Powered by Deep Web Technologies
Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Molten Salts, Magnesium and Aluminum  

Science Conference Proceedings (OSTI)

Mar 1, 2011 ... Chloride 2011: Practice and Theory of Chloride-Based Metallurgy: Molten Salts, Magnesium and Aluminum Sponsored by: The Minerals, ...

2

Oxide Skin Strength Measurements on Molten Aluminum  

Science Conference Proceedings (OSTI)

Presentation Title, OXIDE SKIN STRENGTH MEASUREMENTS ON MOLTEN ALUMINUM – MANGANESE ALLOYS WITH AND WITHOUT SALT ON SURFACE

3

Distribution of Calcium and Aluminum between Molten Silicon and ...  

Science Conference Proceedings (OSTI)

Presentation Title, Distribution of Calcium and Aluminum between Molten ... Electrochemical deposition of high purity silicon from molten fluoride electrolytes.

4

Molten metal reactors  

SciTech Connect

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

2013-11-05T23:59:59.000Z

5

Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum  

SciTech Connect

Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

2007-08-16T23:59:59.000Z

6

ADVANCED CERAMIC COMPOSITES FOR MOLTEN ALUMINUM CONTACT APPLICATIONS  

Science Conference Proceedings (OSTI)

A new refractory material which was developed for use in molten aluminum contact applications was shown to exhibit improved corrosion and wear resistance leading to improved thermal management through reduced heat losses caused by refractory thinning and wastage. This material was developed based on an understanding of the corrosion and wear mechanisms associated with currently used aluminum contact refractories under a U.S. Department of Energy funded project to investigate multifunctional refractory materials for energy efficient handling of molten metals. This new material has been validated through an industrial trial at a commercial aluminum rod and cable mill. Material development and results of this industrial validation trial are discussed.

Hemrick, James Gordon [ORNL; Peters, Klaus-Markus [ORNL

2009-01-01T23:59:59.000Z

7

New Opportunities for Metals Extraction and Waste Treatment by Electrochemical Processing in Molten Salts  

E-Print Network (OSTI)

Molten salt electrolysis is a proven technology for the extraction of metals -- all the world's primary aluminum is produced in this manner. The unique properties of molten salts also make them

Sadoway, Donald R.

2001-01-01T23:59:59.000Z

8

A New Vacuum Degassing Process for Molten Aluminum  

Science Conference Proceedings (OSTI)

In order to maintain a low hydrogen content in molten aluminum, A porous refractory ... Metallurgical Performance of Salt and Chlorine Fluxing Technologies in ...

9

Molten Metal Safety Approach through a Network  

Science Conference Proceedings (OSTI)

Abstract Scope, Molten Metal explosion or splash is a major risk encountered in the ... In-Line Salt-ACD: A Chlorine–Free Technology for Metal Treatment.

10

Method of winning aluminum metal from aluminous ore  

DOE Patents (OSTI)

Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

Loutfy, Raouf O. (Naperville, IL); Keller, Rudolf (Naperville, IL); Yao, Neng-Ping (Clarendon Hills, IL)

1981-01-01T23:59:59.000Z

11

Recirculating Molten Metal Supply System And Method  

DOE Patents (OSTI)

The melter furnace includes a heating chamber (16), a pump chamber (18), a degassing chamber (20), and a filter chamber (22). The pump chamber (18) is located adjacent the heating chamber (16) and houses a molten metal pump (30). The degassing chamber (20) is located adjacent and in fluid communication with the pump chamber (18), and houses a degassing mechanism (36). The filter chamber (22) is located adjacent and in fluid communication with the degassing chamber (20). The filter chamber (22) includes a molten metal filter (38). The melter furnace (12) is used to supply molten metal to an externally located holder furnace (14), which then recirculates molten metal back to the melter furnace (12).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-07-01T23:59:59.000Z

12

Method and apparatus for atomization and spraying of molten metals  

DOE Patents (OSTI)

A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current.

Hobson, David O. (Oak Ridge, TN); Alexeff, Igor (Oak Ridge, TN); Sikka, Vinod K. (Clinton, TN)

1990-01-01T23:59:59.000Z

13

Method and apparatus for atomization and spraying of molten metals  

DOE Patents (OSTI)

A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current. 11 figs.

Hobson, D.O.; Alexeff, I.; Sikka, V.K.

1988-07-19T23:59:59.000Z

14

SOLDERING OF ALUMINUM BASE METALS  

DOE Patents (OSTI)

This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

Erickson, G.F.

1958-02-25T23:59:59.000Z

15

Rapid quenching of molten lithium-aluminum jets in water  

SciTech Connect

Control rods for the K production reactor at Savannah River, are grouped in assemblies of seven rods, called ``septifoils``. A problem area is that overheated cooling rods for these control rods might partially melt, with the resulting molten metal draining into the water at the bottom. Experiments were conducted in which up to 1 kg molten alloy was contacted with water at a time. Conditions were varied in an attempt to include those factors that might trigger a vapor explosion. Results indicate that a steam explosion that would damage the septifoil is unlikely.

Greene, G.A. [Brookhaven National Lab., Upton, NY (United States); Cho, D.H. [Argonne National Lab., IL (United States); Hyder, M.L.; Allison, D.K. [Westinghouse Savannah River Co., Aiken, SC (United States); Ellison, P.G. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1992-10-01T23:59:59.000Z

16

Aluminum low temperature smelting cell metal collection  

DOE Patents (OSTI)

A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

Beck, Theodore R. (Seattle, WA); Brown, Craig W. (Seattle, WA)

2002-07-16T23:59:59.000Z

17

Process for recovering tritium from molten lithium metal  

DOE Patents (OSTI)

Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

Maroni, Victor A. (Naperville, IL)

1976-01-01T23:59:59.000Z

18

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents (OSTI)

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

19

Development and Demonstration of a Molten Metal Cooling Trough ...  

Science Conference Proceedings (OSTI)

This paper presents a new technology that allows cooling molten metal directly into ... Metallurgical Performance of Salt and Chlorine Fluxing Technologies in ...

20

Towards Sustainable Metals Production by Molten Oxide Electrolysis  

Science Conference Proceedings (OSTI)

Liquid-metal/molten-salt cells have been shown to operate as rechargeable batteries that have the potential to handle colossal currents thereby enabling us to ...

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electrochemical cell utilizing molten alkali metal electrode-reactant  

DOE Patents (OSTI)

An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

Virkar, Anil V. (Sandy, UT); Miller, Gerald R. (Salt Lake City, UT)

1983-11-04T23:59:59.000Z

22

Pump for molten metal or other fluid  

SciTech Connect

A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.

Horton, James A. (Livermore, CA); Brown, Donald L. (Livermore, CA)

1994-01-01T23:59:59.000Z

23

Aluminum reference electrode  

DOE Patents (OSTI)

A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

Sadoway, Donald R. (Belmont, MA)

1988-01-01T23:59:59.000Z

24

Aluminum reference electrode  

DOE Patents (OSTI)

A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

Sadoway, D.R.

1988-08-16T23:59:59.000Z

25

Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions  

SciTech Connect

Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Clean Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy conservation. In this program, the salt metal interactions were studies and the emissions at laboratory scale at OSU were monitored. The goal of the project was to obtain a fundamental understanding, based on first principles, of the pollutant formation that occurs when the salts are used in furnaces. This information will be used to control process parameters so that emissions are consistently below the required levels. The information obtained in these experiments will be used in industrial furnaces at aluminum plants and which will help in optimizing the process.

Yogeshwar Sahai

2007-07-31T23:59:59.000Z

26

Production of aluminum metal by electrolysis of aluminum sulfide  

DOE Patents (OSTI)

Production of metallic aluminum by the electrolysis of Al.sub.2 S.sub.3 at 700.degree.-800.degree. C. in a chloride melt composed of one or more alkali metal chlorides, and one or more alkaline earth metal chlorides and/or aluminum chloride to provide improved operating characteristics of the process.

Minh, Nguyen Q. (Woodridge, IL); Loutfy, Raouf O. (Tucson, AZ); Yao, Neng-Ping (Clarendon Hills, IL)

1984-01-01T23:59:59.000Z

27

Advanced Ceramic Composites for Improved Thermal Management in Molten Aluminum Applications  

Science Conference Proceedings (OSTI)

Degradation of refractories in molten aluminum applications leads to energy inefficiencies, both in terms of increased energy consumption during use as well as due to frequent and premature production shutdowns. Therefore, the ability to enhance and extend the performance of refractory systems will improve the energy efficiency through out the service life. TCON? ceramic composite materials are being produced via a collaboration between Fireline TCON, Inc. and Rex Materials Group. These materials were found to be extremely resistant to erosion and corrosion by molten aluminum alloys during an evaluation funded by the U.S. Department of Energy and it was concluded that they positively impact the performance of refractory systems. These findings were subsequently verified by field tests. Data will be presented on how TCON shapes are used to significantly improve the thermal management of molten aluminum contact applications and extend the performance of such refractory systems.

Peters, Klaus-Markus [ORNL; Cravens, Robert [Rex Materials Group; Hemrick, James Gordon [ORNL

2009-01-01T23:59:59.000Z

28

Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor  

Science Conference Proceedings (OSTI)

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

2012-11-13T23:59:59.000Z

29

Liquid-metal embrittlement of refractory metals by molten plutonium  

Science Conference Proceedings (OSTI)

Embrittlement by molten plutonium of the refractory metals and alloys W-25 wt % Re, tantalum, molybdenum, and Ta-10 wt % W was studied. At 900/sup 0/C and a strain rate of 10/sup -4/ s/sup -1/, the materials tested may be ranked in order of decreasing susceptibility to liquid-plutonium embrittlement as follows: molybdenum, W-25 wt % Re, Ta-10 wt % W, and tantalum. These materials exhibited a wide range in susceptibility. Embrittlement was found to exhibit a high degree of temperature and strain-rate dependence, and we present arguments that strongly support a stress-assisted, intergranular, liquid-metal corrosion mechanism. We also believe microstructure plays a key role in the extent of embrittlement. In the case of W-25 wt % Re, we have determined that a dealloying corrosion takes place in which rhenium is selectively withdrawn from the alloy.

Lesuer, D.R.; Bergin, J.B.; McInturff, S.A.; Kuhn, B.A.

1980-07-01T23:59:59.000Z

30

Recipients: The 1998 LMD Light Metals Award  

Science Conference Proceedings (OSTI)

Paper Title: "Coalescence Behaviour of Aluminum Droplets under Molten Salt Flux Cover," in Light Metals 1997, edited by Barry Welch.

31

Molten metal feed system controlled with a traveling magnetic field  

DOE Patents (OSTI)

A continuous metal casting system in which the feed of molten metal is controlled by means of a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p.sub.c =p.sub.g -p.sub.m where p.sub.c is the desired pressure in the caster, p.sub.g is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p.sub.m is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristics of the metal being cast.

Praeg, Walter F. (Palos Park, IL)

1991-01-01T23:59:59.000Z

32

Molten metal feed system controlled with a traveling magnetic field  

DOE Patents (OSTI)

An apparatus for controlling the feed of molten metal in a continuous metal casting system comprising a linear induction motor capable of producing a magnetic traveling wave in a duct that connects a reservoir of molten metal to a caster. The linear induction motor produces a traveling magnetic wave in the duct in opposition to the pressure exerted by the head of molten metal in the reservoir so that p{sub c} = p{sub g} {minus} p{sub m} where p{sub c} is the desired pressure in the caster, p{sub g} is the gravitational pressure in the duct exerted by the force of the head of molten metal in the reservoir, and p{sub m} is the electromagnetic pressure exerted by the force of the magnetic field traveling wave produced by the linear induction motor. The invention also includes feedback loops to the linear induction motor to control the casting pressure in response to measured characteristic of the metal being cast. 8 figs.

Praeg, W.F.

1989-03-06T23:59:59.000Z

33

Electrochemical devices utilizing molten alkali metal electrode-reactant  

DOE Patents (OSTI)

Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

1985-07-10T23:59:59.000Z

34

Casting Apparatus Including A Gas Driven Molten Metal Injector And Method  

DOE Patents (OSTI)

The casting apparatus (50) includes a holding vessel (10) for containing a supply of molten metal (12) and a casting mold (52) located above the holding vessel (10) and having a casting cavity (54). A molten metal injector (14) extends into the holding vessel (10) and is at least partially immersed in the molten metal (12) in the holding vessel (10). The molten metal injector (14) is in fluid communication with the casting cavity (54). The molten metal injector (14) has an injector body (16) defining an inlet opening (24) for receiving molten metal into the injector body (16). A gas pressurization source (38) is in fluid communication with the injector body (16) for cyclically pressurizing the injector body (16) and inducing molten metal to flow from the injector body (16) to the casting cavity (54). An inlet valve (42) is located in the inlet opening (24) in the injector body (16) for filling molten metal into the injector body (16). The inlet valve (42) is configured to prevent outflow of molten metal from the injector body (16) during pressurization and permit inflow of molten metal into the injector body (16) after pressurization. The inlet valve (42) has an inlet valve actuator (44) located above the surface of the supply of molten metal (12) and is operatively connected to the inlet valve (42) for operating the inlet valve (42) between open and closed positions.

Meyer, Thomas N. (Murrysville, PA)

2004-06-01T23:59:59.000Z

35

Electrodeposition of cobalt and cobalt-aluminum alloys from a room temperature chloroaluminate molten salt  

Science Conference Proceedings (OSTI)

The electrodeposition of magnetic cobalt-aluminum alloys was investigated in the Lewis acidic aluminum chloride-1-methyl-3-ethylimidazolium chloride [60.0--40.0 mole percent (m/o)] molten salt containing electrogenerated Co(II) at 25 C. rotating disk electrode voltammetry indicated that it is possible to produce alloy deposits containing up to 62 atomic (a/o) aluminum at potentials positive of that for the bulk deposition of aluminum. The onset of the underpotential-driven aluminum codeposition process occurred at around 0.40 V vs. the Al/Al(III) couple in a 5.00 mmol/liter Co(II) solution but decreased as the Co(II) concentration increased. The Co-Al alloy composition displayed an inverse dependence on the Co(II) concentration but tended to become independent of concentration as the potential was decreased to 0 V. A rotating ring-disk electrode voltammetry technique was developed to analyze the composition and structure of the Co-Al alloy deposits. This technique takes advantage of the fact that the mass-transport-limited reduction of cobalt(II) occurs at potentials considerably more positive than that at which aluminum codeposition occurs. Scanning electron microscopy and energy dispersive X-ray analysis of bulk electrodeposits revealed that deposit morphology depends strongly upon aluminum content/deposition potential; deposits produced at 0.40 V from 50.0 mmol/liter Co(II) solutions consisted of 10 to 20 {micro}m diam multifaceted nodules of pure hcp cobalt, whereas those obtained at 0.20 V were dense and fine grained, containing about 4 a/o Al. Deposits produced at 0 V had the visual appearance of a loosely adherent black powder. X-ray diffraction measurements revealed a lattice expansion and a decrease in grain size as the hcp cobalt was alloyed with increasing amounts of aluminum.

Mitchell, J.A.; Pitner, W.R.; Hussey, C.L. [Univ. of Mississippi, University, MS (United States). Dept. of Chemistry; Stafford, G.R. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Materials Science and Engineering Lab.

1996-11-01T23:59:59.000Z

36

Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals  

SciTech Connect

The goal of the project was to extend the lifetime of hardware submerged in molten metal by an order of magnitude and to improve energy efficiency of molten metal handling process. Assuming broad implementation of project results, energy savings in 2020 were projected to be 10 trillion BTU/year, with cost savings of approximately $100 million/year. The project team was comprised of materials research groups from West Virginia University and the Missouri University of Science and Technology formerly University of Missouri – Rolla, Oak Ridge National Laboratory, International Lead and Zinc Research Organization, Secat and Energy Industries of Ohio. Industry partners included six suppliers to the hot dip galvanizing industry, four end-user steel companies with hot-dip Galvanize and/or Galvalume lines, eight refractory suppliers, and seven refractory end-user companies. The results of the project included the development of: (1) New families of materials more resistant to degradation in hot-dip galvanizing bath conditions were developed; (2) Alloy 2020 weld overlay material and process were developed and applied to GI rolls; (3) New Alloys and dross-cleaning procedures were developed for Galvalume processes; (4) Two new refractory compositions, including new anti-wetting agents, were identified for use with liquid aluminum alloys; (5) A new thermal conductivity measurement technique was developed and validated at ORNL; (6) The Galvanizing Energy Profiler Decision Support System (GEPDSS)at WVU; Newly Developed CCW Laser Cladding Shows Better Resistance to Dross Buildup than 316L Stainless Steel; and (7) A novel method of measuring the corrosion behavior of bath hardware materials. Project in-line trials were conducted at Southwire Kentucky Rod and Cable Mill, Nucor-Crawfordsville, Nucor-Arkansas, Nucor-South Carolina, Wheeling Nisshin, California Steel, Energy Industries of Ohio, and Pennex Aluminum. Cost, energy, and environmental benefits resulting from the project are due to: i) a reduced number of process shutdowns to change hardware or lining material, ii) reduced need to produce new hardware or lining material, iii) improved product quality leads to reduced need to remake product or manufacturing of new product, iv) reduction in contamination of melt from degradation of refractory and metallic components, v) elimination of worn hardware will increase efficiency of process, vi) reduced refractory lining deterioration or formation of a less insulating phase, would result in decreased heat loss through the walls. Projected 2015 benefits for the U.S. aluminum industry, assuming 21% market penetration of improved refractory materials, are energy savings of approximately 0.2 trillion BTU/year, cost savings of $2.3 billion/year and carbon reductions of approximately 1.4 billion tons/year. The carbon reduction benefit of the project for the hot-dip galvanize and aluminum industries combined is projected to be approximately 2.2 billion tons/year in 2015. Pathways from research to commercialization were based on structure of the project’s industrial partnerships. These partnerships included suppliers, industrial associations, and end users. All parties were involved in conducting the project including planning and critiquing the trials. Supplier companies such as Pyrotech Metaullics, Stoody, and Duraloy have commercialized products and processes developed on the project.

Xingbo Liu; Ever Barbero; Bruce Kang; Bhaskaran Gopalakrishnan; James Headrick; Carl Irwin

2009-02-06T23:59:59.000Z

37

Molten salt/metal extractions for recovery of transuranic elements  

SciTech Connect

The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed.

Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

1992-01-01T23:59:59.000Z

38

Molten salt/metal extractions for recovery of transuranic elements  

SciTech Connect

The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed.

Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

1992-09-01T23:59:59.000Z

39

Quick Plastic Forming of Aluminum Sheet Metal  

NLE Websites -- All DOE Office Websites (Extended Search)

General Motors' President North America, Gary Cowger, General Motors' President North America, Gary Cowger, reviews the 2004 Chevy Malibu Maxx after introducing it to the media at the New York Auto Show. (photo courtesy of General Motors) Quick Plastic Forming of Aluminum Sheet Metal Background Aluminum automotive components made using a hot blow forming process are reducing vehicle weight and increasing the fuel efficiency of today's cars. However, before General Motors (GM) and the U.S. Department of Energy (DOE) sponsored research in this technol- ogy, blow forming of aluminum was not a viable process for automakers. The prior blow forming process,

40

Aluminum - Fly Ash Metal Matrix Composites as Advanced Automobile Material  

Science Conference Proceedings (OSTI)

Metal matrix composites such as silicon carbide-aluminum, alumina-aluminum, and graphite-aluminum represent a class of emerging materials with significant potential for commercial use in the auto and aerospace industries. In industrial foundry trials, a joint industry and Department of Energy project demonstrated a promising new process for producing a low cost aluminum metal matrix composite containing fly ash particles.

2001-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Wetting of Al2O3 by molten aluminum: the influence of BaSO4 additions  

Science Conference Proceedings (OSTI)

The effects of BaSO4 additions on the wetting of alumina by molten aluminum were studied by the sessile drop technique. To study the effect of BaSO4 decomposition (1100-1150°C), the additions were treated at two temperatures ...

Joaquin Aguilar-Santillan

2008-01-01T23:59:59.000Z

42

Application of molten salts in pyrochemical processing of reactive metals  

Science Conference Proceedings (OSTI)

Various mixes of chloride and fluoride salts are used as the media for conducting pyrochemical processes in the production and purification of reactive metals. These processes generate a significant amount of contaminated waste that has to be treated for recycling or disposal. Molten calcium chloride based salt systems have been used in this work to electrolytically regenerate calcium metal from calcium oxide for the in situ reduction of reactive metal oxides. The recovery of calcium is characterized by the process efficiency to overcome back reactions in the electrowinning cell. A thermodynamic analysis, based on fundamental rate theory, has been performed to understand the process parameters controlling the metal deposition, rate, behavior of the ceramic anode-sheath and influence of the back-reactions. It has been observed that the deposition of calcium is dependent on the ionic diffusion through the sheath. It has also been evidenced that the recovered calcium is completely lost through the back-reactions in the absence of a sheath. A practical scenario has also been presented where the electrowon metal can be used in situ as a reductant to reduce another reactive metal oxide.

Mishra, B.; Olson, D.L. (Colorado School of Mines, Golden, CO (United States). Kroll Inst. for Extractive Metallurgy); Averill, W.A. (EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant)

1992-01-01T23:59:59.000Z

43

Coated Metal Articles and Method of Making  

DOE Patents (OSTI)

The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

Boller, Ernest R.; Eubank, Lowell D.

2004-07-06T23:59:59.000Z

44

Molten salt bath circulation design for an electrolytic cell  

DOE Patents (OSTI)

An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

Dawless, Robert K. (Monroeville, PA); LaCamera, Alfred F. (Trafford, PA); Troup, R. Lee (Murrysville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA)

1999-01-01T23:59:59.000Z

45

Molten salt bath circulation design for an electrolytic cell  

DOE Patents (OSTI)

An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

1999-08-17T23:59:59.000Z

46

Production of Oxygen Gas and Liquid Metal by Electrochemical Decomposition of Molten Iron Oxide  

E-Print Network (OSTI)

Molten oxide electrolysis (MOE) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful deployment of MOE hinges upon the existence of an inert anode capable of ...

Wang, Dihua

47

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500{degree}C. The method comprises positioning a solid Li-Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, E.C.

1993-12-23T23:59:59.000Z

48

Method for producing hydrocarbon fuels from heavy polynuclear hydrocarbons by use of molten metal halide catalyst  

DOE Patents (OSTI)

In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst, thereafter separating at least a substantial portion of the carbonaceous material associated with the reaction mixture from the spent molten metal halide and thereafter regenerating the metal halide catalyst, an improvement comprising contacting the spent molten metal halide catalyst after removal of a major portion of the carbonaceous material therefrom with an additional quantity of hydrogen is disclosed.

Gorin, Everett (San Rafael, CA)

1979-01-01T23:59:59.000Z

49

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, Eddie C. (Park Forest, IL)

1995-01-01T23:59:59.000Z

50

Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool  

DOE Patents (OSTI)

In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

2002-01-29T23:59:59.000Z

51

Method for producing hydrocarbon fuels and fuel gas from heavy polynuclear hydrocarbons by the use of molten metal halide catalysts  

DOE Patents (OSTI)

In a process for hydrocracking heavy polynuclear carbonaceous feedstocks to produce lighter hydrocarbon fuels by contacting the heavy feedstocks with hydrogen in the presence of a molten metal halide catalyst in a hydrocracking zone, thereafter separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide and thereafter regenerating the spent molten metal halide by incinerating the spent molten metal halide by combustion of carbon and sulfur compounds in the spent molten metal halide in an incineration zone, the improvement comprising: (a) contacting the heavy feedstocks and hydrogen in the presence of the molten metal halide in the hydrocracking zone at reaction conditions effective to convert from about 60 to about 90 weight percent of the feedstock to lighter hydrocarbon fuels; (b) separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide; (c) contacting the spent molten metal halide with oxygen in a liquid phase gasification zone at a temperature and pressure sufficient to vaporize from about 25 to about 75 weight percent of the spent metal halide, the oxygen being introduced in an amount sufficient to remove from about 60 to about 90 weight percent of the carbon contained in the spent molten metal halide to produce a fuel gas and regenerated metal halide; and (d) incinerating the spent molten metal halide by combusting carbon and sulfur compounds contained therein.

Gorin, Everett (San Rafael, CA)

1979-01-01T23:59:59.000Z

52

Towards Sustainable Metal Production by Molten Oxide Electrolysis  

Science Conference Proceedings (OSTI)

Cathodic Behavior of Silicon (?) in BaF2-CaF2 –SiO2 Melts ... Electrochemical Impedance Spectroscopy of Uranium Chloride in Molten LiCl-KCl Eutectic.

53

The Molten Salt Electrolytic Winning of Oxygen and Metal from ...  

Science Conference Proceedings (OSTI)

Cathodic Behavior of Silicon (?) in BaF2-CaF2 –SiO2 Melts ... Electrochemical Impedance Spectroscopy of Uranium Chloride in Molten LiCl-KCl Eutectic.

54

Electrolytic Production of Metals from Oxides Dissolved in Molten Salts  

Science Conference Proceedings (OSTI)

Cathodic Behavior of Silicon (?) in BaF2-CaF2 –SiO2 Melts ... Electrochemical Impedance Spectroscopy of Uranium Chloride in Molten LiCl-KCl Eutectic.

55

Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing low reluctance rims  

DOE Patents (OSTI)

A method and apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and rollers including low reluctance rim structures. The magnetic field and the rollers help contain the molten metal from leaking out of the containment structure.

Praeg, Walter F. (Palos Park, IL)

1999-01-01T23:59:59.000Z

56

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents (OSTI)

An electrochemical method is described for separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500 C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode. 3 figs.

Gay, E.C.

1995-10-03T23:59:59.000Z

57

Aluminum-Alkaline Metal-Metal Composite Conductor - Energy ...  

High-voltage electric power transmission cables based on pure aluminum strands with a stranded steel core (ACSR) or stranded aluminum ... Applications and Industries.

58

Light Metals: Aluminum, Magnesium, and Titanium  

Science Conference Proceedings (OSTI)

Cast Shop for Aluminum Production ... In this proposed, six-session symposium, papers addressing all aspects of cost reduction in titanium and its alloys will be ...

59

Plutonium metal and alloy preparation by molten chloride reduction  

Science Conference Proceedings (OSTI)

Satisfactory reduction of molten plutonium trichloride (pure and in combination with 20 wt % sodium chloride) by calcium, lanthanum, and cerium has been demonstrated on the 10-g scale. The yields were satisfactory for this scale of operation, and it is indicated that these reductions may be useful for large-scale operations. Significant separations of plutonium from rare earth impurities was demonstrated for lanthanum and cerium reductions. Preparation of plutonium-cerium and plutonium-cerium-cobalt alloys during reduction was also demonstrated.

Reavis, J.G.

1984-01-01T23:59:59.000Z

60

Oxidation Behavior of In-Flight Molten Aluminum Droplets in the Twin-Wire Electric Arc Thermal Spray Process  

Science Conference Proceedings (OSTI)

This paper examines the in-flight oxidation of molten aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. The oxidation reaction of aluminum in air is highly exothermic and is represented by a heat generation term in the energy balance. Aerodynamic shear at the droplet surface enhances the amount of in-flight oxidation by: (1) promoting entrainment and mixing of the surface oxides within the droplet, and (2) causing a continuous heat generation effect that increases droplet temperature over that of a droplet without internal circulation. This continual source of heat input keeps the droplets in a liquid state during flight. A linear rate law based on the Mott-Cabrera theory was used to estimate the growth of the surface oxide layer formed during droplet flight. The calculated oxide volume fraction of an average droplet at impact agrees well with the experimentally determined oxide content for a typical TWEA-sprayed aluminum coating, which ranges from 3.3 to 12.7%. An explanation is provided for the elevated, nearly constant surface temperature (~ 2000 oC) of the droplets during flight to the substrate and shows that the majority of oxide content in the coating is produced during flight, rather than after deposition.

Donna Post Guillen; Brian G. Williams

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PREPARATION OF ACTINIDE-ALUMINUM ALLOYS  

DOE Patents (OSTI)

BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

Moore, R.H.

1962-09-01T23:59:59.000Z

62

Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles  

DOE Patents (OSTI)

A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

Cassano, Anthony A. (Allentown, PA)

1985-01-01T23:59:59.000Z

63

Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles  

DOE Patents (OSTI)

A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

Cassano, A.A.

1985-07-02T23:59:59.000Z

64

INVESTIGATION OF THE THERMODYNAMICS GOVERNING METAL HYDRIDE SYNTHESIS IN THE MOLTEN STATE PROCESS.  

Science Conference Proceedings (OSTI)

Complex metal hydrides have been synthesized for hydrogen storage through a new synthetic technique utilizing high hydrogen overpressure at elevated temperatures (molten state processing). This synthesis technique holds the potential of fusing different complex hydrides at elevated temperatures and pressures to form new species with enhanced hydrogen storage properties. Formation of these compounds is driven by thermodynamic and kinetic considerations. We report on investigations of the thermodynamics. Novel synthetic complexes were formed, structurally characterized, and their hydrogen desorption properties investigated. The effectiveness of the molten state process is compared with mechanicosynthetic ball milling.

