

A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

Kaun, Thomas D. (New Lenox, IL); Nelson, Paul A. (Wheaton, IL)

1989-01-01T23:59:59.000Z

74

Modeling of Molten Salt Mixtures: Thermodynamic Assessment of ...  

Science Conference Proceedings (OSTI)

Presentation Title, Modeling of Molten Salt Mixtures: Thermodynamic Assessment of CeBr3 and MBr-CeBr3 Systems (M=Li, Na, K, Rb). Author(s), Yue Wu, ...

75

System Requirements Document for the Molten Salt Reactor Experiment  

Science Conference Proceedings (OSTI)

The purpose of the conversion process is to convert the {sup 233}U fluoride compounds that are being extracted from the Molten Salt Reactor Experiment (MSRE) equipment to a stable oxide for long-term storage at Bldg. 3019.

Aigner, R.D.

2000-04-01T23:59:59.000Z

76

Molten salt thermal energy storage systems: system design. [LiKCO/sub 3/ mixture  

DOE Green Energy (OSTI)

A five-task research program aimed at the development of molten salt thermal energy storage systems commenced in June 1976. The first topical report, covering Task 1, the selection of suitable salt systems for storage at 850 to 1000/sup 0/F, was issued in August 1976. It was concluded that a 35 Wt percent Li/sub 2/CO/sub 3/-65 Wt percent K/sub 2/CO/sub 3/ (LiKCO/sub 3/) mixture was most suitable for the purpose. Interrelationships between various design parameters were examined using the available solutions, and an engineering-scale storage unit was designed. This unit has an annular configuration with a 1-ft OD, 1.5-ft high, 2-in. dia heat transfer well. Preliminary experiments on a pilot size (3-in. OD) unit showed that temperature profiles and progress of the solid-liquid interface agreed with those predicted theoretically. Also, no supercooling was observed during cooldown, and the presence of significant convective mixing was indicated by negligible temperature gradients. Use of a lithium aluminate volume-change suppressor was investigated, but it appears to be nonessential because of the low volume-change in the LiKCO/sub 3/ system. Consideration of the relative heat-transfer resistances under practical conditions suggested that the use of a conductivity promoter will enhance the heat-transfer rates, thereby requiring smaller heat-transfer areas. Different configurations and materials were considered for this application; an aluminum wool appears to be most suitable. The corrosion resistance of various construction materials was investigated. Stainless steels and aluminum appear to be suitable construction materials for carbonates in the 850 to 1000/sup 0/F range. Testing of the engineering-scale system (Task 3) and verification of the conclusions derived under Task 2 are in progress.

Maru, H.C.; Kardas, A.; Huang, V.M.; Dullea, J.F.; Paul, L.; Marianowski, L.G.

1977-02-01T23:59:59.000Z

77

Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications  

E-Print Network (OSTI)

The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as synthetic oil, fatty acid, or paraffin wax) are typically used for TES. This limits the operating temperature of CSP units to below 400 degrees C. Increasing the operating temperature to 560 degrees C (i.e., the creeping temperature of stainless steel), can enhance the theoretical thermal efficiency from 54 percent to 63 percent. However, very few thermal storage materials are compatible for these high temperatures. Molten salts are thermally stable up to 600 degrees C and beyond. Using the molten salts as the TES materials confers several benefits, which include: (1) Higher operating temperature can significantly increase the overall cycle efficiency and resulting costs of power production. (2) Low cost of the molten salt materials can drastically reduce the cost. (3) The molten salts, which are environmentally safe, can also reduce the potential environmental impact. However, these materials suffer from poor thermo-physical properties. Impregnating these materials with nanoparticles can enhance these properties. Solvents doped with nanoparticles are termed as nanofluids. Nanofluids have been reported in the literature for the anomalous enhancement of their thermo-physical properties. In this study, the poor thermal properties of the molten salts were enhanced dramatically on mixing with nanoparticles. For example the specific heat capacity of these molten salt eutectics was found to be enhanced by as much as ~ 26 percent on mixing with nanoparticles at a mass fraction of ~ 1 percent. The resultant properties of these nanomaterials were found to be highly sensitive to small variations in the synthesis protocols. Computational models were also developed in this study to explore the fundamental transport mechanisms on the molecular scale for elucidating the anomalous enhancements in the thermo-physical properties that were measured in these experiments. This study is applicable for thermal energy storage systems utilized for other energy conversion technologies – such as geothermal energy, nuclear energy and a combination of energy generation technologies.

Shin, Donghyun

2011-08-01T23:59:59.000Z

78

PROCESSING OF MOLTEN SALT POWER REACTOR FUEL  

SciTech Connect

ABS> Fuel reprocessing methods are being investigated for molten salt nuclear reactors which use LiF--BeF/sub 2/ salt as a solvent for UF/sub 4/ and ThF/sub 4/. A liquid HF dissolution procedure coupled with fluorination has been developed for recovery of the uranium and LiF- BeF/sub 2/ solvent salt which is highly enriched in Li/sup 7/. The recovered salt is decontaminated in the process from the major reactor poisons; namely, rare earths and neptunium. A brief investigation of alternate methods, including oxide precipitation, partial freezing, and metal reduction, indicated that such methods may give some separation of the solvent salt from reactor poisons, but they do not appear to be sufficiently quantitative for a simple processing operation. Solubilities of LiF and BeF/sub 2/ in aqueous 70t0 100% HF are presented. The BeF/sub 2/ solubility is appreciably increased in the presence of water and large amounts of LiF. Salt solubilities of 150 g/liter are attainable. Tracer experiments indicate that rare earth solubilities, relative to LiF-- BeF/sub 2/ solvent salt solubility, increase from about 10/sup -4/ mole% in 98% HF to 0.003 mole% in 80% HF. Fluorination of uranium from LiF--BeF/sub 2/ salt was demonstrated. This appears feasible also for the recovery of the relatively small ccncentration of uranium produced in the LiF- BeF/sub 2/ThF/sub 4/ blanket. A proposed chemical flowsheet is presented on the basis of this exploratory work as applied to the semicontinuous processing of a 600 Mw power reactor. (auth)

Campbell, D.O.; Cathers, G.I.

1959-04-01T23:59:59.000Z

79

Injector nozzle for molten salt destruction of energetic waste materials  

DOE Patents (OSTI)

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

Brummond, W.A.; Upadhye, R.S.

1996-02-13T23:59:59.000Z

80

Injector nozzle for molten salt destruction of energetic waste materials  

DOE Patents (OSTI)

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Storage Heat Exchanger (Molten Salt Heat Exchanger Des forStorage Heat Exchanger (Molten Salt Heat Exchanger Designmetallic are added to a molten salt heat transfer fluid; the

Viswanathan, R.

2011-01-01T23:59:59.000Z

82

New Opportunities for Metals Extraction and Waste Treatment by Electrochemical Processing in Molten Salts  

E-Print Network (OSTI)

Molten salt electrolysis is a proven technology for the extraction of metals -- all the world's primary aluminum is produced in this manner. The unique properties of molten salts also make them

Sadoway, Donald R.

2001-01-01T23:59:59.000Z

83

Rapid Removal of Chlorine in Molten Salt Electrolysis of Magnesium ...  

Science Conference Proceedings (OSTI)

However, experimental data and modeling results in this study indicate that the ... bubbles on the current efficiency and the cell potential were investigated. ... High- Chloride Circuit for the Starfield Resources' Ferguson Lake Project · Direct Synthesis of Niobium Aluminides Powders by Sodiothermic Reduction in Molten Salts.

84

Treatment of plutonium process residues by molten salt oxidation  

Science Conference Proceedings (OSTI)

Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

1999-04-01T23:59:59.000Z

85

Method for removal of heavy metal from molten salt in IFR fuel pyroprocessing  

SciTech Connect

This report details the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR) which involves electrorefining spent fuel in a molten salt electrolyte (LiCl-KCI-U/PuCl{sub 3}) at 500{degree}C. The total heavy metal chloride concentration in the salt will be about 2 mol %. At some point, the concentrations of alkali, alkaline earth, and rare earth fission products in the salt must be reduced to lower the amount of heat generated in the electrorefiner. The heavy metal concentration in the salt must be reduced before removing the fission products from the salt. The operation uses a lithium-cadmium alloy anode that is solid at 500{degree}C, a solid mandrel cathode with a ceramic catch crucible below to collect heavy metal that falls off it, and a liquid cadmium cathode. The design criteria that had to be met by this equipment included the following: (1) control of the reduction rate by lithium, (2) good separation between heavy metal and rare earths, and (3) the capability to collect heavy metal and rare earths over a wide range of salt compositions. In tests conducted in an engineering-scale electrorefiner (10 kg uranium per cathode), good separation was achieved while removing uranium and rare earths from the salt. Only 13% of the rare earths was removed, while 99.9% of the uranium in the salt was removed; subsequently, the rare earths were also reduced to low concentrations. The uranium concentration in the salt was reduced to 0.05 ppm after uranium and rare earths were transferred from the salt to a solid mandrel cathode with a catch crucible. Rare earth concentrations in the salt were reduced to less than 0.01 wt % in these operations. Similar tests are planned to remove plutonium from the salt in a laboratory-scale (100--300 g heavy metal) electrorefiner.

Gay, E.C.; Miller, W.E.; Laidler, J.J.

1994-02-01T23:59:59.000Z

86

A PRELIMINARY STUDY OF MOLTEN SALT POWER REACTORS  

SciTech Connect

A preliminary study of molten salt pcwer reactors was made. The most promising fuel carrier salts were the fluorides and chlorides of the alkali metals, zirconium, and beryllium. The chlorides were found to have lower melting points but were less stable and more corrosive than the fluorides. A Li/sup 7/ F- - BeF/sub 2/ mixture with ThF/sub 4/ and UF/sub 4/appeared to perform best. Of the numerous alloys tested as container material, Inconel and a nickel-- molybdenum alloy INOR-8 appeared to be the most resistant to corrosion. To study the performance, safety, economics, and construction costs of a typical molten salt reactor, a reactor of specific type and size was chosen for study. The reference design reactor was a two-region homogeneous converter with a core salt of 70 mole% Li/sup 7/F and 30% BeF/sub 2. ThF/sub 4/ and enough VF/sub 4/ for criticality were added. Study in- dicated that a molten salt reactor would prcduce economical power, but the problem of developing a salt core and a container metal which would last for mamy years of operation needed further study. (M.C.G.)

MacPherson, H.G.; Alexander, L.G.; Carrison, D.A.; Estabrook, J.Y.; Kinyon, B.W.; Mann, L.A.; Roberts, J.T.; Romie, F.E.; VonderLage, F.C.

1957-04-29T23:59:59.000Z

87

SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Modular and Scalable Baseload Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility to someone by E-mail Share SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Facebook Tweet about SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Twitter Bookmark SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Google Bookmark SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Delicious Rank SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Digg Find More places to share SunShot Initiative: Modular and Scalable

88

Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures  

DOE Patents (OSTI)

A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

Rohrmann, Charles A. (Kennewick, WA)

1978-01-01T23:59:59.000Z

89

NaNO3-KNO3 Ternary Molten Salts for Parabolic Trough  

Science Conference Proceedings (OSTI)

Presentation Title, Thermodynamic Properties of Novel Low Melting Point LiNO3- NaNO3-KNO3 Ternary Molten Salts for Parabolic Trough Solar Power ...

90

Multi-Physics Modeling of Molten Salt Transport in Solid Oxide ...  

Science Conference Proceedings (OSTI)

In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing

91

Helium-cooled molten-salt fusion breeder  

Science Conference Proceedings (OSTI)

We present a new conceptual design for a fusion reactor blanket that is intended to produce fissile material for fission power plants. Fast fission is suppressed by using beryllium instead of uranium to multiply neutrons. Thermal fission is suppressed by minimizing the fissile inventory. The molten-salt breeding medium (LiF + BeF/sub 2/ + ThF/sub 4/) is circulated through the blanket and to the on-line processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket and the austenitic steel tubes that contain the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion by molten salt. We estimate that a breeder having 3000 MW of fusion power will produce 6500 kg of /sup 233/U per year. This amount is enough to provide makeup for 20 GWe of light-water reactors per year or twice that many high-temperature gas-cooled reactors or Canadian heavy-water reactors. Safety is enhanced because the afterheat is low and blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times a light-water reactor of the same power. The estimated cost of the /sup 233/U produced is $40/g for fusion plants costing 2.35 times that of a light-water reactor if utility owned or $16/g if government owned.

Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; Devan, J.H.

1984-12-01T23:59:59.000Z

92

Transmutation and inventory analysis in an ATW molten salt system  

SciTech Connect

As an extension of earlier work to determine the equilibrium state of an ATW molten salt, power producing, reactor/transmuter, the WAIT code provides a time dependent view of material inventories and reactor parameters. By considering several cases, we infer that devices of this type do not reach equilibrium for dozens of years, and that equilibrium design calculations are inapplicable over most of the reactor life. Fissile inventory and keff both vary by factors of 1.5 or more between reactor startup and ultimate convergence to equilibrium.

Sisolak, J. E.; Truebenbach, M. T.; Henderson, D. L. [Department of Nuclear Engineering and Engineering Physics University of Wisconsin-Madison, Madison, Wisconsin 53706-1687 (United States)

1995-09-15T23:59:59.000Z

93

Fission product behavior in the Molten Salt Reactor Experiment  

SciTech Connect

Essentially all the fission product data for numerous and varied samples taken during operation of the Molten Salt Reactor Experiment or as part of the examination of specimens removed after particular phases of operation are reported, together with the appropriate inventory or other basis of comparison, and relevant reactor parameters and conditions. Fission product behavior fell into distinct chemical groups. Evidence for fission product behavior during operation over a period of 26 months with $sup 235$U fuel (more than 9000 effective full-power hours) was consistent with behavior during operation using $sup 233$U fuel over a period of about 15 months (more than 5100 effective full- power hours). (auth)

Compere, E.L.; Kirslis, S.S.; Bohlmann, E.G.; Blankenship, F.F.; Grimes, W.R.

1975-10-01T23:59:59.000Z

94

Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage  

Science Conference Proceedings (OSTI)

HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

None

2012-01-01T23:59:59.000Z

95

Passive compact molten salt reactor (PCMSR), modular thermal breeder reactor with totally passive safety system  

Science Conference Proceedings (OSTI)

Design Study Passive Compact Molten Salt Reactor (PCMSR) with totally passive safety system has been performed. The term of Compact in the PCMSR name means that the reactor system is designed to have relatively small volume per unit power output by using modular and integral concept. In term of modular, the reactor system consists of three modules, i.e. reactor module, turbine module and fuel management module. The reactor module is an integral design that consists of reactor, primary and intermediate heat exchangers and passive post shutdown cooling system. The turbine module is an integral design of a multi heating, multi cooling, regenerative gas turbine. The fuel management module consists of all equipments related to fuel preparation, fuel reprocessing and radioactive handling. The preliminary calculations show that the PCMSR has negative temperature and void reactivity coefficient, passive shutdown characteristic related to fuel pump failure and possibility of using natural circulation for post shutdown cooling system.

Harto, Andang Widi [Engineering Physics Department, Faculty of Engineering, Gadjah Mada University (Indonesia)

2012-06-06T23:59:59.000Z

96

Results of molten salt panel and component experiments for solar central receivers: Cold fill, freeze/thaw, thermal cycling and shock, and instrumentation tests  

DOE Green Energy (OSTI)

Experiments have been conducted with a molten salt loop at Sandia National Laboratories in Albuquerque, NM to resolve issues associated with the operation of the 10MW{sub e} Solar Two Central Receiver Power Plant located near Barstow, CA. The salt loop contained two receiver panels, components such as flanges and a check valve, vortex shedding and ultrasonic flow meters, and an impedance pressure transducer. Tests were conducted on procedures for filling and thawing a panel, and assessing components and instrumentation in a molten salt environment. Four categories of experiments were conducted: (1) cold filling procedures, (2) freeze/thaw procedures, (3) component tests, and (4) instrumentation tests. Cold-panel and -piping fill experiments are described, in which the panels and piping were preheated to temperatures below the salt freezing point prior to initiating flow, to determine the feasibility of cold filling the receiver and piping. The transient thermal response was measured, and heat transfer coefficients and transient stresses were calculated from the data. Freeze/thaw experiments were conducted with the panels, in which the salt was intentionally allowed to freeze in the receiver tubes, then thawed with heliostat beams. Slow thermal cycling tests were conducted to measure both how well various designs of flanges (e.g., tapered flanges or clamp type flanges) hold a seal under thermal conditions typical of nightly shut down, and the practicality of using these flanges on high maintenance components. In addition, the flanges were thermally shocked to simulate cold starting the system. Instrumentation such as vortex shedding and ultrasonic flow meters were tested alongside each other, and compared with flow measurements from calibration tanks in the flow loop.

Pacheco, J.E.; Ralph, M.E.; Chavez, J.M.; Dunkin, S.R.; Rush, E.E.; Ghanbari, C.M.; Matthews, M.W.

1995-01-01T23:59:59.000Z

97

MOLTEN SALT APPROACHES TO MITIGATE CLIMATE CHANGE Frank H. Shu  

E-Print Network (OSTI)

·· Catalysis ·· Electrolytes for electrochemical applications, heat transfer, and energy storage September 9, 2008. Inventors Sheng Dai1 and Huimin Luo2 1 Chemical Sciences Division 2 Nuclear Science

Williams, Gary A.

98

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500{degree}C. The method comprises positioning a solid Li-Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, E.C.

1993-12-23T23:59:59.000Z

99

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, Eddie C. (Park Forest, IL)

1995-01-01T23:59:59.000Z

100

Thermodynamic Assessment of Hot Corrosion Mechanisms of Superalloys Hastelloy N and Haynes 242 in Eutectic Mixture of Molten Salts KF and ZrF4  

Science Conference Proceedings (OSTI)

The KF - ZrF4 system was considered for the application as a heat exchange agent in molten salt nuclear reactors (MSRs) beginning with the work carried out at ORNL in early fifties. Based on a combination of excellent properties such as thermal conductivity, viscosity in the molten state, and other thermo-physical and rheological properties, it was selected as one of possible candidates for the nuclear reactor secondary heat exchanger loop.

Michael V. Glazoff

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Heat transfer. [heat transfer roller employing a heat pipe  

SciTech Connect

A heat transfer roller embodying a heat pipe is disclosed. The heat pipe is mounted on a shaft, and the shaft is adapted for rotation on its axis.

Sarcia, D.S.

1978-05-23T23:59:59.000Z

102

Design and validation of an air window for a molten salt solar thermal receiver  

E-Print Network (OSTI)

This thesis contributes to the development of Concentrating Solar Power (CSP) receivers and focuses on the design of an efficient aperture. An air window is proposed for use as the aperture of a CSP molten salt receiver ...

Paxson, Adam Taylor

2009-01-01T23:59:59.000Z

103

Luminescent properties of Y2O3:Eu3+ nanocrystals prepared by molten salt synthesis  

Science Conference Proceedings (OSTI)

A series of red phosphors Y2O3:Eu3+ were prepared by the molten salt method with different surfactants. Their structures, morphologies, and the photoluminescent properties were investigated at room temperature. The particles ...

Lijun Luo, Fenfen Hu, Li Xiong, Xiaofan Li, Meili Zhou, Zhengliang Wang

2013-01-01T23:59:59.000Z

104

Molten salt synthesis and localized surface plasmon resonance study of vanadium dioxide nanopowders  

SciTech Connect

Rutile-type vanadium dioxide nanopowders with four different sizes were successfully synthesized by carbothermal reducing V{sub 2}O{sub 5} in KCl-LiCl molten salt. XRD and TEM characterizations suggested that vanadium dioxide particles formed by a broken and reunited process of vanadium oxide. Molten salt and organic carbon sources are crucial to the size of final particles. In the presence of the molten salt, the organic carbon with a shorter chain length would induce smaller particles. The UV-VIS-IR spectral measurements for as-prepared vanadium dioxide announced an obvious localized surface plasmon resonance band in the near infrared region at 90 deg. C. - Graphical abstract: Schematic illustration of the formation mechanism of VO{sub 2}(M) nanoparticles in molten salt, particles size can be controlled by choosing organic carbon sources with different chain length.

Wang Fu [Key Laboratory of Photochemical Conversion and Optoelectronic Materials of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100806 (China); Liu Yun [Key Laboratory of Photochemical Conversion and Optoelectronic Materials of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China); Liu Chunyan, E-mail: cyliu@mail.ipc.ac.c [Key Laboratory of Photochemical Conversion and Optoelectronic Materials of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190 (China)

2009-12-15T23:59:59.000Z

105

Molten Salt Multi-anode Reactive Alloy Coating(MARC) of Ta-W ...  

Science Conference Proceedings (OSTI)

In this study, Ta-W coated samples (Ta-7.31W, Ta-4.12W and Ta-1.92W) were prepared by multi-anode reactive alloy coating (MARC) process in molten salt ...

106

Conceptual Design of Molten Salt Loop Experiment for MIT Research Reactor  

E-Print Network (OSTI)

Molten salt is a promising coolant candidate for Advanced High Temperature Reactor (AHTR) Gen-IV designs. The low neutron absorption, high thermal capacity, chemical inertness, and high boiling point at low pressure of ...

Bean, Malcolm K.

2011-08-01T23:59:59.000Z

107

Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013  

DOE Green Energy (OSTI)

Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

Jonemann, M.

2013-05-01T23:59:59.000Z

108

SURVEY OF LOW ENRICHMENT MOLTEN-SALT REACTORS  

SciTech Connect

A rough survey of the nuclear charactenistics of graphite-moderated molten-salt reactors utilizing an initial complement of low enrichment uranium fuel has been made. Reactors can be constructed with initial enrichinents as low as 1.25% U-235; initial conversion ratios of as high as 0.8 can be obtained with enrichinent of less than 2%. Highly enriched uraninm would be added as make-up fuel, and such reactors could probably be operated for bunnups as high as 60,000 Mwd/ton before buildup of fission preducts wpuld make replacement of the fuel desirable. A typical circulating fuel reactor of this class might contain an initial inventory of 3600 tons of 1.8% enriched uranium, operated at 640 Mw (thermal), and generate a net of 260 Mw (electrical). The total fuel cycle cost would be approximately 1.3 mills/kwhr, of which 1.0 mill is bunnup of enniched U- 235. (auth)

MacPherson, H.G.

1958-10-17T23:59:59.000Z

109

Recovery of plutonium from molten salt extraction residues  

Science Conference Proceedings (OSTI)

Savannah River Laboratory (SRL), Savannah River Plant (SRP), and Rocky Flats Plant (RFP) are jointly developing a process to recover plutonium from molten salt extraction residues. These NaCl, KCl, MgCl/sub 2/ residues, which are generated in the pyrochemical extraction of /sup 241/Am from aged plutonium metal, contain up to 25 wt % dissolved PUCl/sub 3/ and up to 2 wt % AmCl/sub 3/. The objective is to develop a process to convert these residues to plutonium metal product and discardable waste. The first step of the conceptual process is to convert the actinides to a heterogenous scrub alloy with aluminum and magnesium. This step, performed at RFP, effectively separates the actinides from the bulk of the chloride. This scrub alloy will then be dissolved in a HNO/sub 3/-HF solution at SRP. Residual chloride will be removed by precipitation with Hg/sub 2/(NO/sub 3/)/sub 2/ followed by centrifugation. Plutonium and americium will be separated using the Purex solvent extraction process. The /sup 241/Am will be diverted to the solvent extraction waste stream where it can either be discarded to the waste farm or recovered. The plutonium will be finished via PuF/sub 3/ precipitation, oxidation to a mixture of PUF/sub 4/ and PuO/sub 2/, followed by reduction to plutonium metal with calcium.

Gray, L.W.; Holcomb, H.P.

1983-01-01T23:59:59.000Z

110

Sulfide ceramics in molten-salt electrolyte batteries  

DOE Green Energy (OSTI)

Sulfide ceramics are finding application in the manufacture of advanced batteries with molten salt electrolyte. Use of these ceramics as a peripheral seal component has permitted development of bipolar Li/FeS{sub 2} batteries. This bipolar battery has a molten lithium halide electrolyte and operates at 400 to 450C. Initial development and physical properties evaluations indicate the ability to form metal/ceramic bonded seal (13-cm ID) components for use in high-temperature corrosive environments. These sealants are generally CaAl{sub 2}S{sub 4}-based ceramics. Structural ceramics (composites with oxide or nitride fillers), highly wetting sealant formulations, and protective coatings are also being developed. Sulfide ceramics show great promise because of their relatively low melting point, high-temperature viscous flow, chemical stability, high-strength bonding, and tailored coefficients of thermal expansion. Our methodology of generating laminated metal/ceramic pellets (e.g., molybdenum/sulfide ceramic/molybdenum) with which to optimize materials formulation and seal processing is described.

Kaun, T.D.; Hash, M.C.; Simon, D.R.

1995-06-01T23:59:59.000Z

111

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

Not Available

1980-03-07T23:59:59.000Z

112

Heat transfer system  

DOE Patents (OSTI)

A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

McGuire, Joseph C. (Richland, WA)

1982-01-01T23:59:59.000Z

113

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report  

DOE Green Energy (OSTI)

We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

2012-03-30T23:59:59.000Z

114

A nightly conditioning method to reduce parasitic power consumption in molten-salt central-receiver solar-power plants  

DOE Green Energy (OSTI)

A method to reduce nightly parasitic power consumption in a molten salt central receiver is discussed where salt is drained from the piping and heat tracing is turned off to allow the piping to cool to ambient overnight, then in the morning the pipes are filled while they are cold. Since the piping and areas of the receiver in a molten-nitrate salt central-receiver solar power plant must be electrically heated to maintain their temperatures above the nitrate salt freezing point (430{degrees}F, 221{degrees}C), considerable energy could be used to maintain such temperatures during nightly shut down and bad weather. Experiments and analyses have been conducted to investigate cold filling receiver panels and piping as a way of reducing parasitic electrical power consumption and increasing the availability of the plant. The two major concerns with cold filling are: (1) how far can the molten salt penetrate cold piping before freezing closed and (2) what thermal stresses develop during the associated thermal shock. Experiments and analysis are discussed.

Pacheco, J.E.

1995-06-01T23:59:59.000Z

115

Molten Salt Test Loop (MSTL) system customer interface document.  

SciTech Connect

The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

2013-09-01T23:59:59.000Z

116

Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids  

Science Conference Proceedings (OSTI)

Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

2013-07-22T23:59:59.000Z

117

Thorium-Fueled Underground Power Plant Based on Molten Salt Technology  

Science Conference Proceedings (OSTI)

This paper addresses the problems posed by running out of oil and gas supplies and the environmental problems that are due to greenhouse gases by suggesting the use of the energy available in the resource thorium, which is much more plentiful than the conventional nuclear fuel uranium. We propose the burning of this thorium dissolved as a fluoride in molten salt in the minimum viscosity mixture of LiF and BeF{sub 2} together with a small amount of {sup 235}U or plutonium fluoride to initiate the process to be located at least 10 m underground. The fission products could be stored at the same underground location. With graphite replacement or new cores and with the liquid fuel transferred to the new cores periodically, the power plant could operate for up to 200 yr with no transport of fissile material to the reactor or of wastes from the reactor during this period. Advantages that include utilization of an abundant fuel, inaccessibility of that fuel to terrorists or for diversion to weapons use, together with good economics and safety features such as an underground location will diminish public concerns. We call for the construction of a small prototype thorium-burning reactor.

