Powered by Deep Web Technologies
Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Terpolymerization of ethylene, sulfur dioxide and carbon monoxide  

DOE Patents (OSTI)

This invention relates to a high molecular weight terpolymer of ethylene, sulfur dioxide and carbon monoxide stable to 280.degree. C. and containing as little as 36 mol % ethylene and about 41-51 mol % sulfur dioxide; and to the method of producing said terpolymer by irradiation of a liquid and gaseous mixture of ethylene, sulfur dioxide and carbon monoxide by means of Co-60 gamma rays or an electron beam, at a temperature of about 10.degree.-50.degree. C., and at a pressure of about 140 to 680 atmospheres, to initiate polymerization.

Johnson, Richard (Shirley, NY); Steinberg, Meyer (Huntington Station, NY)

1981-01-01T23:59:59.000Z

2

Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte  

E-Print Network (OSTI)

R.A. Sutula, F. McLamon, Battery Rsearch Pograms of theof Energy, in Selected Battery Topics. Proceedings of theEthylene Carbonate in Li-Ion Battery Electrolyte Guoying

Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

2005-01-01T23:59:59.000Z

3

Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte  

DOE Green Energy (OSTI)

A study of the anodic oxidation of vinyl ethylene carbonate (VEC) was conducted with post-mortem analysis of reaction products by ATR-FTIR and gel permeation chromatography (GPC). The half-wave potential (E1/2) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by anodization of a commercial Li-ion battery electrolyte containing 2 percent VEC at 4.1 V showed the presence of a high molecular weight polymer. IR analysis indicated polycarbonate with alkyl carbonate rings linked by aliphatic methylene and methyl branches.

Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

2005-02-28T23:59:59.000Z

4

Calorimetric studies of small-molecule adsorption to carbon nanotubes  

E-Print Network (OSTI)

Isothermal titration calorimetry (ITC) was developed as a technique for qualitatively comparing the heat of absorption of small molecules to single-walled carbon nanotubes (SWCNTs). In agreement with other studies, it was ...

Glab, Kristin Lena

2009-01-01T23:59:59.000Z

5

The production of carbon nanofibers and thin films on palladium catalysts from ethylene oxygen mixtures  

SciTech Connect

The characteristics of carbonaceous materials deposited in fuel rich ethylene-oxygen mixtures on three types of palladium: foil, sputtered film, and nanopowder, are reported. It was found that the form of palladium has a dramatic influence on the morphology of the deposited carbon. In particular, on sputtered film and powder, tight 'weaves' of sub-micron filaments formed quickly. In contrast, on foils under identical conditions, the dominant morphology is carbon thin films with basal planes oriented parallel to the substrate surface. Temperature, gas flow rate, reactant flow ratio (C2H4:02), and residence time (position) were found to influence both growth rate and type for all three forms of Pd. X-ray diffraction, high-resolution transmission electron microscopy, temperature-programmed oxidation, and Raman spectroscopy were used to assess the crystallinity of the as-deposited carbon, and it was determined that transmission electron microscopy and x-ray diffraction were the most reliable methods for determining crystallinity. The dependence of growth on reactor position, and the fact that no growth was observed in the absence of oxygen support the postulate that the carbon deposition proceeds by combustion generated radical species.

Phillips, Jonathan [Los Alamos National Laboratory; Doorn, Stephen [Los Alamos National Laboratory; Atwater, Mark [UNM MECH.ENG.; Leseman, Zayd [UNM MECH.ENG.; Luhrs, Claudia C [UNM ENG.MECH; Diez, Yolanda F [SPAIN; Diaz, Angel M [SPAIN

2009-01-01T23:59:59.000Z

6

Two-electron reduction of ethylene carbonate: a quantum chemistry re-examination of mechanisms  

E-Print Network (OSTI)

Passivating solid-electrolyte interphase (SEI) films arising from electrolyte decomposition on low-voltage lithium ion battery anode surfaces are critical for battery operations. We review the recent theoretical literature on electrolyte decomposition and emphasize the modeling work on two-electron reduction of ethylene carbonate (EC, a key battery organic solvent). One of the two-electron pathways, which releases CO gas, is re-examined using simple quantum chemistry calculations. Excess electrons are shown to preferentially attack EC in the order (broken EC^-) > (intact EC^-) > EC. This confirms the viability of two electron processes and emphasizes that they need to be considered when interpreting SEI experiments. An estimate of the crossover between one- and two-electron regimes under a homogeneous reaction zone approximation is proposed.

Leung, Kevin

2013-01-01T23:59:59.000Z

7

Adsorption of methane, ethane, ethylene, and carbon dioxide on high silica pentasil zeolites and zeolite like materials using gas chromatography pulse technique  

SciTech Connect

Adsorption of methane, ethane, ethylene, and carbon dioxide in H-ZSM-5, Na-ZSM-5, H-ZSM-8, Na-ZSM-8, Silicalite, and ALPO-5 at 303-473 K has been investigated using a gas chromatography pulse technique. The zeolites have been compared for the heat of adsorption of the adsorbates at near zero adsorbate loading and also for the specific retention volume (or thermodynamic adsorption equilibrium constant) of ethane, ethylene, and carbon dioxide relative to that of methane. Among the zeolites, ALPO-5 has a high potential for the separation of methane, ethane, ethylene, and carbon dioxide from their mixture. 21 refs., 4 figs., 4 tabs.

Choudhary, V.R.; Mayadevi, S. (National Chemical Lab., Pune (India))

1993-10-01T23:59:59.000Z

8

A Study of Electrochemical Reduction of Ethylene and PropyleneCarbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy  

DOE Green Energy (OSTI)

We present results testing the hypothesis that there is a different reaction pathway for the electrochemical reduction of PC versus EC-based electrolytes at graphite electrodes with LiPF6 as the salt in common. We examined the reduction products formed using ex-situ Fourier Transform Infrared (FTIR) spectroscopy in attenuated total reflection (ATR) geometry. The results show the pathway for reduction of PC leads nearly entirely to lithium carbonate as the solid product (and presumably ethylene gas as the co-product) while EC follows a path producing a mixture of organic and inorganic compounds. Possible explanations for the difference in reaction pathway are discussed.

Zhuang, Guorong V.; Yang, Hui; Blizanac, Berislav; Ross Jr.,Philip N.

2005-05-12T23:59:59.000Z

9

The reaction of benzene with a ground state carbon atom, C,,3 Holger F. Bettingera)  

E-Print Network (OSTI)

­hydrogen exchange channel, i.e., a carbon atom is incorporated into the molecule and a hydro- gen atom is ejected. With ethylene, the incoming triplet car- bon atom is known to attack the electrons to form triplet

Kaiser, Ralf I.

10

Effects of ozone exposure on 'Golden' papaya fruit by photoacoustic phase-resolved method: Physiological changes associated with carbon dioxide and ethylene emission rates during ripening  

Science Conference Proceedings (OSTI)

This work addresses the effects of ozone activity on the physiology of 'Golden' papaya fruit. Depth profile analysis of double-layer biological samples was accomplished using the phase-resolved photoacoustic spectroscopy. The feasibility of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of papaya fruit. The same approach was used to monitor changes occurring on the fruit during ripening when exposed to ozone. In addition, one has performed real time studies of fluorescence parameters and the emission rates of carbon dioxide and ethylene. Finally, the amount of pigments and the changes in waxy cuticle have been monitored. Results indicate that a fruit deliberately subjected to ozone at a level of 6 ppmv underwent ripening sooner (at least 24-48 h) than a fruit stored at ambient conditions. Moreover, ozone caused a reduction in the maximum quantum yield of photosynthetic apparatus located within the skin of papaya fruit.

Correa, Savio Figueira; Brito Paiva, Luisa; Mota do Couto, Flavio; Gomes da Silva, Marcelo; Silva Sthel, Marcelo; Vargas, Helion [Laboratorio de Ciencias Fisicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Mota, Leonardo [Laboratorio de Ciencias Fisicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Fraunhofer Institut fuer Bauphysik, Nobelstrasse 12, Vaihingen 70569, Stuttgart, Baden Wuerttemberg (Germany); Goncalves de Oliveira, Jurandi [Laboratorio de Melhoramento Genetico Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego 2000, Parque California 28013-602, Campos dos Goytacazes, Rio de Janeiro (Brazil); Miklos, Andras [Fraunhofer Institut fuer Bauphysik, Nobelstrasse 12, Vaihingen 70569, Stuttgart, Baden Wuerttemberg (Germany)

2011-06-01T23:59:59.000Z

11

ELECTRON IRRADIATION OF CARBON DISULFIDE-OXYGEN ICES: TOWARD THE FORMATION OF SULFUR-BEARING MOLECULES IN INTERSTELLAR ICES  

Science Conference Proceedings (OSTI)

The formation of sulfur-bearing molecules in interstellar ices was investigated during the irradiation of carbon disulfide (CS{sub 2})-oxygen (O{sub 2}) ices with energetic electrons at 12 K. The irradiation-induced chemical processing of these ices was monitored online and in situ via Fourier transform infrared spectroscopy to probe the newly formed products quantitatively. The sulfur-bearing molecules produced during the irradiation were sulfur dioxide (SO{sub 2}), sulfur trioxide (SO{sub 3}), and carbonyl sulfide (OCS). Formations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), and ozone (O{sub 3}) were observed as well. To fit the temporal evolution of the newly formed products and to elucidate the underlying reaction pathways, kinetic reaction schemes were developed and numerical sets of rate constants were derived. Our studies suggest that carbon disulfide (CS{sub 2}) can be easily transformed to carbonyl sulfide (OCS) via reactions with suprathermal atomic oxygen (O), which can be released from oxygen-containing precursors such as water (H{sub 2}O), carbon dioxide (CO{sub 2}), and/or methanol (CH{sub 3}OH) upon interaction with ionizing radiation. This investigation corroborates that carbonyl sulfide (OCS) and sulfur dioxide (SO{sub 2}) are the dominant sulfur-bearing molecules in interstellar ices.

Maity, Surajit; Kaiser, Ralf I. [Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI 96822 (United States)

2013-08-20T23:59:59.000Z

12

The investigation of interactions between single walled carbon nanotubes and flexible chain molecules  

E-Print Network (OSTI)

Anisotropic nanoparticles, such as inorganic nanowires and carbon nanotubes, are promising materials for a wide range of technological applications including transparent conductors, thin film transistors, photovoltaic ...

Jeng, Esther Shu-Hsien

2010-01-01T23:59:59.000Z

13

On single-molecule DNA sequencing with atomic force microscopy using functionalized carbon nanotube probes  

E-Print Network (OSTI)

A novel DNA sequencing method is proposed based on the specific binding nature of nucleotides and measured by an atomic force microscope (AFM). A single molecule of DNA is denatured and immobilized on an atomically fiat ...

Burns, Daniel James

2004-01-01T23:59:59.000Z

14

Ethylene and Fruits  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethylene and Fruits Ethylene and Fruits Name: Devon Location: N/A Country: N/A Date: N/A Question: im a junior in high school and i have to do a research paper on the chemistry behind fruit ripening. all i seem to find is information on ethylene gas. my teacher whats to know the chemicals involved in fruit ripening and im not having much luck. do you think you could possibly help? Replies: You have found it! Ethylene plant hormone is the main agent! A book on the subject: Biology and Biotechnology of the Plant Hormone Ethylene A. K. Kanellis (Editor) C. Chang (Editor) D. Grierson (Editor) H. Kende (Editor) This hormone is used in the produce industry to schedule the ripening of fruit so they are peaking when they make the shelves. The introduction of this hormone can make ripening occur earlier than normal.

15

Novel membrane technology for green ethylene production.  

Science Conference Proceedings (OSTI)

Ethylene is currently produced by pyrolysis of ethane in the presence of steam. This reaction requires substantial energy input, and the equilibrium conversion is thermodynamically limited. The reaction also produces significant amounts of greenhouse gases (CO and CO{sub 2}) because of the direct contact between carbon and steam. Argonne has demonstrated a new way to make ethylene via ethane dehydrogenation using a dense hydrogen transport membrane (HTM) to drive the unfavorable equilibrium conversion. Preliminary experiments show that the new approach can produce ethylene yields well above existing pyrolysis technology and also significantly above the thermodynamic equilibrium limit, while completely eliminating the production of greenhouse gases. With Argonne's approach, a disk-type dense ceramic/metal composite (cermet) membrane is used to produce ethylene by dehydrogenation of ethane at 850 C. The gas-transport membrane reactor combines a reversible chemical reaction with selective separation of one product species and leads to increased reactant conversion to the desired product. In an experiment ethane was passed over one side of the HTM membrane and air over the other side. The hydrogen produced by the dehydrogenation of ethane was removed and transported through the HTM to the air side. The air provided the driving force required for the transport of hydrogen through the HTM. The reaction between transported hydrogen and oxygen in air can provide the energy needed for the dehydrogenation reaction. At 850 C and 1-atm pressure, equilibrium conversion of ethane normally limits the ethylene yield to 64%, but Argonne has shown that an ethylene yield of 69% with a selectivity of 88% can be obtained under the same conditions. Coking was not a problem in runs extending over several weeks. Further improved HTM materials will lower the temperature required for high conversion at a reasonable residence time, while the lower temperature will suppress unwanted side reactions and prolong membrane life. With the Argonne approach, oxygen does not contact the ethane/ethylene stream, so oxidation products are not formed. Consequently, higher selectivity to ethylene and fewer by-products can be achieved. Some benefits are: (1) Simplifies overall product purification and processing schemes; (2) Results in greater energy efficiency; (3) Completely eliminates greenhouse gases from the reactor section; and (4) Lowers the cost of the 'back end' purification train, which accounts for about 70% of the capital cost of a conventional ethylene production unit.

Balachandran, U.; Lee, T. H.; Dorris, S. E.; Udovich, C. A.; Scouten, C. G.; Marshall, C. L. (Energy Systems); ( CSE)

2008-01-01T23:59:59.000Z

16

Structural opportunities of ETFE (ethylene tetra fluoro ethylene)  

E-Print Network (OSTI)

An exploration of ETFE (ethylene tetra fluoro ethylene) foil cushions was performed in its use for building cladding. ETFE foil cushions consist of alternating layers of ETFE film and air cavities. An inflation system ...

Robinson, Leslie A. (Leslie Anne), 1982-

2005-01-01T23:59:59.000Z

17

Economical analysis of a new gas to ethylene technology  

E-Print Network (OSTI)

Ethylene is one of the most important petrochemical intermediates and feedstocks for many different products. The motivating force of this work is to compare a new process of ethylene production developed at Texas A&M University to the most common processes. Ethylene is produced commercially using a wide variety of feedstocks ranging from ethane to heavy fuel oils. Of them, the thermal cracking of ethane and propane using a fired tubular heater is the most common process in the United States. In Europe and Japan, where natural gas is not abundant, thermal cracking of naphtha using a fired heater is the most common process. In addition to these processes; ethylene could also be produced from crude oil by autothermic and fluidized bed techniques and from coal and heavy oils by synthesis from carbon monoxide and hydrogen. At Texas A&M University, a group of researchers developed a new process that can convert natural gas into liquids (GTL) or to ethylene (GTE). This technology is a direct conversion method that does not require producing syngas. When selecting a process for ethylene production, the dominant factor is the selection of hydrocarbon feedstocks. Based upon plant capacity of 321 million pounds of ethylene per year, this study has shown that using natural gas, as a feedstock, is more economical than using ethane, propane, naphtha, and other feedstocks. Therefore, it is more economical to convert natural gas directly to ethylene than separating ethane or propane from natural gas and then converting it to ethylene. A process simulation package ProMax is used to run the GTE process; and a software program, Capcost, is used to evaluate fixed capital costs of the GTE process. Finally, the cost index is used to update the cost of the other processes of ethylene production today.

Abedi, Ali Abdulhamid

2003-05-01T23:59:59.000Z

18

Interactions of hydrogen with ethylene and ethane on iridium  

DOE Green Energy (OSTI)

In an effort to determine the details of reaction mechanisms, kinetic parameters are obtained for the following two catalytic reactions, C/sub 2/H/sub 4/ + H/sub 2/ ..-->.. C/sub 2/H/sub 6/ and C/sub 2/H/sub 6/ + H/sub 2/ ..-->.. 2 CH/sub 4/. The first reaction is carried out, for the most part, under reaction conditions (e.g. 110-200 K) which prevent complications caused by a side reaction, the surface dehydrogenation of adsorbed ethylene. The second reaction is carried out at somewhat higher temperatures (80 to 200/sup 0/C). Both reactions are studied in the pressure range 0.5 to 1000 ..mu... Extensive isotope labeling experiments are also carried out, which together with the kinetic measurements support in a self-consistent way the following mechanisms of hydrogen addition. The adsorbed species C/sub 2/H/sub 5/(a) and H(a) are found to be intermediates in both the hydrogenation and hydrogenolysis reactions. In the case of the hydrogenation reaction, the rate limiting step is found to be the irreversible addition of an adsorbed hydrogen atom to an adsorbed ethylene molecule to produce C/sub 2/H/sub 5/(a) which is further hydrogenated to produce ethane. The hydrogenolysis occurs by dissociative adsorption of ethane to produce C/sub 2/H/sub 5/(a) and H(a). In this case the final kinetically significant elementary step is the reaction of an adsorbed hydrogen atom with one of the methyl hydrogen atoms of C/sub 2/H/sub 5/(a), which produces a hydrogen molecule and is accompanied by the breaking of the carbon-carbon bond. Other processes which are kinetically significant for the hydrogenolysis reaction include slow (the sticking coefficient approximately 10/sup -5/) ethane adsorption, slow ethane desorption (by reaction of C/sub 2/H/sub 5/(a) with H(a)), the reversible dehydrogenation of C/sub 2/H/sub 5/(a) to produce C/sub 2/H/sub 4/(a) and competition of hydrogen for the surface sites on which the hydrocarbon species are adsorbed.

Mahaffy, P. R.

1977-06-01T23:59:59.000Z

19

Ethylene combustion on unsupported and supported Pd: a comparative , Y.-F. Hana,b  

E-Print Network (OSTI)

Ethylene combustion on unsupported and supported Pd: a comparative study D. Kumara , Y.-F. Hana Ethylene combustion is studied at elevated pressures on Pd(100) and compared with supported Pd catalysts with increasing O2 pressure. The combustion kinetics is related to the corresponding surface carbon coverage

Goodman, Wayne

20

Carbon molecular sieve (CMS) membranes are microporous carbon membranes formed by pyrolysis of polymers. CMS membranes  

E-Print Network (OSTI)

Carbon molecular sieve (CMS) membranes are microporous carbon membranes formed by pyrolysis mixtures such as carbon dioxide / methane and ethane / ethylene separations. While there are many reports including carbon dioxide, methane, ethane and ethylene and also with selected two-component mixtures

McQuade, D. Tyler

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electronic detection of molecules on the exterior and molecular transport through the interior of single walled carbon nanotubes  

E-Print Network (OSTI)

Single walled carbon nanotubes (SWNT) are unique materials with high surface to volume ratio and all atoms residing on the surface. Due to their tubular shape both exterior and interior of the SWNT are available for ...

Lee, Chang Young

2010-01-01T23:59:59.000Z

22

Carbon Management Technologies for Sustainable Coal Utilization  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Methane Olefins H 2 CO CO 2 Olefins ethylene + propylene + C 4 -ene + benzene Water pump off Water pump on Fully reformed local pump diesel Equilibrium...

23

NREL Produces Ethylene via Photosynthesis (Fact Sheet), Highlights in Science, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmentally friendly process offers Environmentally friendly process offers intriguing alternative to fossil-fuel-based ethylene for chemicals and transportation fuels. Scientists at the National Renewable Energy Laboratory (NREL) have demonstrated a new way to use photosynthesis to produce ethylene. NREL scientists introduced a gene for ethylene forming enzyme (EFE) into a cyanobacterium and demonstrated that the organism remained stable through at least four generations, producing ethylene gas that could be easily captured. Ethylene is the most widely produced petrochemical feedstock in the world. It is currently produced exclusively from fossil fuels, and its production is the largest carbon dioxide (CO 2 )- emitting process in the chemical industry. Steam cracking of long-chain hydrocarbons from

24

NREL Produces Ethylene via Photosynthesis (Fact Sheet)  

SciTech Connect

Environmentally friendly process offers intriguing alternative to fossil-fuel-based ethylene for chemicals and transportation fuels.

Not Available

2012-11-01T23:59:59.000Z

25

Molecule nanoweaver  

DOE Patents (OSTI)

A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

Gerald, II; Rex E. (Brookfield, IL); Klingler, Robert J. (Glenview, IL); Rathke, Jerome W. (Homer Glen, IL); Diaz, Rocio (Chicago, IL); Vukovic, Lela (Westchester, IL)

2009-03-10T23:59:59.000Z

26

NREL: News - NREL Produces Ethylene via Photosynthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Photosynthesis Environmentally-friendly process offers intriguing alternative to fossil-fuel based ethylene for chemicals and transportation fuels September 25, 2012 Scientists at...

27

SLAC National Accelerator Laboratory - Forces Within Molecules...  

NLE Websites -- All DOE Office Websites (Extended Search)

diamondoids, which are molecule-sized diamonds pioneered by SIMES researchers. Ethane, propane and octane are familiar alkanes that have backbones of two, three and eight carbon...

28

Nucleation mechanisms of aromatic polyesters, PET, PBT, and PEN, on single-wall carbon nanotubes: early nucleation stages  

Science Conference Proceedings (OSTI)

Nucleation mechanisms of poly (ethylene terephthalate) (PET), poly (butylene terephthalate) (PBT), and poly (ethylene naphthalate) (PEN) on single-wall carbon nanotubes (SWNTs) are proposed, based on experimental evidence, theoretical epitaxy analysis, ...

Adriana Espinoza-Martínez, Carlos Avila-Orta, Víctor Cruz-Delgado, Oscar Olvera-Neria, Julio González-Torres, Francisco Medellín-Rodríguez

2012-01-01T23:59:59.000Z

29

Alloys for Ethylene Production Furnaces - Energy Innovation Portal  

Ethylene production is one of the most energy intensive processes in the chemical industry, due to the decoking necessary to maintain ethylene furnace ...

30

Gas-phase chemistry during the conversion of cyclohexane to carbon: Flow reactor studies at low and intermediate pressure  

DOE Green Energy (OSTI)

The gas-phase branching during the conversion of cyclohexane to solid carbon has been measured in a high-temperature-flow reactor. The experiments show that cyclohexane decomposes into a broad distribution of hydrocarbons that further decompose into the more kinetically stable products hydrogen, methane, acetylene, ethylene, benzene, and PAH. At 1363 K, the evolution to these species occurs quickly. We also observe the buildup of significant amounts of aromatic molecules at later stages in the decomposition, with as much as 15% of the total carbon in PAH and 25% in benzene. At later stages, the gas-phase molecules react slowly, even though the system is not at equilibrium, because of their kinetic stability and the smaller radical pool. The decomposition does not appear to depend sensitively on pressure in the regime of 25 to 250 torr. Thus, to a first approximation, these results can be extrapolated to atmospheric pressure.

Osterheld, T.H.; Allendorf, M.D.; Larson, R.

1995-07-01T23:59:59.000Z

31

Reduced Water Density in a Poly(ethylene oxide) Brush  

Science Conference Proceedings (OSTI)

A model poly(ethylene oxide) (PEO) brush system, prepared by spreading a poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) amphiphilic diblock copolymer onto an air-water interface, was investigated under various grafting density conditions by using the X-ray reflectivity (XR) technique. The overall electron density profiles of the PEO-PnBA monolayer in the direction normal to the air-water interface were determined from the XR data. From this analysis, it was found that inside of the PEO brush, the water density is significantly lower than that of bulk water, in particular, in the region close to the PnBA-water interface. Separate XR measurements with a PnBA homopolymer monolayer confirm that the reduced water density within the PEO-PnBA monolayer is not due to unfavorable contacts between the PnBA surface and water. The above result, therefore, lends support to the notion that PEO chains provide a hydrophobic environment for the surrounding water molecules when they exist as polymer brush chains.