Stowe, A; Polly Berseth, P; Ragaiy Zidan, R; Donald Anton, D

2007-08-23T23:59:59.000Z

65

Recovery of aluminum and other metal values from fly ash  

DOE Patents (OSTI)

The invention relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

McDowell, W.J.; Seeley, F.G.

1979-11-01T23:59:59.000Z

66

Recovery of aluminum and other metal values from fly ash  

DOE Patents (OSTI)

The invention described herein relates to a method for improving the acid leachability of aluminum and other metal values found in fly ash which comprises sintering the fly ash, prior to acid leaching, with a calcium sulfate-containing composition at a temperature at which the calcium sulfate is retained in said composition during sintering and for a time sufficient to quantitatively convert the aluminum in said fly ash into an acid-leachable form.

McDowell, William J. (Oak Ridge, TN); Seeley, Forest G. (Oak Ridge, TN)

1981-01-01T23:59:59.000Z

67

Electrolyte treatment for aluminum reduction  

DOE Patents (OSTI)

A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA); Juric, Drago D. (Bulleen, AU)

2002-01-01T23:59:59.000Z

68

Corrosion Resistance of Metals in Molten Zn Alloys - Programmaster ...  

Science Conference Proceedings (OSTI)

Oxidation Studies of HVAS-sprayed Nanostructured Coatings at Elevated Temperature · Oxide Based Thermal Sprayed Coatings for Metal Dusting Applications.

69

Using Chemical Sensors to Control Molten Metal Processing  

Science Conference Proceedings (OSTI)

N. Hara and D.D. MacDonald, "Development of Dissolved Hydrogen Sensor Based on Yttria-Stabilized Zirconia with Noble Metal Electrolytes," J. Electrochem

70

Aluminum-Alkaline Metal-Metal Composite Conductor - Energy ...  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Electricity Transmission Early Stage R&D Advanced Materials Aluminum ...

71

Electromagnetic confinement and movement of thin sheets of molten metal  

DOE Patents (OSTI)

An apparatus capable of producing a combination of magnetic fields that can retain a metal in liquid form in a region having a smooth vertical boundary including a levitation magnet that produces low frequency magnetic field traveling waves to retain the metal and a stabilization magnet that produces a high frequency magnetic field to produce a smooth vertical boundary. As particularly adapted to the casting of solid metal sheets, a metal in liquid form can be continuously fed into one end of the confinement region produced by the levitation and stabilization magnets and removed in solid form from the other end of confinement region. An additional magnet may be included for support at the edges of the confinement region where eddy currents loop.

Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

1990-01-01T23:59:59.000Z

72

Method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock in the presence of a molten metal halide catalyst  

DOE Patents (OSTI)

A method for hydrocracking a heavy polynuclear hydrocarbonaceous feedstock to produce lighter hydrocarbon fuels by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, the method comprising: mixing the feedstock with a heavy naphtha fraction which has an initial boiling point from about 100.degree. to about 160.degree. C. with a boiling point difference between the initial boiling point and the final boiling point of no more than about 50.degree. C. to produce a mixture; thereafter contacting the mixture with partially spent molten metal halide and hydrogen under temperature and pressure conditions so that the temperature is near the critical temperature of the heavy naphtha fraction; separating at least a portion of the heavy naphtha fraction and lighter hydrocarbon fuels from the partially spent molten metal halide, unreacted feedstock and reaction products; thereafter contacting the partially spent molten metal halide, unreacted feedstock and reaction products with hydrogen and fresh molten metal halide in a hydrocracking zone to produce additional lighter hydrocarbon fuels and separating at least a major portion of the lighter hydrocarbon fuels from the spent molten metal halide.

Gorin, Everett (San Rafael, CA)

1981-01-01T23:59:59.000Z

73

Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum  

DOE Patents (OSTI)

An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

2000-01-01T23:59:59.000Z

74

Plutonium and americium recovery from spent molten-salt-extraction salts with aluminum-magnesium alloys  

Science Conference Proceedings (OSTI)

Development work was performed to determine the feasibility of removing plutonium and americium from spent molten-salt-extraction (MSE) salts using Al-Mg alloys. If the product buttons from this process are compatible with subsequent aqueous processing, the complex chloride-to-nitrate aqueous conversion step which is presently required for these salts may be eliminated. The optimum alloy composition used to treat spent 8 wt % MSE salts in the past yielded poor phase-disengagement characteristics when applied to 30 mol % salts. After a limited investigation of other alloy compositions in the Al-Mg-Pu-Am system, it was determined that the Al-Pu-Am system could yield a compatible alloy. In this system, experiments were performed to investigate the effects of plutonium loading in the alloy, excess magnesium, age of the spent salt on actinide recovery, phase disengagement, and button homogeneity. Experimental results indicate that 95 percent plutonium recoveries can be attained for fresh salts. Further development is required for backlog salts generated prior to 1981. A homogeneous product alloy, as required for aqueous processing, could not be produced.

Cusick, M.J.; Sherwood, W.G.; Fitzpatrick, R.F.

1984-04-23T23:59:59.000Z

75

Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals  

DOE Patents (OSTI)

Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to "float" in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields.

Hobson, David O. (Oak Ridge, TN); Alexeff, Igor (Oak Ridge, TN); Sikka, Vinod K. (Clinton, TN)

1988-01-01T23:59:59.000Z

76

Method and apparatus for removal of gaseous, liquid and particulate contaminants from molten metals  

DOE Patents (OSTI)

Method and apparatus for removal of nonelectrically-conducting gaseous, liquid, and particulate contaminants from molten metal compositions by applying a force thereto. The force (commonly referred to as the Lorentz Force) exerted by simultaneous application of an electric field and a magnetic field on a molten conductor causes an increase, in the same direction as the force, in the apparent specific gravity thereof, but does not affect the nonconducting materials. This difference in apparent densities cause the nonconducting materials to ''float'' in the opposite direction from the Lorentz Force at a rapid rate. Means are further provided for removal of the contaminants and prevention of stirring due to rotational forces generated by the applied fields. 6 figs.

Hobson, D.O.; Alexeff, I.; Sikka, V.K.

1987-08-10T23:59:59.000Z

77

Aluminum  

Science Conference Proceedings (OSTI)

"Developing an Integrated Information System in a Modern Aluminum Smelter" ... "The Energy Crisis and the Aluminum Industry: Can We Learn from History? ... "

78

Electrolytic Cell For Production Of Aluminum From Alumina  

SciTech Connect

An electrolytic cell for producing aluminum from alumina having a reservoir for collecting molten aluminum remote from the electrolysis.

Bradford, Donald R (Underwood, WA); Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR)

2004-11-02T23:59:59.000Z

79

Creep resistant, metal-coated LiFeO[sub 2] anodes for molten carbonated fuel cells  

DOE Patents (OSTI)

A porous, creep-resistant, metal-coated, LiFeO[sub 2] ceramic electrode for fuel cells is disclosed. The electrode is particularly useful for molten carbonate fuel cells (MCFC) although it may have utilities in solid oxide fuel cells (SOFC) as well. 11 figs.

Khandkar, A.C.

1994-08-23T23:59:59.000Z

80

Creep resistant, metal-coated LiFeO.sub.2 anodes for molten carbonated fuel cells  

DOE Patents (OSTI)

A porous, creep-resistant, metal-coated, LiFeO.sub.2 ceramic electrode for fuel cells is disclosed. The electrode is particularly useful for molten carbonate fuel cells (MCFC) although it may have utilities in solid oxide fuel cells (SOFC) as well.

Khandkar, Ashok C. (Salt Lake City, UT)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals  

DOE Patents (OSTI)

A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500.degree. C., electrolysis at a voltage not more negative than about -1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

Maroni, Victor A. (Naperville, IL); von Winbush, Samuel (Huntington, NY)

1988-01-01T23:59:59.000Z

82

Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals  

DOE Patents (OSTI)

A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

Maroni, V.A.; von Winbush, S.

1987-05-01T23:59:59.000Z

83

Light Metals 2007 Volume 2: Aluminum Reduction TABLE OF ...  

Science Conference Proceedings (OSTI)

451-456] Mark Cooksey and William Yang. Further Results on the Application of Aluminum-Copper Bimetal Sheets in Aluminum Reduction Cells [pp. 457-460

84

Method for removal of heavy metal from molten salt in IFR fuel pyroprocessing  

SciTech Connect

This report details the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR) which involves electrorefining spent fuel in a molten salt electrolyte (LiCl-KCI-U/PuCl{sub 3}) at 500{degree}C. The total heavy metal chloride concentration in the salt will be about 2 mol %. At some point, the concentrations of alkali, alkaline earth, and rare earth fission products in the salt must be reduced to lower the amount of heat generated in the electrorefiner. The heavy metal concentration in the salt must be reduced before removing the fission products from the salt. The operation uses a lithium-cadmium alloy anode that is solid at 500{degree}C, a solid mandrel cathode with a ceramic catch crucible below to collect heavy metal that falls off it, and a liquid cadmium cathode. The design criteria that had to be met by this equipment included the following: (1) control of the reduction rate by lithium, (2) good separation between heavy metal and rare earths, and (3) the capability to collect heavy metal and rare earths over a wide range of salt compositions. In tests conducted in an engineering-scale electrorefiner (10 kg uranium per cathode), good separation was achieved while removing uranium and rare earths from the salt. Only 13% of the rare earths was removed, while 99.9% of the uranium in the salt was removed; subsequently, the rare earths were also reduced to low concentrations. The uranium concentration in the salt was reduced to 0.05 ppm after uranium and rare earths were transferred from the salt to a solid mandrel cathode with a catch crucible. Rare earth concentrations in the salt were reduced to less than 0.01 wt % in these operations. Similar tests are planned to remove plutonium from the salt in a laboratory-scale (100--300 g heavy metal) electrorefiner.

Gay, E.C.; Miller, W.E.; Laidler, J.J.

1994-02-01T23:59:59.000Z

85

www.elsevier.com/locate/ijhmt In-flight thermal control of molten metal droplet streams  

E-Print Network (OSTI)

Precision droplet manufacturing (PDM) is a process that builds complex 3D parts one nano-liter molten metal droplet at a time from a CAD file without the need for tooling. One method to control the droplet temperature when it arrives at the target is to heat the droplets in-flight. This note describes such a heater that uses helium and nitrogen as the convective heat transfer medium. Heating rates up to 11,000 °C/s are attained. The effect of droplet spacing on the heat transfer coefficient is experimentally detailed and a nascent-turbulent effect is observed to bring the heating rate for nitrogen close to that for helium. In addition, the experimental values are consistent with those from multi-droplet numerical simulations reported in the literature.

B. Matthew Michaelis; Derek Dunn-rankin; Robert F. Smith; James E. Bobrow

2007-01-01T23:59:59.000Z

86

Reduced temperature aluminum production in an electrolytic cell having an inert anode  

DOE Patents (OSTI)

Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

Dawless, Robert K. (Monroeville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA); Kozarek, Robert L. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

2000-01-01T23:59:59.000Z

87

Thermal Interaction Between Molten Metal Jet and Sodium Pool: Effect of Principal Factors Governing Fragmentation of the Jet  

SciTech Connect

To clarify the effects of the principal factors that govern the thermal fragmentation of a molten metallic fuel jet in the course of fuel-coolant interaction, which is important in evaluating the sequence of core disruptive accidents (CDAs) for metallic fuel fast reactors, basic experiments were carried out using molten metallic fuel simulants (copper and silver) and a sodium pool.Fragmentation of a molten metal jet with a solid crust was caused by internal pressure produced by the boiling of sodium, which is locally entrapped inside the jet due to hydrodynamic motion between the jet and the coolant. The superheating and the latent heat of fusion of the jet are the principal factors governing this type of thermal fragmentation. On the other hand, the effect of the initial sodium temperature is regarded as negligible in the case of thermal conditions expected to result in CDAs for practical metallic fuel cores. Based on the fragmentation data for several kinds of jets (Cu, Ag, SUS, U, and U-5 wt% Zr alloy), an empirical correlation is proposed that is applicable to the calculation of a mass median diameter of fragments produced by the thermal fragmentation of the jet with a solid crust under low ambient Weber number conditions.

Nishimura, Satoshi [Central Research Institute of Electric Power Industry (CRIEPI) (Japan); Kinoshita, Izumi [Central Research Institute of Electric Power Industry (CRIEPI) (Japan); Sugiyama, Ken-Ichiro [Hokkaido University (Japan); Ueda, Nobuyuki [Central Research Institute of Electric Power Industry (CRIEPI) (Japan)

2005-02-15T23:59:59.000Z

88

Treatment and Minimization of Aluminum and Light Metals Industry ...  

Science Conference Proceedings (OSTI)

... reverberatory and rotary aluminum furnaces, reverberatory and rotary lead furnaces, as well as rotary brass furnaces. Representative examples are presented ...

89

Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries  

E-Print Network (OSTI)

Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al??Ni₁?La₁? was found to have a ...

Meng, Shirley Y.

90

Treatment and Minimization of Aluminum and Light Metals Industry ...  

Science Conference Proceedings (OSTI)

3:15 pm. PRODUCTION OF VALUE-ADDED PRODUCTS THROUGH PHOSPHATE STABILIZATION OF ALUMINUM INDUSTRY WASTE: Arun S. Wagh, Energy ...

91

Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal  

SciTech Connect

The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

Babu, N. Kishore [Singapore Institute of Manufacturing Technology; Cross, Carl E. [Los Alamos National Laboratory

2012-06-28T23:59:59.000Z

92

Partition of actinides and fission products between metal and molten salt phases: Theory, measurement, and application to IFR pyroprocess development  

Science Conference Proceedings (OSTI)

The chemical basis of Integral Fast Reactor fuel reprocessing (pyroprocessing) is partition of fuel, cladding, and fission product elements between molten LiCl-KCl and either a solid metal phase or a liquid cadmium phase. The partition reactions are described herein, and the thermodynamic basis for predicting distributions of actinides and fission products in the pyroprocess is discussed. The critical role of metal-phase activity coefficients, especially those of rare earth and the transuranic elements, is described. Measured separation factors, which are analogous to equilibrium constants but which involve concentrations rather than activities, are presented. The uses of thermodynamic calculations in process development are described, as are computer codes developed for calculating material flows and phase compositions in pyroprocessing.

Ackerman, J.P.; Johnson, T.R.

1993-10-01T23:59:59.000Z

93

Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets  

DOE Patents (OSTI)

An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

Makowiecki, Daniel M. (Livermore, CA); Ramsey, Philip B. (Livermore, CA); Juntz, Robert S. (Hayward, CA)

1995-01-01T23:59:59.000Z

94

Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel  

SciTech Connect

This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was previously known the liquidus temperature of the molten salt would change as spent fuel is processed through the Mk-IV electrorefiner. However, the extent of the increase in liquidus temperature was not known. This work is first of its kind in determining thermodynamic properties of a molten salt electrolyte containing transuranics, fission products and bond sodium. Experimental data concluded that the melting temperature of the electrolyte will become greater than the operating temperature of the Mk-IV ER during current fuel processing campaigns. Collected data also helps predict when the molten salt electrolyte will no longer be able to support electrorefining operations.

Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

2012-04-01T23:59:59.000Z

95

Microstructure and Properties of Aluminum Metal Matrix Composite ...  

Science Conference Proceedings (OSTI)

Fabrication of Metal Matrix Composites via Spark Plasma Sintering for Nuclear Energy Application · Hollow Particle Filled Lightweight Composites: Weight ...

96

Controlled temperature expansion in oxygen production by molten alkali metal salts  

SciTech Connect

A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

Erickson, Donald C. (Annapolis)

1985-06-04T23:59:59.000Z

97

Boron-carbide-aluminum and boron-carbide-reactive metal cermets  

SciTech Connect

Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

Halverson, Danny C. (Manteca, CA); Pyzik, Aleksander J. (Seattle, WA); Aksay, Ilhan A. (Seattle, WA)

1986-01-01T23:59:59.000Z

98

Comparative Study on the Metal Aluminum Produced from Alumina ...  

Science Conference Proceedings (OSTI)

Chemical Enrichment of Precious Metals in Iron Sulfides Using Microwave Energy · Chloridizing ... Co-Gasification Behavior of Metallurgical Coke with High and Low Reactivity .... Thermal Plasma Torches for Metallurgical Applications.

99

Controlled temperature expansion in oxygen production by molten alkali metal salts  

DOE Patents (OSTI)

A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.

Erickson, D.C.

1985-06-04T23:59:59.000Z

100

Selective Reduction of Active Metal Chlorides from Molten LiCl-KCl using Lithium Drawdown  

SciTech Connect

In support of optimizing electrorefining technology for treating spent nuclear fuel, lithium drawdown has been investigated for separating actinides from molten salt electrolyte. Drawdown reaction selectivity is a major issue that needs to be investigated, since the goal is to remove actinides while leaving the fission products in the salt. A series of lithium drawdown tests with surrogate fission product chlorides was run to obtain selectivity data with non-radioactive salts, develop a predictive model, and draw conclusions about the viability of using this process with actinide-loadd salt. Results of tests with CsCl, LaCl3, CeCl3, and NdCl3 are reported here. An equilibrium model has been formulated and fit to the experimental data. Excellent fits to the data were achieved. Based on analysis and results obtained to date, it is concluded that clean separation between minor actinides and lanthanides will be difficult to achieve using lithium drawdown.

Michael F. Simpson; Daniel LaBrier; Michael Lineberry; Tae-Sic Yoo

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Lithium-aluminum-iron electrode composition  

DOE Patents (OSTI)

A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

Kaun, Thomas D. (Mokena, IL)

1979-01-01T23:59:59.000Z

102

Development of metal-coated ceramic anodes for molten carbonate fuel cells. Final report  

DOE Green Energy (OSTI)

This report documents the developmental efforts on metal coating of various ceramic substrates (LiAlO{sub 2}, SrTiO{sub 3}, and LiFeO{sub 2}) and the critical issues associated with fabricating anodes using metal-coated LiAlO{sub 2} substrates. Electroless Ni and Cu coating technology was developed to achieve complete metal coverage on LiAlO{sub 2} powder substrates. Metal coated SrTiO{sub 3} powders were fabricated into anodes by a process identical to that reported in the GE literature. Microstructural examination revealed that the grains of the ceramic had fused together, with the metal having dewetted from the surface of the ceramic. Alternate substrates that might allow for better wetting of the metal on the ceramic such as LiFeO{sub 2} and Li{sub 2}MnO{sub 3} were identified. Cu/Ni-coated (50:50 mol ratio, 50 w/o metal loading) LiFeO{sub 2} anodes were optimized to meet the MCFC anode specifications. Metal-coated gamma-LiAlO{sub 2} substrates were also developed. By using suitable chemical surface modification methods, the gamma-UAlO{sub 2} substrate surface may be modified to allow a stable metal coated anode to be fabricated. Creep testing of the metal coated ceramic anodes were conducted at IGT. It was determined that the predominant creep mechanism is due to particle rearrangement. The anode porosity, and mean pore size had significant effect on the creep of the anode. Lower porosity and pore size consistent with performance criteria are desired to reduce creep. Lower metal loading with uniformity of coverage will result in lower creep behavior of the anode. Of the two substrates evaluated, LiFeO{sub 2} in general exhibited lower creep which was attributed to superior metal adhesion.

Khandkar, A.C.; Elangovan, S.; Marianowski, L.G.

1990-03-01T23:59:59.000Z

103

Development of metal-coated ceramic anodes for molten carbonate fuel cells  

DOE Green Energy (OSTI)

This report documents the developmental efforts on metal coating of various ceramic substrates (LiAlO{sub 2}, SrTiO{sub 3}, and LiFeO{sub 2}) and the critical issues associated with fabricating anodes using metal-coated LiAlO{sub 2} substrates. Electroless Ni and Cu coating technology was developed to achieve complete metal coverage on LiAlO{sub 2} powder substrates. Metal coated SrTiO{sub 3} powders were fabricated into anodes by a process identical to that reported in the GE literature. Microstructural examination revealed that the grains of the ceramic had fused together, with the metal having dewetted from the surface of the ceramic. Alternate substrates that might allow for better wetting of the metal on the ceramic such as LiFeO{sub 2} and Li{sub 2}MnO{sub 3} were identified. Cu/Ni-coated (50:50 mol ratio, 50 w/o metal loading) LiFeO{sub 2} anodes were optimized to meet the MCFC anode specifications. Metal-coated gamma-LiAlO{sub 2} substrates were also developed. By using suitable chemical surface modification methods, the gamma-UAlO{sub 2} substrate surface may be modified to allow a stable metal coated anode to be fabricated. Creep testing of the metal coated ceramic anodes were conducted at IGT. It was determined that the predominant creep mechanism is due to particle rearrangement. The anode porosity, and mean pore size had significant effect on the creep of the anode. Lower porosity and pore size consistent with performance criteria are desired to reduce creep. Lower metal loading with uniformity of coverage will result in lower creep behavior of the anode. Of the two substrates evaluated, LiFeO{sub 2} in general exhibited lower creep which was attributed to superior metal adhesion.

Khandkar, A.C.; Elangovan, S.; Marianowski, L.G.

1990-03-01T23:59:59.000Z

104

aluminum processing  

Science Conference Proceedings (OSTI)

Refining of Potroom Metal Using the Hydro Ram Crucible Fluxing Process [pp. .... Approachgeneration of Aluminum Wrought Alloy Scrap of Old Cars [pp.

105

Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets  

DOE Patents (OSTI)

An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

1995-07-04T23:59:59.000Z

106

Electrometallurgical treatment of aluminum-based fuels.  

SciTech Connect

We have successfully demonstrated aluminum electrorefining from a U-Al-Si alloy that simulates spent aluminum-based reactor fuel. The aluminum product contains less than 200 ppm uranium. All the results obtained have been in agreement with predictions based on equilibrium thermodynamics. We have also demonstrated the need for adequate stirring to achieve a low-uranium product. Most of the other process steps have been demonstrated in other programs. These include uranium electrorefining, transuranic fission product scrubbing, fission product oxidation, and product consolidation by melting. Future work will focus on the extraction of active metal and rare earth fission products by a molten flux salt and scale-up of the aluminum electrorefining.

Willit, J. L.

1998-07-29T23:59:59.000Z

107

Energy Conservation Design Features of the ARCO Metals Logan County Aluminum Process Complex  

E-Print Network (OSTI)

ARCO Metals Company (Formerly Anaconda Aluminum Company) is proceeding as scheduled with the construction of a $400 Million aluminum processing complex in Logan County, Kentucky. When the initial construction phase is completed in the Fall 1983, the complex will be capable of producing 400 million pounds per year of aluminum, sheet and foil using highly automated, computer controlled equipment that will maximize end product quality and minimize the consumption of energy. This paper will describe the basic processes used in the Logan complex and several design features that are being incorporated to reduce energy consumption. Large reverberatroy melting furnaces will remelt scrap aluminum and ingots will be cast on site to supplement those delivered to the site from ARCO Metal's reduction plants. The melting furnaces are expected to achieve a high efficiency which will be further enhanced by the utilization of exhaust gases to preheat the scrap as well as the combustion air. A coreless induction furnace will be used to reduce the melt loss normally associated with light gauge scrap. The ingots will be heated prior to rolling in the hot mill in direct fired preheating furnaces with variable speed fans that minimize cycle time. Flue gasses from these furnaces will be used to generate steam In a waste heat boiler. Motor loads in the hot mill and cold mills, along with other electrical loads, will be monitored by a computer system to minimize peak loading on the TVA power system. Annealing of aluminum coils will be accomplished in radiant tube furnaces with variable speed fan drives in an inert atmosphere produced by an electric powered air separation plant. These furnaces will use recuperative burners. The HVAC system incorporates a feature that will recover stratified hot air for use in other parts of the complex for ambient temperature control.

Speer, J. A.

1983-01-01T23:59:59.000Z

108

A Feasibility Study of Steelmaking by Molten Oxide Electrolysis (TRP9956)  

Science Conference Proceedings (OSTI)

Molten oxide electrolysis (MOE) is an extreme form of molten salt electrolysis, a technology that has been used to produce tonnage metals for over 100 years - aluminum, magnesium, lithium, sodium and the rare earth metals specifically. The use of carbon-free anodes is the distinguishing factor in MOE compared to other molten salt electrolysis techniques. MOE is totally carbon-free and produces no CO or CO2 - only O2 gas at the anode. This project is directed at assessing the technical feasibility of MOE at the bench scale while determining optimum values of MOE operating parameters. An inert anode will be identified and its ability to sustain oxygen evalution will be demonstrated.

Donald R. Sadoway; Gerbrand Ceder

2009-12-31T23:59:59.000Z

109

Spray-forming monolithic aluminum alloy and metal matrix composite strip  

SciTech Connect

Spray forming with de Laval nozzles is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. Using this approach, aluminum alloys have been spray formed as strip, with technoeconomic advantages over conventional hot mill processing and continuous casting. The spray-formed strip had a flat profile, minimal porosity, high yield, and refined microstructure. In an adaptation to the technique, 6061 Al/SiC particulate-reinforced metal matrix composite strip was produced by codeposition of the phases.

McHugh, K.M.

1995-10-01T23:59:59.000Z

110

Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation  

Science Conference Proceedings (OSTI)

The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

Schempp, Philipp [BAM, Germany; Tang, Z. [BIAS, Germany; Cross, Carl E. [Los Alamos National Laboratory; Seefeld, T. [BIAS, Germany; Pittner, A. [BAM, Germany; Rethmeier, M. [BAM, Germany

2012-06-28T23:59:59.000Z

111

Manual gas tungsten arc (dc) and semiautomatic gas metal arc welding of 6XXX aluminum. Welding procedure specification  

SciTech Connect

Procedure WPS-1009 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for manual gas tungsten arc (DC) and semiautomatic gas metal arc (DC) welding of aluminum alloys 6061 and 6063 (P-23), in thickness range 0.187 to 2 in.; filler metal is ER4043 (F-23); shielding gases are helium (GTAW) and argon (GMAW).

Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

1985-08-01T23:59:59.000Z

112

Reduction of Oxidative Melt Loss of Aluminum and Its Alloys  

Science Conference Proceedings (OSTI)

This project led to an improved understanding of the mechanisms of dross formation. The microstructural evolution in industrial dross samples was determined. Results suggested that dross that forms in layers with structure and composition determined by the local magnesium concentration alone. This finding is supported by fundamental studies of molten metal surfaces. X-ray photoelectron spectroscopy data revealed that only magnesium segregates to the molten aluminum alloy surface and reacts to form a growing oxide layer. X-ray diffraction techniques that were using to investigate an oxidizing molten aluminum alloy surface confirmed for the first time that magnesium oxide is the initial crystalline phase that forms during metal oxidation. The analytical techniques developed in this project are now available to investigate other molten metal surfaces. Based on the improved understanding of dross initiation, formation and growth, technology was developed to minimize melt loss. The concept is based on covering the molten metal surface with a reusable physical barrier. Tests in a laboratory-scale reverberatory furnace confirmed the results of bench-scale tests. The main highlights of the work done include: A clear understanding of the kinetics of dross formation and the effect of different alloying elements on dross formation was obtained. It was determined that the dross evolves in similar ways regardless of the aluminum alloy being melted and the results showed that amorphous aluminum nitride forms first, followed by amorphous magnesium oxide and crystalline magnesium oxide in all alloys that contain magnesium. Evaluation of the molten aluminum alloy surface during melting and holding indicated that magnesium oxide is the first crystalline phase to form during oxidation of a clean aluminum alloy surface. Based on dross evaluation and melt tests it became clear that the major contributing factor to aluminum alloy dross was in the alloys with Mg content. Mg was identified as the primary factor that accelerates dross formation specifically in the transition from two phases to three phase growth. Limiting magnesium oxidation on the surface of molten aluminum therefore becomes the key to minimizing melt loss, and technology was developed to prevent magnesium oxidation on the aluminum surface. This resulted in a lot of the work being focused on the control of Mg oxidation. Two potential molten metal covering agents that could inhibit dross formation during melting and holding consisting of boric acid and boron nitride were identified. The latter was discounted by industry as it resulted in Boron pick up by the melt beyond that allowed by specifications during plant trials. The understanding of the kinetics of dross formation by the industry partners helped them understand how temperature, alloy chemistry and furnace atmosphere (burner controls--e.g. excess air) effected dross formation. This enables them to introduce in their plant process changes that reduced unnecessary holding at high temperatures, control burner configurations, reduce door openings to avoid ingress of air and optimize charge mixes to ensure rapid melting and avoid excess oxidation.

Dr. Subodh K. Das; Shridas Ningileri

2006-03-17T23:59:59.000Z

113

Dysprosium Extraction Using Molten Salt Electrolysis Process  

Science Conference Proceedings (OSTI)

AlCl3 was used as a chlorinating agent in order to enable an efficient dissolution of metal in the molten salt phase in the salt bath. The metal chloride which is ...

114

Molten Metal and Solidification  

Science Conference Proceedings (OSTI)

"Solidification Studies of Automotive Heat Exchanger Materials" (Overview), T. Carlberg, M. Jaradeh, and H. Kamgou Kamga, November 2006, pp. 56-61.

