Powered by Deep Web Technologies
Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Detection and removal of molten salts from molten aluminum alloys  

SciTech Connect (OSTI)

Molten salts are one source of inclusions and defects in aluminum ingots and cast shapes. A selective adsorption media was used to remove these inclusions and a device for detection of molten salts was tested. This set of experiments is described and the results are presented and analyzed.

K. Butcher; D. Smith; C. L. Lin; L. Aubrey

1999-08-02T23:59:59.000Z

2

Molten metal reactors  

DOE Patents [OSTI]

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

2013-11-05T23:59:59.000Z

3

ADVANCED CERAMIC COMPOSITES FOR MOLTEN ALUMINUM CONTACT APPLICATIONS  

SciTech Connect (OSTI)

A new refractory material which was developed for use in molten aluminum contact applications was shown to exhibit improved corrosion and wear resistance leading to improved thermal management through reduced heat losses caused by refractory thinning and wastage. This material was developed based on an understanding of the corrosion and wear mechanisms associated with currently used aluminum contact refractories under a U.S. Department of Energy funded project to investigate multifunctional refractory materials for energy efficient handling of molten metals. This new material has been validated through an industrial trial at a commercial aluminum rod and cable mill. Material development and results of this industrial validation trial are discussed.

Hemrick, James Gordon [ORNL] [ORNL; Peters, Klaus-Markus [ORNL] [ORNL

2009-01-01T23:59:59.000Z

4

Method of winning aluminum metal from aluminous ore  

DOE Patents [OSTI]

Aluminous ore such as bauxite containing alumina is blended with coke or other suitable form of carbon and reacted with sulfur gas at an elevated temperature. For handling, the ore and coke can be extruded into conveniently sized pellets. The reaction with sulfur gas produces molten aluminum sulfide which is separated from residual solid reactants and impurities. The aluminum sulfide is further increased in temperature to cause its decomposition or sublimation, yielding aluminum subsulfide liquid (AlS) and sulfur gas that is recycled. The aluminum monosulfide is then cooled to below its disproportionation temperature to again form molten aluminum sulfide and aluminum metal. A liquid-liquid or liquid-solid separation, depending on the separation temperature, provides product aluminum and aluminum sulfide for recycle to the disproportionation step.

Loutfy, Raouf O. (Naperville, IL); Keller, Rudolf (Naperville, IL); Yao, Neng-Ping (Clarendon Hills, IL)

1981-01-01T23:59:59.000Z

5

Method and apparatus for atomization and spraying of molten metals  

DOE Patents [OSTI]

A method and device for dispersing molten metal into fine particulate spray, the method comprises applying an electric current through the molten metal and simultaneously applying a magnetic field to the molten metal in a plane perpendicular to the electric current, whereby the molten metal is caused to form into droplets at an angle perpendicular to both the electric current and the magnetic field. The device comprises a structure for providing a molten metal, appropriately arranged electrodes for applying an electric current through the molten metal, and a magnet for providing a magnetic field in a plane perpendicular to the electric current. 11 figs.

Hobson, D.O.; Alexeff, I.; Sikka, V.K.

1988-07-19T23:59:59.000Z

6

A method of measuring a molten metal liquid pool volume  

DOE Patents [OSTI]

A method of measuring a molten metal liquid pool volume and in particular molten titanium liquid pools, including the steps of (a) generating an ultrasonic wave at the surface of the molten metal liquid pool, (b) shining a light on the surface of a molten metal liquid pool, (c) detecting a change in the frequency of light, (d) detecting an ultrasonic wave echo at the surface of the molten metal liquid pool, and (e) computing the volume of the molten metal liquid. 3 figs.

Garcia, G.V.; Carlson, N.M., Donaldson, A.D.

1990-12-12T23:59:59.000Z

7

Molten metal holder furnace and casting system incorporating the molten metal holder furnace  

DOE Patents [OSTI]

A bottom heated holder furnace (12) for containing a supply of molten metal includes a storage vessel (30) having sidewalls (32) and a bottom wall (34) defining a molten metal receiving chamber (36). A furnace insulating layer (42) lines the molten metal receiving chamber (36). A thermally conductive heat exchanger block (54) is located at the bottom of the molten metal receiving chamber (36) for heating the supply of molten metal. The heat exchanger block (54) includes a bottom face (65), side faces (66), and a top face (67). The heat exchanger block (54) includes a plurality of electrical heaters (70) extending therein and projecting outward from at least one of the faces of the heat exchanger block (54), and further extending through the furnace insulating layer (42) and one of the sidewalls (32) of the storage vessel (30) for connection to a source of electrical power. A sealing layer (50) covers the bottom face (65) and side faces (66) of the heat exchanger block (54) such that the heat exchanger block (54) is substantially separated from contact with the furnace insulating layer (42).

Kinosz, Michael J. (Apollo, PA); Meyer, Thomas N. (Murrysville, PA)

2003-02-11T23:59:59.000Z

8

Pressurized tundish for controlling a continuous flow of molten metal  

DOE Patents [OSTI]

A pressurized tundish for controlling a continous flow of molten metal characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate.

Lewis, Thomas W. (964 Cork Dr., Bethel Park, PA 15102); Hamill, Jr., Paul E. (R.D. #1, Box 173A1, Jeannette, PA 15644); Ozgu, Mustafa R. (790 Yorkshire Rd., Bethlehem, PA 18017); Padfield, Ralph C. (1918 Paul Ave., Bethlehem, PA 18018); Rego, Donovan N. (1703 W. Brown St., Allentown, PA 18104); Brita, Guido P. (3225 Edna Terrace Ave., Bethlehem, PA 18017)

1990-01-01T23:59:59.000Z

9

Pressurized tundish for controlling a continuous flow of molten metal  

DOE Patents [OSTI]

A pressurized tundish for controlling a continuous flow of molten metal is characterized by having a pair of principal compartments, one being essentially unpressurized and receiving molten metal introduced thereto, and the other being adapted for maintaining a controlled gaseous pressure over the surface of the fluid metal therein, whereby, by controlling the pressure within the pressurized chamber, metal exiting from the tundish is made to flow continually and at a controlled rate. 1 fig.

Lewis, T.W.; Hamill, P.E. Jr.; Ozgu, M.R.; Padfield, R.C.; Rego, D.N.; Brita, G.P.

1990-07-24T23:59:59.000Z

10

Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions  

SciTech Connect (OSTI)

Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Clean Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy conservation. In this program, the salt metal interactions were studies and the emissions at laboratory scale at OSU were monitored. The goal of the project was to obtain a fundamental understanding, based on first principles, of the pollutant formation that occurs when the salts are used in furnaces. This information will be used to control process parameters so that emissions are consistently below the required levels. The information obtained in these experiments will be used in industrial furnaces at aluminum plants and which will help in optimizing the process.

Yogeshwar Sahai

2007-07-31T23:59:59.000Z

11

Nonmetal-metal transition in metal–molten-salt solutions  

Science Journals Connector (OSTI)

The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes delocalized and percolating conducting paths are formed, making a significant dc electrical conductivity possible. This marks the onset of the metallic regime. By calculating several electronic and structural properties, remarkable differences between the two solutions are observed. The anomalous behavior of Nax(NaBr)1-x, typical of all the Na-NaX solutions, is found to be related to the strong attractive interaction between the sodium ions and the excess electrons. © 1996 The American Physical Society.

Pier Luigi Silvestrelli; Ali Alavi; Michele Parrinello; Daan Frenkel

1996-05-15T23:59:59.000Z

12

Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor  

DOE Patents [OSTI]

A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

2012-11-13T23:59:59.000Z

13

Supported Molten Metal Catalysis. A New Class of Catalysts  

SciTech Connect (OSTI)

We describe a new class of heterogeneous catalysts called supported molten metal catalysis (SMMC), in which molten metal catalysts are dispersed as nanodroplets on the surface of porous supports, allowing much larger active surface area than is possible in conventional contacting techniques for catalytic metals that are molten under reaction conditions, thus greatly enhancing their activity and potential utility. Specific examples of different types of reactions are provided to demonstrate the broad applicability of the technique in designing active, selective, and stable new catalysts. It is shown that dispersing the molten metal on a support in the suggested manner can enhance the rate of a reaction by three to four orders of magnitude as a result of the concomitant increase in the active surface area. New reaction examples include {gamma}-Al{sub 2}O{sub 3} supported molten Te (melting point 450 C) and Ga (MP 30 C) catalysts for bifunctional methylcyclohexane dehydrogenation. These catalysts provide activity similar to conventional Pt-based catalysts for this with better resistance to coking. In addition, results are described for a controlled pore glass supported molten In (MP 157 C) catalyst for the selective catalytic reduction of NO with ethanol in the presence of water, demonstrating activities superior to conventional catalysts for this reaction. A discussion is also provided on the characterization of the active surface area and dispersion of these novel supported catalysts. It is clear based on the results described that the development of new active and selective supported molten metal catalysts for practical applications is entirely plausible.

Ravindra Datta; Ajeet Singh; Manuela Serban; Istvan Halasz

2006-06-02T23:59:59.000Z

14

Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals  

SciTech Connect (OSTI)

The goal of the project was to extend the lifetime of hardware submerged in molten metal by an order of magnitude and to improve energy efficiency of molten metal handling process. Assuming broad implementation of project results, energy savings in 2020 were projected to be 10 trillion BTU/year, with cost savings of approximately $100 million/year. The project team was comprised of materials research groups from West Virginia University and the Missouri University of Science and Technology formerly University of Missouri – Rolla, Oak Ridge National Laboratory, International Lead and Zinc Research Organization, Secat and Energy Industries of Ohio. Industry partners included six suppliers to the hot dip galvanizing industry, four end-user steel companies with hot-dip Galvanize and/or Galvalume lines, eight refractory suppliers, and seven refractory end-user companies. The results of the project included the development of: (1) New families of materials more resistant to degradation in hot-dip galvanizing bath conditions were developed; (2) Alloy 2020 weld overlay material and process were developed and applied to GI rolls; (3) New Alloys and dross-cleaning procedures were developed for Galvalume processes; (4) Two new refractory compositions, including new anti-wetting agents, were identified for use with liquid aluminum alloys; (5) A new thermal conductivity measurement technique was developed and validated at ORNL; (6) The Galvanizing Energy Profiler Decision Support System (GEPDSS)at WVU; Newly Developed CCW Laser Cladding Shows Better Resistance to Dross Buildup than 316L Stainless Steel; and (7) A novel method of measuring the corrosion behavior of bath hardware materials. Project in-line trials were conducted at Southwire Kentucky Rod and Cable Mill, Nucor-Crawfordsville, Nucor-Arkansas, Nucor-South Carolina, Wheeling Nisshin, California Steel, Energy Industries of Ohio, and Pennex Aluminum. Cost, energy, and environmental benefits resulting from the project are due to: i) a reduced number of process shutdowns to change hardware or lining material, ii) reduced need to produce new hardware or lining material, iii) improved product quality leads to reduced need to remake product or manufacturing of new product, iv) reduction in contamination of melt from degradation of refractory and metallic components, v) elimination of worn hardware will increase efficiency of process, vi) reduced refractory lining deterioration or formation of a less insulating phase, would result in decreased heat loss through the walls. Projected 2015 benefits for the U.S. aluminum industry, assuming 21% market penetration of improved refractory materials, are energy savings of approximately 0.2 trillion BTU/year, cost savings of $2.3 billion/year and carbon reductions of approximately 1.4 billion tons/year. The carbon reduction benefit of the project for the hot-dip galvanize and aluminum industries combined is projected to be approximately 2.2 billion tons/year in 2015. Pathways from research to commercialization were based on structure of the project’s industrial partnerships. These partnerships included suppliers, industrial associations, and end users. All parties were involved in conducting the project including planning and critiquing the trials. Supplier companies such as Pyrotech Metaullics, Stoody, and Duraloy have commercialized products and processes developed on the project.

Xingbo Liu; Ever Barbero; Bruce Kang; Bhaskaran Gopalakrishnan; James Headrick; Carl Irwin

2009-02-06T23:59:59.000Z

15

Preliminary study of the electrolysis of aluminum sulfide in molten salts  

SciTech Connect (OSTI)

A preliminary laboratory-scale study of the electrolysis of aluminum sulfide in molten salts investigated the (1) solubility of Al/sub 2/S/sub 3/ in molten salts, (2) electrochemical behavior of Al/sub 2/S/sub 3/, and (3) electrolysis of Al/sub 2/S/sub 3/ with the determination of current efficiency as a function of current density. The solubility measurements show that MgCl/sub 2/-NaCl-KCl eutectic electrolyte at 1023 K can dissolve up to 3.3 mol % sulfide. The molar ratio of sulfur to aluminum in the eutectic is about one, which suggests that some sulfur remains undissolved, probably in the form of MgS. The experimental data and thermodynamic calculations suggest that Al/sub 2/S/sub 3/ dissolves in the eutectic to form AlS/sup +/ species in solution. Addition of AlCl/sub 3/ to the eutectic enhances the solubility of Al/sub 2/S/sub 3/; the solubility increases with increasing AlCl/sub 3/ concentration. The electrode reaction mechanism for the electrolysis of Al/sub 2/S/sub 3/ was elucidated by using linear sweep voltammetry. The cathodic reduction of aluminum-ion-containing species to aluminum proceeds by a reversible, diffusion-controlled, three-electron reaction. The anodic reaction involves the two-electron discharge of sulfide-ion-containing species, followed by the fast dimerization of sulfur atoms to S/sub 2/. Electrolysis experiments show that Al/sub 2/S/sub 3/ dissolved in molten MgCl/sub 2/-NaCl-KCl eutectic or in eutectic containing AlCl/sub 3/ can be electrolyzed to produce aluminum and sulfur. In the eutectic at 1023 K, the electrolysis can be conducted up to about 300 mA/cm/sup 2/ for the saturation solubility of Al/sub 2/S/sub 3/. Although these preliminary results are promising, additional studies are needed to elucidate many critical operating parameters before the technical potential of the electrolysis can be accurately assessed. 20 figures, 18 tables.

Minh, N.Q.; Loutfy, R.O.; Yao, N.P.

1983-02-01T23:59:59.000Z

16

Quick Plastic Forming of Aluminum Sheet Metal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Motors' President North America, Gary Cowger, General Motors' President North America, Gary Cowger, reviews the 2004 Chevy Malibu Maxx after introducing it to the media at the New York Auto Show. (photo courtesy of General Motors) Quick Plastic Forming of Aluminum Sheet Metal Background Aluminum automotive components made using a hot blow forming process are reducing vehicle weight and increasing the fuel efficiency of today's cars. However, before General Motors (GM) and the U.S. Department of Energy (DOE) sponsored research in this technol- ogy, blow forming of aluminum was not a viable process for automakers. The prior blow forming process,

17

Metal binding in an aluminum based metal-organic framework for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal binding in an aluminum based metal-organic framework for carbon dioxide capture Link to article...

18

Coated Metal Articles and Method of Making  

DOE Patents [OSTI]

The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

Boller, Ernest R.; Eubank, Lowell D.

2004-07-06T23:59:59.000Z

19

Molten salt bath circulation design for an electrolytic cell  

DOE Patents [OSTI]

An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

1999-08-17T23:59:59.000Z

20

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

SciTech Connect (OSTI)

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500{degree}C. The method comprises positioning a solid Li-Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, E.C.

1993-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents [OSTI]

An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

Gay, Eddie C. (Park Forest, IL)

1995-01-01T23:59:59.000Z

22

Joining of parts via magnetic heating of metal aluminum powders  

DOE Patents [OSTI]

A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

Baker, Ian

2013-05-21T23:59:59.000Z

23

Apparatus and Method for Increasing the Diameter of Metal Alloy Wires Within a Molten Metal Pool  

DOE Patents [OSTI]

In a dip forming process the core material to be coated is introduced directly into a source block of coating material eliminating the need for a bushing entrance component. The process containment vessel or crucible is heated so that only a portion of the coating material becomes molten, leaving a solid portion of material as the entrance port of, and seal around, the core material. The crucible can contain molten and solid metals and is especially useful when coating core material with reactive metals. The source block of coating material has been machined to include a close tolerance hole of a size and shape to closely fit the core material. The core material moves first through the solid portion of the source block of coating material where the close tolerance hole has been machined, then through a solid/molten interface, and finally through the molten phase where the diameter of the core material is increased. The crucible may or may not require water-cooling depending upon the type of material used in crucible construction. The system may operate under vacuum, partial vacuum, atmospheric pressure, or positive pressure depending upon the type of source material being used.

Hartman, Alan D.; Argetsinger, Edward R.; Hansen, Jeffrey S.; Paige, Jack I.; King, Paul E.; Turner, Paul C.

2002-01-29T23:59:59.000Z

24

E-Print Network 3.0 - aluminum metal matrix Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Discontinuously reinforced aluminum composites, Nanophase aluminum alloys, Bulk metallic glasses... of Missouri 1993 Young Metallurgist Award from the Indian...

25

Molten Metal Solidifies into a New Kind of Glass | Advanced Photon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subscribe to APS Science Highlights rss feed Molten Metal Solidifies into a New Kind of Glass JULY 25, 2013 Bookmark and Share Microstructure of an Al91Fe7Si2 alloy after electron...

26

Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing a ferromagnetic dam  

DOE Patents [OSTI]

An apparatus is disclosed for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and a ferromagnetic dam. The magnetic field and the ferromagnetic dam contain the molten metal from leaking out side portions of the open side of the containment structure. 25 figs.

Praeg, W.F.

1997-02-11T23:59:59.000Z

27

Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing  

DOE Patents [OSTI]

An electrochemical method is described for separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500 C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode. 3 figs.

Gay, E.C.

1995-10-03T23:59:59.000Z

28

Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum  

Broader source: Energy.gov [DOE]

Fact Sheet About Complete Scrap-to-Caster System Will Save Energy and Reduce Costs in the Aluminum Industry

29

Equation of state for molten alkali metal alloys  

SciTech Connect (OSTI)

Calculated results of the liquid density of binary molten alloys of Na-K and K-Cs over the whole range of concentrations and that of a ternary molten eutectic of Na-K-Cs from the freezing point up to several hundred degrees above the boiling point are presented. The calculations were performed with the analytical equation of state proposed by Ihm, Song, and Mason, which is based on statistical-mechanical perturbation theory. The second virial coefficients were calculated from the corresponding-states correlation of Mehdipour and Boushehri. Calculation of the other two temperature-dependent parameters was carried out by scaling. The calculated results cover a much wider range of temperatures and are more accurate than those presented in the previous work.

Eslami, H.

1999-09-01T23:59:59.000Z

30

Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles  

DOE Patents [OSTI]

A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

Cassano, Anthony A. (Allentown, PA)

1985-01-01T23:59:59.000Z

31

Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles  

DOE Patents [OSTI]

A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

Cassano, A.A.

1985-07-02T23:59:59.000Z

32

Electromagnetic confinement and movement of thin sheets of molten metal  

DOE Patents [OSTI]

An apparatus capable of producing a combination of magnetic fields that can retain a metal in liquid form in a region having a smooth vertical boundary including a levitation magnet that produces low frequency magnetic field traveling waves to retain the metal and a stabilization magnet that produces a high frequency magnetic field to produce a smooth vertical boundary. As particularly adapted to the casting of solid metal sheets, a metal in liquid form can be continuously fed into one end of the confinement region produced by the levitation and stabilization magnets and removed in solid form from the other end of confinement region. An additional magnet may be included for support at the edges of the confinement region where eddy currents loop.

Lari, Robert J. (Aurora, IL); Praeg, Walter F. (Palos Park, IL); Turner, Larry R. (Naperville, IL)

1990-01-01T23:59:59.000Z

33

Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum  

DOE Patents [OSTI]

An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

2000-01-01T23:59:59.000Z

34

Degassing of molten alloys with the assistance of ultrasonic vibration  

DOE Patents [OSTI]

An apparatus and method are disclosed in which ultrasonic vibration is used to assist the degassing of molten metals or metal alloys thereby reducing gas content in the molten metals or alloys. High-intensity ultrasonic vibration is applied to a radiator that creates cavitation bubbles, induces acoustic streaming in the melt, and breaks up purge gas (e.g., argon or nitrogen) which is intentionally introduced in a small amount into the melt in order to collect the cavitation bubbles and to make the cavitation bubbles survive in the melt. The molten metal or alloy in one version of the invention is an aluminum alloy. The ultrasonic vibrations create cavitation bubbles and break up the large purge gas bubbles into small bubbles and disperse the bubbles in the molten metal or alloy more uniformly, resulting in a fast and clean degassing.

Han, Qingyou (Knoxville, TN); Xu, Hanbing (Knoxville, TN); Meek, Thomas T. (Knoxville, TN)

2010-03-23T23:59:59.000Z

35

Stability diagrams for fourfold coordination of polyvalent metal ions in molten mixtures of halide salts  

SciTech Connect (OSTI)

The stability of local fourfold coordination for divalent and trivalent metal ions in liquid mixtures of polyvalent metal halides and alkali halides is classified by means of structural coordinates obtained from properties of the elements. In parallel with earlier classifications of compound crystal structures and molecular shapes, the elemental properties are taken from first-principles calculations of valence electron orbitals in atoms, in the form of (i) the nodal radii of Andreoni, Baldereschi and Guizzetti or (ii) the pseudopotential radii or Zunger and Cohen. As a third alternative a classification based on Pettifor's phenomenological chemical scale of the elements is also considered. The alternative structural classification schemes that are developed from these elemental properties are generally successfully in distinguishing molten mixtures in which the available experimental evidence indicates long-lived fourfold coordination of polyvalent metal ions. In addition, Pettifor's chemical scale scheme is useful in sorting out finer details of local coordination in the liquid state. 3 figs., 71 refs.

Akdeniz, Z. (International Centre for Theoretical Physics, Trieste (Italy) Istanbul Univ. (Turkey). Dept. of Physics); Tosi, M.P. (Trieste Univ. (Italy). Dipt. di Fisica Teorica Argonne National Lab., IL (USA))

1988-11-01T23:59:59.000Z

36

A survey of foundries that cast red brass products to ascertain an effective pouring rate of molten metal  

E-Print Network [OSTI]

A SURVEY OF FOUNDRIES THAT CAST RED BRASS PRODUCTS TO ASCERTAIN AN EFPECTIVE POURING RATE OF MOLTEN METAL A Thesis by RONALD KEE TOM Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1974 Major Subject: Industrial Technology A SURVEY OF FOUNDRIES THAT CAST RED BRASS PRODUCTS TO ASCERTAIN AN EFFECTIVE POURING RATE OF MOLTEN METAL A Thesis by RONALD KEE TOM Approved as to style and content by...

Tom, Ronald Kee

2012-06-07T23:59:59.000Z

37

Solidification of Aluminum Alloys Edited by TMS (The Minerals, Metals & Materials Society), 2004  

E-Print Network [OSTI]

Solidification of Aluminum Alloys Edited by TMS (The Minerals, Metals & Materials Society), 2004 Modeling the Effects of Mold Topography on Aluminum Cast Surfaces Lijian Tan1 , Nicholas Zabaras1 1 14853, USA Keywords: Aluminum Solidification; Mold topography; Cast Surfaces Abstract The air

Zabaras, Nicholas J.

38

Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals  

DOE Patents [OSTI]

A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500.degree. C., electrolysis at a voltage not more negative than about -1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

Maroni, Victor A. (Naperville, IL); von Winbush, Samuel (Huntington, NY)

1988-01-01T23:59:59.000Z

39

Method for removal of heavy metal from molten salt in IFR fuel pyroprocessing  

SciTech Connect (OSTI)

This report details the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR) which involves electrorefining spent fuel in a molten salt electrolyte (LiCl-KCI-U/PuCl{sub 3}) at 500{degree}C. The total heavy metal chloride concentration in the salt will be about 2 mol %. At some point, the concentrations of alkali, alkaline earth, and rare earth fission products in the salt must be reduced to lower the amount of heat generated in the electrorefiner. The heavy metal concentration in the salt must be reduced before removing the fission products from the salt. The operation uses a lithium-cadmium alloy anode that is solid at 500{degree}C, a solid mandrel cathode with a ceramic catch crucible below to collect heavy metal that falls off it, and a liquid cadmium cathode. The design criteria that had to be met by this equipment included the following: (1) control of the reduction rate by lithium, (2) good separation between heavy metal and rare earths, and (3) the capability to collect heavy metal and rare earths over a wide range of salt compositions. In tests conducted in an engineering-scale electrorefiner (10 kg uranium per cathode), good separation was achieved while removing uranium and rare earths from the salt. Only 13% of the rare earths was removed, while 99.9% of the uranium in the salt was removed; subsequently, the rare earths were also reduced to low concentrations. The uranium concentration in the salt was reduced to 0.05 ppm after uranium and rare earths were transferred from the salt to a solid mandrel cathode with a catch crucible. Rare earth concentrations in the salt were reduced to less than 0.01 wt % in these operations. Similar tests are planned to remove plutonium from the salt in a laboratory-scale (100--300 g heavy metal) electrorefiner.

Gay, E.C.; Miller, W.E.; Laidler, J.J.

1994-02-01T23:59:59.000Z

40

Method for inhibiting alkali metal corrosion of nickel-containing alloys  

DOE Patents [OSTI]

Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

DeVan, Jackson H. (Oak Ridge, TN); Selle, James E. (Westminster, CO)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Interaction of an aluminum atom with a closed subshell metal atom: Spectroscopic analysis of AlZn  

E-Print Network [OSTI]

Interaction of an aluminum atom with a closed subshell metal atom: Spectroscopic analysis of Al-block main group element, aluminum, and the 3d series of transi- tion metal atoms. Although the bonding in Al

Morse, Michael D.

42

Conductivity measurements of molten metal oxides and their evaluation in a Direct Carbon Fuel Cell (DCFC)  

E-Print Network [OSTI]

ABSTRACT Since Direct Carbon Fuel Cell (DCFC) technology is in a beginning stage, emphasis should be laid on addressing the fundamental aspects. A molten electrolyte is required to facilitate ionic contact between solid ...

Yarlagadda, Venkata Raviteja

2011-09-08T23:59:59.000Z

43

Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal  

SciTech Connect (OSTI)

The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

Babu, N. Kishore [Singapore Institute of Manufacturing Technology; Cross, Carl E. [Los Alamos National Laboratory

2012-06-28T23:59:59.000Z

44

Doping-induced metal-insulator transition in aluminum-doped 4H silicon P. Achatz,1,2,a  

E-Print Network [OSTI]

Doping-induced metal-insulator transition in aluminum-doped 4H silicon carbide P. Achatz,1,2,a J an experimental determination of the doping-induced metal-insulator transition in aluminum-doped 4H silicon concentration lying between 6.4 and 8.7 1020 cm-3 for the metal-insulator transition in these epilayers grown

Paris-Sud XI, UniversitƩ de

45

Energy implications of the changing world of aluminum metal supply  

Science Journals Connector (OSTI)

Driven primarily by energy considerations, there has been a major change in the geographical distribution of primary aluminum production over the past few decades, even as the energy efficiency of the process ...

Subodh K. Das; W. Jerry Long III; H. Wayne Hayden; John A. S. Green…

2004-08-01T23:59:59.000Z

46

Partition of actinides and fission products between metal and molten salt phases: Theory, measurement, and application to IFR pyroprocess development  

SciTech Connect (OSTI)

The chemical basis of Integral Fast Reactor fuel reprocessing (pyroprocessing) is partition of fuel, cladding, and fission product elements between molten LiCl-KCl and either a solid metal phase or a liquid cadmium phase. The partition reactions are described herein, and the thermodynamic basis for predicting distributions of actinides and fission products in the pyroprocess is discussed. The critical role of metal-phase activity coefficients, especially those of rare earth and the transuranic elements, is described. Measured separation factors, which are analogous to equilibrium constants but which involve concentrations rather than activities, are presented. The uses of thermodynamic calculations in process development are described, as are computer codes developed for calculating material flows and phase compositions in pyroprocessing.

Ackerman, J.P.; Johnson, T.R.

1993-10-01T23:59:59.000Z

47

Direct acid dissolution of aluminum and other metals from fly ash  

SciTech Connect (OSTI)

Fly ash could provide a significant domestic source of alumina and thus supply a large part of the US needs for aluminum and possibly also several other metals. The aluminum and other metals can be solubilized from fly ash by acid dissolution methods. The aluminum may be present in any or all of three solid phases: (1) crystalline; (2) glassy amorphous; and (3) irregular, spongy amorphous. The chemistry of these phases controls the solubilization behavior. The aluminum in high-calcium western ashes is primarily found in the amorphous phases, and much of it can be solubilized by using short-time, ambient-temperature leaching. Little of the aluminum in the low-calcium eastern ashes is solubilized under ambient-temperature conditions, and only a portion can be solubilized even at reflux temperature conditions. Some of the aluminum in these eastern ashes is present as mullite, while some is found in the amorphous material. The fraction contained in mullite is relativey acid insoluble, and only partial solubilization can be achieved even under vigorous acid leach conditions.

Kelmers, A.D.; Egan, B.Z.; Seeley, F.G.; Campbell, G.D.

1981-01-01T23:59:59.000Z

48

Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel  

SciTech Connect (OSTI)

This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was previously known the liquidus temperature of the molten salt would change as spent fuel is processed through the Mk-IV electrorefiner. However, the extent of the increase in liquidus temperature was not known. This work is first of its kind in determining thermodynamic properties of a molten salt electrolyte containing transuranics, fission products and bond sodium. Experimental data concluded that the melting temperature of the electrolyte will become greater than the operating temperature of the Mk-IV ER during current fuel processing campaigns. Collected data also helps predict when the molten salt electrolyte will no longer be able to support electrorefining operations.

Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

2012-04-01T23:59:59.000Z

49

Aluminum-Catalyzed Intramolecular Hydroamination of Aminoalkenes  

E-Print Network [OSTI]

Aluminum-catalyzed intramolecular hydroamination ofgroup 13 metals such as aluminum are exceedingly inexpensive

Koller, Juergen

2011-01-01T23:59:59.000Z

50

Boron-carbide-aluminum and boron-carbide-reactive metal cermets  

DOE Patents [OSTI]

Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

Halverson, Danny C. (Manteca, CA); Pyzik, Aleksander J. (Seattle, WA); Aksay, Ilhan A. (Seattle, WA)

1986-01-01T23:59:59.000Z

51

Selective Reduction of Active Metal Chlorides from Molten LiCl-KCl using Lithium Drawdown  

SciTech Connect (OSTI)

In support of optimizing electrorefining technology for treating spent nuclear fuel, lithium drawdown has been investigated for separating actinides from molten salt electrolyte. Drawdown reaction selectivity is a major issue that needs to be investigated, since the goal is to remove actinides while leaving the fission products in the salt. A series of lithium drawdown tests with surrogate fission product chlorides was run to obtain selectivity data with non-radioactive salts, develop a predictive model, and draw conclusions about the viability of using this process with actinide-loadd salt. Results of tests with CsCl, LaCl3, CeCl3, and NdCl3 are reported here. An equilibrium model has been formulated and fit to the experimental data. Excellent fits to the data were achieved. Based on analysis and results obtained to date, it is concluded that clean separation between minor actinides and lanthanides will be difficult to achieve using lithium drawdown.

Michael F. Simpson; Daniel LaBrier; Michael Lineberry; Tae-Sic Yoo

2012-10-01T23:59:59.000Z

52

Aluminum foam, ALPORAS: The production process, properties and applications  

SciTech Connect (OSTI)

The production of foamed aluminum has long been considered difficult to realize because of such problems as the low foamability of molten metal, the varying size of cellular structures, solidification shrinkage and so on. Recently these problems have been solved by a number of researchers and some manufacturers produce foamed aluminum by their own methods. The authors have been employing a batch casting process and manufacturing foamed aluminum under the tradename ALPORAS{reg_sign} since 1986. This paper presents the manufacturing process, physical properties and some typical applications of ALPORAS.

Miyoshi, T.; Itoh, M. [Shinko Wire Co., Ltd., Amagasaki (Japan); Akiyama, S.; Kitahara, A. [Kyushu National Industrial Research Inst., Tosu (Japan). Material Engineering Dept.

1998-12-31T23:59:59.000Z

53

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters  

E-Print Network [OSTI]

16 ALUMINUM1 (Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2010, five companies operated nine primary aluminum smelters; six smelters were closed on published market prices, the value of primary metal production was $3.99 billion. Aluminum consumption

54

Aluminum/alkaline earth metal composites and method for producing  

DOE Patents [OSTI]

A composite is provided having an electrically conducting Al matrix and elongated filaments comprising Ca and/or Sr and/or Ba disposed in the matrix and extending along a longitudinal axis of the composite. The filaments initially comprise Ca and/or Sr and/or Ba metal or allow and then may be reacted with the Al matrix to form a strengthening intermetallic compound comprising Al and Ca and/or Sr and/or Ba. The composite is useful as a long-distance, high voltage power transmission conductor.

Russell, Alan M; Anderson, Iver E; Kim, Hyong J; Freichs, Andrew E

2014-02-11T23:59:59.000Z

55

Diagnosis of sources of current inefficiency in industrial molten salt electrolysis cells by Raman spectroscopy: A topical report on chlorides: Topical report, June 1982-June 1987  

SciTech Connect (OSTI)

Molten salt electrolysis, a very energy-intensive process, is used in the extraction of light metals. Aluminum production by the Hall process and magnesium production in the Dow and I.G. Farbenindustrie cells constitute the major commercial applications of metal electrowinning from molten-salt media at present. The energy input into the electrolysis cell is in the form of direct current, and the energy efficiencies in the magnesium or aluminum processes are only in the 30 to 40% range. Major energy reductions are achieved by reducing the cell voltage or by increasing the current efficiency. Goal of the research is to identify the sources of the current losses occurring in molten salt electrolysis. This research worked on the systems of I.G. Farben magnesium chloride and Alcoa smelting aluminum chloride processes. Raman spectra were measured and analyzed for each component or their mixtures of the electrolyte for magnesium and aluminum reduction in chloride melts. Raman measurements were also conducted on the melts of industrial composition for aluminum and magnesium electrolysis. In laboratory-scale cells which imitated industrial practice, Raman spectra were measured in situ during electrolysis in attempts to identify the streamers, coloration of electrolyte, and any subvalent species. They were known to occur only during electrolysis, and they have been reported to be possible current losses. Cyclic voltammetry was conducted to obtain information about the generation of subvalent species which were not detected by Raman measurement. These were thought to be kinetic entities present only during electrolysis. Results of Raman spectroscopy and electrochemistry of magnesium and aluminum reduction from molten chloride bath are presented. The results would be useful to establish the basis for the study of electrolysis of aluminum from molten fluoride media. 119 refs., 66 figs.

Sadoway, D. R.

1987-06-01T23:59:59.000Z

56

Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation  

SciTech Connect (OSTI)

The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

Schempp, Philipp [BAM, Germany; Tang, Z. [BIAS, Germany; Cross, Carl E. [Los Alamos National Laboratory; Seefeld, T. [BIAS, Germany; Pittner, A. [BAM, Germany; Rethmeier, M. [BAM, Germany

2012-06-28T23:59:59.000Z

57

3d transition metal impurities in aluminum: A first-principles study M. Mantina, S. L. Shang, Y. Wang, L. Q. Chen, and Z. K. Liu  

E-Print Network [OSTI]

3d transition metal impurities in aluminum: A first-principles study M. Mantina, S. L. Shang, Y September 2009; published 18 November 2009 In this work, appropriate description of interactions of 3d transition metals in aluminum Al-3d is attained from first-principles using LDA+U potential within density

Chen, Long-Qing

58

Aluminum Carbothermic Technology  

SciTech Connect (OSTI)

This report documents the non-proprietary research and development conducted on the Aluminum Carbothermic Technology (ACT) project from contract inception on July 01, 2000 to termination on December 31, 2004. The objectives of the program were to demonstrate the technical and economic feasibility of a new carbothermic process for producing commercial grade aluminum, designated as the ''Advanced Reactor Process'' (ARP). The scope of the program ranged from fundamental research through small scale laboratory experiments (65 kW power input) to larger scale test modules at up to 1600 kW power input. The tasks included work on four components of the process, Stages 1 and 2 of the reactor, vapor recovery and metal alloy decarbonization; development of computer models; and economic analyses of capital and operating costs. Justification for developing a new, carbothermic route to aluminum production is defined by the potential benefits in reduced energy, lower costs and more favorable environmental characteristics than the conventional Hall-Heroult process presently used by the industry. The estimated metrics for these advantages include energy rates at approximately 10 kWh/kg Al (versus over 13 kWh/kg Al for Hall-Heroult), capital costs as low as $1250 per MTY (versus 4,000 per MTY for Hall-Heroult), operating cost reductions of over 10%, and up to 37% reduction in CO2 emissions for fossil-fuel power plants. Realization of these benefits would be critical to sustaining the US aluminum industries position as a global leader in primary aluminum production. One very attractive incentive for ARP is its perceived ability to cost effectively produce metal over a range of smelter sizes, not feasible for Hall-Heroult plants which must be large, 240,000 TPY or more, to be economical. Lower capacity stand alone carbothermic smelters could be utilized to supply molten metal at fabrication facilities similar to the mini-mill concept employed by the steel industry. Major accomplishments for the program include definition of the system thermo-chemistry, demonstration of reactor stage 1, development of reactor stage 2 critical components in a 500 kW module, experimental determination of the vapor recovery reactor fundamentals, detailed design and installation of an advanced stage 1/vapor recovery reactor, feasibility of efficient separation of Al-C metal alloy product, updated capital and operating cost estimates, and development of computer models for all steps of the Advanced Reactor Process.

Bruno, Marshall J.