Moir, Ralph W.; Teller, Edward [Lawrence Livermore National Laboratory (United States)

2005-09-15T23:59:59.000Z

118

Materials considerations for molten salt accelerator-based plutonium conversion systems  

Science Conference Proceedings (OSTI)

A Molten-Salt Reactor Program for power applications was initiated at the Oak Ridge National Laboratory in 1956. In 1965 the Molten Salt Reactor Experiment (MSRE) went critical and was successfully operated for several years. Operation of the MSRE revealed two deficiencies in the Hastelloy N alloy that had been developed specifically for molten-salt systems. The alloy embrittled at elevated temperatures as a result of exposure to thermal neutrons (radiation damage) and grain boundary embrittlement occurred in materials to fuel salt. Intergranular cracking was found to be associated with fission products, viz. tellurium. An improved Hastelloy N composition was subsequently developed that had better resistance to both of these problems. However, the discovery that fission product cracking could be significantly decreased by making the salt sufficiently reducing offers the prospect of improved compatibility with molten salts containing fission products and resistance to radiation damage in ABC applications. Recommendations are made regarding the types of corrosion tests and mechanistic studies needed to qualify materials for operation with PuF{sub 3}-containing molten salts.

DeVan, J.H.; DiStefano, J.R.; Eatherly, W.P.; Keiser, J.R.; Klueh, R.L.

1994-12-31T23:59:59.000Z

119

Materials considerations for molten salt accelerator-based plutonium conversion systems  

Science Conference Proceedings (OSTI)

A Molten-Salt Reactor Program for civilian power applications was initiated at the Oak Ridge National Laboratory in 1956. In 1965 the Molten Salt Reactor Experiment (MSRE) went critical and was successfully operated for several years. Operation of the MSRE revealed two deficiencies in the Hastelloy N alloy that had been developed specifically for molten-salt systems. The alloy embrittled at elevated temperatures as a result of exposure to thermal neutrons (radiation damage) and grain boundary embrittlement occurred in materials exposed to fuel salt. Intergranular cracking was found to be associated with fission products, viz. tellurium. An improved Hastelloy N composition was subsequently developed that had better resistance to both of these problems. However, the discovery that fission product cracking could be significantly decreased by making the salt sufficiently reducing offers the prospect of improved compatibility with molten salts containing fission products and resistance to radiation damage in ABC applications. Recommendations are made regarding the types of corrosion tests and mechanistic studies needed to qualify materials for operation with PuF3-containing molten salts.

De Van, J. H.; Di Stefano, J. R.; Eatherly, W. P.; Keiser, J. R.; Klueh, R. L. [Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831 (United States)

1995-09-15T23:59:59.000Z

120

Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes  

SciTech Connect

This paper presents the technical and economic feasibility of molten salt oxidation technology as a volume reduction and recovery process for {sup 238}Pu contaminated waste. Combustible low-level waste material contaminated with {sup 238}Pu residue is destroyed by oxidation in a 900 C molten salt reaction vessel. The combustible waste is destroyed creating carbon dioxide and steam and a small amount of ash and insoluble {sup 2328}Pu in the spent salt. The valuable {sup 238}Pu is recycled using aqueous recovery techniques. Experimental test results for this technology indicate a plutonium recovery efficiency of 99%. Molten salt oxidation stabilizes the waste converting it to a non-combustible waste. Thus installation and use of molten salt oxidation technology will substantially reduce the volume of {sup 238}Pu contaminated waste. Cost-effectiveness evaluations of molten salt oxidation indicate a significant cost savings when compared to the present plans to package, or re-package, certify and transport these wastes to the Waste Isolation Pilot Plant for permanent disposal. Clear and distinct cost advantages exist for MSO when the monetary value of the recovered {sup 238}Pu is considered.

Wishau, R.; Ramsey, K.B.; Montoya, A.

1998-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Economic evaluation of solar-only and hybrid power towers using molten salt technology  

DOE Green Energy (OSTI)

Several hybrid and solar-only configurations for molten-salt power towers were evaluated with a simple economic model, appropriate for screening analysis. The solar specific aspects of these plants were highlighted. In general, hybrid power towers were shown to be economically superior to solar-only plants with the same field size. Furthermore, the power-booster hybrid approach was generally preferred over the fuel-saver hybrid approach. Using today`s power tower technology, economic viability for the solar power-boost occurs at fuel costs in the neighborhood of $2.60/MBtu to $4.40/ MBtu (low heating value) depending on whether coal-based or gas-turbine-based technology is being offset. The cost Of CO[sub 2] avoidance was also calculated for solar cases in which the fossil fuel cost was too low for solar to be economically viable. The avoidance costs are competitive with other proposed methods of removing CO[sub 2] from fossil-fired power plants.

Kolb, G.J.

1996-12-01T23:59:59.000Z

122

Convection Heat Transfer  

Science Conference Proceedings (OSTI)

...Heat-Transfer Equations, Fundamentals of Modeling for Metals Processing, Vol 22A, ASM Handbook, ASM International, 2009, p 625â??658...

123

Heat transfer dynamics  

Science Conference Proceedings (OSTI)

As heat transfer technology increases in complexity, it becomes more difficult for those without thermal dynamics engineering training to choose between competitive heat transfer systems offered to meet their drying requirements. A step back to the basics of heat transfer can help professional managers and papermakers make informed decisions on alternative equipment and methods. The primary forms of heat and mass transfer are reviewed with emphasis on the basics, so a practical understanding of each is gained. Finally, the principles and benefits of generating infrared energy by combusting a gaseous hydrocarbon fuel are explained.

Smith, T.M. (Marsden, Inc., Pennsauken, NJ (United States))

1994-08-01T23:59:59.000Z

124

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method is described for separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500 C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode. 3 figs.

Gay, E.C.

1995-10-03T23:59:59.000Z

125

Molten salt thermal energy storage systems. Project 8981, final report  

DOE Green Energy (OSTI)

The feasibility of storing thermal energy at temperatures of 450/sup 0/ to 535/sup 0/C (850/sup 0/ to 1000/sup 0/F) in the form of latent heat of fusion has been examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures are attractive as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. An equimolar mixture of Li/sub 2/CO/sub 3/ and K/sub 2/CO/sub 3/, which melts at 505/sup 0/C with a latent heat of 148 Btu/lb, was chosen for experimental study. The cyclic charge/discharge behavior of laboratory- and engineering-scale systems was determined and compared with predictions based on a mathematical heat-transfer model that was developed during this program. The thermal performance of one engineering-scale unit remained very stable during 1400 hours of cyclic operation. Several means of improving heat conduction through the solid salt were explored. Areas requiring further investigation have been identified.

Maru, H.C.; Dullea, J.F.; Kardas, A.; Paul, L.

1978-03-01T23:59:59.000Z

126

Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt  

SciTech Connect

Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium chloride (GdCl3) in LiCl-KCl eutectic molten salts through measurement of the potential difference between a reference and working electrode.

Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

2010-07-01T23:59:59.000Z

127

Applied heat transfer  

Science Conference Proceedings (OSTI)

Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

Ganapathy, V.

1982-01-01T23:59:59.000Z

128

Solar Two: A Molten Salt Power Tower Demonstration* Craig E.Tyner  

E-Print Network (OSTI)

Solar Two: A Molten Salt Power Tower Demonstration* Craig E.Tyner Sandia National Laboratories.S. Department of Energy (DOE),Sandia National Laboratories, and industry to convert the 10-MwSolar One Power, is $48.5 million. The plant will begin operation in early 1996. Introduction A solar power tower plant

Laughlin, Robert B.

129

Investigation of Thermal Feedback Design for Improved Load-Following Capability of Thorium Molten Salt Reactors  

Science Conference Proceedings (OSTI)

The increasing deployment of renewable energy sources has raised concerns about the ramp-rate limitations of conventional steam and combustion turbines in providing load following during solar photovoltaic transients. As one of the promising Generation ... Keywords: molten salt reactors, thorium

Andrew M. Dodson, Roy A. Mccann

2013-04-01T23:59:59.000Z

130

Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine  

SciTech Connect

The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials [1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF{sub 4} or ThF{sub 4} or some combination thereof. Future systems could look at using PuF{sub 3} or PuF{sub 4} as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory. Preliminary design studies looking at fast ignition and hot spot ignition fusion options are documented, along with limited scoping studies performed to investigate other options of interest that surfaced during the main design effort. Lastly, side studies that were not part of the main design effort but may alter future work performed on LIFE engine designs are shown. The majority of all work reported in this document was performed during the Molten Salt Fast Ignition Moderator Study (MSFIMS) which sought to optimize the amount of moderator mixed into the molten salt region in order to produce the most compelling design. The studies in this report are of a limited scope and are intended to provide a preliminary neutronics analysis of the design concepts described herein to help guide decision processes and explore various options that a LIFE engine with a molten salt blanket might enable. None of the designs shown in this report, even reference cases selected for detailed description and analysis, have been fully optimized. The analyses were performed primarily as a neutronics study, though some consultation was made regarding thermal-hydraulic and structural concerns during both scoping out an initial model and subsequent to identifying a neutronics-based reference case to ensure that the design work contained no glaring mechanical or thermal issues that would preclude its feasibility. Any analyses and recommendations made in this report are either primarily or solely from the point of view of LIFE neutronics and ignore other fundamental issues related to molten salt fuel blankets such as chemical processing feasibility and political feasibility of a molten salt system.

Powers, J

2008-10-23T23:59:59.000Z

131

Heat transfer and heat exchangers reference handbook  

Science Conference Proceedings (OSTI)

The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

Not Available

1991-01-15T23:59:59.000Z

132

Removal of uranium and salt from the Molten Salt Reactor Experiment  

SciTech Connect

In 1994, migration of {sup 233}U was discovered to have occurred at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). This paper describes the actions now underway to remove uranium from the off-gas piping and the charcoal bed, to remove and stabilize the salts, and to convert the uranium to a stable oxide for long-term storage.

Peretz, F.J.; Rushton, J.E.; Faulkner, R.L.; Walker, K.L.; Del Cul, G.D.

1998-06-01T23:59:59.000Z

133

An Evaluation of Molten-Salt Power Towers Including Results of the Solar Two Project  

DOE Green Energy (OSTI)

This report utilizes the results of the Solar Two project, as well as continuing technology development, to update the technical and economic status of molten-salt power towers. The report starts with an overview of power tower technology, including the progression from Solar One to the Solar Two project. This discussion is followed by a review of the Solar Two project--what was planned, what actually occurred, what was learned, and what was accomplished. The third section presents preliminary information regarding the likely configuration of the next molten-salt power tower plant. This section draws on Solar Two experience as well as results of continuing power tower development efforts conducted jointly by industry and Sandia National Laboratories. The fourth section details the expected performance and cost goals for the first commercial molten-salt power tower plant and includes a comparison of the commercial performance goals to the actual performance at Solar One and Solar Two. The final section summarizes the successes of Solar Two and the current technology development activities. The data collected from the Solar Two project suggest that the electricity cost goals established for power towers are reasonable and can be achieved with some simple design improvements.

REILLY, HUGH E.; KOLB, GREGORY J.

2001-11-01T23:59:59.000Z

134

An evaluation of possible next-generation high temperature molten-salt power towers.  

DOE Green Energy (OSTI)

Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

Kolb, Gregory J.

2011-12-01T23:59:59.000Z

135

Novel Ternary Molten Salt Electrolytes for intermediate-temperature sodium/nickel chloride batteries  

SciTech Connect

The sodium-nickel chloride (ZEBRA) battery is typically operated at relatively high temperature (250~350°C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150 to 200°C can lead to enhanced cycle life by suppressing temperature related degradation mechanisms. The reduced temperature range also allows for lower cost materials of construction such as elastomeric sealants and gaskets. To achieve adequate electrochemical performance at lower operating temperatures requires an overall reduction in ohmic losses associated with temperature. This includes reducing the ohmic resistance of ?”-alumina solid electrolyte (BASE) and the incorporation of low melting point molten salt as the secondary electrolyte. In present work, planar-type Na/NiCl2 cells with a thin flat plate BASE (600 ?m) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salt formulation for use as secondary electrolytes were fabricated by the partial replace of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of the ternary molten salts demonstrated , improved ionic conductivity, and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175°C compared to the cell with the standard NaAlCl4 catholyte. The cells also exhibited stable cycling performance even at 150oC.

Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2012-12-15T23:59:59.000Z

136

Concentrating Solar Power - Molten Salt Pump Development, Final Technical Report (Phase 1)  

DOE Green Energy (OSTI)

The purpose of this project is to develop a long shafted pump to operate at high temperatures for the purpose of producing energy with renewable resources. In Phase I of this three phase project we developed molten salt pump requirements, evaluated existing hardware designs for necessary modifications, developed a preliminary design of the pump concept, and developed refined cost estimates for Phase II and Phase III of the project. The decision has been made not to continue the project into Phases II and III. There is an ever increasing world-wide demand for sources of energy. With only a limited supply of fossil fuels, and with the costs to obtain and produce those fuels increasing, sources of renewable energy must be found. Currently, capturing the sun's energy is expensive compared to heritage fossil fuel energy production. However, there are government requirements on Industry to increase the amount of energy generated from renewable resources. The objective of this project is to design, build and test a long-shafted, molten salt pump. This is the type of pump necessary for a molten salt thermal storage system in a commercial-scale solar trough plant. This project is under the Department of Energy (DOE) Solar Energy Technologies Program, managed by the Office of Energy Efficiency and Renewable Energy. To reduce the levelized cost of energy (LCOE), and to meet the requirements of 'tomorrows' demand, technical innovations are needed. The DOE is committed to reducing the LCOE to 7-10 cents/kWh by 2015, and to 5-7 cents/kWh by 2020. To accomplish these goals, the performance envelope for commercial use of long-shafted molten salt pumps must be expanded. The intent of this project is to verify acceptable operation of pump components in the type of molten salt (thermal storage medium) used in commercial power plants today. Field testing will be necessary to verify the integrity of the pump design, and thus reduce the risk to industry. While the primary goal is to design a pump for a trough solar power plant system, the intent is for the design to be extensible to a solar power tower application. This can be accomplished by adding pumping stages to increase the discharge pressure to the levels necessary for a solar power tower application. This report incorporates all available conceptual design information completed for this project in Phase I.

Michael McDowell; Alan Schwartz

2010-03-31T23:59:59.000Z

137

Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel  

SciTech Connect

This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was previously known the liquidus temperature of the molten salt would change as spent fuel is processed through the Mk-IV electrorefiner. However, the extent of the increase in liquidus temperature was not known. This work is first of its kind in determining thermodynamic properties of a molten salt electrolyte containing transuranics, fission products and bond sodium. Experimental data concluded that the melting temperature of the electrolyte will become greater than the operating temperature of the Mk-IV ER during current fuel processing campaigns. Collected data also helps predict when the molten salt electrolyte will no longer be able to support electrorefining operations.

Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

2012-04-01T23:59:59.000Z

138

HEAT TRANSFER METHOD  

DOE Patents (OSTI)

A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

Gambill, W.R.; Greene, N.D.

1960-08-30T23:59:59.000Z

139

Heat Transfer Fluids Containing Nanoparticles  

commercial and industrial heat-transfer applications. ... Refrigeration and other cooling systems Nuclear reactors Aerospace Defense Grinding and ...

140

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

Analysis of. Nonlinear Heat Transfer Problems." Report no.Berkeley, Ca. , APPENDIX A. HEAT TRANSFER BY CONDUCTION ANDMeeting, Technical Session on Heat Transfer in Nuclear Waste

Chan, T.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Granular Dynamics in Pebble Bed Reactor Cores  

E-Print Network (OSTI)

and P. S. Pickard, “Molten-salt-cooled advanced high-heat transfer of a molten salt coolant and the passive

Laufer, Michael Robert

2013-01-01T23:59:59.000Z

142

Glovebox design requirements for molten salt oxidation processing of transuranic waste  

SciTech Connect

This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented.

Ramsey, K.B.; Acosta, S.V. [Los Alamos National Lab., NM (United States); Wernly, K.D. [Molten Salt Oxidation Corp., Bensalem, PA (United States)

1998-12-31T23:59:59.000Z

143

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

standing of the heat transfer processes associated withto investigate the heat transfer and related processes in an

Chan, T.

2010-01-01T23:59:59.000Z

144

THE PREPARATION OF URANIUM DIOXIDE FROM A MOLTEN SALT SOLUTION OF URANYL CHLORIDE  

DOE Green Energy (OSTI)

Uranium oxides in a molten eutectic mixture of NaClKCl were chlorinated by bubbling chlorine gas through the mixture. The reaction product, uranyl chloride. was soluble in the molten salt. Although UO/sub 2/ was the most common oxide used, the reaction was similar in the other oxides. Phosgene and aluminum chloride were also used as chlorinating agents. A dense, crystalline precipitate of pure UO/sub 2/ was prepared by the reduction of the uranyl chloride contained in the molten salt solution. The reduction was accomplished by contacting the salt solution with any of several metals, by reaction with hydrogen or dry ammonia gas, or by electrolysis. Several kilograms of UO/sub 2/ were prepared by electrolysis using graphite electrodes. The physical properties of the material made it potentially useful as a ceramic fuel material. The initial high particle density of the "as-produced" UO/sub 2/ was considered of great potential advantage for adapting this process to the refabrication of irradiated UO/sub 2/ into recycle fuel elements. (M.C.G.)

Lyon, W.L.; Voiland, E.E.

1959-10-20T23:59:59.000Z

145

Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant  

DOE Green Energy (OSTI)

A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers and towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.

James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

2011-09-20T23:59:59.000Z

146

Frame Heat Transfer Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Developing Low-Conductance Window Frames: Capabilities and Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools Arild Gustavsen 1,* , Dariush Arasteh 2 , Bjørn Petter Jelle 3,4 , Charlie Curcija 5 and Christian Kohler 2 1 Department of Architectural Design, History and Technology, Norwegian University of Science and Technology, Alfred Getz vei 3, NO-7491 Trondheim, Norway 2 Windows and Daylighting Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road Mail Stop 90R3111, Berkeley, CA 94720- 8134, USA 3 Department of Civil and Transport Engineering, Norwegian University of Science and Technology, Høgskoleringen 7A, NO-7491 Trondheim, Norway 4 Department of Building Materials and Structures, SINTEF Building and Infrastructure, Høgskoleringen 7B,NO-7465 Trondheim, Norway

147

Handbook of heat transfer fundamentals  

SciTech Connect

This handbook is on the fundamentals of heat transfer. It provides coverage on conduction, convection, and radiation and on thermophysical properties of materials.

Rohsenow, W.M.; Hartnett, J.P.; Ganic, E.N.

1985-01-01T23:59:59.000Z

148

Electrohydrodynamically enhanced condensation heat transfer.  

E-Print Network (OSTI)

??In a condenser the thickness of the liquid condensate film covering the cooled surface constitutes a resistance to the heat transfer. By establishing a non… (more)

Wawzyniak, Markus

2012-01-01T23:59:59.000Z

149

Urban Sewage Delivery Heat Transfer System (2): Heat Transfer  

E-Print Network (OSTI)

The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH forms are analyzed and the calculation formulas and characteristic are also given. The results indicate that the efficiency of the parallel-flow form is greater than that of the reverse-flow, so the TDTH system must choose the parallel-flow form. The distance-load ratio (DLR) is defined and the minimum DLR is obtained by the technical and economic feasibility analysis. The paper will provide references for heat-transfer calculation and schematic determination of urban sewage cool or heat source applied delivery heat transfer methods.

Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

2006-01-01T23:59:59.000Z

150

MOLTEN SALT CORROSION OF SUPERHEATERS IN BLACK LIQUOR RECOVERY BOILERS John Bohling, University of Tennessee Georgia Tech SURF 2010 Fellow  

E-Print Network (OSTI)

MOLTEN SALT CORROSION OF SUPERHEATERS IN BLACK LIQUOR RECOVERY BOILERS John Bohling, University Goodman Introduction In the papermaking industry, black liquor recovery boilers burn black liquor into the superheater region of the boiler, where the salt-deposit, or smelt, forms a scale on the superheater tubes.1

Li, Mo

151

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

SciTech Connect

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Batavia, IL)

2010-09-21T23:59:59.000Z

152

Expedited demonstration of molten salt mixed waste treatment technology. Final report  

Science Conference Proceedings (OSTI)

This final report discusses the molten salt mixed waste project in terms of the various subtasks established. Subtask 1: Carbon monoxide emissions; Establish a salt recycle schedule and/or a strategy for off-gas control for MWMF that keeps carbon monoxide emission below 100 ppm on an hourly averaged basis. Subtask 2: Salt melt viscosity; Experiments are conducted to determine salt viscosity as a function of ash composition, ash concentration, temperature, and time. Subtask 3: Determine that the amount of sodium carbonate entrained in the off-gas is minimal, and that any deposited salt can easily be removed form the piping using a soot blower or other means. Subtask 4: The provision of at least one final waste form that meets the waste acceptance criteria of a landfill that will take the waste. This report discusses the progress made in each of these areas.

NONE

1995-02-02T23:59:59.000Z

153

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

DOE Patents (OSTI)

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Batavia, IL)

2010-09-21T23:59:59.000Z

154

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

DOE Patents (OSTI)

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Ratavia, IL)

2007-09-11T23:59:59.000Z

155

Application of molten salt oxidation for the minimization and recovery of plutonium-238 contaminated wastes  

Science Conference Proceedings (OSTI)

Molten salt oxidation (MSO) is proposed as a {sup 238}Pu waste treatment technology that should be developed for volume reduction and recovery of {sup 238}Pu and as an alternative to the transport and permanent disposal of {sup 238}Pu waste to the WIPP repository. In MSO technology, molten sodium carbonate salt at 800--900 C in a reaction vessel acts as a reaction media for wastes. The waste material is destroyed when injected into the molten salt, creating harmless carbon dioxide and steam and a small amount of ash in the spent salt. The spent salt can be treated using aqueous separation methods to reuse the salt and to recover 99.9% of the precious {sup 238}Pu that was in the waste. Tests of MSO technology have shown that the volume of combustible TRU waste can be reduced by a factor of at least twenty. Using this factor the present inventory of 574 TRU drums of {sup 238}Pu contaminated wastes is reduced to 30 drums. Further {sup 238}Pu waste costs of $22 million are avoided from not having to repackage 312 of the 574 drums to a drum total of more than 4,600 drums. MSO combined with aqueous processing of salts will recover approximately 1.7 kilograms of precious {sup 238}Pu valued at 4 million dollars (at $2,500/gram). Thus, installation and use of MSO technology at LANL will result in significant cost savings compared to present plans to transport and dispose {sup 238}Pu TRU waste to the WIPP site. Using a total net present value cost for the MSO project as $4.09 million over a five-year lifetime, the project can pay for itself after either recovery of 1.6 kg of Pu or through volume reduction of 818 drums or a combination of the two. These savings show a positive return on investment.

Wishau, R.

1998-05-01T23:59:59.000Z

156

Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation  

Science Conference Proceedings (OSTI)

This project addresses both practical and fundamental scientific issues of direct relevance to operational challenges of the molten LiCl-KCl salt pyrochemical process, while providing avenues for improvements in the process. In order to understand the effects of the continually changing composition of the molten salt bath during the process, the project team will systematically vary the concentrations of rare earth surrogate elements, lanthanum, cerium, praseodymium, and neodymium, which will be added to the molten LiCl-KCl salt. They will also perform a limited number of focused experiments by the dissolution of depleted uranium. All experiments will be performed at 500°C. The project consists of the following tasks. Researchers will measure density of the molten salts using an instrument specifically designed for this purpose, and will determine the melting points with a differential scanning calorimeter. Knowledge of these properties is essential for salt mass accounting and taking the necessary steps to prevent melt freezing. The team will use cyclic voltammetry studies to determine redox potentials of the rare earth cations, as well as their diffusion coefficients and activities in the molten LiCl-KCl salt. In addition, the team will perform anodic stripping voltammetry to determine the concentration of the rare earth elements and their solubilities, and to develop the scientific basis for an on-line diagnostic system for in situ monitoring of the cation species concentration (rare earths in this case). Solubility and activity of the cation species are critically important for the prediction of the salt's useful lifetime and disposal.

Kumar Sridharan; Todd Allen; Mark Anderson

2012-11-30T23:59:59.000Z

157

Incorporating supercritical steam turbines into molten-salt power tower plants : feasibility and performance.  

SciTech Connect

Sandia National Laboratories and Siemens Energy, Inc., examined 14 different subcritical and supercritical steam cycles to determine if it is feasible to configure a molten-salt supercritical steam plant that has a capacity in the range of 150 to 200 MWe. The effects of main steam pressure and temperature, final feedwater temperature, and hot salt and cold salt return temperatures were determined on gross and half-net efficiencies. The main steam pressures ranged from 120 bar-a (subcritical) to 260 bar-a (supercritical). Hot salt temperatures of 566 and 600%C2%B0C were evaluated, which resulted in main steam temperatures of 553 and 580%C2%B0C, respectively. Also, the effects of final feedwater temperature (between 260 and 320%C2%B0C) were evaluated, which impacted the cold salt return temperature. The annual energy production and levelized cost of energy (LCOE) were calculated using the System Advisory Model on 165 MWe subcritical plants (baseline and advanced) and the most promising supercritical plants. It was concluded that the supercritical steam plants produced more annual energy than the baseline subcritical steam plant for the same-size heliostat field, receiver, and thermal storage system. Two supercritical steam plants had the highest annual performance and had nearly the same LCOE. Both operated at 230 bar-a main steam pressure. One was designed for a hot salt temperature of 600%C2%B0C and the other 565%C2%B0C. The LCOEs for these plants were about 10% lower than the baseline subcritical plant operating at 120 bar-a main steam pressure and a hot salt temperature of 565%C2%B0C. Based on the results of this study, it appears economically and technically feasible to incorporate supercritical steam turbines in molten-salt power tower plants.

Pacheco, James Edward; Wolf, Thorsten [Siemens Energy, Inc., Orlando, FL; Muley, Nishant [Siemens Energy, Inc., Orlando, FL

2013-03-01T23:59:59.000Z

158

Measurement of the axial distribution of radioactivity in the auxiliary charcoal bed of the Molten Salt Reactor Experiment at ORNL  

SciTech Connect

The Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory commenced operation in 1964 and was shut down in 1969. It was fueled with {sup 233}UF{sub 4} in a carrier salt of LiF-BeF{sub 2}-ZrF{sub 4}, and it operated at 1,200 F. After it was shut down, the fuel was heated annually to 200 C to recombine fluorine (with the fuel) released due to radiation-induced reactions in the fuel salt. However, a competing reaction oxidized uranium to UF{sub 6}, which was released (along with F{sub 2}) from the fuel and trapped in one of four charcoal filters in the auxiliary charcoal bed (ACB). One of the tasks for decommissioning of the MSRE requires that at least 90% of the estimated 3 kg of {sup 233}U, and radioactive decay products, in this filter be removed, and one of the proposed methods is to vacuum the charcoal above a specified axial position in the filter. This requires that the axial distribution of activity in the filter be measured in a 60 rad/h radiation field to determine where this penetration can be made. To accomplish this, the shielded detector with a pinhole collimator, and with a laser positioning capability, was remotely translated to various axial positions to accomplish these measurements. Activities in the steel screen, and various regions of the charcoal bed, are estimated, and uncertainties in these estimates are generally {lt}1%. Results from this analysis are used for continued operational decisions for decommissioning of the MSRE.