115

Affordable Metal-Matrix Composites for High Performance Applications  

Science Conference Proceedings (OSTI)

Effect of Pulse Parameters on the Molten Pool Behavior of SiCp/6061. Composite in Impulsed Laser .... Liquid MetalMolten Salt, 233. Molten Salt – Gas, 233.

116

LEVELING METAL COATINGS  

DOE Patents (OSTI)

A method is described for applying metallic coatings to a cylinder of uranium. An aluminum-silicon coat is applied by a process consisting of first cleaning the article by immersion for 5 minutes in 50% nitric acid at 65 C. The article then is dipped through a flux, prepared by adding 10% sodium fluoride to 90% of a flux comprising 53% potassium chloride, 42% lithium chloride, and 5% sodium chloride at 560 for 2 minutes and then directly into a molten metal bath comprising 99% aluminun and 12% silicon at 620 C for 3 minutes. While the coating is yet molten the article is transferred to a pair of steel rollers and rolled until the coating solidifies. By varying the composition of the flux other metals such as zinc, lead or the like may be coated on uranium in a similar manner.

Gage, H.A.

1959-02-10T23:59:59.000Z

117

Rare Earth Extraction by Molten Oxide Electrolysis  

Science Conference Proceedings (OSTI)

Symposium, Production, Refining and Recycling of Rare Earth Metals ... Electrolysis in molten halides is an established method for the reduction but requires ... Recycling of Different Sintered Magnet Grades by Hydrogen Processing Yielding ...

118

TMS Short Course: Industrial Aluminum Electrolysis  

Science Conference Proceedings (OSTI)

... lower energy consumption, improve metal quality and reduce environmental ... Formerly Kaiser Aluminum; Halvor Kvande, Hydro Aluminium Primary Metal, ...

119

SEPARATION OF METAL SALTS BY ADSORPTION  

DOE Patents (OSTI)

It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

Gruen, D.M.

1959-01-20T23:59:59.000Z

120

METAL PRODUCTION AND CASTING  

DOE Patents (OSTI)

This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

Magel, T.T.

1958-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Molten salt electrolyte separator  

DOE Patents (OSTI)

A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

Kaun, Thomas D. (New Lenox, IL)

1996-01-01T23:59:59.000Z

122

High-nitrogen-metal complexes as burning-rate modifiers for the aluminum-water propellant system  

DOE Green Energy (OSTI)

The reactions of electropositive metals, such as aluminum, with water have long been utilized in explosive and propellant formulations, but until recently this has mostly been limited to the water formed as a product gas from the decomposition of another energetic system . Recently, however, with the increased availability of nano-particulate materials, the direct reaction of nano-aluminum (nAl) with water as an oxidizer has been investigated as a propellant system due to high reaction temperatures and the production of hydrogen as the primary gaseous species. This system could be useful for intra-planetary travel where non-terrestrial water is harvested for the oxidizer. Here we present the study of nAl, mixed at a stoichiometric ratio with water ({Phi} = 1) with the highly water soluble metal complexes of bis(tetrazolato)amine (BTA) added at 5, 15,30 and 50 wt% in the case of FeBTA and 5 and 15 wt% in the case of NiBTA and CoBTA. The basic structure of the BTA complexes is shown below where M = Fe, Ni or Co, and x = 3 for Fe and Co and x = 2 for Ni. The particle size of nAl studied was primarily 38 nm with various studies with the particle size of 80 nm. The FeBT A at a loading of 15 wt% gave the highest burning rate enhancement (4.6x at {approx}6.8 MPa), while retaining a low pressure exponent (0.21 compared to 0.24 for nA/H{sub 2}O). At 15 wt% the Ni and Co increased the burning rate, but also increased the pressure exponents. The burning rate of the FeBTA modified material with 80 nm Al decreased as the weight percent of FeBTA was increased, which also tracked decrease in the calculated specific impulse of the mixtures.

Tappan, Bryce C [Los Alamos National Laboratory; Mason, Benjamin A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

123

Method to decrease loss of aluminum and magnesium melts  

SciTech Connect

A method to minimize oxidation of metal during melting processes is provided, the method comprising placing solid phase metal into a furnace environ-ment, transforming the solid-phase metal into molten metal phase having a molten metal surface, and creating a barrier between the surface and the environment. Also provided is a method for isolating the surface of molten metal from its environment, the method comprising confining the molten metal to a controlled atmos-phere, and imposing a floating substrate between the surface and the atmosphere.

Hryn, John N. (Naperville, IL); Pellin, Michael J. (Naperville, IL); Calaway, Jr., Wallis F. (Woodridge, IL); Moore, Jerry F. (Naperville, IL); Krumdick, Gregory K. (Crete, IL)

2002-01-01T23:59:59.000Z

124

THE PREPARATION OF URANIUM DIOXIDE FROM A MOLTEN SALT SOLUTION OF URANYL CHLORIDE  

DOE Green Energy (OSTI)

Uranium oxides in a molten eutectic mixture of NaClKCl were chlorinated by bubbling chlorine gas through the mixture. The reaction product, uranyl chloride. was soluble in the molten salt. Although UO/sub 2/ was the most common oxide used, the reaction was similar in the other oxides. Phosgene and aluminum chloride were also used as chlorinating agents. A dense, crystalline precipitate of pure UO/sub 2/ was prepared by the reduction of the uranyl chloride contained in the molten salt solution. The reduction was accomplished by contacting the salt solution with any of several metals, by reaction with hydrogen or dry ammonia gas, or by electrolysis. Several kilograms of UO/sub 2/ were prepared by electrolysis using graphite electrodes. The physical properties of the material made it potentially useful as a ceramic fuel material. The initial high particle density of the "as-produced" UO/sub 2/ was considered of great potential advantage for adapting this process to the refabrication of irradiated UO/sub 2/ into recycle fuel elements. (M.C.G.)

Lyon, W.L.; Voiland, E.E.

1959-10-20T23:59:59.000Z

125

Recovery of plutonium from molten salt extraction residues  

Science Conference Proceedings (OSTI)

Savannah River Laboratory (SRL), Savannah River Plant (SRP), and Rocky Flats Plant (RFP) are jointly developing a process to recover plutonium from molten salt extraction residues. These NaCl, KCl, MgCl/sub 2/ residues, which are generated in the pyrochemical extraction of /sup 241/Am from aged plutonium metal, contain up to 25 wt % dissolved PUCl/sub 3/ and up to 2 wt % AmCl/sub 3/. The objective is to develop a process to convert these residues to plutonium metal product and discardable waste. The first step of the conceptual process is to convert the actinides to a heterogenous scrub alloy with aluminum and magnesium. This step, performed at RFP, effectively separates the actinides from the bulk of the chloride. This scrub alloy will then be dissolved in a HNO/sub 3/-HF solution at SRP. Residual chloride will be removed by precipitation with Hg/sub 2/(NO/sub 3/)/sub 2/ followed by centrifugation. Plutonium and americium will be separated using the Purex solvent extraction process. The /sup 241/Am will be diverted to the solvent extraction waste stream where it can either be discarded to the waste farm or recovered. The plutonium will be finished via PuF/sub 3/ precipitation, oxidation to a mixture of PUF/sub 4/ and PuO/sub 2/, followed by reduction to plutonium metal with calcium.

Gray, L.W.; Holcomb, H.P.

1983-01-01T23:59:59.000Z

126

Molten carbonate fuel cell separator  

DOE Patents (OSTI)

In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

Nickols, Richard C. (East Hartford, CT)

1986-09-02T23:59:59.000Z

127

Molten carbonate fuel cell separator  

DOE Patents (OSTI)

In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

Nickols, R.C.

1984-10-17T23:59:59.000Z

128

Electrodeposition of molten silicon  

DOE Patents (OSTI)

Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

De Mattei, Robert C. (Sunnyvale, CA); Elwell, Dennis (Palo Alto, CA); Feigelson, Robert S. (Saratoga, CA)

1981-01-01T23:59:59.000Z

129

Molten salt electrolyte separator  

DOE Patents (OSTI)

The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

Kaun, T.D.

1996-07-09T23:59:59.000Z

130

The China Factor: Aluminum Industry Impact  

Science Conference Proceedings (OSTI)

... International Aluminium Institute, Japan Aluminium Association, South Korea Nonferrous Metals Association, and, for the first time, The Aluminum Association.

131

Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting  

DOE Green Energy (OSTI)

A recent review by the U.S. Advanced Ceramics Association, the Aluminum Association, and the U.S. Department of Energy's Office of Industrial Technologies (DOE/OIT) described the status of advanced ceramics for aluminum processing, including monolithics, composites, and coatings. The report observed that monolithic ceramics (particularly oxides) have attractive properties such as resistance to heat, corrosion, thermal shock, abrasion, and erosion [1]. However, even after the developments of the past 25 years, there are two key barriers to commercialization: reliability and cost-effectiveness. Industry research is therefore focused on eliminating these barriers. Ceramic coatings have likewise undergone significant development and a variety of processes have been demonstrated for applying coatings to substrates. Some processes, such as thermal barrier coatings for gas turbine engines, exhibit sufficient reliability and service life for routine commercial use. Worldwide, aluminum melting and molten metal handling consumes about 506,000 tons of refractory materials annually. Refractory compositions for handling molten aluminum are generally based on dense fused cast silica or mullite. The microstructural texture is extremely important because an interlocking mass of coarser grains must be bonded together by smaller grains in order to achieve adequate strength. At the same time, well-distributed microscopic pores and cracks are needed to deflect cracks and prevent spalling and thermal shock damage [2]. The focus of this project was to develop and validate new classes of cost-effective, low-permeability ceramic and refractory components for handling molten aluminum in both smelting and casting environments. The primary goal was to develop improved coatings and functionally graded materials that will possess superior combinations of properties, including resistance to thermal shock, erosion, corrosion, and wetting. When these materials are successfully deployed in aluminum smelting and casting operations, their superior performance and durability will give end users marked improvements in uptime, defect reduction, scrap/rework costs, and overall energy savings resulting from higher productivity and yield. The implementation of results of this program will result in energy savings of 30 trillion Btu/year by 2020. For this Industrial Materials for the Future (IMF) project, riser tube used in the low-pressure die (LPD) casting of aluminum was selected as the refractory component for improvement. In this LPD process, a pressurized system is used to transport aluminum metal through refractory tubes (riser tubes) into wheel molds. It is important for the tubes to remain airtight because otherwise, the pressurized system will fail. Generally, defects such as porosity in the tube or cracks generated by reaction of the tube material with molten aluminum lead to tube failure, making the tube incapable of maintaining the pressure difference required for normal casting operation. Therefore, the primary objective of the project was to develop a riser tube that is not only resistant to thermal shock, erosion, corrosion, and wetting, but is also less permeable, so as to achieve longer service life. Currently, the dense-fused silica (DFS) riser tube supplied by Pyrotek lasts for only 7 days before undergoing failure. The following approach was employed to achieve the goal: (1) Develop materials and methods for sealing surface porosity in thermal-shock-resistant ceramic refractories; (2) Develop new ceramic coatings for extreme service in molten aluminum operations, with particular emphasis on coatings based on highly stable oxide phases; (3) Develop new monolithic refractories designed for lower-permeability applications using controlled porosity gradients and particle size distributions; (4) Optimize refractory formulations to minimize wetting by molten aluminum, and characterize erosion, corrosion, and spallation rates under realistic service conditions; and (5) Scale up the processing methods to full-sized components and perform field testi

Kadolkar, Puja [ORNL; Ott, Ronald D [ORNL

2006-02-01T23:59:59.000Z

132

Method and apparatus for spraying molten materials  

SciTech Connect

A metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments.

Glovan, Ronald J. (Butte, MT); Tierney, John C. (Butte, MT); McLean, Leroy L. (Butte, MT); Johnson, Lawrence L. (Butte, MT); Nelson, Gordon L. (Butte, MT); Lee, Ying-Ming (Butte, MT)

1996-01-01T23:59:59.000Z

133

Method and apparatus for spraying molten materials  

DOE Patents (OSTI)

A metal spray apparatus is provided with a supersonic nozzle. Molten metal is injected into a gas stream flowing through the nozzle under pressure. By varying the pressure of the injected metal, the droplet can be made in various selected sizes with each selected size having a high degree of size uniformity. A unique one piece graphite heater provides easily controlled uniformity of temperature in the nozzle and an attached tundish which holds the pressurized molten metal. A unique U-shaped gas heater provides extremely hot inlet gas temperatures to the nozzle. A particularly useful application of the spray apparatus is coating of threads of a fastener with a shape memory alloy. This permits a fastener to be easily inserted and removed but provides for a secure locking of the fastener in high temperature environments. 12 figs.

Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.; Nelson, G.L.; Lee, Y.M.

1996-06-25T23:59:59.000Z

134

Method for the regeneration of spent molten zinc chloride  

DOE Patents (OSTI)

In a process for regenerating spent molten zinc chloride which has been used in the hydrocracking of coal or ash-containing polynuclear aromatic hydrocarbonaceous materials derived therefrom and which contains zinc chloride, zinc oxide, zinc oxide complexes and ash-containing carbonaceous residue, by incinerating the spent molten zinc chloride to vaporize the zinc chloride for subsequent condensation to produce a purified molten zinc chloride: an improvement comprising the use of clay in the incineration zone to suppress the vaporization of metals other than zinc. Optionally water is used in conjunction with the clay to further suppress the vaporization of metals other than zinc.

Zielke, Clyde W. (McMurray, PA); Rosenhoover, William A. (Pittsburgh, PA)

1981-01-01T23:59:59.000Z

135

Non-Contact Printed Aluminum Metallization of Si Photovoltaic Devices: Preprint  

DOE Green Energy (OSTI)

Alternative solution-based techniques such as aerosol jet printing offer the dual benefits of contactless pattern deposition and high material utilization. We have used aerosol jet printing to investigate non-contact printed Al metal ink as a replacement for screen printed Al back contacts on wafer Si solar cells. This particle-based ink can be prepared at high loadings of 60 weight % metal, which enables rapid deposition of 1 - 10 um thick lines. Al lines printed on Si wafers and heated between 550 and 800 degrees C form low resistance contacts suitable for current extraction. The effectiveness of these printed Al back contacts has further been demonstrated by incorporating them into a series of 21 cm2 crystalline Si solar cells that produced a champion power conversion efficiency of 13%.

Platt, H. A. S.; van Hest, M. F. A. M.; Li, Y.; Novak, J. P.

2012-06-01T23:59:59.000Z

136

Flow visualization of molten alloys using real-time neutron radiography  

E-Print Network (OSTI)

The objective of this research is to visualize the flow of molten alloys using real-time neutron radiography. Initial experiments were performed using solder (50% tin, 50% lead), with nickel tracer particles, heated in a furnace to its liquid state. An experiment was also performed using an aluminum-silicon carbide bar, heated in a furnace to its liquid state. These experiments revealed that neutron radiography can be used to observe the flow of metals in a convective field as they undergo a phase change. To observe the flow of molten metals induced by natural convection, an experiment was attempted using the lead-bismuth (Pb-Bi) eutectic with tracer particles made of the intermetallic compound gold-cadmium (AuCd4). The Pb-Bi material, with the AuCd4 particles, was placed in a brass container (10 cm x 10 cm x I cm). The container was uniformly heated to above the melting temperature of the material. Natural convection was obtained by increasing the temperature at one end of the container while keeping the temperature at the other end constant. Neutron radiography was used to record and observe the particle motion and the flow of the Pb-Bi material due to natural convection.

Bennett, Tami Norene

1994-01-01T23:59:59.000Z

137

HIGH ENERGY DENSITY ALUMINUM BATTERY - Energy Innovation Portal  

Compositions and methods of making are provided for a high energy density aluminum battery. The battery comprises an anode comprising aluminum metal. The battery ...

138

Preparation of Aluminum Matrix Composites Reinforced with nano ...  

Science Conference Proceedings (OSTI)

Since it is extremely difficult to obtain uniform dispersion of nano-SiC particles in molten metal, we designed the experimental setup consists of fusion, vacuum ...

139

Aluminum Alloys  

Science Conference Proceedings (OSTI)

High Thermal Energy Storage Density LiNO3-KNO3-NaNO2-KNO2 Quaternary Molten Salt System for Parabolic Trough Concentrating Solar Power Generation.

140

RECHARGEABLE MOLTEN-SALT CELLS  

E-Print Network (OSTI)

KC! /FeS 2 cell lithium-silicon magnesium oxide molten-saltmolten-salt cells Na/Na glass/Na:z.Sn-S cell Na/NazO•xA!Symposium on Molten Salts, Physical Electrochemistry

Cairns, Elton J.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Erosion of Ferrous Alloys by Liquid Aluminum  

Science Conference Proceedings (OSTI)

... the degradation of ferrous alloys under the demands of liquid metal transfer conditions ... (by exposure to flowing aluminum) and response to thermal cycling (by cyclic exposure to static aluminum) ... 2008 Global Anode Effect Survey Results.

142

Stability of Iridium Anode in Molten Oxide Electrolysis for Ironmaking: Influence of Slag Basicity  

E-Print Network (OSTI)

Molten oxide electrolysis (MOE) is a carbon-neutral, electrochemical technique to decompose metal oxide directly into liquid metal and oxygen gas upon use of an inert anode. What sets MOE apart from other technologies is ...

Kim, Hojong

143

Electrolysis of Molten Iron Oxide with an Iridium Anode: The Role of Electrolyte Basicity  

E-Print Network (OSTI)

Molten oxide electrolysis (MOE) is a carbon-free, electrochemical technique to decompose a metal oxide directly into liquid metal and oxygen gas. From an environmental perspective what makes MOE attractive is its ability ...

Kim, Hojong

144

CORROSION PROTECTION OF ALUMINUM  

DOE Patents (OSTI)

Treatment of aluminum-base metal surfaces in an autoclave with an aqueous chromic acid solution of 0.5 to 3% by weight and of pH below 2 for 20 to 50 hrs at 160 to 180 deg C produces an extremely corrosion-resistant aluminum oxidechromium film on the surface. A chromic acid concentration of 1 to 2% and a pH of about 1 are preferred. (D.C.W.)

Dalrymple, R.S.; Nelson, W.B.

1963-07-01T23:59:59.000Z

145

Molten salt test loop  

DOE Green Energy (OSTI)

The objective of the Molten Salt Test Loop Project was to design, construct, and demonstrate operation of an outdoor high temperature molten salt test facility. This facility is operational, and can now be used to evaluate materials and components, and the design features and operating procedures required for molten salt heat transport systems. The initial application of the loop was to demonstrate the feasibility of using molten salt as the heat transport medium for a high temperature distributed collector system. A commercially available eutectic salt blend is used as the heat transfer fluid. This salt has a composition of 40% NaNO/sub 2/, 7% NaNO/sub 3/, and 53% KNO/sub 3/ and is marketed under the trade name Hitec. It has a freezing (solidifying) point of 142/sup 0/C (288/sup 0/F) and has been satisfactorily used at temperatures as high as 594/sup 0/C (1100/sup 0/F). General Atomic (GA) installed a row of Fixed Mirror Solar Concentrators (FMSC's) in the loop. The system was started up and a test program conducted. Startup went smoothly, with the exception of some burned-out trace heaters. Salt temperatures as high as 571/sup 0/C (1060/sup 0/F) were achieved.

Schuster, J.R.; Eggers, G.H.

1980-01-01T23:59:59.000Z

146

Zirconia Sensor Device for In-Situ Monitoring of Metal Powder ...  

Science Conference Proceedings (OSTI)

Electrochemical Behavior of Calcium-Lead Alloys in Molten Salt Electrolytes ... Electrolytic Production of Metals from Oxides Dissolved in Molten Salts.

147

Metal atomization spray nozzle  

DOE Patents (OSTI)

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

Huxford, Theodore J. (Harriman, TN)

1993-01-01T23:59:59.000Z

148

Metal atomization spray nozzle  

DOE Patents (OSTI)

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

Huxford, T.J.

1993-11-16T23:59:59.000Z

149

Liquid surface skimmer apparatus for molten lithium and method  

DOE Patents (OSTI)

This invention relates to an apparatus for separating two fluids having different specific gravities. The invention also relates to a method for using the separating apparatus of the present invention. This invention particularly relates to the skimming of molten lithium metal from the surface of a fused salt electrolyte in the electrolytic production of lithium metal from a mixed fused salt.

Robinson, Samuel C. (Knoxville, TN); Pollard, Roy E. (Maryville, TN); Thompson, William F. (Oak Ridge, TN); Stark, Marshall W. (Gastonia, NC); Currin, Jr., Robert T. (Salisbury, NC)

1995-01-01T23:59:59.000Z

150

Formation of nanocrystalline h-AlN during mechanochemical decomposition of melamine in the presence of metallic aluminum  

Science Conference Proceedings (OSTI)

Decomposition of melamine was studied by solid state reaction of melamine and aluminum powders during high energy ball-milling. The milling procedure performed for both pure melamine and melamine/Al mixed powders as the starting materials for various times up to 48 h under ambient atmosphere. The products were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The results revealed that Al causes melamine deammoniation at the first stages of milling and further milling process leads to the s-triazine ring degradation while nano-crystallite hexagonal aluminum nitride (h-AlN) was the main solid product. Comparison to milling process, the possibility of the reaction of melamine with Al was also investigated by thermal treatment method using differential scanning calorimeter (DSC) and thermo gravimetric analyzer (TGA). Melamine decomposition occurred by thermal treatment in the range of 270-370 Degree-Sign C, but no reaction between melamine and aluminum was observed. - Graphical Abstract: Mechanochemical reaction of melamine with Al resulted in the formation of nanocrystalline AlN after 7 h milling time Highlights: Black-Right-Pointing-Pointer High energy ball milling of melamine and aluminum results decomposition of melamine with elimination of ammonia. Black-Right-Pointing-Pointer Nano-crystalline AlN was synthesized by the mechanochemical route. Black-Right-Pointing-Pointer Milling process has no conspicuous effect on pure melamine degradation. Black-Right-Pointing-Pointer No reaction takes place by heating melamine and aluminum powder mixture in argon.

Rounaghi, S.A., E-mail: s.a.rounaghi@gmail.com [Department of Materials Engineering, Ferdowsi University of Mashhad, P.O. Box No. 91775-1111, Mashhad (Iran, Islamic Republic of); Kiani Rashid, A.R. [Department of Materials Engineering, Ferdowsi University of Mashhad, P.O. Box No. 91775-1111, Mashhad (Iran, Islamic Republic of); Eshghi, H., E-mail: heshghi@ferdowsi.um.ac.ir [Department of Chemistry, Ferdowsi University of Mashhad, P.O. Box No. 91775-1436, Mashhad (Iran, Islamic Republic of); Vahdati Khaki, J. [Department of Materials Engineering, Ferdowsi University of Mashhad, P.O. Box No. 91775-1111, Mashhad (Iran, Islamic Republic of)

2012-06-15T23:59:59.000Z

151

Spray Rolling Aluminum Strip for Transportation Applications  

SciTech Connect

Spray rolling is a novel strip casting technology in which molten aluminum alloy is atomized and deposited into the roll gap of mill rolls to produce aluminum strip. A combined experimental/modeling approach has been followed in developing this technology with active participation from industry. The feasibility of this technology has been demonstrated at the laboratory scale and it is currently being scaled-up. This paper provides an overview of the process and compares the microstructure and properties of spray-rolled 2124 aluminum alloy with commercial ingot-processed material

Kevin M. McHugh; Y. Lin; Y. Zhou; E. J. Lavernia; J.-P. Delplanque; S. B. Johnson

2005-02-01T23:59:59.000Z

152

Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures  

DOE Patents (OSTI)

A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

Rohrmann, Charles A. (Kennewick, WA)

1978-01-01T23:59:59.000Z

153

Nondestructive detection of an undesirable metallic phase, T.sub.1, during processing of aluminum-lithium alloys  

DOE Patents (OSTI)

A method is disclosed for detecting the T.sub.1 phase in aluminum-lithium alloys through simultaneous measurement of conductivity and hardness. In employing eddy current to measure conductivity, when the eddy current decreases with aging of the alloy, while the hardness of the material continues to increase, the presence of the T.sub.1 phase may be detected.

Buck, Otto (Ames, IA); Bracci, David J. (Maryland Heights, MO); Jiles, David C. (Ames, IA); Brasche, Lisa J. H. (Nevada, IA); Shield, Jeffrey E. (Ames, IA); Chumbley, Leonard S. (Ames, IA)

1990-08-07T23:59:59.000Z

154

TMS Short Course: Industrial Aluminum Electrolysis  

Science Conference Proceedings (OSTI)

Since 1980 he has worked with Hydro Aluminum Metals Products in Ardal, ... energy balance, dynamic process simulation and experimental evaluation of cells.

155

Alkali metal nitrate purification  

DOE Patents (OSTI)

A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

1986-02-04T23:59:59.000Z

156

Process for removing technetium from iron and other metals  

DOE Patents (OSTI)

A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.

Leitnaker, J.M.; Trowbridge, L.D.

1999-03-23T23:59:59.000Z

157

Process for removing technetium from iron and other metals  

DOE Patents (OSTI)

A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag.

Leitnaker, James M. (Kingston, TN); Trowbridge, Lee D. (Oak Ridge, TN)

1999-01-01T23:59:59.000Z

158

I-NERI ANNUAL TECHNICAL PROGRESS REPORT: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels  

SciTech Connect

An attractive alternative to the once-through disposal of electrorefiner salt is to selectively remove the active fission products from the salt and recycle the salt back to the electrorefiner (ER). This would allow salt reuse for some number of cycles before ultimate disposal of the salt in a ceramic waste form. Reuse of ER salt would, thus, greatly reduce the volume of ceramic waste produced during the pyroprocessing of spent nuclear fuel. This final portion of the joint I-NERI research project is to demonstrate the separation of fission products from molten ER salt by two methods previously selected during phase two (FY-08) of this project. The two methods selected were salt/zeolite contacting and rare-earth fission product precipitation by oxygen bubbling. The ER salt used in these tests came from the Mark-IV electrorefiner used to anodically dissolved driver fuel from the EBR-II reactor on the INL site. The tests were performed using the Hot Fuel Dissolution Apparatus (HFDA) located in the main cell of the Hot Fuels Examination Facility (HFEF) at the Materials and Fuels complex on the INL site. Results from these tests were evaluated during a joint meeting of KAERI and INL investigators to provide recommendations as to the future direction of fission product removal from electrorefiner salt that accumulate during spent fuel treatment. Additionally, work continued on kinetic measurements of surrogate quaternary salt systems to provide fundamental kinetics on the ion exchange system and to expand the equilibrium model system developed during the first two phases of this project. The specific objectives of the FY09 I-NERI research activities at the INL include the following: • Perform demonstration tests of the selected KAERI precipitation and INL salt/zeolite contacting processes for fission product removal using radioactive, fission product loaded ER salt • Continue kinetic studies of the quaternary Cs/Sr-LiCl-KCl system to determine the rate of ion exchange during the salt/zeolite contacting process • Compare the adsorption models to experimentally obtained, ER salt results • Evaluate results obtained from the oxygen precipitation and salt/zeolite ion exchange studies to determine the best processes for selective fission-product removal from electrorefiner salt.

S. Frank

2009-09-01T23:59:59.000Z

159

Membrane Purification Cell for Aluminum Recycling  

Science Conference Proceedings (OSTI)

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

160

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

Raistrick, I.D.; Poris, J.; Huggins, R.A.

1980-07-18T23:59:59.000Z

162

Molten carbonate fuel cell  

DOE Patents (OSTI)

A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

Kaun, Thomas D. (New Lenox, IL); Smith, James L. (Lemont, IL)

1987-01-01T23:59:59.000Z

163

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1983-01-01T23:59:59.000Z

164

Molten salt lithium cells  

DOE Patents (OSTI)

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1982-02-09T23:59:59.000Z

165

Molten carbonate fuel cell  

DOE Patents (OSTI)

A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

Kaun, T.D.; Smith, J.L.

1986-07-08T23:59:59.000Z

166

RECOVERY OF ALUMINUM FROM FISSION PRODUCTS  

DOE Patents (OSTI)

A method is given for recovertng aluminum values from aqueous solutions containing said values together with fission products. A mixture of Fe/sub 2/O/ sub 3/ and MnO/sub 2/ is added to a solution containing aluminum and fission products. The resulting aluminum-containing supernatant is then separated from the fission product-bearing metal oxide precipitate and is contacted with a cation exchange resin. The aluminum sorbed on the resin is then eluted and recovered. (AEC)

Blanco, R.E.; Higgins, I.R.

1962-11-20T23:59:59.000Z

167

Extracting information from the molten salt database  

Science Conference Proceedings (OSTI)

Molten salt technology is a catchall phrase that includes some very diverse ... nologies are linked by the general characteristics of molten salts that can function

168

Cathode for molten salt batteries  

DOE Patents (OSTI)

A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

Mamantov, Gleb (Knoxville, TN); Marassi, Roberto (Camerino, IT)

1977-01-01T23:59:59.000Z

169

Aluminum I  

Science Conference Proceedings (OSTI)

Aug 6, 2013 ... Among them, automotive aluminum condensers are generally produced ... The brazing sheet used for the condenser is a three-layer composite ...