Lee, Hoyoung; Kim, Dae Hwan; Park, Hae-Woong; Mahynski, Nathan A.; Kim, Kyungil; Meron, Mati; Lin, Binhua; Won, You-Yeon (Purdue); (UC)

2012-09-05T23:59:59.000Z

32

A model of particle nucleation in premixed ethylene flames  

SciTech Connect

A detailed model of particle inception is proposed to delve into the physical structure and chemistry of combustion-formed particles. A sectional method is used, from a previously developed kinetic mechanism of particle formation with a double discretization of the particle phase in terms of C and H atom number. The present model also distinguishes between different particle structures based on their state of aggregation; single high molecular mass molecules, cluster of molecules and aggregates of clusters. The model predicts the mass of particles, hydrogen content and internal structure. It represents a first approach in following the chemical evolution and internal structure of the particles formed in flames, coupled with the main pyrolysis and oxidation of the fuel. The model is tested in atmospheric premixed flat flames of ethylene and the effect of fuel equivalence ratio on particle morphology is analyzed. Molecular weight growth of aromatic compounds and the inception of particles are predicted. The morphology of the particles and the number of molecules in the clusters at particle inception are also indicated. (author)

D'Anna, Andrea; Sirignano, Mariano [Dipartimento di Ingegneria Chimica, Universita di Napoli ''Federico II'', Napoli (Italy); Kent, John [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney (Australia)

2010-11-15T23:59:59.000Z

33

Refining District Oklahoma-Kansas-Missouri Ethane-Ethylene ...  

U.S. Energy Information Administration (EIA)

Refining District Oklahoma-Kansas-Missouri Ethane-Ethylene Stocks at Natural Gas Processing Plants (Thousand Barrels)

34

Ethylene Market Activity in the 1990s  

E-Print Network (OSTI)

Ethylene pricing and profitabillty has been on a roller coaster for the past 5 years, and it appears that the near term scenario will not change. Overly ambitious capacity building which occurred in the late 1970s, combined with industrial stagnation in the early 1980s produced overcapacity, miserable profits and the industry shakeout which was experienced in the mid 1980s. This was followed by a gradual but continuous increase in demand accompanied by no significant new capacity. The result was firm pricing, high capacity utilization, spot shortages and exceptionally good profitability between 1987-1989. These profits only encouraged producers to debottleneck existing capacity, and buyers to build ethylene inventory in the face of increasing prices. The net result this time was eroding margins during the second half of 1989, which have only temporarily been halted by bad weather and plant operating problems. Given this cyclic tendency in the business, we can predict how manufacturing economics will result from projected changes in the existing global supply and demand for ethylene. This can be used to estimate industry profitability, and hence selling prices once operating costs are determined.

Field, S.; McCormack, G.

1990-06-01T23:59:59.000Z

35

The flash pyrolysis and methanolysis of biomass (wood) for production of ethylene, benzene and methanol  

DOE Green Energy (OSTI)

The process chemistry of the flash pyrolysis of biomass (wood) with the reactive gases, H{sub 2} and CH{sub 4} and with the non-reactive gases He and N{sub 2} is being determined in a 1 in. downflow tubular reactor at pressures from 20 to 1000 psi and temperatures from 600 to 1000{degrees}C. With hydrogen, flash hydropyrolysis leads to high yields of methane and CO which can be used for SNG and methanol fuel production. With methane, flash methanolysis leads to high yields of ethylene, benzene and CO which can be used for the production of valuable chemical feedstocks and methanol transportation fuel. At reactor conditions of 50 psi and 1000{degrees}C and approximately 1 sec residence time, the yields based on pine wood carbon conversion are up to 25% for ethylene, 25% for benzene, and 45% for CO, indicating that over 90% of the carbon in pine is converted to valuable products. Pine wood produces higher yields of hydrocarbon products than Douglas fir wood; the yield of ethylene is 2.3 times higher with methane than with helium or nitrogen, and for pine, the ratio is 7.5 times higher. The mechanism appears to be a free radical reaction between CH{sub 4} and the pyrolyzed wood. There appears to be no net production or consumption of methane. A preliminary process design and analysis indicates a potentially economical competitive system for the production of ethylene, benzene and methanol based on the methanolysis of wood. 10 refs., 18 figs., 1 tab.

Steinberg, M.; Fallon, P.T.; Sundaram, M.S.

1990-02-01T23:59:59.000Z

36

Metal catalyzed synthesis of hyperbranched ethylene and/or .alpha.-olefin polymers  

DOE Patents (OSTI)

Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ({character pullout})of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ({character pullout})of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.

Sen, Ayusman (State College, PA); Kim, Jang Sub (State College, PA); Pawlow, James H. (Gainesville, FL); Murtuza, Shahid (State College, PA); Kacker, Smita (Annandale, NJ); Wojcinski, III, Louis M. (State College, PA)

2001-01-01T23:59:59.000Z

37

Insight into Clustering in Poly(ethylene oxide) Solutions  

Science Conference Proceedings (OSTI)

... Introduction Poly(ethylene oxide) is one of the most ... other systems such as polyelectrolyte solutions, clay dispersions, living ... J. Colloid Interface Sci. ...

2011-02-28T23:59:59.000Z

38

Novel Membrane Technology for Green Ethylene Production - Energy ...  

Ethylene is currently produced by pyrolysis of ethane in the presence of steam. This reaction requires substantial energy input, and the equilibrium conversion is ...

39

Bio-based ethylene able to replace petroleum as a ...  

Biomass and Biofuels Bio-based ethylene able to replace petroleum as a feedstock National Renewable Energy Laboratory. Contact NREL About This ...

40

Coke resistant coating technology for applications in ethylene pyrolysis heaters.  

E-Print Network (OSTI)

?? This dissertation begins with a description of the history of the events leading to ethylene pyrolysis tube failure. During service, hydrocarbons pass through the… (more)

Chauhan, Alok Pratap Singh

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Sum frequency generation vibrational spectroscopy studies of adsorbates on Pt(111): Studies of CO at high pressures and temperatures, coadsorbed with olefins and its role as a poison in ethylene hydrogenation  

DOE Green Energy (OSTI)

High pressure high temperature CO adsorption and coadsorption with ethylene and propylene on Pt(111) was monitored in situ with infrared-visible sum frequency generation (SFG). At high pressures and high temperatures, CO dissociates on a Pt(111) surface to form carbon. At 400 torr CO pressure and 673K, CO modifies the Pt(111) surface through a carbonyl intermediate, and dissociates to leave carbon on the surface. SFG was used to follow the CO peak evolution from monolayer adsorption in ultra high vacuum (UHV) to 400 torr CO pressure. At this high pressure, a temperature dependence study from room temperature to 823K was carried out. Auger electron spectroscopy was used to identify carbon on the surface CO coadsorption with ethylene and CO coadsorption with propylene studies were carried out with 2-IR 1-visible SFG. With this setup, two spectral ranges covering the C-H stretch range and the CO stretch range can be monitored simultaneously. The coadsorption study with ethylene reveals that after 5L ethylene exposure on a Pt(111) surface to form ethylidyne , CO at high pressures cannot completely displace the ethylidyne from the surface. Instead, CO first adsorbs on defect sites at low pressures and then competes with ethylidyne for terrace sites at high pressures. Propylene coadsorption with CO at similar conditions shows that propylidyne undergoes conformation changes with increased CO pressure and at 1 torr, is absent from the Pt(111) surface. Experiments on CO poisoning of ethylene hydrogenation was carried by 2-IR 1-visible SFG. At 1 torr CO,10 torr ethylene and 100 torr hydrogen, CO was found to block active sites necessary for ethylene hydrogenation, Above 425K, CO desorbs from the surface to allow ethylene hydrogenation to occur. The gas phase species were monitored by gas chromatography.

Kung, Kyle Yi

2000-12-31T23:59:59.000Z

42

Aging tests of ethylene contaminated argon/ethane  

SciTech Connect

We report on aging tests of argon/ethane gas with a minor (1800 ppM) component of ethylene. The measurements were first conducted with the addition of alcohol to test the suppression of aging by this additive, with exposure up to {approx}1.5 C/cm. Tests have included: a proportional tube with ethanol, another with isopropyl alcohol, and for comparison a tube has also been run with ethanol and argon/ethane from CDF`s old (ethylene-free) ethane supply. The aging test with ethanol showed no difference between the ethylene-free and the ethylene tube. Furthermore, raw aging rates of argon/ethane and argon/ethane/ethylene were measured by exposing tubes without the addition of alcohol to about 0.1 C/cm. Again, no significant difference was observed. In conclusion, we see no evidence that ethylene contamination up to 1800 ppM has any adverse effect on wire aging. However, this level of ethylene does seem to significantly suppress the gas gain.

Atac, M. [Fermi National Accelerator Lab., Batavia, IL (United States); Bauer, G. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

1994-09-22T23:59:59.000Z

43

Final Technical Report - High-Performance, Oxide-Dispersion-Strengthened Tubes for Production of Ethylene adn Other Industrial Chemicals  

SciTech Connect

This project was undertaken by Michigan Technological University and Special Metals Corporation to develop creep-resistant, coking-resistant oxide-dispersion-strengthened (ODS) tubes for use in industrial-scale ethylene pyrolysis and steam methane reforming operations. Ethylene pyrolysis tubes are exposed to some of the most severe service conditions for metallic materials found anywhere in the chemical process industries, including elevated temperatures, oxidizing atmospheres and high carbon potentials. During service, hard deposits of carbon (coke) build up on the inner wall of the tube, reducing heat transfer and restricting the flow of the hydrocarbon feedstocks. About every 20 to 60 days, the reactor must be taken off-line and decoked by burning out the accumulated carbon. This decoking costs on the order of $9 million per year per ethylene plant, accelerates tube degradation, and requires that tubes be replaced about every 5 years. The technology developed under this program seeks to reduce the energy and economic cost of coking by creating novel bimetallic tubes offering a combination of improved coking resistance, creep resistance and fabricability not available in current single-alloy tubes. The inner core of this tube consists of Incoloy(R) MA956, a commercial ferritic Fe-Cr-Al alloy offering a 50% reduction in coke buildup combined with improved carburization resistance. The outer sheath consists of a new material - oxide dispersion strengthened (ODS) Alloy 803(R) developed under the program. This new alloy retains the good fireside environmental resistance of Alloy 803, a commercial wrought alloy currently used for ethylene production, and provides an austenitic casing to alleviate the inherently-limited fabricability of the ferritic Incoloy(R) MA956 core. To provide mechanical compatibility between the two alloys and maximize creep resistance of the bimetallic tube, both the inner Incoloy(R) MA956 and the outer ODS Alloy 803 are oxide dispersion strengthened materials produced using mechanical alloying technology. To minimize cost, the bimetallic tube is produced by direct powder co-extrusion. This technology has potential for domestic energy savings of up to 4.1 trillion BTU/year (4.3 x 1015J/year) and a reduction of 370,000 tons (340,000 tonnes) of CO2 emissions in short-residence-time ethylene furnaces. This represents an energy savings and CO2 emissions reduction of about 3.3%. If the technology is also applied to other types of ethylene pyrolysis furnaces, total energy savings and CO2 emissions reductions could increase by up to five times. The work involved: Developing powder and consolidation processing protocols to produce an oxide-dispersion strengthened variant of Alloy 803 exhibiting creep strength comparable to Incoloy? Alloy MA956, Developing a direct powder co-extrusion protocol for fabricating co-extruded bimetallic Incoloy? Alloy MA956 / ODS Alloy 803 tubes, Characterizing the properties of the ODS Alloy 803 material, the welding characteristics of the bimetallic tubes, and the coking characteristics of the Incoloy? MA956 alloy, and Documenting the potential energy savings and user requirements for these bimetallic pyrolysis furnace tubes. The project demonstrated that oxide dispersion strengthened Alloy 803 can be produced successfully using conventional mechanical alloying technology. The oxide dispersion strengthened bimetallic radiant coil technology explored under this program has significant potential for energy savings and productivity improvements for domestic ethylene producers. In today's competitive market, however, domestic furnace manufacturers and ethylene producers appear reluctant to pay any cost premium for higher-performance coil materials offering either higher temperature capabilities or longer service life. Interest in oxide dispersion strengthened radiant coils is likely to increase if furnace and ethylene producers begin to focus more on increasing tube wall temperatures to improve productivity.

McKimpson, Marvin G.

2006-04-06T23:59:59.000Z

44

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

45

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

46

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

47

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

48

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

49

Cool Magnetic Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Cool Magnetic Molecules Print Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability to design, assemble, and probe the structure and chemistry of small molecules. An international collaboration of researchers from Spain, Scotland, and the U.S. has utilized ALS Beamline 11.3.1 (small-molecule crystallography) to characterize the design of such "molecular coolers." The work targets the synthesis of molecular cluster compounds containing many unpaired electrons ("nanomagnets") for applications involving enhanced magnetic refrigeration at very low temperatures.

50

Morphological, rheological and electrochemical studies of Poly(ethylene  

NLE Websites -- All DOE Office Websites (Extended Search)

Morphological, rheological and electrochemical studies of Poly(ethylene Morphological, rheological and electrochemical studies of Poly(ethylene oxide) electrolytes containing fumed silica nanoparticles Title Morphological, rheological and electrochemical studies of Poly(ethylene oxide) electrolytes containing fumed silica nanoparticles Publication Type Journal Article Year of Publication 2004 Authors Xie, Jiangbing, Robert G. Duan, Yong Bong Han, and John B. Kerr Journal Solid State Ionics Volume 175 Pagination 755-758 Keywords composite polymer electrolytes, nanoparticles, poly(ethylene oxide), rheology Abstract In this paper, the rheology and crystallization of composite Poly(ethylene oxide) (PEO) electrolytes were studied by dynamic mechanical analysis, DSC and polarized light microscopy. The effects of fumed silica nanoparticles on the conductivities of the polymer electrolytes at temperatures above and below their melting points were measured and related to their rheology and crystallization behavior, respectively. The electrolyte/electrode interfacial properties and cycling performances of the composite polymer electrolytes in Li/Li cells are also discussed. The measured electrochemical properties were found to depend heavily on the operational environments and sample processing history.

51

Solar Thermo-Chemical Splitting of Carbon Dioxide by Metal Oxide ...  

Science Conference Proceedings (OSTI)

Presentation Title, Solar Thermo-Chemical Splitting of Carbon Dioxide by Metal ... which can split carbon dioxide as well as water molecules by abstracting ...

52

Photoelectrochemical investigation of a poly(ethylene oxide) cell  

SciTech Connect

The photoelectrochemical properties of cells based on the solid polymer electrolyte (SPE) poly(ethylene oxide)/NaSCN with Na2S/S as a redox species are investigated experimentally. The preparation of the SPE is described in detail. Current/voltage curves or voltage/time are shown for cells using p-InP/SPE/conducting-glass, n-GaAs/SPE/conducting-glass, and p-InP/SPE/n-CdS structures. It is concluded that practical cells based on SPE of this type will require increases in the ionic conductivity of poly(ethylene oxide). 13 references.

Sammells, A.F.; Ang, G.P.

1984-03-01T23:59:59.000Z

53

Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery  

Science Conference Proceedings (OSTI)

Soft-templated mesoporous carbons and activated mesoporous carbons were fluorinated using elemental fluorine between room temperature and 235 C. The mesoporous carbons were prepared via self-assembly synthesis of phloroglucinol formaldehyde as a carbon precursor in the presence of triblock ethylene oxide propylene oxide ethylene oxide copolymer BASF Pluronic F127 as the template. The F/C ratios ranged from 0.15 to 0.75 according to gravimetric, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis. Materials have mesopore diameters up to 11 nm and specific surface areas as high as 850 m2 g 1 after fluorination as calculated from nitrogen adsorption isotherms at 196 C. Furthermore, the materials exhibit higher discharge potentials and energy and power densities as well as faster reaction kinetics under high current densities than commercial carbon fluorides with similar fluorine contents when tested as cathodes for Li/CFx batteries.

Fulvio, Pasquale F [ORNL; Dai, Sheng [ORNL; Guo, Bingkun [ORNL; Mahurin, Shannon Mark [ORNL; Mayes, Richard T [ORNL; Sun, Xiao-Guang [ORNL; Veith, Gabriel M [ORNL; Brown, Suree [ORNL; Adcock, Jamie [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

54

Carbons for lithium ion cells prepared using sepiolite as an inorganic template.  

DOE Green Energy (OSTI)

Carbon anodes for Li ion cells have been prepared by the in situ polymerization of olefins such as propylene and ethylene in the channels of sepiolite clay mineral. Upon dissolution of the inorganic framework, a disordered carbon was obtained. The carbon was tested as anode in coin cells, yielding a reversible capacity of 633 mAh/g, 1.70 times higher than the capacity delivered by graphitic carbon, assuming 100% efficiency. The coulombic efficiency was higher than 90%.

Sandi, G.

1998-12-09T23:59:59.000Z

55

High ethylene to ethane processes for oxidative coupling  

DOE Patents (OSTI)

Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

Chafin, R.B.; Warren, B.K.

1991-12-17T23:59:59.000Z

56

Carbon nanotubes on a substrate  

DOE Patents (OSTI)

The present invention includes carbon nanotubes whose hollow cores are 100% filled with conductive filler. The carbon nanotubes are in uniform arrays on a conductive substrate and are well-aligned and can be densely packed. The uniformity of the carbon nanotube arrays is indicated by the uniform length and diameter of the carbon nanotubes, both which vary from nanotube to nanotube on a given array by no more than about 5%. The alignment of the carbon nanotubes is indicated by the perpendicular growth of the nanotubes from the substrates which is achieved in part by the simultaneous growth of the conductive filler within the hollow core of the nanotube and the densely packed growth of the nanotubes. The present invention provides a densely packed carbon nanotube growth where each nanotube is in contact with at least one nearest-neighbor nanotube. The substrate is a conductive substrate coated with a growth catalyst, and the conductive filler can be single crystals of carbide formed by a solid state reaction between the substrate material and the growth catalyst. The present invention further provides a method for making the filled carbon nanotubes on the conductive substrates. The method includes the steps of depositing a growth catalyst onto the conductive substrate as a prepared substrate, creating a vacuum within a vessel which contains the prepared substrate, flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, increasing the temperature of the prepared substrate, and changing the H2/Ar gas to ethylene gas such that the ethylene gas flows within the vessel. Additionally, varying the density and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

Gao, Yufei [Kennewick, WA; Liu, Jun [West Richland, WA

2002-03-26T23:59:59.000Z

57

How Water Molecules are Connected  

NLE Websites -- All DOE Office Websites (Extended Search)

Science (Dec. 17, 2004) * *Online subscription needed. How Water Molecules are Connected Water may be the most important molecule on Earth, but our understanding of its properties...

58

Synthesis of high-quality carbon nanotube arrays without the assistance of water  

Science Conference Proceedings (OSTI)

Long and high-quality carbon nanotube (CNT) arrays have been synthesized through a chemical vapor deposition process. The Fe/Al2O3 on silicon was used as the catalyst, ethylene as the carbon source, and a gasmixture of Ar and H2 ...

Yongfeng Luo, Xinjun Wang, Mengdong He, Xi Li, Hong Chen

2012-01-01T23:59:59.000Z

59

Carbon dioxide-assisted fabrication of highly uniform submicron-sized colloidal carbon spheres via hydrothermal carbonization using soft drink  

SciTech Connect

An eco-friendly and economical method for the formation of uniform-sized carbon spheres by hydrothermal dehydration/condensation of a commercial carbonated beverage at 200 oC is reported. CO2 dissolved in the beverage accelerates the dehydration kinetics of the dissolved sugar molecules leading to production of homogeneous carbon spheres having a diameter less than 850 nm. In the presence of CO2, the rough surface of these carbon spheres likely results from continuous Ostwald ripening of constituent microscopic carbon-containing spheres that are formed by subsequent polymerization of intermediate HMF molecules.

Moon, Gun-Hee; Shin, Yongsoon; Arey, Bruce W.; Wang, Chong M.; Exarhos, Gregory J.; Choi, Wonyong; Liu, Jun

2012-10-01T23:59:59.000Z

60

Process for the production of ethylene and other hydrocarbons from coal  

DOE Patents (OSTI)

The subject invention comprises the steps of first reacting particulate coal with methane at a temperature in the approximate range of 500/sup 0/C to 1100/sup 0/C and at a partial pressure of methane of less than about 200 psig for a period of less than 10 seconds. More preferably, the method of the subject invention is carried out at a temperature of approximately 850/sup 0/C to 1000/sup 0/C and a pressure of 50 psig for a period of approximately 1.5 seconds. Surprisingly, it has been found that in the practice of the subject invention not only are commercially significant quantities of ethylene produced, namely yields in excess of 10% (percent carbon converted to product), along with economically significant quantities of-benzene and light oils, namely toluene and xylene, but also that there is little, if any, net consumption of methane in the reaction and possibly even a small net production. Since it is apparent that the carbonaceous solids or char remaining after the reaction is carried out may be burned to provide the necessary energy to carry out the process of the subject invention, it is apparent that the subject invention advantageously provides a method for the conversion of coal to economically significant quantities of ethylene, benzene and light oils while requiring only coal and, possibly, small amounts of make-up methane. Other objects and advantages of the subject invention will be apparent to those skilled in the art from a consideration of the attached drawings, the detailed description of the invention, and the experimental examples set forth below.

Steinberg, M.; Fallon, P.

1984-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Tuning the Properties of Carbon Nanotubes by Deformation  

Science Conference Proceedings (OSTI)

... for metal coverage and for selective adsorption and desorption of atoms and molecules on carbon nanotubes. ... nist . gov/staff/taner/nanotube. ...

62

Molecular jet growth of carbon nanotubes and dense vertically aligned nanotube arrays  

DOE Patents (OSTI)

A method of growing a carbon nanotube includes the step of impinging a beam of carbon-containing molecules onto a substrate to grow at least one carbon nanotube on the catalyst surface.

Eres, Gyula (Knoxville, TN)

2010-10-12T23:59:59.000Z

63

NREL Produces Ethylene via Photosynthesis; Breakthrough Offers Cleaner Alternative for Transportation Fuels (Fact Sheet)  

DOE Green Energy (OSTI)

NREL scientists have demonstrated a way to produce ethylene through photosynthesis, a breakthrough that could lead to more environmentally friendly ways to produce a variety of materials, chemicals, and transportation fuels. The scientists introduced a gene into a cyanobacterium and demonstrated that the organism remains stable through at least four generations, producing ethylene gas that can be easily captured. In the laboratory, the organism, Synechocystis sp. PCC 6803, produced 720 milligrams of ethylene per liter each day.

Not Available

2013-08-01T23:59:59.000Z

64

Molecules in the Spotlight  

SciTech Connect

SLAC has just unveiled the world's first X-ray laser, the LCLS. This machine produces pulses of X-rays that are ten billion times brighter than those from conventional sources. One of the goals of this machine is to make movies of chemical reactions, including reactions necessary for life and reactions that might power new energy technologies. This public lecture will show the first results from the LCLS. As a first target, we have chosen nitrogen gas, the main component of the air we breathe. Using the unprecedented power of the LCLS X-rays as a blasting torch, we have created new forms of this molecule and with unique electronic arrangements. Please share with us the first insights from this new technology.

Cryan, James

2010-01-26T23:59:59.000Z

65

Heterocyclic small molecule peptidomimetics  

E-Print Network (OSTI)

Polymer-supported synthesis of a close analog (i.e. A) of an early lead, a 14- membered ring peptidomimetic D3, was described. The monovalent molecule was attached to different length linkers, and they were then paired sequentially on a triazine scaffold via our previously published methodology to give a small library of bivalent compounds 1 representing all combinations of linkers of the different lengths in a fast and efficient combinatorial manner. Cellular assays identified 1-ss as a TrkA receptor antagonist towards NGF and it was shown to bind TrkA with ~200 nM affinity and retains high selectivity towards TrkA in binding assays. A set of monovalent diketopiperazine (DKP) mimics 4-7 was synthesized efficiently from corresponding dipeptides via intramolecular SN2 cyclization reactions in solution. These DKP compounds contain two amino acid side-chain functionalities to mimic the sequences that occur at “hot-spots” in loop regions. The monovalent mimics were assembled into a library of biotin-labeled bivalent molecules 9 via the combinatorial strategy described above with some modification. In primary screening, compound 9gg showed preferential binding to TrkC receptors in FACScan assay and blocked the trophic activity of NT-3 in TrkC cells at 10 uM in cell survival assay. The preparation of monovalent 1,3,4-oxadizole-based mimics 12 was achieved from corresponding amino acid building blocks on gram scale in a highly efficient solution phase parallel synthesis manner in good yields. These heterocyclic compounds feature various natural amino acid side-chain functionalities including those occuring most frequently at hot-spots such as those of Tyr, Lys, Glu and Ser. Attempts to assemble them into bivalent molecules were done by coupling the monovalent mimics to the triazine scaffold sequentially in solution and simply manipulating the solvent systems. For some reasons, some reactions did not proceed cleanly. Studies have been carried out and the problems were partially solved. The biological activities of these oxadiazoles are under investigation. So far, six compounds have shown activities in four different bioassays. Two different peptidomimetic types that resemble protein A and protein G binding regions were generated and tested as binding factors in affinity columns for purification of IgG. They are cyclic hexapeptides 19, which were prepared via Fmoc- SPPS and solution phase intramoleculer macrocyclization, and heterocycle-based small molecules 22 and 23 featuring a variety of aromatic functionalities generated via solution phase parallel synthesis. Four compounds showed some affinity towards a Fab fragment of IgG in SAR screening, and they were attached to a dendrimer core on a solid support to give four multivalent mimetics 25.