2005-03-31T23:59:59.000Z

59

Shear properties on aluminum metal foams prepared by the melt route  

SciTech Connect (OSTI)

The shear modulus and shear strength of AlSi7Mg Aluminum foam with 15% (vol) of 13 {micro}m SiC particles were determined through shear testing. A foam slab with a density of 0.31 g/cm3 was supplied by Hydro Aluminium. Four samples were tested according to ASTM C 273-61. The specimens were bonded to steel load plates. The relative displacement of the plates was measured using two extensometers. In order to evaluate the effect of the cell size distribution on shear properties, cell size and material distribution analyses were carried out for the metal foam slab in areas close to those from which the shear specimens were extracted. A fast failure was observed after the maximum shear load. The failure in the samples were located in the central section of the slab mainly because the lower density was located there.

Saenz, E. [UTRC GmbH, Aachen (Germany). Technologiezentrum; Baranda, P.S. [UTRC, S.L., Minano (Spain); Bonhomme, J. [ITMA, Coruno-Llanera (Spain). Parque Tecnologico de Asturias

1998-12-31T23:59:59.000Z

60

Exploration of molten hydroxide electrochemistry for thermal battery applications  

Science Journals Connector (OSTI)

The electrochemistry of molten LiOH–NaOH, LiOH–KOH, and NaOH–KOH was investigated using platinum, palladium, nickel, silver, aluminum and other electrodes. The fast kinetics of the Ag+/Ag electrode reaction sugge...

M.H. Miles

2003-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al  

DOE Patents [OSTI]

Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

1985-05-06T23:59:59.000Z

62

Aluminum Nitride Micro-Channels Grown via Metal Organic Vapor Phase Epitaxy for MEMs Applications  

SciTech Connect (OSTI)

Aluminum nitride (AlN) is a promising material for a number of applications due to its temperature and chemical stability. Furthermore, AlN maintains its piezoelectric properties at higher temperatures than more commonly used materials, such as Lead Zirconate Titanate (PZT) [1, 2], making AlN attractive for high temperature micro and nanoelectromechanical (MEMs and NEMs) applications including, but not limited to, high temperature sensors and actuators, micro-channels for fuel cell applications, and micromechanical resonators. This work presents a novel AlN micro-channel fabrication technique using Metal Organic Vapor Phase Epitaxy (MOVPE). AlN easily nucleates on dielectric surfaces due to the large sticking coefficient and short diffusion length of the aluminum species resulting in a high quality polycrystalline growth on typical mask materials, such as silicon dioxide and silicon nitride [3,4]. The fabrication process introduced involves partially masking a substrate with a silicon dioxide striped pattern and then growing AlN via MOVPE simultaneously on the dielectric mask and exposed substrate. A buffered oxide etch is then used to remove the underlying silicon dioxide and leave a free standing AlN micro-channel. The width of the channel has been varied from 5 ģm to 110 ģm and the height of the air gap from 130 nm to 800 nm indicating the stability of the structure. Furthermore, this versatile process has been performed on (111) silicon, c-plane sapphire, and gallium nitride epilayers on sapphire substrates. Reflection High Energy Electron Diffraction (RHEED), Atomic Force Microscopy (AFM), and Raman measurements have been taken on channels grown on each substrate and indicate that the substrate is influencing the growth of the AlN micro-channels on the SiO2 sacrificial layer.

Rodak, L.E.; Kuchibhatla, S.; Famouri, P.; Ting, L.; Korakakis, D.

2008-01-01T23:59:59.000Z

63

Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Elevated Temperature Aluminum Metal Matrix Composite (MMC) Alloy and Its Processing Technology  

SciTech Connect (OSTI)

The objective of this project was to provide a production capable cast aluminum metal matrix composite (MMC) alloy with an operating temperature capability of 250-300°C. Important industrial sectors as well as the military now seek lightweight aluminum alloy castings that can operate in temperature ranges of 250-300°C. Current needs in this temperature range are being satisfied by the use of titanium alloy castings. These have the desired strength properties but the end components are heavier and significantly more costly. Also, the energy requirements for production of titanium alloy castings are significantly higher than those required for production of aluminum alloys and aluminum alloy castings.

Weiss, David C. [Eck Industreis, Inc.] [Eck Industreis, Inc.; Gegal, Gerald A.

2014-04-15T23:59:59.000Z

64

On the mechanism of aluminum ignition in steam explosions  

Science Journals Connector (OSTI)

An available theory [Epstein, M., Fauske, H.K., 1994. A crystallization theory of underwater aluminum ignition. Nucl. Eng. Des. 146, 147–164] of the ignition of aluminum melt drops under water, which is based on the assumption that the aluminum oxide (Al2O3) drop-surface skin first appears in a metastable molten state, is compared with existing experimental data on the ignition of aluminum drops behind shock waves in water [Theofanous, T.G., Chen, X., DiPiazza, P., Epstein, M., Fauske, H.K., 1994. Ignition of aluminum droplets behind shock waves in water, Phys. Fluids 6, 3513–3515]. The predicted and measured ignition temperature of about 1770 K coincides approximately with the spontaneous nucleation temperature of supercooled liquid Al2O3 (1760 K). This suggests that the crystallization of the oxide layer represents a strong ‘barrier’ to aluminum drop ignition under water. Apparently a similar interpretation is applicable to aluminum drop ignition in gaseous oxidizing atmospheres. We conclude from the theory that the low-temperature aluminum ignitions (in the range 1100–1600 K) that have been observed during steam explosions are a consequence of the short aluminum drop oxidation times in this environment relative to the characteristic time for Al2O3 crystallization. Several aspects of the aluminum drop/shock interaction experiments besides ignition are discussed in the paper. In particular, the experiments provide strong evidence that during the course of a vapor explosion metal fragmentation occurs via a thermal mechanism at low pressure and precedes the development of a high-pressure shock.

M Epstein; H.K Fauske; T.G Theofanous

2000-01-01T23:59:59.000Z

65

Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes  

E-Print Network [OSTI]

A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of $\\pm$0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied.

S. Tanaka; S. Ozaki; Y. Sakamoto; R. Tanuma; T. Yoshida; J. Murata

2014-03-13T23:59:59.000Z

66

The kinetics of gas-liquid metal reactions involving levitated drops. Carburization and decarburization of molten iron in Co-Co2 gas mixtures at high pressures  

Science Journals Connector (OSTI)

The kinetics of decarburization and carburization of levitated molten iron-carbon alloy drops at 1650° in CO-CO2 gas mixtures were studied at a pressure of ... the rates were controlled by transport in the gas ph...

N. H. El-kaddah; D. G. C. Robertson

1978-06-01T23:59:59.000Z

67

E-Print Network 3.0 - aluminum-fly ash metal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

extent, bottom ash, contain elevated amounts of heavy metals, and fly ash... . The dioxinsfurans on ash then don't seem to create an environmental problem. Heavy metals are...

68

Reaction of Aluminum with Water to Produce Hydrogen  

E-Print Network [OSTI]

Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 1.0 - 2008 Page 1 Promoters Oxide Promoters Salt Promoters Combined Oxide and Salt Promoters Aluminum Pretreatment Molten

69

Reaction of Aluminum with Water to Produce Hydrogen  

E-Print Network [OSTI]

Reaction of Aluminum with Water to Produce Hydrogen A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage U.S. Department of Energy Version 2 - 2010 1 #12 Promoters Oxide Promoters Salt Promoters Combined Oxide and Salt Promoters Aluminum Pretreatment Molten

70

Method to decrease loss of aluminum and magnesium melts  

DOE Patents [OSTI]

A method to minimize oxidation of metal during melting processes is provided, the method comprising placing solid phase metal into a furnace environ-ment, transforming the solid-phase metal into molten metal phase having a molten metal surface, and creating a barrier between the surface and the environment. Also provided is a method for isolating the surface of molten metal from its environment, the method comprising confining the molten metal to a controlled atmos-phere, and imposing a floating substrate between the surface and the atmosphere.

Hryn, John N. (Naperville, IL); Pellin, Michael J. (Naperville, IL); Calaway, Jr., Wallis F. (Woodridge, IL); Moore, Jerry F. (Naperville, IL); Krumdick, Gregory K. (Crete, IL)

2002-01-01T23:59:59.000Z

71

Method for preparing metal powder, device for preparing metal powder, method for processing spent nuclear fuel  

DOE Patents [OSTI]

A method for producing metal powder is provided the comprising supplying a molten bath containing a reducing agent, contacting a metal oxide with the molten bath for a time and at a temperature sufficient to reduce the metal in the metal oxide to elemental metal and produce free oxygen; and isolating the elemental metal from the molten bath.

Park, Jong-Hee (Clarendon Hills, IL)

2011-11-29T23:59:59.000Z

72

Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting  

SciTech Connect (OSTI)

A recent review by the U.S. Advanced Ceramics Association, the Aluminum Association, and the U.S. Department of Energy's Office of Industrial Technologies (DOE/OIT) described the status of advanced ceramics for aluminum processing, including monolithics, composites, and coatings. The report observed that monolithic ceramics (particularly oxides) have attractive properties such as resistance to heat, corrosion, thermal shock, abrasion, and erosion [1]. However, even after the developments of the past 25 years, there are two key barriers to commercialization: reliability and cost-effectiveness. Industry research is therefore focused on eliminating these barriers. Ceramic coatings have likewise undergone significant development and a variety of processes have been demonstrated for applying coatings to substrates. Some processes, such as thermal barrier coatings for gas turbine engines, exhibit sufficient reliability and service life for routine commercial use. Worldwide, aluminum melting and molten metal handling consumes about 506,000 tons of refractory materials annually. Refractory compositions for handling molten aluminum are generally based on dense fused cast silica or mullite. The microstructural texture is extremely important because an interlocking mass of coarser grains must be bonded together by smaller grains in order to achieve adequate strength. At the same time, well-distributed microscopic pores and cracks are needed to deflect cracks and prevent spalling and thermal shock damage [2]. The focus of this project was to develop and validate new classes of cost-effective, low-permeability ceramic and refractory components for handling molten aluminum in both smelting and casting environments. The primary goal was to develop improved coatings and functionally graded materials that will possess superior combinations of properties, including resistance to thermal shock, erosion, corrosion, and wetting. When these materials are successfully deployed in aluminum smelting and casting operations, their superior performance and durability will give end users marked improvements in uptime, defect reduction, scrap/rework costs, and overall energy savings resulting from higher productivity and yield. The implementation of results of this program will result in energy savings of 30 trillion Btu/year by 2020. For this Industrial Materials for the Future (IMF) project, riser tube used in the low-pressure die (LPD) casting of aluminum was selected as the refractory component for improvement. In this LPD process, a pressurized system is used to transport aluminum metal through refractory tubes (riser tubes) into wheel molds. It is important for the tubes to remain airtight because otherwise, the pressurized system will fail. Generally, defects such as porosity in the tube or cracks generated by reaction of the tube material with molten aluminum lead to tube failure, making the tube incapable of maintaining the pressure difference required for normal casting operation. Therefore, the primary objective of the project was to develop a riser tube that is not only resistant to thermal shock, erosion, corrosion, and wetting, but is also less permeable, so as to achieve longer service life. Currently, the dense-fused silica (DFS) riser tube supplied by Pyrotek lasts for only 7 days before undergoing failure. The following approach was employed to achieve the goal: (1) Develop materials and methods for sealing surface porosity in thermal-shock-resistant ceramic refractories; (2) Develop new ceramic coatings for extreme service in molten aluminum operations, with particular emphasis on coatings based on highly stable oxide phases; (3) Develop new monolithic refractories designed for lower-permeability applications using controlled porosity gradients and particle size distributions; (4) Optimize refractory formulations to minimize wetting by molten aluminum, and characterize erosion, corrosion, and spallation rates under realistic service conditions; and (5) Scale up the processing methods to full-sized components and perform field testi

Kadolkar, Puja [ORNL; Ott, Ronald D [ORNL

2006-02-01T23:59:59.000Z

73

Method for the regeneration of spent molten zinc chloride  

DOE Patents [OSTI]

In a process for regenerating spent molten zinc chloride which has been used in the hydrocracking of coal or ash-containing polynuclear aromatic hydrocarbonaceous materials derived therefrom and which contains zinc chloride, zinc oxide, zinc oxide complexes and ash-containing carbonaceous residue, by incinerating the spent molten zinc chloride to vaporize the zinc chloride for subsequent condensation to produce a purified molten zinc chloride: an improvement comprising the use of clay in the incineration zone to suppress the vaporization of metals other than zinc. Optionally water is used in conjunction with the clay to further suppress the vaporization of metals other than zinc.

Zielke, Clyde W. (McMurray, PA); Rosenhoover, William A. (Pittsburgh, PA)

1981-01-01T23:59:59.000Z

74

FUEL CELLS – MOLTEN CARBONATE FUEL CELLS | Overview  

Science Journals Connector (OSTI)

The molten carbonate fuel cell (MCFC) emerged during the twentieth century as one of the key fuel cell types. It uses an electrolyte of alkali metal carbonates, operates typically at 650 °C, and is best suited to hydrocarbon fuels such as natural gas, coal gas, or biogas. The high operating temperature enables such fuels to be fed directly to the MCFC stacks, leading to conversion efficiencies greater than 50%. Molten carbonate fuel cell systems are ideally suited to applications that need continuous base load power. The first commercial systems, at the 300 kW scale, are therefore being used in applications such as hospitals and hotels.

A.L. Dicks

2009-01-01T23:59:59.000Z

75

Phase formation induced by ion irradiation and electrical resistivity of aluminum–3d-transition-metal alloys  

Science Journals Connector (OSTI)

The phase formation, in particular amorphization, caused by 500-keV Xe+ ion irradiation of thin multilayered films of Al-Ti, Al-V, Al-Cr, Al-Mn, Al-Fe, Al-Co, and Al-Ni has been investigated. At a substrate temperature of 100 K during the irradiation, all these alloy systems are found to become amorphous for aluminum-rich compositions. At room temperature, the formation of structurally simple-crystalline solid solutions over extended compositional ranges, as compared to thermodynamic equilibrium, is observed. The electrical resistivity of amorphous Al83M17 alloys, where M=Ti, V, Cr, Mn, Fe, Co, or Ni, is found to vary systematically as a function of transition-metal element. A maximum is observed around Fe, for which the d-electron states coincide with the Fermi level. This behavior suggests that scattering of the conduction electrons by the 3d-electron states plays a dominant role. A comparison with x-ray photoelectron spectroscopy data from the literature suggests that the resistivity of amorphous Al83M17 alloys can be directly correlated to the position and width of the d-electron states.

N. Karpe; K. Kyllesbech Larsen; J. Bo/ttiger

1992-08-01T23:59:59.000Z

76

Aluminum: Reducing chloride emissions from aluminum production  

SciTech Connect (OSTI)

Reynolds Metals Company (RMC), with assistance from a NICE{sup 3} grant, is developing for commercialization a closed-loop control process that greatly reduces chlorine emissions and increases plant efficiency while maintaining metal quality. The process still utilizes chlorine to remove impurities during aluminum processing, but is more effective than current methods. With the new technology chlorine in the stack is monitored and input chlorine is adjusted continuously. This optimization of chlorine use results in substantially less waste because less chlorine has to be bought or produced by aluminum manufacturers. This innovation is a significant improvement over conventional aluminum treatments, in which chlorine is injected in a more costly and wasteful manner. By the year 2010, the new technology has the potential to reduce the energy it takes to create chlorine by 8.4 billion Btu per year and to cut greenhouse gas emissions by 1,377 tons per year.

Simon, P.

1999-09-29T23:59:59.000Z

77

Metal atomization spray nozzle  

DOE Patents [OSTI]

A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

Huxford, T.J.

1993-11-16T23:59:59.000Z

78

Metal-phosphate binders  

DOE Patents [OSTI]

A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

2009-05-12T23:59:59.000Z

79

Formulation and method for preparing gels comprising hydrous aluminum oxide  

SciTech Connect (OSTI)

Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

Collins, Jack L.

2014-06-17T23:59:59.000Z

80

Interaction of uranium dioxide with molten zircaloy  

SciTech Connect (OSTI)

Laboratory experiments in which gram quantities of molten Zircaloy were held in contact with UO/sub 2/ for known times (20-600 s) and temperatures (1900-2200/sup 0/C) were conducted. Following each experiment, polished sections of the specimen were examined by optical microscopy, electron microprobe, scanning Auger microscopy, and x-ray fluorescence spectroscopy. Three closely-related experiments were conducted. In the first, the molten metal was contained in a UO/sub 2/ crucible. The dissolution rate in this system was found to be dominated by natural convection in the melt driven by density gradients established by the dissolving uranium. The mechanism of the interaction also was observed to involve penetration and detachment of the grains of the oxide by the molten metal. Similar tests with single-crystal UO/sub 2/ specimens showed similar dissolution behavior. Less severe attack occurred because of the absence of grain boundaries, although subgrain boundaries or dislocations provided high-diffusivity pathways for preferential oxygen removal. In the third type of test, a disk of UO/sub 2/ was placed at the bottom of a ThO/sub 2/ crucible. This arrangement prevented establishment of unstable density gradients in the liquid phase, resulting in a purely diffusion-controlled interaction.

Kim, K.T.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

More Aluminum due by 1968  

Science Journals Connector (OSTI)

Two more primary aluminum producers are promising more capacity to a hungry aluminum market. Anaconda will build a new potline at its reduction plant at Columbia Falls, Mont., and Reynolds Metals is planning four new ones in the Northwest.These ...

1966-08-22T23:59:59.000Z

82

Process for removing technetium from iron and other metals  

DOE Patents [OSTI]

A process for removing technetium from iron and other metals comprises the steps of converting the molten, alloyed technetium to a sulfide dissolved in manganese sulfide, and removing the sulfide from the molten metal as a slag. 4 figs.

Leitnaker, J.M.; Trowbridge, L.D.

1999-03-23T23:59:59.000Z

83

Aluminum in Superconducting Magnets Robert J. Weggel  

E-Print Network [OSTI]

Aluminum in Superconducting Magnets Robert J. Weggel Magnet Optimization Research Engineering is aluminum, either ultrapure, as quenchstabilization matrix metal, and/or alloyed and coldworked and heat for magnets in which the stresses and strains are modest. The strongest aluminum alloy commercially available

McDonald, Kirk

84

Diagnostic of the self-healing of metallized polypropylene film by modeling of the broadening emission lines of aluminum emitted by plasma discharge  

SciTech Connect (OSTI)

Metallized-film capacitors have the property, even under high continuous voltage, to self-heal i.e., to clear a defect in the dielectric. The self-healing process is a consequence of a transient arc discharge. It has been previously shown that during the discharge, due to Joule effect, the metal is vaporized until the arc extinguishes. The discharge duration has been found to be inversely proportional to the mechanical pressure applied on the layers of metallized films making up a capacitor. The aim of this study is to understand the physical processes involved in this spontaneous extinction of the arc discharge. Emission spectroscopy has been used to provide information about the physical properties (temperatures, electronic and neutral particles densities, etc.) of the plasma induces by a self-healing. An analysis, based on the broadenings and shifts of Al atomic lines, of the experimental light spectra obtained has shown that the self-healing process leads to the generation, from the vaporized metal, of a high-density and relatively weakly ionized aluminum plasma. The plasma density increases with the pressure applied on the film layers and, consequently, the density power needed to extend the plasma zone increases as well and the arc discharge goes out faster as experimentally observed.

Tortai, J.-H.; Bonifaci, N.; Denat, A.; Trassy, C. [Laboratoire d'Electrostatique et de Materiaux Dielectriques, Centre National de la Recherche Scientifique (CNRS), Joseph Fourier University, 25 Avenue des Martyrs, 38000 Grenoble (France); Elaboration par Procedes Magnetiques, Centre National de la Recherche Scientifique (CNRS), 38402 Saint Martin d'Heres (France)

2005-03-01T23:59:59.000Z

85

Membrane Purification Cell for Aluminum Recycling  

SciTech Connect (OSTI)

Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2.8 wt.% Si-0.7 wt.% Fe-0.8 wt.% Mn),. Purification factors (defined as the initial impurity concentration divided by the final impurity concentration) of greater than 20 were achieved for silicon, iron, copper, and manganese. Cell performance was measured using its current and voltage characteristics and composition analysis of the anode, cathode, and electrolytes. The various cells were autopsied as part of the study. Three electrolyte systems tested were: LiCl-10 wt. % AlCl3, LiCl-10 wt. % AlCl3-5 wt.% AlF3 and LiF-10 wt.% AlF3. An extended four-day run with the LiCl-10 wt.% AlCl3-5 wt.% AlF3 electrolyte system was stable for the entire duration of the experiment, running at energy requirements about one third of the Hoopes and the conventional Hall-Heroult process. Three different anode membranes were investigated with respect to their purification performance and survivability: a woven graphite cloth with 0.05 cm nominal thickness & > 90 % porosity, a drilled rigid membrane with nominal porosity of 33%, and another drilled rigid graphite membrane with increased thickness. The latter rigid drilled graphite was selected as the most promising membrane design. The economic viability of the membrane cell to purify scrap is sensitive to primary & scrap aluminum prices, and the cost of electricity. In particular, it is sensitive to the differential between scrap and primary aluminum price which is highly variable and dependent on the scrap source. In order to be economically viable, any scrap post-processing technology in the U.S. market must have a total operating cost well below the scrap price differential of $0.20-$0.40 per lb to the London Metal Exchange (LME), a margin of 65%-85% of the LME price. The cost to operate the membrane cell is estimated to be < $0.24/lb of purified aluminum. The energy cost is estimated to be $0.05/lb of purified aluminum with the remaining costs being repair and maintenance, electrolyte, labor, taxes and depreciation. The bench-scale work on membrane purification cell process has demonstrated technological advantages and subs

David DeYoung; James Wiswall; Cong Wang

2011-11-29T23:59:59.000Z

86

Molten salt lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

Raistrick, I.D.; Poris, J.; Huggins, R.A.

1980-07-18T23:59:59.000Z

87

Molten salt lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1982-02-09T23:59:59.000Z

88

Production of anhydrous aluminum chloride composition  

DOE Patents [OSTI]

A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.

1981-10-08T23:59:59.000Z

89

ALUMINUM--2001 6.1 By Patricia A. Plunkert  

E-Print Network [OSTI]

ALUMINUM--2001 6.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 2001, 11 domestic companies operated 23 primary aluminum reduction plants in the Pacific Northwest, and low metal prices led several aluminum smelters to continue to reduce production

90

A new anode material for oxygen evolution in molten oxide electrolysis  

E-Print Network [OSTI]

Molten oxide electrolysis (MOE) is an electrometallurgical technique that enables the direct production of metal in the liquid state from oxide feedstock and compared with traditional methods of extractive metallurgy offers ...

Allanore, Antoine

91

E-Print Network 3.0 - aluminum powder mixtures Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4210: Manufacturing Processes and Engineering Summary: .S. Colton GIT 2009 17 12;Compacting Pressures for Various Metal Powders P Metal Pressure (MPa) Aluminum... Metal Powder...

92

Activated aluminum hydride hydrogen storage compositions and uses thereof  

SciTech Connect (OSTI)

In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

Sandrock, Gary (Ringwood, NJ); Reilly, James (Bellport, NY); Graetz, Jason (Mastic, NY); Wegrzyn, James E. (Brookhaven, NY)

2010-11-23T23:59:59.000Z

93

Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988. Fiscal year 1993 annual report  

SciTech Connect (OSTI)

The Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988 (Act), commonly referred to as the Metals Initiative, was signed into law on November 17, 1988 (Public Law 100-680). The Act, 15 U.S.C. 5101 et seq., has tile following purposes: (1) to {open_quotes}increase the energy efficiency and enhance the competitiveness of American steel, aluminum, and copper industries{close_quotes}; and (2) to continue the research and development efforts begun under the Department of Energy (DOE) program known as the Steel Initiative. Section 8 of tile Act requires the Secretary of Energy to prepare an annual report to Congress describing the activities carried out under the Act during each fiscal year. 15 U.S.C. 5107 In addition, with respect to reports on fiscal years 1993, 1995, and 1997, Section 8 requires a complete summary of activities under the management plan and research plan from inception with an analysis of extent of their success in accomplishing the purposes of the Act. Id. The Metals Initiative is currently supporting six steel industry research and development projects: (1) Superplastic Steel Processing with Lawrence Livermore National Laboratory; (2) Direct Steelmaking with the American Iron and Steel Institute; (3) Electrochemical Dezincing of Steel Scrap with Argonne National Laboratory and Metal Recovery Industries (U.S.), Inc.; (4) Rapid Analysis of Molten Metals Using Laser Produced Plasmas with Lehigh University; (5) Direct Strip Casting using a single wheel caster with Armco, Inc.; and (6) Advanced Process Control, also with the American Iron and Steel Institute. At the close of the fiscal year, a seventh project, Waste Oxide Recycling with the American Iron and Steel Institute, was selected for inclusion in the Direct Steelmaking project. There are three projects with the aluminum industry. The first, Wettable Cathodes for Alumina Reduction Cells with the Reynolds Metals Company, continues from the prior periods.

Not Available

1994-09-01T23:59:59.000Z

94

Batteries using molten salt electrolyte  

DOE Patents [OSTI]

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

95

Application of lithium in molten-salt reduction processes.  

SciTech Connect (OSTI)

Metallothermic reductions have been extensively studied in the field of extractive metallurgy. At Argonne National Laboratory (ANL), we have developed a molten-salt based reduction process using lithium. This process was originally developed to reduce actinide oxides present in spent nuclear fuel. Preliminary thermodynamic considerations indicate that this process has the potential to be adapted for the extraction of other metals. The reduction is carried out at 650 C in a molten-salt (LiCl) medium. Lithium oxide (Li{sub 2}O), produced during the reduction of the actinide oxides, dissolves in the molten salt. At the end of the reduction step, the lithium is regenerated from the salt by an electrowinning process. The lithium and the salt from the electrowinning are then reused for reduction of the next batch of oxide fuel. The process cycle has been successfully demonstrated on an engineering scale in a specially designed pyroprocessing facility. This paper discusses the applicability of lithium in molten-salt reduction processes with specific reference to our process. Results are presented from our work on actinide oxides to highlight the role of lithium and its effect on process variables in these molten-salt based reduction processes.

Gourishankar, K. V.

1998-11-11T23:59:59.000Z

96

Intermetallic FeAl based coatings deposited by the electrospark technique: corrosion behavior in molten (Li+K) carbonate  

Science Journals Connector (OSTI)

In the strongly corrosive environment of the molten carbonate fuel cells (MCFC) the protection of the wet-seal areas of the bipolar plates is accomplished by aluminum diffusion coatings. The coating layer is usually produced by depositing metallic aluminum onto a stainless steel surface with the ion vapor deposition (IVD) technique followed by a diffusion annealing treatment in order to transform the as-deposited Al into a corrosion resistant FeAl-based intermetallic surface alloy. In an attempt to find cheaper alternatives, in this work we report the results obtained depositing directly a layer of FeAl intermetallic alloy onto a 316L austenitic stainless steel by using the electrospark deposition (ESD) technique. ESD can apply metallurgical bonded coatings in ambient conditions without the need of post-deposition annealing treatments. Structure, chemical composition and morphology of the FeAl coating has been analyzed and compared to a standard IVD aluminized coating. By electrochemical measurements and long-term immersion tests it is inferred that the corrosion resistance of the electrospark coating is comparable to that of the IVD coating. Some sign of coating degradation after 1000 h immersion in the (Li+K) carbonate mixture at 650 °C was due to coating microcracking and Al depletion.

S. Frangini; A. Masci

2004-01-01T23:59:59.000Z

97

Preliminary molten salt extraction experiments with dicesium hexachloroplutonate (Cs/sub 2/PuCl/sub 6/)  

SciTech Connect (OSTI)

Dicesium hexachloroplutonate was prepared on a 200-gram scale and used as an oxidant in the molten salt extraction process to remove americium from plutonium metal. Single-pass extraction efficiencies exceeding 90% were achieved in molten calcium chloride. 7 refs., 2 figs., 3 tabs.

Thomas, R.L. (ed.); Long, J.L.; Humiston, T.J.; Murray, A.M.

1989-01-30T23:59:59.000Z

98

Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells  

SciTech Connect (OSTI)

During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.

R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

2001-11-05T23:59:59.000Z

99

The effect of GASAR processing parameters on porosity and properties in aluminum alloy  

SciTech Connect (OSTI)

The GASAR process involves the dissolution of hydrogen in a molten metal or alloy by controlling the hydrogen pressure and the temperature in a high pressure chamber. The difference between the hydrogen solubility in the melt and the solid is used to control the growth of hydrogen pores within the solidifying structure. Designed experiments have been performed to determine the relative effects of the saturation pressure, temperature, casting pressure, mold temperature and cooling rate on the total porosity, pore size, distribution and shape in pure nickel and aluminum alloys. The shape and distribution of pores was found to depend upon the structure of the primary solid pore nucleation and growth. Reducing the casting pressure had the strongest effect on increasing the total porosity and pore size.

Paradies, C.J.; Tobin, A. [Northrop Grumman Corp., Bethpage, NY (United States); Wolla, J. [Naval Research Lab., Washington, DC (United States)

1998-12-31T23:59:59.000Z

100

Overview of Aluminum  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum Overview of Aluminum Overview of Aluminum Session Coordinator: Mark T. Smith Pacific Northwest National Laboratory VT Merit Review 2008 February 28, 2008 2 Overview of...

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Laser Welding of Aluminum and Aluminum Alloys  

E-Print Network [OSTI]

.. ) Laser Welding of Aluminum and Aluminum Alloys Welds made with sharp bevel-groove weld aluminum and by aluminum alloy 5456 have been studied. The results indicate that initial absorption varies of the most dramatic illustrations of the differences in beam characteristics occurs when welding aluminum

Eagar, Thomas W.

102

Extraction process for removing metallic impurities from alkalide metals  

DOE Patents [OSTI]

A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

Royer, L.T.

1987-03-20T23:59:59.000Z

103

New Process for Grain Refinement of Aluminum. Final Report  

SciTech Connect (OSTI)

A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

Dr. Joseph A. Megy

2000-09-22T23:59:59.000Z

105

Ultrathin aluminum oxide films: Al-sublattice structure and the effect of substrate on ad-metal adhesion  

SciTech Connect (OSTI)

First principles density-functional slab calculations are used to study 5 {angstrom} (two O-layer) Al{sub 2}O{sub 3} films on Ru(0001) and Al(111). Using larger unit cells than in a recent study, it is found that the lowest energy stable film has an even mix of tetrahedral (t) and octahedral (o) site Al ions, and thus most closely resembles the {kappa}-phase of bulk alumina. Here, alternating zig-zag rows of t and o occur within the surface plane, resulting in a greater average lateral separation of the Al-ions than with pure t or o. A second structure with an even mix of t and o has also been found, consisting of alternating stripes. These patterns mix easily, can exist in three equivalent directions on basal substrates, and can also be displaced laterally, suggesting a mechanism for a loss of long-range order in the Al-sublattice. While the latter would cause the film to appear amorphous in diffraction experiments, local coordination and film density are little affected. On a film supported by rigid Ru(0001), overlayers of Cu, Pd, and Pt bind similarly as on bulk truncated {alpha}-Al{sub 2}O{sub 3}(0001). However, when the film is supported by soft Al(111), the adhesion of Cu, Pd, and Pt metal overlayers is significantly increased: Oxide-surface Al atoms rise so only they contact the overlayer, while substrate Al metal atoms migrate into the oxide film. Thus the binding energy of metal overlayers is strongly substrate dependent, and these numbers for the above Pd-overlayer systems bracket a recent experimentally derived value for a film on NiAl(110).

JENNISON,DWIGHT R.; BOGICEVIC,ALEXANDER

2000-03-06T23:59:59.000Z

106

Aluminum | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum Aluminum U.S. aluminum producers recognize that energy efficiency offers a competitive edge in world markets. The aluminum industry has worked with AMO to develop a range...

107

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2012, 5 companies operated 10 primary aluminum smelters; 4 smelters were  

E-Print Network [OSTI]

Ā­11): Canada, 62%; Russia, 7%; China, 5%; Mexico, 4%; and other, 22%. Tariff: Item Number Normal Trade@usgs.gov] #12;17 ALUMINUM with the amount exported in 2011, and imports of crude and semifabricated aluminum in 2012 were 21% higher than the amount imported in 2011. China, Canada, Mexico, and the Republic of Korea

108

Stability of Molten Core Materials  

SciTech Connect (OSTI)

The purpose of this report is to document a literature and data search for data and information pertaining to the stability of nuclear reactor molten core materials. This includes data and analysis from TMI-2 fuel and INL’s LOFT (Loss of Fluid Test) reactor project and other sources.

Layne Pincock; Wendell Hintze

2013-01-01T23:59:59.000Z

109

Production of anhydrous aluminum chloride composition and process for electrolysis thereof  

DOE Patents [OSTI]

A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.

Vandegrift, George F. (Bolingbrook, Naperville, IL); Krumpelt, Michael (Naperville, IL); Horwitz, E. Philip (Hinsdale, IL)

1983-01-01T23:59:59.000Z

110

Review Article Aluminum-Induced Entropy in Biological Systems  

E-Print Network [OSTI]

Review Article Aluminum-Induced Entropy in Biological Systems: Implications for Neurological years, mining, smelting, and refining of aluminum (Al) in various forms have increasingly exposed living of the Al toxicants to which we are being exposed. 1. Introduction Aluminum (Al) is the most common metal

Seneff, Stephanie

111

Sidewall containment of liquid metal with vertical alternating magnetic fields  

DOE Patents [OSTI]

An apparatus is disclosed for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 9 figs.

Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

1990-12-04T23:59:59.000Z

112

Sidewall containment of liquid metal with vertical alternating magnetic fields  

DOE Patents [OSTI]

An apparatus for containing molten metal using a magnet producing vertical alternating magnetic field positioned adjacent to the area in which the molten metal is to be confined. This invention can be adapted particularly to the casting of metal between counter-rotating rollers with the vertical alternating magnetic field used to confine the molten metal at the edges of the rollers. Alternately, the vertical alternating magnetic field can be used as a flow regulator in casting molten metal from an opening in a channel. 8 figs.

Lari, R.J.; Praeg, W.F.; Turner, L.R.; Battles, J.E.; Hull, J.R.; Rote, D.M.

1988-06-17T23:59:59.000Z

113

Scaleable Clean Aluminum Melting Systems  

SciTech Connect (OSTI)

The project entitled 'Scaleable Clean Aluminum Melting Systems' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Secat Inc. The three-year project was initially funded for the first year and was then canceled due to funding cuts at the DOE headquarters. The limited funds allowed the research team to visit industrial sites and investigate the status of using immersion heaters for aluminum melting applications. Primary concepts were proposed on the design of furnaces using immersion heaters for melting. The proposed project can continue if the funding agency resumes the funds to this research. The objective of this project was to develop and demonstrate integrated, retrofitable technologies for clean melting systems for aluminum in both the Metal Casting and integrated aluminum processing industries. The scope focused on immersion heating coupled with metal circulation systems that provide significant opportunity for energy savings as well as reduction of melt loss in the form of dross. The project aimed at the development and integration of technologies that would enable significant reduction in the energy consumption and environmental impacts of melting aluminum through substitution of immersion heating for the conventional radiant burner methods used in reverberatory furnaces. Specifically, the program would couple heater improvements with furnace modeling that would enable cost-effective retrofits to a range of existing furnace sizes, reducing the economic barrier to application.

Han, Q.; Das, S.K. (Secat, Inc.)

2008-02-15T23:59:59.000Z

114

Sandia National Laboratories: molten salt test loop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Renewable Energy, Research & Capabilities, Solar, Solar Newsletter, SunShot, Systems Engineering AREVA and Sandia began operations of their molten salt...

115

Corrosion protective coating for metallic materials  

DOE Patents [OSTI]

Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

Buchheit, Rudolph G. (Albuquerque, NM); Martinez, Michael A. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

116

Corrosion protective coating for metallic materials  

DOE Patents [OSTI]

Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

Buchheit, R.G.; Martinez, M.A.

1998-05-26T23:59:59.000Z

117

Reactions of aluminum with uranium fluorides and oxyfluorides  

SciTech Connect (OSTI)

Every 30 to 40 million operating hours a destructive reaction is observed in one of the {approximately}4000 large compressors that move UF{sub 6} through the gaseous diffusion plants. Despite its infrequency, such a reaction can be costly in terms of equipment and time. Laboratory experiments reveal that the presence of moderate pressures of UF{sub 6} actually cools heated aluminum, although thermodynamic calculations indicate the potential for a 3000-4000{degrees}C temperature rise. Within a narrow and rather low (<100 torr; 1 torr = 133.322 Pa) pressure range, however, the aluminum is seen to react with sufficient heat release to soften an alumina boat. Three things must occur in order for aluminum to react vigorously with either UF{sub 6} or UO{sub 2}F{sub 2}. 1. An initiating source of heat must be provided. In the compressors, this source can be friction, permitted by disruption of the balance of the large rotating part or by creep of the aluminum during a high-temperature treatment. In the absence of this heat source, compressors have operated for 40 years in UF{sub 6} without significant reaction. 2. The film protecting the aluminum must be breached. Melting (of UF{sub 5} at 620 K or aluminum at 930 K) can cause such a breach in laboratory experiments. In contrast, holding Al samples in UF{sub 6} at 870 K for several hours produces only moderate reaction. Rubbing in the cascade can undoubtedly breach the protective film. 3. Reaction products must not build up and smother the reaction. While uranium products tend to dissolve or dissipate in molten aluminum, AIF{sub 3} shows a remarkable tendency to surround and hence protect even molten aluminum. Hence the initial temperature rise must be rapid and sufficient to move reactants into a temperature region in which products are removed from the reaction site.

Leitnaker, J.M.; Nichols, R.W.; Lankford, B.S. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

118

Sidewall containment of liquid metal with horizontal alternating magnetic fields  

DOE Patents [OSTI]

An apparatus is disclosed for confining molten metal with a horizontal alternating magnetic field. In particular, this invention employs a magnet that can produce a horizontal alternating magnetic field to confine a molten metal at the edges of parallel horizontal rollers as a solid metal sheet is cast by counter-rotation of the rollers. 19 figs.