Miller, L.F.; Buckner, M.; Buchanan, M.

1999-07-01T23:59:59.000Z

159

HEAT TRANSFER MEANS  

DOE Patents (OSTI)

A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.

Fraas, A.P.; Wislicenus, G.F.

1961-07-11T23:59:59.000Z

160

Design considerations of a 15kW heat exchanger for the CSPonD Project  

E-Print Network (OSTI)

The objective of this work was to develop a 15 kW heat exchanger model for the CSPonD molten salt receiver that will shuttle the molten salt's thermal energy for conversion to electric power. A heat extraction system ...

Adames, Adrian A

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Heat and moisture transfer through clothing  

E-Print Network (OSTI)

R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients for2008. Study of heat and moisture transfer within multi-layer

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

162

Controlling the Heat Transfer  

Science Conference Proceedings (OSTI)

Through experimental validation that air conduction is shown to be typically the dominant thermal transport mechanism in the contact region, the heat conduction

163

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network (OSTI)

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of… (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

164

Enhanced heat transfer using nanofluids  

DOE Patents (OSTI)

This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

2001-01-01T23:59:59.000Z

165

Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation  

SciTech Connect

Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

Morgan, Dane; Eapen, Jacob

2013-10-01T23:59:59.000Z

166

Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts  

SciTech Connect

A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses on developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.

Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson

2012-07-01T23:59:59.000Z

167

Novel concepts in electrochemical solar cells. First quarterly progress report, May 15-July 15, 1979. [Molten salt electrolytes  

DOE Green Energy (OSTI)

Emphasis has been directed toward the development and evaluation of an efficient, operational photoelectrochemical cell (PEC) system involving (i) molten salt (and/or highly concentrated, inorganic, non-aqueous) electrolytes, and (ii) the promising semiconductor electrode materials such as CuTnS/sub 2/, CuInSe/sub 2/, MoS/sub 2/, MoSe/sup 2/ etc. As a direct consequence, the stages of the work program that are most critical at this time are the electrode fabrication and characterization and the electrolyte preparation and characterization phases. It has been demonstrated for the first time that a semiconductor electrode exhibits quite large photoeffects in a cell containing a molten salt electrolyte. Detailed studies are underway to explore the constraints and advantages of this type of electrolyte, from the standpoint of efficiency, corrosion of the electrode, and the chemical and physical properties related to overall cell performance. Progress is reported. (WHK)

DuBow, J.

1979-01-01T23:59:59.000Z

168

Thermal Storage Commercial Plant Design Study for a 2-Tank Indirect Molten Salt System: Final Report, 13 May 2002 - 31 December 2004  

DOE Green Energy (OSTI)

Subcontract report by Nexant, Inc., and Kearney and Associates regarding a study of a solar parabolic trough commercial plant design with 2-tank indirect molten salt thermal storage system.

Kelly, B.; Kearney, D.

2006-07-01T23:59:59.000Z

169

Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment  

Science Conference Proceedings (OSTI)

Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

Hsu, P.C.

1997-11-01T23:59:59.000Z

170

Plutonium and americium recovery from spent molten-salt-extraction salts with aluminum-magnesium alloys  

Science Conference Proceedings (OSTI)

Development work was performed to determine the feasibility of removing plutonium and americium from spent molten-salt-extraction (MSE) salts using Al-Mg alloys. If the product buttons from this process are compatible with subsequent aqueous processing, the complex chloride-to-nitrate aqueous conversion step which is presently required for these salts may be eliminated. The optimum alloy composition used to treat spent 8 wt % MSE salts in the past yielded poor phase-disengagement characteristics when applied to 30 mol % salts. After a limited investigation of other alloy compositions in the Al-Mg-Pu-Am system, it was determined that the Al-Pu-Am system could yield a compatible alloy. In this system, experiments were performed to investigate the effects of plutonium loading in the alloy, excess magnesium, age of the spent salt on actinide recovery, phase disengagement, and button homogeneity. Experimental results indicate that 95 percent plutonium recoveries can be attained for fresh salts. Further development is required for backlog salts generated prior to 1981. A homogeneous product alloy, as required for aqueous processing, could not be produced.

Cusick, M.J.; Sherwood, W.G.; Fitzpatrick, R.F.

1984-04-23T23:59:59.000Z

171

Electrochemistry of LiCl-Li2O-H2O Molten Salt Systems  

SciTech Connect

Uranium can be recovered from uranium oxide (UO2) spent fuel through the combination of the oxide reduction and electrorefining processes. During oxide reduction, the spent fuel is introduced to molten LiCl-Li2O salt at 650 degrees C and the UO2 is reduced to uranium metal via two routes: (1) electrochemically, and (2) chemically by lithium metal (Li0) that is produced electrochemically. However, the hygroscopic nature of both LiCl and Li2O leads to the formation of LiOH, contributing hydroxyl anions (OH-), the reduction of which interferes with the Li0 generation required for the chemical reduction of UO2. In order for the oxide reduction process to be an effective method for the treatment of uranium oxide fuel, the role of moisture in the LiCl-Li2O system must be understood. The behavior of moisture in the LiCl-Li2O molten salt system was studied using cyclic voltammetry, chronopotentiometry and chronoamperometry, while reduction to hydrogen was confirmed with gas chromatography.

Natalie J. Gese; Batric Pesic

2013-03-01T23:59:59.000Z

172

Effect of the graphite electrode material on the characteristics of molten salt electrolytically produced carbon nanomaterials  

SciTech Connect

The electrochemical erosion of a graphite cathode during the electrolysis of molten lithium chloride salt may be used for the preparation of nano-structured carbon materials. It has been found that the structures and morphologies of these carbon nanomaterials are dependent on those of the graphite cathodes employed. A combination of tubular and spherical carbon nanostructures has been produced from a graphite with a microstructure of predominantly planar micro-sized grains and a minor fraction of more irregular nano-sized grains, whilst only spherical carbon nanostructures have been produced from a graphite with a microstructure of primarily nano-sized grains. Based on the experimental results, a best-fit regression equation is proposed that relates the crystalline domain size of the graphite reactants and the carbon products. The carbon nanomaterials prepared possess a fairly uniform mesoporosity with a sharp peak in pore size distribution at around 4 nm. The results are of crucial importance to the production of carbon nanomaterials by way of the molten salt electrolytic method. - Highlights: {yields} Carbon nanomaterials are synthesised by LiCl electrolysis with graphite electrodes. {yields} The degree of crystallinity of graphite reactant and carbon product are related. {yields} A graphite reactant is identified that enables the preparation of carbon nanotubes. {yields} The carbon products possess uniform mesoporosity with narrow pore size distribution.

Kamali, Ali Reza, E-mail: ark42@cam.ac.uk; Schwandt, Carsten; Fray, Derek J.

2011-10-15T23:59:59.000Z

173

Uncertainty Studies of Real Anode Surface Area in Computational Analysis for Molten Salt Electrorefining  

SciTech Connect

This study examines how much cell potential changes with five differently assumed real anode surface area cases. Determining real anode surface area is a significant issue to be resolved for precisely modeling molten salt electrorefining. Based on a three-dimensional electrorefining model, calculated cell potentials compare with an experimental cell potential variation over 80 hours of operation of the Mark-IV electrorefiner with driver fuel from the Experimental Breeder Reactor II. We succeeded to achieve a good agreement with an overall trend of the experimental data with appropriate selection of a mode for real anode surface area, but there are still local inconsistencies between theoretical calculation and experimental observation. In addition, the results were validated and compared with two-dimensional results to identify possible uncertainty factors that had to be further considered in a computational electrorefining analysis. These uncertainty factors include material properties, heterogeneous material distribution, surface roughness, and current efficiency. Zirconium's abundance and complex behavior have more impact on uncertainty towards the latter period of electrorefining at given batch of fuel. The benchmark results found that anode materials would be dissolved from both axial and radial directions at least for low burn-up metallic fuels after active liquid sodium bonding was dissolved.

Sungyeol Choi; Jaeyeong Park; Robert O. Hoover; Supathorn Phongikaroon; Michael F. Simpson; Kwang-Rag Kim; Il Soon Hwang

2011-09-01T23:59:59.000Z

174

Customer interface document for the Molten Salt Test Loop (MSTL) system.  

DOE Green Energy (OSTI)

The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate 'solar salt' and can circulate the salt at pressure up to 600psi, temperature to 585 C, and flow rate of 400-600GPM depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

Pettit, Kathleen; Kolb, William J.; Gill, David Dennis; Briggs, Ronald D.

2012-03-01T23:59:59.000Z

175

Nanoscale heat transfer - from computation to experiment  

E-Print Network (OSTI)

Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in

Luo, Tengfei

2013-04-09T23:59:59.000Z

176

Novel concepts in electrochemical solar cells. Second quarterly progress report, August 15, 1979-October 15, 1979. [Molten salt electrolytes  

DOE Green Energy (OSTI)

It is considered that the short term stability of n-GaAs PEC's in a ferrocene-based, ambient temperature molten salt electrolyte is reasonably good. However, longer term evaluation is required to determine the extent and significance of corrosion, stability, etc. Extremely few fundamental studies have been made of the semiconductor/molten salt interphase and experiments in this area would be most useful. Indeed, even the design parameters for PECs of any kind have not been quantitatively delineated and present consideration will be given to models for PEC solar cells and limitations caused by ion transport in the electrolyte. The MoSe/sub 2/ and MoS/sub 2/ electrodes appear to have substrate reproducibility and transport limitations that make them unsuitable candidates for efficient PEC's at this time. Similarly, the lack of availability of high quality CuInSe/sub 2/ and CuInS/sub 2/ substrates limits the quantitative experimental evaluation of their utility for PEC applications. We are presently focusing attention on CdSe/CdTe mixtures and CdS as electrodes as well as Si and GaAs in molten salt and polyelectrolyte solutions. The system for solar cell evaluation and network analysis of substrates and cells was mode operational. Preliminary work on economic and theoretical modelling was begun. Progress is reported. (WHK)

DuBow, J.; Job, R.; Krishnan, R.; Gale, B.

1979-01-01T23:59:59.000Z

177

Optimization of Phase Change Heat Transfer in Biporous Media  

E-Print Network (OSTI)

Aspectcs of Boiling Heat Transfer”. PhD Thesis dissertation,Celled Foams”. Numerical Heat Transfer, Vol. 54, issue 1,Dimensional Fluid Flow and Heat Transfer”. Numerical Heat

Reilly, Sean

2013-01-01T23:59:59.000Z

178

Electrodeposition of cobalt and cobalt-aluminum alloys from a room temperature chloroaluminate molten salt  

Science Conference Proceedings (OSTI)

The electrodeposition of magnetic cobalt-aluminum alloys was investigated in the Lewis acidic aluminum chloride-1-methyl-3-ethylimidazolium chloride [60.0--40.0 mole percent (m/o)] molten salt containing electrogenerated Co(II) at 25 C. rotating disk electrode voltammetry indicated that it is possible to produce alloy deposits containing up to 62 atomic (a/o) aluminum at potentials positive of that for the bulk deposition of aluminum. The onset of the underpotential-driven aluminum codeposition process occurred at around 0.40 V vs. the Al/Al(III) couple in a 5.00 mmol/liter Co(II) solution but decreased as the Co(II) concentration increased. The Co-Al alloy composition displayed an inverse dependence on the Co(II) concentration but tended to become independent of concentration as the potential was decreased to 0 V. A rotating ring-disk electrode voltammetry technique was developed to analyze the composition and structure of the Co-Al alloy deposits. This technique takes advantage of the fact that the mass-transport-limited reduction of cobalt(II) occurs at potentials considerably more positive than that at which aluminum codeposition occurs. Scanning electron microscopy and energy dispersive X-ray analysis of bulk electrodeposits revealed that deposit morphology depends strongly upon aluminum content/deposition potential; deposits produced at 0.40 V from 50.0 mmol/liter Co(II) solutions consisted of 10 to 20 {micro}m diam multifaceted nodules of pure hcp cobalt, whereas those obtained at 0.20 V were dense and fine grained, containing about 4 a/o Al. Deposits produced at 0 V had the visual appearance of a loosely adherent black powder. X-ray diffraction measurements revealed a lattice expansion and a decrease in grain size as the hcp cobalt was alloyed with increasing amounts of aluminum.

Mitchell, J.A.; Pitner, W.R.; Hussey, C.L. [Univ. of Mississippi, University, MS (United States). Dept. of Chemistry; Stafford, G.R. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Materials Science and Engineering Lab.

1996-11-01T23:59:59.000Z

179

Thermal Transport and Heat Exchanger Design for the Space Molten Salt Reactor Concept.  

E-Print Network (OSTI)

??Surface power and nuclear electric propulsion in space necessitate the development of high energy density, long term continuous power sources. Research at The Ohio State… (more)

Flanders, Justin M.

2012-01-01T23:59:59.000Z

180

Preliminary Design For Conventional and Compact Secondary Heat Exchanger in a Molten Salt Reactor  

Science Conference Proceedings (OSTI)

The strategic goal of the Advance Reactors such as AHTR is to broaden the environmental and economic benefits of nuclear energy in the United States by producing power to meet growing energy demands and demonstrating its applicability to market sectors not being served by light water reactors

Piyush Sabharwall; Mike Patterson; Ali Siahpush; Eung Soo Kim

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal...  

Open Energy Info (EERE)

Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow,...

182

Available Technologies: Heat Transfer Interface for Thermo ...  

Refrigeration systems; Internal combustion engines; ... The components of the technology could be used to improve heat transfer in industrial, ...

183

Heat Transfer & Alternative Energy Systems Group Staff ...  

Science Conference Proceedings (OSTI)

Heat Transfer and Alternative Energy Systems Group Staff. Staff Listing. Dr. William M. Healy, Leader, Supervisory Mechanical ...

2013-08-07T23:59:59.000Z

184

Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals  

DOE Patents (OSTI)

A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500.degree. C., electrolysis at a voltage not more negative than about -1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

Maroni, Victor A. (Naperville, IL); von Winbush, Samuel (Huntington, NY)

1988-01-01T23:59:59.000Z

185

Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals  

DOE Patents (OSTI)

A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

Maroni, V.A.; von Winbush, S.

1987-05-01T23:59:59.000Z

186

Acoustically Enhanced Boiling Heat Transfer  

E-Print Network (OSTI)

An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

Z. W. Douglas; M. K. Smith; A. Glezer

2008-01-07T23:59:59.000Z

187

Heat transfer via dropwise condensation on hydrophobic microstructured surfaces  

E-Print Network (OSTI)

Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were compared. Heat transfer ...

Ruleman, Karlen E. (Karlen Elizabeth)

2009-01-01T23:59:59.000Z

188

Heat exchanger device and method for heat removal or transfer  

Science Conference Proceedings (OSTI)

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

Koplow, Jeffrey P. (San Ramon, CA)

2012-07-24T23:59:59.000Z

189

Handbook of heat transfer applications (2nd edition)  

Science Conference Proceedings (OSTI)

The applications of heat transfer in engineering problems are considered. Among the applications discussed are: mass transfer cooling; heat exchangers; and heat pipes. Consideration is also given to: heat transfer in nonNewtonian fluids; fluidized and packed beds; thermal energy storage; and heat transfer in solar collectors. Additional topics include: heat transfer in buildings; cooling towers and ponds; and geothermal heat transfer.

Rohsenow, W.M.; Hartnett, J.P.; Ganic, E.N.

1985-01-01T23:59:59.000Z

190

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network (OSTI)

the following heat transfer processes: conduction throughtudes of the major heat transfer processes in a typical room

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

191

Design considerations for concentrating solar power tower systems employing molten salt.  

DOE Green Energy (OSTI)

The Solar Two Project was a United States Department of Energy sponsored project operated from 1996 to 1999 to demonstrate the coupling of a solar power tower with a molten nitrate salt as a heat transfer media and for thermal storage. Over all, the Solar Two Project was very successful; however many operational challenges were encountered. In this work, the major problems encountered in operation of the Solar Two facility were evaluated and alternative technologies identified for use in a future solar power tower operating with a steam Rankine power cycle. Many of the major problems encountered can be addressed with new technologies that were not available a decade ago. These new technologies include better thermal insulation, analytical equipment, pumps and values specifically designed for molten nitrate salts, and gaskets resistant to thermal cycling and advanced equipment designs.

Moore, Robert Charles; Siegel, Nathan Phillip; Kolb, Gregory J.; Vernon, Milton E.; Ho, Clifford Kuofei

2010-09-01T23:59:59.000Z

192

Full Size Image - Energy Innovation Portal  

Building Energy Efficiency; ... Molten Salt Heat Transfer Fluid (HTF) Return to Marketing Summary. Sandia's National Solar Thermal Test Facility

193

Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas-  

Open Energy Info (EERE)

Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Details Activities (5) Areas (5) Regions (0) Abstract: Surface heat flow measurements over active geothermal systems indicate strongly positive thermal anomalies. Whereas in "normal" geothermal settings, the surface heat flow is usually below 100-120 mW m- 2, in active geothermal areas heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on different lateral, depth and time scales. Borehole temperature profiles in active geothermal

194

Enhanced heat transfer for thermionic power modules  

DOE Green Energy (OSTI)

The thermionic power module is capable of operating at very high heat fluxes, which in turn serve to reduce capital costs. The most efficient operation also requires uniform heat fluxes. The development of enhanced heat transfer systems is required to meet the demand for high heat fluxes (>20 w/cm/sup 2/) at high temperatures (>1500K) which advanced thermionic power modules place upon combustion systems. Energy transfer from the hot combustion gases may take place by convection, radiation, or a combination of radiation and convection. Enhanced convective heat transfer with a jet impingement system has been demonstrated in a thermionic converter. The recently-developed cellular ceramic radiative heat transfer system has also been applied to a thermionic converter. By comparing the jet impingement and cellular ceramic radiative heat transfer systems, an appropriate system may be selected for utilization in advanced thermionic power modules. Results are reported.

Johnson, D.C.

1981-07-01T23:59:59.000Z

195

Heat Transfer In Turbine Mid Structures.  

E-Print Network (OSTI)

??In order to estimate the life time of a cooled gas turbine component, knowledge of the heat transfer is essential in order to predict the… (more)

Abou-Taouk, Abdallah

2006-01-01T23:59:59.000Z

196

Enhanced Heat Transfer in Composite Materials.  

E-Print Network (OSTI)

??Many composite materials are composed of a matrix reinforced with fibers. Carbon fiber composites are currently being used for high heat transfer applications. Carbon fibers… (more)

Pathak, Sayali V.

2013-01-01T23:59:59.000Z

197

Interface Heat Transfer Effects for Solidification Processes  

Science Conference Proceedings (OSTI)

The solidification rate of a casting is governed by the rate of heat extraction, which in turn is dominated by the rate of heat transfer across the casting-mold ...

198

Morphology and photoluminescence of Ba0.5Sr0.5MoO4 powders by a molten salt method  

Science Conference Proceedings (OSTI)

Ba0.5Sr0.5MoO4 powders with scheelite-type tetragonal structure were successfully synthesized by a molten salt method. The structure, morphology, and luminescent property of the as-prepared powders were characterized ...

Ling Wei; Yunfei Liu; Yinong Lu; Tao Wu

2012-01-01T23:59:59.000Z

199

Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

NONE

1996-09-01T23:59:59.000Z

200

Regenerative mode photo electrochemical cells in molten salt electrolytes. 1st four monthly report (1/31/80)  

DOE Green Energy (OSTI)

The most promising photoelectrodes selected for use in the butyl pyridinium chloride-aluminum chloride room temperature molten salt are n-type silicon, gallium arsenide and cadmium telluride. The solubilities of these semiconductors are low, and their conduction and valence band edges are favorably located. Cadmium selenide and sulfide showed significant solubility in the melt, and the conduction band edge for p-type cadmium telluride was too close to the aluminum deposition potential. Several reversible redox couples have been identified, which could potentially be used in a photoelectrochemical cell. These include W/sup 5 +//W/sup 6 +/ and Eu/sup 2 +//Eu/sup 3 +/ as well as ferrocene and its derivatives.

Not Available

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Molten salt oxidation of mixed wastes: Separation of radioactive materials and Resource Conservation and Recovery Act (RCRA) materials  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL) is involved in a program to apply a molten salt oxidation (MSO) process to the treatment of mixed wastes at Oak Ridge and other Department of Energy (DOE) sites. Mixed wastes are defined as those wastes that contain both radioactive components, which are regulated by the atomic energy legislation, and hazardous waste components, which are regulated under the Resource Conservation and Recovery Act (RCRA). A major part of our ORNL program involves the development of separation technologies that are necessary for the complete treatment of mixed wastes. The residues from the MSO treatment of the mixed wastes must be processed further to separate the radioactive components, to concentrate and recycle residues, or to convert the residues into forms acceptable for final disposal. This paper is a review of the MSO requirements for separation technologies, the information now available, and the concepts for our development studies.

Bell, J.T.; Haas, P.A.; Rudolph, J.C.

1993-12-01T23:59:59.000Z

202

HEAT EXCHANGER DEVICE AND METHOD FOR HEAT REMOVAL OR TRANSFER ...  

Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a ...

203

Heat Transfer Characteristics of a Generalized Divided Flow Heat Exchanger  

E-Print Network (OSTI)

The concept of a "Divided-flow" heat exchanger is generalized by locating the shell inlet (or outlet) nozzle off-center such that the two shell sub-streams are unequal and traverse unequal flow paths. The governing equations for heat transfer in such an exchanger are derived and solved leading to an optimization problem. In this problem, the optimal subdivision of heat transfer surface to minimize required overall heat transfer surface, under certain restricted conditions, is sought. It is shown that the off-center nozzle location can be selected judiciously so as to maintain (or even improve heat transfer) while reducing the gross shellside pressure loss. Thus, the pumping costs are minimized without sacrificing heat transfer.

Singh, K. P.

1979-01-01T23:59:59.000Z

204

Heat Transfer in Complex Fluids  

SciTech Connect

Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

Mehrdad Massoudi

2012-01-01T23:59:59.000Z

205

Containment condensing heat transfer. [PWR; BWR  

SciTech Connect

This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained.

Gido, R.G.; Koestel, A.

1983-01-01T23:59:59.000Z

206

Radiative heat transfer between dielectric bodies  

E-Print Network (OSTI)

The recent development of a scanning thermal microscope (SThM) has led to measurements of radiative heat transfer between a heated sensor and a cooled sample down to the nanometer range. This allows for comparision of the known theoretical description of radiative heat transfer, which is based on fluctuating electrodynamics, with experiment. The theory itself is a macroscopic theory, which can be expected to break down at distances much smaller than 10-8m. Against this background it seems to be reasonable to revisit the known macroscopic theory of fluctuating electrodynamics and of radiative heat transfer.

Svend-Age Biehs

2011-03-16T23:59:59.000Z

207

"Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"  

DOE Green Energy (OSTI)

ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

2008-06-12T23:59:59.000Z

208

Technology Development Roadmap for the Advanced High Temperature Reactor Secondary Heat Exchanger  

Science Conference Proceedings (OSTI)

This Technology Development Roadmap (TDRM) presents the path forward for deploying large-scale molten salt secondary heat exchangers (MS-SHX) and recognizing the benefits of using molten salt as the heat transport medium for advanced high temperature reactors (AHTR). This TDRM will aid in the development and selection of the required heat exchanger for: power production (the first anticipated process heat application), hydrogen production, steam methane reforming, methanol to gasoline production, or ammonia production. This TDRM (a) establishes the current state of molten salt SHX technology readiness, (b) defines a path forward that systematically and effectively tests this technology to overcome areas of uncertainty, (c) demonstrates the achievement of an appropriate level of maturity prior to construction and plant operation, and (d) identifies issues and prioritizes future work for maturing the state of SHX technology. This study discusses the results of a preliminary design analysis of the SHX and explains the evaluation and selection methodology. An important engineering challenge will be to prevent the molten salt from freezing during normal and off-normal operations because of its high melting temperature (390°C for KF ZrF4). The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The need for efficiency, compactness, and safety challenge the capabilities of existing heat exchanger technology. The description of potential heat exchanger configurations or designs (such as printed circuit, spiral or helical coiled, ceramic, plate and fin, and plate type) were covered in an earlier report (Sabharwall et al. 2011). Significant future work, much of which is suggested in this report, is needed before the benefits and full potential of the AHTR can be realized. The execution of this TDRM will focuses research efforts on the near-term qualification, selection, or maturation strategy as detailed in this report. Development of the integration methodology feasibility study, along with research and development (R&D) needs, are ongoing tasks that will be covered in the future reports as work progresses. Section 2 briefly presents the integration of AHTR technology with conventional chemical industrial processes., See Idaho National Laboratory (INL) TEV-1160 (2011) for further details

P. Sabharwall; M. McCllar; A. Siahpush; D. Clark; M. Patterson; J. Collins

2012-09-01T23:59:59.000Z

209

Heat Transfer Enhancement: Second Generation Technology  

E-Print Network (OSTI)

This paper reviews current activity in the field of enhanced heat transfer, with the aim of illustrating the technology and typical applications. Guidelines for application of enhanced surfaces are given, and practical concerns and economics are discussed. Special attention is directed toward use of enhanced surfaces in industrial process heat exchangers and heat recovery equipment.

Bergles, A. E.; Webb, R. L.

1984-01-01T23:59:59.000Z

210

Fundamental heat transfer experiments of heat pipes for turbine cooling  

SciTech Connect

Fundamental heat transfer experiments were carried out for three kinds of heat pipes that may be applied to turbine cooling in future aero-engines. In the turbine cooling system with a heat pipe, heat transfer rate and start-up time of the heat pipe are the most important performance criteria to evaluate and compare with conventional cooling methods. Three heat pipes are considered, called heat pipe A, B, and C, respectively. All heat pipes have a stainless steel shell and nickel sintered powder metal wick. Sodium (Na) was the working fluid for heat pipes A and B; heat pipe C used eutectic sodium-potassium (NaK). Heat pipes B and C included noncondensible gas for rapid start-up. There were fins on the cooling section of heat pipes. In the experiments, an infrared image furnace supplied heat to the heat pipe simulating turbine blade surface conditions. In the results, heat pipe B demonstrated the highest heat flux of 17 to 20 W/cm{sup 2}. The start-up time was about 6 minutes for heat pipe B and about 6 minutes for heat pipe A. Thus, adding noncondensible gas effectively reduced start-up time. Although NaK is a liquid phase at room temperature, the start-up time of heat pipe C (about 7 to 8 minutes) was not shorter than the heat pipe B. The effect of a gravitational force on heat pipe performance was also estimated by inclining the heat pipe at an angle of 90 deg. There was no significant gravitational dependence on heat transport for heat pipes including noncondensible gas.