Liu, Jing

2008-12-01T23:59:59.000Z

66

Kinetic Modeling of Esterification of Ethylene Glycol with Acetic Acid  

SciTech Connect

The reaction kinetics of the esterification of ethylene glycol with acetic acid in the presence of cation exchange resin has been studied and kinetic models based on empirical and Langmuir approach has been developed. The Langmuir based model involving eight kinetic parameters fits experimental data much better compared to empirical model involving four kinetic parameters. The effect of temperature and catalyst loading on the reaction system has been analyzed. Further, the activation energy and frequency factor of the rate constants for Langmuir based model has been estimated.

Yadav, Vishnu P.; Maity, Sunil K. [Department of Chemical Engineering, Indian Institute of Technology, Hyderabad, Ordnance Factory Estate, Yeddumailiram-502205, Andhra Pradesh (India); Mukherjee, Rudra Palash [Department of Chemical Engineering, National Institute of Technology, Durgapur, Mahatma Gandhi Avenue, Durgapur-713209, West Bengal (India); Bantraj, Kandi [Department of Chemical Engineering, National Institute of Technology, Rourkela-769008, Orissa (India)

2010-10-26T23:59:59.000Z

67

Lithium Ethylene Dicarbonate Identified as the Primary Product ofChemical and Electrochemical Reduction of EC in EC:EMC/1.2M LiPF6Electrolyte  

DOE Green Energy (OSTI)

Lithium ethylene dicarbonate (CH2OCO2Li)2 was chemically synthesized and its Fourier Transform Infrared (FTIR) spectrum was obtained and compared with that of surface films formed on Ni after cyclic voltammetry (CV) in 1.2M lithium hexafluorophosphate(LiPF6)/ethylene carbonate (EC): ethyl methyl carbonate (EMC) (3:7, w/w) electrolyte and on metallic lithium cleaved in-situ in the same electrolyte. By comparison of IR experimental spectra with that of the synthesized compound, we established that the title compound is the predominant surface species in both instances. Detailed analysis of the IR spectrum utilizing quantum chemical (Hartree-Fock) calculations indicates that intermolecular association through O...Li...O interactions is very important in this compound. It is likely that the title compound in passivation layer has a highly associated structure, but the exact intermolecular conformation could not be established based on analysis of the IR spectrum.

Zhuang, Guorong V.; Xu, Kang; Yang, Hui; Jow, T. Richard; RossJr., Philip N.

2005-05-11T23:59:59.000Z

68

Carbon nanotube-based field ionization vacuum  

E-Print Network (OSTI)

We report the development of a novel micropump architecture that uses arrays of isolated vertical carbon nanotubes (CNT) to field ionize gas particles. The ionized gas molecules are accelerated to and implanted into a ...

Jang, Daniel, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

69

SnO2 nanoparticle-based passive capacitive sensor for ethylene detection  

Science Conference Proceedings (OSTI)

A passive capacitor-based ethylene sensor using SnO2 nanoparticles is presented for the detection of ethylene gas. The nanoscale particle size (10 nm to 15 nm) and film thickness (1300 nm) of the sensing dielectric layer in the capacitor model ...

Mangilal Agarwal; Mercyma D. Balachandran; Sudhir Shrestha; Kody Varahramyan

2012-01-01T23:59:59.000Z

70

Lithium Ethylene Dicarbonate Identified as the Primary Product of Chemical and Electrochemical Reduction of EC in EC:EMC/1.2M LiPF6 Electrolyte  

E-Print Network (OSTI)

spectrum of synthetic lithium ethylene dicarbonate. Figureformula and structure of lithium ethylene dicarbonate (A)efficiency (Q a /Q c ) for lithium deposition on the Ni

Zhuang, Guorong V.; Xu, Kang; Yang, Hui; Jow, T. Richard; Ross Jr., Philip N.

2005-01-01T23:59:59.000Z

71

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network (OSTI)

strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine-C composite containing continuous PAN T300 fibers · SWB: Chopped Fiber Composite containing SWB fibers Crush

Rollins, Andrew M.

72

Pressure dependence of the relativistic rise in neon and highest attainable ionization sampling resolution in neon, argon, ethylene and propane  

E-Print Network (OSTI)

Pressure dependence of the relativistic rise in neon and highest attainable ionization sampling resolution in neon, argon, ethylene and propane

Lehraus, Ivan; Tejessy, W

1983-01-01T23:59:59.000Z

73

Carbon Emissions Primer Symposium on Greenhouse Gas andSymposium on Greenhouse Gas and  

E-Print Network (OSTI)

6/5/2013 1 Carbon Emissions Primer Symposium on Greenhouse Gas andSymposium on Greenhouse Gas Council June 4, 2013 Portland, OR 1 CO2 Chemistry 1 molecule of CO 1 atom carbon1 molecule of CO2 = 1 atom carbon + 2 atoms oxygen 2 #12;6/5/2013 2 CO2 Chemistry 1 mole of carbon = 6 02 x 1023 carbon atoms 1

74

Micro-Kelvin cold molecules.  

SciTech Connect

We have developed a novel experimental technique for direct production of cold molecules using a combination of techniques from atomic optical and molecular physics and physical chemistry. The ability to produce samples of cold molecules has application in a broad spectrum of technical fields high-resolution spectroscopy, remote sensing, quantum computing, materials simulation, and understanding fundamental chemical dynamics. Researchers around the world are currently exploring many techniques for producing samples of cold molecules, but to-date these attempts have offered only limited success achieving milli-Kelvin temperatures with low densities. This Laboratory Directed Research and Development project is to develops a new experimental technique for producing micro-Kelvin temperature molecules via collisions with laser cooled samples of trapped atoms. The technique relies on near mass degenerate collisions between the molecule of interest and a laser cooled (micro-Kelvin) atom. A subset of collisions will transfer all (nearly all) of the kinetic energy from the 'hot' molecule, cooling the molecule at the expense of heating the atom. Further collisions with the remaining laser cooled atoms will thermally equilibrate the molecules to the micro-Kelvin temperature of the laser-cooled atoms.

Strecker, Kevin E.; Chandler, David W.

2009-10-01T23:59:59.000Z

75

Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions  

E-Print Network (OSTI)

with the Hamilton-Crosser model, the Lu-Lin model, Nan`s effective medium theory and the Hashin-Strikman model to rest of the models. Networking of nanotubes to form a tri-dimensional structure was considered #12;models. Therefore, more studies need to be performed to measure the effective thermal conductivity

Maruyama, Shigeo

76

CARBON TETRACHLORIDE  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about carbon tetrachloride.

unknown authors

2005-01-01T23:59:59.000Z

77

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

78

Compositional Analysis of the High Molecular Weight Ethylene Oxide Propylene Oxide Copolymer by MALDI Mass Spectrometry  

E-Print Network (OSTI)

The composition of narrow distribution poly ethylene oxide-propylene oxide copolymer (Mw ~ 8700 Da) was studied using matrix assisted laser desorption ionization (MALDI) mass spectrometry. The ethylene oxide-propylene oxide copolymer produced oligomers separated by 14 Da. The average resolving power over the entire spectrum was 28,000. Approximately 448 isotopically resolved peaks representing about 56 oligomers are identified. Although agreement between experimental and calculated isotopic distributions was strong, the compositional assignment was difficult. This is due to the large number of possible isobaric components. The purpose of this research is to resolve and study the composition of high mass copolymer such as ethylene oxide-propylene oxide.

Houshia, Orwa Jaber

2012-01-01T23:59:59.000Z

79

Dissection of defense responses of skl, an ethylene insensitive mutant of Medicago truncatula  

E-Print Network (OSTI)

The interactions between Medicago truncatula and Phytophthora medicaginis were examined using skl, a mutant blocked in ethylene perception, and a range of wild accessions of this plant species. P. medicaginis infection of M. truncatula plants resulted in compatible responses, whereas the mutant genotype was found to be hyper-susceptible to the pathogen. Phytophthora reproduction and colonization rates of Medicago tissues supported this conclusion. Infection of skl with different pathogens reinforced this observation. Ethylene production in infected A17 and skl roots showed reduced ethylene evolution in the mutant and suggested that a positive feedback loop, known as autocatalytic ethylene production, amplified the ethylene signal. To complement the study, expression analyses of defense response genes in this interaction were studied by real time RTPCR of Phytophthora-infected and mock-infected roots. The genes analyzed were PAL, CHS, IFR, ACC oxidase, GST, and PR10. The sequences needed for the analysis were found through the scrutiny of the M. truncatula EST database employing phylogenetics and bio-informatics tools. In A17 all the genes studied were up-regulated, although the specific gene expression patterns differed. The comparison of gene expression between A17 and skl genotypes allowed the differentiation between ethylene-dependent and ethylene-independent responses. Discrete results showed that ACC oxidase homologues were downregulated in the ethylene perception mutant, corroborating the ethylene observations. However, the expression of genes involved in the phenylpropanoid metabolism was increased in skl relative to A17, suggestive of an antagonism between the ethylene perception pathway and the regulation of the phenylpropanoid pathway. This result implied that Medicago phytoalexins accumulate in the disease interaction, but raised questions about their role in resistance to Phytophthora infection. This study establishes a link between mechanisms that regulate symbiotic infection and the regulation of disease resistance to Oomycete pathogens, especially P. medicaginis. The results served to identify a series of Phytophthora-induced genes, which remain pathogen-responsive even in the absence of a functional ethylene perception pathway. While it is possible that the products of these genes are involved in resistance to P. medicaginis, the present results demonstrate that ethylene perception is required for resistance.

Pedro, Uribe Mejia

2004-08-01T23:59:59.000Z

80

Natural materials for carbon capture.  

Science Conference Proceedings (OSTI)

Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Los Alamos scientists detect and track single molecules with nanoscale  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanotube "glowsticks" transform surface science tool kit Nanotube "glowsticks" transform surface science tool kit Los Alamos scientists detect and track single molecules with nanoscale carbon cylinders Researchers have now shown that semiconducting carbon nanotubes have the potential to detect and track single molecules in water. January 10, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

82

Emulsion polymerization of ethylene-vinyl acetate-branched vinyl ester using a pressure reactor system.  

E-Print Network (OSTI)

??A new pressure reactor system was designed to synthesize a novel branched ester-ethylene-vinyl acetate (BEEVA) emulsion polymer. The reactor system was capable of handling pressure… (more)

Tan, Chee Boon.

2008-01-01T23:59:59.000Z

83

FORMATION OF C{sub n} MOLECULES IN OXYGEN-RICH INTERIORS OF TYPE II SUPERNOVAE  

SciTech Connect

Two reaction-rate-based kinetic models for condensation of carbon dust via the growth of precursor linear carbon chains are currently under debate: the first involves the formation of C{sub 2} molecules via radiative association of free C atoms, and the second forms C{sub 2} molecules by the endoergic reaction CO + C {yields} C{sub 2} + O. Both are followed by C captures until the linear chain eventually makes an isomeric transition to ringed carbon on which rapid growth of graphite may occur. These two approaches give vastly different results. Because of the high importance of condensable carbon for current problems in astronomy, we study these competing claims with an intentionally limited reaction rate network which clearly shows that initiation by C + C {yields} C{sub 2} + {gamma} is the dominant pathway to carbon rings. We propose an explanation for why the second pathway is not nearly as effective as its proponents calculated it to be.

Yu Tianhong; Meyer, Bradley S.; Clayton, Donald D. [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978 (United States)

2013-05-20T23:59:59.000Z

84

Ethylene-Vinyl Acetate Potential Problems for Photovoltaic Packaging: Preprint  

DOE Green Energy (OSTI)

Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support, optical coupling, electrical isolation, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate, it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about ?15 C. Temperatures lower than this can be reached for extended periods of time in some climates. Because of increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL 1703.

Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K. M.; McMahon, T. J.; Kennedy, C. E.; Borek, T. T.

2006-05-01T23:59:59.000Z

85

Coke profile and effect on methane/ethylene conversion process  

E-Print Network (OSTI)

The objective of this study was to investigate the coke profile with respect to time on stream and the change of product distribution due to catalyst deactivation. A fixed bed reactor was used to conduct this investigation. A series of runs were conducted using the Engelhard catalyst with fixed operating conditions. The only variable was the time on stream of each run. Six experiments were conducted starting with one hour time on stream up to six hours with an increment of one hour. In each experiment data on product flow rate, reactor temperature, and product distribution were collected. And at the end of each run, the amount of coke deposited on the catalyst was measured. Hydrogen concentration in the product distribution decreased as a function of time on stream. On the other hand, low and high end hydrocarbons increased with time on stream. The coke deposition kinetics for the catalyst at the process operating conditions can be estimated using Voorhies' empirical formula. The coke profile inside the reactor showed that the coke reaction follows a parallel mechanism to the main reaction. Ethylene was found to be the main coke precursor; however, the participation of methane in the coke reaction could not be neglected.

Al-Solami, Bandar

2002-01-01T23:59:59.000Z

86

Spectroscopic investigations of small molecule interactions on metal oxide surfaces. Progress report, September 1, 1979-October 31, 1980  

DOE Green Energy (OSTI)

Significant advances were made over the past year in surveying with angle integrated uv photoelectron spectroscopy (UPS) the interactions of general classes of chemically important small molecules with metal oxide surfaces, and in elucidating in detail the geometric and electronic structures of the small molecule-surface complexes observed by angle resolved UPS. Progress can be divided into several areas: (1) a detailed understanding of the unique active site structures associated with the interaction of CO with ZnO utilizing angle integrated and angle resolved photoemission spectroscopy; (2) initiating survey studies into new small molecule systems with emphasis on hydrogen and ethylene; (3) successful construction and testing of a high resoltuion electron energy loss spectrometer (HREELS).

Solomon, E.I.; McFeeley, F.R.

1980-10-31T23:59:59.000Z

87

Temperature effects on the performance of PMAN-derived carbon anodes in 1M LiPF{sub 6}/EC-DMC solution  

DOE Green Energy (OSTI)

The effect of temperature on the reversible and irreversible capacities of disordered carbons derived from polymethacryonitrile (PMAN) and divinylbenzene (DVB) copolymers was studied in 1 M LiPF{sub 6}/ethylene carbonate (EC)-dimethyl carbonate (DMC) (1:1 v/v) solution by galvanostatic cycling. The kinetics of passive film formation were examined by complex-impedance spectroscopy. Temperatures of 5, 21, and 35 C were used in the study.

Guidotti, R.A.; Johnson, B.J.

1998-04-01T23:59:59.000Z

88

Phase structure of soliton molecules  

Science Conference Proceedings (OSTI)

Temporal optical soliton molecules were recently demonstrated; they potentially allow further increase of data rates in optical telecommunication. Their binding mechanism relies on the internal phases, but these have not been experimentally accessible so far. Conventional frequency-resolved optical gating techniques are not suited for measurement of their phase profile: Their algorithms fail to converge due to zeros both in their temporal and their spectral profile. We show that the VAMPIRE (very advanced method of phase and intensity retrieval of E-fields) method performs reliably. With VAMPIRE the phase profile of soliton molecules has been measured, and further insight into the mechanism is obtained.

Hause, A.; Hartwig, H.; Seifert, B.; Stolz, H.; Boehm, M.; Mitschke, F. [Universitaet Rostock, Institut fuer Physik, Rostock (Germany)

2007-06-15T23:59:59.000Z

89

Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

90

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

91

Program on Technology Innovation: Carbon Nanotube Water Filtration  

Science Conference Proceedings (OSTI)

Carbon nanotubes--tiny cylinders of rolled-up graphite sheets with diameters in the range of 1--3 nanometers--have been enjoying an iconic status among nanoscience researchers for a long time. However, despite their spectacular properties, commercial applications of carbon nanotubes have been few. Now, a new commercial technology is exploiting one of the most remarkable properties of this carbon nanotube molecule: the ability of the tiny carbon nanotube pore to transport water at an extremely fast rate, ...

2011-04-14T23:59:59.000Z

92

Orientations of two coupled molecules  

E-Print Network (OSTI)

Orientation states of two coupled polar molecules controlled by laser pulses are studied theoretically. By varying the period of a series of periodically applied laser pulse, transition from regular to chaotic behavior may occur. Schmidt decomposition is used to measure the degree of entanglement. It is found that the entanglement can be enhanced by increasing the strength of laser pulse.

Ying-Yen Liao; Yueh-Nan Chen; Der-San Chuu

2004-09-23T23:59:59.000Z

93

Transuranic actinide reactions with simple gas-phase molecules.  

DOE Green Energy (OSTI)

The intent of this research is to conduct an experimental study of f-element chemistry fo r the purpose of identifying reaction trends and mechanisms of the early actinide metals with simple gas phase molecules . Previous research has elucidated some of the fundamenta l chemistry of the 4f elements,1-5 however, more complex chemistry is expected for the 5f serie s due to the inclusion of the 5f electrons in the valence shell . The matrix isolation approach, which is well-suited to the experimental study of transient species, will be used for sample collection, and IR/NIR/VIS spectroscopy will be employed to interrogate deposited matrices . The strength of this method lies in the use of isotopes of reactants, which permits the identification of guest molecules in a noble gas matrix by observation of vibrational frequenc y shifts and patterns upon isotopic substitution . Using this technique at the University of Virginia, the first noble gas-actinide bond has recently been identified, a weak U-Ar bond on the CUO molecule.6 Uranium has similarly been observed to bond to krypton and xenon, whereas thoriu m and the lanthanides have not exhibited this activity . It is expected that plutonium will be even more reactive in this respect . We will extend the body of actinide experimental evidence t o include the transuranic elements neptunium, plutonium, and americium reacted with isotopes o f oxygen, nitrogen, hydrogen, carbon monoxide, and carbon dioxide .

Willson, S. P. (Stephen P.); Veirs, D. K. (Douglas Kirk); Baiardo, J. P. (Joseph P.)

2003-01-01T23:59:59.000Z

94

Carbon Nanotubes  

Science Conference Proceedings (OSTI)

Carbon Nanotubes. Sponsored by: TMS Electronic, Magnetic and Photonic Materials Division Date and Time: Sunday, February 13, 2005 ~ 8:30 am-5:00 pm

95

Carbon Nanomaterials  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... The graphene film was spin-coated using carbon nanotubes to form the cathode of the field emission device. A phosphor coated graphene-PET ...

96

Fluoro-Carbonate Solvents for Li-Ion Cells  

DOE Green Energy (OSTI)

A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF{sub 6} was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF{sub 6} electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to <5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature.

NAGASUBRAMANIAN,GANESAN

1999-09-17T23:59:59.000Z

97

Multiphoton dissociation of polyatomic molecules  

SciTech Connect

The dynamics of infrared multiphoton excitation and dissociation of SF/sub 6/ was investigated under collision free conditions by a crossed laser-molecular beam method. In order to understand the excitation mechanism and to elucidate the requirements of laser intensity and energy fluence, a series of experiments were carried out to measure the dissociation yield dependences on energy fluence, vibrational temperature of SF/sub 6/, the pulse duration of the CO/sub 2/ laser and the frequency in both one and two laser experiments. Translational energy distributions of the SF/sub 5/ dissociation product measured by time of flight and angular distributions and the dissociation lifetime of excited SF/sub 6/ as inferred from the observation of secondary dissociation of SF/sub 5/ into SF/sub 4/ and F during the laser pulse suggest that the dynamics of dissociation of excited molecules is dominated by complete energy randomization and rapid intramolecular energy transfer on a nanosecond timescale, and can be adequately described by RRKM theory. An improved phenomenological model including the initial intensity dependent excitation, a rate equation describing the absorption and stimulated emission of single photons, and the unimolecular dissociation of excited molecules is constructed based on available experimental results. The model shows that the energy fluence of the laser determines the excitation of molecules in the quasi-continuum and the excess energy with which molecules dissociate after the laser pulse. The role played by the laser intensity in multiphoton dissociation is more significant than just that of overcoming the intensity dependent absorption in the lowest levels. 63 references.

Schulz, P.A.

1979-10-01T23:59:59.000Z

98

Process for the production of ethylene and other hydrocarbons from coal  

DOE Patents (OSTI)

A process is claimed for the production of substantial amounts of ethylene and other hydrocarbon compounds, such as benzene from coal. Coal is reacted with methane at a temperature in the approximate range of 500/sup 0/C to 1100/sup 0/C at a partial pressure less than about 200 psig for a period of less than 10 seconds, and preferably at a temperature of approximately 850/sup 0/C, and a partial pressure of 50 psig for a period of approximately 2 seconds. Ethylene and other hydrocarbon compounds may be separated from the product stream so produced, and the methane recycled for further production of ethylene. In another embodiment, other compounds produced, such as by-product tars, may be burned to heat the recycled methane.

Steinberg, M.; Fallon, P.

1982-02-16T23:59:59.000Z

99

NETL: Carbon Storage - Carbon Sequestration Leadership Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

CSLF Carbon Storage Carbon Sequestration Leadership Forum CSLF Logo The Carbon Sequestration Leadership Forum (CSLF) is a voluntary climate initiative of industrially developed and...

100

Measuring Hydroxyl Radicals during the Oxidation of Methane, Ethane, Ethylene, and Acetylene in a Shock Tube Using UV Absorption Spectroscopy  

E-Print Network (OSTI)

The hydroxyl (OH) radical is a common intermediate species in any hydrogen- or hydrocarbon-based flame. Investigating OH at elevated temperatures and pressures is not a trivial task, and many considerations must be made to fully study the molecule. Shock tubes can provide the experimenter with a wide range of temperatures and pressures to investigate a variety of combustion characteristics including, but not limited to, OH kinetic profiles. Described in this dissertation is the diagnostic used to measure OH within a shock tube using UV absorption spectroscopy from an enhanced UV Xenon lamp passed through a spectrometer. OH absorption was made over a narrow range of wavelengths around 309.551 nm within the widely studied OH X?A ground vibrational transition region. Experiments have been performed in the shock-tube facility at Texas A&M University using this OH absorption diagnostic. A calibration mixture of stoichiometric H2/O2 diluted in 98% argon by volume was tested initially and compared with a well-known hydrogen-based kinetics mechanism to generate an absorption coefficient correlation. This correlation is valid over the range of conditions observed in the experiments at two pressures near 2 and 13 atm and temperatures from 1182 to 2017 K. Tests were completed using the absorption coefficient correlation on stoichiometric mixtures of methane, methane and water, ethane, ethylene, and acetylene to compare against a comprehensive, detailed chemical kinetics mechanism which considers up through C5 hydrocarbons. Measurements of methane show good agreement in peak OH formation and ignition delay time when compared with the mechanism. Improvements can be made in the shape of the methane-oxygen OH profile, and sensitivity and rate of production analyses were performed with the mechanism to identify key reactions for tuning. Similar results were found for methane-water-oxygen mixtures with no difference in profile shape or ignition delay time noted. There is room for improvement between the mechanism and measured values of OH for ethane-, ethylene-, and acetylene-based mixtures, although interesting pre-ignition features are nonetheless captured relatively well by the mechanism. Uncertainty in the measurement comes from the inherent noise in the photomultiplier tube signal and is ±25-150 ppm for the 2-atm experiments and ±6-25 ppm for the 13-atm experiments.

Aul, Christopher J

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Process for the production of ethylene and other hydrocarbons from coal  

DOE Patents (OSTI)

A process for the production of economically significant amounts of ethyl and other hydrocarbon compounds, such as benzene, from coal is disclosed wherein coal is reacted with methane at a temperature in the approximate range of 500.degree. C. to 1100.degree. C. at a partial pressure less than about 200 psig for a period of less than 10 seconds. Ethylene and other hydrocarbon compounds may be separated from the product stream so produced, and the methane recycled for further production of ethylene. In another embodiment, other compounds produced, such as by-product tars, may be burned to heat the recycled methane.

Steinberg, Meyer (Huntington Station, NY); Fallon, Peter (East Moriches, NY)

1986-01-01T23:59:59.000Z

102

Effect of nano-fibers on the stress-strain behavior of semi-crystalline poly(ethylene terephthalate) at different strain rates  

E-Print Network (OSTI)

Uniaxial compression tests were performed on amorphous poly(ethylene terephthalate) (PET), amorphous poly(ethylene terephthalate)- glycol (PETG), semi-crystalline PET, and semicrystalline PET with various amounts of ...