Praeg, W.F.

1995-01-31T23:59:59.000Z

119

Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel  

DOE Patents [OSTI]

Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

Herrmann, Steven Douglas

2014-05-27T23:59:59.000Z

120

Sandia National Laboratories: Molten Nitrate Salt Initial Flow...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David Gill, ddgill@sandia.gov, (505)-844-1524. Tagged with: Concentrating Solar Power * CSP * Molten Salt * molten salt test loop * National Solar Thermal Test Facility * NSTTF *...

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Sandia National Laboratories: molten salt energy storage demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

molten salt energy storage demonstration Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power,...

122

Development of Molten-Salt Heat Trasfer Fluid Technology for...  

Broader source: Energy.gov (indexed) [DOE]

Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...

123

Project Profile: Novel Molten Salts Thermal Energy Storage for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power...

124

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2006, 5 companies operated 13 primary aluminum smelters; 6 smelters were  

E-Print Network [OSTI]

,800 South Africa 851 890 860 900 United Arab Emirates, Dubai 75%. Tariff: Item Number Normal Trade Relations 12-31-06 Unwrought (in coils) 7601.10.3000 2.6% ad val aluminum production decreased slightly owing to cutbacks attributed to increased energy and alumina costs

125

The combined system for fuel supply of fuel cells on the basis of the aluminum-water hydrogen generator and the metal hybride hydrogen storage  

Science Journals Connector (OSTI)

The system for fuel supply of a hydrogen-air fuel cell on the basis of the aluminum-water hydrogen generator and hydride-forming alloy as an intermediate gas storage has been developed. For a series of...4.5 ? x ...

I. V. Yanilkin; Ye. I. Shkol’nikov; S. N. Klyamkin; M. S. Vlaskin…

2010-12-01T23:59:59.000Z

126

Corrosion performance of aluminum in coal railcars  

SciTech Connect (OSTI)

Aluminum has been used for construction of coal railcars and on an experimental basis as a metallized coating over steel railcars. When aluminum is used in areas which contact the lading, resistance to general corrosion has been outstanding. Galvanic corrosion of joints which connect the aluminum to a steel undercarriage has not been a problem provided appropriate measures were taken during vehicle construction. Laboratory test data are presented which illustrate the impact of variations in joint preparation on galvanic corrosion performance. Painting the steel and the use of a sealant are recommended to obtain satisfactory long term joint performance. The corrosion performance and long term durability of an aluminum metallized coating has been demonstrated when applied to new cars constructed of carbon steel. Test results of coating durability when applied to cars constructed of constructed of weathering steel or carbon steel which were in revenue coal service prior to coating have been mixed.

Hersh, J.F.

1988-01-01T23:59:59.000Z

127

Molten Gallium as a Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires  

E-Print Network [OSTI]

Molten Gallium as a Catalyst for the Large-Scale Growth of Highly Aligned Silica Nanowires Zheng a small size (5-100 nm in diameter), high melting point metal (such as gold and iron) catalyst particle as an effective catalyst for the large-scale growth of highly aligned, closely packed silica nanowire bunches

Wang, Zhong L.

128

(Data in thousand metric tons of metal unless otherwise noted) Domestic Production and Use: In 2005, 6 companies operated 15 primary aluminum smelters; 4 smelters  

E-Print Network [OSTI]

547 550 542 554 Norway 1,320 1,350 1,320 1,380 Russia 3,590 3,650 3,640 3,760 South Africa 863 830 850%. Tariff: Item Number Normal Trade Relations 12-31-05 Unwrought (in coils) 7601.10.3000 2.6% ad val aluminum production decreased slightly owing to cutbacks attributed to increased energy and alumina costs

129

Spot welding of steel and aluminum using insert sheet  

SciTech Connect (OSTI)

Automobile industries have been increasingly interested in the use of aluminum and thus joining of steel and aluminum becomes of importance. The joining of the two types of metal raises a problem of brittle welds caused by the formation of intermetallic compounds. The authors solved the problem by using an insert sheet. This paper deals with the resistance spot welding of steel and aluminum sheets using insert sheets. The insert sheet used in the present development was a steel/aluminum clad sheet of the 0.8 mm thickness with 50% steel and 50% aluminum. The clad sheet was produced by warm rolling of steel and aluminum with a direct resistance heating process. Steel to be warm rolled was of EDDQ of the 0.4 mm thickness and aluminum was of JIS A1050 of 0.6 mm thickness. The mechanical properties of the insert clad sheets were in between those of the steel sheets and the aluminum sheets, while the clad sheets showed much better formability than the aluminum sheets. Resistance spot welding was conducted for 0.8 mm thick EDDQ steel sheets and 1.0 mm thick aluminum alloy (AL-5.5%Mg) sheets under the welding force of 1.96 kN, welding current ranging between 4.2 and 20.1 kA, and welding time from 0.5 to 10 cycles. The steel was spot welded to the steel side of the insert sheet while the aluminum was welded to the aluminum side. What the authors investigated were the applicable welding current range, nugget diameter, tensile shear strength, U-tension strength, and macro- and microstructures. In conclusion, steel sheets can be spot welded to aluminum sheets without difficulty by using clad sheets as insert materials while the strength level of the dissimilar metal spot welds is close to that of aluminum joints.

Oikawa, H.; Saito, T.; Yoshimura, T. [and others

1994-12-31T23:59:59.000Z

130

Molten Salt Batteries and Fuel Cells  

Science Journals Connector (OSTI)

This chapter describes recent work on batteries and fuel cells using molten salt electrolytes. This entails a comparison with other batteries and fuel cells utilizing aqueous and organic electrolytes; for...(1,2)

D. A. J. Swinkels

1971-01-01T23:59:59.000Z

131

The Effect of Applied Pressure During Feeding of Critical Cast Aluminum Alloy Components With Particular Reference to Fatigue Resistance  

SciTech Connect (OSTI)

the medium to long freezing range alloys of aluminum such as A356, A357, A206, 319 for example are known to exhibit dispersed porosity, which is recognized as a factor affecting ductility, fracture toughness, and fatigue resistance of light alloy castings. The local thermal environment, for example, temperature gradient and freezing from velocity, affect the mode of solidification which, along with alloy composition, heat treatment, oxide film occlusion, hydrogen content, and the extent to which the alloy contracts on solidification, combine to exert strong effects on the porosity formation in such alloys. In addition to such factors, the availability of liquid metal and its ability to flow through the partially solidified casting, which will be affect by the pressure in the liquid metal, must also be considered. The supply of molten metal will thus be controlled by the volume of the riser available for feeding the particular casting location, its solidification time, and its location together with any external pressure that might be applied at the riser.

J.T. Berry; R. Luck; B. Zhang; R.P. Taylor

2003-06-30T23:59:59.000Z

132

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

DOE Patents [OSTI]

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Ratavia, IL)

2007-09-11T23:59:59.000Z

133

Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte  

DOE Patents [OSTI]

An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

Willit, James L. (Batavia, IL)

2010-09-21T23:59:59.000Z

134

Exploratory corrosion tests on alloys in molten salts at 900/sup 0/C  

SciTech Connect (OSTI)

Exploratory corrosion tests were conducted on 16 commercial alloys in carbonate, chloride, and hydroxide molten salts at 900/sup 0/C for up to three weeks. Corrosion information, including weight change, observations of the coupons, metallographic examination, and evaluation of the corrosion product by SEM, was obtained on the coupons exposed to these salts. These tests indicated that a number of the alloys showed significant resistance to metal loss in the carbonate molten salt with corrosion rates on the order of several millimeters per year. The corrosion product is an interpenetrating structure of metal from the more noble alloy ingredients and of an oxide made up of the reaction between melt components and oxidizable metals from the alloy.

Coyle, R.T.; Thomas, T.M.; Lai, G.Y.

1984-10-01T23:59:59.000Z

135

Final Technical Report Microwave Assisted Electrolyte Cell for Primary Aluminum Production  

SciTech Connect (OSTI)

This research addresses the high priority research need for developing inert anode and wetted cathode technology, as defined in the Aluminum Industry Technology Roadmap and Inert Anode Roadmap, with the performance targets: a) significantly reducing the energy intensity of aluminum production, b) ultimately eliminating anode-related CO2 emissions, and c) reducing aluminum production costs. This research intended to develop a new electrometallurgical extraction technology by introducing microwave irradiation into the current electrolytic cells for primary aluminum production. This technology aimed at accelerating the alumina electrolysis reduction rate and lowering the aluminum production temperature, coupled with the uses of nickel based superalloy inert anode, nickel based superalloy wetted cathode, and modified salt electrolyte. Michigan Technological University, collaborating with Cober Electronic and Century Aluminum, conducted bench-scale research for evaluation of this technology. This research included three sub-topics: a) fluoride microwave absorption; b) microwave assisted electrolytic cell design and fabrication; and c) aluminum electrowinning tests using the microwave assisted electrolytic cell. This research concludes that the typically used fluoride compound for aluminum electrowinning is not a good microwave absorbing material at room temperature. However, it becomes an excellent microwave absorbing material above 550°C. The electrowinning tests did not show benefit to introduce microwave irradiation into the electrolytic cell. The experiments revealed that the nickel-based superalloy is not suitable for use as a cathode material; although it wets with molten aluminum, it causes severe reaction with molten aluminum. In the anode experiments, the chosen superalloy did not meet corrosion resistance requirements. A nicked based alloy without iron content could be further investigated.

Xiaodi Huang; J.Y. Hwang

2007-04-18T23:59:59.000Z

136

REAR-SIDE POINT-CONTACTS BY INLINE THERMAL EVAPORATION OF ALUMINUM Christoph Mader  

E-Print Network [OSTI]

REAR-SIDE POINT-CONTACTS BY INLINE THERMAL EVAPORATION OF ALUMINUM Christoph Mader 1 , Jens MĆ¼ller of point-contacted aluminum rear-sides for silicon solar cells that are metalized by inline thermal evaporation. We deposit aluminum layers of 2 Āµm thickness at dynamic deposition rates of 1.0, 2.9 and 5.0 Āµm

137

A perturbation analysis of the unstable plastic flow pattern evolution in an aluminum alloy  

E-Print Network [OSTI]

A perturbation analysis of the unstable plastic flow pattern evolution in an aluminum alloy Seung Abstract In the tensile loading of sheet metals made from some polycrystalline aluminum alloys, a single in the uniaxial tension of polycrystalline aluminum alloys with periodic stress relaxations depends

Tong, Wei

138

Decontamination and reuse of ORGDP aluminum scrap  

SciTech Connect (OSTI)

The Gaseous Diffusion Plants, or GDPs, have significant amounts of a number of metals, including nickel, aluminum, copper, and steel. Aluminum was used extensively throughout the GDPs because of its excellent strength to weight ratios and good resistance to corrosion by UF{sub 6}. This report is concerned with the recycle of aluminum stator and rotor blades from axial compressors. Most of the stator and rotor blades were made from 214-X aluminum casting alloy. Used compressor blades were contaminated with uranium both as a result of surface contamination and as an accumulation held in surface-connected voids inside of the blades. A variety of GDP studies were performed to evaluate the amounts of uranium retained in the blades; the volume, area, and location of voids in the blades; and connections between surface defects and voids. Based on experimental data on deposition, uranium content of the blades is 0.3%, or roughly 200 times the value expected from blade surface area. However, this value does correlate with estimated internal surface area and with lengthy deposition times. Based on a literature search, it appears that gaseous decontamination or melt refining using fluxes specific for uranium removal have the potential for removing internal contamination from aluminum blades. A melt refining process was used to recycle blades during the 1950s and 1960s. The process removed roughly one-third of the uranium from the blades. Blade cast from recycled aluminum appeared to perform as well as blades from virgin material. New melt refining and gaseous decontamination processes have been shown to provide substantially better decontamination of pure aluminum. If these techniques can be successfully adapted to treat aluminum 214-X alloy, internal and, possibly, external reuse of aluminum alloys may be possible.

Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

1996-12-01T23:59:59.000Z

139

ALUMINUM--1997 5.1 By Patricia A. Plunkert  

E-Print Network [OSTI]

. Reynolds Metals Co. announced the planned restart of limited production at its Troutdale, OR, primary aluminum smelter by February 1998 at an annual rate of 27,000 tons. The Troutdale smelter, which has

140

Tunable molten oxide pool assisted plasma-melter vitrification systems  

DOE Patents [OSTI]

The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.

Titus, Charles H. (Newtown Square, PA); Cohn, Daniel R. (Chestnut Hill, MA); Surma, Jeffrey E. (Kennewick, WA)

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electrodeposition of magnesium and magnesium/aluminum alloys  

DOE Patents [OSTI]

Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

Mayer, A.

1988-01-21T23:59:59.000Z

142

Electrodeposition of magnesium and magnesium/aluminum alloys  

DOE Patents [OSTI]

Electrolytes and plating solutions for use in processes for electroplating and electroforming pure magnesium and alloys of aluminum and magnesium and also electrodeposition processes. An electrolyte of this invention is comprised of an alkali metal fluoride or a quaternary ammonium halide, dimethyl magnesium and/or diethyl magnesium, and triethyl aluminum and/or triisobutyl aluminum. An electrolyte may be dissolved in an aromatic hydrocarbon solvent to form a plating solution. The proportions of the component compounds in the electrolyte are varied to produce essentially pure magnesium or magnesium/aluminum alloys having varying selected compositions.

Mayer, Anton (Los Alamos, NM)

1988-01-01T23:59:59.000Z

143

Climate VISION: Private Sector Initiatives: Aluminum: Resources...  

Office of Scientific and Technical Information (OSTI)

Industry Associations Aluminum Association The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum...

144

ITP Aluminum: Aluminum Industry Technology Roadmap  

Broader source: Energy.gov [DOE]

In 2002, the industry created this updated Aluminum Industry Technology Roadmap to define the specific research and development priorities, performance targets, and milestones required to achieve the set vision.

145

Five Ways Aluminum Foil Is Advancing Science | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science September 7, 2012 - 5:33pm Addthis SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then covered in foil again. Heat tape is used to heat the metal chamber just enough to loosen any residues that could cause trouble. The aluminum foil helps spread the heat evenly. | Photo of SLAC SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then

146

Five Ways Aluminum Foil Is Advancing Science | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science Five Ways Aluminum Foil Is Advancing Science September 7, 2012 - 5:33pm Addthis SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then covered in foil again. Heat tape is used to heat the metal chamber just enough to loosen any residues that could cause trouble. The aluminum foil helps spread the heat evenly. | Photo of SLAC SLAC National Accelerator Laboratory uses massive quantities of aluminum foil to perform "bake out" of their equipment. In a typical bake out, the equipment is blanketed in foil, wrapped with electrical heat tape, and then

147

Corrosion Studies in High-Temperature Molten Salt Systems for...  

Broader source: Energy.gov (indexed) [DOE]

Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1 Corrosion Studies in High-Temperature Molten Salt Systems for CSP Applications - FY13 Q1...

148

Experimental studies of actinides in molten salts  

SciTech Connect (OSTI)

This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

Reavis, J.G.

1985-06-01T23:59:59.000Z

149

Purification of alkali metal nitrates  

DOE Patents [OSTI]

A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

Fiorucci, Louis C. (Hamden, CT); Gregory, Kevin M. (Woodridge, IL)

1985-05-14T23:59:59.000Z

150

Accelerators for Subcritical Molten-Salt Reactors  

SciTech Connect (OSTI)

Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

Johnson, Roland (Muons, Inc.) [Muons, Inc.

2011-08-03T23:59:59.000Z

151

Viscosity and the Structure of Molten Silicates  

Science Journals Connector (OSTI)

7 December 1954 research-article Viscosity and the Structure of Molten Silicates...devised which enables measurements of the viscosity of liquids to be made at maximum temperatures...instrument has been applied to measure the viscosity of the system CaO-SiO over the composition...

1954-01-01T23:59:59.000Z

152

Molten Salt Oxidation of mixed wastes  

SciTech Connect (OSTI)

Molten Salt Oxidation (MSO) can be characterized as a simple noncombustion process; the basic concept is to introduce air and wastes into a bed of molten salt, oxidize the organic wastes in the molten salt, use the heat of oxidation to keep the salt molten and remove the salt for disposal or processing and recycling. The process has been developed through bench-scale and pilot-scale testing, with successful destruction demonstration of a wide variety of hazardous and mixed (radioactive and hazardous) wastes including chemical warfare agents, combustible solids, halogenated solvents, polychlorinated biphenyls, plutonium-contaminated solids, uranium-contaminated solvents and fission product-contaminated oil. The MSO destruction efficiency of the hazardous organic constituents in the wastes exceeds 99.9999%. Radioactive species, such as actinides and rare earth fission products, are retained in the salt bath. These elements can be recovered from the spent salt using conventional chemical processes, such as ion exchange, to render the salt as nonradioactive and nonhazardous. This paper reviews the principles and capabilities of MSO, previous mixed waste studies, and a new US Department of Energy program to demonstrate the process for the treatment of mixed wastes.

Gay, R.L.; Navratil, J.D.; Newman, C. [Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.

1993-12-31T23:59:59.000Z

153

Aluminum monocarbonyl and aluminum isocarbonyl Steve S. Wesolowski,a)  

E-Print Network [OSTI]

Aluminum monocarbonyl and aluminum isocarbonyl Steve S. Wesolowski,a) T. Daniel Crawford,b) Justin of the aluminum monocarbonyl species AlCO and AlOC have been performed to predict the geometries, fragmentation, Ogden, and Oswald6 first isolated aluminum dicarbonyls in solid krypton and identified the species

Crawford, T. Daniel

154

A capillary-jet instability method for measuring dynamic surface tension of liquid metals  

Science Journals Connector (OSTI)

...rapid physical and chemical processes affecting molten-metal...rapid physical and chemical processes affecting molten-metal...effectiveness of the jetting process. Tin-containing melts...McNallan and D. B. Wallace the commercialization of solder-jet technology...

2003-01-01T23:59:59.000Z

155

Electromagnetic augmentation for casting of thin metal sheets  

DOE Patents [OSTI]

Thin metal sheets are cast by magnetically levitating molten metal deposited in a model within a ferromagnetic yoke and between AC conducting coils and linearly displacing the magnetically levitated liquid metal while it is being cooled by the water-cooled walls of the mold to form a solid metal sheet. A conducting shield is electrically coupled to the molten metal sheet to provide a return path for eddy currents induced in the metal sheet by the current in the AC conducting coils. In another embodiment, a DC conducting coil is coupled to the metal sheet for providing a direct current therein which interacts with the magnetic field to levitate the moving metal sheet. Levitation of the metal sheet in both molten and solid forms reduces its contact pressure with the mold walls while maintaining sufficient engagement therebetween to permit efficient conductive cooling by the mold through which a coolant fluid may be circulated. 8 figs.

Hull, J.R.

1987-10-28T23:59:59.000Z

156

PII S0016-7037(98)00136-7 The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals  

E-Print Network [OSTI]

PII S0016-7037(98)00136-7 The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum. This finding indicates that the dissolution of clay and aluminum oxide minerals can be promoted by metal ions

Sparks, Donald L.

157

Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

None

2012-01-01T23:59:59.000Z

158

Molten Salt Heat Transfer Fluid (HTF)  

Energy Innovation Portal (Marketing Summaries) [EERE]

Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has a lower freezing point than any molten salt mixture available commercially. This allows the HTF to be used in applications in which the expensive parasitic energy costs necessary for freeze protection can be significantly reduced. The higher operating temperature limit significantly increases power cycle efficiency and overall power plan sun-to-net electric efficiency....

2013-03-12T23:59:59.000Z

159

U.S. Energy Requirements for Aluminum Production | Department...  

Broader source: Energy.gov (indexed) [DOE]

Ultrahigh-Efficiency Aluminum Production Cells ITP Aluminum: Aluminum Industry Technology Roadmap ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a...

160

Visualizing the Flow of Molten Rock through Seabed Mantle | Advanced Photon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How Dinosaurs Put Proteins into Long-Term Storage How Dinosaurs Put Proteins into Long-Term Storage Plutonium Tricks Cells by "Pretending" to be Iron A Chemical Detour to Quantum Criticality Metallic Glass: A Crystal at Heart Brain Iron as an Early Predictor of Alzheimer's Disease Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Visualizing the Flow of Molten Rock through Seabed Mantle JULY 27, 2011 Bookmark and Share X-ray microtomography images show the networks formed by molten rock in a cube of mantle material, 140 microns on a side, at four different melt fractions. Grey areas are melted material between solid olivine grains, represented by the white regions. Red indicates channels of melt slicing

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network [OSTI]

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

162

Delivery system for molten salt oxidation of solid waste  

DOE Patents [OSTI]

The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

163

DEFLECTION MEASUREMENTS OF 25 mm ALUMINUM COLLARS  

E-Print Network [OSTI]

MEASUREMENTS OF 25 mm ALUMINUM COLLARS· C. Peters LawrenceMEASUREMENTS OF 25 mm ALUMINUM COLLARS" C. Peters Lawrenceinch thick 7075- T6 aluminum alloy plate. Inside corners

Peters, C.

2010-01-01T23:59:59.000Z

164

Regenerative mode photo electrochemical cells in molten salt electrolytes. 1st four monthly report (1/31/80)  

SciTech Connect (OSTI)

The most promising photoelectrodes selected for use in the butyl pyridinium chloride-aluminum chloride room temperature molten salt are n-type silicon, gallium arsenide and cadmium telluride. The solubilities of these semiconductors are low, and their conduction and valence band edges are favorably located. Cadmium selenide and sulfide showed significant solubility in the melt, and the conduction band edge for p-type cadmium telluride was too close to the aluminum deposition potential. Several reversible redox couples have been identified, which could potentially be used in a photoelectrochemical cell. These include W/sup 5 +//W/sup 6 +/ and Eu/sup 2 +//Eu/sup 3 +/ as well as ferrocene and its derivatives.

Not Available

1980-01-01T23:59:59.000Z

165

Project Profile: Molten Salt-Carbon Nanotube Thermal Storage  

Broader source: Energy.gov [DOE]

Texas Engineering Experiment Station (TEES), under the Thermal Storage FOA, created a composite thermal energy storage material by embedding nanoparticles in a molten salt base material.

166

Fundamental Corrosion Studies in High-Temperature Molten Salt...  

Broader source: Energy.gov (indexed) [DOE]

Studies in High-Temperature Molten Salt Systems for CSP Applications Savannah River National Laboratory April 15, 2013 | Garcia-Diaz * The overall project approach will combine...

167

Corrosion Studies in High-Temperature Molten Salt Systems for...  

Broader source: Energy.gov (indexed) [DOE]

Studies in High-Temperature Molten Salt Systems for CSP Applications Savannah River National Laboratory Garcia-Diaz A 1152013:Garcia-Diaz * The overall project approach will...

168

Project Profile: Modular and Scalable Baseload Molten Salt Plant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

salt receiver A distributed molten salt transport system Hybridization with natural gas or biofuels. Publications, Patents, and Awards J. E. Pacheco, C. Moursund, D. Rogers;...

169

Fundamental Corrosion Studies in High-Temperature Molten Salt...  

Broader source: Energy.gov (indexed) [DOE]

Molten Salt Systems for CSP Applications - FY13 Q1 Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems...

170

Hybrid Molten Salt Reactor (HMSR): Method and System to fully...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Molten Salt Reactor (HMSR): Method and System to fully fission actinides for electric power production without fuel enrichment, fabrication, or reprocessing A method for...

171

Reaction of Aluminum with Water to Produce Hydrogen: A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage. Version 2, 2010.  

Broader source: Energy.gov [DOE]

Produced in 2008 by DOE and updated in 2010, this report focuses on the key issues as well as advantages and disadvantages associated with using the reaction between aluminum metal and water for on-board vehicular hydrogen storage.

172

Molten nitrate salt technology development status report  

SciTech Connect (OSTI)

Recognizing thermal energy storage as potentially critical to the successful commercialization of solar thermal power systems, the Department of Energy (DOE) has established a comprehensive and aggressive thermal energy storage technology development program. Of the fluids proposed for heat transfer and energy storage molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO/sub 3/ and KNO/sub 3/. Although nitrate/nitrite mixtures have been used for decades as heat transfer and heat treatment fluids the use has been at temperatures of about 450/sup 0/C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 600/sup 0/C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program has been developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms. This report details the work done at Sandia National Laboratories in each area listed. In addition, summaries of the experimental programs at Oak Ridge National Laboratory, the University of New York, EIC Laboratories, Inc., and the Norwegian Institute of Technology on molten nitrate salts are given. Also discussed is how the experimental programs will influence the near-term central receiver programs such as utility repowering/industrial retrofit and cogeneration. The report is designed to provide easy access to the latest information and data on molten NaNO/sub 3//KNO/sub 3/ for the designers and engineers of future central receiver projects.

Carling, R.W.; Kramer, C.M.; Bradshaw, R.W.; Nissen, D.A.; Goods, S.H.; Mar, R.W.; Munford, J.W.; Karnowsky, M.M.; Biefeld, R.N.; Norem, N.J.

1981-03-01T23:59:59.000Z

173

Molten salts and nuclear energy production Christian Le Bruna*  

E-Print Network [OSTI]

Molten salts and nuclear energy production Christian Le Bruna* a Laboratoire de Physique or chlorides) have been taken in consideration very soon in nuclear energy production researches with solid fuels, liquid fuel in molten salt reactor, solvents for spent nuclear solid fuel in the case

Boyer, Edmond

174

Regeneration of aluminum hydride  

DOE Patents [OSTI]

The present invention provides methods and materials for the formation of hydrogen storage alanes, AlH.sub.x, where x is greater than 0 and less than or equal to 6 at reduced H.sub.2 pressures and temperatures. The methods rely upon reduction of the change in free energy of the reaction between aluminum and molecular H.sub.2. The change in free energy is reduced by lowering the entropy change during the reaction by providing aluminum in a state of high entropy, by increasing the magnitude of the change in enthalpy of the reaction or combinations thereof.

Graetz, Jason Allan (Mastic, NY); Reilly, James J. (Bellport, NY)

2009-04-21T23:59:59.000Z

175

ITP Aluminum: Inert Anodes Roadmap  

Broader source: Energy.gov [DOE]

Aluminum is one of the most versatile materials available today that can meet the demanding requirements of tomorrow's products.

176

Advanced Heat Exchanger Development for Molten Salts in Nuclear and Non Nuclear Systems  

SciTech Connect (OSTI)

This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

Piyush Sabharwall; Denis Clark; Kumar Sridharan; Guiqiu Zheng; Mark Anderson

2014-10-01T23:59:59.000Z

177

Cost-Effective Consolidation of Fine Aluminum Scrap for Increased Remelting Effieciency  

SciTech Connect (OSTI)

The main objective of this research was to develop a new re-melting process for fine or light gauge aluminum scrap products that exhibits dramatic improvements in energy efficiency. Light gauge aluminum scrap in the form of chips, turnings, and borings has historically been underutilized in the aluminum recycling process due to its high surface area to volume ratio resulting in low melt recovery. Laboratory scale consolidation experiments were performed using loose aluminum powder as a modeling material as well as shredded aluminum wire scrap. The processing parameters necessary to create consolidated aluminum material were determined. Additionally, re-melting experiments using consolidated and unconsolidated aluminum powder confirmed the hypothesis that metal recovery using consolidated material will significantly improve by as much as 20%. Based on this research, it is estimated that approximately 495 billion Btu/year can be saved by implementation of this technology in one domestic aluminum rolling plant alone. The energy savings are realized by substituting aluminum scrap for primary aluminum, which requires large amounts of energy to produce. While there will be an initial capital investment, companies will benefit from the reduction of dependence on primary aluminum thus saving considerable costs. Additionally, the technology will allow companies to maintain in-house alloy scrap, rather than purchasing from other vendors and eliminate the need to discard the light gauge scrap to landfills.

William Van Geertruyden

2005-09-22T23:59:59.000Z

178

Aluminum battery alloys  

DOE Patents [OSTI]

Aluminum alloys suitable for use as anode structures in electrochemical cells are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

Thompson, D.S.; Scott, D.H.

1984-09-28T23:59:59.000Z

179

Aluminum battery alloys  

DOE Patents [OSTI]

Aluminum alloys suitable for use as anode structures in electrochemical cs are disclosed. These alloys include iron levels higher than previously felt possible, due to the presence of controlled amounts of manganese, with possible additions of magnesium and controlled amounts of gallium.

Thompson, David S. (Richmond, VA); Scott, Darwin H. (Mechanicsville, VA)

1985-01-01T23:59:59.000Z

180

Microstructure and kinetics of hot corrosion for a nickel alloy in molten salt  

SciTech Connect (OSTI)

Metallography, analytical SEM, and XRD were used to measure kinetics and characterize the microstructure of hot corrosion of the Ni-Cr-Fe alloy INCONEL 600 after 500 h immersion in molten Na{sub 2}CO{sub 3}- NaCl salt at 900-950 C in an oxidizing atmosphere. This was done to assess the alloy as a reaction vessel material for a waste treatment process known as Molten Salt Oxidation. The alloy was found to hot corrode by surface oxidation and intergranular attack. Combined rate for loss of load-bearing cross-section metal was comparable to corrosion rates for analogous salts. About 5% of the oxide scale was a continuous, dense, protective layer of Cr{sub 2}O{sub 3} at the metal/oxide interface. A middle portion comprised about 55% of the scale and was a porous, mixed oxide of NiO>Cr{sub 2}O{sub 3}>Fe{sub 2}O{sub 3}. The outer 40% was nearly all NiO with dense grains and cavitated grain boundaries. Overall, the NiO was dominant and the lesser amounts of Cr{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} were roughly equivalent. No direct invasion of salt through the oxide to the metal was observed.

Stevens, D.W.; Brummond, W.A. [Lawrence Livermore National Lab., CA (United States); Grimmett, D.L.; Newcomb, J.C.; Chiang, K.T.; Gay, R.L. [Boeing North American, Inc., Canoga Park, CA (United States). Rocketdyne Div.

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Pure Aluminum as the Anode in Top Emission OLED Xiao-Ming Yu, Hua-Jun Peng, Xiu-Ling Zhu, Jia-Xin Sun,  

E-Print Network [OSTI]

Pure Aluminum as the Anode in Top Emission OLED Xiao-Ming Yu, Hua-Jun Peng, Xiu-Ling Zhu, Jia (TOLED) with pure aluminum metal layer as the bottom anode has been fabricated. The brightness as high as that of the TOLED with additional high work function silver deposited on aluminum as the anode

182

ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum...  

Energy Savers [EERE]

Energy and Environmental Profile of the U.S. Aluminum Industry aluminum.pdf More Documents & Publications ITP Aluminum: Technical Working Group on Inert Anode Technologies...

183

Differences of growth response to aluminum excess of two Melaleuca trees differing in aluminum resistance  

E-Print Network [OSTI]

M, Yamanoshita T, Kojima K. , Role of aluminum-bindingligands in aluminum resistance of Eucalyptus camaldulensissoils, low pH and excess aluminum are the primary factors

Houman, Yoshifumi; Tahara, Ko; Shinmachi, Fumie; Noguchi, Akira; Satohiko, Sasaki; Hasegawa, Isao

2009-01-01T23:59:59.000Z

184

Electrolyte paste for molten carbonate fuel cells  

DOE Patents [OSTI]

The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

Bregoli, Lawrance J. (Southwick, MA); Pearson, Mark L. (New London, CT)

1995-01-01T23:59:59.000Z

185

Brillouin scattering study of molten zinc chloride  

Science Journals Connector (OSTI)

Polarized and depolarized Brillouin scattering experiments on molten ZnCl2 were performed between 300 and 600 °C in different geometries. VV spectra measured in backscattering and small angle scattering were analyzed with conventional viscoelastic theory using either a Debye or a Cole-Davidson model for the memory function. We also analyzed in the same way the temperature dependence of the transverse Brillouin lines detected in a 90° VH geometry. We show that the Cole-Davidson memory function yields a consistent interpretation of all the spectra. The resulting shear and longitudinal relaxation times are equal within their error bars, and are about 2.5 times smaller than the ? relaxation time previously determined. The static shear viscosity values deduced from the analysis of the propagating transverse waves agree, at all temperatures, with the measured viscosity values.

C. Dreyfus; M. J. Lebon; F. Vivicorsi; A. Aouadi; R. M. Pick; H. Z. Cummins

2001-03-29T23:59:59.000Z

186

Fast Spectrum Molten Salt Reactor Options  

SciTech Connect (OSTI)

During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

Gehin, Jess C [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Patton, Bruce W [ORNL; Howard, Rob L [ORNL; Harrison, Thomas J [ORNL

2011-07-01T23:59:59.000Z

187

Molten salts in nuclear science and technology: a scientometric perspective  

Science Journals Connector (OSTI)

This paper attempts to highlight quantitatively and qualitatively the growth and development of world literature on molten salts in terms of publication output as per INIS database (1972-2011). The objective of the study was to perform a scientometric analysis of all research publications on molten salts in the world. The parameters studied include year-wise growth of publications, country-wise distribution of publications, activity index of top countries, highly productive institutes, language-wise distribution of publications, distribution of publications as per document type, highly preferred journals and identification of highly cited publications on molten salts.

Ganesh Surwase; Lalit Mohan; B. S. Kademani; K. Bhanumurthy

2014-01-01T23:59:59.000Z

188

DOE - Office of Legacy Management -- Hunter Douglas Aluminum Plant Div of  

Office of Legacy Management (LM)

Hunter Douglas Aluminum Plant Div Hunter Douglas Aluminum Plant Div of Bridgeport Brass Co - CA 11 FUSRAP Considered Sites Site: HUNTER DOUGLAS ALUMINUM PLANT, DIV. OF BRIDGEPORT BRASS CO. (CA.11 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Hunter Douglas Aluminum Corporation CA.11-1 Location: 3016 Kansas Avenue , Riverside , California CA.11-1 Evaluation Year: 1995 CA.11-2 Site Operations: Fabricated uranium metal tubing during the late 1950s. CA.11-1 Site Disposition: Eliminated - No Authority - NRC licensed CA.11-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium Metal CA.11-1 Radiological Survey(s): No Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to HUNTER DOUGLAS ALUMINUM PLANT, DIV. OF BRIDGEPORT

189

Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys  

DOE Patents [OSTI]

Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

Stevenson, D.T.; Troup, R.L.

1985-01-01T23:59:59.000Z

190

Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys  

DOE Patents [OSTI]

Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

Stevenson, David T. (Washington Township, Armstrong County, PA); Troup, Robert L. (Murrysville, PA)

1985-01-01T23:59:59.000Z

191

Separation of actinides from lanthanides utilizing molten salt electrorefining  

SciTech Connect (OSTI)

TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separation ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.

Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.; Gay, R.L. [Rockwell International, Canoga Park, CA (United States). Rocketdyne Div.; Krueger, C.L.; Storvick, T.S. [Univ. of Missouri, Columbia, MO (United States). Research Reactor Facility; Inoue, T.; Hijikata, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan). Komae Research Lab.; Takahashi, N. [Kawasaki Heavy Industries, Ltd., Tokyo (Japan). Nuclear Systems Div.

1996-10-01T23:59:59.000Z

192

Project Profile: Long-Shafted Molten Salt Pump | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CSP R&D FOA, is validating the manufacturability of a large-scale molten salt receiver panel and then confirming its operation in prototypic solar flux. This work is an...

193

Possible Reasons Why Aluminum is a Beneficial Element for Melastoma malabathricum, an Aluminum Accumulator  

E-Print Network [OSTI]

of adaptation to high aluminum condition in native plantit has been well known that aluminum (Al) toxicity restricts

Watanabe, Toshihiro; Osaki, Mitsuru

2009-01-01T23:59:59.000Z

194

Sound insulation property of Al–Si closed-cell aluminum foam sandwich panels  

Science Journals Connector (OSTI)

Al–Si closed-cell aluminum foam sandwich panels (1240 mm × 1100 mm) of different thicknesses and different densities were prepared by molten body transitional foaming process in Northeastern University. The experiments were carried out to investigate the sound insulation property of Al–Si closed-cell aluminum foam sandwich panels of different thicknesses and different densities under different frequencies (100–4000 Hz). Results show that sound reduction index (R) is small under low frequencies, large under high frequencies; thickness affects the sound insulation property of material obviously: when the thicknesses of Al–Si closed-cell aluminum foam sandwich panels are 12, 22, and 32 mm, the corresponding weighted sound reduction indices (RW) are 26.3, 32.2, and 34.6 dB, respectively, the rising trend tempered; the increase of density of Al–Si closed-cell aluminum foam can also increase the sound insulation property: when the densities of aluminum foam are 0.31, 0.51, and 0.67 g/cm3, the corresponding weighted sound reduction indices (RW) are 28.9, 34.3, and 34.6 dB, the increasing value mitigating.

Haijun Yu; Guangchun Yao; Xiaolin Wang; Yihan Liu; Hongbin Li

2007-01-01T23:59:59.000Z

195

Method for forming glass-to-metal seals  

DOE Patents [OSTI]

A method for forming a glass-to-metal seal in which the glass has a higher melting point than the metal. The molten glass is vacuum injection molded onto the metal, thus melting a very thin layer of the surface of the metal long enough to form a seal, but not long enough to cause a distortion in the shape of the metal component.

Kramer, Daniel P. (Dayton, OH); Massey, Richard T. (Hamilton, OH)

1986-01-01T23:59:59.000Z

196

Method for improving the oxidation-resistance of metal substrates coated with thermal barrier coatings  

DOE Patents [OSTI]

A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

2002-01-01T23:59:59.000Z

197

Aluminum filtering preheater test results. Topical report, January-September 1994  

SciTech Connect (OSTI)

A prototype hood for preheating filters and refractory bowls used in the filtration of primary molten aluminum was tested under laboratory and plant conditions. The hood utilized gas fired, reticulated ceramic infrared burners as the heat source. The testing showed improved temperature uniformity and priming rates over conventional technology. A field test unit was designed and fabricated based on the prototype results. The unit was tested at the Alcoa Lafayette Plant in Lafayette, Indiana for a two month period. The unit performed reliably and improved preheating conditions were achieved. However, the lack of portability of the unit proved to be a problem for the operators.