170

Method for converting UF5 to UF4 in a molten fluoride salt  

DOE Green Energy (OSTI)

The reduction of UF.sub.5 to UF.sub.4 in a molten fluoride salt by sparging with hydrogen is catalyzed by metallic platinum. The reaction is also catalyzed by platinum alloyed with gold reaction equipment.

Bennett, Melvin R. (Oak Ridge, TN); Bamberger, Carlos E. (Oak Ridge, TN); Kelmers, A. Donald (Oak Ridge, TN)

1977-01-01T23:59:59.000Z

171

Porous electrolyte retainer for molten carbonate fuel cell. [lithium aluminate  

DOE Patents (OSTI)

A porous tile for retaining molten electrolyte within a fuel cell is prepared by sintering particles of lithium aluminate into a stable structure. The tile is assembled between two porous metal plates which serve as electrodes with fuels gases such as H/sub 2/ and CO opposite to oxidant gases such as O/sub 2/ and CO/sub 2/. The tile is prepared with a porosity of 55 to 65% and a pore size distribution selected to permit release of sufficient molten electrolyte to wet but not to flood the adjacent electrodes.

Singh, R.N.; Dusek, J.T.

1979-12-27T23:59:59.000Z

172

Activated aluminum hydride hydrogen storage compositions and uses thereof  

DOE Patents (OSTI)

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

2010-11-23T23:59:59.000Z

173

Light Metals 2010  

Science Conference Proceedings (OSTI)

Feb 1, 2010 ... Softcover book: Light Metals 2008 Volume 2: Aluminum Reduction. Hardcover book and CD-ROM: Light Metals 2009 ...

174

Batteries using molten salt electrolyte  

SciTech Connect

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

175

Recipients: The 1998 LMD Light Metals Subject Area PaperAward  

Science Conference Proceedings (OSTI)

Halvor Kvande, Hydro Aluminium Metals Technology Bjorn P. Moxness, Hydro Aluminum Jorn.Skaar, Norge Aluminum Per A. Solli,, Hydro Aluminum ...

176

Structure of molten Al and eutectic Al-Si alloy studied by neutron diffraction  

Science Conference Proceedings (OSTI)

The structure of molten eutectic Al87.8Si12.2 alloy has been studied by neutron diffraction during a temperature cycle. For comparison measurements were performed on pure molten Al. The measurements show that the alloy after heating above the liquidus contains particles of two kinds, aluminum-rich and silicon-rich. The silicon-rich particles are partly dissolved after a further heating. Earlier published data obtained by the ?-ray absorption technique of the density of the molten eutectic Al–Si alloy had demonstrated the existence of two temperatures above the liquidus temperature: A dissolution temperature Td, at which the microstructure of the melt inherited from the ingot starts to dissolve and a branching temperature, Tb, at which the melt reaches a fully mixed state. The highest temperature that was possible to reach during the neutron experiments lies between Td and Tb. The obtained results support these conclusions that molten alloys after melting are inhomogeneous up to a temperature well above the liquidus. Moreover, the difference in shape between the static structure factors measured by neutron and X-ray diffraction on molten aluminum is observed and is found to be more accentuated and to extend to larger wavevectors than in earlier works.

Dahlborg, U. [University of Rouen; Kramer, Matthew J. [Ames Laboratory; Besser, M. [Ames Laboratory; Morris, J. R. [Oak Ridge National Laboratory; Calvo-Dahlborg, M. [University of Rouen

2012-11-24T23:59:59.000Z

177

Molten Salts: Bath Chemistry and Process Design in Aluminum ...  

Science Conference Proceedings (OSTI)

ABOUT THE PRESENTERS. Donald R. Sadoway is a professor of materials chemistry in the Department of Materials Science and Engineering at the ...

178

Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells  

SciTech Connect

During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.

R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

2001-11-05T23:59:59.000Z

179

Treatment of plutonium process residues by molten salt oxidation  

Science Conference Proceedings (OSTI)

Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J. [Los Alamos National Lab., NM (United States); Heslop, M. [Naval Surface Warfare Center (United States). Indian Head Div.; Wernly, K. [Molten Salt Oxidation Corp. (United States)

1999-04-01T23:59:59.000Z

180

Corrosion of aluminides by molten nitrate salt  

DOE Green Energy (OSTI)

The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

Tortorelli, P.F.; Bishop, P.S.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Extraction process for removing metallic impurities from alkalide metals  

DOE Patents (OSTI)

A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

Royer, Lamar T. (Knoxville, TN)

1988-01-01T23:59:59.000Z

182

Extraction process for removing metallic impurities from alkalide metals  

DOE Patents (OSTI)

A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

Royer, L.T.

1987-03-20T23:59:59.000Z

183

PRODUCTION OF PLUTONIUM METAL  

DOE Patents (OSTI)

A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

Lyon, W.L.; Moore, R.H.

1961-01-17T23:59:59.000Z

184

A27: Electrochemical Study of Ag Ionization in Molten Lead ...  

Science Conference Proceedings (OSTI)

The concentration of Ag+ in the molten glass significantly increased with ... Electrochemical Deposition of High Purity Silicon in Molten Salts.

185

MOLTEN METAL REACTORS - Energy Innovation Portal  

Bingham, Dennis N. (Idaho Falls, ID), Klingler, Kerry M. (Idaho Falls, ID), Turner, Terry D. (Idaho Falls, ID), Wilding, Bruce M. (IdahoFalls, ID) ...

186

All ceramic structure for molten carbonate fuel cell  

DOE Patents (OSTI)

An all-ceramic molten carbonate fuel cell having a composition formed of a multivalent metal oxide or oxygenate such as an alkali metal, transition metal oxygenate. The structure includes an anode and cathode separated by an electronically conductive interconnect. The electrodes and interconnect are compositions ceramic materials. Various combinations of ceramic compositions for the anode, cathode and interconnect are disclosed. The fuel cell exhibits stability in the fuel gas and oxidizing environments. It presents reduced sealing and expansion problems in fabrication and has improved long-term corrosion resistance.

Smith, J.L.; Kucera, E.H.

1991-01-01T23:59:59.000Z

187

Spray casting of metallic preforms  

SciTech Connect

A metal alloy is melted in a crucible and ejected from the bottom of the crucible as a descending stream of molten metal. The descending stream is impacted with a plurality of primary inert gas jets surrounding the molten metal stream to produce a plume of atomized molten metal droplets. An inert gas is blown onto a lower portion of the plume with a plurality of auxiliary inert gas jets to deflect the plume into a more restricted pattern of high droplet density, thereby substantially eliminating unwanted overspray and resulting wasted material. The plume is projected onto a moving substrate to form a monolithic metallic product having generally parallel sides.

Flinn, John E. (Idaho Falls, ID); Burch, Joseph V. (Shelley, ID); Sears, James W. (Niskayuna, NY)

2000-01-01T23:59:59.000Z

188

Horizontal electromagnetic casting of thin metal sheets  

DOE Patents (OSTI)

Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

1987-01-01T23:59:59.000Z

189

Horizontal electromagnetic casting of thin metal sheets  

DOE Patents (OSTI)

Thin metal sheets are cast by magnetically suspending molten metal deposited within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled to form a solid metal sheet. Magnetic flux increases as the molten metal sheet moves downward and decreases as the molten metal sheet moves upward to stabilize the sheet and maintain it in equilibrium as it is linearly displaced and solidified by cooling gases. A conducting shield is electrically coupled to the molten metal sheet by means of either metal sheet engaging rollers or brushes on the solidified metal, and by means of an electrode in the vessel containing the molten metal thereby providing a return path for the eddy currents induced in the metal sheet by the AC coil generated magnetic flux. Variation in the geometry of the conducting shield allows the magnetic flux between the metal sheet and the conducting shield to be varied and the thickness in surface quality of the metal sheet to be controlled. Side guards provide lateral containment for the molten metal sheet and stabilize and shape the magnetic field while a leader sheet having electromagnetic characteristics similar to those of the metal sheet is used to start the casting process and precedes the molten metal sheet through the magnet and forms a continuous sheet therewith. The magnet may be either U-shaped with a single racetrack coil or may be rectangular with a pair of facing bedstead coils.

Hull, John R. (Hinsdale, IL); Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

1988-01-01T23:59:59.000Z

190

SOLID STATE BONDING OF THORIUM WITH ALUMINUM  

DOE Patents (OSTI)

A method is described for bonding thorium and aluminum by placing clean surfaces of thorium and aluminum in contact with each other and hot pressing the metals together in a protective atmosphere at a temperature of about 375 to 575 deg C and at a pressure of at least 10 tsi to effect a bond.

Storchhelm, S.

1959-12-01T23:59:59.000Z

191

METHOD OF PROTECTING TANTALUM CRUCIBLES AGAINST REACTION WITH MOLTEN URANIUM  

DOE Patents (OSTI)

Tantalum crucibles against reaction with molten uranium by contacting the surfaces to be protected with metallic boron (as powder, vapor, or suspension in a liquid-volatilenonreacting medium, such as acetone and petroleum oil) at about 1800 deg C in vacuum, discontinuing contact with the boron, and heating the crucibles to a temperature of between 1800 aad 2000 deg C, whereby the tantalum boride formed in the first heating step is converted to tantalum monoboride.

Feder, H.M.; Chellew, N.R.

1960-08-16T23:59:59.000Z

192

Stability of Molten Core Materials  

SciTech Connect

The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INL’s LOFT (Loss of Fluid Test) reactor project and other sources.

Layne Pincock; Wendell Hintze

2013-01-01T23:59:59.000Z

193

Scaleable Clean Aluminum Melting Systems  

Science Conference Proceedings (OSTI)

The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

Han, Q.; Das, S.K. (Secat, Inc.)

2008-02-15T23:59:59.000Z

194

Recovery of protactinium from molten fluoride nuclear fuel compositions  

DOE Patents (OSTI)

A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

1973-12-25T23:59:59.000Z

195

MOLTEN FLUORIDE NUCLEAR REACTOR FUEL  

DOE Patents (OSTI)

Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

Barton, C.J.; Grimes, W.R.

1960-01-01T23:59:59.000Z

196

A PRELIMINARY STUDY OF MOLTEN SALT POWER REACTORS  

SciTech Connect

A preliminary study of molten salt pcwer reactors was made. The most promising fuel carrier salts were the fluorides and chlorides of the alkali metals, zirconium, and beryllium. The chlorides were found to have lower melting points but were less stable and more corrosive than the fluorides. A Li/sup 7/ F- - BeF/sub 2/ mixture with ThF/sub 4/ and UF/sub 4/appeared to perform best. Of the numerous alloys tested as container material, Inconel and a nickel-- molybdenum alloy INOR-8 appeared to be the most resistant to corrosion. To study the performance, safety, economics, and construction costs of a typical molten salt reactor, a reactor of specific type and size was chosen for study. The reference design reactor was a two-region homogeneous converter with a core salt of 70 mole% Li/sup 7/F and 30% BeF/sub 2. ThF/sub 4/ and enough VF/sub 4/ for criticality were added. Study in- dicated that a molten salt reactor would prcduce economical power, but the problem of developing a salt core and a container metal which would last for mamy years of operation needed further study. (M.C.G.)

MacPherson, H.G.; Alexander, L.G.; Carrison, D.A.; Estabrook, J.Y.; Kinyon, B.W.; Mann, L.A.; Roberts, J.T.; Romie, F.E.; VonderLage, F.C.

1957-04-29T23:59:59.000Z

197

Electromagnetic valve for controlling the flow of molten, magnetic material  

DOE Patents (OSTI)

An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

Richter, Tomas (State College, PA)

1998-01-01T23:59:59.000Z

198

Electromagnetic valve for controlling the flow of molten, magnetic material  

DOE Patents (OSTI)

An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

Richter, T.

1998-06-16T23:59:59.000Z

199

Aluminum 2004  

Science Conference Proceedings (OSTI)

Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA. 01923 USA ... A Publication of TMS (The Minerals, Metals & Materials Society). 184 Thorn Hill Road.

200

Aluminum Coatings  

Science Conference Proceedings (OSTI)

...and furnaces Fire and garage doors Kitchen and laundry appliances Metal buildings Agricultural equipment Silo roofs Playground equipment Outdoor furniture Signs, masts, and lighting fixtures Containers and wrappers...

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Aluminum in Transportation  

Science Conference Proceedings (OSTI)

Presentation Title, Aluminum in Transportation: Case Study of the Development of a ... The unit was entirely redesigned using aluminum and based on the future

202

Recycling - Aluminum - TMS  

Science Conference Proceedings (OSTI)

Life Cycle Inventory Report for the North American Aluminum Industry Document providing the life cycle information for the North American aluminum industry.

203

Dissolution Behavior of Rhodium into Molten Slag  

Science Conference Proceedings (OSTI)

Determination of FeO Containing Liquid Slag Surface Tensions Using the Sessile Drop Method · Dissolution Behavior of Rhodium into Molten Slag.

204

Corrosion protective coating for metallic materials  

DOE Patents (OSTI)

Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

Buchheit, Rudolph G. (Albuquerque, NM); Martinez, Michael A. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

205

Potentiometric Sensor for Real-Time Monitoring of Multivalent Ion Concentrations in Molten Salt  

SciTech Connect

Electrorefining of spent metallic nuclear fuel in high temperature molten salt systems is a core technology in pyroprocessing, which in turn plays a critical role in the development of advanced fuel cycle technologies. In electrorefining, spent nuclear fuel is treated electrochemically in order to effect separations between uranium, noble metals, and active metals, which include the transuranics. The accumulation of active metals in a lithium chloride-potassium chloride (LiCl-KCl) eutectic molten salt electrolyte occurs at the expense of the UCl3-oxidant concentration in the electrolyte, which must be periodically replenished. Our interests lie with the accumulation of active metals in the molten salt electrolyte. The real-time monitoring of actinide concentrations in the molten salt electrolyte is highly desirable for controlling electrochemical operations and assuring materials control and accountancy. However, real-time monitoring is not possible with current methods for sampling and chemical analysis. A new solid-state electrochemical sensor is being developed for real-time monitoring of actinide ion concentrations in a molten salt electrorefiner. The ultimate function of the sensor is to monitor plutonium concentrations during electrorefining operations, but in this work gadolinium was employed as a surrogate material for plutonium. In a parametric study, polycrystalline sodium beta double-prime alumina (Na-ß?-alumina) discs and tubes were subject to vapor-phase exchange with gadolinium ions (Gd3+) using a gadolinium chloride salt (GdCl3) as a precursor to produce gadolinium beta double-prime alumina (Gd-ß?-alumina) samples. Electrochemical impedance spectroscopy and microstructural analysis were performed on the ion-exchanged discs to determine the relationship between ion exchange and Gd3+ ion conductivity. The ion-exchanged tubes were configured as potentiometric sensors in order to monitor real-time Gd3+ ion concentrations in mixtures of gadolinium chloride (GdCl3) in LiCl-KCl eutectic molten salts through measurement of the potential difference between a reference and working electrode.

Peter A. Zink; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson; Ben F. Cowan; Steven D. Herrmann; Shelly X. Li

2010-07-01T23:59:59.000Z

206

Modeling of Porous Electrodes in Molten-Salt Systems  

E-Print Network (OSTI)

of Porous Electrodes in Molten-Salt Systems^ John Newmanon High-Temperature Molten Salt B a t - teries, Argonneby the modeling of molten-salt cells, including some

Newman, John

1986-01-01T23:59:59.000Z

207

Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.  

SciTech Connect

A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR); Bradford, Donald R (Underwood, WA)

2004-10-05T23:59:59.000Z

208

Aluminum Cast Shop IV  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... The energy released from one kilogram of molten aluminium reacted with oxygen is equivalent to detonating 3 kilograms of trinitrotoluene ...

209

Aluminum-fly ash metal matrix composites for automotive parts. [Reports for October 1 to December 31, 1999, and January 1 - to March 31, 2000  

Science Conference Proceedings (OSTI)

The highlights of this report are: (1) fly ash classified by less than 100 microns in size was mixed into a 300 lb melt of alloy 535 without the need of a magnesium additive; (2) a vibratory feeder fitted with a sieve was used as the means to minimize particle clustering while introducing fly ash into the aluminum alloy 535 melt; and (3) the industrial-size field test was successful in that sand mold castings and permanent mold castings of tensile bars, K mold bars, and ingots were made from aluminum alloy 535-fly ash mix. Use of aluminum alloy 535 containing 7% magnesium precluded the need to introduce additional magnesium into the melt. The third round of sand mold castings as well as permanent mold castings produced components and ingots of alloy 535 instead of alloy 356. The ingots will be remelted and cast into parts to assess the improvement of flyash distribution which occurs through reheating and the solidification wetting process. Microstructure analysis continues on sand and permanent mold castings to study particle distribution in the components. A prototype sand cast intake manifold casting was found to be pressure tight which is a major performance requirement for this part. Another heat of pressure die cast brackets of A380-classified fly ash will be made to examine their strength and fly ash distribution. Ingots of A356-fly ash have been made at Eck for remelting at Thompson Aluminum for squeeze casting into motor mounts.

Weiss, David; Purgert, Robert; Rhudy, Richard; Rohatgi, Pradeep

2000-04-21T23:59:59.000Z

210

Fabrication of Porous Metals with Directional Pores through ...  

Science Conference Proceedings (OSTI)

Gas-forming compounds such as hydrides were added into the molten metal to ... of Iron Compounds Complex Particles by Pulsed Laser Irradiation in Liquids.

211

The Interface Reaction and Transport of Oxygen between the Molten ...  

Science Conference Proceedings (OSTI)

Effect of Silicon on the Viscosity and Solidification Properties of Molten Irons with ... Stibnite in Low Temperature Molten Salt Smelting Process without Reductant.

212

Molten Salt Breeder Reactors Academia Sinica, ITRI, NTHU  

E-Print Network (OSTI)

Power 4/8/12 Frank H. Shu Gen IV MSBR/LFTR Liquid fuel (molten salt) Molten salt coolant (unpopulated

Wang, Ming-Jye

213

Measurement of Thermodynamic Properties of Tellurium in Molten ...  

Science Conference Proceedings (OSTI)

... dissolution of tellurium gas (Te2) into molten iron by equilibrating molten iron in ... Quantifying the Export Flow of Used Electronics from the United States: The ...

214

Corrosion of High Temperature Alloys in Molten Salts  

Science Conference Proceedings (OSTI)

Fluoride and chloride salts are among the candidates for this application. However, materials corrosion is an issue in these molten salts, particularly in molten ...

215

Molten Oxide Electrolysis Application to Steelmaking: A New ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Molten oxide electrolysis (MOE) is a new steelmaking ... Electrochemical Reduction of Tantalum Oxide in a CaCl2 – CaO Molten Salt Electrolyte.

216

Wetting Properties of Molten Silicon with Graphite Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, The wetting behavior of molten-silicon/refractory-materials system is important in ... Electrorefining of Metallurgical Grade Silicon in Molten Salts.

217

Molten carbonate fuel cell research at ORNL  

DOE Green Energy (OSTI)

The activities at ORNL during the period July 1976 to February 1977 on the molten carbonate fuel cell program, funded by the ERDA Division of Conservation Research and Technology, are summarized. This period marks the initiation of molten carbonate fuel cell research at ORNL, making use of the extensive background of expertise and facilities in molten salt research. The activities described include a literature survey on molten carbonates, design, acquisition and installation of apparatus for experimental studies of molten carbonates, initial experiments on materials compatibility with molten carbonates, electrolysis experiments for the determination of transference numbers, and theoretical studies of transport behavior and the coupling of mass flows in molten carbonate mixtures. Significant accomplishments were the theoretical prediction of a possibly appreciable change in the alkali ion ratio at molten carbonate fuel cell electrodes, operated at high current densities, as a result of mobility differences of the alkali ions; design, construction and assembly of an electrolysis cell, and initiation of measurements of composition profiles in mixed alkali carbonate electrolytes; initiation of differential scanning calorimetry of pure alkali carbonates for quantitative measurement of transition enthalpies, eventually leading to new, more reliable values of the enthalpies and free energies of formation of the pure and mixed carbonates.

Braunstein, J.; Bronstein, H. R.; Cantor, S.; Heatherly, D.; Vallet, C. E.

1977-05-01T23:59:59.000Z

218

Dry lubricant films for aluminum forming.  

DOE Green Energy (OSTI)

During metal forming process, lubricants are crucial to prevent direct contact, adhesion, transfer and scuffing of workpiece materials and tools. Boric acid films can be firmly adhered to the clean aluminum surfaces by spraying their methanol solutions and provide extremely low friction coefficient (about 0.04). The cohesion strengths of the bonded films vary with the types of aluminum alloys (6061, 6111 and 5754). The sheet metal forming tests indicate that boric acid films and the combined films of boric acid and mineral oil can create larger strains than the commercial liquid and solid lubricants, showing that they possess excellent lubricities for aluminum forming. SEM analyses indicate that boric acid dry films separate the workpiece and die materials, and prevent their direct contact and preserve their surface qualities. Since boric acid is non-toxic and easily removed by water, it can be expected that boric acid films are environmentally friendly, cost effective and very efficient lubricants for sheet aluminum cold forming.

Wei, J.; Erdemir, A.; Fenske, G. R.

1999-03-30T23:59:59.000Z

219

Cathode-preparation method for molten-carbonate fuel cell  

DOE Green Energy (OSTI)

A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

Smith, J.L.; Sim, J.W.; Kucera, E.H.

1982-01-28T23:59:59.000Z

220

Molten salt safety study. Final report  

DOE Green Energy (OSTI)

The considerations concerning safety in using molten salt (40% potassium nitrate, 60% sodium nitrate) in a solar central receiver plant are addressed. The considerations are of a general nature and do not cover any details of equipment or plant operation. The study includes salt chemical reaction, experiments with molten salt, dry storage and handling constraints, and includes data from the National Fire Protection Association. The contents of this report were evaluated by two utility companies and they concluded that no major safety problems exist in using a molten salt solar system.

Not Available

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cathode for molten carbonate fuel cell  

DOE Patents (OSTI)

Disclosed are a porous sintered cathode for a molten carbonate fuel cell and method of making same. The cathode includes a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell. The cathode has a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

Kaun, T.D.; Mrazek, F.C.

1986-04-25T23:59:59.000Z

222

Cathode for molten carbonate fuel cell  

DOE Patents (OSTI)

A porous sintered cathode for a molten carbonate fuel cell and method of making same, the cathode including a skeletal structure of a first electronically conductive material slightly soluble in the electrolyte present in the molten carbonate fuel cell covered by fine particles of a second material of possibly lesser electronic conductivity insoluble in the electrolyte present in the molten carbonate fuel cell, the cathode having a porosity in the range of from about 60% to about 70% at steady-state cell operating conditions consisting of both macro-pores and micro-pores.

Kaun, Thomas D. (New Lenox, IL); Mrazek, Franklin C. (Hickory Hills, IL)

1990-01-01T23:59:59.000Z

223

Utilizing fly ash particles to produce low-cost metal matrix composites  

Science Conference Proceedings (OSTI)

Metal matrix composites (MMCs) are a blend of fine ceramic particles mixed with metals such as aluminium or magnesium. Fly ash is considerably cheaper than ceramics; aluminium-fly ash composites cost less than 60% of conventional aluminium-SiC composites making them attractive to automakers striving for lower weight and cheaper materials for brake rotors or brake drums. Ultalite.com has consulted with US researchers to to find the optimum requirements of the fly ash needed to make MMCs. Particle size 20-40 microns, low calcium oxide content and spherical particles were identified. The desired particles once extracted are stirred into molten aluminum and the resulting composite is into ingots for shipment to a casting facility. Dynamometer testing has shown that aluminium-fly ash composite brake drums have better performance and wear than cast iron drums. 6 figs., 1 tab.

Withers, G. [Ultalite.com, Melbourne, Vic. (Australia)

2008-07-01T23:59:59.000Z

224

Direct Electroreduction of Oxides in Molten Fluorides  

Science Conference Proceedings (OSTI)

However, up to now, the use of chloride salts is still problematic partially because ... Electrochemical Reduction of Tantalum Oxide in a CaCl2 – CaO Molten Salt ...

225

Molten salt destruction of energetic waste materials  

DOE Patents (OSTI)

A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Pruneda, Cesar O. (Livermore, CA)

1995-01-01T23:59:59.000Z

226

Molten salt destruction of energetic waste materials  

DOE Patents (OSTI)

A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

1995-07-18T23:59:59.000Z

227

In-Flight Oxidation of Aluminum in the Twin-Wire Electric Arc Process  

Science Conference Proceedings (OSTI)

This paper examines the in-flight oxidation of aluminum sprayed in air using the twin-wire electric arc (TWEA) thermal spray process. Aerodynamic shear at the droplet surface increases the amount of in-flight oxidation by promoting entrainment of the surface oxides within the molten droplet and continually exposing fresh fluid available for oxidation. Mathematical predictions herein confirm experimental measurements that reveal an elevated, nearly constant surface temperature (~2273 K) of the droplets during flight. The calculated oxide volume fraction of a “typical” droplet with internal circulation compares favorably to the experimentally determined oxide content (3.3 to 12.7%) for a typical TWEA-sprayed aluminum coating sprayed onto a room temperature substrate. It is concluded that internal circulation within the molten aluminum droplet is a significant source of oxidation. This effect produces an oxide content nearly two orders of magnitude larger than that of a droplet without continual oxidation.

Donna Post Guillen; Brian G. Williams

2006-03-01T23:59:59.000Z

228

Aluminum Fluoride – A Users Guide  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Aluminum Reduction Technology. Presentation Title, Aluminum Fluoride – A ...

229

Sulfide ceramics in molten-salt electrolyte batteries  

DOE Green Energy (OSTI)

Sulfide ceramics are finding application in the manufacture of advanced batteries with molten salt electrolyte. Use of these ceramics as a peripheral seal component has permitted development of bipolar Li/FeS{sub 2} batteries. This bipolar battery has a molten lithium halide electrolyte and operates at 400 to 450C. Initial development and physical properties evaluations indicate the ability to form metal/ceramic bonded seal (13-cm ID) components for use in high-temperature corrosive environments. These sealants are generally CaAl{sub 2}S{sub 4}-based ceramics. Structural ceramics (composites with oxide or nitride fillers), highly wetting sealant formulations, and protective coatings are also being developed. Sulfide ceramics show great promise because of their relatively low melting point, high-temperature viscous flow, chemical stability, high-strength bonding, and tailored coefficients of thermal expansion. Our methodology of generating laminated metal/ceramic pellets (e.g., molybdenum/sulfide ceramic/molybdenum) with which to optimize materials formulation and seal processing is described.

Kaun, T.D.; Hash, M.C.; Simon, D.R.

1995-06-01T23:59:59.000Z

230

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Increasing the Power Modulation Window of Aluminium Smelter Pots with Shell Heat Exchanger Technology · Initiatives To Reduction Of Aluminum Potline ...

231

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... GHG Measurement and Inventory for Aluminum Production · HEX Retrofit Enables Smelter Capacity Expansion · HF Emission Reduction from ...

232

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network (OSTI)

Liquefaction Chemistry B. Molten Salt Catalysis RationaleUsed Equipment and Procedure Molten Salt a. b. c. Treat~entEquipment and Procedure Molten Salt Treatment a. Equipment

Holten, R.R.

2010-01-01T23:59:59.000Z

233

Electrolytic production of high purity aluminum using inert anodes  

DOE Patents (OSTI)

A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

2001-01-01T23:59:59.000Z

234

Electrolytic production of high purity aluminum using ceramic inert anodes  

DOE Patents (OSTI)

A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA); DiMilia, Robert A. (Baton Rouge, LA); Dynys, Joseph M. (New Kensington, PA); Phelps, Frankie E. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

2002-01-01T23:59:59.000Z

235

Diffusion Welding of Alloys for Molten Salt Service - Status Report  

SciTech Connect

The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 C. (RR E) A different set of alloys, such as Alloy N and 242, are needed to handle molten salts at this temperature. The diffusion welding development work described here builds on techniques developed during the NGNP work, as applied to these alloys. There is also the matter of dissimilar metal welding, since alloys suitable for salt service are generally not suited for service in gaseous oxidizing environments, and vice versa, and welding is required for the Class I boundaries in these systems, as identified in the relevant ASME codes.