Yamawaki, S. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Yoshida, T.; Taki, M.; Mimura, F. [National Aerospace Lab., Tokyo (Japan)

1998-07-01T23:59:59.000Z

211

Dynamics of heat transfer between nano systems  

E-Print Network (OSTI)

We develop a dynamical theory of heat transfer between two nano systems. In particular, we consider the resonant heat transfer between two nanoparticles due to the coupling of localized surface modes having a finite spectral width. We model the coupled nanosystem by two coupled quantum mechanical oscillators, each interacting with its own heat bath, and obtain a master equation for the dynamics of heat transfer. The damping rates in the master equation are related to the lifetimes of localized plasmons in the nanoparticles. We study the dynamics towards the steady state and establish connection with the standard theory of heat transfer in steady state. For strongly coupled nano particles we predict Rabi oscillations in the mean occupation number of surface plasmons in each nano particle.

Svend-Age Biehs; Girish S. Agarwal

2012-10-18T23:59:59.000Z

212

Passive heat transfer means for nuclear reactors  

DOE Patents (OSTI)

An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

Burelbach, James P. (Glen Ellyn, IL)

1984-01-01T23:59:59.000Z

213

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network (OSTI)

permission. QC-06-053 Heat Transfer Pathways in Underfloorchange the dynamics of heat transfer within a room as wellchange the dynamics of heat transfer within a room as well

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

214

AN EXPERIMENTAL AND THEORETICAL STUDY OF HEAT TRANSFER WITH COMBUSTION  

E-Print Network (OSTI)

Figure 7.6. Thin film heat transfer gauge. I I il j i II· Figure 2. 2. Thin 1m heat transfer gauge. 'l' :i t jt IIIII. MEASUREMENTS AND HEAT TRANSFER IN THE SOLID Experiments

Heperkan, Hasan A.

2013-01-01T23:59:59.000Z

215

Clean Boiler Waterside Heat Transfer Surfaces  

SciTech Connect

This revised ITP tip sheet on cleaning boiler water-side heat transfer surfaces provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

216

Nonequilibrium Electromagnetic Fluctuations: Heat Transfer and Interactions  

E-Print Network (OSTI)

The Casimir force between arbitrary objects in equilibrium is related to scattering from individual bodies. We extend this approach to heat transfer and Casimir forces in nonequilibrium cases where each body, and the ...

Kruger, Matthias

217

Daytime heat transfer processes over mountainous terrain  

Science Conference Proceedings (OSTI)

The daytime heat transfer mechanisms over mountainous terrain are investigated by means of large-eddy simulations over idealized valleys. Two- and three-dimensional topographies, corresponding to infinite and finite valleys, are used in order to ...

Juerg Schmidli

218

NEWTON: Greenhouse Gas and Heat Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenhouse Gas and Heat Transfer Greenhouse Gas and Heat Transfer Name: Robert Status: teacher Grade: 9-12 Location: AK Country: USA Date: Summer 2013 Question: It would appear from a superficial reading that heat flows out of a greenhouse gas more slowly than heat flows into the same gas. This has to be an incorrect interpretation. It seems more likely that molecules with high heat capacities resist heat transfer-both into and out of such a molecular system. At a molecular level how does heat move out of a hot greenhouse gas? I have seen plots of Cv vs Tempt which indicates that heat moves from translational modes of motion-into rotational modes and finally into modes of vibration. The energy spacing of vibrations is generally grater that rotation which are greater than translation. Could it be that it is this quantization of the energy levels and the difference in energy between such quantum states that is the source of the resistance to heat flow or transfer?

219

THE POTENTIAL OF NANOPARTICLE ENHANCED IONIC LIQUIDS (NEILS) AS ADVANCED HEAT TRANSFER FLUIDS  

DOE Green Energy (OSTI)

Interest in capturing the energy of the sun is rising as demands for renewable energy sources increase. One area of developing research is the use of concentrating solar power (CSP), where the solar energy is concentrated by using mirrors to direct the sunlight towards a collector filled with a heat transfer fluid (HTF). The HTF transfers the collected energy into pressurized steam, which is used to generate energy. The greater the energy collected by the HTF, the more efficent the electrical energy production is, thus the overall efficiency is controlled by the thermal fluid. Commercial HTFs such as Therminol{reg_sign} (VP-1), which is a blend of biphenyl and diphenyl oxide, have a significant vapor pressure, especially at elevated temperatures. In order for these volatile compounds to be used in CSP systems, the system either has to be engineered to prevent the phase change (i.e., volatilization and condensation) through pressurization of the system, or operate across the phase change. Over thirty years ago, a class of low-melting organic compounds were developed with negligible vapor pressure. These compounds are referred to as ionic liquids (ILs), which are organic-based compounds with discrete charges that cause a significant decrease in their vapor pressure. As a class, ILs are molten salts with a melting point below 100 C and can have a liquidus range approaching 400 C, and in several cases freezing points being below 0 C. Due to the lack of an appreciable vapor pressure, volatilization of an IL is not possible at atmospheric pressure, which would lead to a simplification of the design if used as a thermal fluid and for energy storage materials. Though the lack of a vapor pressure does not make the use of ILs a better HTF, the lack of a vapor pressure is a compliment to their higher heat capacity, higher volummetric density, and thus higher volumetric heat capacity. These favorable physical properties give ILs a pontential advantage over the current commerically used thermal fluids. Also within the past decade nanofluids have gained attention for thermal conductivity enhancment of fluids, but little analysis has been completed on the heat capacity effects of the nanoparticle addition. The idea of ILs or nanofluids as a HTF is not new, as there are several references that have proposed the idea. However, the use of ionic liquid nanofluids containing nanomaterials other than carbon nanotubes has never before been studied. Here, for the first time, nano-particle enhanced ILs (NEILs) have been shown to increase the heat capacity of the IL with no adverse side effects to the ILs thermal stability and, only at high nanoparticle loading, are the IL physical properties affected. An increase of volumetric heat capacity translates into a better heat transfer fluid as more energy is stored per volumetric unit in the solar concentrating section, thus more efficency in increased steam pressure. Results show that the properties of the NEIL are highly dependant on the suspended nanomaterial and careful materials selection is required to fully optimize the nanofluid properties.

Fox, E.; Bridges, N.; Visser, A.

2011-09-14T23:59:59.000Z

220

Analysis of Heat Transfer in Metal Hydride Based Hydrogen Separation  

DOE Green Energy (OSTI)

This thesis presents a transient heat transfer analysis to model the heat transfer in the Pd/k packed column, and the impact of adding metallic foam.

Fleming, W.H. Jr.

1999-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Aerodynamic Losses and Heat Transfer in a Blade Cascade with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerodynamic Losses and Heat Transfer in a Aerodynamic Losses and Heat Transfer in a Blade Cascade with 3 Blade Cascade with 3 - - D D Endwall Endwall Contouring Contouring...

222

Experimental study on turbulent natural convection heat transfer in ...  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... ments are conducted to investigate flow and heat transfer ... turbulent region, the heat transfer deterioration occurs for a bubble flow rate Q = 33 ...

223

Heat transfer via dropwise condensation on hydrophobic microstructured surfaces.  

E-Print Network (OSTI)

??Dropwise condensation has the potential to greatly increase heat transfer rates. Heat transfer coefficients by dropwise condensation and film condensation on microstructured silicon chips were… (more)

Ruleman, Karlen E. (Karlen Elizabeth)

2009-01-01T23:59:59.000Z

224

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

DOE Green Energy (OSTI)

Advancing heat transfer technologies is a critical factor in power electronics equipment. NREL aims to characterize and develop advanced heat transfer technologies.

Abraham, T.

2007-11-08T23:59:59.000Z

225

Heat transfer in excimer laser melting of thin polysilicon layers  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat transfer in excimer laser melting of thin polysilicon layers Title Heat transfer in excimer laser melting of thin polysilicon layers Publication Type Journal Article Year of...

226

Assessment of feasibility, economics, and market potential for a molten salt system at 1000/sup 0/F reheat steam: feasibility, economics, and market potential  

DOE Green Energy (OSTI)

As a result of the Advanced Central Receiver (ACR) Phase I systems studies, Martin-Marietta Corporation (MMC) developed a conceptual design employing 1050/sup 0/F molten salt and a 950/sup 0/F/950/sup 0/F reheat turbine. This concept appears to have the potential for providing higher steam conditions leading to higher performance and wider market application. This report presents the results of a preliminary investigation of the system to determine the feasibility of providing 1000/sup 0/F/1000/sup 0/F steam and the impact of the required design modifications on the system performance, cost, and market potential for solar repowering. Two modified designs are investigated. In one modified design, the temperature of the molten salt is the same as in the MMC baseline design (1050/sup 0/F), but the steam generators have been modified to provide 1000/sup 0/F/1000/sup 0/F steam. In the other modified design, the enhanced steam conditions are obtained using molten salt at a temperature of 1100/sup 0/F.

DeRienzo, P.; Masaki, M.; Mathur, P.

1979-10-01T23:59:59.000Z

227

FILM COOLING CALCULATIONS WITH AN ITERATIVE CONJUGATE HEAT TRANSFER APPROACH USING EMPIRICAL HEAT TRANSFER COEFFICIENT CORRECTIONS.  

E-Print Network (OSTI)

??An iterative conjugate heat transfer technique was developed and automated to predict the temperatures on film cooled surfaces such as flat plates and turbine blades.… (more)

Dhiman, Sushant

2010-01-01T23:59:59.000Z

228

Modeling of Heat Transfer in Geothermal Heat Exchangers  

E-Print Network (OSTI)

Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from/into the ground. This paper summarizes the authors' studies on heat transfer in ground-coupled heat pump systems. Taking the fluid axial convective heat transfer and thermal “short-circuiting” among U-tube legs into account, a quasi-3-D model has been solved for heat transfer inside boreholes. The transient 2-D temperature response in a semi-infinite medium with a line-source of finite length has also been derived for heat conduction outside boreholes. In order to investigate the impact of groundwater advection on the performance of ground heat exchangers, an analytical solution is obtained for a line heat source in an infinite porous medium with groundwater advection. These explicit expressions have more solid theoretical basis, and can be easily incorporated into computer programs for thermal analysis and engineering design of ground heat exchangers.

Cui, P.; Man, Y.; Fang, Z.

2006-01-01T23:59:59.000Z

229

Nonequilibrium Electromagnetic Fluctuations: Heat Transfer and Interactions  

Science Conference Proceedings (OSTI)

The Casimir force between arbitrary objects in equilibrium is related to scattering from individual bodies. We extend this approach to heat transfer and Casimir forces in nonequilibrium cases where each body, and the environment, is at a different temperature. The formalism tracks the radiation from each body and its scatterings by the other objects. We discuss the radiation from a cylinder, emphasizing its polarized nature, and obtain the heat transfer between a sphere and a plate, demonstrating the validity of proximity transfer approximation at close separations and arbitrary temperatures.

Krueger, Matthias; Kardar, Mehran [Massachusetts Institute of Technology, Department of Physics, Cambridge, Massachusetts 02139 (United States); Emig, Thorsten [Laboratoire de Physique Theorique et Modeles Statistiques, CNRS UMR 8626, Ba circumflex timent 100, Universite Paris-Sud, 91405 Orsay cedex (France)

2011-05-27T23:59:59.000Z

230

Bulk Vitrification Performance Enhancement: Refractory Lining Protection Against Molten Salt Penetration  

SciTech Connect

Bulk vitrification (BV) is a process that heats a feed material that consists of glass-forming solids and dried low-activity waste (LAW) in a disposable refractory-lined metal box using electrical power supplied through carbon electrodes. The feed is heated to the point that the LAW decomposes and combines with the solids to generate a vitreous waste form. This study supports the BV design and operations by exploring various methods aimed at reducing the quantities of soluble Tc in the castable refractory block portion of the refractory lining, which limits the effectiveness of the final waste form.

Hrma, Pavel R.; Bagaasen, Larry M.; Schweiger, Michael J.; Evans, Michael B.; Smith, Benjamin T.; Arrigoni, Benjamin M.; Kim, Dong-Sang; Rodriguez, Carmen P.; Yokuda, Satoru T.; Matyas, Josef; Buchmiller, William C.; Gallegos, Autumn B.; Fluegel, Alexander

2007-08-06T23:59:59.000Z

231

Handbook of heat and mass transfer. Volume 1  

Science Conference Proceedings (OSTI)

This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 1 emphasizes heat transfer operations. The contents are: Fundamentsls of momentum and heat transfer. Scaling in laminar and turbulent heat and mass transfer. Heat flux in the Benar-Rayleigh problem. Hydrodynamics of free liquid jets and their influence on heat transfer. Natural convection heat transfer to power law fluids. Natural convection in evaporating droplets. Principles of heat and mass transfer with liquid evaporation. Bubble nucleation, growth, and departure in boiling heat transfer. Forced convection boiling in uniformly heated channels. Transient boiling heat transfer under forced convection. Prediction of heat transfer during forced convection subcooled boiling. Liquid metal heat transfer in turbulent pipe flows. Mixed convection in buoyant plumes. Nucleation and growth in the diffusion cloud chamber. Convective and radiative heat transfer of flowing gaseous-solid suspensions. Heat transfer in gas-solid fluidized beds. Gas convection and unsteady conduction in fluid bed heat transfer. Heat transfer between tubes and gas-solid fluid beds. Periodic heat transfer through inhomogeneous layers.

Cheremisinoff, N.P.

1986-01-01T23:59:59.000Z

232

Electrically heated liquid tank employing heat pipe heat transfer means  

SciTech Connect

The heating apparatus for applying heat to the interior of a chamber includes a modular, removable, electrical, heat-producing unit and a heat pipe mountable in a wall of the chamber with one end of the pipe arranged to receive heat from the electrical heat producing unit exterior of the housing and with another end of the pipe constructed and arranged to apply heat to the medium within the chamber. The heat pipe has high conductivity with a low temperature differential between the ends thereof and the heat producing unit includes an electric coil positioned about and removably secured to the one end of the heat pipe. The electric coil is embedded in a high thermal conducitivity, low electrical conductivity filler material which is surrounded by a low thermal conductivity insulating jacket and which is received around a metal core member which is removably secured to the one end of the heat pipe.

Shutt, J.R.

1978-12-26T23:59:59.000Z

233

Heat transfer 1990. Proceedings of the ninth international heat transfer conference  

Science Conference Proceedings (OSTI)

This book contains the proceedings of the Ninth International Heat Transfer Conference. Included in Volume 6 are the following chapters: Local void fraction measurements in finned tube bundles, Unsteady heat and mass transfer in low two-phase flows and The effect of physical properties on drop size in annular flow.

Hetsroni, G.

1990-01-01T23:59:59.000Z

234

Radiative Heat Transfer between Neighboring Particles  

E-Print Network (OSTI)

The near-field interaction between two neighboring particles is known to produce enhanced radiative heat transfer. We advance in the understanding of this phenomenon by including the full electromagnetic particle response, heat exchange with the environment, and important radiative corrections both in the distance dependence of the fields and in the particle absorption coefficients. We find that crossed terms of electric and magnetic interactions dominate the transfer rate between gold and SiC particles, whereas radiative corrections reduce it by several orders of magnitude even at small separations. Radiation away from the dimer can be strongly suppressed or enhanced at low and high temperatures, respectively. These effects must be taken into account for an accurate description of radiative heat transfer in nanostructured environments.

Alejandro Manjavacas; F. Javier Garcia de Abajo

2012-01-26T23:59:59.000Z

235

Handbook of numerical heat transfer  

Science Conference Proceedings (OSTI)

A comprehensive presentation is given of virtually all numerical methods that are suitable for the analysis of the various heat transverse and fluid flow problems that occur in research, practice, and university instruction. After reviewing basic methodologies, the following topics are covered: finite difference and finite element methods for parabolic, elliptic, and hyperbolic systems; a comparative appraisal of finite difference versus finite element methods; integral and integrodifferential systems; perturbation methods; Monte Carlo methods; finite analytic methods; moving boundary problems; inverse problems; graphical display methods; grid generation methods; and programing methods for supercomputers.

Minkowycz, W.J.; Sparrow, E.M.; Schneider, G.E.; Pletcher, R.H.

1988-01-01T23:59:59.000Z

236

Freeze-thaw tests of trough receivers employing a molten salt working fluid.  

SciTech Connect

Several studies predict an economic benefit of using nitrate-based salts instead of the current synthetic oil within a solar parabolic trough field. However, the expected economic benefit can only be realized if the reliability and optical performance of the salt trough system is comparable to today's oil trough. Of primary concern is whether a salt-freeze accident and subsequent thaw will lead to damage of the heat collection elements (HCEs). This topic was investigated by experiments and analytical analysis. Results to date suggest that damage will not occur if the HCEs are not completely filled with salt. However, if the HCE is completely filled at the time of the freeze, the subsequent thaw can lead to plastic deformation and significant bending of the absorber tube.

Moss, Timothy A.; Iverson, Brian D.; Siegel, Nathan Phillip; Kolb, Gregory J.; Ho, Clifford Kuofei

2010-05-01T23:59:59.000Z

237

Inverse Problems in Heat Transfer  

E-Print Network (OSTI)

This chapter presents a stochastic modeling and statistical inference approach to the solution of inverse problems in thermal transport systems. Of particular interest is the inverse heat conduction problem (IHCP) of estimating an unknown boundary heat flux in a conducting solid given temperature data within the domain. Even though deterministic sequential and whole time domain estimation methods have been applied with success over the years for the solution of such problems, we herein introduce stochastic approaches to representing and solving the IHCP. As most engineering systems and processes operate in an uncertain environment, it becomes increasingly important to address their analysis and inverse design in a stochastic manner using statistical data-driven prior and concurrent information on the system response. Recent advances in spectral stochastic modeling, computational Bayesian and spatial statistics enable complete and e#cient solution procedures to such problems. Two distinct approaches to the IHCP are presented in this chapter one based on spectral stochastic modeling and the other on Bayesian inference. Although these techniques are discussed in the context of the IHCP, the methodologies presented are general and applicable to design and estimation problems in other more complex problems in thermal transport systems including problems in the presence of convection, radiation and conduction. 1

Nicholas Zabaras

2004-01-01T23:59:59.000Z

238

Splice connector with internal heat transfer jacket  

DOE Patents (OSTI)

A heat transfer jacket is placed over the terminal portions of the conductors of a pair of high voltage cables which are connected in a splice connection wherein a housing surrounds the connected conductor portions, the heat transfer jacket extending longitudinally between the confronting ends of a pair of adaptor sleeves placed upon the insulation of the cables to engage and locate the adaptor sleeves relative to one another, and laterally between the conductors and the housing to provide a path of relatively high thermal conductivity between the connected conductor portions and the housing.

Silva, Frank A. (Basking Ridge, NJ); Mayer, Robert W. (Hackettstown, NJ)

1977-01-01T23:59:59.000Z

239

Nanoscale Heat Transfer: from Computation to Experiment  

E-Print Network (OSTI)

Heat transfer can differ distinctly at the nanoscale from that at the macroscale. Recent advancement in computational and experimental techniques has enabled a large number of interesting observations and understanding of heat transfer processes at the nanoscale. In this review, we will first discuss recent advances in computational and experimental methods used in nanoscale thermal transport studies, followed by reviews of novel thermal transport phenomena at the nanoscale observed in both computational and experimental studies, and discussion on current understanding of these novel phenomena. Our perspectives on challenges and opportunities on computational and experimental methods are also presented.

Luo, Tengfei

2013-01-01T23:59:59.000Z

240

Optimization of Phase Change Heat Transfer in Biporous Media  

E-Print Network (OSTI)

transfer analysis of a loop heat pipe with biporous wicks”.Planes”. Frontiers in Heat Pipes Journal 1, 013001 (2010).transfer model of a loop heat pipe with a bidisperse wick

Reilly, Sean

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Heat and mass transfer in porous media  

DOE Green Energy (OSTI)

Field test data on the OOSI MR3 experiments are used as a basis for exhibiting the computational capabilities of the WAFE computer code, which is a generalized tool for the analysis of heat and mass transfer in multi-dimensional domains of porous geothermal materials.

Cook, T.L.; Harlow, F.H.; Travis, B.J.; Bartel, T.J.; Tyner, C.E.

1981-01-01T23:59:59.000Z

242

Convective heat transfer in rotating, circular channels  

E-Print Network (OSTI)

Nusselt number values for flow in a rotating reference frame are obtained through computational fluid dynamic (CFD) analysis for Rossby numbers Ro ~1-4 and Reynolds numbers Re ~1,000-2,000. The heat-transfer model is first ...

Hogan, Brenna Elizabeth

2012-01-01T23:59:59.000Z

243

Cooperative heat transfer and ground coupled storage system  

DOE Patents (OSTI)

A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.

Metz, Philip D. (Rocky Point, NY)

1982-01-01T23:59:59.000Z

244

heat transfer | OpenEI Community  

Open Energy Info (EERE)

85 85 Varnish cache server Home Groups Community Central Green Button Applications Developer Utility Rate FRED: FRee Energy Database More Public Groups Private Groups Features Groups Blog posts Content Stream Documents Discussions Polls Q & A Events Notices My stuff Energy blogs 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142229585 Varnish cache server heat transfer Home Dc's picture Submitted by Dc(15) Member 15 November, 2013 - 13:26 Living Walls ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer heating living walls metabolic adjustment net zero pre-electricity Renewable Energy Solar university of colorado utility grid Wind

245

Advanced Heat Transfer and Thermal Storage Fluids  

DOE Green Energy (OSTI)

The design of the next generation solar parabolic trough systems for power production will require the development of new thermal energy storage options with improved economics or operational characteristics. Current heat-transfer fluids such as VP-1?, which consists of a eutectic mixture of biphenyl and diphenyl oxide, allow a maximum operating temperature of ca. 300 C, a limit above which the vapor pressure would become too high and would require pressure-rated tanks. The use of VP-1? also suffers from a freezing point around 13 C that requires heating during cold periods. One of the goals for future trough systems is the use of heat-transfer fluids that can act as thermal storage media and that allow operating temperatures around 425 C combined with lower limits around 0 C. This paper presents an outline of our latest approach toward the development of such thermal storage fluids.

Moens, L.; Blake, D.

2005-01-01T23:59:59.000Z

246

Heat Transfer and Energy Diffusion Analysis of Cannula Ground Heat Exchanger  

Science Conference Proceedings (OSTI)

A heat transfer model about fluid flow and heat conduct in cannula ground heat exchanger were given in this article. The heat transfer characteristics were analyzed by means of numerical method of finite element. Affect of difference size of buried tubes ... Keywords: heat transfer, energy diffusion, ground heat exchanger, numerical method, couple mode

Jiang Yan; Gao Qing; Li Ming

2010-10-01T23:59:59.000Z

247

Identification and evaluation of alternatives for the disposition of fluoride fuel and flush salts from the molten salt reactor experiment at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

This document presents an initial identification and evaluation of the alternatives for disposition of the fluoride fuel and flush salts stored in the drain tanks at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory (ORNL). It will serve as a resource for the U.S. Department of Energy contractor preparing the feasibility study for this activity under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). This document will also facilitate further discussion on the range of credible alternatives, and the relative merits of alternatives, throughout the time that a final alternative is selected under the CERCLA process.

NONE

1996-08-15T23:59:59.000Z

248

Heat Transfer between Graphene and Amorphous SiO2  

E-Print Network (OSTI)

We study the heat transfer between graphene and amorphous SiO2. We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer result from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.

B. N. J. Persson; H. Ueba

2010-07-22T23:59:59.000Z

249

Heat Transfer Analysis of Post-Weld Heat Treatment of Grade 91 Steel  

Science Conference Proceedings (OSTI)

The appropriate heat transfer coefficients are determined through the inverse heat conduction method utilizing ceramic heat blankets as well as a furnace as the ...

250

Reversible limit of processes of heat transfer  

E-Print Network (OSTI)

We study a process of heat transfer between a body of heat capacity C(T) and a sequence of N heat reservoirs, with temperatures equally spaced between an initial temperature T_0 and a final temperature T_N. The body and the heat reservoirs are isolated from the rest of the universe, and the body is brought in thermal contact successively with reservoirs of increasing temperature. We determine the change of entropy of the composite thermodynamic system in the total process in which the temperature of the body changes from T_0 to T_N. We find that for large values of N the total change of entropy of the composite process is proportional to (T_N-T_0)/N, but eventually a non-monotonic behavior is found at small values of N.

Stilck, Jürgen F

2013-01-01T23:59:59.000Z

251

SPECIAL HEAT TRANSFER PHENOMENA FOR SUPERCRITICAL FLUIDS  

SciTech Connect

Present-day knowledge concerning the molecular structure of supercritical fluids is briefly reviewed. It is shown that liquid-like and gas- like phases may coexist at supercritical pressures, although they may not be in equllibrium with each other. it is postulated that on the basis of the coexistence of these two phases a "boiling-like" phenomenon may provide the mechanism of heat transfer to supercritical fluids at high heat fluxes and certain other conditions. An unusual mode of heat transfer was actually observed at supercritical pressures during tests which produced the high heat fluxes and other conditions under which such "boiling" would be expected. The tests and the various conditions are briefly described. An emission of high-frequeney, high- intensity sounds usually accompanied these tests. It is shown that similar screaming sounds were heard during boiling at subcritical pressures, giving further support to the hypothesis that "boiling" may occur at supercritical pressures. A seeond possible explanation for the unusual mode of heat transfer is based on boundarylayer stability considerations. At high heat fluxes large density differences exist between the bulk of the fluid and the fluid in the boundary layer near the wall. A breakdown of the boundary layer may be caused by the build-up of ripples between its low-density fluid and the high-density bulk fluid, in a manner quite similar to the breaking of ocean waves at high wind velocities. It is pointed out that the density variation of supercritical fluide may be used to advantage by certrifuging boundary layers. (auth)

Goldmann, K.

1956-01-01T23:59:59.000Z

252

Modelling Heat Transfer in Nanofluids Based on Coupled MD ...  

Science Conference Proceedings (OSTI)

Simulations have shown that the additional heat transfer caused by the collision of the nanoparticles with the heat source contributes significantly to the ...

253

Optimization of Phase Change Heat Transfer in Biporous Media.  

E-Print Network (OSTI)

??As the heat transfer demands placed on small electronics devices increase, the demand for efficient evaporators for heat pipes and spreaders will increase in kind.… (more)

Reilly, Sean

2013-01-01T23:59:59.000Z

254

FEHM (Finite Element Heat and Mass Transfer Code)  

NLE Websites -- All DOE Office Websites (Extended Search)

FEHM (Finite Element Heat and Mass Transfer Code) FEHM (Finite Element Heat and Mass Transfer Code) FEHM is used to simulate groundwater and contaminant flow and transport in deep...

255

Nanofluid heat transfer enhancement for nuclear reactor applications  

E-Print Network (OSTI)

Colloidal dispersions of nanoparticles are known as `nanofluids'. Such engineered fluids offer the potential for enhancing heat transfer, particularly boiling heat transfer, while avoiding the drawbacks (i.e., erosion, ...

Buongiorno, Jacopo

256

Heat Transfer in Projecting and Sloped Fenestration Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Transfer in Projecting and Sloped Fenestration Products Speaker(s): Dragan Charlie Curcija Date: May 26, 2010 - 12:00pm Location: 90-3122 The heat transfer performance of...