Sweeting, T.B.; Gillish, K.

1995-04-01T23:59:59.000Z

198

Modeling Texture Evolution during Recrystallization in Aluminum  

E-Print Network [OSTI]

Modeling Texture Evolution during Recrystallization in Aluminum Abhijit Brahme1,2 , Joseph Fridy3, Aluminum, Grain Boundary Mobility, Nucleation, Oriented Growth, Oriented Nucleation, Stored Energy, Monte Carlo Modeling. #12;Modeling Texture Evolution during Recrystallization in Aluminum 2 1. Introduction

Rollett, Anthony D.

199

Aluminum-Alkaline Metal-Metal Composite Conductor - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

situations and limits the mechanical tension the cables can bear in icing and high wind situations. Alternative materials that increase cable strength generally have poor...

200

Numerical Simulation and Experimental Characterization of a Binary Aluminum Alloy Spray - Application to the Spray Rolling Process  

SciTech Connect (OSTI)

A stochastic, droplet-resolved model has been developed to describe the behavior of a binary aluminum alloy spray during the spray-rolling process. In this process, a molten aluminum alloy is atomized and the resulting spray is depostied on the rolls of a twin-roll caster to produce aluminum strip. The one-way coupled spray model allows the prediction of spray characteristics such as enthalph and solid fraction, and their distribution between the nozzle and the depostion surface. This paper outlines the model development and compares the predicted spray dynamics to PDI measurements performed in a controlled configuration. Predicted and measured droplet velocity and size distributions are presented for two points along the spray centerline along with predicted spray averaged specific enthalph and solid fraction curves.

S. B. Johnson; J.-P. Delplanque; Y. Lin; Y. Zhou; E. J. Lavernia; K. M. McHugh

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Potentiometric Sensor for Real-Time Remote Surveillance of Actinides in Molten Salts  

SciTech Connect (OSTI)

A potentiometric sensor is being developed at the Idaho National Laboratory for real-time remote surveillance of actinides during electrorefining of spent nuclear fuel. During electrorefining, fuel in metallic form is oxidized at the anode while refined uranium metal is reduced at the cathode in a high temperature electrochemical cell containing LiCl-KCl-UCl3 electrolyte. Actinides present in the fuel chemically react with UCl3 and form stable metal chlorides that accumulate in the electrolyte. This sensor will be used for process control and safeguarding of activities in the electrorefiner by monitoring the concentrations of actinides in the electrolyte. The work presented focuses on developing a solid-state cation conducting ceramic sensor for detecting varying concentrations of trivalent actinide metal cations in eutectic LiCl-KCl molten salt. To understand the basic mechanisms for actinide sensor applications in molten salts, gadolinium was used as a surrogate for actinides. The ß?-Al2O3 was selected as the solid-state electrolyte for sensor fabrication based on cationic conductivity and other factors. In the present work Gd3+-ß?-Al2O3 was prepared by ion exchange reactions between trivalent Gd3+ from GdCl3 and K+-, Na+-, and Sr2+-ß?-Al2O3 precursors. Scanning electron microscopy (SEM) was used for characterization of Gd3+-ß?-Al2O3 samples. Microfocus X-ray Diffraction (µ-XRD) was used in conjunction with SEM energy dispersive X-ray spectroscopy (EDS) to identify phase content and elemental composition. The Gd3+-ß?-Al2O3 materials were tested for mechanical and chemical stability by exposing them to molten LiCl-KCl based salts. The effect of annealing on the exchanged material was studied to determine improvements in material integrity post ion exchange. The stability of the ß?-Al2O3 phase after annealing was verified by µ-XRD. Preliminary sensor tests with different assembly designs will also be presented.

Natalie J. Gese; Jan-Fong Jue; Brenda E. Serrano; Guy L. Fredrickson

2012-07-01T23:59:59.000Z

202

Influence of aluminum ions implantation on corrosion behavior of zircaloy-2 alloy in 1 M H2SO4  

Science Journals Connector (OSTI)

The specimens were implanted with aluminum ions with fluence ranging from 1×1016 to 1×1017 ions/cm2 to study the effect of aluminum ion implantation on the aqueous corrosion behavior of zircaloy-2 by metal vapor ...

Dequan Peng ???; Xinde Bai; Hui Sun…

2007-09-01T23:59:59.000Z

203

LIFE Materails: Molten-Salt Fuels Volume 8  

SciTech Connect (OSTI)

The goals of the Laser Inertial Fusion Fission Energy (LIFE) is to use fusion neutrons to fission materials with no enrichment and minimum processing and have greatly reduced wastes that are not of interest to making weapons. Fusion yields expected to be achieved in NIF a few times per day are called for with a high reliable shot rate of about 15 per second. We have found that the version of LIFE using TRISO fuel discussed in other volumes of this series can be modified by replacing the molten-flibe-cooled TRISO fuel zone with a molten salt in which the same actinides present in the TRISO particles are dissolved in the molten salt. Molten salts have the advantage that they are not subject to radiation damage, and hence overcome the radiation damage effects that may limit the lifetime of solid fuels such as TRISO-containing pebbles. This molten salt is pumped through the LIFE blanket, out to a heat exchanger and back into the blanket. To mitigate corrosion, steel structures in contact with the molten salt would be plated with tungsten or nickel. The salt will be processed during operation to remove certain fission products (volatile and noble and semi-noble fission products), impurities and corrosion products. In this way neutron absorbers (fission products) are removed and neutronics performance of the molten salt is somewhat better than that of the TRISO fuel case owing to the reduced parasitic absorption. In addition, the production of Pu and rare-earth elements (REE) causes these elements to build up in the salt, and leads to a requirement for a process to remove the REE during operation to insure that the solubility of a mixed (Pu,REE)F3 solid solution is not exceeded anywhere in the molten salt system. Removal of the REE will further enhance the neutronics performance. With molten salt fuels, the plant would need to be safeguarded because materials of interest for weapons are produced and could potentially be removed.

Moir, R; Brown, N; Caro, A; Farmer, J; Halsey, W; Kaufman, L; Kramer, K; Latkowski, J; Powers, J; Shaw, H; Turchi, P

2008-12-11T23:59:59.000Z

204

Aluminum Zintl anion moieties within sodium aluminum clusters  

SciTech Connect (OSTI)

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have established that aluminum moieties within selected sodium-aluminum clusters are Zintl anions. Sodium–aluminum cluster anions, Na{sub m}Al{sub n}{sup ?}, were generated in a pulsed arc discharge source. After mass selection, their photoelectron spectra were measured by a magnetic bottle, electron energy analyzer. Calculations on a select sub-set of stoichiometries provided geometric structures and full charge analyses for both cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra), and fragment molecular orbital based correlation diagrams.

Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Grubisic, Andrej; Li, Xiang; Ganteför, Gerd; Bowen, Kit H., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnöckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)] [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States)] [Department of Chemistry, University of Maryland at College Park, College Park, Maryland 20742 (United States); Lee, Mal-Soon; Jena, P. [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)] [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kandalam, Anil K., E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University of Pennsylvania, West Chester, Pennsylvania 19383 (United States); Kiran, Boggavarapu, E-mail: AKandalam@wcupa.edu, E-mail: kiran@mcneese.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)

2014-02-07T23:59:59.000Z

205

Spray Rolling Aluminum Strip  

SciTech Connect (OSTI)

Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

2006-05-10T23:59:59.000Z

206

LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-ion Battery Cathode. LiMnPO4 Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-ion...

207

Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications  

E-Print Network [OSTI]

thermal efficiency from 54 percent to 63 percent. However, very few thermal storage materials are compatible for these high temperatures. Molten salts are thermally stable up to 600 degrees C and beyond. Using the molten salts as the TES materials...

Shin, Donghyun

2012-10-19T23:59:59.000Z

208

Injector nozzle for molten salt destruction of energetic waste materials  

DOE Patents [OSTI]

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

209

A new copper borophosphate with novel polymeric chains and its structural correlation with raw materials in molten hydrated flux synthesis  

SciTech Connect (OSTI)

A novel copper borophosphate, Cu{sub 3}[B{sub 2}P{sub 3}O{sub 12}(OH){sub 3}] has been prepared by the molten hydrated flux method. Its crystal structure was determined by the single-crystal X-ray diffraction (monoclinic, Cc, a=6.1895 Å, b=13.6209 Å, c=11.9373 Å, ?=97.62°, V=997.5 Å{sup 3}, Z=4). The three-dimensional framework of the titled compound, is composed by two kinds of polymeric chains and isolated PO{sub 4} tetrahedral. One novel 4-membered tetrahedral rings has been observed in borophosphates. Magnetic measurements indicate that the title compound exits antiferromagnetic interactions. Due to the special reaction medium created by the molten hydrated flux method, a possible structural correlation between the final solids and the raw materials has been noted. - Graphical abstract: The 3D structure consists of a framework composed of CuO{sub x} polyhedra, BO{sub 4} and PO{sub 4} tetrahedra. A intersection angle between the metal chains and borophosphate chains can be noted. Display Omitted - Highlights: • A novel copper borophosphate has been prepared by the molten hydrated flux method. • One novel 4-membered tetrahedral ring has been observed firstly in borophosphates. • A possible structural correlation between the final solids and the raw materials has been noted.

Duan, Ruijing; Liu, Wei, E-mail: Weiliu@ouc.edu.cn; Cao, Lixin; Su, Ge; Xu, Hongmei; Zhao, Chenggong

2014-02-15T23:59:59.000Z

210

EUROSPF Conference APPLICATION TECHNOLOGY OF ALUMINUM BLOW  

E-Print Network [OSTI]

6th EUROSPF Conference APPLICATION TECHNOLOGY OF ALUMINUM BLOW FORMING FOR AUTOMOTIVE CLOSURE PANEL Replacement by aluminum for the closure panels is one of the common methods for lightening car body. However. As a solution to cover the low stamping formability of aluminum, Blow forming technology of aluminum which

Paris-Sud XI, UniversitƩ de

211

Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon  

DOE Patents [OSTI]

A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

Byrne, Stephen C. (Monroeville, PA); Ray, Siba P. (Pittsburgh, PA); Rapp, Robert A. (Columbus, OH)

1984-01-01T23:59:59.000Z

212

Liquid metal Flow Meter - Final Report  

SciTech Connect (OSTI)

Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

Andersen C, Hoogendoom S, Hudson B, Prince J, Teichert K, Wood J, Chase K

2007-01-30T23:59:59.000Z

213

Molten salt as heat transfer fluid for a 500 m2 dish concentrator  

E-Print Network [OSTI]

Molten salt as heat transfer fluid for a 500 m2 dish concentrator NicolƔs del Pozo 1 , Rebecca Dunn. Specifically, the objective was to research the behaviour of molten salt as a heat transfer fluid for the SG4, this initial investigation suggests that the use of molten salt as a heat transfer fluid for the ANU 500 m2

214

Aluminum as a source of background in low background experiments  

E-Print Network [OSTI]

Neutrinoless double beta decay would be a key to understanding the nature of neutrino masses. The next generation of High Purity Germanium experiments will have to be operated with a background rate of better than 10^-5 counts/(kg y keV) in the region of interest around the Q value of the decay. Therefore, so far irrelevant sources of background have to be considered. The metalization of the surface of germanium detectors is in general done with aluminum. The background from the decays of 22Na, 26Al, 226Ra and 228Th introduced by this metalization is discussed. It is shown that only a special selection of aluminum can keep these background contributions acceptable.

B. Majorovits; I. Abt; M. Laubenstein; O. Volynets

2011-05-18T23:59:59.000Z

215

Corrosion of Iron Stainless Steels in Molten Nitrate Salt  

Science Journals Connector (OSTI)

Abstract Energy storage for concentrating solar power (CSP) is a major area of research that seeks to lower the levelized cost of electricity within the aggressive SunShot goals of 6¢/kW-hrth[1–3]. One viable approach is sensible thermal energy storage (TES), which currently utilizes molten nitrate binary salt, stored at 575 °C in the hot tank of a two tank system [4,5]. Increasing the temperature limit within the hot tank requires a detailed understanding of materials corrosion behavior, in addition to salt thermal stability properties. High temperature nickel based alloys are the logical choice for strength and corrosion resistance as elevated temperatures will increase corrosion kinetics, however, the cost of nickel based alloys are nearly four times more expensive than iron based steels [6]. For this reason iron based stainless steels, specifically 321SS and 347SS (nominally Fe-17Cr-9Ni), were chosen for investigation at several temperatures in nitrate salt. 316SS, an elementally similar alloy, was susceptible to stress corrosion cracking while tested at Solar Two [4]. It was suggested that alloys with stabilizing additions of niobium (347SS) or titanium (321SS) would mitigate this deleterious behavior. Flat coupon samples were immersed in binary nitrate salts at temperatures of 400, 500, 600, and 680 °C, with air sparging on all tests. Samples were nominally removed at intervals of 500, 1000, 2000, and 3000 hours to acquire data on time varying weight gain information while simultaneously employing metallography to identify corrosion mechanisms occurring within the melt. Corrosion rates varied dramatically with temperature according to an Arrhenius-type behavior. 347SS and 321SS had very little oxidation for 400 and 500 °C, indicative of a protective corrosion scale and low corrosion kinetics. Data at 600 °C showed that 321SS tended toward linear oxidation behavior based on oxide spallation which was observed on the samples upon removal. Corrosion products at 500 °C had phases of iron oxide, with obvious chromium depletion as observed in energy dispersive spectroscopy (EDS) scans. 600 °C corrosion layers were primarily iron oxide with obvious phases of sodium ferrite on the outer surface. 680 °C marked an excessive rate of corrosion with metal loss in both alloys.

Alan Kruizenga; David Gill

2014-01-01T23:59:59.000Z

216

Molten Oxide Glass Materials for Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Halotechnics, Inc. is developing an energy storage system utilizing a low melting point molten glass as the heat transfer and thermal storage material. This work is supported under a grant from the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E). Advanced oxide glasses promise a potential breakthrough as a low cost, earth abundant, and stable thermal storage material. The system and new glass material will enable grid scale electricity storage at a fraction of the cost of batteries by integrating the thermal storage with a large heat pump device. Halotechnics is combining its proven expertise in combinatorial chemistry with advanced techniques for handling molten glass to design and build a two-tank thermal energy storage system. This system, operating at a high temperature of 1200 °C and a low temperature of 400 °C, will demonstrate sensible heat thermal energy storage using a uniquely formulated oxide glass. Our molten glass thermal storage material has the potential to significantly reduce thermal storage costs once developed and deployed at commercial scale. Thermal storage at the target temperature can be integrated with existing high temperature gas turbines that significantly increase efficiencies over today's steam turbine technology. This paper describes the development and selection of Halotechnics’ molten glass heat transfer fluids with some additional systems considerations.

B. Elkin; L. Finkelstein; T. Dyer; J. Raade

2014-01-01T23:59:59.000Z

217

Oxygen electrode reaction in molten carbonate fuel cells  

SciTech Connect (OSTI)

Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

Appleby, A.J.; White, R.E.

1992-07-07T23:59:59.000Z

218

Sulfur tolerant molten carbonate fuel cell anode and process  

DOE Patents [OSTI]

Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

Remick, Robert J. (Naperville, IL)

1990-01-01T23:59:59.000Z

219

Molten-Salt-Based Growth of Group III Nitrides  

DOE Patents [OSTI]

A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

Waldrip, Karen E. (Albuquerque, NM); Tsao, Jeffrey Y. (Albuquerque, NM); Kerley, Thomas M. (Albuquerque, NM)

2008-10-14T23:59:59.000Z

220

Method for forming consumable electrodes from metallic chip scraps  

DOE Patents [OSTI]

The method relates to metallurgical recycling of waste products, preferably titanium alloys chips scrap. Accordingly after crushing and cleaning, the chip scrap is subjected to vacuum-thermal degassing (VTD); the chip scrap is pressed into briquettes; the briquettes are placed into a mould allowing sufficient remaining space for the addition of molten metal alloy; the mould is pre-heated before filling with the molten metal alloy; the mould remaining space is filled with molten metal alloy. After cooling, the electrode is removed from the mould. The method provides a means for 100% use of chip scrap in producing consumable electrodes having increased mechanical strength and reduced interstitial impurities content leading to improved secondary cast alloys.

Girshov, Vladimir Leonidovich (St. Petersburg, RU); Podpalkin, Arcady Munjyvich (St. Petersburg, RU); Treschevskiy, Arnold Nikolayevich (St. Petersburg, RU); Abramov, Alexey Alexandrovich (St. Petersburg, RU)

2005-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Metal-ceramic joint assembly  

DOE Patents [OSTI]

A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

Li, Jian (New Milford, CT)

2002-01-01T23:59:59.000Z

222

Aluminum across the Americas: Caribbean Mobilities and Transnational American Studies  

E-Print Network [OSTI]

E. Jamaica in the World Aluminum Industry, 1838–1973, Vol.2007. Doordan, Dennis. “Promoting Aluminum: Designers andthe American Aluminum Industry. ” Design Issues 9, no. 2 (

Sheller, Mimi

2013-01-01T23:59:59.000Z

223

Aluminum-detoxifying compounds in roots of Eucalyptus camaldulensis  

E-Print Network [OSTI]

M, Yamanoshita T, Kojima K, Role of aluminum-bindingligands in aluminum resistance of Eucalyptus camaldulensisH, Sasaki S, Kojima K. Aluminum distribution and reactive

Tahara, Ko; Hashida, Koh; Ohara, Seiji; Kojima, Katsumi; Shinohara, Kenji

2009-01-01T23:59:59.000Z

224

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...  

Broader source: Energy.gov (indexed) [DOE]

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide...

225

Electrochemical separation of actinides and fission products in molten salt electrolyte  

SciTech Connect (OSTI)

Molten salt electrochemical separation may be applied to accelerator-based conversion (ABC) and transmutation systems by dissolving the fluoride transport salt in LiCl-KCl eutectic solvent. The resulting fluoride-chloride mixture will contain small concentrations of fission product rare earths (La, Nd, Gd, Pr, Ce, Eu, Sm, and Y) and actinides (U, Np, Pu, Am, and Cm). The Gibbs free energies of formation of the metal chlorides are grouped advantageously such that the actinides can be deposited on a solid cathode with the majority of the rare earths remaining in the electrolyte. Thus, the actinides are recycled for further transmutation. Rockwell and its partners have measured the thermodynamic properties of the metal chlorides of interest (rare earths and actinides) and demonstrated separation of actinides from rare earths in laboratory studies. A model is being developed to predict the performance of a commercial electrochemical cell for separations starting with PUREX compositions. This model predicts excellent separation of plutonium and other actinides from the rare earths in metal-salt systems.

Gay, R. L.; Grantham, L. F.; Fusselman, S. P.; Grimmett, D. L.; Roy, J. J. [Rockwell International/Rocketdyne Division Canoga Park, California 91309-7922 (United States)

1995-09-15T23:59:59.000Z

226

Dispersion of plasmons at the surface of a metal and at the interface between two metals  

Science Journals Connector (OSTI)

The dispersion of plasmons at the surface of a metal and at the interface between two metals is derived by a proper combination of electrodynamics with the hydrodynamic approximation. With a two-step model we discuss the effect of a transition region at the surface of a metal and we so explain recent measurements by Krane and Raether for aluminum.

F. Forstmann and H. Stenschke

1978-02-15T23:59:59.000Z

227

Joining of 6061 Aluminum Matrix-Ceramic Particle Reinforced Composites  

E-Print Network [OSTI]

) ) Joining of 6061 Aluminum Matrix-Ceramic Particle Reinforced Composites by R. Kiehn and T. W................... .. ....... ... ... 3 Literature Review ......... ...... ..... ... . . 3 Conventional Aluminum Brazing ........ 4 Aluminum Composite Joining ........... 5 Aluminum Joining by Unconventional Methods

Eagar, Thomas W.

228

Laser fusing of HVOF thermal sprayed alloy 625 on nickel-aluminum bronze  

SciTech Connect (OSTI)

A preliminary study has been conducted to determine the feasibility of laser fusing alloy 625 onto nickel-aluminum-bronze base metal. Laser fusing was performed by melting a pre-coated surface of alloy 625 that had been applied by the high velocity oxyfuel (HVOF) thermal spray process. The laser fusing was successful in producing a metallurigical bond between alloy 625 and the substrate. Minor modification to the heat-affected zone of the base metal was observed by microhardness measurements, and defect-free interfaces were produced between alloy 625 and nickel-aluminum-bronze by the process. The laser is a high energy density source that can be used for precise thermal processing of materials including surface modification. Laser fusing is the full or partial melting of a coating material that has been previously applied in some fashion to the substrate. Thermal spray coating of nickel-aluminum-bronze material with alloy 625 was conducted at the David Taylor Research Center. Nickel-aluminum-bronze specimens 2 x 3-in. by 1/2-in. thick were coated with alloy 25 utilizing the HVOF equipment. Coating thicknesses of approximately 0.014-in. (0.3 mm) were produced for subsequent laser fusing experiments. A preliminary study has been conducted to determine the feasibility of laser fusing a HVOF thermal sprayed alloy 625 coating onto nickel-aluminum-bronze base metal. Conclusions of this investigation were as follows: (1) Laser fusing was successful in producing a metallurgical bond between HVOF thermal sprayed alloy 625 and the nickel-aluminum-bronze. (2) Only minor microstructural modification to the heat-affected zone of the base metal ws observed by microhardness measurements. (3) Defect-free interfaces were produced between thermal sprayed alloy 625 and nickel-aluminum-bronze by laser fusing.

Brenna, R.T.; Pugh, J.L.; Denney, P.E. [and others

1994-12-31T23:59:59.000Z

229

Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward  

SciTech Connect (OSTI)

Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

2010-03-01T23:59:59.000Z

230

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide,  

E-Print Network [OSTI]

Nanotube Fabrication byNanotube Fabrication by Anodic Aluminum Oxide,Anodic Aluminum Oxide, Self-regulating phenomena in materials science: Self-assembly of nanopores during anodic oxidation of aluminum (AAO) Self combined anodic aluminum oxide (AAO) nanostructures with atomic layer deposition (ALD) to fabricate

Rubloff, Gary W.

231

NW Aluminum Industry Study (contracts/subscription)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subscription Contracts Announcements Subscription Strategy Subscription Products Aluminum Study IOUPublic Settlement Slice of the System Billing Procedures Firstgov Northwest...

232

Microstructural Characterization of 6061 Aluminum to 304L Stainless Steel Inertia Welds  

SciTech Connect (OSTI)

'Microstructural characterization of 6061-T6 aluminum-to-Type 304L stainless steel inertia welds provided a technical basis to conclude that transition joints fabricated from such welds should satisfactorily contain helium/hydrogen gas mixtures. This conclusion is based on the lack of semi-continuous alignments of particles and/or inclusions at, or near, the aluminum-to-stainless steel interface. These dissimilar metal transition joints play a key role in the operation of an accelerator driven, spallation neutron source designed for the production of tritium. The Accelerator Production of Tritium system will produce tritium through neutron interactions with 3He gas contained in water-cooled, 6061-T6 aluminum pressure tubes. Current design concepts include thousands of thin-walled pressure tubes distributed throughout a number of aluminum-clad, lead-filled, blanket modules. The aluminum pressure tubes are connected to a tritium extraction and purification system through a stainless steel manifold. The transition from aluminum to stainless steel is made via transition joints machined from the aluminum-to-stainless steel inertia welds. The paper describes the baseline microstructural characterization of the welds, including optical, scanning and transmission electron microscopy and uses that characterization to evaluate potential gas leakage across the weld.'

Dunn, K.A.

1999-09-29T23:59:59.000Z

233

Steam methane reforming in molten carbonate salt. Final report  

SciTech Connect (OSTI)

This report documents the work accomplished on the project {open_quotes}Steam Methane Reforming in Molten Carbonate Salt.{close_quotes}. This effort has established the conceptual basis for molten carbonate-based steam reforming of methane. It has not proceeded to prototype verification, because corrosion concerns have led to reluctance on the part of large hydrogen producers to adopt the technology. Therefore the focus was shifted to a less corrosive embodiment of the same technology. After considerable development effort it was discovered that a European company (Catalysts and Chemicals Europe) was developing a similar process ({open_quotes}Regate{close_quotes}). Accordingly the focus was shifted a second time, to develop an improvement which is generic to both types of reforming. That work is still in progress, and shows substantial promise.

Erickson, D.C.

1996-05-01T23:59:59.000Z

234

Nuclear Hybrid Energy Systems: Molten Salt Energy Storage  

SciTech Connect (OSTI)

With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

2014-07-01T23:59:59.000Z

235

Aluminum: Principled Scenario Exploration through Minimality  

E-Print Network [OSTI]

Aluminum: Principled Scenario Exploration through Minimality Tim Nelson1, Salman Saghafi1, Daniel J. We present Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios

Dougherty, Daniel J.

236

Aluminum--2004 5. Areferencethatincludesasectionmark()isfoundintheinternet  

E-Print Network [OSTI]

Aluminum--2004 5. Areferencethatincludesasectionmark(Ā§)isfoundintheinternet ReferenceCitedsection. Aluminum ByPatriciaA.Plunkert Domestic survey data and tables were prepared by Benjamin S. Goff.S.GeologicalSurvey(uSGS)requestforproductiondata. CommercialDevelopmentCo.(CDC)ofSt.louis,mO, boughtKaiserAluminumCorp.'s200,000-metric-ton-per-year (t

237

Aluminum: Principled Scenario Exploration through Minimality  

E-Print Network [OSTI]

Aluminum: Principled Scenario Exploration through Minimality Tim Nelson1, Salman Saghafi1, Daniel J Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios and backtracking. It also

Krishnamurthi, Shriram

238

MODELING OF ALUMINUM NANOPARTICLE FORMATION R. Schefflan  

E-Print Network [OSTI]

MODELING OF ALUMINUM NANOPARTICLE FORMATION R. Schefflan D. Kalyon S. Kovenklioglu Stevens Picatinny Arsenal's process for making alumina coated nanoparticles of aluminum involves the conversion of gaseous aluminum, in the presence of helium carrier gas, to solid nanoparticles and their subsequent

239

REQUEST BY ALUMINUM COMPANY OF AMERICA FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS  

Broader source: Energy.gov (indexed) [DOE]

SS796C; DOE WAIVER DOCKET W(A)-96-022[ORO- SS796C; DOE WAIVER DOCKET W(A)-96-022[ORO- 637] Aluminum Company of America (Alcoa) has made a timely request for an advance waiver to worldwide rights in Subject Inventions made in the course of or under Department of Energy (DOE) Contract No. DE-AC05-840R21400; Subcontract No. 86X-SS796C. The scope of the work calls for the development of processes for forming aluminum auto parts to make the use of aluminum in the industry feasible and cost effective. Alcoa will be assisting the Department of Energy in developing advanced materials for the automobile industry, namely to develop Semi-Solid Metal (SSM) technology to produce new and existing light weight aluminum alloy castings having greater than fifteen percent ductility. The United States Automotive Materials Partnership (USAMP) will assist Alcoa on an

240

A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system  

SciTech Connect (OSTI)

At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K. [Power and Industrial Research and Development Center, Toshiba Corporation Power Systems Company, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan); Oomori, T. [Chemical System Design and Engineering Department, Toshiba Corporation Power Systems Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Heavy metals in wastewater: Their removal through algae adsorption and their roles in microwave assisted pyrolysis of algae.  

E-Print Network [OSTI]

??Chlorella vulgaris was found as a good biosorbent for copper, zinc and aluminum. pH value, reaction time, initial metal and algal sorbents concentrations were considered… (more)

Zhao, Yuan

2012-01-01T23:59:59.000Z

242

On the Chemla effect in molten alkali nitrates  

Science Journals Connector (OSTI)

The Chemla effect concerns the strong composition dependence of the internal ionic mobilities of cations in mixtures of two molten salts with a common anion in which the mobility of the large cation can be higher than the small one at low concentrations of the latter. Molecular dynamics simulations of molten ( Li Cs)NO 3 ( Li K)NO 3 ( Li Na)NO 3 ( Na Cs)NO 3 each at two different compositions at a given temperature and also pure LiNO 3 and pure KNO 3 have been performed with the aim of reproducing the Chemla effect. The key role played by anion polarization on the Chemla effect in molten alkali nitrates is demonstrated by comparing the calculated mobilities using nonpolarizable and polarizable models. Polarization effects were included in the simulations by using a previously proposed fluctuating charge model (FCM) for the NO 3 ? anion. It is shown that a single potential model for a ( M 1 M 2 ) NO 3 mixture gives the correct composition dependence of the M 1 and the M 2 mobilities provided that polarization effects are included in the model. The FCM is thus transferable between different systems but not its nonpolarizable counterpart. Structure and dynamics of the simulated systems are discussed in light of proposed models for the Chemla effect.

Mauro C. C. Ribeiro

2002-01-01T23:59:59.000Z

243

SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modular and Scalable Baseload Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility to someone by E-mail Share SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Facebook Tweet about SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Twitter Bookmark SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Google Bookmark SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Delicious Rank SunShot Initiative: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility on Digg Find More places to share SunShot Initiative: Modular and Scalable

244

Determination of boron in aluminum and aluminum-magnesium alloy by charged particle activation analysis  

SciTech Connect (OSTI)

Charge particle activation analysis is applied to the determination of boron in aluminum and aluminum-magnesium alloy. The /sup 10/B(p,..cap alpha..)/sup 7/Be, the /sup 10/B(d,..cap alpha..n)/sup 7/Be, and the /sup 10/B(d,n)/sup 11/C reactions are used. Proton activation allows an instrumental determination. When the /sup 10/B(d,..cap alpha..n)/sup 7/Be reaction is used, beryllium-7 is separated from the matrix by liquid-liquid extraction; beryllium acetylacetonate is extracted with carbon tetrachloride after complexation of other metal ions with ethylenediaminetetraacetic acid. After back extraction beryllium is precipitated as beryllium hydroxide and heated to beryllium oxide. When the /sup 10/B(d,n)/sup 11/C reaction is used, carbon-11 is separated as carbon dioxide by dissolution of the sample in a mixture of sulfuric acid, phosphoric acid, water, and potassium dichromate. The chemical yield of both separation methods was determined. The results obtained have a relative standard deviation of 5-9% at the 1-33 ..mu..g/g concentration. The different nuclear reactions yield results that are in good mutual agreement and also agree satisfactorily with those of nonnuclear analytical methods.

Mortier, R.; Vandecasteele, C.; Strijckmans, K.; Hoste, J.

1984-10-01T23:59:59.000Z

245

Complex foamed aluminum parts as permanent cores in aluminum castings  

SciTech Connect (OSTI)

The feasibility of complex shaped aluminum foam parts as permanent cores in aluminum castings has been investigated. The foamed samples were prepared by injection of the foam into sand molds. It turned out that sound castings can be produced if the foam core is properly preheated and/or surface treated before casting. The effect of the foam core on the performance of the casting was evaluated by in compression testing and by measuring structural damping. The gain in the related properties turned out to be much higher than the weight increase of the casting due to the presence of the core. The weight increase may be partially offset through a reduction of the wall-thickness of the shell.

Simancik, F. [Inst. of Materials and Machine Mechanics, Bratislava (Slovakia); Schoerghuber, F. [Illichmann GmbH, Altmuenster (Austria)

1998-12-31T23:59:59.000Z

246

Copper gettering by aluminum precipitates in aluminum-implanted silicon  

SciTech Connect (OSTI)

Copper in Si is shown to be strongly gettered by Al-rich precipitates formed by implanting Al to supersaturation and followed by annealing. At temperatures ranging from 600 to 800 C a layer containing Al precipitates is found to getter Cu from Cu silicide located on the opposite side of a 0.25-mm Si wafer, indicating a substantially lower chemical potential for the Cu in the molten-A1 phase. Cu gettering proceeds rapidly until an atomic ratio of approximately 2 Cu atoms to 1 Al atom is reached in the precipitated Al region, after which the gettering process slows. Redistribution of Cu from one Al-rich layer to another at low Cu concentrations demonstrates that a segregation-type gettering mechanism is operating. Cu gettering occurs primarily in the region containing the precipitated Al rather than the region where the Al is entirely substitutional.

PETERSEN,GARY A.; MYERS JR.,SAMUEL M.

2000-03-20T23:59:59.000Z

247

Inertia of the Carrier of Electricity in Copper and Aluminum  

Science Journals Connector (OSTI)

In this experiment the mass-charge ratio of the carrier of an electric current in a metallic conductor was precisely determined. This was done by measuring the change in amplitude resulting from reversing the current in a cylindrical coil supported as a torsional pendulum. Determinations of me of the carrier were made for coils of both copper and aluminum and various current values were used in each coil. The average value obtained for me of the carrier is 5.69×10-9 gram per coulomb. The accepted value of this ratio for the electron is 5.68×10-9 gram per coulomb.

C. F. Kettering and G. G. Scott

1944-11-01T23:59:59.000Z

248

Molten-Caustic-Leaching (MCL or Gravimelt) System Integration Project  

SciTech Connect (OSTI)

This is a report of the results obtained from the operation of an integrated test circuit for the Molten-Caustic-Leaching (MCL or Gravimelt) process for the desulfurization and demineralization of coal. The objectives of operational testing of the 20 pounds of coal per hour integrated MCL test circuit are: (1) to demonstrate the technical capability of the process for producing a demineralized and desulfurized coal that meets New Source Performance Standards (NSPS); (2) to determine the range of effective process operation; (3) to test process conditions aimed at significantly lower costs; and (4) to deliver product coal.

Not Available

1990-11-01T23:59:59.000Z

249

Depolarized light-scattering study of molten zinc chloride  

Science Journals Connector (OSTI)

Depolarized light-scattering experiments on molten ZnCl2 have been performed in the frequency range 1–4000 GHz between 300 and 650 °C. The ? relaxation was observed up to 650 °C. Comparison with mode coupling theory was attempted but gave inconclusive results due to the strong boson peak. The crossover temperature Tc was found to be in the range 270–310 °C. The thermal evolution of the boson peak in the liquid phase was followed up to 650 °C.

M. J. Lebon; C. Dreyfus; G. Li; A. Aouadi; H. Z. Cummins; R. M. Pick

1995-05-01T23:59:59.000Z

250

Heat transfer at the mold-metal interface in permanent mold casting of aluminum alloys project. Annual project status report for the period October 1, 1997 to September 30, 1998  

SciTech Connect (OSTI)

In the first year of this three-year project, substantial progress has been achieved. This project on heat transfer coefficients in metal permanent mold casting is being conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigations of squeeze casting and semi-solid casting at CMI-Tech Center, and the experimental investigation of low pressure permanent mold casting at Amcast Automotive. U-M did an initial geometry which was defined for ProCAST to solve, and then a geometry half the size was defined and solved using the same boundary conditions. A conceptual mold geometry was examined and is represented as an axisymmetric element.Furthermore, the influences of the localized heat transfer coefficients on the casting process were carefully studied. The HTC Evaluator has been proposed and initially developed by the U-M team. The Reference and the Database Modules of the HTC Evaluator have been developed, and extensively tested. A series of technical barriers have been cited and potential solutions have been surveyed. At the CMI-Tech Center, the Kistler direct cavity pressure measurement system has been purchased and tested. The calibrations has been evaluated. The probe is capable of sensing a light finger pressure. The experimental mold has been designed and modified. The experimental mold has been designed and modified. The first experiment is scheduled for October 14, 1998. The geometry of the experimental hockey-puck casting has been given to the U-M team for numerical analysis.

Pehlke, R.D.; Hao, S.W.

1998-09-30T23:59:59.000Z

251

Coated metal fiber coalescing cell  

SciTech Connect (OSTI)

A cell is described for coalescing oil droplets dispersed in a water emulsion including an elongated perforated tube core into which the emulsion is injected, layers of oleophilic plastic covered metal mat wound about the core through which the emulsion is forced to pass, the fibers of the metal mat being covered by oleophilic plastic such as vinyl, acrylic, polypropylene, polyethylene, polyvinyl chloride, the metal being in the form of layers of expanded metal or metal fibers, either aluminum or stainless steel. In manufacturing the cell a helix wound wire is formed around the cylindrical plastic coated metal to retain it in place and resist pressure drop of fluid flowing through the metal fibers. In addition, the preferred arrangement includes the use of an outer sleeve formed of a mat of fibrous material such as polyester fibers, acrylic fibers, modacrylic fibers and mixtures thereof.

Rutz, W.D.; Swain, R.J.

1980-12-23T23:59:59.000Z

252

MHD EFFECTS ON HEAT TRANSFER IN A MOLTEN SALT BLANKET Sergey Smolentsev, Reza Miraghaie, Mohamed Abdou  

E-Print Network [OSTI]

MHD EFFECTS ON HEAT TRANSFER IN A MOLTEN SALT BLANKET Sergey Smolentsev, Reza Miraghaie, Mohamed-mail (Sergey Smolentsev): Sergey@fusion.ucla.edu Heat transfer in closed channel flows of molten salts (MS of the concept is that the flows in the FW channels are turbulent to provide a high heat transfer coefficient

Abdou, Mohamed

253

MOLTEN OXIDE ELECTROLYSIS FOR LUNAR OXYGEN GENERATION USING IN-SITU RESOURCES  

E-Print Network [OSTI]

.; Woburn, MA, 01801, USA Keywords: ISRU, Molten Oxide Electrolysis, Inert Anode, Oxygen Generation Abstract demonstrated suitable inert anode material, but its use had been limited to laboratory-scale testing owing 50:50 (wt%) iridium-tungsten alloy were shown to be functional inert anodes for molten oxide

Sadoway, Donald Robert

254

Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility  

Broader source: Energy.gov [DOE]

eSolar, under the Baseload CSP FOA, is designing a 100-MW, 75% capacity factor, molten salt power tower plant, based around a molten salt receiver and heliostat field module with a nominal thermal rating of 50 MWth. They are taking a modular approach, which can be scaled through replication of the receiver/field module to meet output and capacity factor requirements.