Cohen, Ellann

2008-01-01T23:59:59.000Z

103

Structural and mechanistic studies into the copolymerization of carbon dioxide and epoxides catalyzed by chromium salen complexes  

E-Print Network (OSTI)

The ability to utilize cheaper starting materials in the synthesis of commercially important materials has been a goal of scientists since the advent of the chemical industry. The ideal situation would be one in which by combining the correct proportions of hydrogen, nitrogen, carbon and oxygen that virtually anything from simple sugars to complex polymers could be produced. Unfortunately, such processes are flights of fancy often reserved for movies and television shows. On a more realistic level, the utilization of simple molecules and a transition metal catalyst has been a process that industry has exploited for many years. The most easily identifiable process is that for polyolefin production, that employs homopolymerization of simple monomers such as ethylene and catalysts ranging from Ziegler-Natta to metallocene type catalysts. On a more difficult level copolymerization reactions require a delicate balance between two competing reactions and as a result these reactions have been much less successful. For over a decade now the Darensbourg Research Laboratories have focused on utilizing another simple molecule: carbon dioxide. Carbon dioxide is a cheap, inert, nontoxic starting material that appears to be an ideal monomer. Although simplistic, CO2 is also very stable and its utilization in polymerization reactions have proven to be quite complex. In order for us to facilitate these reactions we employ both a transition metal catalyst and a comonomer. Epoxides act as an effective comonomer because the thermodynamic energy gained from breaking the strained three membered epoxide ring overcomes the stability of CO2 and allows the copolymerization reaction to occur. We have demonstrated a great deal of success with this process, most of which will be mentioned throughout this report. The majority of this dissertation will detail our use of salen complexes to optimize this copolymerization process, in order to further the use of CO2 as a viable source of C1 feedstock. Herein, I will illustrate how we have obtained more than a 100 fold increase in the rate of polymer formation as well as detailed mechanistic data that will provide a basis for future catalyst design studies.

Mackiewicz, Ryan Michael

2003-05-01T23:59:59.000Z

104

The Effect of Laser Surface Reconstruction of Disordered Carbons on Performance  

DOE Green Energy (OSTI)

The reconstruction of the surface of disordered carbons was examined by heating carbons derived from polymethacrylonitrile (PMAN) and divinylbenzene (DVB) with a pulsed infrared laser in an argon or helium atmosphere, both fluidized and under static conditions. By graphitizing the outer surface of the carbons, it was hoped to reduce the high first-cycle losses associated with such disordered materials in Li-ion cells. The power to the sample was varied to observed the effects on surface morphology and electrochemical performance in 1M LiPF{sub 6} ethylene carbonate-dimethyl carbonate. The use various reactive atmosphere such as ethylene, 2-vinylpyridine, pyrrole, and furfuryl alcohol were also evaluated as an alternative means of hopefully forming a thin graphitic layer on the carbon particles to reduce first-cycle irreversibility. While some improvement was realized, these losses were still unacceptably high. The laser heating did improve the rate capabilities of the carbons, however. More work in this area is necessary to fully understand surface and bulk effects.

EVEN JR., WILLIAM R.; GUIDOTTI, RONALD A.

1999-10-06T23:59:59.000Z

105

NANODEVICES FOR GENERATING POWER FROM MOLECULES AND ...  

A nanoconverter or nanosensor is disclosed capable of directly generating electricity through physisorption interactions with molecules that are ...

106

Phosphorylated Mesoporous Carbon as a Solid Acid Catalyst  

Science Conference Proceedings (OSTI)

Mesoporous carbon catalyst supports are attractive due to their wide chemical stability while potentially increasing masstransport through and providing a path for larger molecules to access catalytic sites. Herein we report the synthesis of a 10 phosphorylated mesoporous carbon solid-acid catalyst characterized by NH3-TPD and isopropanol dehydration.

Dai, Sheng [ORNL; Mayes, Richard T [ORNL; Fulvio, Pasquale F [ORNL; Ma, Zhen [ORNL

2011-01-01T23:59:59.000Z

107

Characterization of Interstellar Organic Molecules  

SciTech Connect

Understanding the origins of life has been one of the greatest dreams throughout history. It is now known that star-forming regions contain complex organic molecules, known as Polycyclic Aromatic Hydrocarbons (PAHs), each of which has particular infrared spectral characteristics. By understanding which PAH species are found in specific star-forming regions, we can better understand the biochemistry that takes place in interstellar clouds. Identifying and classifying PAHs is not an easy task: we can only observe a single superposition of PAH spectra at any given astrophysical site, with the PAH species perhaps numbering in the hundreds or even thousands. This is a challenging source separation problem since we have only one observation composed of numerous mixed sources. However, it is made easier with the help of a library of hundreds of PAH spectra. In order to separate PAH molecules from their mixture, we need to identify the specific species and their unique concentrations that would provide the given mixture. We develop a Bayesian approach for this problem where sources are separated from their mixture by Metropolis Hastings algorithm. Separated PAH concentrations are provided with their error bars, illustrating the uncertainties involved in the estimation process. The approach is demonstrated on synthetic spectral mixtures using spectral resolutions from the Infrared Space Observatory (ISO). Performance of the method is tested for different noise levels.

Gencaga, Deniz; Knuth, Kevin H. [University at Albany, Department of Physics, Albany, NY (United States); Carbon, Duane F. [NASA Ames Research Center, NASA Advanced Supercomputing Division, Moffett Field, CA (United States)

2008-11-06T23:59:59.000Z

108

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Print E-mail U.S. Carbon Cycle Science Program U.S. Carbon Cycle Science Program The U.S. Carbon Cycle Science Program, in consultation with the Carbon Cycle...

109

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov andrew chizmeshya Arizona State University Center for Solid State Science Tempe, AZ 85287-1704 480-965-6072 chizmesh@asu.edu A Novel ApproAch to MiNerAl cArboNAtioN: eNhANciNg cArboNAtioN While AvoidiNg MiNerAl pretreAtMeNt process cost Background Carbonation of the widely occurring minerals of the olivine group, such as forsterite (Mg 2 SiO 4 ), is a potential large-scale sequestration process that converts CO 2 into the environmentally benign mineral magnesite (MgCO 3 ). Because the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is the key to economic viability. Previous

110

Stochastic model of lithium ion conduction in poly,,ethylene oxide... L. Gitelman,1  

E-Print Network (OSTI)

as described above. III. THE CONDUCTIVITY The basic electrochemistry of the lithium ion battery in- volves only the transfer of lithium ions between the two insertion electrodes. Typical lithium ion battery consistsStochastic model of lithium ion conduction in poly,,ethylene oxide... L. Gitelman,1 A. Averbuch,2,a

Averbuch, Amir

111

Microwave Enhanced Direct Cracking of Hydrocarbon Feedstock for Energy Efficient Production of Ethylene and Propylene.  

DOE Green Energy (OSTI)

This project demonstrated microwave cracking of ethane with good product conversion and ethylene selectivity, with a short residence time ({approx}0.001 sec). The laboratory scale equipment was designed and built, along with concept designs for larger scale implementation. The system was operated below atmospheric pressures, in the range of 15-55 torr, with argon as a carrier gas. The measured products included hydrogen, methane, acetylene, and ethylene. The results followed similar trends to those predicted by the modeling software SPYRO{reg_sign}, with the exception that the microwave appeared to produce slightly lower amounts of ethylene and methane, although enhanced analytical analysis should reduce the difference. Continued testing will be required to verify these results and quantify the energy consumption of microwave vs. conventional. The microwave cracking process is an attractive option due to the possibility of selectively heating the reaction volume rather than the reactor walls, which may allow novel reactor designs that result in more efficient production of ethylene. Supplemental studies are needed to continue the laboratory testing and refine processing parameters.

Shulman, Holly; Fall, Morgana; Wagner, Eric; Bowlin, Ricardo

2012-02-13T23:59:59.000Z

112

Electrorheological crystallization of proteins and other molecules  

DOE Patents (OSTI)

An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an X-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the X-ray diffraction pattern. 4 figs.

Craig, G.D.; Rupp, B.

1996-06-11T23:59:59.000Z

113

Electrorheological crystallization of proteins and other molecules  

DOE Patents (OSTI)

An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an x-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the x-ray diffraction pattern.

Craig, George D. (Lafayette, CA); Rupp, Bernhard (Dublin, CA)

1996-01-01T23:59:59.000Z

114

Small hydrocarbon molecules in cloud-forming Brown Dwarf and giant gas planet atmospheres  

E-Print Network (OSTI)

We study the abundances of complex carbon-bearing molecules in the oxygen-rich dust- forming atmospheres of Brown Dwarfs and giant gas planets. The inner atmospheric re- gions that form the inner boundary for thermochemical gas-phase models are investigated. Results from Drift-phoenix atmosphere simulations, which include the feedback of phase- non-equilibrium dust cloud formation on the atmospheric structure and the gas-phase abun- dances, are utilised. The resulting element depletion leads to a shift in the carbon-to-oxygen ratio such that several hydrocarbon molecules and cyanopolycyanopolyynene molecules can be present. An increase in surface gravity and/or a decrease in metallicity support the increase in the partial pressures of these species. CO, CO2, CH4, and HCN contain the largest fraction of carbon. In the upper atmosphere of low-metallicity objects, more carbon is contained in C4H than in CO, and also CH3 and C2H2 play an increasingly important role as carbon-sink. We determine chemical relaxation...

Bilger, Camille; Helling, Christiane

2013-01-01T23:59:59.000Z

115

THREE-CLUSTER NUCLEAR MOLECULES  

E-Print Network (OSTI)

A three-center phenomenological model able to explain, at least from a qualitative point of view, the difference in the observed yield of a particle-accompanied fission and that of binary fission was developed. It is derived from the liquid drop model under the assumption that the aligned configuration, with the emitted particle between the light and heavy fragment is obtained by increasing continuously the separation distance, while the radii of the light fragment and of the light particle are kept constant. During the first stage of the deformation one has a two-center evolution until the neck radius becomes equal to the radius of the emitted particle. Then the three center starts developing by decreasing with the same amount the two tip distances. In such a way a second minimum, typical for a cluster molecule, appears in the deformation energy. Examples are presented for 240 Pu parent nucleus emitting ?-particles and 14 C in a ternary process. 1

D. N. Poenaru; B. Dobrescu; W. Greiner

2000-01-01T23:59:59.000Z

116

Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides.  

Science Conference Proceedings (OSTI)

Polyhydroxylated molecules, including natural carbohydrates, are known to undergo photooxidation on wide-gap transition-metal oxides irradiated by ultraviolet light. In this study, we examine mechanistic aspects of this photoreaction on aqueous TiO{sub 2}, {alpha}-FeOOH, and {alpha}-Fe{sub 2}O{sub 3} particles using electron paramagnetic resonance (EPR) spectroscopy and site-selective deuteration. We demonstrate that the carbohydrates are oxidized at sites involved in the formation of oxo bridges between the chemisorbed carbohydrate molecule and metal ions at the oxide surface. This bridging inhibits the loss of water (which is the typical reaction of the analogous free radicals in bulk solvent) promoting instead a rearrangement that leads to elimination of the formyl radical. For natural carbohydrates, the latter reaction mainly involves carbon-1, whereas the main radical products of the oxidation are radical arising from H atom loss centered on carbon-1, -2, and -3 sites. Photoexcited TiO{sub 2} oxidizes all of the carbohydrates and polyols, whereas {alpha}-FeOOH oxidizes some of the carbohydrates, and {alpha}-Fe{sub 2}O{sub 3} is unreactive. These results serve as a stepping stone for understanding the photochemistry on mineral surfaces of more complex biomolecules such as nucleic acids.

Shkrob, I. A.; Marin, T. M.; Sevilla, M. D.; Chemerisov, S. (Chemical Sciences and Engineering Division); (Benedictine Univ.); (Oakland Univ.)

2011-03-24T23:59:59.000Z

117

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

118

Carbon supercapacitors  

SciTech Connect

Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

Delnick, F.M.

1993-11-01T23:59:59.000Z

119

Carbon particles  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, Arlon J. (Oakland, CA)

1984-01-01T23:59:59.000Z

120

Carbon microtubes  

DOE Patents (OSTI)

A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

2011-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hydrogen Storage by Polylithiated Molecules and  

E-Print Network (OSTI)

We study polylithiated molecules as building blocks for hydrogen storage materials, using first-principles calculations. CLi4 and OLi2 bind 12 and 10 hydrogen molecules, respectively, with an average binding energy of 0.10 and 0.13 eV, leading to gravimetric densities of 37.8 and 40.3 weight % H. Bonding between Li and C or O is strongly polar and H2 molecules attach to the partially charged Li atoms without dissociating, which is favorable for (de)hydrogenation kinetics. CLin and OLim molecules can be chemically bonded to graphene sheets to hinder the aggregation of such molecules. In particular B or Be doped graphene strongly bind the molecules without seriously affecting the hydrogen binding energy. It still leads to a hydrogen storage capacity in the range 5-8.5 wt. % H.

Süleyman Er; Gilles A. De Wijs; Geert Brocks

2009-01-01T23:59:59.000Z

122

Single Molecule Studies of Chromatin  

SciTech Connect

In eukaryotic cells, DNA is packaged as chromatin, a highly ordered structure formed through the wrapping of the DNA around histone proteins, and further packed through interactions with a number of other proteins. In order for processes such as DNA replication, DNA repair, and transcription to occur, the structure of chromatin must be remodeled such that the necessary enzymes can access the DNA. A number of remodeling enzymes have been described, but our understanding of the remodeling process is hindered by a lack of knowledge of the fine structure of chromatin, and how this structure is modulated in the living cell. We have carried out single molecule experiments using atomic force microscopy (AFM) to study the packaging arrangements in chromatin from a variety of cell types. Comparison of the structures observed reveals differences which can be explained in terms of the cell type and its transcriptional activity. During the course of this project, sample preparation and AFM techniques were developed and optimized. Several opportunities for follow-up work are outlined which could provide further insight into the dynamic structural rearrangements of chromatin.

Jeans, C; Thelen, M P; Noy, A

2006-02-06T23:59:59.000Z

123

Molecule Nanoweaver Improves Drug Delivery and Treatment ...  

... the Molecule Nanoweaver could be used to optimize and produce a heart-muscle stimulator patch that provides low-level electrical stimulation from ...

124

Available Technologies: Self-Assembling Small Molecule ...  

... “Efficient Small Molecule Bulk Heterojunction Solar Cells with High Fill Factors via Pyrene-Directed Molecular Self-Assembly,” Adv. Mater. 2011, ...

125

Microwave Spectra of Molecules of Astrophysical Interest. ...  

Science Conference Proceedings (OSTI)

Page 1. Microwave Spectra of Molecules of Astrophysical Interest. XXVI. Acetic Acid „CH3COOH… ... 100 3. Acetic Acid Spectral Tables. . . . . ...

2012-04-17T23:59:59.000Z

126

Single Molecule Fluorescence Measurements of Nanoscale ...  

Science Conference Proceedings (OSTI)

... Understanding where the acid molecules are formed and where they subsequently diffuse is essential in optimizing the ... Facilities/Tools Used: ...

2013-06-28T23:59:59.000Z

127

2.8 A New Class of Carbon Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

4 6/1/2011 4 6/1/2011 2.8 A New Class of Carbon Structures Several lines of research-in spectroscopy, astronomy, and metallic clusters-converged in 1985 to lead to the discovery of an unusual molecule. This cluster of 60 carbon atoms was especially stable because of its hollow, icosahedral structure in which the bonds between the atoms resembled the patterns on a soccer ball. The molecule was named Buckminsterfullerene after the geodesic domes designed by architect Buckminster Fuller. The identification of this form of carbon (also called buckyballs) sparked broad interest in the chemistry of an entire class of hollow carbon structures, referred to collectively as fullerenes. Formed when vaporized carbon condenses in an atmosphere of inert gas, fullerenes include a wide range of

128

A Sweet Approach to Carbon Nanospheres - Research Highlight  

NLE Websites -- All DOE Office Websites (Extended Search)

remarkable chemical reaction remarkable chemical reaction based upon dehydration of aqueous sugar solutions (fructose corn syrup) generates uniform nanospheres of porous carbon in a few hours upon heating in a closed system (125°C, 3 atmospheres pressure). These porous carbon nanospheres can serve as robust substrates for catalysis applications, as electrically conducting phases in fuel cells, for sequestration of contaminants and hostile agents and as an efficiently burning fuel source. OH O H OH O H OH O H O H O H OH Small carbon sphere forms when sugar molecule [C(H 2 O)] 6 loses water Evolving carbon segment of the molecule segregates from solution due to residual -OH on the surface Further dehydration drives consolidation into larger, porous carbon structures SEM micrograph showing 100 nm

129

Structural sensitivity studies of ethylene hydrogenation on platinum and rhodium surfaces  

DOE Green Energy (OSTI)

The catalytic hydrogenation of ethylene and hydrogen on the well characterized surfaces of the noble metals platinum and rhodium has been studied for the purposes of determining the relative activity of these two substrates as well as the degree of structure sensitivity. The Pt(111) and the Rh(755) single crystal surfaces,as well as Pt and Rh foils, were employed as substrates to study the effect of surface step structure on reactivity. In addition, vibrational spectroscopy studies were performed for ethylene adsorption on the stepped Rh(755) surface. The catalytic reaction were obtained using a combined ultrahigh vacuum chamber coupled with an atmospheric pressure reaction chamber that functioned as a batch reactor. Samples could be prepared using standard surface science techniques and characterized for surface composition and geometry using Auger Electron Spectroscopy and Low Energy Electron Diffraction. A comparison of the reactivity of Rh(111) with the results from this study on Rh(755) allows a direct determination of the effect of step structure on ethylene hydrogenation activity. Structure sensitivity is expected to exhibit orders of magnitude differences in rate as surface orientation is varied. In this case, no significant differences were found, confirming the structure insensitivity of this reaction over this metal. The turnover frequency of the Rh(111) surface, 5 {times} 10{sup 1} s{sup {minus}1}, is in relatively good agreement with the turnover frequency of 9 {times} 10{sup 1} s{sup {minus}1} measured for the Rh(755) surface. Rate measurements made on the Pt(111) surface and the Pt foil are in excellent agreement, both measuring 3 {times} 10{sup 2} s{sup minus}1. Likewise, it is concluded that no strong structure sensitivity for the platinum surfaces exists. High Resolution Electron Energy Loss Spectroscopy studies of adsorbed ethylene on the Rh(755) surface compare favorably with the ethylidyne spectra obtained on the Rh(111) and Rh(100) surfaces.

Quinlan, M.A. [California Univ., Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States)

1996-01-01T23:59:59.000Z

130

Carbon | Open Energy Information  

Open Energy Info (EERE)

Carbon Sector Retrieved from "http:en.openei.orgwindex.php?titleCarbon&oldid271960" Categories: Articles with outstanding TODO tasks...

131

Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency Title Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency Publication Type Journal Article Year of Publication 2009 Authors Ridgway, Paul L., Honghe Zheng, Xiangyun Song, Gao Liu, Philip N. Ross, and Vincent S. Battaglia Journal Electrochemical Society Volume 19 Start Page 51 Issue 25 Pagination 51-57 Abstract Vinylene Carbonate (VC) was added to the electrolyte in graphite-lithium half-cells. We report its effect on the coulombic efficiency (as capacity shift) of graphite electrodes under various formation cycling conditions. Cyclic voltammetry on glassy carbon showed that VC passivates the electrode against electrolyte reduction. The dQ/dV plots of the first lithiation of the graphite suggest that VC alters the SEI layer, and that by varying the cell formation rate, the initial ratio of ethylene carbonate to VC in the SEI layer can be controlled. VC was found to decrease first cycle efficiency and reversible capacity (in ongoing cycling) when used to excess. However, experiments with VC additive used with various formation rates did not show any decrease in capacity shift.

132

Carbon Additionality: Discussion Paper  

E-Print Network (OSTI)

Carbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 CarbonFix Standard (CFS) 28 Climate, Community and Biodiversity Standard (CCBS) 28 Forest Carbon Standard (FCS) 28

133

Parabolic Molecules Philipp Grohs and Gitta Kutyniok  

E-Print Network (OSTI)

Parabolic Molecules Philipp Grohs and Gitta Kutyniok June 9, 2012 Abstract Anisotropic decompositions using representation systems based on parabolic scaling such as curve- lets or shearlets have of the notion of parabolic molecules, we aim to provide a comprehensive framework which includes customarily

Kutyniok, Gitta

134

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4966 jose.figueroa@netl.doe.gov Kevin o'Brien Principal Investigator SRI International Materials Research Laboratory 333 Ravenswood Avenue Menlo Park, AK 94025 650-859-3528 kevin.obrien@sri.com Fabrication and Scale-Up oF polybenzimidazole - baSed membrane SyStem For pre - combUStion captUre oF carbon dioxide Background In order to effectively sequester carbon dioxide (CO 2 ) from a gasification plant, there must be an economically viable method for removing the CO 2 from other gases. While CO 2 separation technologies currently exist, their effectiveness is limited. Amine-based separation technologies work only at low temperatures, while pressure-swing absorption and cryogenic distillation consume significantly

135

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

andrea Mcnemar andrea Mcnemar National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Gregory J. Elbring Principal Investigator Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185 505-844-4904 gjelbri@sandia.gov GeoloGic SequeStration of carbon DioxiDe in a DepleteD oil reServoir: a comprehenSive moDelinG anD Site monitorinG project Background The use of carbon dioxide (CO 2 ) to enhance oil recovery (EOR) is a familiar and frequently used technique in the United States. The oil and gas industry has significant experience with well drilling and injecting CO 2 into oil-bearing formations to enhance production. While using similar techniques as in oil production, this sequestration field

136

Carbon nanostructures-elixir or poison?  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon nanostructures-elixir or poison? Carbon nanostructures-elixir or poison? Carbon nanostructures-elixir or poison? A LANL toxicologist and a team of researchers have documented potential cellular damage from "fullerenes"-soccer-ball-shaped, cage-like molecules composed of 60 carbon atoms. March 31, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

137

Characterization of the passivation layer on disordered carbons in lithium-ion cells  

DOE Green Energy (OSTI)

Intercalation anodes of graphite or disordered carbon in rechargeable Li-ion batteries (based on aprotic organic solvents) develop a passivating film during the first intercalation of Li{sup +}. The formation of this film reduces the cycling efficiency and results in excessive consumption of Li{sup +}. The exact nature of this film is not well defined, although there are many similarities in properties to the films that form on Li anodes under similar cycling conditions. In this study we report on characterization studies of films formed during galvanostatic cycling of disordered carbons derived from polymethylacryolintrile (PMAN) in a 1M LiPF{sub 6} solution in ethylene carbonateldimethyl carbonate solution (1:1 by vol.). Complementary tests were also conducted with glass carbon, where intercalation cannot occur. Complex-impedance spectroscopy was the primary measurement technique, supplemented by cyclic voltammetry.

Guidotti, R.; Johnson, B.

1995-12-01T23:59:59.000Z

138

Nanostructuring of Microporous Carbons with Carbon Nanotubes for ...  

Science Conference Proceedings (OSTI)

Presentation Title, Nanostructuring of Microporous Carbons with Carbon Nanotubes for Efficient Carbon Dioxide Capture. Author(s), Stephen C. Hawkins,  ...

139

Chiral Isotropic Liquids from Achiral Molecules  

SciTech Connect

A variety of simple bent-core molecules exhibit smectic liquid crystal phases of planar fluid layers that are spontaneously both polar and chiral in the absence of crystalline order. We found that because of intralayer structural mismatch, such layers are also only marginally stable against spontaneous saddle splay deformation, which is incompatible with long-range order. This results in macroscopically isotropic fluids that possess only short-range orientational and positional order, in which the only macroscopically broken symmetry is chirality - even though the phases are formed from achiral molecules. Their conglomerate domains exhibit optical rotatory powers comparable to the highest ever found for isotropic fluids of chiral molecules.

L Hough; M Spannuth; M Nakata; D Coleman; C Jones; G Dantlgraber; C Tschierske; J Watanabe; N Clark; et al.