Denis Clark; Ronald Mizia

2012-05-01T23:59:59.000Z

236

Diffusion Welding of Alloys for Molten Salt Service - Status Report  

Science Conference Proceedings (OSTI)

The present work is concerned with heat exchanger development for molten salt service, including the proposed molten salt reactor (MSR), a homogeneous reactor in which the fuel is dissolved in a circulating fluid of molten salt. It is an outgrowth of recent work done under the Next Generation Nuclear Plant (NGNP) program; what the two reactor systems have in common is an inherently safe nuclear plant with a high outlet temperature that is useful for process heat as well as more conventional generation The NGNP program was tasked with investigating the application of a new generation of nuclear power plants to a variety of energy needs. One baseline reactor design for this program is a high temperature, gas-cooled reactor (HTGR), which provides many options for energy use. These might include the conventional Rankine cycle (steam turbine) generation of electricity, but also other methods: for example, Brayton cycle (gas turbine) electrical generation, and the direct use of the high temperatures characteristic of HTGR output for process heat in the chemical industry. Such process heat is currently generated by burning fossil fuels, and is a major contributor to the carbon footprint of the chemical and petrochemical industries. The HTGR, based on graphite fuel elements, can produce very high output temperatures; ideally, temperatures of 900 °C or even greater, which has significant energy advantages. Such temperatures are, of course, at the frontiers of materials limitations, at the upper end of the performance envelope of the metallic materials for which robust construction codes exist, and within the realm of ceramic materials, the fabrication and joining of which, on the scale of large energy systems, are at an earlier stage of development. A considerable amount of work was done in the diffusion welding of materials of interest for HTGR service with alloys such as 617 and 800H. The MSR output temperature is also materials limited, and is projected at about 700 °C. (RR E) A different set of alloys, such as Alloy N and 242, are needed to handle molten salts at this temperature. The diffusion welding development work described here builds on techniques developed during the NGNP work, as applied to these alloys. There is also the matter of dissimilar metal welding, since alloys suitable for salt service are generally not suited for service in gaseous oxidizing environments, and vice versa, and welding is required for the Class I boundaries in these systems, as identified in the relevant ASME codes.

Denis Clark; Ronald Mizia; Piyush Sabharwall

2012-09-01T23:59:59.000Z

237

PROCESSING OF MOLTEN SALT POWER REACTOR FUEL  

SciTech Connect

ABS> Fuel reprocessing methods are being investigated for molten salt nuclear reactors which use LiF--BeF/sub 2/ salt as a solvent for UF/sub 4/ and ThF/sub 4/. A liquid HF dissolution procedure coupled with fluorination has been developed for recovery of the uranium and LiF- BeF/sub 2/ solvent salt which is highly enriched in Li/sup 7/. The recovered salt is decontaminated in the process from the major reactor poisons; namely, rare earths and neptunium. A brief investigation of alternate methods, including oxide precipitation, partial freezing, and metal reduction, indicated that such methods may give some separation of the solvent salt from reactor poisons, but they do not appear to be sufficiently quantitative for a simple processing operation. Solubilities of LiF and BeF/sub 2/ in aqueous 70t0 100% HF are presented. The BeF/sub 2/ solubility is appreciably increased in the presence of water and large amounts of LiF. Salt solubilities of 150 g/liter are attainable. Tracer experiments indicate that rare earth solubilities, relative to LiF-- BeF/sub 2/ solvent salt solubility, increase from about 10/sup -4/ mole% in 98% HF to 0.003 mole% in 80% HF. Fluorination of uranium from LiF--BeF/sub 2/ salt was demonstrated. This appears feasible also for the recovery of the relatively small ccncentration of uranium produced in the LiF- BeF/sub 2/ThF/sub 4/ blanket. A proposed chemical flowsheet is presented on the basis of this exploratory work as applied to the semicontinuous processing of a 600 Mw power reactor. (auth)

Campbell, D.O.; Cathers, G.I.

1959-04-01T23:59:59.000Z

238

APPARATUS FOR THE PRODUCTION OF LITHIUM METAL  

DOE Patents (OSTI)

Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)

Baker, P.S.; Duncan, F.R.; Greene, H.B.

1961-08-22T23:59:59.000Z

239

The Effect of Applied Pressure During Feeding of Critical Cast Aluminum Alloy Components With Particular Reference to Fatigue Resistance  

DOE Green Energy (OSTI)

the medium to long freezing range alloys of aluminum such as A356, A357, A206, 319 for example are known to exhibit dispersed porosity, which is recognized as a factor affecting ductility, fracture toughness, and fatigue resistance of light alloy castings. The local thermal environment, for example, temperature gradient and freezing from velocity, affect the mode of solidification which, along with alloy composition, heat treatment, oxide film occlusion, hydrogen content, and the extent to which the alloy contracts on solidification, combine to exert strong effects on the porosity formation in such alloys. In addition to such factors, the availability of liquid metal and its ability to flow through the partially solidified casting, which will be affect by the pressure in the liquid metal, must also be considered. The supply of molten metal will thus be controlled by the volume of the riser available for feeding the particular casting location, its solidification time, and its location together with any external pressure that might be applied at the riser.

J.T. Berry; R. Luck; B. Zhang; R.P. Taylor

2003-06-30T23:59:59.000Z

240

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

SciTech Connect

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Batavia, IL)

2010-09-21T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

DOE Patents (OSTI)

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Batavia, IL)

2010-09-21T23:59:59.000Z

242

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

DOE Patents (OSTI)

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Ratavia, IL)

2007-09-11T23:59:59.000Z

243

Education: Digital Resource Center - WEB: What is Metals Recycling?  

Science Conference Proceedings (OSTI)

Oct 22, 2007 ... This British Metals Recycling Association (BMRA) website provides details concerning steel, aluminum, and copper recycling including ...

244

Decontamination and reuse of ORGDP aluminum scrap  

Science Conference Proceedings (OSTI)

The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

1996-12-01T23:59:59.000Z

245

Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production  

SciTech Connect

This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

Xiaodi Huang; J.Y. Hwang

2007-04-18T23:59:59.000Z

246

Developments in Molten Salt and Liquid-Salt-Cooled Reactors  

Science Conference Proceedings (OSTI)

In the last 5 years, there has been a rapid growth in interest in the use of high-temperature (700 to 1000 deg C) molten and liquid fluoride salts as coolants in nuclear systems. This renewed interest is a consequence of new applications for high-temperature heat and the development of new reactor concepts. Fluoride salts have melting points between 350 and 500 deg C; thus, they are of use only in high-temperature systems. Historically, steam cycles with temperature limits of {approx}550 deg C have been the only efficient method to convert heat to electricity. This limitation produced few incentives to develop high-temperature reactors for electricity production. However, recent advances in Brayton gas turbine technology now make it possible to convert higher-temperature heat efficiency into electricity on an industrial scale and thus have created the enabling technology for more efficient nuclear reactors. Simultaneously, there is a growing interest in using high-temperature nuclear heat for the production of hydrogen and shale oil. Five nuclear-related applications are being investigated: (1) liquid-salt heat-transport systems in hydrogen and shale oil production systems; (2) the advanced high-temperature reactor, which uses a graphite-matrix coated-particle fuel and a liquid salt coolant; (3) the liquid-salt-cooled fast reactor which uses metal-clad fuel and a liquid salt coolant; (4) the molten salt reactor, with the fuel dissolved in the molten salt coolant; and (5) fusion energy systems. The reasons for the new interest in liquid salt coolants, the reactor concepts, and the relevant programs are described. (author)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

2006-07-01T23:59:59.000Z

247

Tunable molten oxide pool assisted plasma-melter vitrification systems  

DOE Patents (OSTI)

The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.

Titus, Charles H. (Newtown Square, PA); Cohn, Daniel R. (Chestnut Hill, MA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

248

Climate VISION: Private Sector Initiatives: Aluminum: Resources...  

Office of Scientific and Technical Information (OSTI)

Industry Associations Aluminum Association The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum...

249

Five Ways Aluminum Foil Is Advancing Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science September 7, 2012 - 5:33pm Addthis SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then covered in foil again. Heat tape is used to heat the metal chamber just enough to loosen any residues that could cause trouble. The aluminum foil helps spread the heat evenly. | Photo of SLAC SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then

250

Five Ways Aluminum Foil Is Advancing Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science September 7, 2012 - 5:33pm Addthis SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then covered in foil again. Heat tape is used to heat the metal chamber just enough to loosen any residues that could cause trouble. The aluminum foil helps spread the heat evenly. | Photo of SLAC SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then

251

Molten carbonate fuel cell programs in the United States  

DOE Green Energy (OSTI)

The environmental, performance, and economic aspects of molten carbonate fuel cell power plants are discussed. Design, components, and operation of molten carbonate fuel cells are discussed, and US research is outlined. (WHK)

Ackerman, J.P.

1980-01-01T23:59:59.000Z

252

Colloidal stability of magnetic nanoparticles in molten salts  

E-Print Network (OSTI)

Molten salts are important heat transfer fluids used in nuclear, solar and other high temperature engineering systems. Dispersing nanoparticles in molten salts can enhance the heat transfer capabilities of the fluid. High ...

Somani, Vaibhav (Vaibhav Basantkumar)

2010-01-01T23:59:59.000Z

253

Molten Salt Heat Transfer Fluid (HTF) - Energy Innovation Portal  

Solar Thermal Industrial Technologies Energy Storage Molten Salt Heat Transfer Fluid (HTF) Sandia National Laboratories. Contact SNL About This ...

254

CO2 Emission Reduction through Innovative Molten Salt Electrolysis ...  

Science Conference Proceedings (OSTI)

Electrochemical metallurgy especially through high temperature molten salt electrolysis with renewable electricity stands for a great opportunity for producing

255

Aluminum Plenary Session flier  

Science Conference Proceedings (OSTI)

The Strategic Impact of Changing Energy Markets on the Aluminum Industry ... For complete technical program information, and registration/housing details.

256

Aluminum Extrusion Alloys  

Science Conference Proceedings (OSTI)

Table 1   Aluminum extrusion alloys by series...6063 (1944), 6066, 6070, 6082 (1972), 6101 (1954), 6105 (1965),

257

INNOVATIONS IN ALUMINUM: II  

Science Conference Proceedings (OSTI)

Likewise, to produce aluminum sheet and some other products, dissolved sodium and calcium must be fluxed by reaction with chlorine. Today, the combined ...

258

Aluminum Association: Recycling  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This webpage provides some historical information on aluminum recycling and describes the processes done by various recyclers: used ...

259

Aluminum Recycling, 2006  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... The book details the collecting, sorting, and separating of scrap aluminum as well as the processing and upgrading equipment used.

260

Aluminum Reduction Technology  

Science Conference Proceedings (OSTI)

Increased Energy Efficiency and Reduced HF Emissions with New Heat Exchanger · Industrial Test of Low-voltage Energy-saving Aluminum Reduction ...

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Technology Innovation in Aluminum Products  

Science Conference Proceedings (OSTI)

Today's U.S. aluminum production includes roughly 5.6 million tonnes of .... to help make the cost of aluminum competitive with steel.12 Aluminum pull tabs were ...

262

Industrial use of molten nitrate/nitrite salts  

DOE Green Energy (OSTI)

Nitrate salts have been used for years as a high-temperature heat transfer medium in the chemical and metal industries. This experience is often cited as an argument for the use of these salts in large-scale solar energy systems. However, this industrial experience has not been well documented and a study was carried out to provide such information to the solar community and to determine the applicability of this data base. Seven different industrial plants were visited and the plant operators were interviewed with regard to operating history and experience. In all cases the molten salt systems operate without problems. However, it is not possible to apply the base of industrial experience directly to solar thermal energy applications because of differences in operating temperature, salt composition, alloys used, and thermal/mechanical conditions.

Carling, R.W.; Mar, R.W.

1981-12-01T23:59:59.000Z

263

Accelerators for Subcritical Molten-Salt Reactors  

SciTech Connect

Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

Johnson, Roland (Muons, Inc.)

2011-08-03T23:59:59.000Z

264

Purification of alkali metal nitrates  

DOE Patents (OSTI)

A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

Fiorucci, Louis C. (Hamden, CT); Gregory, Kevin M. (Woodridge, IL)

1985-05-14T23:59:59.000Z

265

Aluminum 2003 TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

DOE/OIT PHAST Program Application in the Aluminum Industry [pp. 239-242] F.L. Beichner. Retrofitting Regenerative Burners on Aluminum Melting Furnaces ...

266

Recyclability of Aluminum  

Science Conference Proceedings (OSTI)

...It is resistant to corrosion, and a low ratio of energy is required to remelt aluminum compared with that required for its primary production. Also, the alloy versatility of aluminum has resulted in a large number of commercial compositions, many of which were designed to accommodate impurity...

267

APPARATUS FOR HIGH PURITY METAL RECOVERY  

DOE Patents (OSTI)

An apparatus is described for preparing high purity metal such as uranium, plutonium and the like from an impure mass of the same metal. The apparatus is arranged so that the impure metal is heated and swept by a stream of hydrogen gas bearing a halogen such as iodine. The volatiie metal halide formed is carried on to a hot filament where the metal halide is decomposed and the molten high purity metal is collected in a rceeiver below

Magel, T.T.

1959-02-10T23:59:59.000Z

268

CHARACTERIZATION AND ALUMINUM DISSOLUTION DEMONSTRATION WITH A 3 LITER TANK 51H SAMPLE  

Science Conference Proceedings (OSTI)

A 3-liter sludge slurry sample was sent to SRNL for demonstration of a low temperature aluminum dissolution process. The sludge was characterized before and after the aluminum dissolution. Post aluminum dissolution sludge settling and the stability of the decanted supernate were also observed. The characterization of the as-received 3-liter sample of Tank 51H sludge slurry shows a typical high aluminum HM sludge. The XRD analysis of the dried solids indicates Boehmite is the predominant crystalline form of aluminum in the sludge solids. However, amorphous phases of aluminum present in the sludge would not be identified using this analytical technique. The low temperature (55 C) aluminum dissolution process was effective at dissolving aluminum from the sludge. Over the three week test, {approx}42% of the aluminum was dissolved out of the sludge solids. The process appears to be selective for aluminum with no other metals dissolving to any appreciable extent. At the termination of the three week test, the aluminum concentration in the supernate had not leveled off indicating more aluminum could be dissolved from the sludge with longer contact times or higher temperatures. The slow aluminum dissolution rate in the test may indicate the dissolution of the Boehmite form of aluminum however; insufficient kinetic data exists to confirm this hypothesis. The aluminum dissolution process appears to have minimal impact on the settling rate of the post aluminum dissolution sludge. However, limited settling data were generated during the test to quantify the effects. The sludge settling was complete after approximately twelve days. The supernate decanted from the settled sludge after aluminum dissolution appears stable and did not precipitate aluminum over the course of several months. A mixture of the decanted supernate with Tank 11 simulated supernate was also stable with respect to precipitation.

Hay, M; John Pareizs, J; Cj Bannochie, C; Michael Stone, M; Damon Click, D; Daniel McCabe, D

2008-02-29T23:59:59.000Z

269

Hutchison Effect Metal Samples: Description and Analysis  

Science Conference Proceedings (OSTI)

... and other equipment which caused severe plastic deformation, delamination, de-alloying and unusual magnetic properties in metal (aluminum, copper, brass,

270

Dissolution Studies of Si Metal in Liquid Al under Different Forced ...  

Science Conference Proceedings (OSTI)

Presentation Title, Dissolution Studies of Si Metal in Liquid Al under Different Forced ... studies of Silicon metal in liquid Aluminum will be reported under natural and ... conditions of two-phase flow, utilizing Nitrogen gas, in liquid Aluminum will ...

271

Electrolytic production of metals using a resistant anode  

DOE Patents (OSTI)

An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

1986-11-04T23:59:59.000Z

272

Electrolytic production of metals using a resistant anode  

DOE Patents (OSTI)

An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

Tarcy, Gary P. (Plum Borough, PA); Gavasto, Thomas M. (New Kensington, PA); Ray, Siba P. (Plum Borough, PA)

1986-01-01T23:59:59.000Z

273

Light Metals  

Science Conference Proceedings (OSTI)

... Aluminum Reduction Technology, and Electrode Technology for Aluminum ... Materials for Energy and Sustainability, Nanomaterials, Nuclear Materials ...

274

Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage  

Science Conference Proceedings (OSTI)

HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

None

2012-01-01T23:59:59.000Z

275

Molten salt battery having inorganic paper separator  

DOE Patents (OSTI)

A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

Walker, Jr., Robert D. (Gainesville, FL)

1977-01-01T23:59:59.000Z

276

Status of Molten Carbonate Fuel Cell Technology  

Science Conference Proceedings (OSTI)

Fuel cell technology development and commercialization continues to be a major thrust in the alternative energy sector of distributed generation (DG). Second generation, molten carbonate fuel cell technology (MCFC) is now entering a critical commercialization phase. Given recent MCFC developments and advances in other distributed generation technologies, an assessment and update on the prospects for MCFC power systems is needed to guide future utility investments.

2003-01-22T23:59:59.000Z

277

PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS  

DOE Patents (OSTI)

A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)

Moore, R.H.

1962-10-01T23:59:59.000Z

278

Thermal Characterization of Molten Salt Systems  

Science Conference Proceedings (OSTI)

The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

Toni Y. Gutknecht; Guy L. Fredrickson

2011-09-01T23:59:59.000Z

279

ALUMINUM CLADDING DISSOLUTION  

DOE Patents (OSTI)

This patent shows a method of moderating the chemical reaction when aluminum is dissolved in 2 to 7 molar nitric acid with a mercury catalyst. Nickelous nitrate is added as a negative promoter. (AEC)

Schulz, W.W.

1964-01-28T23:59:59.000Z

280

Aluminum ION Battery  

•Lower cost because of abundant aluminum resources ... Li-ion battery (LiC 6 - Mn 2 O 4) 106 4.0 424 Al-ion battery (Al - Mn 2 O 4) 400 2.65 1,060

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Visualizing the Flow of Molten Rock through Seabed Mantle | Advanced Photon  

NLE Websites -- All DOE Office Websites (Extended Search)

How Dinosaurs Put Proteins into Long-Term Storage How Dinosaurs Put Proteins into Long-Term Storage Plutonium Tricks Cells by "Pretending" to be Iron A Chemical Detour to Quantum Criticality Metallic Glass: A Crystal at Heart Brain Iron as an Early Predictor of Alzheimer's Disease Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Visualizing the Flow of Molten Rock through Seabed Mantle JULY 27, 2011 Bookmark and Share X-ray microtomography images show the networks formed by molten rock in a cube of mantle material, 140 microns on a side, at four different melt fractions. Grey areas are melted material between solid olivine grains, represented by the white regions. Red indicates channels of melt slicing

282

Structure and dynamics in yttrium-based molten rare earth alkali fluorides  

E-Print Network (OSTI)

The transport properties of molten LiF-YF$_3$ mixtures have been studied by pulsed field gradient nuclear magnetic resonance spectroscopy, potentiometric experiments, and molecular dynamics simulations. The calculated diffusion coefficients and electric conductivities compare very well with the measurements accross a wide composition range. We then extract static (radial distribution functions, coordination numbers distributions) and dynamic (cage correlation functions) quantities from the simulations. Then, we discuss the interplay between the microscopic structure of the molten salts and their dynamic properties. It is often considered that variations in the diffusion coefficient of the anions are mainly driven by the evolution of its coordination with the metallic ion (Y$^{3+}$ here). We compare this system with fluorozirconate melts and demonstrate that the coordination number is a poor indicator of the evolution of the diffusion coefficient. Instead, we propose to use the ionic bonds lifetime. We show th...

Levesque, Maximilien; Salanne, Mathieu; Gobet, Mallory; Groult, Henri; Bessada, Catherine; Madden, Paul A; Rollet, Anne-Laure

2013-01-01T23:59:59.000Z

283

Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon  

DOE Patents (OSTI)

A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

Byrne, Stephen C. (Monroeville, PA); Vasudevan, Asuri K. (Pittsburgh, PA)

1984-01-01T23:59:59.000Z

284

Delivery system for molten salt oxidation of solid waste  

DOE Patents (OSTI)

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

285

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network (OSTI)

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

286

Regenerative mode photo electrochemical cells in molten salt electrolytes. 1st four monthly report (1/31/80)  

DOE Green Energy (OSTI)

The most promising photoelectrodes selected for use in the butyl pyridinium chloride-aluminum chloride room temperature molten salt are n-type silicon, gallium arsenide and cadmium telluride. The solubilities of these semiconductors are low, and their conduction and valence band edges are favorably located. Cadmium selenide and sulfide showed significant solubility in the melt, and the conduction band edge for p-type cadmium telluride was too close to the aluminum deposition potential. Several reversible redox couples have been identified, which could potentially be used in a photoelectrochemical cell. These include W/sup 5 +//W/sup 6 +/ and Eu/sup 2 +//Eu/sup 3 +/ as well as ferrocene and its derivatives.

Not Available

1980-01-01T23:59:59.000Z

287

Recent Progress in Molten Oxide Electrolysis for Iron Production  

Science Conference Proceedings (OSTI)

Presentation Title, Recent Progress in Molten Oxide Electrolysis for Iron Production ... Concentrated Solar Power for Producing Liquid Fuels from CO2 and H2O.

288

Electrochemical Behavior of Calcium-Bismuth Alloys in Molten Salt ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The electrochemical properties of calcium-bismuth alloys were investigated to ... Behavior of Silicon Electrodepositing in Fluoride Molten Salts.

289

Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Molten Bed Gasifier for High Hydrogen (H2) Syngas Production Gas Technology Institute (GTI) Project Number: FE0012122 Project Description The research team will evaluate and...

290

Preventing Molten Aluminium Water Explosions through the Use of ...  

Science Conference Proceedings (OSTI)

The energy released from one kilogram of molten aluminium reacted with oxygen is equivalent to detonating 3 kilograms of trinitrotoluene (TNT). For over 60 ...

291

Thermal Barrier Coatings for Resistance Against Attack by Molten ...  

Science Conference Proceedings (OSTI)

Presentation Title, Thermal Barrier Coatings for Resistance Against Attack by Molten Silicate Deposits from CMAS Sand, Volcanic Ash, or Coal Fly Ash Ingested ...

292

Process of making electrolyte structure for molten carbonate fuel cells  

DOE Patents (OSTI)

An electrolyte structure is produced by forming matrix material powder into a blank at room temperature and impregnating the resulting matrix blank with molten electrolyte.

Arendt, R.H.; Curran, M.J.

1980-08-05T23:59:59.000Z

293

Process of making electrolyte structure for molten carbonate fuel cells  

DOE Patents (OSTI)

An electrolyte structure is produced by forming matrix material powder into a blank at room temperature and impregnating the resulting matrix blank with molten electrolyte.

Arendt, Ronald H. (Schenectady, NY); Curran, Matthew J. (Schenectady, NY)

1980-01-01T23:59:59.000Z

294

Ion Beam Experiment to Simulate Simultaneous Molten Salt ...  

Science Conference Proceedings (OSTI)

Experiments to expose candidate materials to simultaneous molten salt corrosion and ion-beam damage are staged at the Ion Beam Materials Laboratory at Los ...

295

Molten Salt Electrolysis for the Synthesis of Elemental Boron  

Science Conference Proceedings (OSTI)

An alternative method using molten salt electrolysis was developed in this work. The electrolyte system evaluated was MgF2-NaF-LiF with ...

296

Sensor Technology for Real Time Monitoring of Molten Salt ...  

Science Conference Proceedings (OSTI)

Presentation Title, Sensor Technology for Real Time Monitoring of Molten Salt Electrolytes During Nuclear Fuel Electrorefining. Author(s), Michael F. Simpson, ...

297

Using Chemical Sensors to Control Molten Metal Processing  

Science Conference Proceedings (OSTI)

... emission monitoring, aeronautical and space systems, planetary exploration, ... and production of materials under consideration for a new generation of I.C.s.

298

Novel Molten Metal Corrosion Resistance Thermal Sprayed Coatings  

Science Conference Proceedings (OSTI)

Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane Using (PECVD) Method · Synthesis of ...

299

Modeling Vacuum Refining of Molten Metal by Advanced ...  

Science Conference Proceedings (OSTI)

Fluent 6.2 computational fluid dynamics software is explored as an engineering ... Energy Recovery Opportunities in Pyroprocessing of Nickel Laterites ... Modeling of Dross and Skimmings Generation in Continuous Galvanizing Operations.

300

Supported Molten-Metal Membrane for Hydrogen Separation  

NLE Websites -- All DOE Office Websites (Extended Search)

absorption, membrane separation, pressure-swing adsorption (PSA), and cryogenic distillation. The PSA and cryogenic distillation methods are most commonly used in industry;...

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Molten nitrate salt technology development status report  

SciTech Connect

Recognizing thermal energy storage as potentially critical to the successful commercialization of solar thermal power systems, the Department of Energy (DOE) has established a comprehensive and aggressive thermal energy storage technology development program. Of the fluids proposed for heat transfer and energy storage molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO/sub 3/ and KNO/sub 3/. Although nitrate/nitrite mixtures have been used for decades as heat transfer and heat treatment fluids the use has been at temperatures of about 450/sup 0/C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 600/sup 0/C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program has been developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms. This report details the work done at Sandia National Laboratories in each area listed. In addition, summaries of the experimental programs at Oak Ridge National Laboratory, the University of New York, EIC Laboratories, Inc., and the Norwegian Institute of Technology on molten nitrate salts are given. Also discussed is how the experimental programs will influence the near-term central receiver programs such as utility repowering/industrial retrofit and cogeneration. The report is designed to provide easy access to the latest information and data on molten NaNO/sub 3//KNO/sub 3/ for the designers and engineers of future central receiver projects.

Carling, R.W.; Kramer, C.M.; Bradshaw, R.W.; Nissen, D.A.; Goods, S.H.; Mar, R.W.; Munford, J.W.; Karnowsky, M.M.; Biefeld, R.N.; Norem, N.J.

1981-03-01T23:59:59.000Z

302

Apparatus for controlling molten core debris. [LMFBR  

DOE Patents (OSTI)

Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

1977-07-19T23:59:59.000Z

303

Apparatus for controlling molten core debris  

DOE Patents (OSTI)

Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.

Golden, Martin P. (Trafford, PA); Tilbrook, Roger W. (Monroeville, PA); Heylmun, Neal F. (Pittsburgh, PA)

1977-07-19T23:59:59.000Z

304

Applications of molten salts in plutonium processing  

Science Conference Proceedings (OSTI)

Plutonium is efficiently recovered from scrap at Los Alamos by a series of chemical reactions and separations conducted at temperatures ranging from 700 to 900/sup 0/C. These processes usually employ a molten salt or salt eutectic as a heat sink and/or reaction medium. Salts for these operations were selected early in the development cycle. The selection criteria are being reevaluated. In this article we describe the processes now in use at Los Alamos and our studies of alternate salts and eutectics.

Bowersox, D.F.; Christensen, D.C.; Williams, J.D.

1987-01-01T23:59:59.000Z

305

Regeneration of aluminum hydride  

DOE Patents (OSTI)

The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, and by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

Graetz, Jason Allan; Reilly, James J; Wegrzyn, James E

2012-09-18T23:59:59.000Z

306

Regeneration of aluminum hydride  

DOE Green Energy (OSTI)

The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

Graetz, Jason Allan (Mastic, NY); Reilly, James J. (Bellport, NY)

2009-04-21T23:59:59.000Z

307

Bevill and the Aluminum Industry  

Science Conference Proceedings (OSTI)

... particularly the import, mining, refining and primary production of aluminum. ... Experience with Commissioning New Generation Gas Suspension Calciner.

308

Novel Ternary Molten Salt Electrolytes for intermediate-temperature sodium/nickel chloride batteries  

SciTech Connect

The sodium-nickel chloride (ZEBRA) battery is typically operated at relatively high temperature (250~350°C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150 to 200°C can lead to enhanced cycle life by suppressing temperature related degradation mechanisms. The reduced temperature range also allows for lower cost materials of construction such as elastomeric sealants and gaskets. To achieve adequate electrochemical performance at lower operating temperatures requires an overall reduction in ohmic losses associated with temperature. This includes reducing the ohmic resistance of ?”-alumina solid electrolyte (BASE) and the incorporation of low melting point molten salt as the secondary electrolyte. In present work, planar-type Na/NiCl2 cells with a thin flat plate BASE (600 ?m) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salt formulation for use as secondary electrolytes were fabricated by the partial replace of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of the ternary molten salts demonstrated , improved ionic conductivity, and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175°C compared to the cell with the standard NaAlCl4 catholyte. The cells also exhibited stable cycling performance even at 150oC.

Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2012-12-15T23:59:59.000Z

309

Recycling of Aluminum & Other Light Metals  

Science Conference Proceedings (OSTI)

TMS Logo. About the 1997 TMS Annual Meeting: Short Course Description. February 9-13 · 1997 TMS ANNUAL MEETING · Orlando, Florida. Orlando '97 ...

310

Advances in Metal Casting Technologies: Aluminum  

Science Conference Proceedings (OSTI)

... Deposition of Thin Films via Sputtering: Ulises Barajas1; Sugeily Flores- Bonano,1; Verónica Santiago-Torres1; O. Marcelo Suárez1; 1University of Puerto Rico

311

A MOLTEN SALT NATURAL CONVECTION REACTOR SYSTEM  

SciTech Connect

Fuel-salt volumes external to the core of a molten-salt reactor are calculated for a system in which the fuel salt circulates through the core and primary exchanger by free convection. In the calculation of these volumes, the exchanger heights above the core top range from 5 to 20 ft. Coolants considered for the primary exchanger are a second molten salt and helium. External fuel holdup is found to be the same with either coolant. Two sets of terminal temperatures are selected for the helium. The first combination permits steam generation at 850 psia, 900 deg F. The second set is selected for a closed gas turbine cycle with an 1100 deg F turbine inlet temperature. Specific power (thermal kw/kg 235) is found to be about 900 Mv/kg, based on initial, clean conditions and a 60 Mw (thermal) output. A specific power of 1275 kw/kg is estimated for a forced convection system of the same rating. (auth)

Romie, F.E.; Kinyon, B.W.