255

Mechanism of mass transfer between a bubble initially composed of oxygen and molten glass1  

E-Print Network [OSTI]

Mechanism of mass transfer between a bubble initially composed of oxygen and molten glass1 F Ā­ BP 135, 93303 Aubervilliers Cedex, France Abstract The bubble removal from molten glass is an important problem in glass melting process. In this paper, the mass transfer undergone by a bubble rising

Boyer, Edmond

256

Native Hydrogen Bonds in a Molten Globule: The Apoflavodoxin Thermal Intermediate  

E-Print Network [OSTI]

Native Hydrogen Bonds in a Molten Globule: The Apoflavodoxin Thermal Intermediate MarƵĆ?a P. IruĆ?n1 in surface- exposed hydrogen bonds connecting secondary-structure elements in the native protein. All hydrogen bonds analysed are formed in the molten globule intermediate, either with native strength

Sancho, Javier

257

Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product  

DOE Patents [OSTI]

In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.

Dykes, Charles D. (303 Shore Rd., Milton, VT); Daniel, Sabah S. (303 Shore Rd., Pittsburgh, PA); Wood, J. F. Barry (303 Shore Rd., Burlington, VT 05401)

1990-02-20T23:59:59.000Z

258

Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum  

E-Print Network [OSTI]

Final Report on the Safety Assessment of Aluminum Silicate, Calcium Silicate, Magnesium Aluminum Silicate, Magnesium Silicate, Magnesium Trisilicate, Sodium Magnesium Silicate, Zirconium Silicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Lithium Magnesium Silicate, Lithium Magnesium

Ahmad, Sajjad

259

Susan E. Latturner Associate Professor Phone: (850) 644-4074  

E-Print Network [OSTI]

earth element, a late transition metal, aluminum, and silicon were grown from molten aluminum. Magnetic intercalated into transition metal chalcogenides to promote shearing of the layers. #12;2 Technical Experience National Meeting, Boston, MA, December 2, 2013. *Invited talk: "Ionic and metallic metal carbides grown

Latturner, Susan

260

Nd:YAG laser welding aluminum alloys  

SciTech Connect (OSTI)

Autogenous Nd:YAG laser welding wrought 4047, 1100, 3003, 2219, 5052, 5086, 5456, and 6061 and cast A356 aluminum alloys to cast A356 aluminum alloy in restrained annular weld joints was investigated. The welds were 12.7 mm (0.375 in.) and 9.5 mm (0.375 in.) diameter with approximately 0.30 mm (0.012 in.) penetration. This investigation determined 4047 aluminum alloy to be the optimum alloy for autogenous Nd:YAG laser welding to cast A356 aluminum alloy. This report describes the investigation and its results.

Jimenez, E. Jr.

1992-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Aluminum-stabilized NB3SN superconductor  

DOE Patents [OSTI]

An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

Scanlan, Ronald M. (Livermore, CA)

1988-01-01T23:59:59.000Z

262

Activated Aluminum Hydride Hydrogen Storage Compositions - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions Brookhaven National Laboratory Contact BNL About This...

263

The Effect of Impurities on the Processing of Aluminum Alloys  

SciTech Connect (OSTI)

For this Aluminum Industry of the Future (IOF) project, the effect of impurities on the processing of aluminum alloys was systematically investigated. The work was carried out as a collaborative effort between the Pennsylvania State University and Oak Ridge National Laboratory. Industrial support was provided by ALCOA and ThermoCalc, Inc. The achievements described below were made. A method that combines first-principles calculation and calculation of phase diagrams (CALPHAD) was used to develop the multicomponent database Al-Ca-K-Li-Mg-Na. This method was extensively used in this project for the development of a thermodynamic database. The first-principles approach provided some thermodynamic property data that are not available in the open literature. These calculated results were used in the thermodynamic modeling as experimental data. Some of the thermodynamic property data are difficult, if not impossible, to measure. The method developed and used in this project allows the estimation of these data for thermodynamic database development. The multicomponent database Al-Ca-K-Li-Mg-Na was developed. Elements such as Ca, Li, Na, and K are impurities that strongly affect the formability and corrosion behavior of aluminum alloys. However, these impurity elements are not included in the commercial aluminum alloy database. The process of thermodynamic modeling began from Al-Na, Ca-Li, Li-Na, K-Na, and Li-K sub-binary systems. Then ternary and higher systems were extrapolated because of the lack of experimental information. Databases for five binary alloy systems and two ternary systems were developed. Along with other existing binary and ternary databases, the full database of the multicomponent Al-Ca-K-Li-Mg-Na system was completed in this project. The methodology in integrating with commercial or other aluminum alloy databases can be developed. The mechanism of sodium-induced high-temperature embrittlement (HTE) of Al-Mg is now understood. Using the thermodynamic database developed in this project, thermodynamic simulations were carried out to investigate the effect of sodium on the HTE of Al-Mg alloys. The simulation results indicated that the liquid miscibility gap resulting from the dissolved sodium in the molten material plays an important role in HTE. A liquid phase forms from the solid face-centered cubic (fcc) phase (most likely at grain boundaries) during cooling, resulting in the occurrence of HTE. Comparison of the thermodynamic simulation results with experimental measurements on the high-temperature ductility of an Al-5Mg-Na alloy shows that HTE occurs in the temperature range at which the liquid phase exists. Based on this fundamental understanding of the HTE mechanism during processing of aluminum alloy, an HTE sensitive zone and a hot-rolling safe zone of the Al-Mg-Na alloys are defined as functions of processing temperature and alloy composition. The tendency of HTE was evaluated based on thermodynamic simulations of the fraction of the intergranular sodium-rich liquid phase. Methods of avoiding HTE during rolling/extrusion of Al-Mg-based alloys were suggested. Energy and environmental benefits from the results of this project could occur through a number of avenues: (1) energy benefits accruing from reduced rejection rates of the aluminum sheet and bar, (2) reduced dross formation during the remelting of the aluminum rejects, and (3) reduced CO2 emission related to the energy savings. The sheet and extruded bar quantities produced in the United States during 2000 were 10,822 and 4,546 million pounds, respectively. It is assumed that 50% of the sheet and 10% of the bar will be affected by implementing the results of this project. With the current process, the rejection rate of sheet and bar is estimated at 5%. Assuming that at least half of the 5% rejection of sheet and bar will be eliminated by using the results of this project and that 4% of the aluminum will be lost through dross (Al2O3) during remelting of the rejects, the full-scale industrial implementation of the project results would lead to energy

Zi-Kui Liu; Shengjun Zhang; Qingyou Han; Vinod Sikka

2007-04-23T23:59:59.000Z

264

Process for production of a metal hydride  

DOE Patents [OSTI]

A process for production of a metal hydride compound MH.sub.x, wherein x is one or two and M is an alkali metal, Be or Mg. The process comprises combining a compound of formula (R.sup.1O).sub.xM with aluminum, hydrogen and at least one metal selected from among titanium, zirconium, hafnium, niobium, vanadium, tantalum and iron to produce a compound of formula MH.sub.x. R.sup.1 is phenyl or phenyl substituted by at least one alkyl or alkoxy group. A mole ratio of aluminum to (R.sup.1O).sub.xM is from 0.1:1 to 1:1. The catalyst is present at a level of at least 200 ppm based on weight of aluminum.

Allen, Nathan Tait; Butterick, III, Robert; Chin, Arthur Achhing; Millar, Dean Michael; Molzahn, David Craig

2014-08-12T23:59:59.000Z

265

iCons, 2011 Alzheimers and Aluminum: Lesson Plan  

E-Print Network [OSTI]

Ā© iCons, 2011 Alzheimers and Aluminum: Lesson Plan Handouts to explore mechanistic link between Alzheimer's and aluminum 5. Brief proposal expanding Points to Aluminum's Link With Alzheimer's Disease" from 1989. Provide handout

Auerbach, Scott M.

266

Uncertainty Studies of Real Anode Surface Area in Computational Analysis for Molten Salt Electrorefining  

SciTech Connect (OSTI)

This study examines how much cell potential changes with five differently assumed real anode surface area cases. Determining real anode surface area is a significant issue to be resolved for precisely modeling molten salt electrorefining. Based on a three-dimensional electrorefining model, calculated cell potentials compare with an experimental cell potential variation over 80 hours of operation of the Mark-IV electrorefiner with driver fuel from the Experimental Breeder Reactor II. We succeeded to achieve a good agreement with an overall trend of the experimental data with appropriate selection of a mode for real anode surface area, but there are still local inconsistencies between theoretical calculation and experimental observation. In addition, the results were validated and compared with two-dimensional results to identify possible uncertainty factors that had to be further considered in a computational electrorefining analysis. These uncertainty factors include material properties, heterogeneous material distribution, surface roughness, and current efficiency. Zirconium's abundance and complex behavior have more impact on uncertainty towards the latter period of electrorefining at given batch of fuel. The benchmark results found that anode materials would be dissolved from both axial and radial directions at least for low burn-up metallic fuels after active liquid sodium bonding was dissolved.

Sungyeol Choi; Jaeyeong Park; Robert O. Hoover; Supathorn Phongikaroon; Michael F. Simpson; Kwang-Rag Kim; Il Soon Hwang

2011-09-01T23:59:59.000Z

267

A study on the oxidation characteristics of cast irons containing aluminum  

SciTech Connect (OSTI)

Isothermal-oxidation characteristics of cast irons containing aluminum (5-15% Al) from 700 to 1000{degrees}C in air have been studied. In addition to mass-gain measurements, the morphology and composition of the oxide scales have been examined by SEM-EDX system and XRD analysis. A normal Fe-5Al-C alloy does not develop protective, adherent scales. Even the addition of misch metal and calcium silicide to such an alloy does not improve its oxidation resistance. But aluminum cast iron develops considerable oxidation resistance only when a sufficient quantity of silicon is also present in the alloy. Treatment of the alloy with misch metal and calcium silicide together assists in protective scale formation. Among the alloys investigated Fe-15Al-Si-C treated with misch metal and calcium silicide shows minimum oxidation at 1000{degrees}C.

Ghosh, S.; Prodhan, A. [National Metallurigical Laboratory, Jamshedpur (India); Mohanty, O.N. [Tata Steel, Jamshedpur (India)] [and others

1996-02-01T23:59:59.000Z

268

Investigation of aluminum surface cleaning using cavitating fluid flow  

SciTech Connect (OSTI)

This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavi?iaus str.28, 03224, Vilnius (Lithuania)

2013-12-16T23:59:59.000Z

269

Microstructural issues in a friction-stir-welded aluminum alloy  

SciTech Connect (OSTI)

Recent observations of microstructures associated with friction-stir welding (FSW) in a number of aluminum alloys have consistently demonstrated the actual weld zone to consist of a (dynamically) recrystallized grain structure resulting from the extreme, solid-state, plastic deformation characterizing the process. Because of solubilities associated with the various precipitates in 7075 and 6061 aluminum alloys, and the fact that the precipitates were either homogeneously distributed throughout both the original (unwelded) work-piece plates and the well zones (or formed varying densities of Widmanstaetten patterns within the original and recrystallized grains), it has been difficult to follow the stirring of stable, second-phase particles from the base metal (work-piece) into the weld zone. In the present investigation, a compositionally modified 1100 aluminum alloy (nominally 99.2% Al, 0.5% Fe, 0.15% Cu, 0.12% Si, 0.05 Mn, 0.04 Ti, balance in weight percent of Be and Mg), forming a stable microdendritic (second-phase), equiaxed, cell structure was friction-stir welded. These thermally stable, geometrically specific, precipitates in the base metal were compared with their disposition within the friction-stir-weld zone. In addition, as-cast plates of this alloy were cold-rolled 50% and friction-stir-welded in order to compare these two schedules (as-cast and 50% cold-rolled) in terms of residual hardness variations and related microstructural issues as well as the effect of prior deformation on the friction-stir welding process.

Flores, O.V.; Kennedy, C.; Murr, L.E.; Brown, D.; Pappu, S.; Nowak, B.M.; McClure, J.C. [Univ. of Texas, El Paso, TX (United States)] [Univ. of Texas, El Paso, TX (United States)

1998-02-03T23:59:59.000Z

270

DOE - Office of Legacy Management -- Hunter Douglas Aluminum...  

Office of Legacy Management (LM)

Hunter Douglas Aluminum Plant Div of Bridgeport Brass Co - CA 11 FUSRAP Considered Sites Site: HUNTER DOUGLAS ALUMINUM PLANT, DIV. OF BRIDGEPORT BRASS CO. (CA.11 ) Eliminated from...

271

Magnesium Replacement of Aluminum Cast Components in a Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Magnesium Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a...

272

ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN  

E-Print Network [OSTI]

ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN A THESISSUBMITTEDTO THE GRADUATE Section(1994)cruiseswere analyzed for their aluminum (Al) content; these two data setswere then combined

Luther, Douglas S.

273

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Aluminum (DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

274

Ultrahigh-Efficiency Aluminum Production Cells | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultrahigh-Efficiency Aluminum Production Cells Ultrahigh-Efficiency Aluminum Production Cells ultrahi-effaluminum.pdf More Documents & Publications U.S. Energy Requirements for...

275

Simplified Reference Electrode for Electrorefining of Spent Nuclear Fuel in High Temperature Molten Salt  

SciTech Connect (OSTI)

Pyrochemical processing plays an important role in development of proliferation- resistant nuclear fuel cycles. At the Idaho National Laboratory (INL), a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor II (EBR-II) in the last decade. Electrorefining in a high temperature molten salt is considered a signature or central technology in pyroprocessing fuel cycles. Separation of actinides from fission products is being demonstrated by electrorefining the spent fuel in a molten UCl3-LiCl-KCl electrolyte in two engineering scale electrorefiners (ERs). The electrorefining process is current controlled. The reference electrode provides process information through monitoring of the voltage difference between the reference and the anode and cathode electrodes. This information is essential for monitoring the reactions occurring at the electrodes, investigating separation efficiency, controlling the process rate, and determining the process end-point. The original reference electrode has provided good life expectancy and signal stability, but is not easily replaceable. The reference electrode used a vycor-glass ion-permeable membrane containing a high purity silver wire with one end positioned in ~2 grams of LiCl/KCl salt electrolyte with a low concentration (~1%) AgCl. It was, however, a complex assembly requiring specialized skill and talent to fabricate. The construction involved multiple small pieces, glass joints, ceramic to glass joints, and ceramic to metal joints all assembled in a high purity inert gas environment. As original electrodes reached end-of-life it was uncertain if the skills and knowledge were readily available to successfully fabricate replacements. Experimental work has been conducted to identify a simpler electrode design while retaining the needed long life and signal stability. This improved design, based on an ion-permeable membrane of mullite has been completed. Use of the silver wire and electrolyte composition remains the same. The resulting design maximizes the use of commercial components and can be fabricated with commonly available skills. This has resulted in a significant reduction of effort and cost to fabricate replacements. The piece count requiring assembly in a high purity glove box atmosphere has been reduced by over half and all specialized joints have been eliminated. The new design has been tested in a lab scale electrorefiner and has also been successfully scaled up and installed in the engineering scale electrorefiners.

Kim Davies; Shelly X Li

2007-09-01T23:59:59.000Z

276

Climate VISION: Private Sector Initiatives: Aluminum  

Office of Scientific and Technical Information (OSTI)

Letters of Intent/Agreements Letters of Intent/Agreements Aluminum Association Logo The Aluminum Association and its members participating in the Voluntary Aluminum Industry Partnership (VAIP), representing 98% of primary aluminum production in the United States, have committed under the Climate VISION program to a direct carbon intensity reduction of emissions of perfluorocarbons (PFCs) and of emissions of CO2 from the consumption of the carbon anode from the primary aluminum reduction process. The Climate VISION target is a 53% total carbon equivalent reduction from these sources by 2010 from 1990 levels. The industry has been working to reduce greenhouse gas emissions for over a decade and this new commitment equates to an additional direct carbon-intensity reduction of 65% since 2000. As a

277

Gating of Permanent Molds for ALuminum Casting  

SciTech Connect (OSTI)

This report summarizes a two-year project, DE-FC07-01ID13983 that concerns the gating of aluminum castings in permanent molds. The main goal of the project is to improve the quality of aluminum castings produced in permanent molds. The approach taken was determine how the vertical type gating systems used for permanent mold castings can be designed to fill the mold cavity with a minimum of damage to the quality of the resulting casting. It is evident that somewhat different systems are preferred for different shapes and sizes of aluminum castings. The main problems caused by improper gating are entrained aluminum oxide films and entrapped gas. The project highlights the characteristic features of gating systems used in permanent mold aluminum foundries and recommends gating procedures designed to avoid common defects. The study also provides direct evidence on the filling pattern and heat flow behavior in permanent mold castings.

David Schwam; John F. Wallace; Tom Engle; Qingming Chang

2004-03-30T23:59:59.000Z

278

Sound insulation property of Al-Si closed-cell aluminum foam bare board material  

Science Journals Connector (OSTI)

A1-Si closed-cell aluminum foam bare boards of 1?240 mm×1?100 mm with different densities and thicknesses were prepared by molten body transitional foaming process. The sound reduction index(R) of AI-Si closed-cell aluminum foam bare boards was investigated experimentally under different frequencies (100-4?000 Hz). It is found that sound reduction index(R) is small under low frequencies, large under high frequencies and is controlled by different mechanisms. The sound insulation property basically conforms with the monolayer board sound insulation theory. The sound reduction index(R) increases with the even growth of thickness and density, but its rising trend is tempered. The single number sound reduction indexes(Rw) of specimen with thickness of 20 cm and density of 0.51 g/cm3 are 30.8 dB and 33 dB respectively, which demonstrates good sound insulation property for lightmass materials.

Hai-jun YU; Guang-chun YAO; Xiao-lin WANG; Bing LI; Yao YIN; Ke LIU

2007-01-01T23:59:59.000Z

279

Extraction of trace metals from fly ash  

DOE Patents [OSTI]

A process is described for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous. The fly ash has a silicate base and contains surface deposits of the trace metals as oxides, chlorides or the like. The process is carried out by contacting the fly ash with AlCl/sub 3/ in an alkali halide melt to react the trace metals with the AlCl/sub 3/ to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, M.; Wai, C.M.; Nagy, Z.

1983-08-15T23:59:59.000Z

280

Extraction of trace metals from fly ash  

DOE Patents [OSTI]

A process for recovering silver, gallium and/or other trace metals from a fine grained industrial fly ash associated with a process for producing phosphorous, the fly ash having a silicate base and containing surface deposits of the trace metals as oxides, chlorides or the like, with the process being carried out by contacting the fly ash with AlCl.sub.3 in an alkali halide melt to react the trace metals with the AlCl.sub.3 to form compositions soluble in the melt and a residue containing the silicate and aluminum oxide or other aluminum precipitate, and separating the desired trace metal or metals from the melt by electrolysis or other separation techniques.

Blander, Milton (Palos Park, IL); Wai, Chien M. (Moscow, ID); Nagy, Zoltan (Woodridge, IL)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Solar two: A molten salt power tower demonstration  

SciTech Connect (OSTI)

A consortium of United States utility concerns led by the Southern California Edison Company (SCE) is conducting a cooperative project with the US Department of Energy (DOE), Sandia National Laboratories, and industry to convert the 10-MW Solar One Power Tower Pilot Plant to molten nitrate salt technology. The conversion involves installation of a new receiver, a new thermal storage system, and a new steam generator; it utilizes Solar One`s heliostat field and turbine generator. Successful operation of the converted plant, called Solar Two, will reduce economic risks in building initial commercial power tow projects and accelerate the commercial acceptance of this promising renewable energy technology. The estimated cost of Solar Two, including its three-year test period, is $48.5 million. The plant will begin operation in early 1996.

Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Sutherland, J.P. [Southern California Edison, Rosemead, CA (United States); Gould, W.R. Jr. [Bechtel Corp., San Francisco, CA (United States)

1995-08-01T23:59:59.000Z

282

Carbon dioxide emission reduction using molten carbonate fuel cell systems  

Science Journals Connector (OSTI)

Abstract The contribution of the molten carbonate fuel cell system (MCFCs) to carbon dioxide (CO2) emission reduction in power application is analyzed. \\{MCFCs\\} can separate and concentrate CO2 emitted from traditional thermal power plants (PPs) without reducing the plant's overall energy efficiency. \\{MCFCs\\} can also be used by itself as an effective CO2 separator or concentrator by managing the anode gas stream to increase the heat utilization of the system. The CO2 separated and concentrated by \\{MCFCs\\} is most effectively captured by condensation. \\{MCFCs\\} is currently used as a CO2 separator only to a limited extent due to its high cost and relatively small scale operation. However, \\{MCFCs\\} will substantially contribute to reduce CO2 emissions in power generation applications in the near future.

Jung-Ho Wee

2014-01-01T23:59:59.000Z

283

Molten Salt Test Loop (MSTL) system customer interface document.  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL is a test capability that allows customers and researchers to test components in flowing, molten nitrate salt. The components tested can range from materials samples, to individual components such as flex hoses, ball joints, and valves, up to full solar collecting systems such as central receiver panels, parabolic troughs, or linear Fresnel systems. MSTL provides realistic conditions similar to a portion of a concentrating solar power facility. The facility currently uses 60/40 nitrate %E2%80%9Csolar salt%E2%80%9D and can circulate the salt at pressure up to 40 bar (600psi), temperature to 585%C2%B0C, and flow rate of 44-50kg/s(400-600GPM) depending on temperature. The purpose of this document is to provide a basis for customers to evaluate the applicability to their testing needs, and to provide an outline of expectations for conducting testing on MSTL. The document can serve as the basis for testing agreements including Work for Others (WFO) and Cooperative Research and Development Agreements (CRADA). While this document provides the basis for these agreements and describes some of the requirements for testing using MSTL and on the site at Sandia, the document is not sufficient by itself as a test agreement. The document, however, does provide customers with a uniform set of information to begin the test planning process.

Gill, David Dennis; Kolb, William J.; Briggs, Ronald D.

2013-09-01T23:59:59.000Z

284

PREDICTION OF LOW-CYCLE FATIGUE-LIFE BY ACOUSTIC EMISSION. PART 1: 2024-T3 ALUMINUM ALLOY PART 2: ALCLAD 7075-T6/ ALUMINUM ALLOY  

E-Print Network [OSTI]

low-cycle fatigue life of Aluminum sheet alloys by acoustictoughness of structural aluminum alloys. Fracture . Fracturetoughness of structural aluminum alloys, Eng. Fracture Mech.

Baram, J.

2013-01-01T23:59:59.000Z

285

Inertia-friction welding of particulate-reinforced aluminum matrix composites  

SciTech Connect (OSTI)

Aluminum metal-matrix composites (Al-MMC) are rapidly becoming materials of choice for many aerospace, automotive, recreational sports, and microelectronic applications. The attractive features of these materials include high specific strength and stiffness, a low coefficient of thermal expansion and enhanced wear characteristics relative to monolithic aluminum alloys. The effective engineering application of Al-MMC will commonly require their joining beth to themselves, to dissimilar Al-MMC, and to monolithic aluminum alloys. In the present work, dissimilar-alloy inertia-friction welds were produced between a 6061-T6 Al-MMC tube reinforced with l0 v/o Al{sub x}O{sub 3} particles (W6A.l0A-T6) and a modified A356 case MMC bar reinforced with 20 v/o SiC particles (F3S.20S), or a monolithic 6061-T6511 aluminum alloy bar. In Phase I, a fractional-factorial test matrix was statistically designed and performed to evaluate the effects of flywheel speed and axial pressure on the weld integrity, microstructure, hardness, tensile and torsion strengths and fracture behavior. In Phase 2, the effects of pre-weld machining of the solid bar on weld alignment and mechanical properties were evaluated. inertia-friction welding was shown to be effective for the joining of alumina particulate-reinforced composites to monolithic aluminum and to SiC-particulate reinforced aluminum. High-integrity joints exhibiting a defect-free joint interface with varying degrees of base alloy intermixing were produced at optimum parameter settings. Tensile and torsional strength joint efficiencies for the alumina-particulate MMC to monolithic aluminum alloy welds exceeded 80% and 75%, respectively, with tensile strength maximized with high axial pressure and flywheel speed, and torsional strength maximized at both medium and high levels of flywheel speed and axial pressure.

Cola, M.J.; Baeslack, W.A. III; Kou, M.

1994-12-31T23:59:59.000Z

286

Characterization of porous GASAR aluminum  

SciTech Connect (OSTI)

Experimental and numerical analyses were performed on porous aluminum samples to evaluate microstructure and mechanical properties. Experiments considered of tensile tests on dog-bone specimens containing 9 to 17% porosity, which were instrumented with axial and transverse extensometers. Properties measured included Young`s modulus, Poisson`s ratio remained constant with porosity., For the numerical simulations, 3-D, mesoscale, multilayer models were constructed to evaluate the effects of pore morphology and interactions on material properties. The models allowed systematic spatial positioning of the pore within the cell and the ability to form solid zones. Pore arrangement, the effect of constraint, and gradients on the stress state were investigated. By using different combinations of hex cells as building blocks, several complicated microstructural arrangements were simulated.

Bonenberger, R.J. [FM Technologies, Inc., Fairfax, VA (United States); Kee, A.J. [Geo-Centers, Inc., Fort Washington, MD (United States); Everett, R.K.; Matic, P. [Naval Research Lab., Washington, DC (United States)

1998-12-31T23:59:59.000Z

287

Aluminum/alkaline earth metal composites and method for producing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

provided having an electrically conducting Al matrix and elongated filaments comprising Ca andor Sr andor Ba disposed in the matrix and extending along a longitudinal axis of...

288

Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination  

SciTech Connect (OSTI)

Fish scale has the potential to be a rapid biomarker due to its structure and high possibility to come into contact with any pollutant in the aquatic environment. The scale structure consists of osteoblastic cells and other bone materials such as collagen where it is possible to form a molecular complex with heavy metals such as aluminum and iron. Hence, aluminum and iron in water could possibly destroy the scale material and marked as a scale deformation that quantitatively could be analyzed by comparing it to the normal scale structure. Water sampling and fish cage experiment were performed between June and July 2011 in Porong river which represented the water body that has high aluminum and iron contamination. The filtered water samples were preserved and extracted using the acid-mixture procedure prior to measurement of the aluminum and iron concentrations using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES), while samples for total suspended solid (TSS) analysis were kept at 4 °C in cool-boxes. The scales were cleaned with sterile water, then dehydrated in 30, 50, 70, and 90% ethanol and dried on filter papers. They were then mounted on an aluminum stub and coated with gold in a sputter coater prior to Scanning Electron Microscope (SEM) observation. According to the SEM analysis, it was found that there were several deformations on the scale samples taken from sites that have high concentrations of aluminum and iron i.e. the increasing number of pits, deformation and decreasing number of spherules and ridges while the control scale exhibited the normal features. However, the site with higher TSS and pH indicated lower aluminum effect. A moderate correlation was found between the number of pits with aluminum (r=0.43) and iron (r=0.41) concentrations. Fish scale deformation using SEM analysis can potentially be a rapid biomarker in aquatic monitoring of aluminum and iron contamination. However, the measurement must be accompanied by pH and TSS observations.

Hidayati, Dewi; Sulaiman, Norela; Othman, Shuhaimi; Ismail, B. S. [School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

2013-11-27T23:59:59.000Z

289

Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation  

Broader source: Energy.gov [DOE]

The University of Alabama, under the Thermal Storage FOA, is developing thermal energy storage (TES) media consisting of low melting point (LMP) molten salt with high TES density for sensible heat storage systems.

290

Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis  

Broader source: Energy.gov [DOE]

This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

291

Conceptual Design of Molten Salt Loop Experiment for MIT Research Reactor  

E-Print Network [OSTI]

Molten salt is a promising coolant candidate for Advanced High Temperature Reactor (AHTR) Gen-IV designs. The low neutron absorption, high thermal capacity, chemical inertness, and high boiling point at low pressure of ...

Bean, Malcolm K.

2011-08-01T23:59:59.000Z

292

E-Print Network 3.0 - acid molten globule Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B of Staphylococcal Protein A: Implication for the Origin of the Cooperativity of Protein Folding Summary: into a molten globule-like state from the coil state, the new model...

293

Molecular Dynamics Simulation of the Transport Properties of Molten Transuranic Chloride Salts  

E-Print Network [OSTI]

The Accelerator Research Laboratory at Texas A&M is proposing a design for accelerator-driven subcritical fission in molten salt (ADSMS), a system that destroys the transuranic elements in used nuclear fuel. The transuranics (TRU) are the most...

Baty, Austin Alan

2013-02-06T23:59:59.000Z

294

Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis  

SciTech Connect (OSTI)

This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

Remick, R.; Wheeler, D.

2010-09-01T23:59:59.000Z

295

Chronopotentiometry of Sm(II) and Pm(III) in molten LiCl-KCl eutectic.  

E-Print Network [OSTI]

??Samarium (III) and promethium (III) were studied by chronopotentiometry in a molten LiCl-KC1 eutectic. Tungsten electrodes were used to avoid alloying effects encountered with platinum… (more)

Nixon, Richard Allen

1966-01-01T23:59:59.000Z

296

Aluminum hydroxide and hydrogen produced by water electrolysis  

Science Journals Connector (OSTI)

Thermodynamic and kinetic peculiarities of the water electrolysis in a reactor with aluminum electrodes are...

R. R. Salem

2009-11-01T23:59:59.000Z

297

ALUMINUM--1998 5.1 By Patricia A. Plunkert  

E-Print Network [OSTI]

ALUMINUM--1998 5.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 1998, 13 domestic companies operated 23 primary aluminum reduction plants to be $5.4 billion. Aluminum recovered from purchased scrap decreased to approximately 3.4 million tons

298

ALUMINUM--1999 5.1 By Patricia A. Plunkert  

E-Print Network [OSTI]

ALUMINUM--1999 5.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 1999, 12 domestic companies operated 23 primary aluminum reduction plants to be $5.5 billion. During the year, two proposed mergers that involved five major aluminum companies were

299

ALUMINUM--2000 6.1 By Patricia A. Plunkert  

E-Print Network [OSTI]

ALUMINUM--2000 6.1 ALUMINUM By Patricia A. Plunkert Domestic survey data and tables were prepared, international data coordinator. In 2000, 12 domestic companies operated 23 primary aluminum reduction plants to be $6 billion. Increased energy costs, particularly in the Pacific Northwest, led several aluminum

300

UNIVERSITY of CALIFORNIA ATOMIC LAYER DEPOSITION OF ALUMINUM OXIDE  

E-Print Network [OSTI]

UNIVERSITY of CALIFORNIA SANTA CRUZ ATOMIC LAYER DEPOSITION OF ALUMINUM OXIDE A thesis submitted deposition (ALD) of aluminum oxide on crystalline silicon and anodized aluminum substrates. A homemade ALD system is used with trimethylaluminum (TMA) and water as precursors to deposit uniform aluminum oxide

Belanger, David P.

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Removal of H{sub 2}S using molten carbonate at high temperature  

SciTech Connect (OSTI)

Highlights: • The performance of molten carbonate for the removal of H{sub 2}S improves at higher temperatures. • The degree of H{sub 2}S removal is significantly affected by the CO{sub 2} concentration in syngas. • Addition of carbon elements, such as char and tar, decrease the negative effects of CO{sub 2}. • Continuous addition of carbon elements into molten carbonate enables continuous desulfurization. • Desulfurization using molten carbonate is suitable for gasification gas. - Abstract: Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngas produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H{sub 2}S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H{sub 2}S is significantly affected by the concentration of CO{sub 2} in the syngas. When only a small percentage of CO{sub 2} is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H{sub 2}S removal can be maintained at a high level. To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford good gas-cleaning performance.

Kawase, Makoto, E-mail: kawase@criepi.denken.or.jp; Otaka, Maromu

2013-12-15T23:59:59.000Z

302

Advanced Thermal Storage System with Novel Molten Salt: December 8, 2011 - April 30, 2013  

SciTech Connect (OSTI)

Final technical progress report of Halotechnics Subcontract No. NEU-2-11979-01. Halotechnics has demonstrated an advanced thermal energy storage system with a novel molten salt operating at 700 degrees C. The molten salt and storage system will enable the use of advanced power cycles such as supercritical steam and supercritical carbon dioxide in next generation CSP plants. The salt consists of low cost, earth abundant materials.

Jonemann, M.

2013-05-01T23:59:59.000Z

303

Method For Improving The Oxidation Resistance Of Metal Substrates Coated With Thermal Barrier Coatings  

DOE Patents [OSTI]

A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described. A method for providing a protective coating on a metal-based substrate is disclosed. The method involves the application of an aluminum-rich mixture to the substrate to form a discontinuous layer of aluminum-rich particles, followed by the application of a second coating over the discontinuous layer of aluminum-rich particles. Aluminum diffuses from the aluminum-rich layer into the substrate, and into any bond coat layer which is subsequently applied. Related articles are also described.

Thompson, Anthony Mark (Niskayuna, NY); Gray, Dennis Michael (Delanson, NY); Jackson, Melvin Robert (Niskayuna, NY)

2003-05-13T23:59:59.000Z

304

Synthesis of nanocrystalline aluminum matrix composites reinforced with in situ devitrified Al-Ni-La amorphous particles  

E-Print Network [OSTI]

of nanocrystalline aluminum matrix composites reinforcedAbstract Nanocrystalline aluminum matrix composites wereamount of nanoscale aluminum oxide, nitride and carbide

Zhang, Zhihui H; Han, B Q; Witkin, D; Ajdelsztajn, L; Laverna, E J

2006-01-01T23:59:59.000Z

305

Method for gas-metal arc deposition  

DOE Patents [OSTI]

Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

Buhrmaster, Carol L. (Corning, NY); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID)

1990-01-01T23:59:59.000Z

306

Method for gas-metal arc deposition  

DOE Patents [OSTI]

Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

1990-11-13T23:59:59.000Z

307

Apparatus for gas-metal arc deposition  

DOE Patents [OSTI]

Apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspenion of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

Buhrmaster, Carol L. (Corning, NY); Clark, Denis E. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID)

1991-01-01T23:59:59.000Z

308

Aluminum (Al) Etch Instructions The CEPSR cleanroom stores Aluminum Etchant Type A, a pre-made product used for  

E-Print Network [OSTI]

Aluminum (Al) Etch Instructions The CEPSR cleanroom stores Aluminum Etchant Type A, a pre-made product used for removing or etching away aluminum. This etchant is stored inside the acid or corrosive a specific thickness of aluminum that is desired. Note: Once the bottle is empty or you find that it's etch

Kim, Philip

309

ITP Aluminum: Energy and Environmental Profile of the U.S. Aluminum Industry  

Broader source: Energy.gov [DOE]

This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the aluminum industry.

310

ITP Aluminum: Aluminum Industry Vision: Sustainable Solutions for a Dynamic World  

Broader source: Energy.gov [DOE]

The Aluminum Vision is intended to stimulate a wide variety of R&D activities to accelerate technology development throughout industry.

311

Surface chemical reaction of laser ablated aluminum sample for detonation initiation  

SciTech Connect (OSTI)

We explore the evolution of metal plasma generated by high laser irradiances and its effect on the surrounding air by using shadowgraph images after laser pulse termination; hence the formation of laser supported detonation and combustion processes has been investigated. The essence of the paper is in observing initiation of chemical reaction between ablated aluminum plasma and oxygen from air by inducing high power laser pulse (>1000 mJ/pulse) and conduct a quantitative comparison of chemically reactive laser initiated waves with the classical detonation of exploding aluminum (dust) cloud in air. Findings in this work may lead to a new method of initiating detonation from metal sample in its bulk form without the need of mixing nano-particles with oxygen for initiation.

Kim, Chang-hwan; Yoh, Jack J. [School of Mechanical and Aerospace Engineering, Seoul National University, 599 Kwanakro, Kwanakgu, Seoul, Korea 151-742 (Korea, Republic of)

2011-05-01T23:59:59.000Z

312

UV Curable Coatings in Aluminum Can Production  

E-Print Network [OSTI]

based coatings. The Coors Brewing Company Can Manufacturing Plant has been utilizing this technology in full scale aluminum can production since 1975, and therefore has had the opportunity to evaluate practical operations of the UV technology...

Donhowe, E. T.

313

An optimal replacement problem in aluminum production  

E-Print Network [OSTI]

The aluminum production facility operated by ALCOA in Rockdale, Texas produces aluminum in a continuous manufacturing environment using steel carbon-lined smelting pots. As a result of the production process of running electricity through an electrolytic... technique known as dynamic programming, the minimum expected cost can be determined for a finite horizon Markov decision problem. This was accomplished using value iteration, a computer program written in C language, and data obtained from ALCOA...

Spanks, Lisa Marie

1992-01-01T23:59:59.000Z

314

Manual HVOF thermal spray repair of nickel aluminum bronze castings  

SciTech Connect (OSTI)

Manual high velocity oxyfuel (HVOF) thermal spray repairs were accomplished on a large nickel aluminum bronze propeller castings. The repairs were done on three different configurations of surface defects of up to 100 square inches and as deep as 90 mils. Nickel aluminum bronze alloy powder, sieve sized for the HVOF process, was sprayed. High quality, high coating density, repairs were achieved even on porous areas of the castings. Prior to performance of the repairs, a procedure was qualified in accordance with MIL-STD-1687 and a mock-up simulating the repair was produced. After HVOF spraying of the mock-up, the sprayed surface was sanded, milled, and drilled to determine how finishing of the actual castings would be done. After successful procedure qualification, the HVOF equipment was moved to the job site, metal masking was devised for the spray areas and grit blasting and manual HVOF spraying was done. Results of HVOF coating chemical analyses, bend tests, coating tensile bond strength tests, coating microscopic examinations, and mock-up evaluations are reported along with the spray procedures and techniques used in the repairs.