257

Heat transfer during film condensation of potassium vapor  

E-Print Network (OSTI)

The object of this work is to investigate theoretically and experimentally the following two phases of heat transfer during condensation of potassium vapore, a. Heat transfer during film condensation of pure saturated ...

Kroger, Detlev Gustav

1966-01-01T23:59:59.000Z

258

An experimental study of the flow and heat transfer between enhanced heat transfer plates for PHEs  

Science Conference Proceedings (OSTI)

The flow and heat transfer between inclined discrete rib plates for plate heat exchangers have been experimentally studied. Dye injection method is used to visualize the flow structures. The visualization results show that front vortex, rear vortex and main vortex are formed between the plates. The rib parameter influence is also studied using visualization method. The pressure drop and heat transfer between the inclined discrete rib plates as well as that between inclined continuous rib plates and smooth plates are also measured. The measured results show that the inclined discrete rib plate can enhanced heat transfer 20-25% at the same pumping power compared with the commonly used inclined continuous rib plates. (author)

Li, Xiao-wei [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Meng, Ji-an; Li, Zhi-xin [School of Aerospace, Tsinghua University, Beijing 100084 (China)

2010-11-15T23:59:59.000Z

259

NISTIR 6299 A Heat Transfer Model for Fire Fighter's ...  

Science Conference Proceedings (OSTI)

Page 1. NISTIR 6299 A Heat Transfer Model for Fire Fighter's Protective Clothing William E. Mell J. Randall Lawson United ...

1999-05-06T23:59:59.000Z

260

Heat Transfer Fluids Containing Nanoparticles (08-066)  

The issue of heat transfer offers fertile ground for scientific exploration across many disciplines. Argonne researchers have discovered the potential ...

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Handbook of heat transfer fundamentals (2nd edition)  

SciTech Connect

Recent advances in heat transfer are discussed, providing data and methodology to solve a wide range of heat transfer problems. The topics considered include: basic concepts of heat transfer, mathematical methods, thermophysical properties, conduction, numerical methods in heat transfer, natural convection, and internal duct flow and external flows in forced convection. Also addressed are: rarefied gases, electric and magnetic fields, condensation, boiling, two-phase flow, and radiation.

Rohsenow, W.M.; Hartnett, J.P.; Ganic, E.N.

1985-01-01T23:59:59.000Z

262

Handbook of heat and mass transfer. Volumes 1 and 2  

Science Conference Proceedings (OSTI)

This two-volume series presents advanced topics in industrial heat and mass transfer operations for reactor design technology.

Cheremisinoff, N.P.

1985-01-01T23:59:59.000Z

263

Heat Transfer Characteristics of Magnetite under Microwave Irradiation  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Materials Processing Fundamentals. Presentation Title, Heat Transfer ...

264

Heat Transfer Operators Associated with Quantum Operations  

E-Print Network (OSTI)

Any quantum operation applied on a physical system is performed as a unitary transformation on a larger extended system. If the extension used is a heat bath in thermal equilibrium, the concomitant change in the state of the bath necessarily implies a heat exchange with it. The dependence of the average heat transferred to the bath on the initial state of the system can then be found from the expectation value of a hermitian operator, which is named as the heat transfer operator (HTO). The purpose of this article is the investigation of the relation between the HTOs and the associated quantum operations. Since, any given quantum operation on a system can be realized by different baths and unitaries, many different HTOs are possible for each quantum operation. On the other hand, there are also strong restrictions on the HTOs which arise from the unitarity of the transformations. The most important of these is the Landauer erasure principle. This article is concerned with the question of finding a complete set of restrictions on the HTOs that are associated with a given quantum operation. An answer to this question has been found only for a subset of quantum operations. For erasure operations, these characterizations are equivalent to the generalized Landauer erasure principle. For the case of generic quantum operations however, it appears that the HTOs obey further restrictions which cannot be obtained from the entropic restrictions of the generalized Landauer erasure principle.

Ç. Aksak; S. Turgut

2010-02-03T23:59:59.000Z

265

Heat transfer of finned tube bundles in crossflow  

SciTech Connect

This volume correlates findings on heat transfer and hydraulic drag of bundles of finned tubes in crossflow at Reynolds numbers from 10/sup 4/ to 10/sup 6/. These studies illustrate fin, local, and mean heat transfer coefficients; effects of geometric parameters of the fins; effect of tube location within the bundle on heat transfer and hydraulic drag; and resistance of finned tube bundles.

Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.

1988-01-01T23:59:59.000Z

266

Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures  

E-Print Network (OSTI)

Comparison of various heat transfer coefficient models inpool boiling In summary, high heat transfer coefficientin boiling heat transfer can be generally explained by the

Lu, Ming-Chang

2010-01-01T23:59:59.000Z

267

DEVELOPING FLOW AND HEAT TRANSFER IN STRONGLY CURVED DUCTS OF RECTANGULAR CROSS-SECTION  

E-Print Network (OSTI)

Forced Convection Heat Transfer in Curved RectangularInfluence of Curvature on Heat Transfer to IncompressibleT. , "Forced Convective Heat Transfer in a Curved Channel

Yee, G.

2010-01-01T23:59:59.000Z

268

Heat Transfer Limitations in Hydrogen Production Via Steam Reformation: The Effect of Reactor Geometry  

E-Print Network (OSTI)

Ohsawa, Katsuyuki, “Heat Transfer Enhancement in Methanolsin the Catalyst Bed”, Heat Transfer-Asian Research, Vol.CA FUELCELL2006-97109 HEAT TRANSFER LIMITATIONS IN HYDROGEN

Vernon, David R.; Davieau, David D.; Dudgeon, Bryce A.; Erickson, Paul A.

2006-01-01T23:59:59.000Z

269

Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures  

E-Print Network (OSTI)

and condensation processes in heat transfer equipment, 2ndand condensation processes in heat transfer equipment, in,the convection process, the heat transfer coefficient of

Lu, Ming-Chang

2010-01-01T23:59:59.000Z

270

DOE Funds 15 New Projects to Develop Solar Power Storage and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and heat transfer properties of selected salt mixtures, as well as, design a compatible heat exchanger. (Up to 1.8 million) Texas Engineering Experiment Station - Molten Salt...

271

Heat Transfer Fluids for Solar Water Heating Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems Heat Transfer Fluids for Solar Water Heating Systems May 16, 2013 - 3:02pm Addthis Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks in solar water heating systems. When selecting a heat-transfer fluid, you and your solar heating contractor should consider the following criteria: Coefficient of expansion - the fractional change in length (or sometimes in volume, when specified) of a material for a unit change in temperature Viscosity - resistance of a liquid to sheer forces (and hence to flow) Thermal capacity - the ability of matter to store heat Freezing point - the temperature below which a liquid turns into a

272

Heat Transfer Correlation for Finned Casks  

SciTech Connect

Design of finned casks for dissipation of heat from radioactive decay usually requires reliance on generalized correlations in the literature which do not necessarily apply to the specific cask design. A correlation was developed, based on temperature profile measurements, for the design of upright cylindrical casks with vertical fins for convective and radiant heat transfer to ambient air. Temperature data at various heat loads were obtained for two different cask sizes of the same basic design. Each cask is mounted on a steel pallet and contained within a steel mesh cage. The smaller cask, which has 23 fins, has been approved (DOT-SP-6321) for shipment of up to 1400 W (th), and approval is being obtained (AEC AL USA/9503 BLF) for shipment of up to 3500 W heat load in the larger, 60-fin cask. The applicable theoretical equations were fit to the temperature data for both casks by simply adjusting the value used for the number of fins. The resulting correlation provides a reliable method for interpolation and extrapolation and for design of similar finned casks.

Griffin, J. F.

1974-04-01T23:59:59.000Z

273

Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers  

E-Print Network (OSTI)

Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers Paul A Abstract The louvered fin heat exchanger, a type of compact heat exchanger, has been used heavily transfer along the tube wall of the compact heat exchanger through the use of winglets placed

Thole, Karen A.

274

CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER  

E-Print Network (OSTI)

1 CORRELATING EVAPORATION HEAT TRANSFER COEFFICIENT OF REFRIGERANT R-134a IN A PLATE HEAT EXCHANGER for evaporation heat transfer coefficient of refrigerant R-134a flowing in a plate heat exchanger. Correlation heat exchanger are found to result in large discrepancies with their own experimental data

Kandlikar, Satish

275

Characteristics of multimode heat transfer in a differentially-heated horizontal rectangular duct.  

E-Print Network (OSTI)

??This study presents the numerical analysis of steady laminar flow heat transfer in a horizontal rectangular duct with differential heating on the vertical walls. Three… (more)

Wangdhamkoom, Panitan

2007-01-01T23:59:59.000Z

276

Factors affecting oscillating motion and heat transfer in an oscillating heat pipe .  

E-Print Network (OSTI)

??As demand has grown for thermal management solutions, interest in passive heat transfer devices such as heat pipes has grown as well. In particular, oscillating… (more)

Smoot, Christopher

2013-01-01T23:59:59.000Z

277

Heat transfer assembly for a fluorescent lamp and fixture  

DOE Patents (OSTI)

In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

1992-12-29T23:59:59.000Z

278

Heat transfer assembly for a fluorescent lamp and fixture  

DOE Patents (OSTI)

In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.

Siminovitch, Michael J. (Richmond, CA); Rubenstein, Francis M. (Berkeley, CA); Whitman, Richard E. (Richmond, CA)

1992-01-01T23:59:59.000Z

279

Heat transfer to impacting drops and post critical heat flux dispersed flow  

E-Print Network (OSTI)

Heat transfer to drops impacting on a hot surface is examined in context of dispersions of flowing, boiling fluids. The liquid contribution to heat transfer from a hot tube to a two-phase dispersion is formulated in terms ...

Kendall, Gail E.

1978-01-01T23:59:59.000Z

280

HEAT TRANSFER AND TRITIUM PRODUCING SYSTEM  

DOE Patents (OSTI)

This invention related to a circulating lithium-containing blanket system in a neution source hav'ing a magnetic field associated therewith. The blanket serves simultaneously and efficiently as a heat transfer mediunm and as a source of tritium. The blanket is composed of a lithium-6-enriched fused salt selected from the group consisting of lithium nitrite, lithium nitrate, a mixture of said salts, a mixture of each of said salts with lithium oxide, and a mixture of said salts with each other and with lithium oxide. The moderator, which is contained within the blanket in a separate conduit, can be water. A stellarator is one of the neutron sources which can be used in this invention. (AEC)

Johnson, E.F.

1962-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Heat transfer in bundles of finned tubes in crossflow  

SciTech Connect

This book provides correlations of heat transfer and hydraulic data for bundles of finned tubes in crossflow at high Reynolds numbers. Results of studies of the effectiveness of the fin, local, and mean heat transfer coefficients are presented. The effect of geometric parameters of the fins and of the location of tubes in the bundle on heat transfer and hydraulic drag are described. The resistance of the finned tube bundles under study and other factors are examined.

Stasiulevicius, J.; Skrinska, A.; Zukauskas, A.; Hewitt, G.F.

1986-01-01T23:59:59.000Z

282

Heat transfer in freeboard region of fluidized beds  

SciTech Connect

This research involved the study of heat transfer and fluid mechanic characteristics around a horizontal tube in the freeboard region of fluidized beds. Heat transfer coefficients were experimetnally measured for different bed temperatures, particle sizes, gas flow rates, and tube elevations in the freeboard region of air fluidized beds at atmospheric pressure. Local heat transfer coefficients were found to vary significantly with angular position around the tube. Average heat transfer coefficients were found to decrease with increasing freeboard tube elevation and approach the values for gas convection plus radiation for any given gas velocity. For a fixed tube elevation, heat transfer coefficients generally increased with increasing gas velocity and with high particle entrainment they can approach the magnitudes found for immersed tubes. Heat transfer coefficients were also found to increase with increasing bed temperature. It was concluded that this increase is partly due to increase of radiative heat transfer and partly due to change of thermal properties of the fluidizing gas and particles. To investigate the fluid mechanic behavior of gas and particles around a freeboard tube, transient particle tube contacts were measured with a special capacitance probe in room temperature experiments. The results indicated that the tube surface experiences alternating dense and lean phase contacts. Quantitative information for local characteristics was obtained from the capacitance signals and used to develop a phenomenological model for prediction of the heat transfer coefficients around freeboard tubes. The packet renewal theory was modified to account for the dense phase heat transfer and a new model was suggested for the lean phase heat transfer. Finally, an empirical freeboard heat transfer correlation was developed from functional analysis of the freeboard heat transfer data using nondimensional groups representing gas velocity and tube elevation.

Biyikli, S.; Tuzla, K.; Chen, J.C.

1983-10-01T23:59:59.000Z

283

ETTM - Heat Transfer Calculations Version 1.0  

Science Conference Proceedings (OSTI)

ETTM Heat Transfer Calculations is a computer based training module that allows users to access training when desired and review it at their own pace. It provides graphics and limited interactive features to enhance learning. This module reviews the basic engineering principles used to calculate heat transfer and how to apply these principles to typical nuclear plant applications. The calculation of heat transfer in plant systems is an important element of many engineering calculations. Students should r...

2010-09-27T23:59:59.000Z

284

A versatile procedure for calculating heat transfer through windows  

SciTech Connect

Advances in window technologies and the desire to standardize the reporting of standard window heat transfer indices have necessitated the development of a comprehensive analytical procedure for calculating heat transfer through windows. This paper shows how complete window heat transfer can be considered as the area-weighted sum of the three window component areas: the center-of-glass area, the edge-of-glass area, and the frame area. Algorithms for calculating heat transfer through each of these areas and for combining these to calculate total window indices are presented. 36 refs., 5 figs., 6 tabs.

Arasteh, D.K.; Reilly, M.S.; Rubin, M.D.

1989-05-01T23:59:59.000Z

285

Impact of Heat Transfer Media on Materials for Concentrated Solar ...  

Science Conference Proceedings (OSTI)

Presentation Title, Impact of Heat Transfer Media on Materials for Concentrated Solar Power. Author(s), Dane Wilson. On-Site Speaker (Planned), Dane Wilson.

286

Estimation of Heat Transfer Coefficient in Squeeze Casting of ...  

Science Conference Proceedings (OSTI)

The casting-die interfacial heat transfer coefficient(IHTC) in 5-step casting was .... from First-Principles: Solid-Solution Strengthening, Softening, and Cross-Slip.

287

Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet...  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermophysical Properties In our Thermal Storage Materials Laboratory, we use a variety of instruments to measure the thermophysical properties of heat transfer fluids and storage...

288

Characterization and Development of Advanced Heat Transfer Technologies (Presentation)  

DOE Green Energy (OSTI)

This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

Kelly, K.

2009-05-01T23:59:59.000Z

289

Determination of Heat Transfer Coefficient Distribution at Part ...  

Science Conference Proceedings (OSTI)

... of oil flow on the heat transfer coefficient (HTC) distribution at the gear surface. ... Multiphase Flow in a Steelmaking Converter Using an Unconventional Lance.

290

Handbook of thermodynamics, heat transfer and fluid flow  

E-Print Network (OSTI)

9 Nov 2010 ... Handbook of thermodynamics, heat transfer and fluid flow | JUNE 1992 | 3 Volume | U.S. Department of Energy FSC-6910 Washington, D.C. ...

291

Applications of COMSOL Multiphysics Software to Heat Transfer Processes.  

E-Print Network (OSTI)

??This thesis used the study of Heat Transfer and COMSOL Multiphysics software as a reference which was made for the purpose of future education in… (more)

Xiong, Wei

2010-01-01T23:59:59.000Z

292

Microcellular Biomorphous Ceramics for Two Phase Heat Transfer ...  

Science Conference Proceedings (OSTI)

Heat transfer behavior of microcellular biomorphous Al2O3 was evaluated by a fluid-dynamic approach and tested in a planar capillary evaporator.

293

NREL Improves Window Heat Transfer Calculations (Fact Sheet)...  

NLE Websites -- All DOE Office Websites (Extended Search)

and interior radiation. The most significant errors were found in detailed window heat transfer algorithms due to implementation problems. The results show a decrease in...

294

Heat Transfer through Materials: Application to Silica Aerogels...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Transfer through Materials: Application to Silica Aerogels and Building Envelopes Speaker(s): Brangre Lartigue Date: December 19, 2005 - 12:00pm Location: Bldg. 90 After...

295

Phase Change Materials for Enhancing Heat Transfer in Thermal ...  

Science Conference Proceedings (OSTI)

One of the main issues with using phase change materials is that solidification often reduces total heat transfer, reducing the efficiency of the storage system.

296

Rotating Heat Transfer in High Aspect Ratio Rectangular Cooling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reynolds Number (Nu Nu o ) (f f o ) 24% Increase in Cooling Performance Rotating Heat Transfer in High Aspect Ratio Rectangular Cooling Passages with Shaped Turbulators...

297

CFD Modelling of Heat Transfer in Supersonic Nozzles for ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... CFD Modelling of Heat Transfer in Supersonic Nozzles for Magnesium Production by Peter Witt, M.N.H. Khan, and Geoffrey Brooks ...

298

Enhanced boiling heat transfer by submerged, vibration induced jets .  

E-Print Network (OSTI)

??In this analysis, the efficacy of cavitation jets for heat transfer enhancement was demonstrated. The cavitation jet was formed from a cluster of cavitation bubbles… (more)

Tillery, Steven W.

2005-01-01T23:59:59.000Z

299

Evaluation of Transient Heat Transfer Coefficient Evolution in ...  

Science Conference Proceedings (OSTI)

As known, physical and geometrical aspects play a fundamental role on the heat transfer conditions during the solidification process. This high dependence of ...

300

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

CLOSED-FORM INTEGRAL SOLUTIONS FOR LINEAR HEAT CONDUCTION.For linear heat conduction in a homogeneous, isotropiclaw of similitude for linear heat conduction was utilized to

Chan, T.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

2.51 Intermediate Heat and Mass Transfer, Fall 2001  

E-Print Network (OSTI)

Analysis, modeling, and design of heat and mass transfer processes with application to common technologies. Unsteady heat conduction in one or more dimensions, steady conduction in multidimensional configurations, numerical ...

Lienhard, John H., 1961-

302

Heat transfer and pressure drop in tape generated swirl flow  

E-Print Network (OSTI)

The heat transfer and pressure drop characteristics of water in tape generated swirl flow were investigated. The test sections were electrically heated small diameter nickel tubes with tight fitting full length Inconel ...

Lopina, Robert F.

1967-01-01T23:59:59.000Z

303

Comparison of heat transfer in solar collectors with heat pipe versus flow through absorbers  

DOE Green Energy (OSTI)

Analysis of heat transfer in solar collectors with heat pipe absorbers is compared to that for collectors with flow through absorbers. Both pumped and thermosiphon systems that produce hot water or other heated fluids are discussed. In these applications the heat pipe absorber suffers a heat transfer penalty compared with the flow through absorber, but in many cases the penalty can be minimized by proper design at the heat pipe condenser and system manifold. When the solar collector is used to drive an absorption chiller, the heat pipe absorber has better heat transfer characteristics than the flow through absorber.

Hull, J.R.

1985-01-01T23:59:59.000Z

304

Heat transfer and condensation of water vapour from humid air in compact heat exchangers.  

E-Print Network (OSTI)

??In this thesis, an experimental and simulation study of heat transfer in water-to-air compact-plate heat exchanger is presented. A compact-plate heat exchanger made of polypropylene,… (more)

Saraireh, Mohammad

2012-01-01T23:59:59.000Z

305

HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN  

E-Print Network (OSTI)

law of similitude for linear heat conduction was utilized tothe analogy between heat conduction and fluid flow in por­the effects of heat conduction through the vermiculite heat

Chan, T.

2010-01-01T23:59:59.000Z

306

Magnesium Technology 2012  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... K-27: Measuring Heat Transfer during Twin Roll Casting of Metals ... of Mg-Ni Alloy by Consumable Cathode Molten Salt Electrolysis.

307

Missouri | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2011 CX-007385: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9...

308

Get a Head Start on Learning  

Science Conference Proceedings (OSTI)

Jan 18, 2013... fluid dynamics, for materials processes from molten salt electrolysis, ... element analysis (FEA), including basics of fluid flow and heat transfer.

309

CX-005198: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-005198: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9,...

310

Categorical Exclusion (CX) Determinations By Date | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy December 21, 2011 CX-007385: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s)...

311

A Continuous Solar Thermochemical Hydrogen Production Plant Design  

E-Print Network (OSTI)

Molten Salts ..point. Air, steam, or a molten salt is heated and is used toliquid separator. The molten salt stream is then used to

Luc, Wesley Wai

312

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network (OSTI)

large tanks of hot molten salt are stored in containments soreceiver and the liquid molten salt coolant being heated;system; for example, high molten salt temperatures increases

Ho, Tony

2012-01-01T23:59:59.000Z

313

Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump  

DOE Patents (OSTI)

Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

1996-12-03T23:59:59.000Z

314

Gas heat transfer in a heated vertical channel under deteriorated turbulent heat transfer regime  

E-Print Network (OSTI)

Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

Lee, Jeongik

2007-01-01T23:59:59.000Z

315

Gas Heat Transfer in a Heated Vertical Channel under Deteriorated Turbulent Heat Transfer Regime  

E-Print Network (OSTI)

Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

Lee, Jeongik

316

Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump  

DOE Patents (OSTI)

Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI); Marsala, Joseph (Glen Ellyn, IL)

1994-11-29T23:59:59.000Z

317

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network (OSTI)

860. Batchelor, G.K. 1954. Heat transfer by free convectionfree convection. In: Heat Transfer and Turbulent BuoyantHEAT2, A PC-program for heat transfer in two dimensions.

Gustavsen, Arild

2009-01-01T23:59:59.000Z

318

Heat and moisture transfer through clothing  

E-Print Network (OSTI)

capacitance of clothing. Heat capacity of the clothing hasSuffix a cl c e m n r s area (m²) specific heat capacity (J/kgK) heat capacity (J/K) clothing surface area factor view

Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

2009-01-01T23:59:59.000Z

319

Engineering Fundamentals - Heat Transfer & Fluid Flow, Version 6.0  

Science Conference Proceedings (OSTI)

The Heat Transfer and Fluid Flow module covers basic terms and concepts of heat transfer and fluid flow and discusses their applications in nuclear power plants. This course will help new engineers understand how their work might impact and/or be ...

2013-01-17T23:59:59.000Z

320

Enhanced radiative heat transfer between nanostructured gold plates  

E-Print Network (OSTI)

We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

R. Guérout; J. Lussange; F. S. S. Rosa; J. -P. Hugonin; D. A. R. Dalvit; J. -J. Greffet; A. Lambrecht; S. Reynaud

2012-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The heat transfer mechanism in aqueous foam flow in a channel  

Science Conference Proceedings (OSTI)

The Heat transfer mechanism in two-phase aqueous foam flow was investigated for developing energy-efficient heat exchangers. Such heat exchangers can provide low consumption of energy resources due to enhanced heat transfer rates. An enhanced heat transfer ... Keywords: aqueous foam flow, heat exchangers, heat transfer

Irena Gabrielaitien?; Jonas Gylys; Rolandas Jonynas; Tadas Ždankus

2011-12-01T23:59:59.000Z

322

Dual circuit embossed sheet heat transfer panel  

DOE Patents (OSTI)

A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet. 6 figs.

Morgan, G.D.

1984-02-21T23:59:59.000Z

323

Dual circuit embossed sheet heat transfer panel  

DOE Patents (OSTI)

A heat transfer panel provides redundant cooling for fusion reactors or the like environment requiring low-mass construction. Redundant cooling is provided by two independent cooling circuits, each circuit consisting of a series of channels joined to inlet and outlet headers. The panel comprises a welded joinder of two full-size and two much smaller partial-size sheets. The first full-size sheet is embossed to form first portions of channels for the first and second circuits, as well as a header for the first circuit. The second full-sized sheet is then laid over and welded to the first full-size sheet. The first and second partial-size sheets are then overlaid on separate portions of the second full-sized sheet, and are welded thereto. The first and second partial-sized sheets are embossed to form inlet and outlet headers, which communicate with channels of the second circuit through apertures formed in the second full-sized sheet.

Morgan, Grover D. (St. Louis County, MO)

1984-01-01T23:59:59.000Z

324

Heat transfer between elastic solids with randomly rough surfaces  

E-Print Network (OSTI)

We study the heat transfer between elastic solids with randomly rough surfaces. We include both the heat transfer from the area of real contact, and the heat transfer between the surfaces in the noncontact regions. We apply a recently developed contact mechanics theory, which accounts for the hierarchical nature of the contact between solids with roughness on many different length scales. For elastic contact, at the highest (atomic) resolution the area of real contact typically consists of atomic (nanometer) sized regions, and we discuss the implications of this for the heat transfer. For solids with very smooth surfaces, as is typical in many modern engineering applications, the interfacial separation in the non-contact regions will be very small, and for this case we show the importance of the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies.

B. N. J. Persson; B. Lorenz; A. I. Volokitin

2009-08-27T23:59:59.000Z

325

Burnup Analysis of Thorium-Uranium Based Molten Salt Blanket in a Fusion-Fission Hybrid Reactor  

Science Conference Proceedings (OSTI)

Fusion Technologies: Heating and Fueling / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012

Jing Zhao; Yongwei Yang; Sicong Xiao; Zhiwei Zhou

326

Heat Transfer Fluids for Solar Water Heating Systems | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

exchanger. | Photo from iStockphoto.com Heat Exchangers for Solar Water Heating Systems Rooftop solar water heaters need regular maintenance to operate at peak efficiency. |...

327

Liquid Crystal Technique Application for Heat Transfer Investigation in a Fin-Tube Heat Exchanger Element  

Science Conference Proceedings (OSTI)

The use of thermochromic liquid crystal technique (LCT) and true-colour image processing system in heat transfer modelling is described. Experimental procedure, led on rig at Technical University of Gdansk, cover full-field flow patterns in heat exchanger ... Keywords: heat transfer, thermochromic liquid crystals, vortex generator, wind tunnel

M. Wierzbowski; J. Stasiek

2002-04-01T23:59:59.000Z

328

Error Analysis of Heat Transfer for Finned-Tube Heat-Exchanger Text-Board  

E-Print Network (OSTI)

In order to reduce the measurement error of heat transfer in water and air side for finned-tube heat-exchanger as little as possible, and design a heat-exchanger test-board measurement system economically, based on the principle of test-board system error analyses and design, the equation of measurement error of heat transfer in air side and water side about orifice meter for the finned-tube heat-exchanger was obtained. This paper studies the major factors that may influence the largest admitted measurement error of measurement instruments for heat transfer in water and air side, and analyzes the degree that water temperature and pressure measurement influence heat transfer in water side, and the degree that wet bulb temperature difference measurement influences heat transfer in air side. Finally, this paper indicates that the key problem of reducing heat transfer in water side is water temperature measurement of the in-out pipe of heat-exchanger, and wet bulb temperature difference is a key to decrease the heat transfer in air side for finned-tube heat-exchanger. This paper gives a theoretical instruction for designing the measurement system of a finned-tube heat-exchanger test-board

Chen, Y.; Zhang, J.