1958-02-01T23:59:59.000Z

312

Aluminum stimulates uptake of non-transferrin bound iron and transferrin bound iron in human glial cells  

SciTech Connect

Aluminum and other trivalent metals were shown to stimulate uptake of transferrin bound iron and nontransferrin bound iron in erytholeukemia and hepatoma cells. Because of the association between aluminum and Alzheimer's Disease, and findings of higher levels of iron in Alzheimer's disease brains, the effects of aluminum on iron homeostasis were examined in a human glial cell line. Aluminum stimulated dose- and time-dependent uptake of nontransferrin bound iron and iron bound to transferrin. A transporter was likely involved in the uptake of nontransferrin iron because uptake reached saturation, was temperature-dependent, and attenuated by inhibitors of protein synthesis. Interestingly, the effects of aluminum were not blocked by inhibitors of RNA synthesis. Aluminum also decreased the amount of iron bound to ferritin though it did not affect levels of divalent metal transporter 1. These results suggest that aluminum disrupts iron homeostasis in Brain by several mechanisms including the transferrin receptor, a nontransferrin iron transporter, and ferritin.

Kim, Yongbae [Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University (United States); Department of Preventive Medicine, Soonchunhyan University, Chunan City (Korea, Republic of) ; Olivi, Luisa [School of Pharmacy, Sahmyook University, Seoul (Korea, Republic of) ; Cheong, Jae Hoon [School of Pharmacy, Sahmyook University, Seoul (Korea, Republic of) ; Maertens, Alex [Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University (United States); Bressler, Joseph P. [Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University (United States) and Kennedy-Krieger Institute, Baltimore, MD 21205 (United States)]. E-mail: Bressler@kennedykrieger.org

2007-05-01T23:59:59.000Z

313

Gas-tungsten arc welding of aluminum alloys  

SciTech Connect

A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

Frye, Lowell D. (Kingston, TN)

1984-01-01T23:59:59.000Z

314

Gas-tungsten arc welding of aluminum alloys  

DOE Patents (OSTI)

The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.

Frye, L.D.

1982-03-25T23:59:59.000Z

315

Aluminum battery alloys  

DOE Patents (OSTI)

Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

Thompson, D.S.; Scott, D.H.

1984-09-28T23:59:59.000Z

316

Aluminum battery alloys  

SciTech Connect

Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

Thompson, David S. (Richmond, VA); Scott, Darwin H. (Mechanicsville, VA)

1985-01-01T23:59:59.000Z

317

Molten carbonate fuel cell technology improvement. [25 kW  

DOE Green Energy (OSTI)

This report summarizes the work performed under Department of Energy Contract AC21-87MC23270 during the period March 1, through May 30, 1990. The overall objective of this program is to define a competitive CG/MCFC power plant and the associated technology development requirements and to develop an improved cell configuration for molten carbonate fuel cells which has improved performance, has reduced cell creep and electrolyte management consistent with 40,000 hour projected life, reduces existing cell cost, and is adaptable to a range of power plant applications. The 8-ft{sup 2} 20-cell, 25-kW stack assembly and installation in the test facility were completed. Testing of the stack was started and 896 hours of test time were reached. Manifold seal development focused on a seal to reduce electrolyte transport and test rigs were initiated for shunt current and seal leakage evaluation. Development on sheet metal parts was initiated with focus on improved aluminization for separator plate corrosion protection and nickel clad stainless steel for the anode current collector. Development of porous parts was initiated with focus on an alternative binder for the electrodes. Design of a laboratory scale continuous debinding oven was completed. Development of an improved material blend for the matrix was also initiated. 19 figs., 2 tabs.

Not Available

1990-09-01T23:59:59.000Z

318

Metal and Polymer Matrix Composites  

Science Conference Proceedings (OSTI)

Aluminum-fly Ash Composites Produced by Powder Metallurgy Processing · Characterisation of Al-AC8H/Al2O3p Metal Matrix Composites Produced by Stir ...

319

Demonstrating the Feasibility of Molten Aluminum for Destroying Polymeric Encapsulants in SNG-Bearing Metallographic Mounts  

SciTech Connect

DOE-owned spent nuclear fuel (SNF) rods have been cross sectioned and mounted for metallography throughout the history of nuclear reactors. Many hundreds of these ''met mounts'' have accumulated in storage across the DOE complex. However, because of potential hydrogen generation from radiolysis of the polymeric encapsulants, the met mounts are problematic for eventual disposal in a geologic repository.

Dan Stout; Scott Ploger

2004-08-31T23:59:59.000Z

320

Molten salts database for energy applications  

E-Print Network (OSTI)

The growing interest in energy applications of molten salts is justified by several of their properties. Their possibilities of usage as a coolant, heat transfer fluid or heat storage substrate, require thermo-hydrodynamic refined calculations. Many researchers are using simulation techniques, such as Computational Fluid Dynamics (CFD) for their projects or conceptual designs. The aim of this work is providing a review of basic properties (density, viscosity, thermal conductivity and heat capacity) of the most common and referred salt mixtures. After checking data, tabulated and graphical outputs are given in order to offer the most suitable available values to be used as input parameters for other calculations or simulations. The reviewed values show a general scattering in characterization, mainly in thermal properties. This disagreement suggests that, in several cases, new studies must be started (and even new measurement techniques should be developed) to obtain accurate values.

Serrano-López, Roberto; Cuesta-López, Santiago

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Electrolyte paste for molten carbonate fuel cells  

DOE Patents (OSTI)

The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

Bregoli, Lawrance J. (Southwick, MA); Pearson, Mark L. (New London, CT)

1995-01-01T23:59:59.000Z

322

Template synthesis and surface modification of metal oxides.  

E-Print Network (OSTI)

??Porous metal oxide monoliths, specifically silica, titania, zirconia and mixed oxides containing aluminum and yttrium, were prepared in a one-pot synthesis. Macroporosity was induced using… (more)

Drisko, Glenna Lynn

2010-01-01T23:59:59.000Z

323

TMS Professional Honors and Awards: Light Metals Award  

Science Conference Proceedings (OSTI)

Light Metals Recycling Technology Award. Jyoti Mukhopadhyay, Jawajtnrlal Nehru Aluminum R&D Centre Y.V. Ramana, Hidalco Industries Ltd Upendra Singh ...

324

Identifying Economic and Scrap Reuse Benefits of Light Metals ...  

Science Conference Proceedings (OSTI)

Feb 1, 2005 ... TMS: The Minerals, Metals and Materials Society Home ... The constantly changing and evolving patterns of aluminum scrap usage have ...

325

Deformation, Damage, and Fracture of Light Metals and Alloys  

Science Conference Proceedings (OSTI)

The three most highly used light metals and alloys are magnesium, aluminum, and titanium alloys. These alloys are widely utilized to manufacture structural ...

326

Fast Spectrum Molten Salt Reactor Options  

DOE Green Energy (OSTI)

During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

2011-07-01T23:59:59.000Z

327

Molten carbonate fuel cell technology improvement  

DOE Green Energy (OSTI)

This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, Molten Carbonate Fuel Cell Technology Improvement.'' This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

Not Available

1991-06-01T23:59:59.000Z

328

The Thorium Molten Salt Reactor Moving on from the MSBR  

E-Print Network (OSTI)

A re-evaluation of the Molten Salt Breeder Reactor concept has revealed problems related to its safety and to the complexity of the reprocessing considered. A reflection is carried out anew in view of finding innovative solutions leading to the Thorium Molten Salt Reactor concept. Several main constraints are established and serve as guides to parametric evaluations. These then give an understanding of the influence of important core parameters on the reactor's operation. The aim of this paper is to discuss this vast research domain and to single out the Molten Salt Reactor configurations that deserve further evaluation.

Mathieu, L; Brissot, R; Le Brun, C; Liatard, E; Loiseaux, J M; Méplan, O; Merle-Lucotte, E; Nuttin, A; Wilson, J; Garzenne, C; Lecarpentier, D; Walle, E

2006-01-01T23:59:59.000Z

329

The Thorium Molten Salt Reactor : Moving on from the MSBR  

E-Print Network (OSTI)

A re-evaluation of the Molten Salt Breeder Reactor concept has revealed problems related to its safety and to the complexity of the reprocessing considered. A reflection is carried out anew in view of finding innovative solutions leading to the Thorium Molten Salt Reactor concept. Several main constraints are established and serve as guides to parametric evaluations. These then give an understanding of the influence of important core parameters on the reactor's operation. The aim of this paper is to discuss this vast research domain and to single out the Molten Salt Reactor configurations that deserve further evaluation.

L. Mathieu; D. Heuer; R. Brissot; C. Le Brun; E. Liatard; J. M. Loiseaux; O. Méplan; E. Merle-Lucotte; A. Nuttin; J. Wilson; C. Garzenne; D. Lecarpentier; E. Walle; the GEDEPEON Collaboration

2005-06-02T23:59:59.000Z

330

Method of coating metal surfaces to form protective metal coating thereon  

DOE Patents (OSTI)

A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof.

Krikorian, Oscar H. (Danville, CA); Curtis, Paul G. (Tracy, CA)

1992-01-01T23:59:59.000Z

331

Method of coating metal surfaces to form protective metal coating thereon  

DOE Patents (OSTI)

A process is disclosed for forming a protective metal coating on a metal surface using a flux consisting of an alkali metal fluoride, an alkaline earth metal fluoride, an alkali metal fluoaluminate, an alkali metal fluosilicate, and mixtures thereof. The flux, in particulate form, is mixed with particles of a metal coating material which may comprise aluminum, chromium, mixtures thereof, and alloys containing at least 50 wt. % aluminum and the particulate mixture is applied to the metal surface in a single step, followed by heating the coated metal surface to a temperature sufficient to cause the metal coating material to react with the metal surface to form a protective reaction product in the form of a metal coating bonded to the metal surface. The metal surface which reacts with the metal coating material to form the protective coating may comprise Fe, Co, Ni, Ti, V, Cr, Mn, Zr, Nb, Mo, Tc, Hf, Ta, W, Re and alloys thereof. 1 figure.

Krikorian, O.H.; Curtis, P.G.

1992-03-31T23:59:59.000Z

332

Method and apparatus for regenerating cold traps within liquid-metal systems  

DOE Patents (OSTI)

Oxide and hydride impurities of a liquid metal such as sodium are removed from a cold trap by heating to a temperature at which the metal hydroxide is stable in a molten state. The partial pressure of hydrogen within the system is measured to determine if excess hydride or oxide is present. Excess hydride is removed by venting hydrogen gas while excess oxide can be converted to molten hydroxide through the addition of hydrogen. The resulting, molten hydroxide is drained from the trap which is then returned to service at cold trap temperatures within the liquid-metal system.

McKee, Jr., John M. (Hinsdale, IL)

1976-01-01T23:59:59.000Z

333

Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys  

DOE Patents (OSTI)

Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

Stevenson, D.T.; Troup, R.L.

1985-01-01T23:59:59.000Z

334

Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys  

DOE Patents (OSTI)

Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

Stevenson, David T. (Washington Township, Armstrong County, PA); Troup, Robert L. (Murrysville, PA)

1985-01-01T23:59:59.000Z

335

DOE - Office of Legacy Management -- Hunter Douglas Aluminum Plant Div of  

Office of Legacy Management (LM)

Hunter Douglas Aluminum Plant Div Hunter Douglas Aluminum Plant Div of Bridgeport Brass Co - CA 11 FUSRAP Considered Sites Site: HUNTER DOUGLAS ALUMINUM PLANT, DIV. OF BRIDGEPORT BRASS CO. (CA.11 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Hunter Douglas Aluminum Corporation CA.11-1 Location: 3016 Kansas Avenue , Riverside , California CA.11-1 Evaluation Year: 1995 CA.11-2 Site Operations: Fabricated uranium metal tubing during the late 1950s. CA.11-1 Site Disposition: Eliminated - No Authority - NRC licensed CA.11-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Metal CA.11-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to HUNTER DOUGLAS ALUMINUM PLANT, DIV. OF BRIDGEPORT

336

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY  

E-Print Network (OSTI)

1973). M. Blander in "Molten Salt Chemistry," M, Blander,Lumsden, "Thermodynamics of Molten Salt Mixtures," AcademicA MIXTURE OF TWO BINARY MOLTEN SALTS IN A POROUS ELECTRODE

Pollard, Richard

2012-01-01T23:59:59.000Z

337

Spray-formed tooling and aluminum strip  

SciTech Connect

Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. De Laval nozzles offer an alternative method to the more conventional spray nozzle designs. Two applications are described: high-volume production of aluminum alloy strip, and the production of specialized tooling, such as injection molds and dies, for rapid prototyping.

McHugh, K.M.

1995-11-01T23:59:59.000Z

338

Molten Mold Flux Technology for Continuous Casting of the ULC ...  

Science Conference Proceedings (OSTI)

Heat flux from the molten steel to the cupper plate of the casting mold was .... of Conventional and High Niobium API 5L X80 Line Pipe Steel Using EBSD.

339

A BP neural network predictor model for desulfurizing molten iron  

Science Conference Proceedings (OSTI)

Desulfurization of molten iron is one of the stages of steel production process. A back-propagation (BP) artificial neural network (ANN) model is developed to predict the operation parameters for desulfurization process in this paper. The primary objective ...

Zhijun Rong; Binbin Dan; Jiangang Yi

2005-07-01T23:59:59.000Z

340

Molten salt electrolyte battery cell with overcharge tolerance  

SciTech Connect

A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

Kaun, Thomas D. (New Lenox, IL); Nelson, Paul A. (Wheaton, IL)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An Atomistic Study of the Structure and Thermodynamics of Molten ...  

Science Conference Proceedings (OSTI)

The molten salt-mixtures of ionic (NaCl, KCl etc.) and covalent (AlCl3, ZnCl2, etc.) chlorides are proposed as potential candidate materials, which can offer the ...

342

Modeling of Molten Salt Mixtures: Thermodynamic Assessment of ...  

Science Conference Proceedings (OSTI)

Presentation Title, Modeling of Molten Salt Mixtures: Thermodynamic Assessment of CeBr3 and MBr-CeBr3 Systems (M=Li, Na, K, Rb). Author(s), Yue Wu, ...

343

Candidate anode materials for iron production by molten oxide electrolysis  

E-Print Network (OSTI)

Molten oxide electrolysis (MOE) has been identified by the American Iron and Steel Institute (AISI) as one of four possible breakthrough technologies to alleviate the environmental impact of iron and steel production. This ...

Paramore, James D

2010-01-01T23:59:59.000Z

344

System Requirements Document for the Molten Salt Reactor Experiment  

Science Conference Proceedings (OSTI)

The purpose of the conversion process is to convert the {sup 233}U fluoride compounds that are being extracted from the Molten Salt Reactor Experiment (MSRE) equipment to a stable oxide for long-term storage at Bldg. 3019.

Aigner, R.D.

2000-04-01T23:59:59.000Z

345

Current Efficiency for Aluminium Deposition from Molten Cryolite ...  

Science Conference Proceedings (OSTI)

Electrical Conductivity of the KF-NaF- AlF3 Molten System at Low Cryolite Ratio ... Experimental Investigation of Single Bubble Characteristics in a Cold Model of a ... Impact of Amperage Creep on Potroom Busbars and Electrical Insulation: ...

346

Electrochemistry of LiCl-Li2O-H2O Molten Salt Systems  

SciTech Connect

Uranium can be recovered from uranium oxide (UO2) spent fuel through the combination of the oxide reduction and electrorefining processes. During oxide reduction, the spent fuel is introduced to molten LiCl-Li2O salt at 650 degrees C and the UO2 is reduced to uranium metal via two routes: (1) electrochemically, and (2) chemically by lithium metal (Li0) that is produced electrochemically. However, the hygroscopic nature of both LiCl and Li2O leads to the formation of LiOH, contributing hydroxyl anions (OH-), the reduction of which interferes with the Li0 generation required for the chemical reduction of UO2. In order for the oxide reduction process to be an effective method for the treatment of uranium oxide fuel, the role of moisture in the LiCl-Li2O system must be understood. The behavior of moisture in the LiCl-Li2O molten salt system was studied using cyclic voltammetry, chronopotentiometry and chronoamperometry, while reduction to hydrogen was confirmed with gas chromatography.

Natalie J. Gese; Batric Pesic

2013-03-01T23:59:59.000Z

347

Molten Salt Solar-Electric Experiment: Volumes 1 and 2  

Science Conference Proceedings (OSTI)

The Molten Salt Electric Experiment assembled and tested the first full-system experiment of a solar central receiver plant employing molten nitrate salt as the heat transport fluid and thermal storage medium. This report focuses on the last two phases of the project: testing/operation and evaluation. Overall project data will help utilities evaluate the central receiver concept's technical status, development requirements, and potential as a renewable source of electricity.

1990-01-03T23:59:59.000Z

348

Modeling of Molten Core Concrete Interactions and Fission Product Release  

Science Conference Proceedings (OSTI)

The study of molten core concrete interactions is important in estimating the possible consequences of a severe nuclear reactor accident. CORCON-Mod2 is a computer program that models the thermal, chemical, and physical phenomena associated with molten core concrete interactions. Models have been added to extend the modeling of these phenomena. An ideal solution chemical equilibrium methodology predicts the fission product vaporization release. Additional chemical species have been added, and the calcula...

1994-05-27T23:59:59.000Z

349

Cast Shop for Aluminum Production  

Science Conference Proceedings (OSTI)

Organizer(s), Trond Furu, Hydro ... Review at Several US Aluminum Die Cast Manufacturers Using Unique, Non-Wetting, Micro-Porous Refractory Products.

350

Electrode Technology for Aluminum Production  

Science Conference Proceedings (OSTI)

Loss in Cathode Life Resulting from the Shutdown and Restart of Potlines at Aluminum Smelters · Lower Aluminium Production Cost through Refractory Material ...

351

Laser welding of aluminum alloys  

DOE Green Energy (OSTI)

Recent interest in reducing the weight of automobiles to increase fuel mileage has focused attention on the use of aluminum and associated joining technologies. Laser beam welding is one of the more promising methods for high speed welding of aluminum. Consequently, substantial effort has been expended in attempting to develop a robust laser beam welding process. Early results have not been very consistent in the process requirements but more definitive data has been produced recently. This paper reviews the process parameters needed to obtain consistent laser welds on 5,000 series aluminum alloys and discusses the research necessary to make laser processing of aluminum a reality for automotive applications.

Leong, K.H.; Sabo, K.R.; Sanders, P.G. [Argonne National Lab., IL (United States). Technology Development Div.; Spawr, W.J.

1997-03-01T23:59:59.000Z

352

Aluminum Alloys for Packaging II  

Science Conference Proceedings (OSTI)

Feb 1, 1996 ... An update is provided of all aspects of can stock materials and the fundamentals of can making, including: the physical metallurgy of aluminum ...

353

Aluminum: Technology, Applications, and Environment  

Science Conference Proceedings (OSTI)

Apr 1, 1998 ... Print Book: Aluminium - Rolling (Process, Principle & Applications). Print Book: Hall-Héroult Centennial: First Century of Aluminum Process ...

354

Aluminum 2002 TABLE OF CONTENTS  

Science Conference Proceedings (OSTI)

Development of Strain Induced Surface Topography of 6XXX Series Aluminum Sheet Under Balanced Biaxial Tension [pp. 83-90] S.W. Banovic and T. Foecke.

355

Aluminum Alloys for Packaging III  

Science Conference Proceedings (OSTI)

Feb 1, 1998... of aluminum can stock, lid stock, and tab stock alloys; coatings; and their related applications to can, lid, and tab making could be presented.

356

Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings  

DOE Patents (OSTI)

A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

2002-01-01T23:59:59.000Z

357

Method for forming glass-to-metal seals  

SciTech Connect

A method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.

Kramer, Daniel P. (Dayton, OH); Massey, Richard T. (Hamilton, OH)

1986-01-01T23:59:59.000Z

358

Aluminum Smelter Cell Dynamics  

Science Conference Proceedings (OSTI)

He has become an acclaimed world leader in cell diagnostics and operations as well as being a regular contributor to TMS Light Metals. He teaches in the TMS ...

359

(HSBC) of Aluminum Alloy  

Science Conference Proceedings (OSTI)

Effect of Fe Doping on the Mechanical Properties of TiNi Alloys · Electromagnetic Stirring of Plutonium Metal Part I: Theoretical Calculations and System Design ...

360

MATHEMATICAL MODELING OF THE LITHIUM-ALUMINUM, IRON SULFIDE BATTERY. I. GALVONOSTATIC DISCHARGE BEHAVIOR  

E-Print Network (OSTI)

1964), M. Blander in "Molten Salt Chemistry," M. Blander,Lumsden, "Thermodynamics of Molten Salt Mixtures," Academicporous electrodes, molten salt electrolyte, cell performance

Pollard, Richard

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Zone refining of plutonium metal  

Science Conference Proceedings (OSTI)

The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

Blau, M.S.

1994-08-01T23:59:59.000Z

362

Spray Forming Aluminum - Final Report (Phase II)  

SciTech Connect

The U.S. Department of Energy - Office of Industrial Technology (DOE) has an objective to increase energy efficient and enhance competitiveness of American metals industries. To support this objective, ALCOA Inc. entered into a cooperative program to develop spray forming technology for aluminum. This Phase II of the DOE Spray Forming Program would translate bench scale spray forming technology into a cost effective world class process for commercialization. Developments under DOE Cooperative Agreement No. DE-FC07-94ID13238 occurred during two time periods due to budgetary constraints; April 1994 through September 1996 and October 1997 and December 1998. During these periods, ALCOA Inc developed a linear spray forming nozzle and specific support processes capable of scale-up for commercial production of aluminum sheet alloy products. Emphasis was given to alloys 3003 and 6111, both being commercially significant alloys used in the automotive industry. The report reviews research performed in the following areas: Nozzel Development, Fabrication, Deposition, Metal Characterization, Computer Simulation and Economics. With the formation of a Holding Company, all intellectual property developed in Phases I and II of the Project have been documented under separate cover for licensing to domestic producers.

D. D. Leon

1999-07-08T23:59:59.000Z

363

Activated aluminum hydride hydrogen storage compositions and ...  

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of ...

364

Numerical Simulation and Experimental Characterization of a Binary Aluminum Alloy Spray - Application to the Spray Rolling Process  

SciTech Connect

A stochastic, droplet-resolved model has been developed to describe the behavior of a binary aluminum alloy spray during the spray-rolling process. In this process, a molten aluminum alloy is atomized and the resulting spray is depostied on the rolls of a twin-roll caster to produce aluminum strip. The one-way coupled spray model allows the prediction of spray characteristics such as enthalph and solid fraction, and their distribution between the nozzle and the depostion surface. This paper outlines the model development and compares the predicted spray dynamics to PDI measurements performed in a controlled configuration. Predicted and measured droplet velocity and size distributions are presented for two points along the spray centerline along with predicted spray averaged specific enthalph and solid fraction curves.

S. B. Johnson; J.-P. Delplanque; Y. Lin; Y. Zhou; E. J. Lavernia; K. M. McHugh

2005-02-01T23:59:59.000Z

365

Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts  

SciTech Connect

A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses on developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.

Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson

2012-07-01T23:59:59.000Z

366

Method for processing aluminum spent potliner in a graphite electrode arc furnace  

DOE Patents (OSTI)

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spend aluminum pot liner is crushed, iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine, and CO.

O' Connor, William K.; Turner, Paul C.; Addison, G.W. (AJT Enterprises, Inc.)

2002-12-24T23:59:59.000Z

367

Method for processing aluminum spent potliner in a graphite electrode ARC furnace  

SciTech Connect

A method of processing spent aluminum pot liner containing carbon, cyanide compositions, fluorides and inorganic oxides. The spent aluminum pot liner is crushed iron oxide is added to form an agglomerated material. The agglomerated material is melted in an electric arc furnace having the electrodes submerged in the molten material to provide a reducing environment during the furnace operation. In the reducing environment, pot liner is oxidized while the iron oxides are reduced to produce iron and a slag substantially free of cyanide compositions and fluorides. An off-gas including carbon oxides and fluorine is treated in an air pollution control system with an afterburner and a scrubber to produce NaF, water and a gas vented to the atmosphere free of cyanide compositions, fluorine and CO.

O' Connor, William K. (Lebanon, OR); Turner, Paul C. (Independence, OR); Addison, Gerald W. (St. Stephen, SC)

2002-12-24T23:59:59.000Z

368

Molten Carbonate Fuel Cell Product Design Improvement  

DOE Green Energy (OSTI)

This annual report provides results of Energy Research Corporation`s technical approach to performing the program `Molten Carbonate Fuel Cell (MCFC) Product Design Improvement` covered under the DOE-ERC Cooperative Agreement DE-FC21-95MC31184. This work is supported by DOE/METC and DOD/DARPA as well as ERC Team funds. The objective of the DOE-sponsored program is to advance the direct carbonate fuel cell technology to a level suitable for commercial entry for civilian applications. The overall objective of the DOD/DARPA initiative is to adapt the civilian 2 MW-Class fuel cell power plant for dual fuel DOD applications. This program is designed to advance the carbonate fuel cell technology from the power plant demonstration status to the commercial entry early production unit design stage. The specific objectives which will allow attainment of these overall program goals are: (1) Provide environmental information to support DOE evaluation with respect to the National Environmental Policy Act (NEPA), (2) Define market-responsive power plant requirements and specifications, (3) Establish design for multifuel, low-cost, modular, market-responsive power plant, (4) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (5) Acquire capabilities to support developmental testing of 0370 stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness of the power plant for commercial entry.

NONE

1996-03-01T23:59:59.000Z

369

LIFE Materails: Molten-Salt Fuels Volume 8  

SciTech Connect

The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

2008-12-11T23:59:59.000Z

370

TABLE OF CONTENTS Aluminum Alloys: Fabrication  

Science Conference Proceedings (OSTI)

Preparation of Al-Li Alloys by Molten Salts Electrolysis ..................................91. Jidong Li, Mingjie Zhang, Tingan Zhang, and Dan Li. Preparation of Al-Sc Alloys by ...

371

Aluminum reduction cell electrode  

DOE Patents (OSTI)

The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

Goodnow, W.H.; Payne, J.R.

1982-09-14T23:59:59.000Z

372

Aluminum: Industry of the future  

SciTech Connect

For over a century, the US aluminum industry has led the global market with advances in technology, product development, and marketing. Industry leaders recognize both the opportunities and challenges they face as they head into the 21st century, and that cooperative R and D is key to their success. In a unique partnership, aluminum industry leaders have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to focus on innovative technologies that will help to strengthen the competitive position of the US aluminum industry and, at the same time, further important national goals. This industry-led partnership, the Aluminum Industry of the Future, promotes technologies that optimize the use of energy and materials in operations and reduce wastes and energy-related emissions. Led by The Aluminum Association, industry leaders began by developing a unified vision of future market, business, energy, and environmental goals. Their vision document, Partnerships for the Future, articulates a compelling vision for the next 20 years: to maintain and grow the aluminum industry through the manufacture and sale of competitively priced, socially desirable, and ecologically sustainable products. Continued global leadership in materials markets will require the combined resources of industry, universities, and government laboratories. By developing a unified vision, the aluminum industry has provided a framework for the next step in the Industries of the Future process, the development of a technology roadmap designed to facilitate cooperative R and D.

1998-11-01T23:59:59.000Z

373

Spray Rolling Aluminum Strip  

SciTech Connect

Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

2006-05-10T23:59:59.000Z

374

Method for the safe disposal of alkali metal  

DOE Patents (OSTI)

Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

Johnson, Terry R. (Wheaton, IL)

1977-01-01T23:59:59.000Z

375

Structure and dynamics in yttrium-based molten rare earth alkali fluorides  

E-Print Network (OSTI)

The transport properties of molten LiF-YF3 mixtures have been studied by pulsed field gradient nuclear magnetic resonance spectroscopy, potentiometric experiments, and molecular dynamics simulations. The calculated diffusion coefficients and electric conductivities compare very well with the measurements accross a wide composition range. We then extract static (radial distribution functions, coordination numbers distributions) and dynamic (cage correlation functions) quantities from the simulations. Then, we discuss the interplay between the microscopic structure of the molten salts and their dynamic properties. It is often considered that variations in the diffusion coefficient of the anions are mainly driven by the evolution of its coordination with the metallic ion (Y3+ here). We compare this system with fluorozirconate melts and demonstrate that the coordination number is a poor indicator of the evolution of the diffusion coefficient. Instead, we propose to use the ionic bonds lifetime. We show that the weak Y-F ionic bonds in LiF-YF3 do not induce the expected tendency of the fluoride diffusion coefficient to converge toward the one of yttrium cation when the content in YF3 increases. Implications on the validity of the Nernst-Einstein relation for estimating the electrical conductivity are discussed.