Brenna, R.T.; McCaw, R.L.; Pugh, J.L.

1994-12-31T23:59:59.000Z

315

Rechargeable aluminum batteries with conducting polymers as positive electrodes.  

SciTech Connect (OSTI)

This report is a summary of research results from an Early Career LDRD project con-ducted from January 2012 to December 2013 at Sandia National Laboratories. Demonstrated here is the use of conducting polymers as active materials in the posi-tive electrodes of rechargeable aluminum-based batteries operating at room tempera-ture. The battery chemistry is based on chloroaluminate ionic liquid electrolytes, which allow reversible stripping and plating of aluminum metal at the negative elec-trode. Characterization of electrochemically synthesized polypyrrole films revealed doping of the polymers with chloroaluminate anions, which is a quasi-reversible reac-tion that facilitates battery cycling. Stable galvanostatic cycling of polypyrrole and polythiophene cells was demonstrated, with capacities at near-theoretical levels (30-100 mAh g-1) and coulombic efficiencies approaching 100%. The energy density of a sealed sandwich-type cell with polythiophene at the positive electrode was estimated as 44 Wh kg-1, which is competitive with state-of-the-art battery chemistries for grid-scale energy storage.

Hudak, Nicholas S.

2013-12-01T23:59:59.000Z

316

Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytic Reduction and Electrorefining  

SciTech Connect (OSTI)

A series of bench-scale experiments was performed in a hot cell at Idaho National Laboratory to demonstrate the separation and recovery of uranium metal from spent light water reactor (LWR) oxide fuel. The experiments involved crushing spent LWR fuel to particulate and separating it from its cladding. Oxide fuel particulate was then converted to metal in a series of six electrolytic reduction runs that were performed in succession with a single salt loading of molten LiCl – 1 wt% Li2O at 650 °C. Analysis of salt samples following the series of electrolytic reduction runs identified the diffusion of select fission products from the spent fuel to the molten salt electrolyte. The extents of metal oxide conversion in the post-test fuel were also quantified, including a nominal 99.7% conversion of uranium oxide to metal. Uranium metal was then separated from the reduced LWR fuel in a series of six electrorefining runs that were performed in succession with a single salt loading of molten LiCl-KCl-UCl3 at 500 °C. Analysis of salt samples following the series of electrorefining runs identified additional partitioning of fission products into the molten salt electrolyte. Analyses of the separated uranium metal were performed, and its decontamination factors were determined.

S. D. Herrmann; S. X. Li

2010-09-01T23:59:59.000Z

317

Performance of molten salt solar power towers in Chile  

Science Journals Connector (OSTI)

Chile is facing important challenges to develop its energy sector. Estimations demonstrate that in its electricity consumption Chile will grow at an annual rate of 4.6% until 2030 despite ongoing efficiency improvements. To satisfy this demand in a sustainable way the national energy policy promotes the integration of novel and clean power generation into the national power mix with special emphasis on concentrated solar power (CSP). The present paper assesses the development of solar-based electricity generation in Chile by CSP achieved by a Solar Power Tower plant (SPT) using molten salt as heat carrier and store. Such SPTs can be installed at different locations in Chile and connected to the main national grid. Results show that each SPT plant can generate around 76 GWh el of net electricity when considering solar irradiation as the sole energy source and at a 16% overall efficiency of the SPT process. For operation in a continuous mode a hybrid configuration with integrated gas backup system increases the generating potential of each SPT to 135 GWh el . A preliminary Levelized Energy Cost (LEC) calculation provides LEC values between 0.15 and 0.18 $/kWh as function of the overall process efficiency and estimated investment cost. Chile's solar irradiation favors the implementation of SPT plants.

G. Cįceres; N. Anrique; A. Girard; J. Degrčve; J. Baeyens; H. L. Zhang

2013-01-01T23:59:59.000Z

318

Isotopic ratios and effective power determined by gamma-ray spectroscopy vs mass spectroscopy for molten salt extraction residues  

SciTech Connect (OSTI)

Impure plutonium metal is routinely processed by molten salt extraction (MSE) to reduce the amount of americium in the metal product. Throughput at various facilities where similar processes are performed has made it essential to evaluate uncertainties and possible discrepancies in the analyses of these difficult MSE materials. In an effort to evaluate the plutonium isotopic ratios and americium concentrations obtained from gamma-ray spectral data analyzed by the computer code GRPAUT, measurements were made on ten MSE salts as received and after pulverization and blending. These results were then compared to the specific powers obtained from isotopic ratios determined by mass spectrometry on these same ten samples. Americium values ranged from a few thousand parts-per-million of total plutonium to greater than 50,000 ppM. Our results indicate a small discrepancy between specific powers as determined by GRPAUT on as received'' vs pulverized and blended MSE salts. The specific powers obtained via GRPAUT on the pulverized salts agree somewhat better with specific powers obtained from the mass spectroscopy data. This work may indicate that a small discrepancy exists in the specific powers by using GRPAUT on heterogeneous, high americium samples. 5 refs., 6 tabs.

Longmire, V.L.; Cremers, T.L.; Sedlacek, W.A.; Long, S.M.; Scarborough, A.M.; Hurd, J.R.

1990-01-01T23:59:59.000Z

319

E-Print Network 3.0 - aluminum copper iron Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aluminum alloy... to room temperature was also confirmed. Will investigate different additives, copper, pure aluminum... with aluminum ... Source: McDonald, Kirk - Department...

320

A NEW A15 MULTIFILAMENTARY SUPERCONDUCTOR BASED ON THE NIOBIUM-ALUMINUM-SILICON SYSTEM  

E-Print Network [OSTI]

BASED ON THE NIOBIUM-ALUMINUM-SILICON SYSTEM Gary C. Quinnpsi. Photomicrograph of an Aluminum-Silicon eutectic filledmultifilimentary niobium-aluminum-silicon wire, a) sample #

Quinn, G.C.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EFFECT OF GRAIN SIZE ON THE ACOUSTIC EMISSION GENERATED DURING PLASTIC DEFORMATION OF ALUMINUM  

E-Print Network [OSTI]

PLASTIC DEFORMATION OF ALUMINUM LAWRENCE BERKELEY LABORATORYDURING PLASTIC DEFORMATION OF ALUMINUM J. Baram Materialsof polycrystalline aluminum, of different grain sizes and at

Baram, J.

2013-01-01T23:59:59.000Z

322

Aluminum and copper in drinking water enhance inflammatory oroxidative events specifically in the brain  

E-Print Network [OSTI]

effects of iron and aluminum on stress-related genelopathy syndrome. Possible aluminum intoxication. N. Engl.Chronic exposure to aluminum in drinking water increases

Bondy, Stephen Bondy C

2006-01-01T23:59:59.000Z

323

Mechanical properties and microstructures of dual phase steels containing silicon, aluminum and molybdenum  

E-Print Network [OSTI]

STEELS CONTAINING SILICON, ALUMINUM AND MOLYBDENUM Thomasdeoxidizing action of aluminum results in grain refinementquench martensite, Both (a) and Aluminum particle within the

Neill, Thomas John O'

2011-01-01T23:59:59.000Z

324

CHARACTERIZATION OF THE GASEOUS AND SOLID PRODUCTS OF DECOMPOSITION OF ALUMINUM SULFATE  

E-Print Network [OSTI]

OF DECOMPOSITION OF ALUMINUM SULFATE Gary F. Knutsen (M. S.OF DECOMPOSITION OF ALUMINUM SULFATE Contents Abstract . .OF DECOMPOSITION OF ALUMINUM SULFATE Gary F. Knutsen

Knutsen, G.F.

2010-01-01T23:59:59.000Z

325

A Study of Aluminum Dependent Root Growth Inhibition in Arabidopsis thaliana  

E-Print Network [OSTI]

symptom triggered by aluminum, but not the primary cause ofRI (1986) Characterization of hydroxy-aluminum solutionsby aluminum-27 nuclear magnetic resonance spectroscopy. Soil

Nezames, Cynthia

2011-01-01T23:59:59.000Z

326

Transcriptomic analysis reveals differential gene expression in common bean (Phaseoulus vulgaris) for aluminum resistance  

E-Print Network [OSTI]

transition zone is the most aluminum-sensitive apical rootsoils is mainly limited by aluminum toxicity. In addition,L. under conditions of aluminum stress. Plant Physiol 104:

Eticha, Dejene; Zahn, Marc; Rao, Idupulapati M.; Horst, Walter J.

2009-01-01T23:59:59.000Z

327

IMPROVED FORMABILITY OF ALUMINUM-GERMANIUM NEAR EUTECTIC COMPOSITIONS THROUGH THE APPLICATION OF SUPERPLASTICITY PRINCIPLES  

E-Print Network [OSTI]

IMPROVED FORMABILITY OF ALUMINUM-GERMANIUM NEAR EUTECTICIMPROVED FORMABILITY OF ALUMINUM-GERMANIUM NEAR EUTECTICAl-Ge) wire. Al-Ge «00F Aluminum-Germanium Atomic Percentage

Pech, G.J.

2011-01-01T23:59:59.000Z

328

Aluminum Microfoams for Reduced Fuel Consumption and Pollutant Emissions of Transportation Systems  

E-Print Network [OSTI]

on the foamability of Aluminum alloy . Journal of MaterialFoamability of particle reinforced Aluminum Melt. Ma. -wiss.particle-stabilised Aluminum foams . Advanced Engineering

Pilon, Laurent

2008-01-01T23:59:59.000Z

329

Molten Metal Anodes for Direct Carbon-Solid Oxide Fuel Cells.  

E-Print Network [OSTI]

??The aim of this thesis was to enable the direct utilization of solid carbonaceous fuels like coal and biomass, in solid oxide fuel cells (SOFC).… (more)

Jayakumar, Abhimanyu

2012-01-01T23:59:59.000Z

330

Climate VISION: Private Sector Initiatives: Aluminum: GHG Information -  

Office of Scientific and Technical Information (OSTI)

Industry Analysis Briefs Industry Analysis Briefs The Energy Information Agency (EIA) is currently updating industry analysis briefs for the most energy-intensive industries in the United States, including aluminum, chemicals, forest products (such as paper and wood products), glass, metal casting, petroleum and coal products, and steel. As soon as the current briefs are available, we will provide the link. Industry Analysis Briefs will have the following content: Economic Profile and Trends Value of Shipments Annual Production Labor Productivity Energy Use Energy Use by Fuel Fuel Consumption by End Use Energy Consumption by Sector Energy Expenditures Onsite Generation (if applicable) Energy Intensity State-Level Information Technologies and Equipment Cogeneration Technologies (if applicable)

331

The Salty Science of the Aluminum-Air Battery  

Science Journals Connector (OSTI)

Fruit batteries and saltwater batteries are excellent ways to explore simple circuits in the classroom. These are examples of air batteries1 in which metal reacts with oxygen in the air in order to generate free electrons which flow through an external circuit and do work. Students are typically told that the salt or fruit water acts as an electrolyte to bring electrons from the anode to the cathode. That's true but it leaves the battery as a black box. Physics teachers often don't have the background to explain the chemistry behind these batteries. We've written this paper to explore the electrochemistry behind an air battery using coppercathode aluminum anode and saltwater.

Stephanie V. Chasteen; N. Dennis Chasteen; Paul Doherty

2008-01-01T23:59:59.000Z

332

Factors affecting the discharge lifetime of lithium-molten nitrate thermal battery cells using soluble cathode materials  

Science Journals Connector (OSTI)

The use of soluble cathode materials in molten nitrate electrolyte thermal battery cells presents several problems related to cathode...? rich separator layer.

G. E. McManis; A. N. Fletcher; M. H. Miles

1986-09-01T23:59:59.000Z

333

The viability of aluminum Zintl anion moieties within magnesium-aluminum clusters  

SciTech Connect (OSTI)

Through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations, we have investigated the extent to which the aluminum moieties within selected magnesium-aluminum clusters are Zintl anions. Magnesium-aluminum cluster anions were generated in a pulsed arc discharge source. After mass selection, photoelectron spectra of Mg{sub m}Al{sub n}{sup ?} (m, n = 1,6; 2,5; 2,12; and 3,11) were measured by a magnetic bottle, electron energy analyzer. Calculations on these four stoichiometries provided geometric structures and full charge analyses for the cluster anions and their neutral cluster counterparts, as well as photodetachment transition energies (stick spectra). Calculations revealed that, unlike the cases of recently reported sodium-aluminum clusters, the formation of aluminum Zintl anion moieties within magnesium-aluminum clusters was limited in most cases by weak charge transfer between the magnesium atoms and their aluminum cluster moieties. Only in cases of high magnesium content, e.g., in Mg{sub 3}Al{sub 11} and Mg{sub 2}Al{sub 12}{sup ?}, did the aluminum moieties exhibit Zintl anion-like characteristics.

Wang, Haopeng; Jae Ko, Yeon; Zhang, Xinxing; Gantefoer, Gerd; Bowen, Kit H., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Schnoeckel, Hansgeorg [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany)] [Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe (Germany); Eichhorn, Bryan W. [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States)] [Department of Chemistry, University of Maryland, College Park, Maryland 20742 (United States); Jena, Puru [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States)] [Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Kiran, Boggavarapu, E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K., E-mail: kiran@mcneese.edu, E-mail: akandalam@wcupa.edu, E-mail: kbowen@jhu.edu [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

2014-03-28T23:59:59.000Z

334

Synthesis and characterization of metal hydride/carbon aerogel composites for hydrogen storage  

Science Journals Connector (OSTI)

Two materials currently of interest for onboard lightweight hydrogen storage applications are sodium aluminum hydride (NaAlH4), a complex metal hydride, and carbon aerogels (CAs), a light porous material connected by several spherical nanoparticles. ...

Kuen-Song Lin; Yao-Jen Mai; Su-Wei Chiu; Jing-How Yang; Sammy L. I. Chan

2012-01-01T23:59:59.000Z

335

Development of Molten Corium Using An Exothermic Chemical Reaction for the Molten- Fuel Moderator-Interaction Studies at Chalk River Laboratories  

SciTech Connect (OSTI)

Atomic Energy of Canada Limited (AECL) has partnered with Argonne National Laboratory to develop a corium thermite prototypical of Candu material and test the concept of ejecting {approx}25 kg of the molten material from a pressure tube with a driving pressure of 10 MPa. This development program has been completed and the technology transferred to AECL. Preparation for the molten-fuel moderator-interaction tests at AECL's Chalk River Laboratories is well underway. A mixture of 0.582 U/0.077 U{sub 3}O{sub 8}/0.151 Zr/0.19 CrO{sub 3} (wt%) as reactant chemicals has been demonstrated to produce a corium consisting of 0.73 UO{sub 2}/0.11 Zr/0.06 ZrO{sub 2}/0.10 Cr (wt%) at {approx}2400 deg. C. This is comparable to the target Candu specific corium of 0.9 UO{sub 2}/0.1 Zr (wt%), with limited oxidation. The peak melt temperature was confirmed from small-scale thermitic reaction tests. Several small-scale tests were completed to qualify the thermite to ensure operational safety and a quantifiable experimental outcome. The proposed molten-fuel moderator-interaction experiments at Chalk River Laboratories will consist of heating the thermite mixture inside a 1.14-m long insulated pressure tube. Once the molten material has reached the desired temperature of {approx}2400 deg. C, the pressure inside the tube will be raised to about 10 MPa, and the pressure tube will fail at a pre-machined flaw, ejecting the molten material into the surrounding tank of water. The test apparatus, instrumentation, data acquisition and control systems have been assembled, and a series of successful commissioning tests have been completed. (authors)

Nitheanandan, T.; Sanderson, D.B.; Kyle, G. [Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, K0J 1J0 (Canada); Farmer, M. [Argonne National Laboratory, 9700, S. Cass Avenue, Argonne, IL 60439 (United States)

2004-07-01T23:59:59.000Z

336

An overview of molten polymer drawing instabilities Yves Demay1  

E-Print Network [OSTI]

dissipation in a screw/barrel device and then forced in a spinning pack consisting of a metal plaque of processes for polymer film production: Ā· In the cast-film process, the polymer is melted in an extruder

Paris-Sud XI, UniversitƩ de

337

Oxidation kinetics of aluminum diboride  

SciTech Connect (OSTI)

The oxidation characteristics of aluminum diboride (AlB{sub 2}) and a physical mixture of its constituent elements (Al+2B) were studied in dry air and pure oxygen using thermal gravimetric analysis to obtain non-mechanistic kinetic parameters. Heating in air at a constant linear heating rate of 10 °C/min showed a marked difference between Al+2B and AlB{sub 2} in the onset of oxidation and final conversion fraction, with AlB{sub 2} beginning to oxidize at higher temperatures but reaching nearly complete conversion by 1500 °C. Kinetic parameters were obtained in both air and oxygen using a model-free isothermal method at temperatures between 500 and 1000 °C. Activation energies were found to decrease, in general, with increasing conversion for AlB{sub 2} and Al+2B in both air and oxygen. AlB{sub 2} exhibited O{sub 2}-pressure-independent oxidation behavior at low conversions, while the activation energies of Al+2B were higher in O{sub 2} than in air. Differences in the composition and morphology between oxidized Al+2B and AlB{sub 2} suggested that Al{sub 2}O{sub 3}–B{sub 2}O{sub 3} interactions slowed Al+2B oxidation by converting Al{sub 2}O{sub 3} on aluminum particles into a Al{sub 4}B{sub 2}O{sub 9} shell, while the same Al{sub 4}B{sub 2}O{sub 9} developed a needle-like morphology in AlB{sub 2} that reduced oxygen diffusion distances and increased conversion. The model-free kinetic analysis was critical for interpreting the complex, multistep oxidation behavior for which a single mechanism could not be assigned. At low temperatures, moisture increased the oxidation rate of Al+2B and AlB{sub 2}, but both appear to be resistant to oxidation in cool, dry environments. - Graphical abstract: Isothermal kinetic data for AlB{sub 2} in air, showing a constantly decreasing activation energy with increasing conversion. Model-free analysis allowed for the calculation of global kinetic parameters despite many simultaneous mechanisms occurring concurrently. (a) Time–temperature plots, (b) conversion as a function of time, (c) Arrhenius plots used to calculate activation energies, and (d) activation energy as a function of conversion. Display Omitted - Highlights: • First reported kinetic parameters for AlB{sub 2} and Al+2B oxidation in air and O{sub 2}. • Possible mechanism of enhanced boron combustion presented. • Moisture sensitivity shown to be problematic for AlB{sub 2}, less for Al+2B.

Whittaker, Michael L., E-mail: michaelwhittaker2016@u.northwestern.edu [Department of Materials Science and Engineering, University of Utah, 122S. Central Campus Drive, Salt Lake City, UT 84112 (United States); Sohn, H.Y. [Department of Metallurgical Engineering, University of Utah, 135S 1460 E, Rm 00412, Salt Lake City, UT 84112 (United States); Cutler, Raymond A. [Ceramatec, Inc., 2425S. 900W., Salt Lake City, UT 84119 (United States)

2013-11-15T23:59:59.000Z

338

The corrosion of aluminum in boric acid solutions  

E-Print Network [OSTI]

vs. Time of at 40oC . vs. Time of 40 C . 34 ~ ~ ~ 35 3S Aluminum in Boric ~ ~ ~ 24S Aluminum in Boric Corrosion Rate Acid Solutions vs. Time of at 50oC . 2S Aluminum in Boric 36 Corrosion Rate Acid Solutions vs. Time of at 50oC 3S... Solutions vs. Time of 3S Aluminum in Boric at 70oC 40 Corrosion Rate Acid Solutions vs. Time of at 70oC 24S Aluminum in Boric ~ ~ ~ . a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ /+1 14. Corrosion Rate Acid Solutions vs. Time of at 90cC 2S Aluminum in Boric 42 15...

Bass, Henry Kinsolving

2012-06-07T23:59:59.000Z

339

Chapter 4 - Recycling Rare Metals  

Science Journals Connector (OSTI)

Abstract The industrial system now utilizes many more elements, especially rare metals, than was the case even a half century ago. Most are not mined for themselves but are obtained as by-products or “hitchhikers” of the more familiar industrial metals, such as iron, aluminum, copper, nickel, and zinc. This imposes a limit on the production of by-product metals. But in some cases, demand may increase much faster than new supply. This suggests a need for recycling. But the uses of these metals are often in products, such as cell phones, that are mass-produced but where the amount in each individual product is very small. Some uses are also inherently dissipative. This makes recycling very difficult in principle. It constitutes a serious challenge for the future economy. Prices will rise.

Robert U. Ayres; Gara Villalba Méndez; Laura Talens Peiró

2014-01-01T23:59:59.000Z

340

Materials considerations for molten salt accelerator-based plutonium conversion systems  

SciTech Connect (OSTI)

A Molten-Salt Reactor Program for power applications was initiated at the Oak Ridge National Laboratory in 1956. In 1965 the Molten Salt Reactor Experiment (MSRE) went critical and was successfully operated for several years. Operation of the MSRE revealed two deficiencies in the Hastelloy N alloy that had been developed specifically for molten-salt systems. The alloy embrittled at elevated temperatures as a result of exposure to thermal neutrons (radiation damage) and grain boundary embrittlement occurred in materials to fuel salt. Intergranular cracking was found to be associated with fission products, viz. tellurium. An improved Hastelloy N composition was subsequently developed that had better resistance to both of these problems. However, the discovery that fission product cracking could be significantly decreased by making the salt sufficiently reducing offers the prospect of improved compatibility with molten salts containing fission products and resistance to radiation damage in ABC applications. Recommendations are made regarding the types of corrosion tests and mechanistic studies needed to qualify materials for operation with PuF{sub 3}-containing molten salts.

DeVan, J.H.; DiStefano, J.R.; Eatherly, W.P.; Keiser, J.R.; Klueh, R.L.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

C:\Eco-SSLs\Contaminant Specific Documents\Aluminum\November 2003\Eco-SSL for Aluminum .wpd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aluminum Aluminum Interim Final OSWER Directive 9285.7-60 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 November 2003 This page intentionally left blank TABLE OF CONTENTS SUMMARY ECO-SSLs FOR ALUMINUM 1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 2.0 ALUMINUM CHEMISTRY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 3.0 EFFECTS OF ALUMINUM ON PLANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.1 General Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1 3.2 Essentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Effect on Phosphorus and Calcium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.4 Differential Tolerance of Plants to Aluminum Toxicity

342

Surface instability on a metal target from multi-pulse KrF laser ablation  

SciTech Connect (OSTI)

Aluminum targets were ablated by focusing a KrF excimer laser down to a spot size of 0.05 cm{sup 2} with a fluence of approximately 4.9 J/cm{sup 2}. After a few tens of pulses, surface irregularities (corrugations and pits) progressively emerge, with size 1--100 {micro}m which is much larger than the laser wavelength. After hundreds of laser pulses, large scale wavelike patterns, on the order of 20 {micro}m, are observed on the aluminum surface. The authors propose that these wave patterns are caused by the Kelvin-Helmholtz instability at the interface of the molten aluminum and the plasma plume. A parametric study is given in terms of the molten layer`s thickness and of the spatial extent and kinetic energy density in the laser-produced plasma plume. Also included is an estimate of the cumulative growth in a multi-pulse laser ablation experiment. These estimates indicate that the Kelvin-Helmholtz instability is a viable mechanism for the formation of the large scale structures. Once formed, these large scale surface roughness causes multiple reflections of the laser light, and may increase the absorption coefficient over a pristine, flat surface by an order of magnitude.

Ang, L.K.; Lau, Y.Y.; Gilgenbach, R.M.; Kovaleski, S.D. [Univ. of Michigan, Ann Arbor, MI (United States); Spindler, H.L. [Boeing Corp., Seattle, WA (United States); Lash, J.S. [Sandia National Lab., Albuquerque, NM (United States)

1998-12-31T23:59:59.000Z

343

ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER  

SciTech Connect (OSTI)

A workshop was held on January 23-24, 2007 to discuss the status of processes to leach constituents from High Level Waste (HLW) sludges at the Hanford and Savannah River Sites. The objective of the workshop was to examine the needs and requirements for the HLW flowsheet for each site, discuss the status of knowledge of the leaching processes, communicate the research plans, and identify opportunities for synergy to address knowledge gaps. The purpose of leaching of non-radioactive constituents from the sludge waste is to reduce the burden of material that must be vitrified in the HLW melter systems, resulting in reduced HLW glass waste volume, reduced disposal costs, shorter process schedules, and higher facility throughput rates. The leaching process is estimated to reduce the operating life cycle of SRS by seven years and decrease the number of HLW canisters to be disposed in the Repository by 1000 [Gillam et al., 2006]. Comparably at Hanford, the aluminum and chromium leaching processes are estimated to reduce the operating life cycle of the Waste Treatment Plant by 20 years and decrease the number of canisters to the Repository by 15,000-30,000 [Gilbert, 2007]. These leaching processes will save the Department of Energy (DOE) billions of dollars in clean up and disposal costs. The primary constituents targeted for removal by leaching are aluminum and chromium. It is desirable to have some aluminum in glass to improve its durability; however, too much aluminum can increase the sludge viscosity, glass viscosity, and reduce overall process throughput. Chromium leaching is necessary to prevent formation of crystalline compounds in the glass, but is only needed at Hanford because of differences in the sludge waste chemistry at the two sites. Improving glass formulations to increase tolerance of aluminum and chromium is another approach to decrease HLW glass volume. It is likely that an optimum condition can be found by both performing leaching and improving formulations. Disposal of the resulting aluminum and chromium-rich streams are different at the two sites, with vitrification into Low Activity Waste (LAW) glass at Hanford, and solidification in Saltstone at SRS. Prior to disposal, the leachate solutions must be treated to remove radionuclides, resulting in increased operating costs and extended facility processing schedules. Interim storage of leachate can also add costs and delay tank closure. Recent projections at Hanford indicate that up to 40,000 metric tons of sodium would be needed to dissolve the aluminum and maintain it in solution, which nearly doubles the amount of sodium in the entire current waste tank inventory. This underscores the dramatic impact that the aluminum leaching can have on the entire system. A comprehensive view of leaching and the downstream impacts must therefore be considered prior to implementation. Many laboratory scale tests for aluminum and chromium dissolution have been run on Hanford wastes, with samples from 46 tanks tested. Three samples from SRS tanks have been tested, out of seven tanks containing high aluminum sludge. One full-scale aluminum dissolution was successfully performed on waste at SRS in 1982, but generated a very large quantity of liquid waste ({approx}3,000,000 gallons). No large-scale tests have been done on Hanford wastes. Although the data to date give a generally positive indication that aluminum dissolution will work, many issues remain, predominantly because of variable waste compositions and changes in process conditions, downstream processing, or storage limitations. Better approaches are needed to deal with the waste volumes and limitations on disposal methods. To develop a better approach requires a more extensive understanding of the kinetics of dissolution, as well as the factors that effect rates, effectiveness, and secondary species. Models of the dissolution rate that have been developed are useful, but suffer from limitations on applicable compositional ranges, mineral phases, and particle properties that are difficult to measure. The experimental

McCabe, D; Jeff Pike, J; Bill Wilmarth, B

2007-04-25T23:59:59.000Z

344

Aluminum phosphate ceramics for waste storage  

SciTech Connect (OSTI)

The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

Wagh, Arun; Maloney, Martin D

2014-06-03T23:59:59.000Z

345

Stabilization of Electrocatalytic Metal Nanoparticles at Metal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene...

346

EFFECT OF MECHANICAL DISCONTINUITIES ON THE STRENGTH OF POLYCRYSTALLINE ALUMINUM OXIDE  

E-Print Network [OSTI]

THE STRENGTH OF POLYCRYSTALLINE ALUMINUM OXIDE S. Wallace ofThe variables and number of aluminum oxide (almnina). size~

Wallace, J.S.

2011-01-01T23:59:59.000Z

347

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems  

Office of Scientific and Technical Information (OSTI)

Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report March 31, 2012 Michael Schuller, Frank Little, Darren Malik, Matt Betts, Qian Shao, Jun Luo, Wan Zhong, Sandhya Shankar, Ashwin Padmanaban The Space Engineering Research Center Texas Engineering Experiment Station Texas A&M University Abstract We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials,

348

Molten Salt Heat Transport Loop: Materials Corrosion and Heat Transfer Phenomena  

SciTech Connect (OSTI)

An experimental system for corrosion testing of candidate materials in molten FLiNaK salt at 850 degree C has been designed and constructed. While molten FLiNaK salt was the focus of this study, the system can be utilized for evaluation of materials in other molten salts that may be of interest in the future. Using this system, the corrosion performance of a number of code-certified alloys of interest to NGNP as well as the efficacy of Ni-electroplating have been investigated. The mechanisums underlying corrosion processes have been elucidated using scanning electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy of the materials after the corrosion tests, as well as by the post-corrosion analysis of the salts using inductively coupled plasma (ICP) and neutron activation analysis (NAA) techniques.

Dr. Kumar Sridharan; Dr. Mark Anderson; Dr. Michael Corradini; Dr. Todd Allen; Luke Olson; James Ambrosek; Daniel Ludwig

2008-07-09T23:59:59.000Z

349

An overview of the chemistry of the molten-caustic-leaching process  

SciTech Connect (OSTI)

The molten-caustic leaching (MCL) process is quite effective in its ability to remove both organic and pyritic sulfur, mineral matter, and trace elements from coal. This paper reports how the chemistry of various reactions taking place in the process has been examined by several researchers. For example, Ames Laboratory of Iowa State University is actively studying the chemistry of MCL desulfurization and reagent regeneration reactions, and researchers at the U.S. Department of Energy's Pittsburgh Energy Technology Center are examining the reactions of molten caustic with the organosulfur compounds present in coal. As a result of these research efforts, reactions of mineral pyrite, benzothiophene, and minerals commonly found in coal (quartz, illite, etc.) with molten caustic are well characterized.

Gala, H.B.; Srivastava, R.D. (Burns and Roe Services Corporation, Pittsburgh, PA (US)); Rhee, K.H.; Hucko, R.E. (US Dept. of Energy, Pittsburgh Energy Technology Center, Pittsburgh, PA (US))

1989-01-01T23:59:59.000Z

350

Strategies for aluminum recycling : insights from material system optimization  

E-Print Network [OSTI]

The dramatic increase in aluminum consumption over the past decades necessitates a societal effort to recycle and reuse these materials to promote true sustainability and energy savings in aluminum production. However, the ...

Li, Preston Pui-Chuen

2005-01-01T23:59:59.000Z

351

Development of a Cosmetic Corrosion Test for Aluminum Autobody...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a Cosmetic Corrosion Test for Aluminum Autobody Panels AMD 309 Development of a Cosmetic Corrosion Test for Aluminum Autobody Panels AMD 309 Presentation from the U.S. DOE Office...

352

Surface alloying of silicon into aluminum substrate.  

SciTech Connect (OSTI)

Aluminum alloys that are easily castable tend to have lower silicon content and hence lower wear resistance. The use of laser surface alloying to improve the surface wear resistance of 319 and 320 aluminum alloys was examined. A silicon layer was painted onto the surface to be treated. A high power pulsed Nd:YAG laser with fiberoptic beam delivery was used to carry out the laser surface treatment to enhance the silicon content. Process parameters were varied to minimize the surface roughness from overlap of the laser beam treatment. The surface-alloyed layer was characterized and the silicon content was determined.

Xu, Z.

1998-10-28T23:59:59.000Z

353

Preliminary study on high temperature transport technology for molten salt in pyroprocessing  

Science Journals Connector (OSTI)

Pyroprocessing technology is one of the most promising technologies for an advanced fuel cycle with favorable economic potential and intrinsic proliferation-resistance. In pyroprocessing technology, the development of high-temperature transport technologies for molten salt is a crucial prerequisite and a key issue in the industrialization of pyro-reprocessing. However, there have been a few transport studies on high-temperature molten salt. Three different salt transport technologies (gravity, suction pump, and centrifugal pump) were investigated, a suction pump transport method was selected for molten salt transport owing to its flexibility. An apparatus for suction transport experiments was designed and installed for the development of high temperature molten salt transport technology. About 2 kg of LiCl–KCl eutectic salt was prepared by mixing 99.0%, LiCl and \\{KCl\\} and drying in a convection dry oven at 200 °C for 1 h. Predissolution tests of the prepared LiCl–KCl eutectic salt using the melting reactor of the experimental apparatus was carried out to investigate the dissolution behavior of the prepared LiCl–KCl eutectic salt. From the results of the pre-dissolution test, it was found that prepared LiCl–KCl eutectic salt was well dissolved at 500 °C. High temperature molten salt transport experiments by suction are currently being performed using the prepared LiC–KCl eutectic salt. The preliminary experimental results of lab-scale molten salt transport showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 m torr–10 torr at 500 °C.

Sung Ho Lee; Hansoo Lee; Jeong-Guk Kim

2013-01-01T23:59:59.000Z

354

Cathode Connector For Aluminum Low Temperature Smelting Cell  

DOE Patents [OSTI]

Cathode connector means for low temperature aluminum smelting cell for connecting titanium diboride cathode or the like to bus bars.

Brown, Craig W. (Seattle, WA); Beck, Theodore R. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA)

2003-07-16T23:59:59.000Z

355

NREL Scientists Reveal Origin of Diverse Melting Behaviors of Aluminum Nanoclusters (Fact Sheet)  

SciTech Connect (OSTI)

Research reveals active role of cluster symmetries on the size-sensitive, diverse melting behaviors of metallic nanoclusters, providing insight to understanding phase changes of nanoparticles for thermal energy storage. Unlike macroscopic bulk materials, intermediate-sized nanoclusters with around 55 atoms inherently exhibit size-sensitive melting changes: adding just a single atom to a nanocluster can cause a dramatic change in melting behavior. Microscopic understanding of thermal behaviors of metal nanoclusters is important for nanoscale catalysis and thermal energy storage applications. However, it is a challenge to obtain a structural interpretation at the atomic level from measured thermodynamic quantities such as heat capacity. Using ab initio molecular dynamics simulations, scientists at the National Renewable Energy Laboratory (NREL) revealed a clear correlation between the diverse melting behaviors of aluminum nanoclusters and cluster core symmetries. These simulations reproduced, for the first time, the size-sensitive heat capacities of aluminum nanoclusters, which exhibit several distinctive shapes associated with the diverse melting behaviors of the clusters. The size-dependent, diverse melting behaviors of the aluminum clusters are attributed to the reduced symmetry (from Td {yields} D2d {yields} Cs) with increasing the cluster sizes and can be used to help design thermal storage materials.

Not Available

2011-10-01T23:59:59.000Z

356

Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants  

Broader source: Energy.gov [DOE]

"This PowerPoint presentation was originally given by Dylan Grogan, principal investigator at Abengoa Solar, during a SunShot Initiative Concentrating Solar Power program review on April 24, 2013. The project, Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient reduction in levelized energy costs to pursue further development, and to develop the components required for their use. The presentation focuses on presenting conclusions from Phase 1 of the program and looks ahead to review Phase 2 activities."

357

Molecular dynamics simulation of anhydrous lithium acetate: crystalline and molten phases  

Science Journals Connector (OSTI)

The results of molecular dynamics simulations of the crystalline and molten phase of anhydrous lithium acetate are presented. The potential parameters were obtained from empirical fitting to the crystalline phases of the material. The simulations were carried out for 216 molecules in an NPT ensemble using the DLPOLY program. A structural model is proposed for both the crystalline and molten phases of lithium acetate. Calculated values of the melting point, diffusion coefficient and structural parameters of lithium acetate are in reasonable agreement with experimental results.

L.S. Barreto; K.A. Mort; R.A. Jackson; O.L. Alves

2002-01-01T23:59:59.000Z

358

The quasi-periodic nature of wall slip for molten plastics in large amplitude oscillatory shear  

E-Print Network [OSTI]

THE QUASI-PERIODIC NATURE OF WALL SLIP FOR MOLTEN PLASTICS IN LARGE AMPLITUDE OSCILLATORY SHEAR A Thesis by DAVID WARREN ADRIAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1992 Major Subject: Mechanical Engineering THE QUASI-PERIODIC NATURE OF WALL SLIP FOR MOLTEN PLASTICS IN LARGE AMPLITUDE OSCILLATORY SHEAR A Thesis by DAVID WARREN ADRIAN Approved as to style and content by: A. J...

Adrian, David Warren

2012-06-07T23:59:59.000Z

359

Stainless steel corrosion by molten nitrates : analysis and lessons learned.  

SciTech Connect (OSTI)

A secondary containment vessel, made of stainless 316, failed due to severe nitrate salt corrosion. Corrosion was in the form of pitting was observed during high temperature, chemical stability experiments. Optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were all used to diagnose the cause of the failure. Failure was caused by potassium oxide that crept into the gap between the primary vessel (alumina) and the stainless steel vessel. Molten nitrate solar salt (89% KNO{sub 3}, 11% NaNO{sub 3} by weight) was used during chemical stability experiments, with an oxygen cover gas, at a salt temperature of 350-700 C. Nitrate salt was primarily contained in an alumina vessel; however salt crept into the gap between the alumina and 316 stainless steel. Corrosion occurred over a period of approximately 2000 hours, with the end result of full wall penetration through the stainless steel vessel; see Figures 1 and 2 for images of the corrosion damage to the vessel. Wall thickness was 0.0625 inches, which, based on previous data, should have been adequate to avoid corrosion-induced failure while in direct contact with salt temperature at 677 C (0.081-inch/year). Salt temperatures exceeding 650 C lasted for approximately 14 days. However, previous corrosion data was performed with air as the cover gas. High temperature combined with an oxygen cover gas obviously drove corrosion rates to a much higher value. Corrosion resulted in the form of uniform pitting. Based on SEM and EDS data, pits contained primarily potassium oxide and potassium chromate, reinforcing the link between oxides and severe corrosion. In addition to the pitting corrosion, a large blister formed on the side wall, which was mainly composed of potassium, chromium and oxygen. All data indicated that corrosion initiated internally and moved outward. There was no evidence of intergranular corrosion nor were there any indication of fast pathways along grain boundaries. Much of the pitting occurred near welds; however this was the hottest region in the chamber. Pitting was observed up to two inches above the weld, indicating independence from weld effects.