2011-12-31T23:59:59.000Z

140

Carbon Steels  

Science Conference Proceedings (OSTI)

Table 1   Corrosion rates of carbon steel at various locations...Vancouver Island, BC, Canada Rural marine 13 0.5 Detroit, MI Industrial 14.5 0.57 Fort Amidor Pier, CZ Marine 14.5 0.57 Morenci, MI Urban 19.5 0.77 Potter County, PA Rural 20 0.8 Waterbury, CT Industrial 22.8 0.89 State College, PA Rural 23 0.9 Montreal, QC, Canada Urban 23 0.9 Durham, NH Rural 28 1.1...

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Aerosol organic carbon to black carbon ratios: Analysis of published...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing Title Aerosol organic carbon to black carbon ratios: Analysis of...

142

Chemical, mechanical, and thermal control of substrate-bound carbon nanotube growth  

E-Print Network (OSTI)

Carbon nanotubes (CNTs) are long molecules having exceptional properties, including several times the strength of steel piano wire at one fourth the density, at least five times the thermal conductivity of pure copper, and ...

Hart, Anastasios John, 1979-

2006-01-01T23:59:59.000Z

143

Size adjustable separation of biologically active molecules  

E-Print Network (OSTI)

Separation of biologically active molecules (BAM's) is a problem for the pharmaceutical and biotechnology industries. Current technologies addressing this problem require too many techniques, toxic additives, and time to ...

Gutierrez, Mauricio R. (Mauricio Roberto)

2004-01-01T23:59:59.000Z

144

California Initiative for Large Molecule Sustainable Fuels  

E-Print Network (OSTI)

California Initiative for Large Molecule Sustainable Fuels Transportation Energy Research PIER these fuels stands in the way of California's energy independence. Liquid fuels produced from biomass have California's preeminence in this field of technology, creating green jobs through these technologies

145

Final Report: Cooling Molecules with Laser Light  

SciTech Connect

Certain diatomic molecules are disposed to laser cooling in the way successfully applied to certain atoms and that ushered in a revolution in ultracold atomic physics, an identification first made at Los Alamos and which took root during this program. Despite their manipulation into numerous achievements, atoms are nonetheless mundane denizens of the quantum world. Molecules, on the other hand, with their internal degrees of freedom and rich dynamical interplay, provide considerably more complexity. Two main goals of this program were to demonstrate the feasibility of laser-cooling molecules to the same temperatures as laser-cooled atoms and introduce a means for collecting laser-cooled molecules into dense ensembles, a foundational start of studies and applications of ultracold matter without equivalence in atomic systems.

Di Rosa, Michael D. [Los Alamos National Laboratory

2012-05-08T23:59:59.000Z

146

Recovery of tritium from tritiated molecules  

DOE Patents (OSTI)

This invention relates to the recovery of tritium from various tritiated molecules by reaction with uranium. More particularly, the invention relates to the recovery of tritium from tritiated molecules by reaction with uranium wherein the reaction is conducted in a reactor which permits the reaction to occur as a moving front reaction from the point where the tritium enters the reactor charged with uranium down the reactor until the uranium is exhausted.

Swansiger, W.A.

1984-10-17T23:59:59.000Z

147

Sol-gel method for encapsulating molecules  

DOE Patents (OSTI)

A method for encapsulating organic molecules, and in particular, biomolecules using sol-gel chemistry. A silica sol is prepared from an aqueous alkali metal silicate solution, such as a mixture of silicon dioxide and sodium or potassium oxide in water. The pH is adjusted to a suitably low value to stabilize the sol by minimizing the rate of siloxane condensation, thereby allowing storage stability of the sol prior to gelation. The organic molecules, generally in solution, is then added with the organic molecules being encapsulated in the sol matrix. After aging, either a thin film can be prepared or a gel can be formed with the encapsulated molecules. Depending upon the acid used, pH, and other processing conditions, the gelation time can be from one minute up to several days. In the method of the present invention, no alcohols are generated as by-products during the sol-gel and encapsulation steps. The organic molecules can be added at any desired pH value, where the pH value is generally chosen to achieve the desired reactivity of the organic molecules. The method of the present invention thereby presents a sufficiently mild encapsulation method to retain a significant portion of the activity of the biomolecules, compared with the activity of the biomolecules in free solution.

Brinker, C. Jeffrey (Albuquerque, NM); Ashley, Carol S. (Albuquerque, NM); Bhatia, Rimple (Albuquerque, NM); Singh, Anup K. (San Francisco, CA)

2002-01-01T23:59:59.000Z

148

Plant Support Engineering: Failure Mechanism Assessment of Medium Voltage Ethylene Propylene Rubber Cables  

Science Conference Proceedings (OSTI)

This report presents the results of research that assessed failed ethylene propylene rubber (EPR) medium-voltage (MV) cables to determine the failure mechanism. This information will be used to identify appropriate electrical tests that can be performed on in-service cable. Assessed were a 34-year-old cable manufactured by Okonite with black EPR insulation and a 20-year-old Anaconda Uni-Shieldcable with pink EPR. Both had failed, and both had experienced long-term wetting during service.

2007-08-20T23:59:59.000Z

149

Plant Support Engineering: Failure Mechanism Assessment of Medium-Voltage Ethylene Propylene Rubber Cables - Revision 1  

Science Conference Proceedings (OSTI)

This report presents the results of research that assessed failed ethylene propylene rubber (EPR) medium-voltage (MV) cables to determine the failure mechanism. This information will be used to identify appropriate electrical tests that can be performed on in-service cable. Assessed were two 34-year-old cables manufactured by Okonite with black EPR insulation and a 25-year-old Anaconda UniShield cable with pink EPR. All three had failed and had experienced long-term wetting during service. This report is...

2009-05-28T23:59:59.000Z

150

Carbon Sequestration Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

151

Photophysics of carbon nanotubes  

E-Print Network (OSTI)

This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

Samsonidze, Georgii G

2007-01-01T23:59:59.000Z

152

Carbon Dioxide (CO2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) Carbon Dioxide (CO2) Gateway Pages to Carbon Dioxide Data Modern records and ice core records back 2000 years 800,000 year records from ice cores Other...

153

Method of making carbon-carbon composites  

DOE Patents (OSTI)

A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1993-01-01T23:59:59.000Z

154

Carbon Nanotube Nanocomposites, Methods of Making Carbon ...  

This technology describes methods to fabricate supercapacitors using aligned carbon nanotubes that are decorated with metal oxide or nitride ...

155

DOE Carbon Sequestration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Program Charles E. Schmidt Carbon Sequestration Product Manager National Energy Technology Laboratory David J. Beecy Director, Office of Environmental Systems...

156

Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production  

E-Print Network (OSTI)

#12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

Narasayya, Vivek

157

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network (OSTI)

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July of group schemes 8 2.6 Monitoring 9 2.7 Carbon statements and reporting 9 2.8 Woodland Carbon Code trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon

158

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network (OSTI)

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.1 July.6 Monitoring 8 2.7 Carbon statements and reporting 8 2.8 Woodland Carbon Code trademark 9 3. Carbon sequestration 10 3.1 Units of carbon calculation 10 3.2 Carbon baseline 10 3.3 Carbon leakage 11 3.4 Project

159

Research Article Rapeseed Oil Monoester of Ethylene Glycol Monomethyl Ether as a New Biodiesel  

E-Print Network (OSTI)

Copyright © 2011 Jiang Dayong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether is developed. This fuel has one more ester group than the traditional biodiesel. The fuel was synthesized and structurally identified through FT-IR and P 1P H NMR analyses. Engine test results show that when a tested diesel engine is fueled with this biodiesel in place of 0 # diesel fuel, engine-out smoke emissions can be decreased by 25.0%–75.0%, CO emissions can be reduced by 50.0%, and unburned HC emissions are lessened significantly. However, NOx emissions generally do not change noticeably. In the area of combustion performance, both engine in-cylinder pressure and its changing rate with crankshaft angle are increased to some extent. Rapeseed oil monoester of ethylene glycol monomethyl ether has a much higher cetane number and shorter ignition delay, leading to autoignition 1.1 ? CA earlier than diesel fuel during engine operation. Because of certain amount of oxygen contained in the new biodiesel, the engine thermal efficiency is improved 13.5%–20.4 % when fueled with the biodiesel compared with diesel fuel. 1.

Jiang Dayong; Wang Xuanjun; Liu Shuguang; Guo Hejun

2011-01-01T23:59:59.000Z

160

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Dye Molecules for Solar Cells Print Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread implementation was obtained using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy performed at ALS Beamline 8.0.1. The relevant energy levels of biomimetic dye molecules were mapped out systematically by determining their unoccupied molecular orbitals and their orientation. Organic molecules in dye-sensitized solar cells exhibit great potential to increase the efficiency and reduce the cost of photovoltaic power generation by allowing a wide variety of chemical modifications and combinations with inorganic nanocrystals.

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Dye Molecules for Solar Cells Print Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread implementation was obtained using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy performed at ALS Beamline 8.0.1. The relevant energy levels of biomimetic dye molecules were mapped out systematically by determining their unoccupied molecular orbitals and their orientation. Organic molecules in dye-sensitized solar cells exhibit great potential to increase the efficiency and reduce the cost of photovoltaic power generation by allowing a wide variety of chemical modifications and combinations with inorganic nanocrystals.

162

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Dye Molecules for Solar Cells Print Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread implementation was obtained using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy performed at ALS Beamline 8.0.1. The relevant energy levels of biomimetic dye molecules were mapped out systematically by determining their unoccupied molecular orbitals and their orientation. Organic molecules in dye-sensitized solar cells exhibit great potential to increase the efficiency and reduce the cost of photovoltaic power generation by allowing a wide variety of chemical modifications and combinations with inorganic nanocrystals.

163

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Dye Molecules for Solar Cells Print Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread implementation was obtained using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy performed at ALS Beamline 8.0.1. The relevant energy levels of biomimetic dye molecules were mapped out systematically by determining their unoccupied molecular orbitals and their orientation. Organic molecules in dye-sensitized solar cells exhibit great potential to increase the efficiency and reduce the cost of photovoltaic power generation by allowing a wide variety of chemical modifications and combinations with inorganic nanocrystals.

164

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Dye Molecules for Solar Cells Print Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread implementation was obtained using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy performed at ALS Beamline 8.0.1. The relevant energy levels of biomimetic dye molecules were mapped out systematically by determining their unoccupied molecular orbitals and their orientation. Organic molecules in dye-sensitized solar cells exhibit great potential to increase the efficiency and reduce the cost of photovoltaic power generation by allowing a wide variety of chemical modifications and combinations with inorganic nanocrystals.

165

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Dye Molecules for Solar Cells Print Biomimetic Dye Molecules for Solar Cells Print Pressing energy problems provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce electricity that can be converted efficiently into other kinds of energy, they are currently too costly to compete with traditional (polluting) energy sources. The most cost-effective solar cells are not high-end, high-efficiency single-crystal devices, but rather low-end cells based on organic molecules or conducting polymers. Vital information for making organic solar cells more competitive for widespread implementation was obtained using near-edge x-ray absorption fine structure (NEXAFS) spectroscopy performed at ALS Beamline 8.0.1. The relevant energy levels of biomimetic dye molecules were mapped out systematically by determining their unoccupied molecular orbitals and their orientation. Organic molecules in dye-sensitized solar cells exhibit great potential to increase the efficiency and reduce the cost of photovoltaic power generation by allowing a wide variety of chemical modifications and combinations with inorganic nanocrystals.

166

Molecule Nanoweaver Creates High-Tech Medical Patches and Multilayered...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecule Nanoweaver Creates High-Tech Medical Patches and Multilayered Capsules Technology available for licensing: Molecule Nanoweaver, a unique tool that can be used as both a...

167

Composite carbon foam electrode  

DOE Patents (OSTI)

Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

1997-01-01T23:59:59.000Z

168

Composite carbon foam electrode  

DOE Patents (OSTI)

Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

1997-05-06T23:59:59.000Z

169

Allosteric Modulation of DNA by Small Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Allosteric Modulation of DNA by Small Allosteric Modulation of DNA by Small Molecules Signals originating at the cell surface are conveyed by a complex system of interconnected signaling pathways to the nucleus. They converge at transcription factors, which in turn regulate the transcription of sets of genes that result in the gene expression. Many human diseases are caused by dysregulated gene expression and the oversupply of transcription factors may be required for the growth and metastatic behavior of human cancers. Cell permeable small molecules that can be programmed to disrupt transcription factor-DNA interfaces could silence aberrant gene expression pathways. Pyrrole-imidazole polyamides are DNA minor groove binding small molecules that are programmable for a large repertoire of DNA motifs.

170

Opto-Electrical Cooling of Polar Molecules  

E-Print Network (OSTI)

We present an opto-electrical cooling scheme for polar molecules based on a Sisyphus-type cooling cycle in suitably tailored electric trapping fields. Dissipation is provided by spontaneous vibrational decay in a closed level scheme found in symmetric-top rotors comprising six low-field-seeking rovibrational states. A generic trap design is presented. Suitable molecules are identified with vibrational decay rates on the order of 100Hz. A simulation of the cooling process shows that the molecular temperature can be reduced from 1K to 1mK in approximately 10s. The molecules remain electrically trapped during this time, indicating that the ultracold regime can be reached in an experimentally feasible scheme.

M. Zeppenfeld; M. Motsch; P. W. H. Pinkse; G. Rempe

2009-04-27T23:59:59.000Z

171

Opto-Electrical Cooling of Polar Molecules  

E-Print Network (OSTI)

We present an opto-electrical cooling scheme for polar molecules based on a Sisyphus-type cooling cycle in suitably tailored trapping electric fields. Dissipation is provided by spontaneous infrared decay in a closed level scheme found in symmetric-top rotors comprising six low-field-seeking rovibrational states. A generic trap design is presented. Suitable molecules are identified with vibrational decay rates on the order of 100Hz. A simulation of the cooling process shows that the molecular temperature can be reduced from 1K to 1mK in approximately 10s. The molecules remain electrically trapped during this time, indicating that the ultracold regime can be reached in an experimentally feasible scheme.

Zeppenfeld, M; Pinkse, P W H; Rempe, G

2009-01-01T23:59:59.000Z

172

Cold Light from Hot Atoms and Molecules  

Science Conference Proceedings (OSTI)

The introduction of rare earth atoms and molecules into lighting discharges led to great advances in efficacy of these lamps. Atoms such as Dy, Ho and Ce provide excellent radiation sources for lighting applications, with rich visible spectra, such that a suitable combination of these elements can provide high quality white light. Rare earth molecules have also proved important in enhancing the radiation spectrum from phosphors in fluorescent lamps. This paper reviews some of the current aspects of lighting research, particularly rare earth chemistry and radiation, and the associated fundamental atomic and molecular data.

Lister, Graeme [OSRAM SYLVANIA, CRSL, 71 Cherry Hill Drive, Beverly, MA (United States); Curry, John J. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

2011-05-11T23:59:59.000Z

173

Tunable Holstein model with cold polar molecules  

E-Print Network (OSTI)

We show that an ensemble of polar molecules trapped in an optical lattice can be considered as a controllable open quantum system. The coupling between collective rotational excitations and the motion of the molecules in the lattice potential can be controlled by varying the strength and orientation of an external DC electric field as well as the intensity of the trapping laser. The system can be described by a generalized Holstein Hamiltonian with tunable parameters and can be used as a quantum simulator of excitation energy transfer and polaron phenomena. We show that the character of excitation energy transfer can be modified by tuning experimental parameters.

Felipe Herrera; Roman V. Krems

2010-10-08T23:59:59.000Z

174

Carbon budget and carbon chemistry in Photon Dominated Regions  

E-Print Network (OSTI)

We present a study of small carbon chains and rings in Photon Dominated Regions (PDRs) performed at millimetre wavelengths. Our sample consists of the Horsehead nebula (B33), the rho,Oph L1688 cloud interface, and the cometary-shaped cloud IC63. Using the IRAM 30-m telescope, the SEST and the Effelsberg 100-m teles cope at Effelsberg., we mapped the emission of \\cch, c-C3H2 and C4H, and searched for heavy hydrocarbons such as c-C3H, l-C3H, l-C3H2, l-C4H2 and C6H. The large scale maps show that small hydrocarbons are present until the edge of all PDRs, which is surprising as they are expected to be easily destroyed by UV radiation. Their spatial distribution reasonably agrees with the aromatic emission mapped in mid-IR wavelength bands. Their abundances relative to H2 are relatively high and comparable to the ones derived in dark clouds such as L134N or TMC-1, known as efficient carbon factories. In particular, we report the first detection of C6H in a PDR. We have run steady-state PDR models using several gas-phase chemical networks (UMIST95 and the New Standard Model) and conclude that both networks fail in reproducing the high abundances of some of these hydrocarbons by an order of magnitude. The high abundance of hydrocarbons in the PDR may suggest that the photo-erosion of UV-irradiated large carbonaceous compounds could efficiently feed the ISM with small carbon clusters or molecules. This new production mechanism of carbon chains and rings could overcome their destruction by the UV radiation field. Dedicated theoretical and laboratory measurements are required in order to understand and implement these additional chemical routes.

D. Teyssier; D. Fosse; M. Gerin; J. Pety; A. Abergel; E. Roueff

2004-01-15T23:59:59.000Z

175

Carbon-catalyzed gasification of organic feedstocks in supercritical water  

Science Conference Proceedings (OSTI)

Spruce wood charcoal, macadamia shell charcoal, coal activated carbon, and coconut shell activated carbon catalyze the gasification of organic compounds in supercritical water. Feedstocks studied in this paper include glycerol, glucose, cellobiose, whole biomass feedstocks (depithed bagasse liquid extract and sewage sludge), and representative Department of Defense (DoD) wastes (methanol, methyl ethyl ketone, ethylene glycol, acetic acid, and phenol). The effects of temperature, pressure, reactant concentration, weight hourly space velocity, and the type of catalyst on the gasification of glucose are reported. Complete conversion of glucose (22% by weight in water) to a hydrogen-rich synthesis gas was realized at a weight hourly space velocity (WHSV) of 22.2 h{sup {minus}1} in supercritical water at 600 C, 34.5 MPa. Complete conversions of the whole biomass feeds were also achieved at the same temperature and pressure. The destruction efficiencies for the representative DoD wastes were also high. Deactivation of the carbon catalyst was observed after 4 h of operation without swirl in the entrance region of the reactor, but the carbon gasification efficiency remained near 100% for more than 6 h when a swirl generator was employed in the entrance of the reactor.

Xu, X.; Matsumura, Y.; Stenberg, J.; Antal, M.J. Jr. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

1996-08-01T23:59:59.000Z

176

The Woodland Carbon Code  

E-Print Network (OSTI)

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

177

Mechanomutable Carbon Nanotube Arrays  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Polymer Nanocomposites. Presentation Title, Mechanomutable Carbon ...

178

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

1998-01-01T23:59:59.000Z

179

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

Lagow, R.J.

1998-02-10T23:59:59.000Z

180

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Modern approaches to studying gas adsorption in nanoporous carbons  

Science Conference Proceedings (OSTI)

Conventional approaches to understanding gas adsorption capacity of nanoporous carbons have emphasized the relationship with the effective surface area, but more recent work has demonstrated the importance of local structures and pore-size-dependent adsorption. We present some recent developments that provide new insights into local structures in nanoporous carbon and their effect on gas adsorption and uptake characteristics. Experiments and theory show that appropriately tuned pores can strongly enhance local adsorption, and that pore sizes can be used to tune adsorption characteristics. In the case of H2 adsorbed on nanostructured carbon, quasielastic and inelastic neutron scattering probes demonstrate novel quantum effects in the motion of adsorbed molecules.

Morris, James R [ORNL; Contescu, Cristian I [ORNL; Chisholm, Matthew F [ORNL; Cooper, Valentino R [ORNL; Guo, Junjie [University of Tennessee, Knoxville (UTK); He, Lilin [ORNL; Ihm, Yungok [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Mamontov, Eugene [ORNL; Melnichenko, Yuri B [ORNL; Olsen, Raina J [ORNL; Pennycook, Stephen J [ORNL; Stone, Matthew B [ORNL; Zhang, Hongxin [ORNL; Gallego, Nidia C [ORNL

2013-01-01T23:59:59.000Z

182

Microfluidic sieve using intertwined, free-standing carbon nanotube mesh as active medium  

DOE Patents (OSTI)

A microfluidic sieve having a substrate with a microfluidic channel, and a carbon nanotube mesh. The carbon nanotube mesh is formed from a plurality of intertwined free-standing carbon nanotubes which are fixedly attached within the channel for separating, concentrating, and/or filtering molecules flowed through the channel. In one embodiment, the microfluidic sieve is fabricated by providing a substrate having a microfluidic channel, and growing the intertwined free-standing carbon nanotubes from within the channel to produce the carbon nanotube mesh attached within the channel.

Bakajin, Olgica (San Leandro, CA); Noy, Aleksandr (Belmont, CA)

2007-11-06T23:59:59.000Z

183

Imaging Carbon Nanotubes Magdalena Preciado Lpez, David Zahora, Monica Plisch  

E-Print Network (OSTI)

, the electrons would collide with air molecules and quickly lose their energy. Since electrons are electrically nanotubes using image analysis software. The goals are to learn more about carbon nanotube growth, develop that the side of the tip contacts the tube well before the bottom of the tip. This causes the profile

Gaeta, Alexander L.

184

Adsorption of small molecules on graphene  

Science Conference Proceedings (OSTI)

We investigate the adsorption process of small molecules on graphene through first-principles calculations and show the presence of two main charge transfer mechanisms. Which mechanism is the dominant one depends on the magnetic properties of the adsorbing ... Keywords: Adsorption, Graphene

O. Leenaerts; B. Partoens; F. M. Peeters

2009-04-01T23:59:59.000Z

185

PHOTOELECTRON SPECTROSCOPY OF HEAVY ATOMS AND MOLECULES  

E-Print Network (OSTI)

1120 (1962). pressure data for SnS. Vapor C. Sirayama, Y.Molecule Geo GeS GeSe GeTe Sns SnSe SnTe v"(cm ) a T(°C) N lobtained the GeS, GeSe, SnS, and SnSe samples from Research

White, M.G.

2010-01-01T23:59:59.000Z

186

Double?Quantum Light Scattering by Molecules  

Science Conference Proceedings (OSTI)

Double?quantum light scattering by a system of molecules is discussed in this paper. Expressions have been obtained for the scattered light intensity considering both the coherent and incoherent contributions. In that coherent contributions are also considered in this treatment

R. Bersohn; Yoh?Han Pao; H. L. Frisch

1966-01-01T23:59:59.000Z

187

Glossary: Energy-Related Carbon Emissions  

U.S. Energy Information Administration (EIA)

Carbon Sequestration: The fixation of atmospheric carbon dioxide in a carbon sink through biological or physical processes. Carbon Sink: ...

188

Regional Carbon Sequestration Partnerships | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Carbon Capture and Storage Regional Carbon Sequestration Partnerships Regional Carbon Sequestration Partnerships DOE's Regional Carbon Sequestration...

189

Exhaust Emissions and Combustion Performances of Rapeseed Oil Monoester of Ethylene Glycol Monomethyl Ether as a Novel Biodiesel  

Science Conference Proceedings (OSTI)

In this paper, a novel biodiesel named rapeseed oil monoester of ethylene glycol monomethyl ether has been developed, which has one more ester group than traditional biodiesel. It was synthesized and structurally identified through FT-IR, 1H NMR analyses. ... Keywords: component, rapeseed oil monoester, synthesis, exhaust emissions, combustion performances

Jiang Dayong; Wang Xuanjun; Wang Wenguo; Han Qilong

2011-02-01T23:59:59.000Z

190

Electron Microscopy of Carbon Nanotube Composites  

Science Conference Proceedings (OSTI)

Electron Microscopy of Carbon Nanotube Composites. Summary: Carbon nanomaterials such as carbon nanotubes (CNTs ...

2013-07-01T23:59:59.000Z

191

Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis  

Science Conference Proceedings (OSTI)

This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

Schrodi, Yann (Agoura Hills, CA)

2011-11-29T23:59:59.000Z

192

First results from electron-photon damage equivalence studies on a generic ethylene-propylene rubber  

Science Conference Proceedings (OSTI)

As part of a simulator adequacy assessment program, the relative effectiveness of electrons and photons to produce damage in a generic ethylene propylene rubber (EPR) has been investigated. The investigation was limited in extent in that a single EPR material, in three thickness, was exposed to Cobalt-60 photons and three electron beam energies. Basing material damage on changes in the EPR mechanical properties elongation and tensile strength, we observed that EPR damage was a smoothly varying function of absorbed energy and independent of irradiating particle type. EPR damage tracked equally well as a function of both incident particle energy and material front surface dose. Based on these preliminary data, we tentatively concluded that a correlation between particle, particle energy, and material damage (as measured by changes in material elongation and/or tensile strength) has been demonstrated. 14 figs.