Maximilien Levesque; Vincent Sarou-Kanian; Mathieu Salanne; Mallory Gobet; Henri Groult; Catherine Bessada; Paul A. Madden; Anne-Laure Rollet

2013-02-19T23:59:59.000Z

376

Molten salt thermal energy storage systems: system design. [LiKCO/sub 3/ mixture  

DOE Green Energy (OSTI)

A five-task research program aimed at the development of molten salt thermal energy storage systems commenced in June 1976. The first topical report, covering Task 1, the selection of suitable salt systems for storage at 850 to 1000/sup 0/F, was issued in August 1976. It was concluded that a 35 Wt percent Li/sub 2/CO/sub 3/-65 Wt percent K/sub 2/CO/sub 3/ (LiKCO/sub 3/) mixture was most suitable for the purpose. Interrelationships between various design parameters were examined using the available solutions, and an engineering-scale storage unit was designed. This unit has an annular configuration with a 1-ft OD, 1.5-ft high, 2-in. dia heat transfer well. Preliminary experiments on a pilot size (3-in. OD) unit showed that temperature profiles and progress of the solid-liquid interface agreed with those predicted theoretically. Also, no supercooling was observed during cooldown, and the presence of significant convective mixing was indicated by negligible temperature gradients. Use of a lithium aluminate volume-change suppressor was investigated, but it appears to be nonessential because of the low volume-change in the LiKCO/sub 3/ system. Consideration of the relative heat-transfer resistances under practical conditions suggested that the use of a conductivity promoter will enhance the heat-transfer rates, thereby requiring smaller heat-transfer areas. Different configurations and materials were considered for this application; an aluminum wool appears to be most suitable. The corrosion resistance of various construction materials was investigated. Stainless steels and aluminum appear to be suitable construction materials for carbonates in the 850 to 1000/sup 0/F range. Testing of the engineering-scale system (Task 3) and verification of the conclusions derived under Task 2 are in progress.

Maru, H.C.; Kardas, A.; Huang, V.M.; Dullea, J.F.; Paul, L.; Marianowski, L.G.

1977-02-01T23:59:59.000Z

377

Injector nozzle for molten salt destruction of energetic waste materials  

DOE Patents (OSTI)

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

Brummond, W.A.; Upadhye, R.S.

1996-02-13T23:59:59.000Z

378

Injector nozzle for molten salt destruction of energetic waste materials  

DOE Patents (OSTI)

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

379

Ions on the Electrodeposition of Titanium in Molten Fluoride-chloride ...  

Science Conference Proceedings (OSTI)

Electrochemical Behavior of Calcium-Lead Alloys in Molten Salt Electrolytes ... on the Corrosion of Ni-Cased Alloys (NiCrW and NiCrMo) in Molten Fluorides.

380

Fabrication of catalytic electrodes for molten carbonate fuel cells  

DOE Patents (OSTI)

A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

Smith, James L. (Lemont, IL)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Stabilization of STEP electrolyses in lithium-free molten carbonates  

E-Print Network (OSTI)

This communication reports on effective electrolyses in lithium-free molten carbonates. Processes that utilize solar thermal energy to drive efficient electrolyses are termed Solar Thermal Electrochemical Processes (STEP). Lithium-free molten carbonates, such as a sodium-potassium carbonate eutectic using an iridium anode, or a calcium-sodium-potassium carbonate eutectic using a nickel anode, can provide an effective medium for STEP electrolyses. Such electrolyses are useful in STEP carbon capture, and the production of staples including STEP fuel, iron, and cement.

Licht, Stuart

2012-01-01T23:59:59.000Z

382

Destruction of organic wastes with molten oxidizers  

DOE Patents (OSTI)

A process for destruction of biologically hazardous organic chemical wastes by using liquefied strongly oxidizing inorganic salts, such as the alkali metal nitrates, at high temperatures and atmospheric pressure, to yield inorganic salts, carbon dioxide, and water. The oxidizing salts are regenerated and recycled.

Bradshaw, R.W.; Holmes, J.T.; Tyner, C.E.

1990-12-31T23:59:59.000Z

383

Destruction of organic wastes with molten oxidizers  

DOE Patents (OSTI)

A process for destruction of biologically hazardous organic chemical wastes by using liquefied strongly oxidizing inorganic salts, such as the alkali metal nitrates, at high temperatures and atmospheric pressure, to yield inorganic salts, carbon dioxide, and water. The oxidizing salts are regenerated and recycled.

Bradshaw, R.W.; Holmes, J.T.; Tyner, C.E.

1990-01-01T23:59:59.000Z

384

It's Elemental - The Element Aluminum  

NLE Websites -- All DOE Office Websites (Extended Search)

Company of America, or Alcoa. When it opened, his company could produce about 25 kilograms of aluminum a day. By 1909, his company was producing about 41,000 kilograms of...

385

Salt-soda sinter process for recovering aluminum from fly ash  

DOE Patents (OSTI)

A method for recovering aluminum values from fly ash comprises sintering the fly ash with a mixture of NaCl and Na.sub.2 CO.sub.3 to a temperature in the range 700.degree.-900.degree. C. for a period of time sufficient to convert greater than 90% of the aluminum content of the fly ash into an acid-soluble fraction and then contacting the thus-treated fraction with an aqueous solution of nitric or sulfuric acid to effect dissolution of aluminum and other metal values in said solution.

McDowell, William J. (Oak Ridge, TN); Seeley, Forest G. (Oak Ridge, TN)

1981-01-01T23:59:59.000Z

386

A Chlorine–Free Technology for Metal Treatment - Programmaster.org  

Science Conference Proceedings (OSTI)

Presentation Title, In-Line Salt-ACDTM: A Chlorine–Free Technology for Metal ... in replacement of chlorine gas, was introduced to the aluminum industry [1].

387

Clean and cost-effective dry boundary lubricants for aluminum forming.  

DOE Green Energy (OSTI)

Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce sliding fiction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal formability tests indicated that the boric acid films formed on aluminum surfaces by spraying or dipping worked quite well; improving draw scale performance by 58 to 75%. These findings have increased the prospect that boric acid can be formulated and optimized as an effective boundary lubricant and used to solve the friction, galling, and severe wear problems currently encountered in cold-forming of aluminum products. Accordingly, the major goal of this paper is to demonstrate the usefulness and lubrication capacity of thin boric acid films formed on aluminum surfaces by simple dipping or spraying processes and to describe the lubrication mechanisms under typical metal forming conditions. We will also examine the nature of chemical bonding between boric acid and aluminum surfaces and develop new ways to optimize its performance as an effective boundary lubricant.

Erdemir, A.; Fenske, G. R.

1997-12-05T23:59:59.000Z

388

PROCESS FOR PREPARING URANIUM METAL  

DOE Patents (OSTI)

A process is presented for producing oxygen-free uranium metal comprising contacting iodine vapor with crude uranium in a reaction zone maintained at 400 to 800 C to produce a vaporous mixture of UI/sub 4/ and iodine. Also disposed within the maction zone is a tungsten filament which is heated to about 1600 C. The UI/sub 4/, upon contacting the hot filament, is decomposed to molten uranium substantially free of oxygen.

Prescott, C.H. Jr.; Reynolds, F.L.

1959-01-13T23:59:59.000Z

389

Alkali metal/sulfur battery  

SciTech Connect

Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

Anand, Joginder N. (Clayton, CA)

1978-01-01T23:59:59.000Z

390

Metal-ceramic joint assembly  

DOE Patents (OSTI)

A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

Li, Jian (New Milford, CT)

2002-01-01T23:59:59.000Z

391

FILM GROWTH ON ALUMINUM IN HIGH-TEMPERATURE WATER  

DOE Green Energy (OSTI)

Film growths on aluminum and two aluminum-1 wt.% nickel alloys in water at 250 and 350 deg C were studied. It was found that oxide growth does not advance on a uniform front but, to the contrary, the advancing surface contains many outcrops in the form of thin platelets, chunky outcrops, and whiskers. With both the pure metal and the alloys considerable intergranular attack was observed. The general corrosion product was usually more uniform in crystal size when formed on the pure metal, but variations in crystal size were observed on both aluminum and alloys with varying features of the metal surface. The roughness of the general oxide surface (includlng outcrops) was found to increase rapidly to about 0.2 micron and then remain relatively constant with increasing film thickness. The composition of films formed under all investigated conditions, except one, was found to be boehmite ( alpha -Al/sub 2/O/sub 3/- H/sub 2/O). This exception was films carried by the alloy specimens after testing for 32 days at 350 deg C. In this case the main corrosion film was still boehmite, but in addition the outer surface supported long needles of diaspore ( beta -Al/sub 2/ O/sub 3/- H/sub 2/O). (auth)

Hart, R.K.; Ruther, W.E.

1961-04-01T23:59:59.000Z

392

Melt Conditioned Casting of Aluminum Alloys - Programmaster.org  

Science Conference Proceedings (OSTI)

Capillary Tube Fabrication of A3003 Alloy for Air Condition · Cathodic Dissolution of Pure Aluminum, Aluminum Alloy AA6061 and Aluminum Particle Based ...

393

Rapid Removal of Chlorine in Molten Salt Electrolysis of Magnesium ...  

Science Conference Proceedings (OSTI)

However, experimental data and modeling results in this study indicate that the ... bubbles on the current efficiency and the cell potential were investigated. ... High- Chloride Circuit for the Starfield Resources' Ferguson Lake Project · Direct Synthesis of Niobium Aluminides Powders by Sodiothermic Reduction in Molten Salts.

394

Oxygen electrode reaction in molten carbonate fuel cells  

DOE Green Energy (OSTI)

Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

Appleby, A.J.; White, R.E.

1992-07-07T23:59:59.000Z

395

Metals removal from spent salts  

DOE Patents (OSTI)

A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

Hsu, Peter C. (Pleasanton, CA); Von Holtz, Erica H. (Livermore, CA); Hipple, David L. (Livermore, CA); Summers, Leslie J. (Livermore, CA); Brummond, William A. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

2002-01-01T23:59:59.000Z

396

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations;  

SciTech Connect

DOE Industrial Technologies Program case study describes the savings possible if Commonwealth Aluminum (now Aleris Rolled Products) makes improvements noted in energy assessments at two aluminum mills.

Not Available

2006-04-01T23:59:59.000Z

397

Method for forming consumable electrodes from metallic chip scraps  

DOE Patents (OSTI)

The method relates to metallurgical recycling of waste products, preferably titanium alloys chips scrap. Accordingly after crushing and cleaning, the chip scrap is subjected to vacuum-thermal degassing (VTD); the chip scrap is pressed into briquettes; the briquettes are placed into a mould allowing sufficient remaining space for the addition of molten metal alloy; the mould is pre-heated before filling with the molten metal alloy; the mould remaining space is filled with molten metal alloy. After cooling, the electrode is removed from the mould. The method provides a means for 100% use of chip scrap in producing consumable electrodes having increased mechanical strength and reduced interstitial impurities content leading to improved secondary cast alloys.

Girshov, Vladimir Leonidovich (St. Petersburg, RU); Podpalkin, Arcady Munjyvich (St. Petersburg, RU); Treschevskiy, Arnold Nikolayevich (St. Petersburg, RU); Abramov, Alexey Alexandrovich (St. Petersburg, RU)

2005-10-11T23:59:59.000Z

398

Aluminum reduction cell electrode  

DOE Patents (OSTI)

The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

Payne, J.R.

1983-09-20T23:59:59.000Z

399

Technical review of Molten Salt Oxidation  

Science Conference Proceedings (OSTI)

The process was reviewed for destruction of mixed low-level radioactive waste. Results: extensive development work and scaleup has been documented on coal gasification and hazardous waste which forms a strong experience base for this MSO process; it is clearly applicable to DOE wastes such as organic liquids and low-ash wastes. It also has potential for processing difficult-to-treat wastes such as nuclear grade graphite and TBP, and it may be suitable for other problem waste streams such as sodium metal. MSO operating systems may be constructed in relatively small units for small quantity generators. Public perceptions could be favorable if acceptable performance data are presented fairly; MSO will likely require compliance with regulations for incineration. Use of MSO for offgas treatment may be complicated by salt carryover. Figs, tabs, refs.

Not Available

1993-12-01T23:59:59.000Z

400

TMS 2012 Industrial Aluminum Electrolysis Course Schedule  

Science Conference Proceedings (OSTI)

Sep 9, 2012 ... Temperature and Aluminum Fluoride. Barry Welch. 11:00 - 12:00. 10: Aluminum Fluoride Variations and Control. Barry Welch. 12:00 - 13:00.

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Current technologies and trends of aluminum design  

E-Print Network (OSTI)

A literature review of current aluminum technology in the building and construction industry was carried out. Aluminum is an ideal material for building in corrosive environments and for building structures where small ...

Chen, Michael, 1981-

2004-01-01T23:59:59.000Z

402

Aluminum-carbon composite electrode  

DOE Patents (OSTI)

A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

Farahmandi, C. Joseph (Auburn, AL); Dispennette, John M. (Auburn, AL)

1998-07-07T23:59:59.000Z

403

TMS Short Course: Industrial Aluminum Electrolysis 2010  

Science Conference Proceedings (OSTI)

... Electrolyte Compositions; Fluoride Emissions Control; Graphite Resistor and Gas ... the Variability and Control of Temperature and Aluminum Fluoride in Cells  ...

404

2013 TMS Industrial Aluminum Electrolysis Course  

Science Conference Proceedings (OSTI)

Aluminum Fluoride Variations and Control; Anode Cover; Anode Effect Mechanism and PFC Emission Rates; Anodes in Cells - Their Reactions and ...

405

Expansion and Collapse of Liquid Aluminum Foams  

Science Conference Proceedings (OSTI)

ESP Dust Recovery Process Test Works, Plant Trial, Commissioning, Operations and Metallurgical Performance · Expansion and Collapse of Liquid Aluminum ...

406

Aluminum Production Paths in the New Millennium  

Science Conference Proceedings (OSTI)

Electrochemical technologies face the same problems and challenges as present ... The driving force for developing new processes for aluminum smelting ...

407

Aluminum Alloys: Fabrication, Characterization and Applications  

Science Conference Proceedings (OSTI)

... Welding of Aluminum Wires for Cables Harnesses in the Automotive Industry ... Transmission Electron Microscopic Investigation of Sensitized Al-5083.

408

Fatigue Resistance of Carbon Nanotube Reinforced Aluminum ...  

Science Conference Proceedings (OSTI)

Presentation Title, Fatigue Resistance of Carbon Nanotube Reinforced Aluminum ... Fatigue crack propagation (FCP) and fracture mechanism of Al-CNT  ...

409

TMS 2010 Networking Events: Aluminum Plenary  

Science Conference Proceedings (OSTI)

TMS Home · Contact Us ... Technical Divisions Home .... Challenges and Opportunities Relative to Increased Usage of Aluminum within the Automotive Industry

410

Aluminum Alloys: Fabrication, Characterization and Applications ...  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Program Organizers: Zhengdong (Steven) Long, Kaiser Aluminum; Subodh Das, Phinix LLC; Tongguang Zhai, University of Kentucky; William ...

411

Lithium-ferrate-based cathodes for molten carbonate fuel cells  

DOE Green Energy (OSTI)

Argonne National Laboratory is developing advanced cathodes for pressurized operation of the molten carbonate fuel cell (MCFC) at approximately 650 degrees Centigrade. These cathodes are based on lithium ferrate (LiFeO[sub 2]) which is attractive because of its very low solubility in the molten (Li,K)[sub 2]CO[sub 3] electrolyte. Because of its high resistivity, LiFeO[sub 2] cannot be used as a direct substitute for NiO. Cation substitution is, therefore, necessary to decrease resistivity. The effect of cation substitution on the resistivity and deformation of LiFeO[sub 2] was determined. The substitutes were chosen because their respective oxides as well as LiFeO[sub 2] crystallize with the rock-salt structure.

Lanagan, M.T.; Wolfenstine, J. [Argonne National Lab., IL (United States). Energy Technology Div.; Bloom, I.; Kaun, T.D.; Krumpelt, M. [Argonne National Lab., IL (United States). Chemical Technology Div.

1996-12-31T23:59:59.000Z

412

Program plan for molten carbonate fuel-cell systems development  

DOE Green Energy (OSTI)

The purpose of this document is to describe in both programmatic and technical terms the methodology that the US Department of Energy will use to commercialize a molten carbonate fuel cell power plant. Responsibility for the planning and management of the program resides in the molten carbonate fuel cell program office at the Argonne National Laboratory which reports to the Assistant Director for Fuel Cells in the Division of Fossil Fuel utilization of DOE/FE. The actual development of technology is carried out by selected contractors. The technology development phase of the program will culminate with the construction and operation of two demonstration power plants. The first power plant will be an industrial cogeneration plant which will be completed in 1987. The other power plant will be a baseload electric power plant to be completed in 1989.

Not Available

1978-10-27T23:59:59.000Z

413

REQUEST BY ALUMINUM COMPANY OF AMERICA FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SS796C; DOE WAIVER DOCKET W(A)-96-022[ORO- SS796C; DOE WAIVER DOCKET W(A)-96-022[ORO- 637] Aluminum Company of America (Alcoa) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-AC05-840R21400; Subcontract No. 86X-SS796C. The scope of the work calls for the development of processes for forming aluminum auto parts to make the use of aluminum in the industry feasible and cost effective. Alcoa will be assisting the Department of Energy in developing advanced materials for the automobile industry, namely to develop Semi-Solid Metal (SSM) technology to produce new and existing light weight aluminum alloy castings having greater than fifteen percent ductility. The United States Automotive Materials Partnership (USAMP) will assist Alcoa on an

414

Non-segregating electrolytes for molten carbonate fuel cells  

DOE Green Energy (OSTI)

Current MCFCs use a Li/K carbonate mixture; the segregation increases the K concentration near the cathode, leading to increase cathode solubility and performance decline. ANL is developing molten carbonates that have minimal segregation; the approach is using Li-Na carbonates. In screening tests, fully developed potential distributions were obtained for 4 Li/Na compositions, and performance data were used to compare these.

Krumpelt, M.; Kaun, T.; Lanagan, M.

1996-08-01T23:59:59.000Z

415

Commercial Aluminum-Lithium Alloys  

Science Conference Proceedings (OSTI)

Table 8   Typical physical properties of selected aluminum-lithium alloys...-742 Elastic modulus, GPa (10 6 psi) 76 (11.0) 75 (10.9) 77 (11.2) Poisson's ratio 0.34 � � (a) Measured per ASTM G 60

416

Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting  

Science Conference Proceedings (OSTI)

The primary goal of this project was to develop and validate new classes of cost-effective low-permeability ceramic and refractory components for handling molten aluminum in both melting and casting environments. Three approaches were employed with partial to full success to achieve this goal: (1) Develop materials and methods for sealing surface porosity in thermal-shock-resistant ceramic refractories; (2) Develop new ceramic coatings for extreme service in molten aluminum operations, with particular emphasis on coatings based on highly stable oxide phases; and (3) Develop new monolithic refractories designed for lower-permeability applications using controlled porosity gradients and particle size distributions. The results of the research work and the field tests performed utilizing these three approaches are listed below: (1) It was demonstrated that high-density IR heating could be a tool for altering and sealing the surface porosity of fused silica. However, the process was not very cost-effective. (2) A low-cost glaze composition having a coefficient of thermal expansion (CTE) similar to that of a DFS tube was identified and was successfully tested for its integrity and adherence to DFS. Although the glaze acted as a barrier between the molten aluminum and the DFS, persistent porosity and crazing within the glaze affected its performance during the reactivity tests, thus acting as an obstacle in scaling up production of this glaze. (3) Pyrotek's XL glaze showed great success in improving the life of the DFS tubes. Pyrotek has reported an increasing market demand for the XL-coated DFS tubes, which exhibit useful lifetimes three times better than those of uncoated tubes. (4) A computer model to optimize particle size distribution for reduced permeability was developed and successfully applied to casting formulations. Silica riser tubes produced using these new formulations have been tested in a commercial aluminum casting facility and have been reported to increase the life of the DFS tubes by 700%. (5) If all the DFS riser tubes used in LPD casting of aluminum automotive components are replaced with the better, longer-lasting castable riser tubes, the potential national energy savings is estimated to be 206 billion Btu/year.

Dale E. Brown (Pyrotek); Puja B. Kadolkar (ORNL)

2005-12-15T23:59:59.000Z

417

Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries  

E-Print Network (OSTI)

We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely ...

Meng, Shirley Y.

418

SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Modular and Scalable Baseload Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility to someone by E-mail Share SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Facebook Tweet about SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Twitter Bookmark SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Google Bookmark SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Delicious Rank SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Digg Find More places to share SunShot Initiative: Modular and Scalable

419

METAL COATING BATHS  

DOE Patents (OSTI)

A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

Robinson, J.W.

1958-08-26T23:59:59.000Z

420

A Comparison of Molten Sn and Bi for Solid Oxide Fuel Cell Anodes  

Science Conference Proceedings (OSTI)

Molten Sn and Bi were examined at 973 and 1073 K for use as anodes in solid oxide fuel cells with yttria-stabilized zirconia (YSZ) electrolytes. Cells were operated under “battery” conditions, with dry He flow in the anode compartment, to characterize the electrochemical oxidation of the metals at the YSZ interface. For both metals, the open-circuit voltages (OCVs) were close to that expected based on their oxidation thermodynamics, ~0.93 V for Sn and ~0.48 V for Bi. With Sn, the cell performance degraded rapidly after the transfer of approximately 0.5-1.5 Ccm{sup 2} of charge due to the formation of a SnO{sub 2} layer at the YSZ interface. At 973 K, the anode impedance at OCV for freshly reduced Sn was approximately 3 {ohm}cm{sup 2} but this increased to well over 250 {ohm}cm{sup 2} after the transfer of of charge. Following the transfer of 8.2 Ccm{sup 2} at 1073 K, the formation of a 10{micro}m thick SnO{sub 2} layer was confirmed by scanning electron microscopy. With Bi, the OCV anode impedance at 973 K was less than 0.25 {ohm}cm{sup 2} and remained constant until essentially all of the Bi had been oxidized to BiO{sub 2}. Some implications of these results for direct carbon fuel cells are discussed.

Jayakumar, A.; Lee, Sang Bok; Hornés, A.; Vohs, J. M.; Gorte, R. J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51  

Science Conference Proceedings (OSTI)

Liquid Waste Organization (LWO) identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days, which became the baseline aluminum dissolution process. LWO initiated a project to modify a waste tank to meet these requirements. Subsequent to an alternative evaluation, LWO management identified an opportunity to perform aluminum dissolution on sludge destined for Sludge Batch 5, but within a limited window that would not allow time for any modifications for tank heating. A variation of the baseline process, dubbed Low Temperature Aluminum Dissolution (LTAD), was developed based on the constraint of available energy input in Tank 51 and the window of opportunity, but was not constrained to a minimum extent of dissolution, i.e. dissolve as much aluminum as possible within the time available. This process was intended to operate between 55 and 70 C, but for a significantly longer time than the baseline process. LTAD proceeded in parallel with the baseline project. The preliminary evaluation at the completion of LTAD focused on the material balance and extent of the aluminum dissolved. The range of values of extent of dissolution, 56% to 64%, resulted from the variation in liquid phase sample data available at the time. Additional solid phase data is available from a sample taken after LTAD to refine this range. This report provides additional detailed evaluation of the LTAD process based on analytical and field data and includes: a summary of the process chronology; a determination of an acceptable blending strategy for the aluminum-laden supernate stored in Tank 11; an update to the determination of aluminum dissolved using more complete sample results; a determination of the effect of LTAD on uranium, plutonium, and other metals; a determination of the rate of heat loss from a quiescent tank; and an evaluation of the aluminum dissolution rate model and actual dissolution rate. LTAD was successfully completed in Tank 51 with minimal waste tank changes. The following general conclusions may be drawn about the LTAD process: (1) Dissolution at about 60 C for 46 days dissolved 64% of the aluminum from the sludge slurry. (2) The aluminum-laden leach solution decanted to Tank 11 can be blended with a wide variety of supernates without risk of precipitating the dissolved aluminum based on thermodynamic chemical equilibrium models. (3) Uranium and plutonium leached into solution without corresponding leaching of iron or metal other than aluminum, but the total mass leached was a small fraction of the total uranium and plutonium in the sludge. (4) The concentration of uranium and plutonium in the leach solution was indistinguishable from other tank farm supernates, thus, the leach solutions can be managed relative to the risk of criticality like any other supernate. (5) A small amount of mercury leached into solution from the sludge causing the liquid phase concentration to increase 6 to 10 fold, which is consistent with the 4 to 14 fold increase observed during the 1982 aluminum dissolution demonstration. (6) Chromium did not dissolve during LTAD. (7) Chloride concentration increased in the liquid phase during LTAD due to chloride contamination in the 50% sodium hydroxide solution. (8) The rate of heat loss from Tank 51 at temperatures above 45 C appeared linear and predictable at 8E+7 cal/hr. (9) The rate of heat transfer from Tank 51 did not follow a simplified bulk heat transfer model. (10) Prediction of the aluminum dissolution rate was prone to error due to a lack of active specific surface area data of sludge particles. (11) The higher than expected dissolution rate during LTAD was likely due to smaller than expected particle sizes of most of the sludge particles. While evaluating the LTAD process, the dissolved salt solution from Tank 41 that was stored and sampled in Tank 49 was determined to be supersaturated relative to alu

Pike, J

2008-09-04T23:59:59.000Z

422

Internal zone growth method for producing metal oxide metal eutectic composites  

DOE Patents (OSTI)

An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.

Clark, Grady W. (Oak Ridge, TN); Holder, John D. (Knoxville, TN); Pasto, Arvid E. (Oak Ridge, TN)

1980-01-01T23:59:59.000Z

423

SEPARATION OF PROTACTINIUM FROM MOLTEN SALT REACTOR FUEL COMPOSITIONS  

DOE Patents (OSTI)

A method for selectively precipitating protactinium from a neutron- irradiated fused fluoride salt composition comprising at least one metal fluoride selected from the group consisting of an alkali metal fluoride and an alkaline earth metal fluoride containing dissolved thorium-232 values is presented. An inorganic metal oxide corresponding to any of the metal fluorides of the composition is also added. (AEC)

Shaffer, J.H.; Strain, J.E.; Cuneo, D.R.; Kelly, M.J.

1963-11-12T23:59:59.000Z

424

Thermal Barrier Coatings Resistant to Attack by Molten Fly Ash in ...  

Science Conference Proceedings (OSTI)

Presentation Title, Thermal Barrier Coatings Resistant to Attack by Molten Fly Ash in Integrated Gas Combined Cycle Turbine Engines. Author(s), Andrew D.

425

NaNO3-KNO3 Ternary Molten Salts for Parabolic Trough  

Science Conference Proceedings (OSTI)

Presentation Title, Thermodynamic Properties of Novel Low Melting Point LiNO3- NaNO3-KNO3 Ternary Molten Salts for Parabolic Trough Solar Power ...

426

Multi-Physics Modeling of Molten Salt Transport in Solid Oxide ...  

Science Conference Proceedings (OSTI)

In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing

427

Investigation on Corrosion Behaviour of Ni-Based Alloys in Molten ...  

Science Conference Proceedings (OSTI)

In this paper, corrosion processes of Ni-based superalloys including Inconel 600, Hastelloy X and Hastelloy C-276 were investigated in molten fluoride salts ...

428

TEM Analysis of Incoloy 800H Exposed to Molten LiF-NaF-KF  

Science Conference Proceedings (OSTI)

However, molten salt corrosion is not as well understood as conventional aqueous corrosion. Focused Ion Beam machining was used to prepare site-

429

Determination of Stability Constants of Hydrogen and Aluminum Fluorides with a Fluoride-Selective Electrode  

DOE Green Energy (OSTI)

The ability to directly determine free fluoride ion concentration (or mean activity) simplifies gathering and interpretation of experimental data for studies of metal complexes. In this work, the new lanthanum fluoride electrode was used to measure free fluoride ion in an investigation of the hydrogen-fluoride and aluminum-fluoride systems in NH4NO3.

Baumann, E.W.

2003-01-06T23:59:59.000Z

430

APPARATUS FOR VACUUM DEPOSITION OF METALS  

DOE Patents (OSTI)

An apparatus and a method are described for continuous vacuum deposition of metals for metallic coatings, for ultra-high vacuum work, for purification of metals, for maintaining high-density electron currents, and for other uses. The apparatus comprises an externally cooled feeder tube extending into a container and adapted to feed metal wire or strip so that it emerges in a generally vertical position therein. The tube also provides shielding from the heat produced by an electron beam therein focused to impinge from a vertical direction upon the tip of the emerging wire. By proper control of the wire feed, coolant feed, and electron beam intensity, a molten ball of metal forms upon the emerging tip and remains self-supported thereon by the interaction of various forces. The metal is vaporized and travels in a line of sight direction, while additional wire is fed from the tube, so that the size of the molten ball remains constant. In the preferred embodiments, the wire is selected from a number of gettering metals and is degassed by electrical resistance in an adjacent chamber which is also partially evacuated. The wire is then fed through the feed tube into the electron beam and vaporizes and adsorbs gases to provide pumping action while being continuously deposited upon surfaces within the chamber. Ion pump electrodes may also be provided within line of sight of the vaporizing metal source to enhance the pumping action. (AEC)

Milleron, N.