Kruizenga, Alan Michael

2011-09-01T23:59:59.000Z

360

ALUMINUM--2003 5.1 By Patricia A. Plunkert  

E-Print Network [OSTI]

, about 1.5 million metric tons per year (Mt/yr) of domestic primary aluminum smelting capacity, including idled potlines at operating smelters, equivalent to about 35% of total capacity, was closed. Aluminum and the container and packaging industries remained the leading markets for aluminum products in Canada

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi  

E-Print Network [OSTI]

Aluminum Removal from Photographic Waste Submitted to Dr. Tony Bi By: Kristen Favel, Tiffany Jung, and Kenny Tam CHBE 484 University of British Columbia April 15, 2009 #12;ii "Aluminum Removal from photographic waste has shown elevated levels of aluminum in the fixer, which exceed sewer discharge standards

362

Mobilizing aluminum in crustal and mantle fluids Craig E. Manning  

E-Print Network [OSTI]

Mobilizing aluminum in crustal and mantle fluids Craig E. Manning Department of Earth and Space December 2005 Available online 9 March 2006 Abstract Aluminum is a major rock-forming element, but its low by formation of polynuclear NaĀ­AlĀ­SiĀ­O clusters and/or polymers. Aluminum should not be assumed to be immobile

Manning, Craig

363

Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid  

E-Print Network [OSTI]

Inhibition of Aluminum Oxyhydroxide Precipitation with Citric Acid Daniel M. Dabbs, Usha as an agent for increasing the solubility of aluminum oxyhydroxides in aqueous solutions of high (>2.47 mol/mol) hydroxide-to-aluminum ratios. Conversely, citric acid also colloidally stabilizes particles in aqueous

Aksay, Ilhan A.

364

The Effects of Fe3+ Aluminum Silicate Phase Relations in  

E-Print Network [OSTI]

The Effects of Fe3+ and Mn3+ on Aluminum Silicate Phase Relations in North-Central New Mexico, U, New Mexico 87131 (Received 28 November 1983; in revised form 2 October 1984) ABSTRACT Aluminum, then their equilibrium coexistence is invariant. However, the aluminum silicate minerals are not pure in highly oxidized

Lee, Cin-Ty Aeolus

365

POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1  

E-Print Network [OSTI]

POST-SHOCK TEMPERATURE MEASUREMENTS OF ALUMINUM A. Seifter1 , S. T. Stewart2 , M. R. Furlanetto1 concurrent VISAR measurements in the same optical path, validation experiments on aluminum have been-shock temperature of 495 K Ā± 30 K was recorded from a polished free surface of aluminum 2024-T4 subject to a peak

Stewart, Sarah T.

366

Optical frequency standards based on mercury and aluminum ions  

E-Print Network [OSTI]

Optical frequency standards based on mercury and aluminum ions W. M. Itano, J. C. Bergquist, A-16 . Keywords: aluminum, atomic clocks, frequency standards, ion traps, mercury 1. INTRODUCTION Optical frequency standards based on the mercury ion and, more recently, the aluminum ion are under devel- opment

367

ccsd00002835, Light scattering from cold rolled aluminum surfaces  

E-Print Network [OSTI]

ccsdĀ­00002835, version 2 Ā­ 14 Sep 2004 Light scattering from cold rolled aluminum surfaces Damien Camille Soula , 31400 Toulouse, France We present experimental light scattering measurements from aluminum scattering measurements of an s-polarized electromagnetic wave (632.8 nanometers) from a rough aluminum alloy

368

DESCRIBING THE PLASTIC DEFORMATION OF ALUMINUM SOFTBALL BATS  

E-Print Network [OSTI]

DESCRIBING THE PLASTIC DEFORMATION OF ALUMINUM SOFTBALL BATS E. BIESEN1 AND L. V. SMITH2 Washington-mail: lvsmith@wsu.edu Hollow aluminum bats were introduced over 30 years ago to provide improved durability over durability. Accordingly, the plastic deformation from a ball impact of a single-wall aluminum bat

Smith, Lloyd V.

369

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill  

E-Print Network [OSTI]

Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum, may react with liquid in a landfill and cause uncontrolled temperature increases, significant changes

370

Impact of B{sub 4}C on the stratification of molten steel and BWR-type core material under IVR conditions  

SciTech Connect (OSTI)

As part of the validation of the In-Vessel Melt Retention (IVR) strategy for its KERENA BWR, AREVA NP has performed a quantitative assessment of the potential impact of thermochemical phenomena. This was motivated by the fact that several of these phenomena, namely the formation of a dense metallic phase, have the potential to lead to a strong increase in local heat fluxes, with the risk of early IVR failure. In this context, experiments performed in the MASCA project with PWR-type corium melts were repeated using a typical BWR core melt: characterized by a lower U/Zr-ratio and higher contents of Zr, steel, and boron carbide (B{sub 4}C). Applying an improved 'cold crucible' induction heating technique, two series of test were performed, first without B{sub 4}C and then with a B{sub 4}C content of about 1.4 wt%. These two values bound the uncertainty with respect to the incorporation of B{sub 4}C into the molten pool. The target of the tests was to localize the point of equal densities between the dense metallic phase (Fe, U, Zr and O) and the residual oxidic phase in thermo-chemical equilibrium. An interesting result of these experiments was that, different from earlier MASCA tests with PWR-type corium that showed an only insignificant impact of B{sub 4}C on metal density, the new experiments reveal a strong corresponding effect, which can over-compensates the density increase caused by U-migration into the metallic melt. This deviating result is attributed, first, to the higher Zr-fraction in the BWR-type core melt, and second, to the higher content of B{sub 4}C in the BWR-type melt in comparison to the MASCA tests (B{sub 4}C-content <0.5 wt%). Based on the obtained results it is predicted that - under certain conditions -B{sub 4}C can completely prevent the formation of a dense metallic phase, independent of the amount of molten steel in the melt. The paper gives an overview of the performed experiments and their main results and provides theoretical models to explaining the observed strong reduction in metallic phase density in presence of B{sub 4}C Their predictions are then compared to the experimental data. (authors)

Fischer, M. [AREVA NP GmbH, Paul-Gossen Str. 100, 91052 Erlangen (Germany); Sulatsky, A. A.; Krushinov, E. V. [A.R Alexandrov Research Inst. of Technology, Federal State Enterprise, Sosnovy Bor, 188540, Leningrad oblast (Russian Federation)

2012-07-01T23:59:59.000Z

371

Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations  

Broader source: Energy.gov [DOE]

This case study describes how Commonwealth Industries (now Aleris Rolled Products) conducted plant-wide energy assessments at its aluminum sheet rolling mills in Lewisport, Kentucky, and Uhrichsville, Ohio, to improve process and energy efficiency.

372

Transmissive metallic contact for amorphous silicon solar cells  

DOE Patents [OSTI]

A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

Madan, A.

1984-11-29T23:59:59.000Z

373

Computed Shock Response of Porous Aluminum  

Science Journals Connector (OSTI)

The shock response of powdered aluminum compacted by a driver plate was simulated with a one?dimensional Lagrangiancontinuum mechanicscomputer program. The porous aluminum was mocked up by a series of flat plates separated by gaps to obtain an initial density of 1.35 g/cm3 for the ``powder.'' The compaction process was followed in detail for two cases of driver?plate conditions corresponding to two Stanford Research Institute experiments. The calculations showed an approach to equilibrium behind the shock in each of the porous samples. The equilibrium states established were found to be consistent with the Rankine?Hugoniot jump conditions applied to aluminum of density 1.35 g/cm3. These states did not lie on the Hugoniot curve of solid?density aluminum. This was shown to be due to the significant internal?energy dependency in the equation of state. The calculated results were in good agreement with the SRI experiments. Application of this computational model to more complex cases is indicated.

Ronald Hofmann; Dudley J. Andrews; D. E. Maxwell

1968-01-01T23:59:59.000Z

374

Chemical vapor deposition of aluminum oxide  

DOE Patents [OSTI]

An aluminum oxide film is deposited on a heated substrate by CVD from one or more alkylaluminum alkoxide compounds having composition R.sub.n Al.sub.2 (OR').sub.6-n, wherein R and R' are alkyl groups and n is in the range of 1 to 5.

Gordon, Roy (Cambridge, MA); Kramer, Keith (Cleveland, OH); Liu, Xinye (Cambridge, MA)

2000-01-01T23:59:59.000Z

375

Aluminum Solubility in Complex Electrolytes - 13011  

SciTech Connect (OSTI)

Predicting aluminum solubility for Hanford and Savannah River waste liquids is very important for their disposition. It is a key mission goal at each Site to leach as much aluminum as practical from sludges in order to minimize the amount of vitrified high level waste. And it is correspondingly important to assure that any soluble aluminum does not precipitate during subsequent decontamination of the liquid leachates with ion exchange. This report shows a very simple and yet thermodynamic model for aluminum solubility that is consistent with a wide range of Al liquors, from simple mixtures of hydroxide and aluminate to over 300 Hanford concentrates and to a set of 19 Bayer liquors for temperatures from 20-100 deg. C. This dimer-dS{sub mix} (DDS) model incorporates an ideal entropy of mixing along with previous reports for the Al dimer, water activities, gibbsite, and bayerite thermodynamics. We expect this model will have broad application for nuclear wastes as well as the Bayer gibbsite process industry. (authors)

Agnew, S.F. [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States)] [Columbia Energy and Environmental Services, Inc., 1806 Terminal Dr., Richland, WA 99354 (United States); Johnston, C.T. [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)] [Dept. of Crop, Soil, and Environmental Sciences, Purdue University, West Lafayette, IN 47907 (United States)

2013-07-01T23:59:59.000Z

376

Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.  

SciTech Connect (OSTI)

Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian metallurgical industry) and supplied to the partner for tests in a stack of fuel cells. A feasibility study on the cost of the Russian material for a BSP is to be done on Tasks 1, 2 in case the annual order makes up 400,000 sheets. The goal of Task 3 of the project is to research on possible implementation of cermet compositions on the basis of LiAlO{sub 2}, TiN, B{sub 4}C, ceramics with Ni and Ni-Mo binders. BaCeO{sub 3} conductive ceramics with metal binders of Ni, Ni-Cr etc. were also planned to be studied. As a result of these works, a pilot batch of samples is to be made and passed to FCE for tests. The goal of Task 4 of the Project is development of a new alloy or alloys with a ceramic coating that will have upgraded corrosion stability in operation within a SOFC. A new alloy was to be worked out by the way of modification of compositions of industrial alloys. Ceramic coatings are to be applied onto ferrite steel produced serially by iron and steel industry of Russia as sheet iron.

Krumpelt, M.

2004-06-01T23:59:59.000Z

377

Climate VISION: Private Sector Initiatives: Aluminum: GHG Inventory  

Office of Scientific and Technical Information (OSTI)

GHG Inventory Protocols GHG Inventory Protocols EPA/IAI PFC Measurement Protocol (PDF 243 KB) Download Acrobat Reader EPA and the International Aluminium Institute have collaborated with the global primary aluminium industry to develop a standard facility-specific PFC emissions measurement protocol. Use of the protocol will help ensure the consistency and accuracy of measurements. International Aluminum Institute's Aluminum Sector Greenhouse Gas Protocol (PDF 161 KB) Download Acrobat Reader The International Aluminum Institute (IAI) Aluminum Sector Addendum to the WBCSD/WRI Greenhouse Gas Protocol enhances and expands for the aluminum sector the World Business Council for Sustainable Development/World Resources Institute greenhouse gas corporate accounting and reporting protocol.

378

Climate VISION: Private Sector Initiatives: Aluminum: Resources and Links -  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs DOE Aluminum Industry of the Future Collaborative R&D partnerships between DOE Industrial Technologies Program and industry to maximize technology investments. EPA Voluntary Aluminum Industrial Partnership The Voluntary Aluminum Industrial Partnership (VAIP) is an innovative pollution prevention program developed jointly by the U.S. Environmental Protection Agency (EPA) and the primary aluminum industry. Participating companies (Partners) work with EPA to improve aluminum production efficiency while reducing perfluorocarbon (PFC) emissions, potent greenhouse gases that may remain in the atmosphere for thousands of years. See all Federal/State Programs DOE State Activities For information on activities, financial assistance, and solicitations

379

FLOWSHEET FOR ALUMINUM REMOVAL FROM SLUDGE BATCH 6  

SciTech Connect (OSTI)

Samples of Tank 12 sludge slurry show a substantially larger fraction of aluminum than originally identified in sludge batch planning. The Liquid Waste Organization (LWO) plans to formulate Sludge Batch 6 (SB6) with about one half of the sludge slurry in Tank 12 and one half of the sludge slurry in Tank 4. LWO identified aluminum dissolution as a method to mitigate the effect of having about 50% more solids in High Level Waste (HLW) sludge than previously planned. Previous aluminum dissolution performed in a HLW tank in 1982 was performed at approximately 85 C for 5 days and dissolved nearly 80% of the aluminum in the sludge slurry. In 2008, LWO successfully dissolved 64% of the aluminum at approximately 60 C in 46 days with minimal tank modifications and using only slurry pumps as a heat source. This report establishes the technical basis and flowsheet for performing an aluminum removal process in Tank 51 for SB6 that incorporates the lessons learned from previous aluminum dissolution evolutions. For SB6, aluminum dissolution process temperature will be held at a minimum of 65 C for at least 24 days, but as long as practical or until as much as 80% of the aluminum is dissolved. As planned, an aluminum removal process can reduce the aluminum in SB6 from about 84,500 kg to as little as 17,900 kg with a corresponding reduction of total insoluble solids in the batch from 246,000 kg to 131,000 kg. The extent of the reduction may be limited by the time available to maintain Tank 51 at dissolution temperature. The range of dissolution in four weeks based on the known variability in dissolution kinetics can range from 44 to more than 80%. At 44% of the aluminum dissolved, the mass reduction is approximately 1/2 of the mass noted above, i.e., 33,300 kg of aluminum instead of 66,600 kg. Planning to reach 80% of the aluminum dissolved should allow a maximum of 81 days for dissolution and reduce the allowance if test data shows faster kinetics. 47,800 kg of the dissolved aluminum will be stored in Tank 8 and 21,000 kg will be stored in saltcake via evaporation. Up to 77% of the total aluminum planned for SB6 may be removed via aluminum dissolution. Storage of the aluminum-laden supernate in Tank 8 will require routine evaluation of the free hydroxide concentration in order to maintain aluminum in solution. Periodic evaluation will be established on concurrent frequency with corrosion program samples as previously established for aluminum-laden supernate from SB5 that is stored in Tank 11.

Pike, J; Jeffrey Gillam, J

2008-12-17T23:59:59.000Z

380

Metal Aminoboranes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal Aminoboranes Metal Aminoboranes Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. June 25, 2013 Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Available for thumbnail of Feynman Center (505) 665-9090 Email Metal Aminoboranes Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit. U.S. Patent No.: 7,713,506 (DOE S-112,798)

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Molten Slag Flow and Phase Transformation Behaviors in a Slagging Entrained-Flow Coal Gasifier  

Science Journals Connector (OSTI)

Molten Slag Flow and Phase Transformation Behaviors in a Slagging Entrained-Flow Coal Gasifier ... (14) The radiative heat-transfer equation for an absorbing, emitting, and scattering medium at position r in the direction s is where a and ?s represent the absorption and scattering coefficient, respectively. ...

Jianjun Ni; Zhijie Zhou; Guangsuo Yu; Qinfeng Liang; Fuchen Wang

2010-10-20T23:59:59.000Z

382

Finite element solutions of heat transfer in molten polymer flow in tubes with viscous dissipation  

E-Print Network [OSTI]

Finite element solutions of heat transfer in molten polymer flow in tubes with viscous dissipation the results of finite element analysis of a heat transfer problem of flowing polymer melts in a tubeĀ­Nusselt problem 1. Introduction Heat transfer to incompressible viscous non-Newto- nian fluids is a problem

Wei, Dongming

383

Flow visualization of molten alloys using real-time neutron radiography  

E-Print Network [OSTI]

The objective of this research is to visualize the flow of molten alloys using real-time neutron radiography. Initial experiments were performed using solder (50% tin, 50% lead), with nickel tracer particles, heated in a furnace to its liquid state...

Bennett, Tami Norene

2012-06-07T23:59:59.000Z

384

Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts  

SciTech Connect (OSTI)

Laser-induced breakdown spectroscopy (LIBS) has been investigated as a potential analytical tool to improve operations and safeguards for electrorefiners, such as those used in processing spent nuclear fuel. This study set out to better understand the effect of sample temperature and physical state on LIBS spectra of molten and solid salts by building calibration curves of cerium and assessing self-absorption, plasma temperature, electron density, and local thermal equilibrium (LTE). Samples were composed of a LiCl–KCl eutectic salt, an internal standard of MnCl2, and varying concentrations of CeCl3 (0.1, 0.3, 0.5, 0.8, and 1.0 wt.% Ce) under different temperatures (773, 723, 673, 623, and 573 K). Analysis of salts in their molten form is preferred as plasma plumes from molten samples experienced less self-absorption, less variability in plasma temperature, and higher clearance of the minimum electron density required for local thermal equilibrium. These differences are attributed to plasma dynamics as a result of phase changes. Spectral reproducibility was also better in the molten state due to sample homogeneity.

Cynthia Hanson; Supathorn Phongikaroon; Jill R. Scott

2014-07-01T23:59:59.000Z

385

Analysis of Molten Carbonate Fuel Cell Performance Using a Three-Phase Homogeneous Model  

E-Print Network [OSTI]

temperatures, nickel oxide dissolves in the melt. This slow loss of active material contributes to an increase as compared to nickel oxide. The search for alternate cathode materials could be simplified through the use-phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell MCFC cathode

Popov, Branko N.

386

Refinement in the ultrasonic velocity data and estimation of the critical parameters for molten uranium dioxide  

E-Print Network [OSTI]

the reactor and its vicinity. A reliable equation of state for the nuclear fuel, therefore, necessitates, reliable data on the sound prop- agation velocity in molten uranium dioxide have been obtained. An equation reserved. 1. Introduction The analysis of hypothetical and undesirable yet highly improbable accidents

Azad, Abdul-Majeed

387

Oxygen electrode reaction in molten carbonate fuel cells. Final report, September 15, 1987--September 14, 1990  

SciTech Connect (OSTI)

Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

Appleby, A.J.; White, R.E.

1992-07-07T23:59:59.000Z

388

Stability of vertical films of molten glass due to evaporation F. Pigeonneau,a  

E-Print Network [OSTI]

a stabilizing effect when temperature is larger than 1250 C. A model to describe the change of surface tension taking into account the gradient of surface tension. The final system of equations describing the mass of molten soda-lime-silica glass. The effect of the surface tension gradient is investigated pointing out

Boyer, Edmond

389

Production of sodium-22 from proton irradiated aluminum  

DOE Patents [OSTI]

A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

Taylor, Wayne A. (Los Alamos, NM); Heaton, Richard C. (Los Alamos, NM); Jamriska, David J. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

390

An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems  

SciTech Connect (OSTI)

Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.

Pattrick Calderoni

2010-09-01T23:59:59.000Z

391

Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films  

E-Print Network [OSTI]

of the Nitrides of Aluminum and Gallium," J. Electrochem.1) 24 (1962). G. Long and L. M. Foster, "Aluminum Nitride, aRefractory for Aluminum to 2000°C," J. Am. Ceram. Soc. ,

Tao, Jonathan Huai-Tse

2010-01-01T23:59:59.000Z

392

Microarray Analysis on Human Neuroblastoma Cells Exposed to Aluminum, Beta1–42-Amyloid or the Beta1–42-Amyloid Aluminum Complex  

E-Print Network [OSTI]

J (1992) Selective accumulation of aluminum and iron in theB, Tognon G, Zatta P (2005) Aluminum-triggered structuralrole of beta-amyloid(1-42)-aluminum complex in Alzheimer’s

2011-01-01T23:59:59.000Z

393

Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation  

SciTech Connect (OSTI)

This project addresses both practical and fundamental scientific issues of direct relevance to operational challenges of the molten LiCl-KCl salt pyrochemical process, while providing avenues for improvements in the process. In order to understand the effects of the continually changing composition of the molten salt bath during the process, the project team will systematically vary the concentrations of rare earth surrogate elements, lanthanum, cerium, praseodymium, and neodymium, which will be added to the molten LiCl-KCl salt. They will also perform a limited number of focused experiments by the dissolution of depleted uranium. All experiments will be performed at 500 deg C. The project consists of the following tasks. Researchers will measure density of the molten salts using an instrument specifically designed for this purpose, and will determine the melting points with a differential scanning calorimeter. Knowledge of these properties is essential for salt mass accounting and taking the necessary steps to prevent melt freezing. The team will use cyclic voltammetry studies to determine redox potentials of the rare earth cations, as well as their diffusion coefficients and activities in the molten LiCl-KCl salt. In addition, the team will perform anodic stripping voltammetry to determine the concentration of the rare earth elements and their solubilities, and to develop the scientific basis for an on-line diagnostic system for in situ monitoring of the cation species concentration (rare earths in this case). Solubility and activity of the cation species are critically important for the prediction of the salt's useful lifetime and disposal.

Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Allen, Todd [Univ. of Wisconsin, Madison, WI (United States); Anderson, Mark [Univ. of Wisconsin, Madison, WI (United States); Simpson, Mike [Idaho National Lab., (United States)

2012-11-30T23:59:59.000Z

394

Reaction-Forming Method for Producing Near Net-Shape Refractory Metal Carbides  

DOE Patents [OSTI]

A method for reaction forming refractory metal carbides. The method involves the fabrication of a glassy carbon preform by casting an organic, resin-based liquid mixture into a mold and subsequently heat treating it in two steps, which cures and pyrolizes the resin resulting in a porous carbon preform. By varying the amounts of the constituents in the organic, resin-based liquid mixture, control over the density of the carbon preform is obtained. Control of the density and microstructure of the carbon preform allows for determination of the microstructure and properties of the refractory metal carbide material produced. The glassy carbon preform is placed on a bed of refractory metal or refractory metal--silicon alloy. The pieces are heated above the melting point of the metal or alloy. The molten metal wicks inside the porous carbon preform and reacts, forming the refractory metal carbide or refractory metal carbide plus a minor secondary phase.

Palmisiano, Marc N.; Jakubenas, Kevin J.; Baranwal, Rita

2004-07-20T23:59:59.000Z

395

Development of a Rapid and Sensitive Method for the Determination of Aluminum by Reverse-Phase High-Performance Liquid Chromatography Using a Fluorescence Detector  

Science Journals Connector (OSTI)

......Aluminum in metal toxicity in mammals (1979) New York: Plenum. 104-112. 3 Craper D.R. , Krishnan S.S., Dalton A.J. Brain aluminium distribution in Alzheimer's disease and experimental neurofibrillary degeneration. Science (1973) 108:511-513......

Heena; Rajesh Kumar; Susheela Rani; Ashok Kumar Malik

2014-10-01T23:59:59.000Z

396

Helium-filled aluminum flight tubes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Helium-filled aluminum flight tubes. Helium-filled aluminum flight tubes. Detector housing for the CCD camera lens, mirror, and scintillator. For more information, contact Instrument Scientist: Hassina Bilheux, bilheuxhn@ornl.gov, 865.384.9630 neutrons.ornl.gov/instruments/HFIR/factsheets/Instrument-cg1d.pdf The CG-1D beam is used for neutron imaging measurements using a white beam. Apertures (with different diameters D (pinhole geometry) are used at the entrance of the helium-filled flight path to allow L/D variation from 400 to 800. L is the distance between the aperture and the detector (where the image is produced). Samples sit on a translation/ rotation stage for alignment and tomography purposes. Detectors for CG-1D include

397

Climate VISION: Private Sector Initiatives: Aluminum: Results  

Office of Scientific and Technical Information (OSTI)

Results Results The Aluminum Association and the federal government have document progress in the Climate Vision program. The results are measured by metrics developed by the industry, in partnership with the government, and reported. Progress will also be tracked under the umbrella of the Voluntary Aluminum Industrial Partnership website. Please check back on this website and the Energy Information Agency website for updates. In 2005, the industry achieved the goal set for 2010. A 56 percent reduction in direct process emissions per ton of production, including combined reductions in PFC's and CO2, exceeds the 53 percent commitment for 2010. Further progress is expected in the industry, however complications from high power costs and potential curtailments make predictions for further reductions

398

Experimental superplastic characterization of advanced aluminum alloys  

E-Print Network [OSTI]

of America Chairman of Advisory Committee: Dr. R. E. Goforth An investigation into the experimental superplastic characterization of advanced aluminum alloys consisted of the design and assembly of an experimental test facility for measuring the effects.... The experimental test apparatus designed and constructed is shown in Figure 2, with four major components assembled together to form the SPF testing system. The four components are the Instron 1137 Universal testing machine, Instron 3117 furnace and Instron...

Kopp, Christopher Carl

2012-06-07T23:59:59.000Z

399

Constitutive modeling of the visco-plastic response of Hastelloy-X and aluminum alloy 8009  

SciTech Connect (OSTI)

The viscoplastic behavior of advanced, high temperature, metallic alloys is characterized using the Bodner Partom unified constitutive model. Material parameters for both Hastelloy-X and Aluminum alloy 8009 are obtained for this model. The Bodner-Partom constitutive model is summarized, and a detailed approach for determining the model parameters from experimental data is reviewed. Experimental methods for obtaining the mechanical test data are described. Bodner-Partom model parameters are determined from data obtained in uniaxial, isothermal, monotonic tension or compression tests and isothermal creep tests. Model predictions from the parameters determined are generated and compared to experimental data.

Rowley, M.A.; Thornton, E.A. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Mechanical and Aerospace Engineering

1996-01-01T23:59:59.000Z

400

Energy-Efficient Melting and Direct Delivery of High Quality...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum Energy-Efficient Melting and Direct Delivery of High Quality Molten Aluminum itmdelivery.pdf More...

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, AND TRIPLE BONDS: Al - CH3, Al = CH2, AND Al. = CH  

E-Print Network [OSTI]

three prototype Table II. aluminum-carbon bonds and theirPhysics THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, ANDLBL-l0871 The Prototype Aluminum - Carbon Single, Double.

Fox, Douglas J.

2011-01-01T23:59:59.000Z

402

Influence of argon and oxygen on charge-state-resolved ion energy distributions of filtered aluminum arcs  

E-Print Network [OSTI]

energy distributions of filtered aluminum arcs Johanna Roséndistributions (IEDs) in filtered aluminum vacuum arc plasmasfor vacuum arc plasmas. Aluminum plasma, for example,

Rosen, Johanna; Anders, Andre; Mraz, Stanislav; Atiser, Adil; Schneider, Jochen M.

2006-01-01T23:59:59.000Z

403

Lithium-aluminum-carbonate-hydroxide hydrate coatings on aluminum alloys: Composition, structure, and processing bath chemistry  

SciTech Connect (OSTI)

A new corrosion resistant coating, being designed for possible replacement of chromate conversion coatings on aluminum alloys, was investigated for composition, structure, and solubility using a variety of techniques. The stoichiometry of the material, prepared by immersion of 1100 Al alloy into a lithium carbonate-lithium hydroxide solution, was approximately Li{sub 2}Al{sub 4}CO{sub 3}(OH){sub 12}{center_dot}3H{sub 2}O. Processing time was shown to be dependent upon the bath pH, and consistent coating formation required supersaturation of the coating bath with aluminum. The exact crystal structure of this hydrotalcite material, hexagonal or monoclinic, was not determined. It was shown that both the bulk material and coatings with the same nominal composition and crystal structure could be formed by precipitation from an aluminum supersatured solution of lithium carbonate. {copyright} {ital 1996 Materials Research Society.}

Drewien, C.A.; Eatough, M.O.; Tallant, D.R.; Hills, C.R.; Buchheit, R.G. [Materials and Process Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

1996-06-01T23:59:59.000Z

404

Calculation of ionization balance and electrical conductivity in nonideal aluminum plasma  

Science Journals Connector (OSTI)

A practical approach has been implemented to calculate the ionization balance and electrical conductivity of warm dense aluminum plasma with the Coulomb coupling effect taken into account. The correction term for ionization potential is formulated with a number of basic dimensionless parameters that characterize nonideal plasma and incorporated with the fitted formulas of excess free energy given by Tanaka, Mitake, and Ichimaru [Phys. Rev. A 32, 1896 (1985)] and Chabrier and Potekhin [Phys. Rev. E 58, 4941 (1998)] to determine the ionization balance in an equilibrium state. The calculated degree of ionization of aluminum plasma exhibits a sudden increase near the solid density ?1 g/cm3 at temperatures of a few eV, which effectively demonstrates the pressure-induced ionization. The electrical conductivity is evaluated in a partially ionized plasma regime based on a linear mixture rule that takes into account both the electron-ion and electron-neutral collisions and then the computed results are compared with available data from recent experiments. It is shown that the calculation well reproduces the overall trend of measured electrical conductivity of nonideal aluminum plasma accounting for the metal-insulator transition.

Deok-Kyu Kim and Inho Kim

2003-11-25T23:59:59.000Z

405

INSTITUTE FOR SHOCK PHYSICSLaser-Shock Spall Experiments in Aluminum II: Interface Measurements  

E-Print Network [OSTI]

fracture in aluminum alloys at short time scales (10-8 s) Ā· Role of PMMA backing material window -Changing-T6 or 1100-H14 aluminum targets approximately 110 m thick Ā· PMMA with vapor deposited Al mirror Soda. (2006) * Advised by Yoshi Toyoda and Y. M. Gupta Aluminum Thickness (m) Aluminum Alloy Aluminum

Collins, Gary S.

406

Distillation of LiCl from the LiCl–Li2O molten salt of the electrolytic reduction process  

Science Journals Connector (OSTI)

Pyroprocessing technology based on molten salt electrolysis has...1–4...]. The Korea Atomic Energy Research Institute (KAERI) has been developing the pyroprocessing process, which is a technology that recovers...

I. S. Kim; S. C. Oh; H. S. Im; J. M. Hur…

2013-02-01T23:59:59.000Z

407

Method and mold for casting thin metal objects  

SciTech Connect (OSTI)

Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

Pehrson, Brandon P; Moore, Alan F

2014-04-29T23:59:59.000Z

408

Virtual Aluminum Castings An Industrial Application of Integrated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Virtual Aluminum Castings An Industrial Application of Integrated Computational Materials Engineering Home Author: J. Allison, M. Li, C. Wolverton, X. Su Year: 2006 Abstract: The...

409

Fracture of welded aluminum thin-walled structures  

E-Print Network [OSTI]

A comprehensive methodology was developed in the thesis for damage prediction of welded aluminum thin-walled structures, which includes material modeling, calibration, numerical simulation and experimental verification. ...

Zheng, Li, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

410

Achieving Carbon Neutrality in the Global Aluminum Industry  

Science Journals Connector (OSTI)

Table VII...illustrates a suggested carbon scoreboard. The global aluminum industry can become “carbon neutral,” reducing its current carbon print of 500 million metric tonnes per year... ...

Subodh Das

2012-02-01T23:59:59.000Z

411

Aluminum-doped Zinc Oxide Nanoink - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cells, photochromic windows, chemical sensors, and biosensors. Description The optoelectronic properties of AZO nanocrystals can be tuned by controlling their aluminum content....

412

Microsoft PowerPoint - Aluminum Concentrations in Storm Water...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

publication or guarantee its technical correctness. Title: Solid and Dissolved Phase Aluminum in Storm Water Runoff on the Pajarito Plateau, Poster, Individual Permit for Storm...

413

Low-Cost Direct Bonded Aluminum (DBA) Substrates | Department...  

Energy Savers [EERE]

(DBA) Substrates Low-Cost Direct Bonded Aluminum (DBA) Substrates 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

414

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Direct Bonded Aluminum (DBA) Substrates (Agreement ID:23278) 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

415

ORNL: Low-Cost Direct Bonded Aluminum (DBA) Substrates (Agreement...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Direct Bonded Aluminum (DBA) Substrates H. -T. Lin, A. A. Wereszczak, and S. Waters Oak Ridge National Laboratory This presentation does not contain any proprietary,...

416

High-Temperature Aluminum Alloys | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting pm044smith2012o.pdf More Documents & Publications High-Temperature Aluminum Alloys Vehicle...

417

Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9072 9072 September 2010 Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis Robert Remick National Renewable Energy Laboratory Douglas Wheeler DJW Technology, LLC National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-560-49072 September 2010 Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis Robert Remick National Renewable Energy Laboratory Douglas Wheeler DJW Technology, LLC Prepared under Task No. H278.7210

418

Device for equalizing molten electrolyte content in a fuel cell stack  

DOE Patents [OSTI]

A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

Smith, J.L.

1985-12-23T23:59:59.000Z

419

Device for equalizing molten electrolyte content in a fuel cell stack  

DOE Patents [OSTI]

A device for equalizing the molten electrolyte content throughout the height of a fuel cell stack is disclosed. The device includes a passageway for electrolyte return with electrolyte wettable wicking material in the opposite end portions of the passageway. One end portion is disposed near the upper, negative end of the stack where electrolyte flooding occurs. The second end portion is placed near the lower, positive end of the stack where electrolyte is depleted. Heating means are provided at the upper portion of the passageway to increase electrolyte vapor pressure in the upper wicking material. The vapor is condensed in the lower passageway portion and conducted as molten electrolyte in the lower wick to the positive end face of the stack. An inlet is provided to inject a modifying gas into the passageway and thereby control the rate of electrolyte return.

Smith, James L. (Lemont, IL)

1987-01-01T23:59:59.000Z

420

Molten wax as a dust control agent for demolition of facilities  

SciTech Connect (OSTI)

Molten wax shows considerable promise as a fixative and dust control agent in demolition of radioactively contaminated facilities. Sticky molten wax, modified with special surfactants and wetting agents, is capable of not only coating materials but also penetrating into friable or dusty materials and making them incapable of becoming airborne during demolition. Wax also shows significant promise for stabilization of waste residuals that may be contained in buildings undergoing demolition. Some of the building materials that have been tested to date include concrete, wood, sheet rock, fiber insulation, lime, rock, and paper. Protective clothing, clay, sand, sulfur, and bentonite clay have been tested as surrogates for certain waste materials that may be encountered during building demolition. The paper describes several potential applications of molten wax for dust control in demolition of radioactive contaminated facilities. As a case-study, this paper describes a research test performed for a pipeline closure project being completed by the Idaho Cleanup Project at the Idaho National Laboratory. The project plans to excavate and remove a section of buried Duriron drain piping containing highly radioactive and friable and 'flighty' waste residuals. A full-scale pipeline mockup containing simulated waste was buried in sand to simulate the direct buried subsurface condition of the subject piping. The pipeline was pre-heated by drawing hot air through the line with a HEPA vacuum blower unit. Molten wax was pumped into the line and allowed to cool. The line was then broken apart in various places to evaluate the permeation performance of the wax. The wax fully permeated all the surrogate materials rendering them non-friable with a consistency similar to modeling clay. Based on the performance during the mockup, it is anticipated that the wax will be highly effective in controlling the spread of radiological contamination during pipe demolition activities. (authors)

Carter, E.E. [Carter Technologies Co, Sugar Land, TX (United States); Welty, B.D. [Portage, Inc, Idaho Falls, ID (United States)

2007-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

On-line Monitoring of Actinide Concentrations in Molten Salt Electrolyte  

SciTech Connect (OSTI)

Pyroprocessing, a treatment method for spent nuclear fuel (SNF), is currently being studied at the Idaho National Laboratory. The key operation of pyroprocessing which takes place in an electrorefiner is the electrochemical separation of actinides from other constituents in spent fuel. Efficient operation of the electrorefiner requires online monitoring of actinide concentrations in the molten salt electrolyte. Square-wave voltammetry (SWV) and normal pulse voltammetry (NPV) are being investigated to assess their applicability to the measurement of actinide concentrations in the electrorefiner.

Curtis W. Johnson; Mary Lou Dunzik-Gougar; Shelly X. Li

2006-11-01T23:59:59.000Z

422

Electromigration process for the purification of molten silicon during crystal growth  

DOE Patents [OSTI]

A process for the purification of molten materials during crystal growth by electromigration of impurities to localized dirty zones. The process has particular applications for silicon crystal growth according to Czochralski techniques and edge-defined film-fed growth (EFG) conditions. In the Czochralski crystal growing process, the impurities are electromigrated away from the crystallization interface by applying a direct electrical current to the molten silicon for electromigrating the charged impurities away from the crystal growth interface. In the EFG crystal growth process, a direct electrical current is applied between the two faces which are used in forming the molten silicon into a ribbon. The impurities are thereby migrated to one side only of the crystal ribbon. The impurities may be removed or left in place. If left in place, they will not adversely affect the ribbon when used in solar collectors. The migration of the impurity to one side only of the silicon ribbon is especially suitable for use with asymmetric dies which preferentially crystallize uncharged impurities along one side or face of the ribbon.

Lovelace, Alan M. Administrator of the National Aeronautics and Space (San Pedro, CA); Shlichta, Paul J. (San Pedro, CA)

1982-01-01T23:59:59.000Z

423

An evaluation of possible next-generation high temperature molten-salt power towers.  