2006-01-01T23:59:59.000Z

329

Enhanced two phase flow in heat transfer systems  

DOE Patents (OSTI)

A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

2013-12-03T23:59:59.000Z

330

Handbook of heat and mass transfer. Volume 2  

Science Conference Proceedings (OSTI)

This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors.

Cheremisinoff, N.P.

1986-01-01T23:59:59.000Z

331

Infrared Thermography applied to measurement of Heat transfer coefficient of water in a pipe heated by Joule effect  

E-Print Network (OSTI)

. Internal sources of heat are due to convection from flow of the heat transfer fluid through the pipes. Heat (material, diameter, spacing, and burial depth), (4) system flow rates, (5) heat transfer fluid properties · heat transfer fluid = 42% propylene glycol @ a flow rate of 350 gpm · heat pump model = Water Furnace

332

Prototype Tests for the Recovery and Conversion of UF6 Chemisorbed in NaF Traps for the Molten Salt Reactor Remediation Project  

SciTech Connect

The remediation of the Molten Salt Reactor Experiment (MSRE) site includes the removal of about 37 kg of uranium. Of that inventory, about 23 kg have already been removed from the piping system and chemisorbed in 25 NaF traps. This material is being stored in Building 3019. The planned recovery of -11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a chemical form [uranium oxide], which is suitable for long-term storage. This document describes the process that will be used to recover and convert the uranium in the NaF traps into a stable oxide for long-term storage. Included are a description of the process, equipment, test results, and lessons learned. The process was developed for remote operation in a hot cell. Lessons learned from the prototype testing were incorporated into the process design.

Del Cul, G.D.; Icenhour, A.S.; Simmons, D.W.

2000-04-01T23:59:59.000Z

333

Prototype Tests for the Recovery and Conversion of UF6Chemisorbed in NaF Traps for the Molten Salt Reactor Remediation Project  

SciTech Connect

The remediation of the Molten Salt Reactor Experiment (MSRE) site includes the removal of about 37 kg of uranium. Of that inventory, about 23 kg have already been removed from the piping system and chemisorbed in 25 NaF traps. This material is being stored in Building 3019. The planned recovery of {approx}11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a chemical form [uranium oxide (U{sub 3}O{sub 8})], which is suitable for long-term storage. This document describes the process that will be used to recover and convert the uranium in the NaF traps into a stable oxide for long-term storage. Included are a description of the process, equipment, test results, and lessons learned. The process was developed for remote operation in a hot cell. Lessons learned from the prototype testing were incorporated into the process design.

Del Cul, G.D.

2000-06-07T23:59:59.000Z

334

Cryogenic apparatus for study of near-field heat transfer  

Science Conference Proceedings (OSTI)

For bodies spaced in vacuum at distances shorter than the wavelength of the thermal radiation, radiative heat transfer substantially increases due to the contribution of evanescent electromagnetic waves. Experimental data on heat transfer in near-field regime are scarce. We have designed a cryogenic apparatus for the study of heat transfer over microscopic distances between metallic and non-metallic surfaces. Using a mechanical positioning system, a planeparallel gap between the samples, concentric disks, each 35 mm in diameter, is set and varied from 10{sup 0} to 10{sup 3} {mu}m. The heat transferred from the hot (10 - 100 K) to the cold sample ({approx}5 K) sinks into a liquid helium bath through a thermal resistor, serving as a heat flux meter. Transferred heat power within {approx}2 nW/cm{sup 2} and {approx}30 {mu}W/cm{sup 2} is derived from the temperature drop along the thermal resistor. For tungsten samples, the distance of the near-field effect onset was inversely proportional to temperature and the heat power increase was observed up to three orders of magnitude greater than the power of far-field radiative heat transfer.

Kralik, T.; Hanzelka, P.; Musilova, V.; Srnka, A.; Zobac, M. [Institute of Scientific Instruments of the ASCR, v.v.i., Kralovopolska 147, Brno (Czech Republic)

2011-05-15T23:59:59.000Z

335

Trace formulas for nonequilibrium Casimir interactions, heat radiation, and heat transfer for arbitrary objects  

E-Print Network (OSTI)

We present a detailed derivation of heat radiation, heat transfer, and (Casimir) interactions for N arbitrary objects in the framework of fluctuational electrodynamics in thermal nonequilibrium. The results can be expressed ...

Bimonte, Giuseppe

336

The deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes  

E-Print Network (OSTI)

At slightly supercritical pressure and in the neighborhood of the pseudo-critical temperature (defined as the temperature corresponding to the peak in specific heat at the operating pressure), the heat transfer coefficient ...

Shiralkar, B. S.

1968-01-01T23:59:59.000Z

337

Heat Transfer and Fluid Mechanics - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Computation Engineering Computation and Design > Heat Transfer and Fluid Mechanics Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Engineering Simulation Capabilities at Argonne Nuclear Engineering Division The Engineering Simulation section specializes in the development and

338

Heat Transfer of a Multiple Helical Coil Heat Exchanger Using a Microencapsulated Phase Change Material Slurry  

E-Print Network (OSTI)

The present study has focused on the use of coil heat exchangers (CHEs) with microencapsulated phase change material (MPCM) slurries to understand if CHEs can yield greater rates of heat transfer. An experimental study was conducted using a counterflow CHE consisting of 3 helical coils. Two separate tests were conducted, one where water was used as heat transfer fluid (HTF) on the coil and shell sides, respectively; while the second one made use of MPCM slurry and water on the coil and shell sides, respectively. The NTU-effectiveness relationship of the CHE when MPCM fluid is used approaches that of a heat exchanger with a heat capacity ratio of zero. The heat transfer results have shown that when using a MPCM slurry, an increase in heat transfer rate can be obtained when compared to heat transfer results obtained using straight heat transfer sections. It has been concluded that the increased specific heat of the slurry as well as the fluid dynamics in helical coil pipes are the main contributors to the increased heat transfer.

Gaskill, Travis

2011-12-01T23:59:59.000Z

339

Measurement of flow field and local heat transfer distribution on a scraped heat exchanger crystalliser surface  

E-Print Network (OSTI)

Measurement of flow field and local heat transfer distribution on a scraped heat exchanger.ravelet@laposte.net Geert-Jan Witkamp G.J.Witkamp@xs4all.nl Abstract In a cylindrical scraped heat exchanger crystallizer exchanger surface has been studied by direct measurements of the heat exchanger surface temperature

Paris-Sud XI, Université de

340

Numerical study of 2D heat transfer in a scraped surface heat exchanger  

E-Print Network (OSTI)

Numerical study of 2D heat transfer in a scraped surface heat exchanger K.-H. Sun a,*, D.L. Pyle heat exchanger with non- Newtonian power law fluids is undertaken. Numerical results are generated of scraped surface heat exchanger design are assessed in the light of the results. Ã? 2003 Elsevier Ltd. All

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Modeling of Heat Transfer in Rooms in the Modelica Buildings Library  

E-Print Network (OSTI)

for convective and radiative heat transfer yielded a twofoldModeling of Heat Transfer in Rooms in the Modelica “of California. MODELING OF HEAT TRANSFER IN ROOMS IN THE

Wetter, Michael

2013-01-01T23:59:59.000Z

342

Rheology and Convective Heat Transfer of Colloidal Gas Aphrons in Horizontal Minichannels  

E-Print Network (OSTI)

Single-phase convective heat transfer in microchannels: aand Newell, M. E. , 1967. Heat transfer in fully developed3 /s at 130 W. Water CGA Heat Transfer Coefficient, h (W/m 2

Tseng, H.; Pilon, L.; Warrier, G.

2006-01-01T23:59:59.000Z

343

Heat-transfer dynamics during cryogen spray cooling of substrate at different initial temperatures  

E-Print Network (OSTI)

Aguilar G 2004 Radial heat transfer dynamics during cryogenof droplet dynamics and heat transfer in spray cooling Exp.S0031-9155(04)84030-2 Heat-transfer dynamics during cryogen

Jia, W; Aguilar, G; Wang, G X; Nelson, J S

2004-01-01T23:59:59.000Z

344

HEAT TRANSFER DURING THE SHOCK-INDUCED IGNITION OF AN EXPOLSIVE GAS  

E-Print Network (OSTI)

11 Stagnation Point Heat Transfer Measurements in Air atR.M. , and Kemp, N.H. , Heat Transfer from High TemperatureProceedings of the 1963 Heat Transfer and Fluid Mechanics

Heperkan, H.

2013-01-01T23:59:59.000Z

345

MEASUREMENTS OF HEAT TRANSFER TO HELIUM II AT ATMOSPHERIC PRESSURE IN A CONFINED GEOMETRY  

E-Print Network (OSTI)

M. X. Francois-:- "Heat Transfer Properties in a VerticalK. T - Tb (K) Fig. 4 . Heat transfer at the lambda point.B. The difference in the heat transfer characteristics on

Warren, R.P.

2011-01-01T23:59:59.000Z

346

Khounsary Named Associate Editor of ASME Journal of Heat Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

New Science with the APS Superconducting Undulator New Science with the APS Superconducting Undulator Young of XSD Named Associate Editor of New Journal "Structural Dynamics" The Daguerreotype and the X-ray: A Deep Look Questions Rise about Seeding For Ocean C02 Sequestration X-ray Method Shows How Frog Embryos Could Help Thwart Disease APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Khounsary Named Associate Editor of ASME Journal of Heat Transfer October 22, 2013 Bookmark and Share Ali Khounsary Ali Khounsary of the APS Engineering Support Division has been appointed as an Associate Editor of the ASME Journal of Heat Transfer. The Journal of Heat Transfer, in publication since 1879, "disseminates information of permanent interest in the areas of heat and mass transfer.

347

FEHM (Finite Element Heat and Mass Transfer Code)  

NLE Websites -- All DOE Office Websites (Extended Search)

FEHM (Finite Element Heat and Mass Transfer Code) FEHM (Finite Element Heat and Mass Transfer Code) FEHM (Finite Element Heat and Mass Transfer Code) FEHM is used to simulate groundwater and contaminant flow and transport in deep and shallow, fractured and un-fractured porous media throughout the US DOE complex. June 29, 2013 software FEHM is used to simulate groundwater and contaminant flow and transport in deep and shallow, fractured and un-fractured porous media throughout the US DOE complex. Available for thumbnail of Feynman Center (505) 665-9090 Email FEHM (Finite Element Heat and Mass Transfer Code) FEHM is used to simulate groundwater and contaminant flow and transport in deep and shallow, fractured and un-fractured porous media throughout the US DOE complex. FEHM has proved to be a valuable asset on a variety of

348

Survey and evaluation of techniques to augment convective heat transfer  

E-Print Network (OSTI)

This report presents a survey and evaluation of the numerous techniques which have been shown to augment convective heat transfer. These techniques are: surface promoters, including roughness and treatment; displaced ...

Bergles A. E.

1965-01-01T23:59:59.000Z

349

Wind heat transfer coefficient in solar collectors in outdoor conditions  

Science Conference Proceedings (OSTI)

Knowledge of wind heat transfer coefficient, h{sub w}, is required for estimation of upward losses from the outer surface of flat plate solar collectors/solar cookers. In present study, an attempt has been made to estimate the wind induced convective heat transfer coefficient by employing unglazed test plate (of size about 0.9 m square) in outdoor conditions. Experiments, for measurement of h{sub w}, have been conducted on rooftop of a building in the Institute campus in summer season for 2 years. The estimated wind heat transfer coefficient has been correlated against wind speed by linear regression and power regression. Experimental values of wind heat transfer coefficient estimated in present work have been compared with studies of other researchers after normalizing for plate length. (author)

Kumar, Suresh; Mullick, S.C. [Centre for Energy Studies, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110 016 (India)

2010-06-15T23:59:59.000Z

350

Aspects of Heat Transfer During Production of Remelt Ingot Using ...  

Science Conference Proceedings (OSTI)

Sep 1, 2001 ... Aspects of Heat Transfer During Production of Remelt Ingot Using Chain Casters by J.E Grandfield, TT Nguyen, G. Redden and J.A. Taylor ...

351

Design and fabrication of heat transfer surfaces from superplastic material  

Science Conference Proceedings (OSTI)

The production of complex heat transfer surfaces (i.e., those without straight fins) is restricted by available fabrication techniques, materials, geometries, and cost. Based on the superplastic sheet thermoforming process, a new technique for fabricating ...

J. B. Randolph; F. K. King

1972-05-01T23:59:59.000Z

352

Heat transfer during film condensation of a liquid metal vapor  

E-Print Network (OSTI)

The object of this investigation is to resolve the discrepancy between theory and experiment for the case of heat transfer durirnfilm condensation of liquid metal vapors. Experiments by previous investigators have yielded ...

Sukhatme, S. P.

1964-01-01T23:59:59.000Z

353

Investigation of 3-D Heat Transfer Effects in Fenestration Products.  

E-Print Network (OSTI)

??ABSTRACT INVESTIGATION OF 3-D HEAT TRANSFER EFFECTS IN FENESTRATION PRODUCTS SEPTEMBER 2010 SNEH KUMAR B. TECH., INDIAN INSTITUTE OF TECHNOLOGY, CHENNAI INDIA M.S.M.E., UNIVERSITY OF… (more)

Kumar, Sneh

2010-01-01T23:59:59.000Z

354

High Operating Temperature Heat Transfer Fluids for Solar Thermal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Transfer Fluids for Solar Thermal Power Generation UCLA, UCB, Yale Award Number: DE-EE0005941 | January 9, 2013 | Sungtaek Ju 1.1 Thermochemistry modeling Identified promising...

355

On Water Flow in Hot Fractured Rock -- A Sensitivity Study on the Impact of Fracture-Matrix Heat Transfer  

E-Print Network (OSTI)

is related to the heat transfer between the two phasespossibly be affected. Heat transfer from the matrix can beof Fracture-Matrix Heat Transfer Jens T. Birkholzer and

Birkholzer, Jens T.; Zhang, Yingqi

2005-01-01T23:59:59.000Z

356

Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area  

E-Print Network (OSTI)

Testing for Estimating Heat Transfer Area in FracturedFRACTURE-MATRIX HEAT TRANSFER AREA Karsten Pruess andimprove the flow and heat transfer characteristics of the

Pruess, K.

2011-01-01T23:59:59.000Z

357

Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Horizontal Window Frames with Internal Cavities  

E-Print Network (OSTI)

the two-dimensional heat transfer through building products.Gustavsen, A. 2001. Heat transfer in window frames withand CFD Simulations of Heat Transfer in Horizontal Window

Gustavsen, Arlid

2008-01-01T23:59:59.000Z

358

A unified numerical framework model for simulating flow, transport, and heat transfer in porous and fractured media  

E-Print Network (OSTI)

Flow, Transport, and Heat Transfer in Porous and Fracturedtransport, and heat transfer in porous and fracturedflow, chemical transport, and heat transfer in rock. These

Wu, Yu-Shu

2004-01-01T23:59:59.000Z

359

A unified numerical framework model for simulating flow, transport, and heat transfer in porous and fractured media  

E-Print Network (OSTI)

transport, and heat transfer processes in porous media. 2.1.mass transport, and heat-transfer processes through porousinvolved. These heat-transfer processes are complicated by

Wu, Yu-Shu

2004-01-01T23:59:59.000Z

360

Enhancement of heat transfer for ground source heat pump systems.  

E-Print Network (OSTI)

??Uptake of geothermal heat pump (GSHP) systems has been slow in some parts of the world due to the unpredictable operational performance, large installation space… (more)

Mori, Hiromi

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced turbine cooling, heat transfer, and aerodynamic studies  

DOE Green Energy (OSTI)

The contractual work is in three parts: Part I - Effect of rotation on enhanced cooling passage heat transfer, Part II - Effect of Thermal Barrier Coating (TBC) spallation on surface heat transfer, and Part III - Effect of surface roughness and trailing edge ejection on turbine efficiency under unsteady flow conditions. Each section of this paper has been divided into three parts to individually accommodate each part. Part III is further divided into Parts IIIa and IIIb.

Han, Je-Chin; Schobeiri, M.T. [Texas A & M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

362

Handbook of single-phase convective heat transfer  

Science Conference Proceedings (OSTI)

This book presents a comprehensive collection of convective heat transfer basics, methods of calculations, tables, charts and design parameters involving single-phase flows - the most commonly experienced mode in heat transfer problems. Topics covered include natural and forced convection under a wise variety of design conditions, such as ducts, crossflows, turbulent conditions, transitional states, curved and coiled ducts, over rods in metals and through bends, valves and fittings. The book provides sections on radiation interaction and fouling conditions.

Kakac, S.; Shah, R.K.; Aung, W.

1987-01-01T23:59:59.000Z

363

Mpemba effect, Newton cooling law and heat transfer equation  

E-Print Network (OSTI)

In this work we suggest a simple theoretical solution of the Mpemba effect in full agreement with known experimental data. This solution follows simply as an especial approximation (linearization) of the usual heat (transfer) equation, precisely linearization of the second derivation of the space part of the temperature function (as it is well-known Newton cooling law can be considered as the effective approximation of the heat (transfer) equation for constant space part of the temperature function).

Vladan Pankovic; Darko V. Kapor

2010-05-06T23:59:59.000Z

364

Literature survey of heat transfer enhancement techniques in refrigeration applications  

Science Conference Proceedings (OSTI)

A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

1994-05-01T23:59:59.000Z

365

Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools  

E-Print Network (OSTI)

internal cavities the heat transfer process is more complex,heat transfer in these “insulated” zones could be used in the design process

Gustavsen, Arild

2009-01-01T23:59:59.000Z

366

Boiling heat transfer in a hydrofoil-based micro pin fin heat sink  

E-Print Network (OSTI)

-flow boiling over circular tube bundles has been meticulously studied; collected data and correlations for circular tube bundles. For exam- ple, Jensen and Hsu [81] conducted a parametric study of boiling heat transfer in a horizontal tube bundle and reported an increase in local heat transfer coefficient

Peles, Yoav

367

Research on Convective Heat Transfer and Mass Transfer of the Evaporator in Micro/Mini-Channel  

E-Print Network (OSTI)

With the development of science and technology, various heating and cooling equipment have a development trend of micromation. Micro-fabrication processes make it possible to conduct research on condensation heat transfer in micro-channels. Based on the reviewers on the present household air conditioners, the potential requirements for new heat transfer enhancement used for household air conditioners are discussed. Investigations on condensation and boiling of refrigerants in mini/micro channels have indicated that the evaporator and condenser of air conditioner would be more efficient and more compact by using microchannels, and hence it could improve the coefficient of performance of air conditioners to meet the new energy conversion standards in China. The relationship between condensation heat transfer of refrigerants and surface physical characteristics of the evaporator are pointed out and analyzed in order to achieving the corresponding heat transfer coefficients.

Su, J.; Li, J.

2006-01-01T23:59:59.000Z

368

Pool boiling heat transfer characteristics of nanofluids  

E-Print Network (OSTI)

Nanofluids are engineered colloidal suspensions of nanoparticles in water, and exhibit a very significant enhancement (up to 200%) of the boiling Critical Heat Flux (CHF) at modest nanoparticle concentrations (50.1% by ...

Kim, Sung Joong, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

369

Molecular Dynamics Method in Microscale Heat Transfer Shigeo Maruyama  

E-Print Network (OSTI)

1 Molecular Dynamics Method in Microscale Heat Transfer Shigeo Maruyama Department of Mechanical://www.photon.t.u-tokyo.ac.jp/~maruyama/ 1. INTRODUCTION Molecular level understandings are becoming more important and molecular based to take account of nuclei in size of molecular clusters. The effect of the surfactant on the heat and mass

Maruyama, Shigeo

370

Heat Transfer Laboratory of the Savannah River Laboratory  

SciTech Connect

The Heat Transfer Laboratory, recently- constructed adjacent to the main Savannah River Laboratory building, was designed to mock up nuclear heating and cooling of reactor components under a variety- of conditions. Nuclear heating is simulated by electrical resistance heating of test sections with a 3 MW directcurrent power supply. Cooling is provided by water. Three test stations (A, B, and C) are available for testing full-size fuel assemblies, measuring flow instabilities, and for measuring burnout heat fluxes. Safeguards provided in the design of the facility and conservative operating procedures minimize or elimnate potential hazards. (auth)

Knoebel, D.H.; Harris, S.D.

1973-10-01T23:59:59.000Z

371

Handbook of radiative heat transfer in high-temperature gases  

Science Conference Proceedings (OSTI)

This work offers both an original method for calculating optical properties of low-temperature plasma at elevated densities ... and an effective new means for calculating radiative heat transfer in hot gases and plasma with arbitrary temperature and pressure distributions. These methods allow for automatic accounting of all details of the plasma spectrum, including the line structure. This volume contains radiant transfer in problems of heat transfer; integration over frequency; methods of partial characteristics; method of effective populations; calculation of partial characteristics; appendix: tabular data.

Soloukhin, R.I.; Golovnev, I.F.; Zamurayev, V.P.; Katsnelson, S.S.; Kovalskaya, G.A.; Sevastyanenko, V.G.; Soloukhin, R.I.

1987-01-01T23:59:59.000Z

372

Non-equilibrium electromagnetic fluctuations: Heat transfer and interactions  

E-Print Network (OSTI)

The Casimir force between arbitrary objects in equilibrium is related to scattering from individual bodies. We extend this approach to heat transfer and Casimir forces in non-equilibrium cases where each body, and the environment, is at a different temperature. The formalism tracks the radiation from each body and its scatterings by the other objects. We discuss the radiation from a cylinder, emphasizing its polarized nature, and obtain the heat transfer between a sphere and a plate, demonstrating the validity of proximity transfer approximation at close separations and arbitrary temperatures.

Matthias Krüger; Thorsten Emig; Mehran Kardar

2011-02-18T23:59:59.000Z

373

Modulation of near-field heat transfer between two gratings  

E-Print Network (OSTI)

We present a theoretical study of near-field heat transfer between two uniaxial anisotropic planar structures. We investigate how the distance and relative orientation (with respect to their optical axes) between the objects affect the heat flux. In particular, we show that by changing the angle between the optical axes it is possible in certain cases to modulate the net heat flux up to 90% at room temperature, and discuss possible applications of such a strong effect.

Svend-Age Biehs; Felipe S. S. Rosa; Philippe Ben-Abdallah

2011-05-18T23:59:59.000Z

374

Active heat transfer enhancement in integrated fan heat sinks  

E-Print Network (OSTI)

Modern computer processors require significant cooling to achieve their full performance. The "efficiency" of heat sinks is also becoming more important: cooling of electronics consumes 1% of worldwide electricity use by ...

Staats, Wayne Lawrence

2012-01-01T23:59:59.000Z

375

Radiant heat transfer from storage casks to the environment  

SciTech Connect

A spent fuel storage cask must efficiently transfer the heat released by the fuel assemblies through the cask walls to the environment. This heat must be transferred through passive means, limiting the energy transfer mechanisms from the cask to natural convection and radiation heat transfer.. Natural convection is essentially independent of the characteristics of the array of casks, provided there is space between casks to permit a convection loop. Radiation heat transfer, however, depends on the geometric arrangement of the array of casks because the peripheral casks will shadow the interior casks and restrict radiant heat transfer from all casks to the environment. The shadowing of one cask by its neighbors is determined by a view factor that represents the fraction of radiant energy that leaves the surface of a cask and reaches the environment. This paper addresses the evaluation of the view factor between a centrally located spent fuel storage cask and the environment. By combining analytic expressions for the view factor of (1) infinitely long cylinders and (2) finite cylinders with a length-to-diameter ratio of 2 to represent spent fuel storage casks, the view factor can be evaluated for any practical array of spent fuel storage casks.

Carlson, R W; Hovingh, J; Thomas, G R

1999-05-10T23:59:59.000Z

376

Design and operation of solar thermal heat transfer systems  

Science Conference Proceedings (OSTI)

The importance of heat transfer systems in the collection and use of solar energy is discussed. The success or failure of many solar energy systems has been determined by the design of the heat transfer system. This report includes a short summary of some of the DOE sponsored solar industrial process heat sites. From the design, construction, and operation of these systems many lessons were learned which will be important to designers and potential users of solar thermal systems. Also included is a discussion of solar collector foundation over-design that has increased the collector system costs.

Rush, E.E.

1985-01-01T23:59:59.000Z

377

Curvature dependence of the interfacial heat and mass transfer coefficients  

E-Print Network (OSTI)

Nucleation is often accompanied by heat transfer between the surroundings and a nucleus of a new phase. The interface between two phases gives an additional resistance to this transfer. For small nuclei the interfacial curvature is high, which affects not only equilibrium quantities such as surface tension, but also the transport properties. In particular, high curvature affects the interfacial resistance to heat and mass transfer. We develop a framework for determining the curvature dependence of the interfacial heat and mass transfer resistances. We determine the interfacial resistances as a function of a curvature. The analysis is performed for a bubble of a one-component fluid and may be extended to various nuclei of multicomponent systems. The curvature dependence of the interfacial resistances is important in modeling transport processes in multiphase systems.

K. S. Glavatskiy; D. Bedeaux

2013-10-11T23:59:59.000Z

378

Heat Transfer Enhancement in Separated and Vortex Flows  

SciTech Connect

This document summarizes the research performance done at the Heat Transfer Laboratory of the University of Minnesota on heat transfer and energy separation in separated and vortex flow supported by DOE in the period September 1, 1998--August 31, 2003. Unsteady and complicated flow structures in separated or vortex flows are the main reason for a poor understanding of heat transfer under such conditions. The research from the University of Minnesota focused on the following important aspects of understanding such flows: (1) Heat/mass transfer from a circular cylinder; (2) study of energy separation and heat transfer in free jet flows and shear layers; and (3) study of energy separation on the surface and in the wake of a cylinder in crossflow. The current study used three different experimental setups to accomplish these goals. A wind tunnel and a liquid tunnel using water and mixtures of ethylene glycol and water, is used for the study of prandtl number effect with uniform heat flux from the circular cylinder. A high velocity air jet is used to study energy separation in free jets. A high speed wind tunnel, same as used for the first part, is utilized for energy separation effects on the surface and in the wake of the circular cylinder. The final outcome of this study is a substantial advancement in this research area.

Richard J. Goldstein

2004-05-27T23:59:59.000Z

379

TRANSIENT HEAT TRANSFER IN REACTOR COOLANT CHANNELS  

SciTech Connect

An analysis is presented of the transient behavior of a generalized cooiant channel neglecting temperature dependent reactivity changes. The analysis is applicable to forced convection cooling of heterogeneous reactor fuel elements or electrically heated simulation thereof. Derivations are given for cases of variation of coolant inlet temperature and of heat generation. An approximation is also developed applicable to thin fuel elements. From this, solutions are obtained for cases-of impulsive, step, linear, and step-exponential variations of inlet temperature, and, of impulsive and uniform variations of heat generation. The solutions presented will be of use during preliminary stages of design of new heterogeneous reactor concepts (when the use of computing machines may not be warranted), and, in the design and interpretation of transient experiments simulating reactor fuel channels. (auth)

Stein, R.P.