Buckalew, W.H.

1986-04-01T23:59:59.000Z

193

Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis  

DOE Patents (OSTI)

This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

Schrodi, Yann

2013-07-09T23:59:59.000Z

194

Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.  

DOE Green Energy (OSTI)

The Penn State effort explored the development of new high-surface-area materials for hydrogen storage, materials that could offer enhancement in the hydrogen binding energy through a direct chemical modification of the framework in high specific-surface-area platforms. The team chemically substituted boron into the hexagonal sp2 carbon framework, dispersed metal atoms bound to the boro-carbon structure, and generated the theory of novel nanoscale geometries that can enhance storage through chemical frustration, sheet curvature, electron deficiency, large local fields and mixed hybridization states. New boro-carbon materials were synthesized by high temperature plasma, pyrolysis of boron-carbon precursor molecules, and post-synthesis modification of carbons. Hydrogen uptake has been assessed, and several promising leads have been identified, with the requirement to simultaneously optimize total surface area while maintaining the enhanced hydrogen binding energies already demonstrated.

Peter C. Eklund (deceased); T. C. Mike Chung; Henry C. Foley; Vincent H. Crespi

2011-05-01T23:59:59.000Z

195

Michael Heine, SGL Group - The Carbon Company, Carbon Fibers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fibers in Lightweight Systems for Wind Energy and Automotive Applications: Availability and Challenges for the Future Michael Heine, SGL Group - The Carbon Company, Carbon...

196

Carbon Efficiency, Carbon Reduction Potential, and Economic Developmen...  

Open Energy Info (EERE)

Carbon Reduction Potential, and Economic Development in the People's Republic of China Jump to: navigation, search Tool Summary Name: Carbon Efficiency, Carbon Reduction...

197

Carbon Ion Pump for Carbon Dioxide Removal  

coal fired power plants; oil or gas fired power plants; cement production; bio-fuel combustion; Separation of carbon dioxide from other combustion ...

198

Carbon fuel cells with carbon corrosion suppression  

Science Conference Proceedings (OSTI)

An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

Cooper, John F. (Oakland, CA)

2012-04-10T23:59:59.000Z

199

Carbon Management and Carbon Dioxide Reduction  

Science Conference Proceedings (OSTI)

Cost-Effective Gas Stream Component Analysis Techniques and Strategies for Carbon Capture Systems from Oxy-Fuel Combustion (An Overview).

200

Effects of partial oxidation of PMAN carbon on their performance as anodes in 1M LiPF{sub 6}/EC-DMC solutions  

DOE Green Energy (OSTI)

A study was undertaken to examine the effects of partial oxidation on the electrochemical performance of carbons derived from poly(methylacrylonitrile) (PMAN)-divinylbenzene (DVB) co-polymers. Mild oxidation was examined as a possible technique to increase the reversible capacity, improve cycleability, and reduce the amount of irreversible capacity associated with the formation of the passivation layer during the first reduction. Oxidizing conditions involved treatment of the PMAN carbon prepared at 700 C with dry CO{sub 2} or with steam at 600 C for one hour. The effects on the performance in 1M LiPF{sub 6}/ethylene carbonate (EC)-dimethyl carbonate (DMC) solutions were evaluated by galvanostatic cycling tests, complex-impedance spectroscopy, and, to a more limited extent, cyclic voltammetry. Partial oxidation of PMAN carbon showed little or no overall beneficial effects in performance relative to the control.

Guidotti, R.A. [Sandia National Labs., Albuquerque, NM (United States). Battery Development Dept.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Metallic carbon materials  

DOE Patents (OSTI)

Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

1999-01-01T23:59:59.000Z

202

Doppler cooling three-electronic-level molecules  

E-Print Network (OSTI)

Analogous to the extension of laser cooling techniques from two-level to three-level atoms, Doppler cooling of molecules with an intermediate electronic state is considered. In particular, we use a rate-equation approach to simulate cooling of SiO+, in which population buildup in the intermediate state is prevented by its short lifetime. We determine that Doppler cooling of SiO+ can be accomplished without optically repumping from the intermediate state, at the cost of causing undesirable parity flips and rotational diffusion. Since the necessary repumping would require a large number of continuous-wave lasers, optical pulse shaping of a femtosecond laser is proposed as an attractive alternative. Other candidate three-electron-level molecules are also discussed.

Nguyen, J H V

2010-01-01T23:59:59.000Z

203

Automated imaging system for single molecules  

SciTech Connect

There is provided a high throughput automated single molecule image collection and processing system that requires minimal initial user input. The unique features embodied in the present disclosure allow automated collection and initial processing of optical images of single molecules and their assemblies. Correct focus may be automatically maintained while images are collected. Uneven illumination in fluorescence microscopy is accounted for, and an overall robust imaging operation is provided yielding individual images prepared for further processing in external systems. Embodiments described herein are useful in studies of any macromolecules such as DNA, RNA, peptides and proteins. The automated image collection and processing system and method of same may be implemented and deployed over a computer network, and may be ergonomically optimized to facilitate user interaction.

Schwartz, David Charles; Runnheim, Rodney; Forrest, Daniel

2012-09-18T23:59:59.000Z

204

Frostbite Theater - Static Electricity Experiments - Polar Molecules  

NLE Websites -- All DOE Office Websites (Extended Search)

Big Sparks, Little Sparks! Big Sparks, Little Sparks! Previous Video (Big Sparks, Little Sparks!) Frostbite Theater Main Index Next Video (Static Electricity and Bubbles!) Static Electricity and Bubbles! Polar Molecules What happens when an electrically charged object is brought near a stream of water? This is an easy experiment you can do yourself that shows that water molecules are polar! [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And this is a piece of PVC pipe! Steve: And this is a plastic cup that has a hole drilled into the bottom of it. So, when I fill it with water, it leaks out of the bottom. Joanna: If I charge the pipe, and then bring it close to the stream of

205

NETL: Regional Carbon Sequestration Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

RCSP Carbon Storage Regional Carbon Sequestration Partnerships In 2003, the U.S. Department of Energy (DOE) awarded cooperative agreements to seven Regional Carbon Sequestration...

206

Carbon Nanostructure-Based Sensors  

E-Print Network (OSTI)

Control of Single-Walled Carbon Nanotube Functionalization.M. S. Characterizing carbon nanotube samples with resonancewith a Single-Walled Carbon Nanotube Capacitor. Science

Sarkar, Tapan

2012-01-01T23:59:59.000Z

207

Development of the EPRI Magnetic Molecules Technology  

Science Conference Proceedings (OSTI)

This report describes the work to date on development of Magnetic Molecules, a new technology for the selective removal of radioactive and other contaminants from liquid wastes and process solutions at nuclear power plants. Following an initial proof of principle test demonstrating the viability of the concept, EPRI has filed a patent application. This report describes the work completed during the first half of the EPRI program to establish this technology.

2004-11-15T23:59:59.000Z

208

Electric dipole rovibrational transitions in HD molecule  

E-Print Network (OSTI)

The rovibrational electric dipole transitions in the ground electronic state of the HD molecule are studied. A simple, yet rigorous formula is derived for the transition rates in terms of the electric dipole moment function $D(R)$, which is calculated in a wide range of $R$. Our numerical results for transition rates are in moderate agreement with experiments and previous calculations, but are at least an order of magnitude more accurate.

Pachucki, Krzysztof

2008-01-01T23:59:59.000Z

209

Method of making carbon-carbon composites  

DOE Patents (OSTI)

A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1991-01-01T23:59:59.000Z

210

Quantifying Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, ...

J. M. Gregory; C. D. Jones; P. Cadule; P. Friedlingstein

2009-10-01T23:59:59.000Z

211

Carbon Monoxide Safety Tips  

E-Print Network (OSTI)

Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist.

Shaw, Bryan W.; Garcia, Monica L.

1999-07-26T23:59:59.000Z

212

NETL: Carbon Storage Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Carbon Storage Newsletter PDF-571KB has been posted. 08.27.2013 Publications August 2013 Carbon Storage Newsletter PDF-1.1MB has been posted. 08.15.2013 News Ancient...

213

Carbon nanotube nanoelectrode arrays  

DOE Patents (OSTI)

The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

2008-11-18T23:59:59.000Z

214

Terrestrial Carbon Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Terrestrial Carbon Management Data Sets and Analyses Terrestrial Carbon Management Data Sets and Analyses Carbon Accumulation with Cropland Management Influence of Agricultural Management on Soil Organic Carbon: A Compendium and Assessment of Canadian Studies (VandenBygaart et al., Agriculture and Agri-Food Canada) Soil Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (West and Post, Oak Ridge National Laboratory) Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming (Smith et al., University of Aberdeen, United Kingdom) Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments (Smith et al., University of Aberdeen, United Kingdom) Carbon Accumulation with Grassland Management

215

Carbon Footprint and Carbon Deficit Analysis of Iron and Steel ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management. Presentation Title ... Study on Capture, Recovery and Utilization of Carbon Dioxide.

216

Carbon Fibers and Carbon Nanotubes - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 17, 2010 ... Polymer Nanocomposites: Carbon Fibers and Carbon Nanotubes Sponsored by: The Minerals, Metals and Materials Society Program ...

217

Carbon Dioxide Compression  

Science Conference Proceedings (OSTI)

Page 1. © C opyright 2009 Carbon Dioxide Compression DOE – EPRI – NIST ... Greenhouse gas sequestration Page 5. 5 © C opyright 2009 ...

2013-04-22T23:59:59.000Z

218

Carbon Mitigation Measurements  

Science Conference Proceedings (OSTI)

... sustainable technologies such as CO 2 capture and sequestration (CCS ... property diagnostic tools (under realistic conditions for carbon capture from ...

2012-10-04T23:59:59.000Z

219

Big Sky Carbon Atlas  

DOE Data Explorer (OSTI)

(Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

Carbon Sequestration Partnership, Big Sky [BSCSP; ,

220

Electrocatalysts on Carbon Nanoparticles  

Carbon nanostructures offer extremely high surface areas and so are attractive candidates to support dispersed catalysts. These nanostructures, ...

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Low Carbon Fuel Standards  

E-Print Network (OSTI)

land-use changes. When biofuel production increases, land ison carbon releases. If biofuel production does not result in

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

222

Reduction of Carbon Monoxide. Past Research Summary  

DOE R&D Accomplishments (OSTI)

Research programs for the year on the preparation, characterization, and reactions of binuclear tantalum complexes are described. All evidence to date suggest the following of these dimeric molecules: (1) the dimer does not break into monomers under mild conditions; (2) intermolecular hydride exchange is not negligible, but it is slow; (3) intermolecular non-ionic halide exchange is fast; (4) the ends of the dimers can rotate partially with respect to one another. The binuclear tantalum hydride complexes were found to react with carbon monoxide to give a molecule which is the only example of reduction of CO by a transition metal hydride to give a complex containing a CHO ligand. Isonitrides also reacted in a similar manner with dimeric tantalum hydride. (ATT)

Schrock, R. R.

1982-00-00T23:59:59.000Z

223

Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel  

Science Conference Proceedings (OSTI)

The microscopic diffusivity of methane (CH{sub 4}) confined in nano-porous carbon aerogel was investigated as a function of added carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}) pressure using quasi-elastic neutron scattering (QENS). In the range of the external pressure of 1-2.5 MPa, the self-diffusivity of methane was found to increase with CO{sub 2} pressure and remain practically unchanged in the N{sub 2} environment. Increasing mobility of methane with CO{sub 2} pressure suggests that the adsorbed CH4 molecules become gradually replaced by CO{sub 2} on the surface of carbon aerogel pores, whereas the presence of N{sub 2} does not induce the replacement. The molecular mobility of the methane, with or without added carbon dioxide and nitrogen, is described by the unrestricted diffusion model, which is characteristic of methane compressed in small pores. On the other hand, both nitrogen and carbon dioxide molecules in carbon aerogel, when studied alone, with no methane present, follow a jump diffusion process, characteristic of the molecular mobility in the densified adsorbed layers on the surface of the aerogel pores.

Mavila Chathoth, Suresh [ORNL; He, Lilin [ORNL; Mamontov, Eugene [ORNL; Melnichenko, Yuri B [ORNL

2012-01-01T23:59:59.000Z

224

Localization of the production of 1-aminocyclopropane-1-carboxylic acid and its conversion to ethylene during the rhythmic production of the gas in Sorghum bicolor seedlings  

E-Print Network (OSTI)

Studies were conducted to determine where in the plant 1-aminocyclopropane-1-carboxylic acid (ACC) is made and converted to ethylene in Sorghum bicolor seedlings producing the gas in circadian rhythms. For the first time, a natural enzyme was used to convert ACC to ethylene for assay by gas chromatography. Parameters like Km and Vmax of ACC oxidase in the standard assay were well complemented in more rigorous Eddie Hofstee and Lineweaver-Burk plots. A conversion formula was derived allowing use of constants and variable product to calculate the unknown ACC concentration. The new method proved far simpler and efficient than the NaOCl and Hg?² method by eliminating slow purification steps and interference. Measuring rates of ethylene production, free and conjugated ACC contents from detached as well as intact plant organs tested the role of roots in rhythmic ethylene synthesis. Variation in ethylene synthesis in the phytochrome B mutant and its wild-type cultivar under different light regimes suggested that phytochrome regulates ethylene synthesis. Occurrence of rhythmic phenomena in detached shoots made it clear that regulation of ethylene synthesis takes place in shoots. Pulses of ethylene may be signaling the plant as the "hands" of the biological clock and may have some role in the phenotype of the mutant cultivar. Detachment did not create a significant difference in ACC levels between intact and detached shoots of either cultivar. Especially, ACC levels did not decrease in detached shoots as would be expected if their ACC originated to a major degree in roots. Similar results were found in roots, suggesting that adequate amounts of ACC to convert into ethylene are present in detached shoots. Ethylene rhythms may be controlled by a self-inhibitory mechanism taking place at the time of ACC synthesis. Conjugation of ACC (MACC) may be indirectly regulating ethylene synthesis by preventing excessive accumulation of ACC in roots and shoots. Probing of mRNA isolated during a time course with be353050 transcript gave two putative ACC synthase genes, tentatively named sbACS2 and sbACS3. Flooding and injury treatments did not induce statement of either of the transcripts. sbACS3 is expressed constitutively whereas sbACS2 is diurnally expressed. The combined effect of both the transcripts may have resulted in diurnal but weak rhythms of ACC in shoots.

Gohil, Hemantkumar Laxmansinh

2002-01-01T23:59:59.000Z

225

Neutrino Spectroscopy with Atoms and Molecules  

E-Print Network (OSTI)

We give a comprehensive account of our proposed experimental method of using atoms or molecules in order to measure parameters of neutrinos still undetermined; the absolute mass scale, the mass hierarchy pattern (normal or inverted), the neutrino mass type (Majorana or Dirac), and the CP violating phases including Majorana phases. There are advantages of atomic targets, due to the closeness of available atomic energies to anticipated neutrino masses, over nuclear target experiments. Disadvantage of using atomic targets, the smallness of rates, is overcome by the macro-coherent amplification mechanism. The atomic or molecular process we use is a cooperative deexcitation of a collective body of atoms in a metastable level |e> emitting a neutrino pair and a photon; |e> -> |g> + gamma + nu_i nu_j where nu_i's are neutrino mass eigenstates. The macro-coherence is developed by trigger laser irradiation. We discuss aspects of the macro-coherence development by setting up the master equation for the target quantum state and propagating electric field. With a choice of heavy target atom or molecule such as Xe or I_2 that has a large M1 x E1 matrix element between |e> and |g>, we show that one can determine three neutrino masses along with the mass hierarchy pattern by measuring the photon spectral shape. If one uses a target of available energy of a fraction of 1 eV, Majorana CP phases may be determined. Our master equation, when applied to E1 x E1 transition such as pH_2 vibrational transition Xv=1 -> 0, can describe explosive PSR events in which most of the energy stored in |e> is released within a few nanoseconds. The present paper is intended to be self-contained explaining some details related theoretical works in the past, and further reports new simulations and our ongoing experimental efforts of the project to realize the neutrino mass spectroscopy using atoms/molecules.

Atsushi Fukumi; Susumu Kuma; Yuki Miyamoto; Kyo Nakajima; Itsuo Nakano; Hajime Nanjo; Chiaki Ohae; Noboru Sasao; Minoru Tanaka; Takashi Taniguchi; Satoshi Uetake; Tomonari Wakabayashi; Takuya Yamaguchi; Akihiro Yoshimi; Motohiko Yoshimura

2012-11-21T23:59:59.000Z

226

Atom-molecule conversion with particle losses  

E-Print Network (OSTI)

Based on the mean-field approximation and the phase space analysis, we study the dynamics of an atom-molecule conversion system subject to particle loss. Starting from the many-body dynamics described by a master equation, an effective nonlinear Schr\\"odinger equation is introduced. The classical phase space is then specified and classified by fixed points. The boundary, which separate different dynamical regimes have been calculated and discussed. The effect of particle loss on the conversion efficiency and the self-trapping is explored.

B. Cui; L. C. Wang; X. X. Yi

2011-03-01T23:59:59.000Z

227

Modeling and analysis of single-molecule experiments  

E-Print Network (OSTI)

Single molecule experiments offer a unique window into the molecular world. This window allows us to distinguish the behaviors of individual molecules from the behavior of bulk by observing rare events and heterogeneity ...

Witkoskie, James B

2005-01-01T23:59:59.000Z

228

Nanofluidic system for single molecule manipulation and analysis  

E-Print Network (OSTI)

This thesis focuses on characterizing and controlling the translocation of single 48.5 kbp [lambda]-DNA molecules through an artificial nanopore with the objective of enabling multiple measurements on the same molecule. ...

Sen, Yi-Heng

2008-01-01T23:59:59.000Z

229

Formation of Carbon Dwarfs  

E-Print Network (OSTI)

We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

Charles L. Steinhardt; Dimitar D. Sasselov

2005-02-08T23:59:59.000Z

230

Superlubricity and wearless sliding in diamondlike carbon films.  

DOE Green Energy (OSTI)

Diamondlike carbon (DLC) films have attracted great interest in recent years mainly because of their unusual optical, electrical, mechanical, and tribological properties. Such properties are currently being exploited for a wide range of engineering applications including magnetic hard disks, gears, sliding and roller bearings, scratch resistant glasses, biomedical implants, etc. Systematic studies on carbon-based materials in our laboratory have led to the development of a new class of amorphous DLC films that provide extremely low friction and wear coefficients of 0.001 to 0.005 and 10{sup -11} to 10{sup -10} mm{sup 3} /N.m, respectively, when tested in inert-gas or high-vacuum environments. These films were produced in highly hydrogenated gas discharge plasmas by a plasma enhanced chemical vapor deposition process at room temperature. The carbon source gases used in the deposition of these films included methane, acetylene, and ethylene. Tribological studies in our laboratory have established a very close correlation between the composition of the plasmas and the friction and wear coefficients of the resultant DLC films. Specifically, the friction and wear coefficients of DLC films grown in plasmas with higher hydrogen-to-carbon ratios were much lower than films derived from source gases with lower hydrogen-to-carbon ratios. Fundamental tribological and surface analytical studies have led us to conclude that hydrogen (within the film, as well as on the sliding surfaces) is extremely important for the superlubricity and wearless sliding behavior of these films. Based on these studies, a mechanistic model is proposed to explain the superlow friction and wear properties of the new DLC films.

Erdemir, A.

2001-12-13T23:59:59.000Z

231

Plant Engineering: Results of Cable Rejuvenation of Severely Degraded Black Ethylene Propylene Rubber Medium-Voltage Cables  

Science Conference Proceedings (OSTI)

This report describes the evaluation of the effects of commercially available rejuvenation on black ethylene propylene rubber (EPR) insulation. Black EPR is one of the main insulation types used in power plants built in the late 1960s to mid-1970s. Diagnostic testing and failure mechanism research performed by the Electric Power Research Institute (EPRI) have shown that this insulation, when exposed to wet or submerged conditions, can degrade to the point at which reliability concerns would require ...

2013-06-11T23:59:59.000Z

232

NiW and NiRu Bimetallic Catalysts for Ethylene Steam Reforming: Alternative Mechanisms for Sulfur Resistance  

SciTech Connect

Previous investigations of Ni-based catalysts for the steam reforming of hydrocarbons have indicated that the addition of a second metal can reduce the effects of sulfur poisoning. Two systems that have previously shown promise for such applications, NiW and NiRu, are considered here for the steam reforming of ethylene, a key component of biomass derived tars. Monometallic and bimetallic Al{sub 2}O{sub 3}-supported Ni and W catalysts were employed for ethylene steam reforming in the presence and absence of sulfur. The NiW catalysts were less active than Ni in the absence of sulfur, but were more active in the presence of 50 ppm H{sub 2}S. The mechanism for the W-induced improvements in sulfur resistance appears to be different from that for Ru in NiRu. To probe reasons for the sulfur resistance of NiRu, the adsorption of S and C{sub 2}H{sub 4} on several bimetallic NiRu alloy surfaces ranging from 11 to 33 % Ru was studied using density functional theory (DFT). The DFT studies reveal that sulfur adsorption is generally favored on hollow sites containing Ru. Ethylene preferentially adsorbs atop the Ru atom in all the NiRu (111) alloys investigated. By comparing trends across the various bimetallic models considered, sulfur adsorption was observed to be correlated with the density of occupied states near the Fermi level while C{sub 2}H{sub 4} adsorption was correlated with the number of unoccupied states in the d-band. The diverging mechanisms for S and C{sub 2}H{sub 4} adsorption allow for bimetallic surfaces such as NiRu that enhance ethylene binding without accompanying increases in sulfur binding energy. In contrast, bimetallics such as NiSn and NiW appear to decrease the affinity of the surface for both the reagent and the poison.

Rangan, M.; Yung, M. M.; Medlin, J. W.

2012-06-01T23:59:59.000Z

233

Long-Term Operations: Ethylene Propylene Rubber (EPR) Insulation Accelerated Aging Methodology Research for Medium-Voltage Cables  

Science Conference Proceedings (OSTI)

Ethylene propylene rubber–insulated (EPR-insulated) cables are the most common type of medium-voltage cables in U.S. plants. Accelerating the aging of EPR insulations has proven difficult. The research described in this report attempted alternative ways to accelerate the aging of EPR insulation in hopes of achieving a better method. Stresses—such as lower temperature, high-conductivity water, and additional voltage—were used to accelerate aging in a generic EPR cable. Additionally, ...

2012-09-20T23:59:59.000Z

234

Programmable motion and patterning of molecules on solid surfaces  

E-Print Network (OSTI)

) Adsorbed on a solid surface, a molecule can migrate and carry an electric dipole moment. A nonuniform electric field can direct the motion of the molecule. A collection of the same molecules may aggregate and programmable molec- ular cars. This paper develops a phase field model to simulate the molecular motion

Suo, Zhigang

235

Recycling of Methylaluminoxane (MAO) Cocatalyst in Ethylene Polymerization with Supported Metallocene Catalyst  

E-Print Network (OSTI)

Abstract?The economy of the metallocene catalyst system in olefin polymerization depends more on the cost of methylaluminoxane (MAO) cocatalyst rather than on the catalyst cost since high ratio of cocatalyst to catalyst is required to have sufficient activity. The conditions to minimize the consumption of MAO have been studied for the ethylene polymerization with supported metallocene catalyst. By introducing the prepolymerization step, in which the supported metallocene catalyst is activated at high MAO concentration before polymerization, the MAO could be recovered after the prepolymerization and recycled repeatedly for the subsequent activation with marginal decrease in activity. No extra MAO was needed during the main polymerization. The addition of small amount of MAO or less expensive alkylaluminum at each recycle step kept the catalyst activity to the initial level. It compensates the MAO losses occurring both by the incomplete decantation of MAO solution and by the reaction with metallocene complex or impurities. As a result, the actual consumption ratio of Al/Zr in moles in commercial applications could be reduced to about 30 without sacrificing the activity. This value is significantly low considering that conventionally an Al/Zr ratio of 1,000 is required for sufficient activity.