SciTech Connect (OSTI)

Since completion of the Solar Two molten-salt power tower demonstration in 1999, the solar industry has been developing initial commercial-scale projects that are 3 to 14 times larger. Like Solar Two, these initial plants will power subcritical steam-Rankine cycles using molten salt with a temperature of 565 C. The main question explored in this study is whether there is significant economic benefit to develop future molten-salt plants that operate at a higher receiver outlet temperature. Higher temperatures would allow the use of supercritical steam cycles that achieve an improved efficiency relative to today's subcritical cycle ({approx}50% versus {approx}42%). The levelized cost of electricity (LCOE) of a 565 C subcritical baseline plant was compared with possible future-generation plants that operate at 600 or 650 C. The analysis suggests that {approx}8% reduction in LCOE can be expected by raising salt temperature to 650 C. However, most of that benefit can be achieved by raising the temperature to only 600 C. Several other important insights regarding possible next-generation power towers were also drawn: (1) the evaluation of receiver-tube materials that are capable of higher fluxes and temperatures, (2) suggested plant reliability improvements based on a detailed evaluation of the Solar Two experience, and (3) a thorough evaluation of analysis uncertainties.

Kolb, Gregory J.

2011-12-01T23:59:59.000Z

424

Assessment of molten debris freezing in a severe RIA in-pile test. [PWR; BWR  

SciTech Connect (OSTI)

An understanding of the freezing of molten debris on cold core structures following a hypothetical core meltdown accident in a light water reactor (LWR) is of importance to reactor safety analysis. The purpose of the present investigation was to analyze the transient freezing of the molten debris produced in a severe reactivity initiated accident (RIA) scoping test, designated RIA-ST-4, which was performed in the Power Burst Facility and simulated a BWR control rod drop accident. In the RIA-ST-4 experiment, a single, unirradiated, 20 wt % enriched, UO/sub 2/ fuel rod contained within a Zircaloy flow shroud was subjected to a single power burst which deposited a total energy of about 700 cal/g UO/sub 2/. This energy deposition is well above what is possible in a commercial LWR during a hypothetical control rod drop (BWR) or ejection (PWR) accident. However, the performance of such an in-pile test has provided important information regarding molten debris movement, relocation, and freezing on cold walls.

El-Genk, M.S.; Moore, R.L.

1980-01-01T23:59:59.000Z

425

Ab Initio Study of the Interaction of Water with Cluster Models of the Aluminum Terminated (0001) r-Aluminum Oxide Surface  

E-Print Network [OSTI]

Ab Initio Study of the Interaction of Water with Cluster Models of the Aluminum Terminated (0001) r-Aluminum to hydroxylation of the aluminum terminated surface, the two water process was found to be the most exothermic, occurring within 10-2 s. I. Introduction As one of the most important ceramic materials, R-aluminum oxide

Schlegel, H. Bernhard

426

Economic and environmental evaluation of end-of-life aerospace aluminum options using optimization methods  

E-Print Network [OSTI]

The benefits of recycling have long been understood and the conspicuous energy savings of secondary aluminum production have caused aluminum recycling to increase. Obsolete aircraft are a valuable source of aluminum scrap ...

Chen, Emily, S.B. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

427

Long-term and Highly Aluminum-resistant Root Elongation in a Camphor Tree Cinnamomum camphora  

E-Print Network [OSTI]

for the detoxification of aluminum in roots of tea plant (Oda A, Yamamoto F, Effects of aluminum on growth and biomassT, Beneficial effect of aluminum on growth of plants adapted

Osawa, Hiroki

2009-01-01T23:59:59.000Z

428

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AISI 4340 STEEL MODIFIED WITH ALUMINUM AND SILICON  

E-Print Network [OSTI]

Met. Trans. 1,2163 (1972). Aluminum_~n Iron~, S. L. Case andSTEEL MODIFIED WITH ALUMINUM AND SILIC ON ManjeshwarThe influence of additions of aluminum and combinations of

Bhat, M.S.

2010-01-01T23:59:59.000Z

429

Fabrication and applications of nanocomposite structures using anodized aluminum oxide membranes  

E-Print Network [OSTI]

Hall, Process of Reducing Aluminum from its Fluoride SaltsFrary and Z. Jeffries, Aluminum and its Production, McGraw-1 (1948). J. E. Hatch, Aluminum Properties and Physical

Gapin, Andrew Isaac

2007-01-01T23:59:59.000Z

430

Aluminum-tungsten fiber composites with cylindrical geometry and controlled architecture of tungsten reinforcement  

E-Print Network [OSTI]

Chung, D. “Silicon-Aluminum Network Composites Fabricated byFigure 95 - Fine model with initial aluminum matrix failure.slight necking of the aluminum matrix. Note failed elements

Lucchese, Carl Joesph

2010-01-01T23:59:59.000Z

431

Low-Cycle Fatigue of Ultra-Fine-Grained Cryomilled 5083 Aluminum Alloy  

E-Print Network [OSTI]

of an Ultra-Fine Grained Aluminum Alloy, Poster Session,Grained Cryomilled 5083 Aluminum Alloy J.L. WALLEY, E.J.consistent with other MA aluminum alloys and is attributed

Walley, J. L.; Lavernia, E. J.; Gibeling, J. C.

2009-01-01T23:59:59.000Z

432

Control of residual aluminum from conventional treatment to improve reverse osmosis performance  

E-Print Network [OSTI]

2005. The Role of Dissolved Aluminum in Silica Chemistry forDraft Public Health Goal for Aluminum in Drinking Water .1994. Control of Residual Aluminum in Filtered Water . AWWA,

Gabelich, C J; Ishida, K P; Gerringer, F W; Evangelista, R; Kalyan, M; Suffet, I H

2006-01-01T23:59:59.000Z

433

A nanohole in a thin metal film as an efficient nonlinear optical element  

SciTech Connect (OSTI)

The nonlinear optical properties of single nanoholes and nanoslits fabricated in gold and aluminum nanofilms are studied by third harmonic generation (THG). It is shown that the extremely high third-order optical susceptibility of aluminum and the presence of strong plasmon resonance of a single nanohole in an aluminum film make possible an efficient nanolocalized radiation source at the third harmonic frequency. The THG efficiency for a single nanohole in a thin metal film can be close to unity for an exciting laser radiation intensity on the order of 10{sup 13} W/cm{sup 2}.

Konstantinova, T. V.; Melent'ev, P. N.; Afanas'ev, A. E. [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)] [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation); Kuzin, A. A.; Starikov, P. A.; Baturin, A. S. [Moscow Institute of Physics and Technology (Russian Federation)] [Moscow Institute of Physics and Technology (Russian Federation); Tausenev, A. V.; Konyashchenko, A. V. [OOO Avesta-proekt (Russian Federation)] [OOO Avesta-proekt (Russian Federation); Balykin, V. I., E-mail: balykin@isan.tyroitsk.ru [Russian Academy of Sciences, Institute of Spectroscopy (Russian Federation)

2013-07-15T23:59:59.000Z

434

Thermal coatings for titanium-aluminum alloys  

SciTech Connect (OSTI)

Titanium aluminides and titanium alloys are candidate materials for use in hot structure and heat-shield components of hypersonic vehicles because of their good strength-to-weight characteristics at elevated temperature. However, in order to utilize their maximum temperature capability, they must be coated to resist oxidation and to have a high total remittance. Also, surface catalysis for recombination of dissociated species in the aerodynamic boundary layer must be minimized. Very thin chemical vapor deposition (CVD) coatings are attractive candidates for this application because of durability and very light weight. To demonstrate this concept, coatings of boron-silicon and aluminum-boron-silicon compositions were applied to the titanium-aluminides alpha2 (Ti-14Al-21Nb), super-alpha2 (Ti-14Al-23-Nb-2V), and gamma (Ti-33Al-6Nb-1Ta) and to the titanium alloy beta-21S (Ti-15Mo-3Al-3Nb-0.2Si). Coated specimens of each alloy were subjected to a set of simulated hypersonic vehicle environmental tests to determine their properties of oxidation resistance, surface catalysis, radiative emittance, and thermal shock resistance. Surface catalysis results should be viewed as relative performance only of the several coating-alloy combinations tested under the specific environmental conditions of the LaRC Hypersonic Materials Environmental Test System (HYMETS) arc-plasma-heated hypersonic wind tunnel. Tests were also conducted to evaluate the hydrogen transport properties of the coatings and any effects of the coating processing itself on fatigue life of the base alloys. Results are presented for three types of coatings, which are as follows: (1) a single layer boron silicon coating, (2) a single layer aluminum-boron-silicon coating, and (3) a multilayer coating consisting of an aluminum-boron-silicon sublayer with a boron-silicon outer layer.

Cunnington, G.R.; Clark, R.K.; Robinson, J.C.

1993-04-01T23:59:59.000Z

435

Metal inks  

DOE Patents [OSTI]

Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

2014-02-04T23:59:59.000Z

436

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect (OSTI)

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50¢/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12¢/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

437

Evaluation of aluminum critical point using an ab initio variational approach  

Science Journals Connector (OSTI)

We present a method to evaluate the critical point of aluminum using a variational approach based on the ab initio molecular-dynamics code CPMD. We found that the critical density, temperature, and pressure are equal to 0.44?g/cm3, 7963 K, and 0.35 GPa, respectively. At the critical point, the system is rarefied, coupled, and degenerate. The shear-viscosity and the self-diffusion were estimated at the critical point. Using the Kubo-Greenwood formula, we obtained the electrical conductivity, the absorption coefficient, the index of refraction, and the reflectivity at the critical point. We followed Mott’s ideas to study the metal-nonmetal transition related to the critical point. Our method can be useful to investigate phase transition and the critical point of metals.

Gérald Faussurier, Christophe Blancard, and Pier Luigi Silvestrelli

2009-04-03T23:59:59.000Z

438

EROSION MECHANISM IN DUCTILE METALS  

E-Print Network [OSTI]

multi-phase FCC aluminum alloy. The 1100-0 aluminum isaluminum alloy at its high room temperature strength can be compared to the low strength 1100-

Bellman Jr., Robert

2013-01-01T23:59:59.000Z

439

Joining aluminum to titanium alloy by friction stir lap welding with cutting pin  

SciTech Connect (OSTI)

Aluminum 1060 and titanium alloy Ti-6Al-4V plates were lap joined by friction stir welding. A cutting pin of rotary burr made of tungsten carbide was employed. The microstructures of the joining interface were observed by scanning electron microscopy. Joint strength was evaluated by a tensile shear test. During the welding process, the surface layer of the titanium plate was cut off by the pin, and intensively mixed with aluminum situated on the titanium plate. The microstructures analysis showed that a visible swirl-like mixed region existed at the interface. In this region, the Al metal, Ti metal and the mixed layer of them were all presented. The ultimate tensile shear strength of joint reached 100% of 1060Al that underwent thermal cycle provided by the shoulder. - Highlights: Black-Right-Pointing-Pointer FSW with cutting pin was successfully employed to form Al/Ti lap joint. Black-Right-Pointing-Pointer Swirl-like structures formed due to mechanical mixing were found at the interface. Black-Right-Pointing-Pointer High-strength joints fractured at Al suffered thermal cycle were produced.

Wei, Yanni [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 (China) [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China); Li, Jinglong, E-mail: lijinglg@nwpu.edu.cn [Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China)] [Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China); Xiong, Jiangtao [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 (China) [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China); Huang, Fu; Zhang, Fusheng; Raza, Syed Hamid [Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China)] [Shaanxi Key Laboratory of Friction Welding Technologies, Northwestern Polytechnical University, Xi'an 710072 (China)

2012-09-15T23:59:59.000Z

440

Metal Oxides  

Science Journals Connector (OSTI)

Metal oxides are the class of materials having the widest application in gas sensors. This chapter presents information related to the application of various metal oxides in gas sensors designed on different p...

Ghenadii Korotcenkov

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

E-Print Network 3.0 - aluminum based composites Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UT-BATTELLE FOR THE DEPARTMENT OF ENERGY Summary: power electronics. Testing of aluminum conductor, composite-reinforced (ACCR), a new 3M composite... embedded in an aluminum...

442

E-Print Network 3.0 - aluminum strand coating Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

evaporate nickel and aluminum and then reactively deposit NiAl bond coats... coat's oxidation resistance is achieved by the use of sufficient aluminum to result in the...

443

E-Print Network 3.0 - aluminum joined employing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion and Utilization 3 ENS'05 Paris, France, 14-16 December 2005 CONTROL POROUS PATTERN OF ANODIC ALUMINUM OXIDE Summary: tightly clamped aluminum foils, rather than the...

444

E-Print Network 3.0 - aluminum alloy eroded Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

form January 21, 1999) Introduction The use of aluminum alloys for automotive body... behavior in aluminum alloy 6022. Experimental Procedure ... Source: Laughlin, David E. -...

445

Method of forming aluminum oxynitride material and bodies formed by such methods  

DOE Patents [OSTI]

Methods of forming aluminum oxynitride (AlON) materials include sintering green bodies comprising aluminum orthophosphate or another sacrificial material therein. Such green bodies may comprise aluminum, oxygen, and nitrogen in addition to the aluminum orthophosphate. For example, the green bodies may include a mixture of aluminum oxide, aluminum nitride, and aluminum orthophosphate or another sacrificial material. Additional methods of forming aluminum oxynitride (AlON) materials include sintering a green body including a sacrificial material therein, using the sacrificial material to form pores in the green body during sintering, and infiltrating the pores formed in the green body with a liquid infiltrant during sintering. Bodies are formed using such methods.

Bakas, Michael P. (Ammon, ID) [Ammon, ID; Lillo, Thomas M. (Idaho Falls, ID) [Idaho Falls, ID; Chu, Henry S. (Idaho Falls, ID) [Idaho Falls, ID

2010-11-16T23:59:59.000Z

446

E-Print Network 3.0 - aluminum automotive components Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of New Hampshire Collection: Engineering 24 1 Introduction 1.1 Aluminum alloys Summary: 1 1 Introduction 1.1 Aluminum alloys Automotive industry demands...

447

E-Print Network 3.0 - aluminum alloy matrix Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

studied at different length scales. At an atomic scale the aluminum... of plasticity, fracture, is studied. Microstructure and properties of aluminum-scandium alloys Recently......

448

E-Print Network 3.0 - aluminum nitride ceramics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emily Parker, Vanni Lughi, Noel C. MacDonald Summary: , biocompatibility, and high fracture toughness. As a piezoelectric ceramic, aluminum nitride is compatible... Aluminum...

449

E-Print Network 3.0 - aluminum alloys grain Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aluminum... -lithium and aluminum-gallium has been studied. In ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure...

450

E-Print Network 3.0 - aluminum casting technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

summarizes attempts of incorporating fly ash into aluminum castings to decrease the energy content, material... . It is shown that fly ash can be incorporated in aluminum...

451

E-Print Network 3.0 - aluminum energy conservation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

summarizes attempts of incorporating fly ash into aluminum castings to decrease the energy content, material... of aluminum melts containing up to 10 vol.% fly ash particles....

452

E-Print Network 3.0 - aluminum shape casting Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

summarizes attempts of incorporating fly ash into aluminum castings to decrease the energy content, material... . It is shown that fly ash can be incorporated in aluminum...

453

E-Print Network 3.0 - aluminum cars Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sample search results for: aluminum cars Page: << < 1 2 3 4 5 > >> 1 ORNLTM-1999157 ENERGY DIVISION Summary: aluminum content in passenger cars. General Motors is increasing...

454

E-Print Network 3.0 - aluminum hydroxide complexes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organic Acids as Competing Sorbates on Amorphous Aluminum Oxide. (3791) Authors: K... sorption of P to amorphous aluminum oxides. Alum initially decreases litter pH, so the...

455

Characteristics of Aluminum Biosorption by Sargassum fluitans Biomass  

E-Print Network [OSTI]

Characteristics of Aluminum Biosorption by Sargassum fluitans Biomass Hak Sung Lee1, * and Bohumil3A 2B2, Canada Abstract: Biomass of nonliving brown seaweed Sargassum fluitans pretreated.5. There are indications that the biomass hydroxyl groups were involved in sequestering the aluminum in the form

Volesky, Bohumil

456

Aluminum Reactions and Problems in Municipal Solid Waste Landfills  

E-Print Network [OSTI]

Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from problematic for landfill operations by generating undesirable heat, liquid leachate, and gases

457

Silicone metalization  

DOE Patents [OSTI]

A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

Maghribi, Mariam N. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Hamilton, Julie (Tracy, CA)

2006-12-05T23:59:59.000Z

458

Superconducting structure with layers of niobium nitride and aluminum nitride  

DOE Patents [OSTI]

A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources.

Murduck, James M. (Lisle, IL); Lepetre, Yves J. (Lauris, FR); Schuller, Ivan K. (Woodridge, IL); Ketterson, John B. (Evanston, IL)

1989-01-01T23:59:59.000Z

459

Superconducting structure with layers of niobium nitride and aluminum nitride  

DOE Patents [OSTI]

A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs.

Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

1989-07-04T23:59:59.000Z

460

Directed Light Fabrication of Refractory Metals and Alloys  

SciTech Connect (OSTI)

This report covers work performed under Order No. FA0000020 AN Contract DE-AC12-76SN00052 for deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents the progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. 1. Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. 2. The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. 3. The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06{micro}m), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. 4. The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required.

Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

1999-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Directed light fabrication of refractory metals and alloys  

SciTech Connect (OSTI)

This report covers deposition of refractory pure metals and alloys using the Directed Light Fabrication (DLF) process and represents progress in depositing these materials through September 1998. In extending the DLF process technology to refractory metals for producing fully dense, structurally sound deposits, several problems have become evident. (1) Control of porosity in DLF-deposited refractory metal is difficult because of gases, apparently present in commercially purchased refractory metal powder starting materials. (2) The radiant heat from the molten pool during deposition melts the DLF powder feed nozzle. (3) The high reflectivity of molten refractory metals, at the Nd-YAG laser wavelength (1.06{micro}m), produces damaging back reflections to the optical train and fiber optic delivery system that can terminate DLF processing. (4) The current limits on the maximum available laser power to prevent back reflection damage limit the parameter range available for densification of refractory metals. The work to date concentrated on niobium, W-25Re, and spherodized tungsten. Niobium samples, made from hydride-dehydride powder, had minimal gas porosity and the deposition parameters were optimized; however, test plates were not made at this time. W-25Re samples, containing sodium and potassium from a precipitation process, were made and porosity was a problem for all samples although minimized with some process parameters. Deposits made from potassium reduced tungsten that was plasma spherodized were made with minimized porosity. Results of this work indicate that further gas analysis of starting powders and de-gassing of starting powders and/or gas removal during deposition of refractory metals is required.

Fonseca, J.C.; Lewis, G.K.; Dickerson, P.G.; Nemec, R.B.

1999-05-30T23:59:59.000Z

462

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

SciTech Connect (OSTI)

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

463

Metal melting for volume reduction and recycle  

SciTech Connect (OSTI)

This paper summarizes the experiences with melting contaminated steel materials for volume reduction and melting uranium-contaminated copper and aluminum for possible recycle. In the past there has not been an economic incentive to reduce the volume of low-level beta-gamma contaminated metallic scrap materials in the United States. With the rising cost of transportation and burial facility fees new interest in volume reduction is being generated. This new interest has been primarily focused at the Idaho National Engineering Laboratory (INEL) where the Waste Experimental Reduction Facility (WERF) was established to demonstrate both metal melting and incineration of combustible material for volume reduction. Other demonstration programs involving melting for volume reduction and recycle of aluminum and copper, as well as ferrous scrap, were related to the Cascade Improvement and Cascade Upgrade Programs (CIP/CUP) at the Paducah, Kentucky facility. While the melting demonstrations for the CIP/CUP material were not primarily based on economic incentives, several observations recorded during the programs are of interest with regard to melting of copper and aluminum. (4 refs., 8 tabs.)

Miller, R.L.

1987-03-27T23:59:59.000Z

464

(Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal produced in the United States in 2013  

E-Print Network [OSTI]

producers of aluminum and aluminum alloys and the chemical industry. The semiconductor and solar industries, 47%; China, 22%; Canada, 12%; Venezuela, 11%; and other, 8%. Silicon metal: Brazil, 39%; South Africa, 20%; Canada, 14%; Australia, 9%; and other, 18%. Total: Russia, 21%; Brazil, 18%; Canada, 13%; South

465

Micro Joining of Aluminum Graphite Composites  

E-Print Network [OSTI]

metal surfaces are joined by the Joule effect. Here the workpieces are held together under the pressure exerted by the electrodes. Resistance microwelding for thin wires is studied. In this the weldability and mechanism of crossed fine nickel wires...

Velamati, Manasa

2012-07-16T23:59:59.000Z

466

Nickel coated aluminum battery cell tabs  

DOE Patents [OSTI]

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

467

Mr. Mark Jackson Aluminum Company of America  

Office of Legacy Management (LM)

_ _ of Energy Washington, DC 20565 Mr. Mark Jackson Aluminum Company of America 100 Technical Drive Alcoa Center, Pennsylvania 15069-0001 Dear Mr. Jackson: At,the request of the U.S. Department of Energy and with the consent of your company, Oak Ridge National Laboratory performed a radiological survey of the former ALCOA Research Labo,ratory at 600 Freeport Road in New Kensington, Pennsylvania. Three copies of the radiological survey report are enclosed for your information and use. An additional radiological survey was also performed at the former ALCOA New Kensington Works at Pine and Ninth Streets in New Kensington. This property was formerly owned and operated by ALCOA and was utilized at one time for uranium processing activities by DOE's predecessor, the Manhattan Engineer

468

Destruction of XM-46 (aka LGP-1846) using the Molten Salt Destruction Process  

SciTech Connect (OSTI)

The experimental work done on the destruction of the liquid gun propellant XM-46 (or LGP-1846) using the Molten Salt Destruction (MSD) Process at the Lawrence Livermore National Laboratory (LLNL) for the US Army is described in this report. The current methods of disposal of large quantities of high explosives (HE), propellants and wastes containing energetic materials by open burning or open detonation (OB/OD), or by incineration, are becoming undesirable. LLNL is developing MSD as an alternative to OB/OD and incineration of energetic materials. A series of 18 continuous experimental runs were made wherein a solution of XM-46 and water was injected into a bed of molten salt comprising the carbonates of sodium, potassium and lithium, along with air. The results from these experiments, described in detail in the main body of this report, show that: XM-46 can be safely and completely destroyed in a bed of molten salt at temperatures well below those needed for incineration. Under optimum operating conditions, less than 1% of the chemically bound nitrogen in the XM-46 is converted to NO{sub x}, and less than 1% carbon is converted to CO. There exist, however, a number of technical uncertainties: We need to understand better why nitrates build up in the salt bath, and what we can do to reduce this amount. We need to understand the mechanism of XM-46 oxidation and ways to minimize the formation of CO and NO{sub x}. In addition, we would like to find out ways by which a more concentrated solution of XM-46 can be introduced into the reactor, so as to increase the throughputs.

Upadhye, R.S.; Watkins, B.E.

1994-03-01T23:59:59.000Z

469

Molten-Caustic-Leaching (MCL or Gravimelt) System Integration Project. Topical report for test circuit operation  

SciTech Connect (OSTI)

This is a report of the results obtained from the operation of an integrated test circuit for the Molten-Caustic-Leaching (MCL or Gravimelt) process for the desulfurization and demineralization of coal. The objectives of operational testing of the 20 pounds of coal per hour integrated MCL test circuit are: (1) to demonstrate the technical capability of the process for producing a demineralized and desulfurized coal that meets New Source Performance Standards (NSPS); (2) to determine the range of effective process operation; (3) to test process conditions aimed at significantly lower costs; and (4) to deliver product coal.

Not Available

1990-11-01T23:59:59.000Z

470

Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219  

SciTech Connect (OSTI)

Aluminum alloy 2219-T6 was friction stir processed using a novel submerged processing technique to facilitate cooling. Processing was conducted at a constant tool traverse speed of 200 mm/min and spindle rotation speeds in the range from 600 to 800 rpm. The microstructural characteristics of the base metal and processed zone, including grain structure and precipitation behavior, were studied using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Microhardness maps were constructed on polished cross sections of as-processed samples. The effect of tool rotation speed on the microstructure and hardness of the stir zone was investigated. The average grain size of the stir zone was much smaller than that of the base metal, but the hardness was also lower due to the formation of equilibrium ? precipitates from the base metal ?? precipitates. Stir zone hardness was found to decrease with increasing rotation speed (heat input). The effect of processing conditions on strength (hardness) was rationalized based on the competition between grain refinement strengthening and softening due to precipitate overaging. - Highlights: • SZ grain size (? 1 ?m) is reduced by over one order of magnitude relative to the BM. • Hardness in the SZ is lower than that of the precipitation strengthened BM. • Metastable ?? in the base metal transforms to equilibrium ? in the stir zone. • Softening in the SZ results from a decrease of precipitation strengthening.

Feng, Xiuli, E-mail: feng.97@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Liu, Huijie, E-mail: liuhj@hit.edu.cn [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Lippold, John C., E-mail: lippold.1@osu.edu [Welding Engineering Program, Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43221 (United States)

2013-08-15T23:59:59.000Z

471

Evaporation of CsCl, BaCl2, and SrCl2 from the LiCl–Li2O molten salt of the electrolytic reduction process  

Science Journals Connector (OSTI)

Pyroprocessing technology using a molten salt is a...1–4]. The pyrochemical process on the basis of molten salt electrolysis is under development at the Korea Atomic Energy Research Institute (KAERI), which is a ...

I. S. Kim; D. Y. Chung; M. S. Park…

2014-07-01T23:59:59.000Z

472

Corrosion of MA754 and MA956 in a Commercial Aluminum Melter  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center is working with Oak Ridge National Laboratory to test two oxide dispersion-strengthened alloys that could be used to construct very high-temperature heat recuperators for the aluminum-melting industry. For the initial tests, uncooled rings of MA754 and MA956 piping were exposed for 5 months to gases leaving an aluminum melter furnace at 1200 1290 C. The MA956 suffered spotty areas of severe corrosion and lost 25% of its weight. Scanning electron microscopy showed that there were small spots of alkali-rich corrosion products on the alloy surfaces, indicating the impact of droplets of fluxing agents. The corrosion products in these areas were mixed Fe, Cr, and Al oxides, which were depleted in Cr near the gas surface. However, Al concentrations in the remaining metal were typically between 3.5% and 4.0%, so there was a sufficient reservoir of Al remaining in the alloy to prevent simple breakaway corrosion which could have occurred if the Al were significantly depleted. The MA754 lost approximately 15% of its weight and showed void formation within 2 mm of the gas metal surfaces. Within the porous area, the Cr had largely segregated into oxide precipitates up to 50 9m in diameter, leaving the remaining metal Ni-rich. Below the porous layer, the alloy composition was relatively unchanged. Remains of Na- and Al-rich particles that had impacted the surface sporadically were visible but had not obviously affected the surface scale as they had with the MA956.

Hurley, John P. [University of North Dakota Energy & Environmental Research Center] [University of North Dakota Energy & Environmental Research Center; Kelley, Carl [Nature’s Fuel, 410 East Cook Road, Fort Wayne, IN 46825, USA] [Nature’s Fuel, 410 East Cook Road, Fort Wayne, IN 46825, USA; Bornstein, Norman S. [Consultant] [Consultant; Wright, Ian G [ORNL] [ORNL

2008-01-01T23:59:59.000Z

473

Photoelectron spectroscopy of boron aluminum hydride cluster anions  

SciTech Connect (OSTI)

Boron aluminum hydride clusters are studied through a synergetic combination of anion photoelectron spectroscopy and density functional theory based calculations. Boron aluminum hydride cluster anions, B{sub x}Al{sub y}H{sub z}{sup ?}, were generated in a pulsed arc cluster ionization source and identified by time-of-flight mass spectrometry. After mass selection, their photoelectron spectra were measured by a magnetic bottle-type electron energy analyzer. The resultant photoelectron spectra as well as calculations on a selected series of stoichiometries reveal significant geometrical changes upon substitution of aluminum atoms by boron atoms.

Wang, Haopeng; Zhang, Xinxing; Ko, Yeon Jae; Gantefoer, Gerd; Bowen, Kit H., E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Xiang [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States)] [Center for Space Science and Technology, University of Maryland–Baltimore County, Baltimore, Maryland 21250 (United States); Kiran, Boggavarapu, E-mail: kbowen@jhu.edu, E-mail: kiran@mcneese.edu [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States)] [Department of Chemistry and Physics, McNeese State University, Lake Charles, Louisiana 70609 (United States); Kandalam, Anil K. [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)] [Department of Physics, West Chester University, West Chester, Pennsylvania 19383 (United States)

2014-04-28T23:59:59.000Z

474

GENETIC TRANSFORMATION AND HYBRIDIZATION Bacterial citrate synthase expression and soil aluminum tolerance  

E-Print Network [OSTI]

GENETIC TRANSFORMATION AND HYBRIDIZATION Bacterial citrate synthase expression and soil aluminum that were more aluminum-tolerant than the non-transgenic control, confirming that citrate synthase overexpression can be a useful tool to help achieve aluminum tolerance. Keywords Acid soils Ɓ Aluminum toxicity Ɓ

Parrott, Wayne

475

ALUMINUM-BRIDGED BISGLYOXIMATO COBALT COMPLEXES: SYNTHESIS AND ELECTROCHEMICAL PROTON REDUCTION PROPERTIES  

E-Print Network [OSTI]

194 CHAPTER 6 ALUMINUM-BRIDGED BISGLYOXIMATO COBALT COMPLEXES: SYNTHESIS AND ELECTROCHEMICAL PROTON diglyoximato complexes connected by one or two aluminum bridges are described. The aluminum centers that the number of aluminum bridges and the nature of the substituents on the phenoxide ligands significantly

Winfree, Erik

476

Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy  

SciTech Connect (OSTI)

A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Sattarov, Akhdiyor; Sooby, Elizabeth; Tsvetkov, Pavel [Dept. of Physics, Texas A and M University, College Station, TX 77843 and Dept. of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States); Phongikaroon, Supathorn; Simpson, Michael [Dept. of Chemical Engineering, University of Idaho, Idaho Falls ID 83402 (United States)

2013-04-19T23:59:59.000Z

477

Molten salt destruction as an alternative to open burning of energetic material wastes  

SciTech Connect (OSTI)

LLNL has built a small-scale (about 1 kg/hr throughput unit to test the destruction of energetic materials using the Molten Salt Destruction (MSD) process. We have modified the unit described in the earlier references to inject energetic waste material continuously into the unit. In addition to the HMX, other explosives we have destroyed include RDX, PETN, ammonium picrate, TNT, nitroguanadine, and TATB. We have also destroyed a liquid gun propellant comprising hydroxyl ammonium nitrate, triethanolammonium nitrate and water. In addition to these pure components, we have destroyed a number of commonly used formulations, such as LX-10 (HMX/Viton), LX-16 (PETN/FPC461, LX-17 (TATB/Kel F), and PBX-9404 (HMX)/CEF/Nitro cellulose). Our experiments have demonstrated that energetic materials can be safely and effectively treated by MSD.We have also investigated the issue of steam explosions in molten salt units, both experimentally and theoretically, and concluded that steam explosions can be avoided under proper design and operating conditions. We are currently building a larger unit (nominal capacity 5 kg/hr,) to investigate the relationship between residence time, temperature, feed concentration and throughputs, avoidance of back-burn, a;nd determination of the products of combustion under different operating conditions.

Upadhye, R.S.; Watkins, B.E.; Pruneda, C.O.; Brummond, W.A.

1994-07-05T23:59:59.000Z

478

A final report on the Phase 1 testing of a molten-salt cavity receiver  

SciTech Connect (OSTI)

This report describes the design, construction, and testing of a solar central receiver using molten nitrate salt as a heat exchange fluid. Design studies for large commercial plants (30--100 MWe) have shown molten salt to be an excellent fluid for solar thermal plants as it allows for efficient thermal storage. Plant design studies concluded that an advanced receiver test was required to address uncertainties not covered in prior receiver tests. This recommendation led to the current test program managed by Sandia National Laboratories for the US Department of Energy. The 4.5 MWt receiver is installed at Sandia National Laboratories' Central Receiver Test Facility in Albuquerque, New Mexico. The receiver incorporates features of large commercial receiver designs. This report describes the receiver's configuration, heat absorption surface (design and sizing), the structure and supporting systems, and the methods for control. The receiver was solar tested during a six-month period at the Central Receiver Test Facility in Albuquerque, NM. The purpose of the testing was to characterize the operational capabilities of the receiver under a number of solar operating and stand-by conditions. This testing consisted of initial check-out of the systems, followed by steady-state performance, transient receiver operation, receiver operation in clouds, receiver thermal loss testing, receiver start-up operation, and overnight thermal conditioning tests. This report describes the design, fabrication, and results of testing of the receiver.

Chavez, J M [ed.; Sandia National Labs., Albuquerque, NM (United States); Smith, D C [Babcock and Wilcox Co., Barberton, OH (United States). Nuclear Equipment Div.

1992-05-01T23:59:59.000Z

479

In-Situ Real Time Measurements of Molten Glass Properties, Final Report  

SciTech Connect (OSTI)

Energy Research Company (ERCo) of Staten Island, NY has developed a sensor capable of measuring in situ and in real time, both the elemental composition and the temperature of molten glass. A prototype sensor has been designed, constructed and tested in ERCo's laboratory. The sensor was used to collect atomic emission spectra from molten fiberglass via Laser Induced Breakdown Spectroscopy (LIBS). From these spectra, we were able to readily identify all elements of interest (B, Si, Ca, Fe, Mg, Na, Sr, Al). The high signal-to-background signals achieved suggest that data from the sensor can be used to determine elemental concentrations, either through calibration curves or using ERCo's calibrationless method. ERCo's technology fits in well with DOE's Glass Industry Technology Roadmap which emphasizes the need for accurate process and feedstock sensors. Listed first under technological barriers to increased production efficiency is the 'Inability to accurately measure and control the production process'. A large-scale glass melting furnace, developed by SenCer Inc. of Penn Yan, NY was installed in ERCo's laboratory to ensure that a large enough quantity of glass could be melted and held at temperature in the presence of the water-cooled laser sensor without solidifying the glass.

Robert De Saro; Joe Craparo

2007-12-16T23:59:59.000Z

480

Climate VISION: Private Sector Initiatives: Aluminum: Resources and Links -  

Office of Scientific and Technical Information (OSTI)

Resources & Links Resources & Links Technical Information Publications Case Studies Publications Some of the following publications are available for download as Adobe PDF documents. Download Acrobat Reader Factors Affecting Emissions from Commercial Aluminum Reduction Cells (PDF 316 KB) The U.S. EPA and the Aluminum Association sponsored measurements of two perfluorocarbon (PFC) gases: tetrafluoromethane and hexafluoroethane. The measurements at six primary aluminum production facilities provided data on emissions of these compounds during normal aluminum smelting operations. Technology and Economics of Reducing PFC Emissions from Aluminium Production (PDF 139 KB) The paper, presented in 2002 at the Third International Symposium on Non-CO2 Greenhouse Gases (NCGG-3), provides an overview of global efforts

Note: This page contains sample records for the topic "molten aluminum metal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Ames Lab 101: BAM (Boron-Aluminum-Magnesium)  

ScienceCinema (OSTI)

Materials scientist, Bruce Cook, discusses the super hard, low friction, and lubricious alloy know as BAM (Boron-Aluminum-Magnesium). BAM was discovered by Bruce Cook and his team a

Bruce Cook

2013-06-05T23:59:59.000Z

482

ITP Aluminum: Technical Working Group on Inert Anode Technologies  

Office of Environmental Management (EM)

of aluminum and its use. De Vries. Hans. (Aluminal Obeflaechentechnik G.m.b.H., Germany), Ger.. 4 pp. CODEN: GW. DE 19716495" C 1 980520. Patent written in German....

483

A technology roadmap for the U.S. aluminum industry  

Science Journals Connector (OSTI)

By partnering with the OIT, the aluminum industry has taken an important step in planning the technology needs of their industry for the next ... in defining its long-term goals and the technology requirements to...

H. S. Kenchington; J. L. Eisenhauer; J. A. S. Green

1997-08-01T23:59:59.000Z

484

Laser ablation analysis of novel perfluoroalkyl-coated aluminum nanocomposites  

SciTech Connect (OSTI)

The evolution and decay of aluminum and aluminum monoxide emission signatures following a laser ablation event were used to compare the relative reaction rates of three aluminum based materials. Time-resolved emission results of oxide-free, C{sub 13}F{sub 27}CO{sub 2}H-passivated materials were compared with uncoated, oxide passivated aluminum nanoparticles and those coated with the same acid used in for passivation C{sub 13}F{sub 27}CO{sub 2}H. Excited state Al and AlO emission is reduced in time for the oxide free material when compared to coated, 50 nm, oxide passivated particles mixed on an equal active Al: C{sub 13}F{sub 27}CO{sub 2}H ratio. This is interpreted as an increase in the reaction rate afforded by the elimination of the oxide coating and proximity of oxidizing species in the SAM-based nanocomposite.

Jouet, R. Jason; Carney, Joel R.; Lightstone, James M.; Warren, Andrea D. [Research, Development, Test, and Evaluation, IHDIV, Naval Surface Warfare Center 4104 Evans Way, Suite 102 Indian Head MD 20640-5102 (United States)

2007-12-12T23:59:59.000Z

485

Primary aluminum production : climate policy, emissions and costs  

E-Print Network [OSTI]

Climate policy regarding perfluorocarbons (PFCs) may have a significant influence on investment decisions in the production of primary aluminum. This work demonstrates an integrated analysis of the effectiveness and likely ...

Harnisch, Jochen.; Sue Wing, Ian.; Jacoby, Henry D.; Prinn, Ronald G.

486

CLASSIFICATION AND REACTIVITY OF SECONDARY ALUMINUM PRODUCTION WASTE  

E-Print Network [OSTI]

aluminum30 production process emits seventeen (17) times less pollution to the atmosphere (see Table 1 in the ASCE Journal of Hazardous, Toxic, and Radioactive Waste November 8, 2012 #12;2 Classification

487