1957-10-31T23:59:59.000Z

380

Process Heat Exchanger Options for the Advanced High Temperature Reactor  

Science Conference Proceedings (OSTI)

The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor  

Science Conference Proceedings (OSTI)

The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

2011-04-01T23:59:59.000Z

382

Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results  

Science Conference Proceedings (OSTI)

A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

2002-08-01T23:59:59.000Z

383

Heat Transfer in Superfluids: Effect of Gravity  

E-Print Network (OSTI)

We discuss the influence of an external field on energy transport in superfluid. He-II is not isothermal in presence of Earth gravity; instead, it supports finite temperature gradient given by a Fourier-like equation. We calculate asymptotic behavior of the effective heat resistance in the vicinity of the $\\lambda$-transition.

L. A. Melnikovsky

2004-05-19T23:59:59.000Z

384

Aspects of forced convective heat transfer in geothermal systems  

DOE Green Energy (OSTI)

A knowledge of convective heat transfer is essential to understanding geothermal systems and other systems of moving groundwater. A simple, kinematic approach toward convective heat transfer is taken here. Concern is not with the cause of the groundwater motion but only with the fact that the water is moving and transferring heat. The mathematical basis of convective heat transfer is the energy equation which is a statement of the first law of thermodynamics. The general solution of this equation for a specific model of groundwater flow has to be done numerically. The numerical algorithm used here employs a finite difference approximation to the energy equation that uses central differences for the heat conduction terms and one-sided differences for the heat convection terms. Gauss--Seidel iteration is then used to solve the finite difference equation at each node of a non-uniform mesh. The Monroe and Red Hill hot springs, a small hydrothermal system in central Utah, provide an example to illustrate the application of convective heat transfer theory to a geophysical problem. Two important conclusions regarding small geothermal systems follow immediately from the results of this application. First, the most rapid temperature rise in the convecting part of a geothermal system is near the surface. Below this initially rapid temperature increase the temperature increases very slowly, and thus temperatures extrapolated from shallow boreholes can be seriously in error. Second, the temperatures and heat flows observed at Monroe and Red Hill, and probably at many other small geothermal areas, can easily result from moderate vertical groundwater velocities in faults and fracture zones in an area of normal heat flow.

Kilty, K.; Chapman, D.S.; Mase, C.

1978-07-01T23:59:59.000Z

385

An Overview of Liquid Fluoride Salt Heat Transport Technology  

SciTech Connect

Liquid fluoride salts are a leading candidate heat transport medium for high-temperature applications. This report provides an overview of the current status of liquid salt heat transport technology. The report includes a high-level, parametric evaluation of liquid fluoride salt heat transport loop performance to allow intercomparisons between heat-transport fluid options as well as providing an overview of the properties and requirements for a representative loop. Much of the information presented here derives from the earlier molten salt reactor program and a significant advantage of fluoride salts, as high temperature heat transport media is their consequent relative technological maturity. The report also includes a compilation of relevant thermophysical properties of useful heat transport fluoride salts. Fluoride salts are both thermally stable and with proper chemistry control can be relatively chemically inert. Fluoride salts can, however, be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report also provides an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize salt corrosion as well as providing a general discussion of heat transfer loop operational issues such as start-up procedures and freeze-up vulnerability.

Cetiner, Mustafa Sacit [ORNL; Holcomb, David Eugene [ORNL

2010-01-01T23:59:59.000Z

386

Thermodynamics of enhanced heat transfer: a model study  

E-Print Network (OSTI)

Situations where a spontaneous process of energy or matter transfer is enhanced by an external device are widespread in nature (human sweating system, enzyme catalysis, facilitated diffusion across bio-membranes, industrial heat exchangers). The thermodynamics of such processes remains however open. Here we study enhanced heat transfer by a model junction immersed between two thermal baths at different temperatures $T_h$ and $T_c$ ($T_h>T_c$). The transferred heat power is enhanced via controlling the junction by means of external time-dependent fields. Provided that the spontaneous heat flow process is optimized over the junction Hamiltonian, any enhancement of this spontaneous process does demand consumption and subsequent dissipation of work. The efficiency of enhancement is defined via the increment in the heat power divided over the amount of consumed work. We show that this efficiency is bounded from above by $T_c/(T_h-T_c)$. Formally this is identical to the Carnot bound for the efficiency of ordinary refrigerators which transfer heat from cold to hot. It also shares some (but not all) physical features of the Carnot bound.

Karen Hovhannisyan; Armen E. Allahverdyan

2010-07-20T23:59:59.000Z

387

Spray cooling heat-transfer with subcooled trichlorotrifluoroethane (Freon-113) for vertical constant heat flux surfaces  

SciTech Connect

Experiments were done using subcooled Freon-113 sprayed vertically downward. Local and average heat transfers were investigated fro Freon-113 sprays with 40 C subcooling, droplet sizes 200-1250{mu}m, and droplet breakup velocities 5-29 m/s. Full-cone type nozzles were used to generate the spray. Test assemblies consisted of 1 to 6 7.62 cm vertical constant heat flux surfaces parallel with each other and aligned horizontally. Distance between heated surfaces was varied from 6.35 to 76.2 mm. Steady state heat fluxes as high as 13 W/cm{sup 2} were achieved. Dependence on the surface distance from axial centerline of the spray was found. For surfaces sufficiently removed from centerline, local and average heat transfers were identical and correlated by a power relation of the form seen for normal-impact sprays which involves the Weber number, a nondimensionalized temperature difference, and a mass flux parameter. For surfaces closer to centerline, the local heat transfer depended on vertical location on the surface while the average heat transfer was described by a semi-log correlation involving the same parameters. The heat transfer was independent of the distance (gap) between the heated surfaces for the gaps investigated.

Kendall, C.M. [Lawrence Livermore National Lab., CA (United States); Holman, J.P. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Mechanical Engineering

1996-06-06T23:59:59.000Z

388

Preliminary Heat Transfer Studies for the Double Shell Tanks (DST) Transfer Piping  

SciTech Connect

Heat transfer studies were made to determine the thermal characteristics of double-shell tank transfer piping under both transient and steady-state conditions. A number of design and operation options were evaluated for this piping system which is in its early design phase.

HECHT, S.L.

2000-02-15T23:59:59.000Z

389

Dispersed-Flow Film Boiling Heat Transfer Data near Spacer Grids in a Rod Bundle  

Science Conference Proceedings (OSTI)

Technical Paper / Radiation Effects and Their Relationship to Geological Repository / Heat Transfer and Fluid Flow

Graydon L. Yoder; Jr.; David G. Morris; Charles B. Mullins; Larry J. Ott

390

Convective heat transfer inside passive solar buildings  

DOE Green Energy (OSTI)

Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

Jones, R.W.; Balcomb, J.D.; Yamaguchi, K.

1983-01-01T23:59:59.000Z

391

Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump  

DOE Patents (OSTI)

Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use, as the heat transfer medium, the working fluid of the absorption system taken from the generator at a location where the working fluid has a rich liquor concentration.

Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

1998-07-21T23:59:59.000Z

392

THERM: Two-Dimensional Building Heat-Transfer Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 THERM: Two-Dimensional Building Heat-Transfer Modeling For more information and to download THERM, please visit our website: http://windows.lbl.gov/software/therm The Windows and Daylighting Group's two-year-old computer program THERM 1.0 is a state-of-the-art tool for modeling two-dimensional heat-transfer effects in building components. The thermal property information THERM provides is important for the design and application of building components such as windows, walls, foundations, roofs and doors. This Microsoft Windows-based program has great potential to users such as building component manufacturers, educators, students, architects, engineers and others who are interested in assessing the heat-transfer properties of single products, product interactions, or integrated systems. THERM

393

Heat Transfer in Projecting and Sloped Fenestration Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Heat Transfer in Projecting and Sloped Fenestration Products Heat Transfer in Projecting and Sloped Fenestration Products Speaker(s): Dragan Charlie Curcija Date: May 26, 2010 - 12:00pm Location: 90-3122 The heat transfer performance of fenestration products is routinely determined using computer simulations combined with physical testing. Initial efforts to develop simulation and test procedures for the fenestration products in the 1980's focused on simple planar windows since they are the dominant share of the market. However, once these procedures were developed (with resulting ISO standards and national rating and labeling requirements), manufacturers of more physically complex fenestration products (skylights, green house windows, tubular skylights) demanded procedures for simulating and testing their products. Dr Curcija

394

MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA  

NLE Websites -- All DOE Office Websites (Extended Search)

MODELING MODELING OF HEAT TRANSFER IN ROOMS IN THE MODELICA "BUILDINGS" LIBRARY Michael Wetter, Wangda Zuo, Thierry Stephane Nouidui Simulation Research Group, Building Technologies Department Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA ABSTRACT This paper describes the implementation of the room heat transfer model in the free open-source Modelica "Buildings" library. The model can be used as a single room or to compose a multizone building model. We discuss how the model is de- composed into submodels for the individual heat transfer phenomena. We also discuss the main physical assumptions. The room model can be parameterized to use di↵erent modeling assump- tions, leading to linear or non-linear di↵erential algebraic systems of equations. We present nu- merical experiments that show

395

FEHM: finite element heat and mass transfer code  

DOE Green Energy (OSTI)

The finite element heat and mass (FEHM) transfer code is a computer code developed to simulate geothermal and hot dry rock reservoirs. It is also applicable to natural-state studies of geothermal systems and ground-water flow. It solves the equations of heat and mass transfer for multiphase flow in porous and permeable media using the finite element method. The code also has provisions for a noncoupled tracer; that is, the tracer solutions do not affect the heat and mass transfer solutions. It can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model, the numerical solution procedure, and model verification and validation are provided in this report. A user's guide and sample problems are included in the appendices. 17 refs., 10 figs., 4 tabs.

Zyvoloski, G.; Dash, Z.; Kelkar, S.

1988-03-01T23:59:59.000Z

396

Heat and mass transfer analysis of a desiccant dehumidifier matrix  

DOE Green Energy (OSTI)

This report documents the SERI Single-Blow Test Facility's design, fabrication, and testing for characterizing desiccant dehumidifiers for solar cooling applications. The first test article, a silica-gel parallel-plate dehumidifier with highly uniform passages, was designed and fabricated. Transient heat and mass transfer data and pressure drop data across the dehumidifier were obtained. Available heat and mass transfer models were extended to the parallel-place geometry, and the experimental data were compared with model predictions. Pressure drop measurements were also compared with model predictions of the fully developed laminar flow theory. The comparisons between the lumped-capacitance model and the experimental data were satisfactory. The pressure drop data compared satisfactorily with the theory (within 15%). A solid-side resistance model that is more detailed and does not assume symmetrical diffusion in particles was recommended for performance. This study has increased our understanding of the heat and mass transfer in silica gel parallel-plate dehumidifiers.

Pesaran, A.A.

1986-07-01T23:59:59.000Z

397

Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures  

E-Print Network (OSTI)

Heat Transfer Using Micro/Nano Structures by Ming-Chang Lu AHeat Transfer Using Micro/Nano Structures Copyright 2010 byHeat Transfer Using Micro/Nano Structures by Ming-Chang Lu

Lu, Ming-Chang

2010-01-01T23:59:59.000Z

398

Heat transfer characteristics of a three-phase volume boiling direct contact heat exchanger  

DOE Green Energy (OSTI)

The advantages of direct contact heat transfer over heat transfer utilizing conventional metallic heat exchangers are listed. The performance characteristics of a three-phase direct contact heat exchanger in near counterflow operation were evaluated using water as the continuous phase fluid and refrigerant 113 as the dispersed phase fluid. Conclusions are drawn from the results having to do with refrigerant injection technique, vessel operating height, mass flow rate of refrigerant, water inlet temperature, operation at pinch point temperature differences below 13 to 20/sup 0/C, and operation with a dispersed phase fluid less dense than water. (MHR)

Blair, C.K.; Boehm, R.F.; Jacobs, H.R.

1976-03-01T23:59:59.000Z

399

AN EXPERIMENTAL INVESTIGATION ON HEAT TRANSFER CHARACTERISTICS OF AIR AND CO2 IN MICROTUBES  

E-Print Network (OSTI)

by a cooling capacity, which is delivered in those rooms by heat exchangers where a heat transfer fluid - 2 and Fluid Science, 1-3:17. Mortada S., 2010. "Heat transfer performance of a mini-channel evaporator are mini-channel heat exchangers (MCHE) combining high heat transfer coefficients and low refrigerant

Kandlikar, Satish

400

Low heat transfer, high strength window materials  

DOE Patents (OSTI)

A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

Berlad, Abraham L. (Stony Brook, NY); Salzano, Francis J. (Patchogue, NY); Batey, John E. (Stony Brook, NY)

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Advanced Model and Methodology Development [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Model and Advanced Model and Methodology Development Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Advanced Model and Methodology Development Electrorefiner Model for Treatment of Spent Nuclear Fuel Electrorefiner Model for Treatment of Spent Nuclear Fuel. Click on image to

402

Thermal Hydraulic Optimization of Nuclear Systems [Heat Transfer and Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Hydraulic Thermal Hydraulic Optimization of Nuclear Systems Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Thermal Hydraulic Optimization of Nuclear Systems Accelerator Driven Test Facility Target Accelerator Driven Test Facility Target. Click on image to view larger

403

Underhood Thermal Management [Heat Transfer and Fluid Mechanics] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Underhood Thermal Underhood Thermal Management Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Underhood Thermal Management Hybrid Vehicle Underhood Thermal Analysis Hybrid Vehicle Underhood Thermal Analysis. Click on image to view larger image. In addition to nuclear system applications, the section applies its

404

Heat transfer education : Keeping it relevant and vibrant.  

SciTech Connect

The motivation for a fresh look at heat transfer education, both in content and in methodology, is generated by a number of trends in engineering practice. These include the increasing demand for engineers with interdisciplinary skills, rapid integration of technology, emergence of computerized and interactive problem-solving tools, shortening time of concept-to-market, availability of new technologies, and an increasing number of new or redesigned products and processes in which heat transfer plays a part. Examination of heat transfer education in this context can be aided by considering the changes, both qualitatively and quantitatively, in the student, educator, and researcher populations, employment opportunities, in the needs of corporations, government, industry, and universities, and in the relevant technical problems and issues of the day. Such an overview provides the necessary background for charting a response to the difficult question of how to maintain excellence and continuity in heat transfer education in the face of rapid, widespread, and complex changes. The present paper addresses how to make heat transfer education more relevant and stimulating. This paper represents a written summary of a 1996 panel discussion at the 1996 International Mechanical Engineering Conference and Exhibition (IMECE) of the American Society of Mechanical Engineers (ASME) in Atlanta, Georgia, on ''Heat Transfer Education: Keeping it Relevant and Vibrant,'' with significant expansion and amplification by the authors and the panelists in the 1997-98 period. The consensus of the participants is that the steps necessary to ensure the desired outcome in heat transfer education should include: (1) a better understanding of the interaction between the student, course content, and market needs; (2) an appreciation of the need in multidisciplinary industrial environments for engineers trained with a broad background: (3) a revision of the introductory heat transfer course to incorporate illustrative and insightful industrial examples and case studies reducible to order-of-magnitude analyses; (4) a reinforcement of real-world problem-solving abilities in students by introducing them to examples that emphasize multidisciplinary issues in modern thermal management problems and finally (5) industrial collaboration that would provide the educator with meaningful thermal management case studies (and possible funding), the student with an appreciation of industrial practices, and the industrial sponsor with access to academia for assistance in problem solving. Also suggested is an effective regular review program to provide assessment, feedback, and suggestions for quality control to interested institutions on their teaching methodology and materials.

Khounsary, A. M.

1998-08-14T23:59:59.000Z

405

Enhancement and suppression of heat transfer by MHD turbulence  

E-Print Network (OSTI)

We study of the effect of turbulence on heat transfer within magnetized plasmas for energy injection velocities both larger and smaller that the Alfven speed. We find that in the latter regime the heat transfer is partially suppressed, while in the former regime the effects of turbulence depend on the intensity of driving. In fact, the scale l at which the turbulent velocity is equal the Alfven velocity is a new important parameter. When the electron mean free path is larger than l, the stronger the the turbulence, the lower thermal conductivity by electrons is. The turbulent motions, however, induces their own advective heat transport, which, for the parameters of intracluster medium (ICM) provides effective heat diffusivity that exceeds the classical Spitzer value.

A. Lazarian

2006-08-02T23:59:59.000Z

406

Enhanced boiling heat transfer in horizontal test bundles  

Science Conference Proceedings (OSTI)

Two-phase flow boiling from bundles of horizontal tubes with smooth and enhanced surfaces has been investigated. Experiments were conducted in pure refrigerant R-113, pure R-11, and mixtures of R-11 and R-113 of approximately 25, 50, and 75% of R-113 by mass. Tests were conducted in two staggered tube bundles consisting of fifteen rows and five columns laid out in equilateral triangular arrays with pitch-to-diameter ratios of 1.17 and 1.5. The enhanced surfaces tested included a knurled surface (Wolverine`s Turbo-B) and a porous surface (Linde`s High Flux). Pool boiling tests were conducted for each surface so that reference values of the heat transfer coefficient could be obtained. Boiling heat transfer experiments in the tube bundles were conducted at pressures of 2 and 6 bar, heat flux values from 5 to 80 kW/m{sup 2}s, and qualities from 0% to 80%, Values of the heat transfer coefficients for the enhanced surfaces were significantly larger than for the smooth tubes and were comparable to the values obtained in pool boiling. It was found that the performance of the enhanced tubes could be predicted using the pool boiling results. The degradation in the smooth tube heat transfer coefficients obtained in fluid mixtures was found to depend on the difference between the molar concentration in the liquid and vapor.

Trewin, R.R.; Jensen, M.K.; Bergles, A.E.

1994-08-01T23:59:59.000Z

407

Combined heat and mass transfer device for improving separation process  

DOE Patents (OSTI)

A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area.

Tran, Thanh Nhon (Flossmoor, IL)

1999-01-01T23:59:59.000Z

408

Combined heat and mass transfer device for improving separation process  

DOE Patents (OSTI)

A two-phase small channel heat exchange matrix simultaneously provides for heat transfer and mass transfer between the liquid and vapor phases of a multi-component mixture at a single, predetermined location within a separation column, significantly improving the thermodynamic efficiency of the separation process. The small channel heat exchange matrix is composed of a series of channels having a hydraulic diameter no greater than 5.0 millimeters for conducting a two-phase coolant. In operation, the matrix provides the liquid-vapor contacting surfaces within the separation column, such that heat and mass are transferred simultaneously between the liquid and vapor phases. The two-phase coolant allows for a uniform heat transfer coefficient to be maintained along the length of the channels and across the surface of the matrix. Preferably, a perforated, concave sheet connects each channel to an adjacent channel to facilitate the flow of the liquid and vapor phases within the column and to increase the liquid-vapor contacting surface area. 12 figs.

Tran, T.N.

1999-08-24T23:59:59.000Z

409

Investigation of methods to transfer heat from solar liquid-heating collectors to heat storage tanks. Final report  

DOE Green Energy (OSTI)

A study was made of the methods available to transfer heat from the collector to the water storage tank in water heating systems. In counterflow heat exchangers used in double loop water heating systems, it was found to be more important to use a high water flowrate than a high heat transfer fluid flowrate. It was earlier thought to be best to have matched WC/sub p/ (mass flowrate-specific heat) products in the loops. It was shown in this study that the water WC/sub p/ product should be about twice as large as that of the heat transfer fluid. It was found that neither the heat exchanger type nor the size was very critical, so that very simple criteria were adequate in determining optimum heat exchanger size. It was found that there is a definite system size below which one should use a traced tank or a coil in a tank. Equations and optimization criteria were developed for traced tanks or tanks with coils. At present, there is no quantitative understanding of liquid to liquid (direct contact) heat exchangers, though they are clearly quite effective. Draindown systems are discussed, and several appendices are included on heat transfer and other characteristics of fluid and of equipment.

Horel, J. D.; de Winter, F.

1978-04-20T23:59:59.000Z

410

Use of Activated Charcoal for Rn-220 Adsorption for Operations Associated with the Uranium Deposit in the Auxiliary Charcoal Bed at the Molten Salt Reactor Experiment Facility  

SciTech Connect

Measurements have been collected with the purpose of evaluating the effectiveness of activated charcoal for the removal of {sup 220}Rn from process off-gas at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory. A series of bench-scale tests were performed at superficial flow velocities of 10, 18, 24, and 33 cm s{sup -1} (20, 35, 47, and 65 ft min{sup -1}) with a continuous input concentration of {sup 220}Rn in the range of 9 x 10{sup 3} pCi L{sup -1}. In addition, two tests were performed at the MSRE facility by flowing helium through the auxiliary charcoal bed uranium deposit. These tests were performed so that the adsorptive effectiveness could be evaluated with a relatively high concentration of {sup 220}Rn. In addition to measuring the effectiveness of activated charcoal as a {sup 220}Rn adsorption media, the source term for available {sup 220}Rn and gaseous fission products was evaluated and compared to what is believed to be present in the deposit. The results indicate that only a few percent of the total {sup 220}Rn in the deposit is actually available for removal and that the relative activity of fission gases is very small when compared to {sup 220}Rn. The measurement data were then used to evaluate the expected effectiveness of a proposed charcoal adsorption bed consisting of a right circular cylinder having a diameter of 43 cm and a length of 91 cm (17 in. I.D. x 3 ft.). The majority of the measurement data predicts an overall {sup 220}Rn activity reduction factor of about 1 x 10{sup 9} for such a design; however, two measurements collected at a flow velocity of 18 cm s{sup -1} (35 ft min{sup -1}) indicated that the reduction factor could be as low as 1 x 10{sup 6}. The adsorptive capacity of the proposed trap was also evaluated to determine the expected life prior to degradation of performance. Taking a conservative vantage point during analysis, it was estimated that the adsorption effectiveness should not begin to deteriorate until a {sup 220}Rn activity on the order of 10{sup 10} Ci has been processed. It was therefore concluded that degradation of performance would most likely occur as the result of causes other than filling by radon progeny.

Coleman, R.L.

1999-03-17T23:59:59.000Z

411

Use of Activated Charcoal for {sup 220}Rn Adsorption for Operations Associated with the Uranium Deposit in the Auxiliary Charcoal Bed at the Molten Salt Reactor Experiment Facility  

SciTech Connect

Measurements have been collected with the purpose of evaluating the effectiveness of activated charcoal for the removal of {sup 220}Rn from process off-gas at the Molten Salt Reactor Experiment (MSRE) at Oak Ridge National Laboratory. A series of bench-scale tests were performed at superficial flow velocities of 10, 18, 24, and 33 cm/s (20, 35, 47, and 65 ft/min) with a continuous input concentration of {sup 220}Rn in the range of 9 x 10{sup 3} pCi/L. In addition, two tests were performed at the MSRE facility by flowing helium through the auxiliary charcoal bed uranium deposit. These tests were performed so that the adsorptive effectiveness could be evaluated with a relatively high concentration of {sup 220}Rn. In addition to measuring the effectiveness of activated charcoal as a {sup 220}Rn adsorption media, the source term for available {sup 220}Rn in the deposit is actually available for removal and that the relative activity of fission gases is very small when compared to {sup 220}Rn. The measurement data were then used to evaluate the expected effectiveness of a proposed charcoal adsorption bed consisting of a right circular cylinder having a diameter of 43 cm and a length of 91 cm (17 in. I.D. x 3 ft.). The majority of the measurement data predicts an overall 220Rn activity reduction factor of about 1 x 10{sup 9} for such a design; however, two measurements collected at a flow velocity of 18 cm/s (35 ft/min) indicated that the reduction factor could be as low as 1 x 10{sup 6}. The adsorptive capacity of the proposed trap was also evaluated to determine the expected life prior to degradation of performance. Taking a conservative vantage point during analysis, it was estimated that the adsorption effectiveness should not begin to deteriorate until a {sup 220}Rn activity on the order of 10{sup 10} Ci has been processed. It was therefore concluded that degradation of performance would likely occur as the result of causes other than filling by radon progeny.

Coleman, R.L.

1999-03-01T23:59:59.000Z

412

RECHARGEABLE MOLTEN-SALT CELLS  

E-Print Network (OSTI)

October 1977-September 1978, Argonne National Lab Report 78-New York, 1976, p. 473. Argonne National Laboratory, AnnualOctober 1978-March 1979, Argonne National Lab Report No. 70-

Cairns, Elton J.

2013-01-01T23:59:59.000Z

413

Enhanced heat transfer with metal wool filled tubes  

SciTech Connect

The Advanced Photon Source (APS) to be constructed at Argonne National Laboratory (ANL) utilizes magnetic devices which generate x-ray beams with very intense heat flux levels. The flux levels encountered can be one or two orders of magnitude higher than those commonly found in nuclear reactors or fusion devices. The beam line elements and optics on such beams pose significant challenge to the researchers and designers to keep them cooled at acceptable levels of surface temperature and/or temperature gradients. Therefore, methods and techniques achieving heat removal enhancement are constantly sought. One such technique suggested and considered is the use of conductive metal wool filled tubes where the filter is brazed to the tube walls. A comparative investigation of the conventionally achievable heat transfer coefficient h'' with water and the wall conductance of a heavy wall copper tube reveals that major resistance is on the coolant side. Therefore, there exists a significant opportunity to improve heat transfer in the tubes by enhancement of the coolant side. To this end a variety of copper wool filled tubes as well as a commercially available enhanced copper tube were subjected to laboratory tests with water and conventional heating to assess the resulting heat transfer improvement. Design improvements using enhanced cooling are discussed in terms of structural weight, controls, grazing angles, the operational reliability. 9 refs., 11 figs., 5 tabs.

Kuzay, T.M.; Collins, J.T.; Khounsary, A.M. (Argonne National Lab., IL (USA)); Morales, G. (Argonne National Lab., IL (USA) Texas Univ., El Paso, TX (USA))

1990-08-01T23:59:59.000Z

414

Trace formulae for non-equilibrium Casimir interactions, heat radiation and heat transfer for arbitrary objects  

E-Print Network (OSTI)

We present a detailed derivation of heat radiation, heat transfer and (Casimir) interactions for N arbitrary objects in the framework of fluctuational electrodynamics in thermal non-equilibrium. The results can be expressed as basis-independent trace formulae in terms of the scattering operators of the individual objects. We prove that heat radiation of a single object is positive, and that heat transfer (for two arbitrary passive objects) is from the hotter to a colder body. The heat transferred is also symmetric, exactly reversed if the two temperatures are exchanged. Introducing partial wave-expansions, we transform the results for radiation, transfer and forces into traces of matrices that can be evaluated in any basis, analogous to the equilibrium Casimir force. The method is illustrated by (re)deriving the heat radiation of a plate, a sphere and a cylinder. We analyze the radiation of a sphere for different materials, emphasizing that a simplification often employed for metallic nano-spheres is typically invalid. We derive asymptotic formulae for heat transfer and non-equilibrium interactions for the cases of a sphere in front a plate and for two spheres, extending previous results. As an example, we show that a hot nano-sphere can levitate above a plate with the repulsive non-equilibrium force overcoming gravity -- an effect that is not due to radiation pressure.

Matthias Krüger; Giuseppe Bimonte; Thorsten Emig; Mehran Kardar

2012-07-02T23:59:59.000Z

415

Enhanced heat transfer surface for cast-in-bump-covered cooling surfaces and methods of enhancing heat transfer  

DOE Patents (OSTI)

An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.