1962-03-13T23:59:59.000Z

431

Process for producing elements from a fused bath using a metal strap and ceramic electrode body nonconsumable electrode assembly  

DOE Patents (OSTI)

A nonconsumable electrode assembly is described suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a ceramic electrode body and a metal subassembly of a metal conductor rod and at least one metal strap affixed to an end of the rod with opposing portions extending radially outwardly from the rod axis and having the ends of the strap attached to the electrode body. 7 figs.

Byrne, S.C.

1984-07-03T23:59:59.000Z

432

Helium-cooled molten-salt fusion breeder  

Science Conference Proceedings (OSTI)

We present a new conceptual design for a fusion reactor blanket that is intended to produce fissile material for fission power plants. Fast fission is suppressed by using beryllium instead of uranium to multiply neutrons. Thermal fission is suppressed by minimizing the fissile inventory. The molten-salt breeding medium (LiF + BeF/sub 2/ + ThF/sub 4/) is circulated through the blanket and to the on-line processing system where /sup 233/U and tritium are continuously removed. Helium cools the blanket and the austenitic steel tubes that contain the molten salt. Austenitic steel was chosen because of its ease of fabrication, adequate radiation-damage lifetime, and low corrosion by molten salt. We estimate that a breeder having 3000 MW of fusion power will produce 6500 kg of /sup 233/U per year. This amount is enough to provide makeup for 20 GWe of light-water reactors per year or twice that many high-temperature gas-cooled reactors or Canadian heavy-water reactors. Safety is enhanced because the afterheat is low and blanket materials do not react with air or water. The fusion breeder based on a pre-MARS tandem mirror is estimated to cost $4.9B or 2.35 times a light-water reactor of the same power. The estimated cost of the /sup 233/U produced is $40/g for fusion plants costing 2.35 times that of a light-water reactor if utility owned or $16/g if government owned.

Moir, R.W.; Lee, J.D.; Fulton, F.J.; Huegel, F.; Neef, W.S. Jr.; Sherwood, A.E.; Berwald, D.H.; Whitley, R.H.; Wong, C.P.C.; Devan, J.H.

1984-12-01T23:59:59.000Z

433

Heat transfer at the mold-metal interface in permanent mold casting of aluminum alloys project. Annual project status report for the period October 1, 1997 to September 30, 1998  

Science Conference Proceedings (OSTI)

In the first year of this three-year project, substantial progress has been achieved. This project on heat transfer coefficients in metal permanent mold casting is being conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigations of squeeze casting and semi-solid casting at CMI-Tech Center, and the experimental investigation of low pressure permanent mold casting at Amcast Automotive. U-M did an initial geometry which was defined for ProCAST to solve, and then a geometry half the size was defined and solved using the same boundary conditions. A conceptual mold geometry was examined and is represented as an axisymmetric element.Furthermore, the influences of the localized heat transfer coefficients on the casting process were carefully studied. The HTC Evaluator has been proposed and initially developed by the U-M team. The Reference and the Database Modules of the HTC Evaluator have been developed, and extensively tested. A series of technical barriers have been cited and potential solutions have been surveyed. At the CMI-Tech Center, the Kistler direct cavity pressure measurement system has been purchased and tested. The calibrations has been evaluated. The probe is capable of sensing a light finger pressure. The experimental mold has been designed and modified. The experimental mold has been designed and modified. The first experiment is scheduled for October 14, 1998. The geometry of the experimental hockey-puck casting has been given to the U-M team for numerical analysis.

Pehlke, R.D.; Hao, S.W.

1998-09-30T23:59:59.000Z

434

Analysis of surface contaminants on beryllium and aluminum windows  

Science Conference Proceedings (OSTI)

An effort has been made to document the types of contamination which form on beryllium window surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive x-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined.

Gmur, N.F.

1987-06-01T23:59:59.000Z

435

Transmutation and inventory analysis in an ATW molten salt system  

SciTech Connect

As an extension of earlier work to determine the equilibrium state of an ATW molten salt, power producing, reactor/transmuter, the WAIT code provides a time dependent view of material inventories and reactor parameters. By considering several cases, we infer that devices of this type do not reach equilibrium for dozens of years, and that equilibrium design calculations are inapplicable over most of the reactor life. Fissile inventory and keff both vary by factors of 1.5 or more between reactor startup and ultimate convergence to equilibrium.

Sisolak, J. E.; Truebenbach, M. T.; Henderson, D. L. [Department of Nuclear Engineering and Engineering Physics University of Wisconsin-Madison, Madison, Wisconsin 53706-1687 (United States)

1995-09-15T23:59:59.000Z

436

Determination of optimum electrolyte composition for molten carbonate fuel cells  

DOE Green Energy (OSTI)

The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

Yuh, C.Y.; Pigeaud, A.

1987-01-01T23:59:59.000Z

437

LOS ALAMOS MOLTEN PLUTONIUM REACTOR EXPERIMENT (LAMPRE) HAZARD REPORT  

SciTech Connect

This report supersedes K-1-3425 and LA-2327(Prelim). The first experiment (LAMPRE I) in a program to develop molten plutonium fuels for fast reactors is described and the hazards associated with reactor operation are discussed and evaluated. The reactor desc=iption includes fuel element design, core configuration, sodium coolant system control, safety systems, fuel capsule charger, cover gas system, and shielding. Information of the site comprises population in surrounding areas, meteorological data, geology, and details of the reactor building. The hazmalfunction of the several elements comprising the reactor system. A calculation on the effect of fuel element bowiing appears in an appendix. (auth)

Swickard, E.O. comp.

1959-06-01T23:59:59.000Z

438

Fission product behavior in the Molten Salt Reactor Experiment  

SciTech Connect

Essentially all the fission product data for numerous and varied samples taken during operation of the Molten Salt Reactor Experiment or as part of the examination of specimens removed after particular phases of operation are reported, together with the appropriate inventory or other basis of comparison, and relevant reactor parameters and conditions. Fission product behavior fell into distinct chemical groups. Evidence for fission product behavior during operation over a period of 26 months with $sup 235$U fuel (more than 9000 effective full-power hours) was consistent with behavior during operation using $sup 233$U fuel over a period of about 15 months (more than 5100 effective full- power hours). (auth)

Compere, E.L.; Kirslis, S.S.; Bohlmann, E.G.; Blankenship, F.F.; Grimes, W.R.

1975-10-01T23:59:59.000Z

439

Mercury-Free Dissolution of Aluminum-Based Nuclear Material: From Basic Science to the Plant  

Science Conference Proceedings (OSTI)

Conditions were optimized for the first plant-scale dissolution of an aluminum-containing nuclear material without using mercury as a catalyst. This nuclear material was a homogeneous mixture of plutonium oxide and aluminum metal that had been compounded for use as the core matrix in Mark 42 nuclear fuel. Because this material had later failed plutonium distribution specifications, it was rejected for use in the fabrication of Mark 42 fuel tubes, and was stored at the Savannah River Site (SRS) awaiting disposition. This powder-like material was composed of a mixture of approximately 80 percent aluminum and 11 percent plutonium. Historically, aluminum-clad spent nuclear fuels [13] have been dissolved using a mercuric nitrate catalyst in a nitric acid (HNO3) solution to facilitate the dissolution of the bulk aluminum cladding. Developmental work at SRS indicated that the plutonium oxide/aluminum compounded matrix could be dissolved without mercury. Various mercury-free conditions were studied to evaluate the rate of dissolution of the Mark 42 compact material and to assess the corrosion rate to the stainless steel dissolver. The elimination of mercury from the dissolution process fit with waste minimization and industrial hygiene goals to reduce the use of mercury in the United States. The mercury-free dissolution technology was optimized for Mark 42 compact material in laboratory-scale tests, and successfully implemented at the plant.

Crooks, W.J. III

2003-05-14T23:59:59.000Z

440

Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel  

DOE Green Energy (OSTI)

The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [{approx}1000 Mw(e)] with passive safety systems to provide the potential for improved economics.

Forsberg, C.W.

2002-02-21T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

(Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon  

DOE Patents (OSTI)

The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

2001-01-01T23:59:59.000Z

442

(Polyfluoroaryl) fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon  

DOE Patents (OSTI)

The (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium are novel weakly coordinating anions which are highly fluorinated. (Polyfluoroaryl)fluoroanions of one such type contain at least one ring substituent other than fluorine. These (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium have greater solubility in organic solvents, or have a coordinative ability essentially equal to or less than that of the corresponding (polyfluoroaryl)fluoroanion of aluminum, gallium, or indium in which the substituent is replaced by fluorine. Another type of new (polyfluoroaryl)fluoroanion of aluminum, gallium, and indium have 1-3 perfluorinated fused ring groups and 2-0 perfluorophenyl groups. When used as a cocatalyst in the formation of novel catalytic complexes with d- or f-block metal compounds having at least one leaving group such as a methyl group, these anions, because of their weak coordination to the metal center, do not interfere in the ethylene polymerization process, while affecting the propylene process favorably, if highly isotactic polypropylene is desired. Thus, the (polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of this invention are useful in various polymerization processes such as are described.

Marks, Tobin J. (Evanston, IL); Chen, You-Xian (Midland, MI)

2002-01-01T23:59:59.000Z

443

Metallography of pitted aluminum-clad, depleted uranium fuel  

Science Conference Proceedings (OSTI)

The storage of aluminum-clad fuel and target materials in the L-Disassembly Basin at the Savannah River Site for more than 5 years has resulted in extensive pitting corrosion of these materials. In many cases the pitting corrosion of the aluminum clad has penetrated in the uranium metal core, resulting in the release of plutonium, uranium, cesium-137, and other fission product activity to the basin water. In an effort to characterize the extent of corrosion of the Mark 31A target slugs, two unirradiated slug assemblies were removed from basin storage and sent to the Savannah River Technology Center for evaluation. This paper presents the results of the metallography and photographic documentation of this evaluation. The metallography confirmed that pitting depths varied, with the deepest pit found to be about 0.12 inches (3.05 nun). Less than 2% of the aluminum cladding was found to be breached resulting in less than 5% of the uranium surface area being affected by corrosion. The overall integrity of the target slug remained intact.

Nelson, D.Z.; Howell, J.P.

1994-12-01T23:59:59.000Z

444

EFFECT OF CATIONS ON ALUMINUM SPECIATION UNDER ALKALINE CONDITIONS  

SciTech Connect

A series of experiments were performed to examine the effect of metal cations common to high level waste on the phase of aluminum formed. Experiments were performed at temperature of 150 C, 75 C, and room temperature, either without additional metal cation, or with 0.01-0.2 molar equivalents of either Ni{sup 2+}, Fe{sup 3+}, Mn{sup 2+}, or Cr{sup 3+}. Results showed that temperature has the greatest effect on the phase obtained. At 150 C, boehmite is the only phase obtained, independent of the presence of other metal cations, with only one exception where a small amount of gibbsite was also detected in the product when 0.2 equivalents of Ni{sup 2+} was present. At 75 C, a mixture of phases is obtained, most commonly including bayerite and gibbsite; however, boehmite is also formed under some conditions, including in the absence of additional metal ion. At room temperature, in the absence of additional metal ion, a mixture of bayerite and gibbsite is obtained. The addition of another metal cation suppresses the formation of gibbsite, with a couple of exceptions (0.2 equivalents of Ni{sup 2+} or 0.01 equivalents of Cr{sup 3+}) where both phases are still obtained.

Taylor-Pashow, K.; Hobbs, D.

2012-07-31T23:59:59.000Z

445

Thermal Expansion of Aluminum and Some Aluminum Alloys  

Science Conference Proceedings (OSTI)

... Am. Inst. Mining Met. Engrs., Inst. Metals Diy. 104, 308 (1933). 13] P. Hidnert and W. Souder, Thermal expansion of solids, NBS Circular 486 (1950). ...

2006-03-29T23:59:59.000Z

446

Plasma torch with liquid metal electrodes  

Science Conference Proceedings (OSTI)

In order to eliminate the negative effect of erosion processes on electrodes in arc plasma generators, a new scheme of arc discharge was proposed in which the surface of a molten metal acts as electrodes. A plasma reactor was designed on the basis of this concept. The electrophysical characteristics of such a discharge in steam and air as plasma gases were studied. Experiments on destruction of toxic polychlorinated biphenyls and steam coal gasification were performed.

Predtechenskii, M.R.; Tukhto, O.M. [Russian Academy of Science, Novosibirsk (Russian Federation)

2006-03-15T23:59:59.000Z

447

Alkali metal protective garment and composite material  

DOE Patents (OSTI)

A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

Ballif, III, John L. (Salt Lake City, UT); Yuan, Wei W. (Seattle, WA)

1980-01-01T23:59:59.000Z

448

Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product  

DOE Patents (OSTI)

In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.

Dykes, Charles D. (303 Shore Rd., Milton, VT); Daniel, Sabah S. (303 Shore Rd., Pittsburgh, PA); Wood, J. F. Barry (303 Shore Rd., Burlington, VT 05401)

1990-02-20T23:59:59.000Z

449

Aluminum: Technology, Applications and Environment - TMS  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This volume is the 6th edition of Dr. Dietrich Altenpohl's book, originally titled Aluminum From Within (and still carrying that subtitle.) It is the ...

450

Aluminum Scrap Supply and Environmental Impact Model  

Science Conference Proceedings (OSTI)

Aug 1, 2000 ... It has been applied to the USA to forecast sources of aluminum scrap ... good balance between supply and demand on average over the years.

451

Aluminum and Energy--an International Perspective  

Science Conference Proceedings (OSTI)

A review of the effects of regional energy and trade issues on the global aluminium industry and its ... “Energy Policy Position of the Aluminum Association

452

Materials Sustainability: Digital Resource Center - Aluminum: The ...  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... A complete review of today's successful automotive aluminum recycling infrastructure. Shows a car's journey through the entire recycling ...

453

Materials Sustainability: Digital Resource Center - Aluminum ...  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... This volume is the 6th edition of Dr. Dietrich Altenpohl's book, originally titled Aluminum From Within (and still carrying that subtitle.) It is the ...

454

Aluminum-stabilized NB3SN superconductor  

DOE Patents (OSTI)

An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

Scanlan, Ronald M. (Livermore, CA)

1988-01-01T23:59:59.000Z

455

Aluminum—Meeting the Challengesof Climate Change  

Science Conference Proceedings (OSTI)

However, the largest potential for emission reduction is through the use of aluminum products in energy-saving applications, such as lightweight vehicles, green ...

456

Activated Aluminum Hydride Hydrogen Storage Compositions ...  

Aluminum hydride is the best known alane and has been known for over 60 years. It is potentially a very attractive medium for onboard automotive hydrogen storage ...

457

Primary Aluminum Processing in Quebec and Canada  

Science Conference Proceedings (OSTI)

3D Meso-scale Modelling of Aluminum-alloy Welding Processes for Prediction of ... Frequency Modulation Effect on the Solidification of Alloy 718 Fusion Zone.

458

Climate VISION: Private Sector Initiatives: Aluminum: Resources...  

Office of Scientific and Technical Information (OSTI)

Associations FederalState Programs Technical Information Plant Assessments Training Calendar Software Tools Energy Management Expertise Auto Aluminum Usage Benefits Environment...

459

Energy Opportunities in the Aluminum Processing Industry  

Science Conference Proceedings (OSTI)

As carbon management has grown in importance and project payback becomes ... overall energy within a plant and within the aluminum processing industry.

460

Distinguishing Dynamic Recrystallization (DRX) in Aluminum and ...  

Science Conference Proceedings (OSTI)

... Damage Tolerant Critical Aircraft Structures – an Aluminum Supplier Perspective .... P44 - X-ray Diffraction Study on Lattice Constant of Supersaturated Solid ...

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Melter Testing with High Aluminum HLW Streams  

Hanford Tank Waste is High in Aluminum • Estimated Al inventory is 8750 MT • Problem: • Large fraction of Al is in the HLW solids • Greatly increases the ...

462

Cast Aluminum Housings in Electrical Fires  

Science Conference Proceedings (OSTI)

Abstract Scope, Cast aluminum and its alloys are often used as enclosures for electrical appliances and similar devices. Electrical faults can often be analyzed ...

463

High resistivity aluminum antimonide radiation detector  

DOE Patents (OSTI)

Bulk Aluminum Antimonide (AlSb)-based single crystal materials have been prepared for use as ambient (room) temperature X-ray and Gamma-ray radiation detection.

Sherohman, John W. (Livermore, CA); Coombs, III, Arthur W. (Patterson, CA); Yee, Jick H. (Livermore, CA)

2007-12-18T23:59:59.000Z

464

2013 TMS Industrial Aluminum Electrolysis Course - Tour  

Science Conference Proceedings (OSTI)

Qatalum is an equal joint venture between Qatar Petroleum and Hydro Aluminum of Norway and produces 585,000 tons of high-quality primary aluminium ...

465

Aluminum: Technology, Applications, and Environment (Sample ...  

Science Conference Proceedings (OSTI)

Because hydroelectric power is a relatively inexpensive and clean source of energy, aluminum smelters are mostly built in countries with readily avail-.

466

Device for controlling the pouring of molten materials  

DOE Patents (OSTI)

A device for controlling the pouring of a molten material from a crucible or other container. The device (10) includes an annular retainer ring (12) for mounting in the drain opening in the bottom of a conventional crucible (16), the retainer ring defining a opening (14) therethrough. The device (10) also includes a plug member (22) having an annular forward end portion (24) for force-fit reception in the opening (14) of the retainer ring (12) to selectively seal the opening (14) and for being selectively forced through the opening (14). The plug member (22) has a rear end portion (26) for being positioned within the crucible (16), the rear end portion (26) including stop means for prohibiting the rear end portion from passing through the opening (14) in the retainer ring (12) when the forward end portion (24) is selectively forced through the opening. The plug member (22) defines at least one, and preferably a plurality of flutes (32), each extending from a point rearward the annular forward end portion (24) of the plug member (22), and forward the stop means, to a point rearward of the stop means. The flutes (32) permit fluid communication between the interior and exterior of the crucible (16) when the forward end portion (24) of the plug member (22) is forced through the opening (14) in the retaining ring (12) such that the molten material is allowed to flow from the crucible (16).

Moore, Alan F. (Knoxville, TN); Duncan, Alfred L. (Clinton, TN)

1994-01-01T23:59:59.000Z

467

Coal derived fuel gases for molten carbonate fuel cells  

DOE Green Energy (OSTI)

Product streams from state-of-the-art and future coal gasification systems are characterized to guide fuel cell program planners and researchers in establishing performance goals and developing materials for molten carbonate fuel cells that will be compatible with gasifier product gases. Results are presented on: (1) the range of gasifier raw-gas compositions available from the major classes of coal gasifiers; (2) the degree of gas clean-up achievable with state-of-the-art and future gas clean-up systems; and (3) the energy penalties associated with gas clean-up. The study encompasses fixed-bed, fluid-bed, entrained-bed, and molten salt gasifiers operating with Eastern bituminous and Western subbituminous coals. Gasifiers operating with air and oxygen blowing are evaluated, and the coal gasification product streams are characterized with respect to: (1) major gas stream constituents, e.g., CO, H/sub 2/, CO/sub 2/, CH/sub 4/, N/sub 2/, H/sub 2/O; (2) major gas stream contaminants, e.g., H/sub 2/S, COS, particulates, tars, etc.; and (3) trace element contaminants, e.g., Na, K, V, Cl, Hg, etc.

Not Available

1979-11-01T23:59:59.000Z

468

The Effect of Impurities on the Processing of Aluminum Alloys  

Science Conference Proceedings (OSTI)

For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic database developed in this project, thermodynamic simulations were carried out to investigate the effect of sodium on the HTE of Al-Mg alloys. The simulation results indicated that the liquid miscibility gap resulting from the dissolved sodium in the molten material plays an important role in HTE. A liquid phase forms from the solid face-centered cubic (fcc) phase (most likely at grain boundaries) during cooling, resulting in the occurrence of HTE. Comparison of the thermodynamic simulation results with experimental measurements on the high-temperature ductility of an Al-5Mg-Na alloy shows that HTE occurs in the temperature range at which the liquid phase exists. Based on this fundamental understanding of the HTE mechanism during processing of aluminum alloy, an HTE sensitive zone and a hot-rolling safe zone of the Al-Mg-Na alloys are defined as functions of processing temperature and alloy composition. The tendency of HTE was evaluated based on thermodynamic simulations of the fraction of the intergranular sodium-rich liquid phase. Methods of avoiding HTE during rolling/extrusion of Al-Mg-based alloys were suggested. Energy and environmental benefits from the results of this project could occur through a number of avenues: (1) energy benefits accruing from reduced rejection rates of the aluminum sheet and bar, (2) reduced dross formation during the remelting of the aluminum rejects, and (3) reduced CO2 emission related to the energy savings. The sheet and extruded bar quantities produced in the United States during 2000 were 10,822 and 4,546 million pounds, respectively. It is assumed that 50% of the sheet and 10% of the bar will be affected by implementing the results of this project. With the current process, the rejection rate of sheet and bar is estimated at 5%. Assuming that at least half of the 5% rejection of sheet and bar will be eliminated by using the results of this project and that 4% of the aluminum will be lost through dross (Al2O3) during remelting of the rejects, the full-scale industrial implementation of the project results would lead to energy

Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

2007-04-23T23:59:59.000Z

469

Enhanced Natural Convection in a Metal Layer Cooled by Boiling Water  

Science Conference Proceedings (OSTI)

An experimental study is performed to investigate the natural convection heat transfer characteristics and the solidification of the molten metal pool concurrently with forced convective boiling of the overlying coolant to simulate a severe accident in a nuclear power plant. The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the molten metal pool region is determined and compared with the correlations in the literature and experimental data with subcooled water. Given the same Ra condition, the present experimental results for Nu of the liquid metal pool with coolant boiling are found to be higher than those predicted by the existing correlations or measured from the experiment with subcooled boiling. To quantify the observed effect of the external cooling on the natural convection heat transfer rate from the molten pool, it is proposed to include an additional dimensionless group characterizing the temperature gradients in the molten pool and in the external coolant region. Starting from the Globe and Dropkin correlation, engineering correlations are developed for the enhancement of heat transfer in the molten metal pool when cooled by an overlying coolant. The new correlations for predicting natural convection heat transfer are applicable to low-Prandtl-number (Pr) materials that are heated from below and solidified by the external coolant above. Results from this study may be used to modify the current model in severe accident analysis codes.

Cho, Jae-Seon [Seoul National University (Korea, Republic of); Suh, Kune Y. [Seoul National University (Korea, Republic of); Chung, Chang-Hyun [Seoul National University (Korea, Republic of); Park, Rae-Joon [Korea Atomic Energy Research Institute (Korea, Republic of); Kim, Sang-Baik [Korea Atomic Energy Research Institute (Korea, Republic of)

2004-12-15T23:59:59.000Z

470

FUSED SALT METHOD FOR COATING URANIUM WITH A METAL  

DOE Patents (OSTI)

A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.

Eubank, L.D.

1959-02-01T23:59:59.000Z

471

Aluminum Rolling - Programmaster.org  

Science Conference Proceedings (OSTI)

Organizer(s), Kai F. Karhausen, Hydro Aluminium Rolled Products GmbH. Scope, This symposium is part of the Light Metals Symposium and covers all ...

472

Uncertainty Studies of Real Anode Surface Area in Computational Analysis for Molten Salt Electrorefining  

SciTech Connect

This study examines how much cell potential changes with five differently assumed real anode surface area cases. Determining real anode surface area is a significant issue to be resolved for precisely modeling molten salt electrorefining. Based on a three-dimensional electrorefining model, calculated cell potentials compare with an experimental cell potential variation over 80 hours of operation of the Mark-IV electrorefiner with driver fuel from the Experimental Breeder Reactor II. We succeeded to achieve a good agreement with an overall trend of the experimental data with appropriate selection of a mode for real anode surface area, but there are still local inconsistencies between theoretical calculation and experimental observation. In addition, the results were validated and compared with two-dimensional results to identify possible uncertainty factors that had to be further considered in a computational electrorefining analysis. These uncertainty factors include material properties, heterogeneous material distribution, surface roughness, and current efficiency. Zirconium's abundance and complex behavior have more impact on uncertainty towards the latter period of electrorefining at given batch of fuel. The benchmark results found that anode materials would be dissolved from both axial and radial directions at least for low burn-up metallic fuels after active liquid sodium bonding was dissolved.

Sungyeol Choi; Jaeyeong Park; Robert O. Hoover; Supathorn Phongikaroon; Michael F. Simpson; Kwang-Rag Kim; Il Soon Hwang

2011-09-01T23:59:59.000Z

473

Advanced manufacturing by spray forming: Aluminum strip and microelectromechanical systems  

SciTech Connect

Spray forming is an advanced materials processing technology that converts a bulk liquid metal to a near-net-shape solid by depositing atomized droplets onto a suitably shaped substrate. By combining rapid solidification processing with product shape control, spray forming can reduce manufacturing costs while improving product quality. INEL is developing a unique spray-forming method based on de Laval (converging/diverging) nozzle designs to produce near-net-shape solids and coatings of metals, polymers, and composite materials. Properties of the spray-formed material are tailored by controlling the characteristics of the spray plume and substrate. Two examples are described: high-volume production of aluminum alloy strip, and the replication of micron-scale features in micropatterned polymers during the production of microelectromechanical systems.

McHugh, K.M.

1994-12-31T23:59:59.000Z

474

Energy Policy Position of the Aluminum Association - TMS  

Science Conference Proceedings (OSTI)

Energy represents about one third of the total production cost of primary aluminum. Electricity is an essential ingredient in primary aluminum production.

475

Determination of Aluminum Rolling Oil and Machinery Oil Residues ...  

Science Conference Proceedings (OSTI)

Presentation Title, Determination of Aluminum Rolling Oil and Machinery Oil Residues on Aluminum Sheet and Foil by Using Elemental Analysis and Fourier  ...

476

High Temperature Creep Characterization of A380 Cast Aluminum ...  

Science Conference Proceedings (OSTI)

High Strength Aluminum Brazing Sheets for Condenser Fins of Automotive Heat ... for the Phase Formation in a Wide Range of Commercial Aluminum Alloys.

477

Nano Assisted Low Temperature Diffusion Brazing of Aluminum ...  

Science Conference Proceedings (OSTI)

Aluminum alloys are ideal for many heat exchanger applications. However, joining of aluminum alloys is challenging due to tenacious native oxides on the base ...

478

THE DIFFUSION OF LITHIUM IN ALUMINUM  

SciTech Connect

The diffusion of lithium in aluminum was measured at various temperatures with diffusion couples of aluminum-LiAl. The activation energy, E, is 33.3 kcal/mol, and the diffusion factor, Do, is 4.5 cm{sup2}/sec. (auth)

Costas, L. P.

1963-02-28T23:59:59.000Z

479

Aluminum  

Science Conference Proceedings (OSTI)

Add to Cart, Image, Click on Title to view details, Member (Student) Price, Non- member Price. Available at wiley.com, Advanced Materials for Energy Conversion ...

480

Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation  

SciTech Connect

Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt at the eutectic composition (58 mol% LiCl, 42 mol% KCl), which is used for treating spent EBR-II fuel. The same process being used for EBRII fuel is currently being studied for widespread international implementation. The methods will focus on first-principles and first- principles derived interatomic potential based simulations, primarily using molecular dynamics. Results will be validated against existing literature and parallel ongoing experimental efforts. The simulation results will be of value for interpreting experimental results, validating analytical models, and for optimizing waste separation by potentially developing new salt configurations and operating conditions.

Morgan, Dane; Eapen, Jacob

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Electrochemistry for Nd electrowinning from fluoride-oxide molten salts  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Rare Metal Extraction & Processing Symposium. Presentation Title ...

482

Extraction of trace metals from fly ash  

DOE Patents (OSTI)

A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

1984-01-01T23:59:59.000Z

483

Extraction of trace metals from fly ash  

DOE Patents (OSTI)

A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, M.; Wai, C.M.; Nagy, Z.

1983-08-15T23:59:59.000Z

484

Climate VISION: Private Sector Initiatives: Aluminum  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements Aluminum Association Logo The Aluminum Association and its members participating in the Voluntary Aluminum Industry Partnership (VAIP), representing 98% of primary aluminum production in the United States, have committed under the Climate VISION program to a direct carbon intensity reduction of emissions of perfluorocarbons (PFCs) and of emissions of CO2 from the consumption of the carbon anode from the primary aluminum reduction process. The Climate VISION target is a 53% total carbon equivalent reduction from these sources by 2010 from 1990 levels. The industry has been working to reduce greenhouse gas emissions for over a decade and this new commitment equates to an additional direct carbon-intensity reduction of 65% since 2000. As a