Jae Seung Oh; Bun Yeoul Lee; Tai Ho Park

2003-01-01T23:59:59.000Z

236

Effect of a uniform electric field on soot in laminar premixed ethylene/air flames  

SciTech Connect

The effect of a nominally uniform electric field on the initially uniform distribution of soot has been assessed for laminar premixed ethylene/air flames from a McKenna burner. An electrophoretic influence on charged soot particles was measured through changes to the deposition rate of soot on the McKenna plug, using laser extinction (LE). Soot volume fraction was measured in situ using laser-induced incandescence (LII). Particle size and morphologies were assessed through ex situ transmission electron microscopy (TEM) using thermophoretic sampling particle diagnostics (TSPD). The results show that the majority of these soot particles are positively charged. The presence of a negatively charged plug was found to decrease the particle residence times in the flame and to influence the formation and oxidation progress. A positively charged plug has the opposite effect. The effect on soot volume fraction, particles size and morphology with electric field strength is also reported. Flame stability was also found to be affected by the presence of the electric field, with the balance of the electrophoretic force and drag force controlling the transition to unstable flame flicker. The presence of charged species generated by the flame was found to reduce the dielectric field strength to one seventh that of air. (author)

Wang, Y.; Yao, Q. [Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, 100084 Beijing (China); Nathan, G.J. [School of Mechanical Engineering, Centre for Energy Technology, The University of Adelaide, S.A. 5005 (Australia); Alwahabi, Z.T.; King, K.D.; Ho, K. [School of Chemical Engineering, Centre for Energy Technology, The University of Adelaide, S.A. 5005 (Australia)

2010-07-15T23:59:59.000Z

237

Ordering in asymmetric poly (ethylene--propylene)--poly (ethylethylene) diblock copolymer thin films  

SciTech Connect

We have used neutron reflection and phase contrast microscopy to investigate the morphology and surface topology of thin films of nearly symmetric ([ital f]=0.55) and asymmetric ([ital f]=0.77), poly (ethylene--propylene)--poly (ethylethylene) (PEP--PEE) diblock copolymers ([ital f] being the PEP volume fraction) and have identified three important differences in their ordering properties. First, annealed films of the asymmetric diblocks do not form the lamellar microstructure found in symmetric diblocks; their structure can instead be modeled in terms of the hexagonal packing of PEE cylinders observed in bulk small-angle neutron scattering measurements. However, the cylinders show in-plane distortions, which we interpret in the context of nonintegral layering. These distortions are amplified at the surfaces where the PEE assumes lamellarlike form. Second, as-cast films of the asymmetric diblock are characterized by a microstructure lacking long-range order, pinned between strongly segregated PEE at both surfaces. These films can be equilibrated through annealing, leading to the well-ordered structures described earlier. The changes with annealing are surprising given that both PEP and PEE are well above their glass transitions at room temperature. Finally, the block asymmetry and the associated cylindrical structure in the interior are also manifested in the surface topology. Thin films of asymmetric PEP--PEE are smooth on a macroscopic scale unlike their symmetric counterparts, which form islands on the surface to accommodate films of nonintegral lamellar thicknesses.

Karim, A.; Singh, N.; Sikka, M.; Bates, F.S. (Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0132 (United States)); Dozier, W.D.; Felcher, G.P. (Argonne National Laboratory, Argonne, Illinois 60439 (United States))

1994-01-15T23:59:59.000Z

238

Potential Problems with Ethylene-Vinyl Acetate for Photovoltaic Packaging (Poster)  

DOE Green Energy (OSTI)

Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) to provide mechanical support electrical isolation, optical coupling, and protection against environmental exposure. Under exposure to atmospheric water and/or ultraviolet radiation, EVA will decompose to produce acetic acid, lowering the pH and increasing the surface corrosion rates of embedded devices. Even though acetic acid is produced at a very slow rate it may not take much to catalyze reactions that lead to rapid module deterioration. Another consideration is that the glass transition of EVA, as measured using dynamic mechanical analysis, begins at temperatures of about -15 C. Temperatures lower than this can be reached for extended periods of time in some climates. Due to increased moduli below the glass transition temperature, a module may be more vulnerable to damage if a mechanical load is applied by snow or wind at low temperatures. Modules using EVA should not be rated for use at such low temperatures without additional low-temperature mechanical testing beyond the scope of UL 1703.

Kempe, M. D.; Jorgensen, G. J.; Terwilliger, K, M.; McMahon, T. J.; Kennedy, C. E.; Borek, T. T.

2006-05-01T23:59:59.000Z

239

Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems  

SciTech Connect

Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

Seol, Yongkoo; Javandel, Iraj

2008-03-15T23:59:59.000Z

240

Response of ethylene propylene diene monomer rubber (EPDM) to simulant Hanford tank waste  

Science Conference Proceedings (OSTI)

This report presents the findings of the Chemical Compatibility Program developed to evaluate plastic packaging components that may be incorporated in packaging mixed-waste forms for transportation. Consistent with the methodology outlined in this report, the author performed the second phase of this experimental program to determine the effects of simulant Hanford tank mixed wastes on packaging seal materials. That effort involved the comprehensive testing of five plastic liner materials in an aqueous mixed-waste simulant. The testing protocol involved exposing the materials to {approximately}143, 286, 571, and 3,670 krad of gamma radiation and was followed by 7-, 14-, 28-, 180-day exposures to the waste simulant at 18, 50, and 60 C. Ethylene propylene diene monomer (EPDM) rubber samples subjected to the same protocol were then evaluated by measuring seven material properties: specific gravity, dimensional changes, mass changes, hardness, compression set, vapor transport rates, and tensile properties. The author has determined that EPDM rubber has excellent resistance to radiation, this simulant, and a combination of these factors. These results suggest that EPDM is an excellent seal material to withstand aqueous mixed wastes having similar composition to the one used in this study.

NIGREY,PAUL J.

2000-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Structure of Poly(styrene-b-ethylene-alt-propylene) Diblock Copolymer Micelles in Squalane  

SciTech Connect

The temperature dependence of the micellar structures formed by poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymers in squalane, a highly selective solvent for the PEP blocks, has been studied using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Four SEP diblock copolymers were prepared by sequential anionic polymerization of styrene and isoprene, followed by hydrogenation of the isoprene blocks, to yield SEP(17-73), SEP(26-66), SEP(36-69), and SEP(42-60), where the numbers indicate block molecular weights in kDa. All four polymers formed well-defined spherical micelles. In dilute solution, DLS provided the temperature-dependent mean hydrodynamic radius, R{sub h}, and its distribution, while detailed fitting of the SAXS profiles gave the core radius, R{sub c}, the equivalent hard sphere radius, R{sub hs}, and an estimate of the aggregation number, N{sub agg}. In general, the micelles became smaller as the critical micelle temperature (CMT) was approached, which was well above the glass transition of the core block. As concentration increased the micelles packed onto body centered cubic lattices for all four copolymers, which underwent order-disorder transitions upon heating near the dilute solution CMTs. The results are discussed in terms of current understanding of block copolymer solution self-assembly, and particular attention is paid to the issue of equilibration, given the high glass transition temperature of the core block.

Choi, Soo-Hyung; Bates, Frank S.; Lodge, Timothy P.; (UMM)

2009-11-04T23:59:59.000Z

242

Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber  

E-Print Network (OSTI)

Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon Accepted 14 January 2010 Available online 20 January 2010 A B S T R A C T Single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) membranes (buckypaper) and carbon nanofiber (CNF) paper

Das, Suman

243

Carbon dioxide sensor  

SciTech Connect

The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

2011-11-15T23:59:59.000Z

244

Effect of solution additives on the performance of PMAN carbon anodes in 1M LiPF{sub 6}/EC-DMC solutions  

DOE Green Energy (OSTI)

A study was undertaken to examine the use of a number of solution additives in 1M LiPF{sub 6}/ethylene carbonate (EC)-dimethyl carbonate (DMC) solutions to improve the performance of carbon anodes derived from polymethylacrylonitrile (PMAN)-divinylbenzene (DVB) copolymers. The study goals were to improve the cycle life and reduce the formation of the passivation layer during the first reduction, thereby minimizing the irreversible-capacity losses. Additives studied were 12-crown-4 (12-Cr-4) ether, decalin, and dilithium phthalocyanine (Li{sub 2}Pc). The carbon performance was characterized by galvanostatic cycling, cyclic voltammetry, and complex-impedance spectroscopy. Limited success was obtained with 12-Cr-4 ether at 0.25 M and decalin at 1 v/o. Poor results were noted with Li{sub 2}Pc at 0.025 M and 0.5 M.

Guidotti, R.A.; Johnson, B.J. [Sandia National Labs., Albuquerque, NM (United States). Battery Development Dept.

1996-12-31T23:59:59.000Z

245

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

246

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

247

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

248

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle The Carbon Cycle The global carbon cycle involves the carbon in and exchanging between the earth's atmosphere, fossil fuels, the oceans, and the vegetation and soils of the earth's terrestrial ecosystems. image Each year, the world's terrestrial ecosystems withdraw carbon from the atmosphere through photosynthesis and add it again through respiration and decay. A more detailed look at the global carbon cycle for the 1990s is shown below. The main annual fluxes in GtC yr-1 are: pre-industrial "natural" fluxes in black and "anthropogenic" fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of

249

Mesoporous carbon materials  

SciTech Connect

The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

Dai, Sheng; Wang, Xiqing

2013-08-20T23:59:59.000Z

250

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

251

Quantum Monte Carlo for vibrating molecules  

SciTech Connect

Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H{sub 2}O and C{sub 3} vibrational states, using 7 PES`s, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H{sub 2}O and C{sub 3}. In order to construct accurate trial wavefunctions for C{sub 3}, the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C{sub 3} the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C{sub 3} PES`s suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies.

Brown, W.R. [Univ. of California, Berkeley, CA (United States). Chemistry Dept.]|[Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

1996-08-01T23:59:59.000Z

252

Would Border Carbon Adjustments prevent carbon leakage and heavy industry  

E-Print Network (OSTI)

No 52-2013 Would Border Carbon Adjustments prevent carbon leakage and heavy industry halshs-00870689,version1-7Oct2013 #12;Would Border Carbon Adjustments prevent carbon leakage and heavy The efficiency of unilateral climate policies may be hampered by carbon leakage and competitiveness losses

Recanati, Catherine

253

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Overview R&D Overview Office of Fossil Energy Justin "Judd" R. Swift Asst. Secretary for International Affairs Office of Fossil Energy U.S. Department of Energy 2 nd U.S/China CO 2 Emission Control Science & Technology Symposium May 28-29, 2008 Hangzhou, China Office of Fossil Energy Technological Carbon Management Options Improve Efficiency Sequester Carbon  Renewables  Nuclear  Fuel Switching  Demand Side  Supply Side  Capture & Store  Enhance Natural Sinks Reduce Carbon Intensity All options needed to:  Affordably meet energy demand  Address environmental objectives Office of Fossil Energy DOE's Sequestration Program Structure Infrastructure Regional Carbon Sequestration

254

Activated carbon material  

DOE Patents (OSTI)

Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

Evans, A. Gary (North Augusta, SC)

1978-01-01T23:59:59.000Z

255

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Cement Production Refineries Etc.... C Capture & Storage, Austin, TX Nov. 13-15, 2007 Carbon Sequestration Program Goals * Deliver technologies & best practices that validate:...

256

Carbon Sequestration - Public Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Meeting Programmatic Environmental Impact Statement Public Meeting May 18, 2004 National Energy Technology Laboratory Office of Fossil Energy Scott Klara Carbon Sequestration Technology Manager Carbon Sequestration Program Overview * What is Carbon Sequestration * The Fossil Energy Situation * Greenhouse Gas Implications * Pathways to Greenhouse Gas Stabilization * Sequestration Program Overview * Program Requirements & Structure * Regional Partnerships * FutureGen * Sources of Information What is Carbon Sequestration? Capture can occur: * at the point of emission * when absorbed from air Storage locations include: * underground reservoirs * dissolved in deep oceans * converted to solid materials * trees, grasses, soils, or algae Capture and storage of CO 2 and other Greenhouse Gases that

257

NETL: Carbon Storage - Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

258

Carbon Capture & Sequestration  

Energy.gov (U.S. Department of Energy (DOE))

Learn about the Energy Department's work to capture and transport CO2 into underground geologic formations, also known as carbon capture and sequestration.

259

Carbon Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel power plants as viable, clean sources of electric power. The program is focused on developing technologies that can achieve 99 percent of carbon dioxide (CO 2 ) storage...

260

Carbon Fiber Electronic Interconnects.  

E-Print Network (OSTI)

??Carbon fiber is an emerging material in electrical and electronics industry. It has been used as contact in many applications, such as switch, potentiometer, and… (more)

Deng, Yuliang

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reinforced Carbon Nanotubes.  

DOE Patents (OSTI)

The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

2005-06-28T23:59:59.000Z

262

Carbon Nanomaterials and Heterostructures  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... This presentation aims to capture those recent research efforts in synthesis and applications of carbon nanotubes in Li-ion battery, bioelectronic ...

263

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Does CCS really make a difference for the environment? Carbon capture and storage (CCS) is one of several options, including the use of renewables, nuclear energy, alternative...

264

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

265

Energy, Carbon-emission and Financial Savings from Thermostat Control  

SciTech Connect

Among the easiest approaches to energy, and cost, savings for most people is the adjustment of thermostats to save energy. Here we estimate savings of energy, carbon, and money in the United States of America (USA) that would result from adjusting thermostats in residential and commercial buildings by about half a degree Celsius downward during the heating season and upward during the cooling season. To obtain as small a unit as possible, and therefore the least likely to be noticeable by most people, we selected an adjustment of one degree Fahrenheit (0.56 degree Celsius) which is the gradation used almost exclusively on thermostats in the USA and is the smallest unit of temperature that has been used historically. Heating and/or cooling of interior building space for personal comfort is sometimes referred to as space conditioning, a term we will use for convenience throughout this work without consideration of humidity. Thermostat adjustment, as we use the term here, applies to thermostats that control the indoor temperature, and not to other thermostats such as those on water heaters. We track emissions of carbon only, rather than of carbon dioxide, because carbon atoms change atomic partners as they move through the carbon cycle, from atmosphere to biosphere or ocean and, on longer time scales, through the rock cycle. To convert a mass of carbon to an equivalent mass of carbon dioxide (thereby including the mass of the 2 oxygen atoms in each molecule) simply multiply by 3.67.

Blasing, T J [ORNL; Schroeder, Dana [University of Georgia, Athens, GA

2013-08-01T23:59:59.000Z

266

Dressed-bound-state molecular strong-field approximation: Application to above-threshold ionization of heteronuclear diatomic molecules  

Science Conference Proceedings (OSTI)

The molecular strong-field approximation (MSFA), which includes dressing of the molecular bound state, is introduced and applied to above-threshold ionization of heteronuclear diatomic molecules. Expressions for the laser-induced molecular dipole and polarizability as functions of the laser parameters (intensity and frequency) and molecular parameters [molecular orientation, dipole, and parallel and perpendicular polarizabilities of the highest occupied molecular orbital (HOMO)] are presented. Our previous MSFA theory, which incorporates the rescattering effects, is generalized from homonuclear to heteronuclear diatomic molecules. Angle- and energy-resolved high-order above-threshold ionization spectra of oriented heteronuclear diatomic molecules, exemplified by the carbon monoxide (CO) molecule, exhibit pronounced minima, which can be related to the shape of their HOMO-electron-density distribution. For the CO molecule we have found an analytical condition for the positions of these minima. We have also shown that the effect of the dressing of the HOMO is twofold: (i) the laser-induced Stark shift decreases the ionization yield and (ii) the laser-induced time-dependent dipole and polarizability change the oscillatory structure of the spectra.

Hasovic, E. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, BA-71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, DE-12489 Berlin (Germany); Busuladzic, M. [Medical Faculty, University of Sarajevo, Cekalusa 90, BA-71000 Sarajevo (Bosnia and Herzegowina); Becker, W. [Max-Born-Institut, Max-Born-Strasse 2a, DE-12489 Berlin (Germany); Milosevic, D. B. [Faculty of Science, University of Sarajevo, Zmaja od Bosne 35, BA-71000 Sarajevo (Bosnia and Herzegowina); Max-Born-Institut, Max-Born-Strasse 2a, DE-12489 Berlin (Germany); Academy of Sciences and Arts of Bosnia and Herzegovina, Bistrik 7, BA-71000 Sarajevo (Bosnia and Herzegowina)

2011-12-15T23:59:59.000Z

267

Carbon-Optimal and Carbon-Neutral Supply Chains  

E-Print Network (OSTI)

Y. Li, M. Daskin. 2009. Carbon Footprint and the ManagementJ. van Houtum. 2011. E?ect of carbon emission regulations onStreamlined Enterprise Carbon Footprinting. Environmental

Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

2011-01-01T23:59:59.000Z

268

Polar molecules near superconducting resonators: a coherent, all-electrical, molecule-mesoscopic interface  

E-Print Network (OSTI)

The challenge of building a scalable quantum processor requires consolidation of the conflicting requirements of achieving coherent control and preservation of quantum coherence in a large scale quantum system. Moreover, the system should be compatible with miniaturization and integration of quantum circuits. Mesoscopic solid state systems such as superconducting islands and quantum dots feature robust control techniques using local electrical signals and self-evident scaling based on advances in fabrication; however, in general the quantum states of solid state devices tend to decohere rapidly. In contrast, quantum optical systems based on trapped ions and neutral atoms exhibit dramatically better coherence properties, while miniaturization of atomic and molecular systems, and their integration with mesoscopic electrical circuits, remains an important challenge. Below we describe methods for the integration of a single particle system -- an isolated polar molecule -- with mesoscopic solid state devices in a way that produces robust, coherent, quantum-level control. The methods described include the trapping, cooling, detection, coherent manipulation and quantum coupling of isolated polar molecules at sub-micron dimensions near cryogenic stripline microwave resonators. We show that electrostatically trapped polar molecules can exhibit strong confinement and fast, purely electrical gate control. Furthermore, the effect of electrical noise sources, a key issue in quantum information processing, can be suppressed to very low levels via appropriate preparation and manipulation of the polar molecules. Our setup provides a scalable cavity QED-type quantum computer architecture, where entanglement of distant qubits stored in long-lived rotational molecular states is achieved via exchange of microwave photons.

A. Andre; D. DeMille; J. M. Doyle; M. D. Lukin; S. E. Maxwell; P. Rabl; R. Schoelkopf; P. Zoller

2006-05-23T23:59:59.000Z

269

Lead carbonate scintillator materials  

DOE Patents (OSTI)

Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

1991-01-01T23:59:59.000Z

270

Metastable Helium Molecules as Tracers in Superfluid {sup 4}He  

SciTech Connect

Metastable helium molecules generated in a discharge near a sharp tungsten tip immersed in superfluid {sup 4}He are imaged using a laser-induced-fluorescence technique. By pulsing the tip, a small cloud of He{sub 2}* molecules is produced. We can determine the normal-fluid velocity in a heat-induced counterflow by tracing the position of a single molecule cloud. As we run the tip in continuous field-emission mode, a normal-fluid jet from the tip is generated and molecules are entrained in the jet. A focused 910 nm pump laser pulse is used to drive a small group of molecules to the first excited vibrational level of the triplet ground state. Subsequent imaging of the tagged molecules with an expanded 925 nm probe laser pulse allows us to measure the flow velocity of the jet. The techniques we developed provide new tools in quantitatively studying the normal fluid flow in superfluid helium.

Guo, W.; Wright, J. D.; Cahn, S. B.; Nikkel, J. A.; McKinsey, D. N. [Physics Department, Yale University, New Haven, Connecticut 06515 (United States)

2009-06-12T23:59:59.000Z

271

Carbon Films Produced from Ionic Liquid Carbon Precursors ...  

The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ...

272

Carbon ion pump for removal of carbon dioxide from combustion ...  

Biomass and Biofuels; Building Energy Efficiency; ... Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures United States Patent ...

273

Fiber Bridging Model for Reinforced-Carbon-Carbon  

Science Conference Proceedings (OSTI)

Symposium, Professor K. K. Chawla Honorary Symposium on Fibers, Foams and ... fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (

274

Stabilization and carbonization studies of polyacrylonitrile /carbon nanotube composite fibers .  

E-Print Network (OSTI)

??Carbon fibers contain more than 90 wt. % carbon. They have low density, high specific strength and modulus, and good temperature and chemical resistance. Therefore,… (more)

Liu, Yaodong

2010-01-01T23:59:59.000Z

275

Novel method for carbon nanofilament growth on carbon fibers.  

E-Print Network (OSTI)

??Carbon nanofilaments were grown on the surface of microscale carbon-fibers at relatively low temperature using palladium as a catalyst to create multiscale fiber reinforcing structures… (more)

Garcia, Daniel

2009-01-01T23:59:59.000Z

276

Synthesis of Carbon-Carbon Composite via Infiltration Process of ...  

Science Conference Proceedings (OSTI)

The carbon frame was first pyrolyzed from the wood template. The final composites were then obtained by infiltrating molten coal tar pitch into the carbon frame ...

277

Carbon-free generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon-free generation Carbon-free generation Carbon-free central generation of electricity, either through fossil fuel combustion with carbon dioxide capture and storage or development of renewable sources such as solar, wind, and/or nuclear power, is key to our future energy portfolio. Brookhaven also provides tools and techniques for studying geological carbon dioxide sequestration and analyzing safety issues for nuclear systems. Our nation faces grand challenges: finding alternative and cleaner energy sources and improving efficiency to meet our exponentially growing energy needs. Researchers at Brookhaven National Laboratory are poised to meet these challenges with basic and applied research programs aimed at advancing the effective use of renewable energy through improved conversion,

278

2013 Global Carbon Project  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Global Carbon Project 2013 Global Carbon Project DOI: 10.3334/CDIAC/GCP_2013_V1.1 image 2013 Budget v1.1 (November 2013) image 2013 Budget v1.3 (December 2013, contains typographical corrections to 2011 Australia emissions from v1.1 and corrections to the 2011 Australia transfer and consumption emissions from v1.2) image image image image Global Carbon Dioxide Emissions to Reach 36 Billion Tonnes in 2013 Global emissions of carbon dioxide from the combustion of fossil fuels will reach 36 billion tonnes for the year 2013. "This is a level unprecedented in human history," says CSIRO's Dr Pep Canadell, Executive-Director of the Global Carbon Project (GCP) and co-author of a new report. Global emissions due to fossil fuel alone are set to grow this year at a slightly lower pace of 2.1% than the average 3.1% since 2000, reaching 36

279

Extrasolar Carbon Planets  

E-Print Network (OSTI)

We suggest that some extrasolar planets carbon compounds. Pulsar planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk's C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune-mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures.

Marc J. Kuchner; S. Seager

2005-04-08T23:59:59.000Z

280

carbon | OpenEI Community  

Open Energy Info (EERE)

carbon Home Graham7781's picture Submitted by Graham7781(2002) Super contributor 9 January, 2014 - 13:12 Suburbs offset Low Carbon Footprint of major U.S. Cities carbon cities CO2...

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nonlinearity of Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Coupled climate–carbon models have shown the potential for large feedbacks between climate change, atmospheric CO2 concentrations, and global carbon sinks. Standard metrics of this feedback assume that the response of land and ocean carbon uptake ...

Kirsten Zickfeld; Michael Eby; H. Damon Matthews; Andreas Schmittner; Andrew J. Weaver

2011-08-01T23:59:59.000Z

282

Quantum Monte Carlo for atoms and molecules  

DOE Green Energy (OSTI)

The diffusion quantum Monte Carlo with fixed nodes (QMC) approach has been employed in studying energy-eigenstates for 1--4 electron systems. Previous work employing the diffusion QMC technique yielded energies of high quality for H{sub 2}, LiH, Li{sub 2}, and H{sub 2}O. Here, the range of calculations with this new approach has been extended to include additional first-row atoms and molecules. In addition, improvements in the previously computed fixed-node energies of LiH, Li{sub 2}, and H{sub 2}O have been obtained using more accurate trial functions. All computations were performed within, but are not limited to, the Born-Oppenheimer approximation. In our computations, the effects of variation of Monte Carlo parameters on the QMC solution of the Schroedinger equation were studied extensively. These parameters include the time step, renormalization time and nodal structure. These studies have been very useful in determining which choices of such parameters will yield accurate QMC energies most efficiently. Generally, very accurate energies (90--100% of the correlation energy is obtained) have been computed with single-determinant trail functions multiplied by simple correlation functions. Improvements in accuracy should be readily obtained using more complex trial functions.

Barnett, R.N.

1989-11-01T23:59:59.000Z

283

Geometrical terms in the effective Hamiltonian for rotor molecules  

E-Print Network (OSTI)

An analogy between asymmetric rotor molecules and anisotropic cosmology can be used to calculate new centrifugal distortion terms in the effective potential of asymmetric rotor molecules which have no internal 3-fold symmetry. The torsional potential picks up extra $\\cos\\alpha$ and $\\cos2\\alpha$ contributions, which are comparable to corrections to the momentum terms in methanol and other rotor molecules with isotope replacements.