Chiu, Rong-Shi Paul (Glenmont, NY); Hasz, Wayne Charles (Pownal, VT); Johnson, Robert Alan (Simpsonville, SC); Lee, Ching-Pang (Cincinnati, OH); Abuaf, Nesim (Lincoln City, OR)

2002-01-01T23:59:59.000Z

416

Method of measuring heat influx of a cryogenic transfer system  

DOE Patents (OSTI)

A method is provided for measuring the heat influx of a cryogenic transfer system. A gaseous phase of the cryogen used during normal operation of the system is passed through the system. The gaseous cryogen at the inlet to the system is tempered to duplicate the normal operating temperature of the system inlet. The temperature and mass flow rate of the gaseous cryogen is measured at the outlet of the system, and the heat capacity of the cryogen is determined. The heat influx of the system is then determined from known thermodynamic relationships.

Niemann, Ralph C. (Downers Grove, IL); Zelipsky, Steven A. (Tinley Park, IL); Rezmer, Ronald R. (Lisle, IL); Smelser, Peter (Bruner, MO)

1981-01-01T23:59:59.000Z

417

Development of a Heat Transfer Model for the Integrated Facade Heating  

E-Print Network (OSTI)

Façade heating is a special application of radiant heating and cooling technology and is used to enhance the indoor comfort level of offices, hotels and museums. Mullion radiators are typically used to implement façade heating. This paper analyzes the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts the measured temperatures with a root mean squared error (RMSE) of the hot water return temperature, the mullion surface temperature, and the window surface temperature of 0.90°F, 0.98°F and 1.15°F, respectively. The factors which affect the heating capacity of mullion radiators have been analyzed. The analysis shows that the supply water temperature is the primary factor which affects the heating or cooing capacity of window mullions and the mullion surface temperature. Return water temperature and mullion surface temperature are quasi-linear functions often water supply temperature. Mullion surface temperature, indoor air temperature gradient on the glazing surface within one foot from mullions is much higher than in the central part of the window. The temperatures in the central 2 feet of a 4-foot window show almost no influence by the mullion surface temperature. Also, the conductive thermal resistance of the mullion double tubes with fillings between two tubes plays a decisive role in controlling the mullion and window frame temperatures.

Gong, X.; Archer, D. H.; Claridge, D. E.

2007-01-01T23:59:59.000Z

418

Numerical and experimental validation of heat and mass transfer during heat treatment of wood  

Science Conference Proceedings (OSTI)

In the current work, the three-dimensional Navier-Stokes equations along with the energy and concentration equations for the fluid coupled with the energy and mass conservation equations for the solid (wood) are solved to study the transient heat and ... Keywords: Luikov's model, conjugate problem, heat and mass transfer, high-temperature wood treatment, mathematical modeling, validation

R. Younsi; D. Kocaefe; S. Poncsak; T. Junjun

2007-05-01T23:59:59.000Z

419

Investigation of Enhanced Heat Transfer Coefficient with an Electrostatic Grid  

Science Conference Proceedings (OSTI)

Some major contributors to efficiency loss in a fossil or nuclear plant are associated with nucleation of moisture from superheated steam, formation and release of liquid films on turbine surfaces, and the flow and condensation of moist steam into the turbine exhaust and condenser. This report investigates the possible effect of an electrostatic charge on these processes and therefore on heat transfer.

2004-09-15T23:59:59.000Z

420

A mesoscopic description of radiative heat transfer at the nanoscale  

E-Print Network (OSTI)

We present a formulation of the nanoscale radiative heat transfer (RHT) using concepts of mesoscopic physics. We introduce the analog of the Sharvin conductance using the quantum of thermal conductance. The formalism provides a convenient framework to analyse the physics of RHT at the nanoscale. Finally, we propose a RHT experiment in the regime of quantized conductance.

Svend-Age Biehs; Emmanuel Rousseau; Jean-Jacques Greffet

2011-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Integration of Heat Transfer, Stress, and Particle Trajectory Simulation  

Science Conference Proceedings (OSTI)

Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

Thuc Bui; Michael Read; Lawrence ives

2012-05-17T23:59:59.000Z

422

Heat transfer in inertial confinement fusion reactor systems  

SciTech Connect

The short time and deposition distance for the energy from inertial fusion products results in local peak power densities on the order of 10/sup 18/ watts/m/sup 3/. This paper presents an overview of the various inertial fusion reactor designs which attempt to reduce these peak power intensities and describes the heat transfer considerations for each design.

Hovingh, J.

1980-04-23T23:59:59.000Z

423

Combined heat and mass transfer device for improving separation process  

DOE Patents (OSTI)

A two-phase small channel heat exchange matrix for providing simultaneous heat transfer and mass transfer at a single, predetermined location within a separation column, whereby the thermodynamic efficiency of the separation process is significantly improved. The small channel heat exchange matrix is comprised of a series of channels having a hydraulic diameter no greater than 5.0 mm. The channels are connected to an inlet header for supplying a two-phase coolant to the channels and an outlet header for receiving the coolant horn the channels. In operation, the matrix provides the liquid-vapor contacting surfaces within a separation column, whereby liquid descends along the exterior surfaces of the cooling channels and vapor ascends between adjacent channels within the matrix. Preferably, a perforated and concave sheet connects each channel to an adjacent channel, such that liquid further descends along the concave surfaces of the sheets and the vapor further ascends through the perforations in the sheets. The size and configuration of the small channel heat exchange matrix allows the heat and mass transfer device to be positioned within the separation column, thereby allowing precise control of the local operating conditions within the column and increasing the energy efficiency of the process.

Tran, Thanh Nhon

1997-12-01T23:59:59.000Z

424

Thermodynamics of enhanced heat transfer: a model study  

E-Print Network (OSTI)

Situations where a spontaneous process of energy or matter transfer is enhanced by an external device are widespread in nature (human sweating system, enzyme catalysis, facilitated diffusion across bio-membranes, industrial heat exchangers). The thermodynamics of such processes remains however open. Here we study enhanced heat transfer by a model junction immersed between two thermal baths at different temperatures $T_h$ and $T_c$ ($T_h>T_c$). The transferred heat power is enhanced via controlling the junction by means of external time-dependent fields. Provided that the spontaneous heat flow process is optimized over the junction Hamiltonian, any enhancement of this spontaneous process does demand consumption and subsequent dissipation of work. The efficiency of enhancement is defined via the increment in the heat power divided over the amount of consumed work. We show that this efficiency is bounded from above by $T_c/(T_h-T_c)$. Formally this is identical to the Carnot bound for the efficiency of ordinary ...

Hovhannisyan, Karen; 10.1088/1742-5468/2010/06/P06010

2010-01-01T23:59:59.000Z

425

Estimation of heat transfer in oscillating annular flow using artifical neural networks  

Science Conference Proceedings (OSTI)

In this study, the prediction of heat transfer from a surface having constant heat flux subjected to oscillating annular flow is investigated using artificial neural networks (ANNs). An experimental study is carried out to estimate the heat transfer ... Keywords: Annular duct, Artificial neural network, Heat transfer, Oscillating flow

Unal Akdag; M. Aydin Komur; A. Feridun Ozguc

2009-09-01T23:59:59.000Z

426

Influence of Infrared Radiation on Attic Heat Transfer  

E-Print Network (OSTI)

An experimental study concerned with different modes of heal transfer in fibrous and cellulose insulating material is presented. A series of experiments were conducted using an attic simulator to determine the effects of ventilation on attic heat transfer, and the effect of infrared radiation on the thermal conductivity of the insulation system and on attic heat transfer. All the tests were performed at steady state conditions by controlling the roof deck temperature. Calculations are performed for insulation thicknesses between 1 inch (2.54cm) and 6.0 inches (15.24cm) and roof deck temperatures between 145°F (62.78°C) and 100°F (36.78°C). The temperature profiles within the insulation were measured by placing thermocouples at various levels within the insulation. The profiles for the cellulose insulation are linear. The profiles within the glass fiber insulation are non-linear due to the effect of infrared radiation. Also heat fluxes were measured through different insulation thicknesses and for different roof temperatures. It was found that a radiant barrier such as aluminum foil can reduce the heat flux significantly. Experimental results were compared to a Three-Region approximate solution developed at Oak Ridge National Laboratories (ORNL). The model was in good agreement with experimental results.

Katipamula, S.; Turner, W. D.; Murphy, W. E.; O'Neal, D. L.

1985-01-01T23:59:59.000Z

427

MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION  

SciTech Connect

In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

2010-07-18T23:59:59.000Z

428

Heat transfer and hydrodynamics analysis of a novel dimpled tube  

SciTech Connect

In the present investigation, heat transfer and hydrodynamics analysis of a new enhanced heat transfer tube with ellipsoidal dimples was carried out. The dimples are disposed to form a certain specified angle between the major axis of the ellipsoid and flow direction, and the direction of the major axis of each adjacent ellipsoidal dimple in the same cross-section is alternated. Experimental tests were carried out with heating water on the shell side with a constant flow rate, and cold air in the tube side with flow rates range from 1 to 55 m{sup 3}/h. The temperatures and pressures for the inlet and outlet of both sides were measured. The heat transfer and pressure drop of the new dimpled tube were investigated and compared with the results of a dimpled tube with spherical dimples and a conventional smooth tube. The computed results indicated that the Nusselt number for ellipsoidal dimpled tube and spherical dimpled tube are 38.6-175.1% and 34.1-158% higher than that for the smooth tube respectively. The friction factors of dimpled tube increase by 26.9-75% and 32.9-92% for ellipsoidal and spherical dimples compared with the smooth tube respectively. It was perceived that ellipsoidal dimple roughness accelerates transition to critical Reynolds numbers down to less than 1000. By integrated performance evaluation of (Nu{sub a}/Nu{sub s})/(f{sub a}/f{sub s}), a maximum of about 87% heat transfer enhancement with the same friction penalty could be achieved by optimize the dimpled tube design. (author)

Wang, Yu.; He, Ya-Ling; Lei, Yong-Gang; Zhang, Jie [State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 (China)

2010-11-15T23:59:59.000Z

429

Simulation of a Heat Transfer in Porous Media  

E-Print Network (OSTI)

We are motivated to model a heat transfer to a multiple layer regime and their optimization for heat energy resources. Such a problem can be modeled by a porous media with different phases (liquid and solid). The idea arose of a geothermal energy reservoir which can be used by cities, e.g. Berlin. While hot ground areas are covered to most high populated cites, the energy resources are important and a shift to use such resources are enormous. We design a model of the heat transport via the flow of water through the heterogeneous layer of the underlying earth sediments. We discuss a multiple layer model, based on mobile and immobile zones. Such numerical simulations help to economize on expensive physical experiments and obtain control mechanisms for the delicate heating process.

Juergen Geiser

2012-05-11T23:59:59.000Z

430

Coupled Reactor Kinetics and Heat Transfer Model for Heat Pipe Cooled Reactors  

SciTech Connect

Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). The paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities.

WRIGHT,STEVEN A.; HOUTS,MICHAEL

2000-11-22T23:59:59.000Z

431

Solidification Heat Transfer Analysis of AZ91D Cast Strip by Using a ...  

Science Conference Proceedings (OSTI)

The heat transfer coefficient between the molten magnesium ally and copper roll is important to cast magnesium strip. In the present study investigate the heat ...

432

Exploring the Limits of Boiling and Evaporative Heat Transfer Using Micro/Nano Structures.  

E-Print Network (OSTI)

??This dissertation presents a study exploring the limits of phase-change heat transfer with the aim of enhancing critical heat flux (CHF) in pool boiling and… (more)

Lu, Ming-Chang

2010-01-01T23:59:59.000Z

433

Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor  

Science Conference Proceedings (OSTI)

This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

Scheele, Randall D.; Casella, Andrew M.

2010-09-28T23:59:59.000Z

434

High Operating Temperature Liquid Metal Heat Transfer Fluids  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Metal Liquid Metal Heat Transfer Fluids UCLA, UCB, Yale DE-EE0005941 | April 15, 2013 | Ju 1.1 Thermochemistry modeling * Continue CALPHAD based calculations to search for optimal ternary alloy compositions. * Initiate development of liquid density models. 1.2 Combinatorial synthesis and characterization * Pipe-Liquid interaction of compositional library * More alloys, alloy additions and effect on liquidus temperatures * Iteratively optimize the compositions. 1.3 Corrosion characterization and mitigation * Tune static corrosion testing systems for testing over an extended period of time. * Perform analysis of the micro mechanical testing on the oxide layers. 1.4 Heat transfer characterization and modeling * Complete the construction of the flow loop and perform experiments to measure

435

Advanced Heat Transfer Fluids for Concentrated Solar Power (CSP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Advanced Heat Transfer Fluids for Concentrated Solar Power (CSP) Applications November 1, 2011 Tweet EmailPrint The current levelized cost of energy (LCOE) from concentrated solar power (CSP) is ~ $0.11/kWh. The U.S. Department of Energy has set goals to reduce this cost to ~$0.07/kWh with 6 hours of storage by 2015 and to ~$0.05/kWh with 16 hours of storage by 2020. To help meet these goals, scientists at Argonne National Laboratory are working to improve the overall CSP plant efficiency by enhancing the thermophysical properties of heat transfer

436

Heat transfer research and power cycle transient modeling  

DOE Green Energy (OSTI)

Fine axial flutes enhance heat transfer in vertical shell-and-tube exchangers with water inside the tubes and ammonia evaporating or condensing in layer flow on the shell side. Single-tube experiments with R-11 and ammonia indicate local shell-side coefficients 3 to 5 times those for corresponding smooth tubes. Single-tube experiments with water indicate that at moderate velocities the tube-side coefficients are enhanced by a factor equal to the ratio of fluted-to-smooth surface areas while the fluid friction is similarly increased. The experimental data are transformed into mean individual coefficients for ammonia and water. Overall coefficients for a particular case are presented to illustrate the efficacy of enhancement by flutes on one or both sides of the heat transfer surface. Means are described for using emerging data to predict the static and dynamic behavior of the power cycle and the interactions of components throughout the complete power plant.

Rothfus, R.R.; Neuman, C.P.

1977-03-23T23:59:59.000Z

437

Optical techniques for fluid flow and heat transfer  

Science Conference Proceedings (OSTI)

A review is presented of optical measuring techniques employed in momentum heat and mass transfer studies. A classification is given of those techniques that are nowadays widely employed in studies to advance the understanding of transport phenomena in fluids. Techniques that employ effects caused by fluid molecules are briefly treated, and examples of measurements are given to demonstrate the kind of information that can be obtained by these techniques. Optical techniques using tracers to obtain transport information are summarized, and laser-Doppler anemometry and its application to fluid flow studies are emphasized. Applications of this technique in single-phase and two-phase flows are given that demonstrate its potential in experimental fluid mechanics and convective heat transfer studies. 63 refs.

Durst, F. (Erlangen-Nuernberg Universitaet, Erlangen (Germany, F.R.))

1990-01-01T23:59:59.000Z

438

Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities  

Science Conference Proceedings (OSTI)

The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

Lee, S.Y.

1999-01-13T23:59:59.000Z

439

Combustion Simulations [Heat Transfer and Fluid Mechanics] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Simulations Combustion Simulations Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Combustion Simulations Density Distribution of Spray in Near-Injector Region Density Distribution of Spray in Near-Injector Region. Click on image to view larger image. Development of computer models based on Front-Tracking and

440

Rocket-borne, low gravity cryogenic heat transfer experiment  

SciTech Connect

From AIAA/NSA/ASTM/IES 7th space simulation conference; Los Angeles, Calif11nia, USA (12 Nov 1973). In order to obtain steady state data on nucleate boiling heat transfer to liquid helium in a nearly zero gravity environment a rocket-borne experiment was designed, built and successfully flown. A description of the apparatus and flight is presented along with preliminary results. (auth)

Williamson, K.D. Jr.; Edeskuty, F.J.; Taylor, J.F.

1974-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "molten-salt heat transfer" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Heat transfer investigations in a slurry bubble column  

SciTech Connect

Slurry bubble columns, for use in Fisher-Tropsch synthesis, have been investigated. Two bubble columns (0.108 and 0.305 m internal diameter) were set up and experiments were conducted to determine gas holdup and heat transfer coefficients. These columns were equipped with either single heat transfer probes of different diameters, or bundles of five-, seven- or thirty-seven tubes. The experiments were conducted for two- and three-phase systems; employing for gas phase: air and nitrogen, liquid phase: water and Therminol-66, and solid phase: red iron oxide (1.02, 1.70 and 2.38 {mu}m), glass beads (50.0, 90.0, 119.0 and 143.3 {mu}m), silica sand (65 {mu}), and magnetite (28.0, 35.7, 46.0, 58.0, 69.0, 90.5, 115.5, and 137.5 {mu}m). The column temperature was varied between 298--523 K, gas velocity between 0--40 cm/s, and solids concentration between 0--50 weight percent. The holdup and heat transfer data as a function of operating and system parameters were employed to assess the available correlations and semitheoretical models, and to develop new correlations. Information concerning the design and scale-up of larger units is presented. Specific research work that need to be undertaken to understand the phenomena of heat transfer and gas holdup is outlined so that efficient gas conversion and catalyst usage may be accomplished in slurry bubble columns. 130 refs., 177 figs., 54 tabs.

Saxena, S.C.; Rao, N.S.; Vadivel, R.; Shrivastav, S.; Saxena, A.C.; Patel, B.B.; Thimmapuram, P.R.; Kagzi, M.Y.; Khan, I.A.; Verma, A.K.

1991-02-01T23:59:59.000Z

442

Nonaqueous purification of mixed nitrate heat transfer media  

DOE Patents (OSTI)

A nonaqueous, in-line method for removing carbonate and hydroxide contamination from a molten mixed sodium nitrate/potassium nitrate heat transfer salt. The method comprises dissolving a stoichiometric quantity of anhydrous Ca(NO.sub.3).sub.2 in the melt whereby an insoluble CaCO.sub.3 and Ca(OH).sub.2 precipitate is formed. The precipitate can be removed by settling, filtration or floatation techniques.

Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

1983-12-20T23:59:59.000Z

443

SunShot Initiative: Advanced Heat Transfer Fluids and Novel Thermal...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation to someone by E-mail Share SunShot Initiative: Advanced Heat Transfer Fluids and Novel Thermal...

444

Heat transfer rates for filmwise, dropwise, and superhydrophobic condensation on silicon substrates  

E-Print Network (OSTI)

Condensation, a two-phase heat transfer processes, is commonly utilized in industrial systems. Condensation heat transfer can be optimized by using surfaces in which dropwise condensation (DWC) occurs, and even further ...

Hery, Travis M

2011-01-01T23:59:59.000Z

445

Heat transfer during film condensation of potassium vapor on a horizontal plate  

E-Print Network (OSTI)

The object of the investigation is to analyze the following two features of heat transfer during condensation of potassium vapor: a. Heat transfer during film condensation of a pure saturated potassium vapor on a horizontal ...

Meyrial, Paul M.

1968-01-01T23:59:59.000Z

446

Scalable photon monte carlo algorithms and software for the solution of radiative heat transfer problems  

Science Conference Proceedings (OSTI)

Radiative heat transfer plays a central role in many combustion and engineering applications. Because of its highly nonlinear and nonlocal nature, the computational cost can be extremely high to model radiative heat transfer effects accurately. In this ...

Ivana Veljkovic; Paul E. Plassmann

2005-09-01T23:59:59.000Z

447

Simulation of heat transfer in the unsaturated zone  

SciTech Connect

Heat transfer can play an important role in fluid flow near the emplacement site of high-level nuclear waste. The effects on far- field flow can be important in understanding net moisture fluxes above the repository zone. The convection in the unsaturated zone at the Yucca Mountain site was responsible for this movement. If this is so, then the convection could provide a mechanism for drying the rock above the repository zone and thus provide a buffer for heavy rainfall events. In addition, the convection would increase the movement of gaseous radionuclides such as {sup 14}CO{sub 2}, tritiated water vapor, and {sup 129}I (Weeks, 1987). Because of the complexity of the problem, numerical models were required to calculate gas flow and vapor transport at the site. Kipp previously modeled this problem using the code HST3D. This code represents the flow of a single-phase fluid with both heat- and mass-transfer effects included. Water density and partial pressure effects are accounted for by the virtual temperature method. In this paper, the problem was simulated using the code FEHMN, a finite-element heat- and mass-transfer code being developed for the Yucca Mountain Project. The work described in this paper was done in preparation of the upcoming problem to be formulated for the Performance Assessment Calculation Exercise. 5 refs., 9 figs., 1 tab.

Zyvoloski, G.

1990-02-01T23:59:59.000Z

448

Situ soil sampling probe system with heated transfer line  

DOE Patents (OSTI)

The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.

Robbat, Jr., Albert (Andover, MA)

2002-01-01T23:59:59.000Z

449

Experimental study of mixed convection heat transfer in vertical helically coiled tube heat exchangers  

Science Conference Proceedings (OSTI)

In this study the mixed convection heat transfer in a coil-in-shell heat exchanger for various Reynolds numbers, various tube-to-coil diameter ratios and different dimensionless coil pitch was experimentally investigated. The experiments were conducted for both laminar and turbulent flow inside coil. Effects of coil pitch and tube diameters on shell-side heat transfer coefficient of the heat exchanger were studied. Different characteristic lengths were used in various Nusselt number calculations to determine which length best fits the data and several equations were proposed. The particular difference in this study in comparison with the other similar studies was the boundary conditions for the helical coils. The results indicate that the equivalent diameter of shell is the best characteristic length. (author)

Ghorbani, N. [School of Mechanical Engineering, University of Leeds, Leeds, England (United Kingdom); Taherian, H. [Department of Engineering Technology and Industrial Distribution, Texas A and M University, College Station, TX (United States); Gorji, M. [Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol (Iran); Mirgolbabaei, H. [Department of Mechanical Engineering, Islamic Azad University, Jouybar branch, Jouybar (Iran)

2010-10-15T23:59:59.000Z

450

HEAT TRANSFER ANALYSIS FOR NUCLEAR WASTE SOLIDIFICATION CONTAINER  

SciTech Connect

The Nuclear Nonproliferation Programs Design Authority is in the design stage of the Waste Solidification Building (WSB) for the treatment and solidification of the radioactive liquid waste streams generated by the Pit Disassembly and Conversion Facility (PDCF) and Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF). The waste streams will be mixed with a cementitious dry mix in a 55-gallon waste container. Savannah River National Laboratory (SRNL) has been performing the testing and evaluations to support technical decisions for the WSB. Engineering Modeling & Simulation Group was requested to evaluate the thermal performance of the 55-gallon drum containing hydration heat source associated with the current baseline cement waste form. A transient axi-symmetric heat transfer model for the drum partially filled with waste form cement has been developed and heat transfer calculations performed for the baseline design configurations. For this case, 65 percent of the drum volume was assumed to be filled with the waste form, which has transient hydration heat source, as one of the baseline conditions. A series of modeling calculations has been performed using a computational heat transfer approach. The baseline modeling results show that the time to reach the maximum temperature of the 65 percent filled drum is about 32 hours when a 43 C initial cement temperature is assumed to be cooled by natural convection with 27 C external air. In addition, the results computed by the present model were compared with analytical solutions. The modeling results will be benchmarked against the prototypic test results. The verified model will be used for the evaluation of the thermal performance for the WSB drum. Detailed results and the cases considered in the calculations will be discussed here.

Lee, S.

2009-06-01T23:59:59.000Z

451

Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers  

E-Print Network (OSTI)

to the International Journal of Compact Heat Exchangers, May 2003 #12;2 Measurements and Predictions of the Heat Transfer at the Tube-Fin Junction for Louvered Fin Heat Exchangers Abstract The dominant thermal resistance for most compact heat exchangers occurs on the air side and thus a detailed understanding of air side heat

Thole, Karen A.

452

Heat Transfer Applications for the Stimulated Reservoir Volume  

E-Print Network (OSTI)

Multistage hydraulic fracturing of horizontal wells continues to be a major technological tool in the oil and gas industry. Creation of multiple transverse fractures in shale gas has enabled production from very low permeability. The strategy entails the development of a Stimulated Reservoir Volume (SRV), defined as the volume of reservoir, which is effectively stimulated to increase the well performance. An ideal model for a shale gas SRV is a rectangle of length equal to horizontal well length and width equal to twice the half length of the created hydraulic fractures. This project focused on using the Multistage Transverse Fractured Horizontal Wells (MTFHW) for two novel applications. The first application considers using the SRV of a shale gas well, after the gas production rate drops below the economic limit, for low grade geothermal heat extraction. Cold water is pumped into the fracture network through one horizontal well drilled at the fracture tips. Heat is transferred to the water through the fracture surface. The hot water is then recovered through a second horizontal well drilled at the other end of the fracture network. The basis of this concept is to use the already created stimulated reservoir volume for heat transfer purposes. This technique was applied to the SRV of Haynesville Shale and the results were discussed in light of the economics of the project. For the second application, we considered the use of a similarly created SRV for producing hydrocarbon products from oil shale. Thermal decomposition of kerogen to oil and gas requires heating the oil shale to 700 degrees F. High quality saturated steam generated using a small scale nuclear plant was used for heating the formation to the necessary temperature. Analytical and numerical models are developed for modeling heat transfer in a single fracture unit of MTFHW. These models suggest that successful reuse of Haynesville Shale gas production wells for low grade geothermal heat extraction and the project appears feasible both technically and economically. The economics of the project is greatly aided by eliminating well drilling and completion costs. The models also demonstrate the success of using MTFHW array for heating oil shale using SMR technology.

Thoram, Srikanth

2011-08-01T23:59:59.000Z

453

Modeling of Heat and Mass Transfer in Fusion Welding  

Science Conference Proceedings (OSTI)

In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

Zhang, Wei [ORNL

2011-01-01T23:59:59.000Z

454

A composite grid solver for conjugate heat transfer in fluid-structure systems  

Science Conference Proceedings (OSTI)

We describe a numerical method for modeling temperature-dependent fluid flow coupled to heat transfer in solids. This approach to conjugate heat transfer can be used to compute transient and steady state solutions to a wide range of fluid-solid systems ... Keywords: Conjugate heat transfer, Incompressible flow, Multi-domain solvers, Numerical methods, Overlapping grids

William D. Henshaw; Kyle K. Chand

2009-06-01T23:59:59.000Z

455

An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes  

E-Print Network (OSTI)

-year research program in heat transfer and viscoelastic fluid flows, after working for some time in industry of All Sciences), Fluid Mechanics, Heat Transfer and related fluid-thermal-energy sciences; with emphases Press series Advances in Heat Transfer, Volume 19, and "Viscosity" in CRC Press' Measurement

Zhao, Tianshou

456

Numerical investigation of heat transfer enhancement by carbon nano fibers deposited on a flat plate  

Science Conference Proceedings (OSTI)

Numerical simulations of flow and heat transfer have been performed for flow over a plate surface covered with carbon nano fibers (CNFs). The CNFs influence on fluid flow and heat transfer has been investigated. Firstly, a stochastic model for CNFs deposition ... Keywords: Carbon nano fibers, Heat transfer, Lattice Boltzmann method

Nikola Pelevic; Theo Van Der Meer

2013-03-01T23:59:59.000Z