Moss, Ian G

2013-01-01T23:59:59.000Z

284

Geometrical terms in the effective Hamiltonian for rotor molecules  

E-Print Network (OSTI)

An analogy between asymmetric rotor molecules and anisotropic cosmology can be used to calculate new centrifugal distortion terms in the effective potential of asymmetric rotor molecules which have no internal 3-fold symmetry. The torsional potential picks up extra $\\cos\\alpha$ and $\\cos2\\alpha$ contributions, which are comparable to corrections to the momentum terms in methanol and other rotor molecules with isotope replacements.

Ian G. Moss

2013-03-25T23:59:59.000Z

285

Molecule Nanoweaver Creates High-Tech Medical Patches  

closely to ensure that fabrication is done correctly. For example, the Molecule Nanoweaver could be used to optimize and produce a heart muscle ...

286

Nanopost Arrays Anchor Molecules, Improve Ion Yields for Laser ...  

Biomass and Biofuels ... mirrors, or a sharpened optical fiber are used to direct the laser radiation at the posts and the target molecules.

287

'Micro-boxes' of Water Used to Study Single Molecules  

Science Conference Proceedings (OSTI)

... tweezers to move droplets together to fuse them and mix their contents ... dye and protein molecules, and observing the transfer of energy from one ...

2013-08-08T23:59:59.000Z

288

Sequencing single molecules using surface-enhanced Raman ...  

Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; ... Events; Sequencing single molecules using surface-enhanced Raman ...

289

Unpeeling Atoms and Molecules from the Inside Out | Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

under Extreme Pressure Quick-Change Molecules Caught in the Act The Molecular Mechanics of Hearing and Deafness Cementing the Structure of CSHs Science Highlights Archives:...

290

Nanopost Arrays Anchor Molecules, Improve Ion Yields for Laser ...  

ORNL 2011-G00228/jcn UT-B ID 200902284 09.2011 Nanopost Arrays Anchor Molecules, Improve Ion Yields for Laser Mass Spectrometry Technology Summary

291

Researchers use light to create rare uranium molecule  

NLE Websites -- All DOE Office Websites (Extended Search)

to create rare uranium molecule Uranium nitride materials show promise as advanced nuclear fuels due to their high density, high stability, and high thermal conductivity. July...

292

Imaging individual mRNA molecules using multiple  

E-Print Network (OSTI)

at their 3¢ termini to detect individual mRNA molecules. We constructed a doxycycline-controlled gene GFP 3

van Oudenaarden, Alexander

293

Microfluidic systems for continuous crystallization of small organic molecules  

E-Print Network (OSTI)

This thesis presents one of the first demonstrations of continuous crystallization in microfluidic devices, and illustrates their use for various applications related to crystallization of small organic molecules. ...

Sultana, Mahmooda

2010-01-01T23:59:59.000Z

294

Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnership Presented to: Regional Carbon Sequestration Partnerships Annual Review Meeting Development Phase Field Tests Pittsburgh, PA October 5, 2010...

295

Nanostructured Carbide Derived Carbon (CDC)  

... can be grown at rates up to 100 micrometers per hour and is composed of graphite, diamond, amorphous carbon and carbon "nano-onions" ...

296

Microfluidic Analysis for Carbon Management.  

E-Print Network (OSTI)

??This thesis focuses on applying microfluidic techniques to analyze two carbon management methods; underground carbon sequestration and enhanced oil recovery. The small scale nature of… (more)

Sell, Andrew

2012-01-01T23:59:59.000Z

297

Carbon International | Open Energy Information  

Open Energy Info (EERE)

International Place London, United Kingdom Zip NW1 8LH Sector Carbon Product London-based energy and communications agency specialising in low carbon energy and climate change....

298

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

the process through which carbon is cycled through the air, ground, plants, animals, and fossil fuels. People and animals inhale oxygen from the air and exhale carbon dioxide...

299

Carbon Trust | Open Energy Information  

Open Energy Info (EERE)

company funded by the UK government to help business and the public sector cut carbon emissions and capture the commercial potential of low carbon technologies....

300

Carbon Capture Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

IMPACCT: Carbon Capture Technology  

Science Conference Proceedings (OSTI)

IMPACCT Project: IMPACCT’s 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for “Innovative Materials and Processes for Advanced Carbon Capture Technologies,” the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

None

2012-01-01T23:59:59.000Z

302

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able

303

International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10)  

E-Print Network (OSTI)

International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10) 15 - 17th Since the discovery of the carbon nanotube (CNT) about two decades ago, research related to its of Materials and Process Engineering Kanpur Chapter hosted the `International Conference on Carbon

Srivastava, Kumar Vaibhav

304

Baseline Carbon Storage, Carbon Sequestration, and Greenhouse-Gas  

E-Print Network (OSTI)

Baseline Carbon Storage, Carbon Sequestration, and Greenhouse-Gas Fluxes in Terrestrial Ecosystems, and Benjamin M. Sleeter Chapter 5 of Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes, carbon sequestration, and greenhouse-gas fluxes in terrestrial ecosystems of the Western United States

Fleskes, Joe

305

Reduction of carbon dioxide emissions by mineral carbonation  

Science Conference Proceedings (OSTI)

The study investigates the technologies that have the potential to provide feasible reduction of carbon dioxide (CO2) from a reference power plant. Particular focus has been given to mineral carbonation (at 1 bar) in which magnesium (Mg) and/or ... Keywords: carbon dioxide, emissions, mineral carbonation

C. J. Sturgeon; M. G. Rasul; Ashfaque Ahmed Chowdhury

2010-02-01T23:59:59.000Z

306

An atom---molecule platform for quantum computing  

Science Conference Proceedings (OSTI)

We propose a combined atom---molecule system for quantum information processing in individual traps, such as provided by optical lattices. In this platform, different species of atoms--one atom carrying a qubit and the other enabling the interaction--are ... Keywords: Dipole-dipole interaction, Neutral atom quantum computing, Optical lattices, Polar molecules

Elena Kuznetsova; S. F. Yelin; Robin Côté

2011-12-01T23:59:59.000Z

307

Supplementary Material Free energy recovery in single molecule experiments  

E-Print Network (OSTI)

Supplementary Material Free energy recovery in single molecule experiments Single molecule force measurements (experimental setup shown in Fig. S1) can be used to determine free-energy differences between the unfolding process and using the thermodynamic relation revWG = , we can estimate the RNA folding free energy

Ritort, Felix

308

Supplementary Note Contributions of low molecule number and chromosomal positioning  

E-Print Network (OSTI)

of active rtTA. The concentration i denotes the relative doxycycline concentration, so that i=1 if all rtTA molecules are in the active form. i=0 (doxycycline is absent) if all rtTA molecules are inactive. The rate b denotes the basal expression rate at the tetO7 promoter. The rate s involves fast reactions (doxycycline

van Oudenaarden, Alexander

309

Reaction Mechanisms for the Limited Reversibility of Li-O2 Chemistry in Organic Carbonate Electrolytes  

SciTech Connect

The Li-O2 chemistry in nonaqueous carbonate electrolytes and the underneath reason of its limited reversibility was exhaustively investigated. The discharge products collected from the air cathode in a Li-O2 battery at different depth of discharge (DOD) were systematically analyzed with X-ray diffraction. It is revealed that, independent of the discharge depth, lithium alkylcarbonate (either lithium propylenedicarbonate - LPDC, or lithium ethylenedicarbonate - LEDC, with other related derivatives) and lithium carbonate (Li2CO3) are always the main products, obviously originated from the electrolyte solvents propylene carbonate (PC) and ethylene carbonate (EC). These lithium alkylcarbonates are obviously generated from the single-electron reductive decomposition of the corresponding carbonate solvents initiated by the attack of superoxide radical anions. On the other hand, neither lithium peroxide (Li2O2) nor lithium oxide (Li2O) is detected. More significantly, from in situ gas chromatography/mass spectroscopy it is found that Li2CO3 and Li2O cannot be oxidized even when charged up to 4.6 V vs. Li/Li+, while LPDC, LEDC and Li2O2 are readily able to, with CO2 and CO released with the re-oxidation of LPDC and LEDC. It is therefore concluded that the quasi-reversibility of Li-O2 chemistry observed hitherto in an organic carbonate-based electrolyte is actually reliant on the formation of lithium alkylcarbonates through the reductive decomposition of carbonate solvents during discharge process and the subsequent oxidation of these same alkylcarbonates during charge process. It is the poor oxidizability of these alkylcarbonate species that constitutes the obstruction to an ideal rechargeable Li-O2 battery.

Xu, Wu; Xu, Kang; Viswanathan, Vilayanur V.; Towne, Silas A.; Hardy, John S.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Wang, Deyu; Zhang, Jiguang

2011-11-15T23:59:59.000Z

310

Carbon nanotubes : synthesis, characterization, and applications  

E-Print Network (OSTI)

of graphitized carbon fibers. Carbon, 1976. 14 (2): p. 133-chemical vapor deposited carbon fiber. Carbon, 2001. 39 : p.G.G. , Lengths of Carbon Fibers Grown from Iron Catalyst

Deck, Christian Peter

2009-01-01T23:59:59.000Z

311

CYCLIC CARBON DIOXIDE STIMULATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CARBON DIOXIDE STIMULATION ("Huff-and-Puff') (A well-stimulation method) Cyclic CO 2 stimulation is a single-well operation that is developing as a method of rapidly producing oil....

312

Regional Carbon Sequestration Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Carbon Sequestration Partnerships Review Meeting October 12-14, 2005 Table of Contents Agenda PDF-1438KB Phase I Program Review Meeting Phase II Kick-Off Meeting Phase...

313

SRD 134 Carbon Dioxide  

Science Conference Proceedings (OSTI)

> Return to SRD 134, Index of Semiconductor Process Gases. CARBON DIOXIDE. MW [1]. 44.010. NBP [1]. 194.75 K. TP [1]. 216.59 K. CO 2. Pc [1]. ...

2012-07-27T23:59:59.000Z

314

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

315

Carbon Capture Pilots (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealth’s utilities, the Electric Power Research Institute, the Center for...

316

Carbon nanotube zoom lenses  

Science Conference Proceedings (OSTI)

We show that convergent or divergent zoom lenses with focal length variations up to approximately 100% can be implemented by growing arrays of carbon nanotubes (CNTs) on curved templates. Unique lenses, which can change their character from divergent ...

D. Dragoman; M. Dragoman

2003-06-01T23:59:59.000Z

317

Carbon Dioxide Capture by Absorption with Potassium Carbonate  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture by Absorption Carbon Dioxide Capture by Absorption with Potassium Carbonate Background Although alkanolamine solvents, such as monoethanolamine (MEA), and solvent blends have been developed as commercially-viable options for the absorption of carbon dioxide (CO 2 ) from waste gases, natural gas, and hydrogen streams, further process improvements are required to cost-effectively capture CO 2 from power plant flue gas. The promotion of potassium carbonate (K

318

Carbon Nanofibers for Intracellular Manipulation  

Carbon Nanofibers for Intracellular Manipulation Tim McKnight CM: Greg Flickinger. Presenter: John Morris

319

Research Report Forests and carbon  

E-Print Network (OSTI)

Research Report Forests and carbon: a review of additionality #12;#12;Forests and carbon: a review. ISBN 978-0-85538-816-4 Valatin, G. (2011). Forests and carbon: a review of additionality. Forestry, baseline, carbon, climate change mitigation, forestry, quality assurance, sequestration. FCRP013/FC

320

Method for synthesizing carbon nanotubes  

Science Conference Proceedings (OSTI)

A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

Fan, Hongyou

2012-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Black Carbon’s Properties and Role in the Environment: A Comprehensive Review  

E-Print Network (OSTI)

Keywords: soil carbon sequestration; carbon budget;of an energy efficient carbon sequestration mechanism, asin the later section on carbon sequestration. In atmospheric

Shrestha, Gyami

2010-01-01T23:59:59.000Z

322

Electrocatalytic reduction of carbon dioxide to carbon monoxide by rhenium and manganese polypyridyl catalysts  

E-Print Network (OSTI)

for reduction of carbon dioxide. IR-SpectroelectrochemicalElectrocatalytic reduction of carbon dioxide mediated by Re(Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (

Smieja, Jonathan Mark

2012-01-01T23:59:59.000Z

323

Reinvestigation on the state-of-the-art nonaqueous carbonate electrolytes for 5 V Li-ion battery applications  

SciTech Connect

The charging voltage limits of mixed carbonate solvents for Li-ion batteries have been systematically investigated from 4.9 to 5.3 V in half cells using Cr-doped spinel cathode material LiNi0.45Cr0.05Mn1.5O4. We found that the stability of conventional carbonate electrolytes is strongly related to the stability and properties of the cathode materials at both lithiated and de-lithiated states. It is the first time to report that the conventional electrolytes based on mixtures of ethylene carbonate (EC) and linear carbonate (dimethyl carbonate - DMC, ethyl methyl carbonate - EMC, and diethyl carbonate - DEC) have shown very similar long-term cycling performance when cycled up to 5.2 V on LiNi0.45Cr0.05Mn1.5O4. The discharge capacity increases with the charge cutoff voltage and reaches the highest discharge capacity at 5.2 V. The capacity retention is about 87% after 500 cycles at 1C rate for all three carbonate mixtures when cycled between 3.0 V and 5.2V. The first-cycle efficiency has a maximum value at 5.1 V, with an average from 83% to 85% at C/10 rate. When cycled to 5.3 V, EC-DMC still shows good cycling performance but EC-EMC and EC-DEC show faster capacity fading. EC-DMC and EC-EMC have much better rate capability than EC-DEC. In addition, the first-cycle irreversible capacity loss increases with the cutoff voltage and the 'inactive' conductive carbon has also been found to be partly associated with the low first-cycle Coulombic efficiency at high voltages due to electrolyte decomposition and probably the PF6- anion irreversible intercalation.

Xu, Wu; Chen, Xilin; Ding, Fei; Xiao, Jie; Wang, Deyu; Pan, Anqiang; Zheng, Jianming; Li, Xiaohong S.; Padmaperuma, Asanga B.; Zhang, Jiguang

2012-09-01T23:59:59.000Z

324

ANALYTIC APPROXIMATION OF CARBON CONDENSATION ISSUES IN TYPE II SUPERNOVAE  

SciTech Connect

I present analytic approximations for some issues related to condensation of graphite, TiC, and silicon carbide in oxygen-rich cores of supernovae of Type II. Increased understanding, which mathematical analysis can support, renders researchers more receptive to condensation in O-rich supernova gases. Taking SN 1987A as typical, my first analysis shows why the abundance of CO molecules reaches an early maximum in which free carbon remains more abundant than CO. This analysis clarifies why O-rich gas cannot oxidize C if {sup 56}Co radioactivity is as strong as in SN 1987A. My next analysis shows that the CO abundance could be regarded as being in chemical equilibrium if the CO molecule is given an effective binding energy rather than its laboratory dissociation energy. The effective binding energy makes the thermal dissociation rate of CO equal to its radioactive dissociation rate. This preserves possible relevance for the concept of chemical equilibrium. My next analysis shows that the observed abundances of CO and SiO molecules in SN 1987A rule out frequent suggestions that equilibrium condensation of SUNOCONs has occurred following atomic mixing of the He-burning shell with more central zones in such a way as to reproduce roughly the observed spectrum of isotopes in SUNOCONs while preserving C/O > 1. He atoms admixed along with the excess carbon would destroy CO and SiO molecules, leaving their observed abundances unexplained. The final analysis argues that a chemical quasiequilibrium among grains (but not gas) may exist approximately during condensation, so that its computational use is partially justified as a guide to which mineral phases would be stable against reactions with gas. I illustrate this point with quasiequilibrium calculations by Ebel and Grossman that have shown that graphite is stable even when O/C >1 if prominent molecules are justifiably excluded from the calculation of chemical equilibrium.

Clayton, Donald D., E-mail: claydonald@gmail.com [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States)

2013-01-01T23:59:59.000Z

325

Measurement of carbon capture efficiency and stored carbon leakage  

DOE Patents (OSTI)

Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

Keeling, Ralph F.; Dubey, Manvendra K.

2013-01-29T23:59:59.000Z

326

Electron capture in ion-molecule collisions at intermediate energy  

DOE Green Energy (OSTI)

Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs.

Kumura, M.

1986-01-01T23:59:59.000Z

327

NETL: Carbon Storage - Big Sky Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

BSCSP BSCSP Carbon Storage Big Sky Carbon Sequestration Partnership MORE INFO Additional information related to ongoing BSCSP efforts can be found on their website. The Big Sky Carbon Sequestration Partnership (BSCSP) is led by Montana State University-Bozeman and represents a coalition of more than 60 organizations including universities, national laboratories, private companies, state agencies, Native American tribes, and international collaborators. The partners are engaged in several aspects of BSCSP projects and contribute to the efforts to deploy carbon storage projects in the BSCSP region. The BSCSP region encompasses Montana, Wyoming, Idaho, South Dakota, and eastern Washington and Oregon. BSCSP Big Sky Carbon Sequestration Partnership Region Big Sky Carbon Sequestration Partnership Region

328

Chemically modified carbonic anhydrases useful in carbon capture systems  

Science Conference Proceedings (OSTI)

The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

Novick, Scott J; Alvizo, Oscar

2013-10-29T23:59:59.000Z

329

Carbon fuel particles used in direct carbon conversion fuel cells  

SciTech Connect

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F.; Cherepy, Nerine

2012-10-09T23:59:59.000Z

330

Carbon fuel particles used in direct carbon conversion fuel cells  

SciTech Connect

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

2012-01-24T23:59:59.000Z

331

Carbon fuel particles used in direct carbon conversion fuel cells  

Science Conference Proceedings (OSTI)

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

2011-08-16T23:59:59.000Z

332

Chemically modified carbonic anhydrases useful in carbon capture systems  

DOE Patents (OSTI)

The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

Novick, Scott; Alvizo, Oscar

2013-01-15T23:59:59.000Z

333

Extrasolar Carbon Planets  

E-Print Network (OSTI)

We suggest that some extrasolar planets ? 60 M ? will form substantially from silicon carbide and other carbon compounds. Pulsar planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk’s C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptunemass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures. Subject headings: astrobiology — planets and satellites, individual (Mercury, Jupiter) — planetary systems: formation — pulsars, individual (PSR 1257+12)

Marc J. Kuchner; S. Seager

2005-01-01T23:59:59.000Z

334

WESTCARB Carbon Atlas  

DOE Data Explorer (OSTI)

WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas (NATCARB). (Acknowledgement to the WESTCARB web site at http://www.westcarb.org/index.htm)

335

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

is carbon dioxide? is carbon dioxide? CO2 Dipole Carbon Dioxide Carbon dioxide (chemical name CO2) is a clear gas composed of one atom of carbon (C) and two atoms of oxygen (O). Carbon dioxide is one of many chemical forms of carbon on the Earth. It does not burn, and in standard temperature and pressure conditions it is stable, inert, and non-toxic. Carbon dioxide occurs naturally in small amounts (about 0.04%) in the Earth's atmosphere. The volume of CO2 in the atmosphere is equivalent to one individual in a crowd of 2,500. Carbon dioxide is produced naturally by processes deep within the Earth. This CO2 can be released at the surface by volcanoes or might be trapped in natural underground geologic CO2 deposits, similar to underground deposits of oil and natural gas. As a major greenhouse gas, CO2 helps create and

336

Hydrogenation of Acetylene-Ethylene Mixtures over Pd and Pd-Ag Alloys: First-Principles Based Kinetic Monte Carlo Simulations  

DOE Green Energy (OSTI)

The kinetics for the selective hydrogenation of acetylene-ethylene mixtures over model Pd(111) and bimetallic Pd-Ag alloy surfaces were examined using first principles based kinetic Monte Carlo (KMC) simulations to elucidate the effects of alloying as well as process conditions (temperature and hydrogen partial pressure). The mechanisms that control the selective and unselective routes which included hydrogenation, dehydrogenation and C-?C bond breaking pathways were analyzed using first-principle density functional theory (DFT) calculations. The results were used to construct an intrinsic kinetic database that was used in a variable time step kinetic Monte Carlo simulation to follow the kinetics and the molecular transformations in the selective hydrogenation of acetylene-ethylene feeds over Pd and Pd-Ag surfaces. The lateral interactions between coadsorbates that occur through-surface and through-space were estimated using DFT-parameterized bond order conservation and van der Waal interaction models respectively. The simulation results show that the rate of acetylene hydrogenation as well as the ethylene selectivity increase with temperature over both the Pd(111) and the Pd-Ag/Pd(111) alloy surfaces. The selective hydrogenation of acetylene to ethylene proceeds via the formation of a vinyl intermediate. The unselective formation of ethane is the result of the over-hydrogenation of ethylene as well as over-hydrogenation of vinyl to form ethylidene. Ethylidene further hydrogenates to form ethane and dehydrogenates to form ethylidyne. While ethylidyne is not reactive, it can block adsorption sites which limit the availability of hydrogen on the surface and thus act to enhance the selectivity. Alloying Ag into the Pd surface decreases the overall rated but increases the ethylene selectivity significantly by promoting the selective hydrogenation of vinyl to ethylene and concomitantly suppressing the unselective path involving the hydrogenation of vinyl to ethylidene and the dehydrogenation ethylidene to ethylidyne. This is consistent with experimental results which suggest only the predominant hydrogenation path involving the sequential addition of hydrogen to form vinyl and ethylene exists over the Pd-Ag alloys. Ag enhances the desorption of ethylene and hydrogen from the surface thus limiting their ability to undergo subsequent reactions. The simulated apparent activation barriers were calculated to be 32-44 kJ/mol on Pd(111) and 26-31 kJ/mol on Pd-Ag/Pd(111) respectively. The reaction was found to be essentially first order in hydrogen over Pd(111) and Pd-Ag/Pd(111) surfaces. The results reveal that increases in the hydrogen partial pressure increase the activity but decrease ethylene selectivity over both Pd and Pd-Ag/Pd(111) surfaces. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

Mei, Donghai; Neurock, Matthew; Smith, C Michael

2009-10-22T23:59:59.000Z

337

In-Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering  

Science Conference Proceedings (OSTI)

The aim of this work was to better understand the electrochemical processes occurring during the cycling of a lithium-ion half-cell containing ordered mesoporous hard carbon using time-resolved in situ small-angle neutron scattering (SANS). Utilizing electrolytes containing mixtures of deuterated (2H) and non-deuterated (1H) carbonates, we have addressed the challenging task of monitoring the formation and evolution of the solid-electrolyte interphase (SEI) layer. An evolution occurs in the SEI layer during discharge from a composition dominated by a higher scattering length density (SLD) lithium salt, to a lower SLD lithium salt for the ethylene carbonate/dimethyl carbonate (EC/DMC) mixture employed. By comparing half-cells containing different solvent deuteration levels, we show that it is possible to observe both SEI formation and lithium intercalation occurring concurrently at the low voltage region in which lithium intercalates into the hard carbon. These results demonstrate that SANS can be employed to monitor complicated electrochemical processes occurring in rechargeable batteries, in a manner that simultaneously provides information on the composition and microstructure of the electrode.

Bridges, Craig A [ORNL; Paranthaman, Mariappan Parans [ORNL; Sun, Xiao-Guang [ORNL; Zhao, Jinkui [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

338

Gas processing/The boiling behavior of LPG and liquid ethane, ethylene, propane, and n-butane spilled on water  

SciTech Connect

Boiling-rate calorimeter studies showed that unlike liquid nitrogen, methane, and LNG, LPG (84.7% propane, 6.0% ethane, and 9.3% n-butane; 442/sup 0/C bp), or pure propane, when rapidly spilled on water, reacted violently, ejecting water and ice into the vapor space; but in 1-2 sec, a coherent ice layer was formed and further boiloff was quiet and well predicted by a simple one-dimensional, moving-boundary-value, heat transfer model with a growing ice shield. Increasing the content of ethane and butane in LPG to 20% and 10%, respectively, had almost no effect on the LPG boiling, indicating that boiling may be modeled by using pure propane. Ethane, ethylene, and n-butane behaved quite differently from LPG. In spills of pure liquid propane on solid ice, the boiloff rate was almost identical to that predicted by the moving-boundary model.

Reid, R.C.; Smith, K.A.

1978-04-01T23:59:59.000Z

339

Optomechanics with molecules in a strongly pumped ring cavity  

E-Print Network (OSTI)

Cavity cooling of an atom works best on a cyclic optical transition in the strong coupling regime near resonance, where small cavity photon numbers suffice for trapping and cooling. Due to the absence of closed transitions a straightforward application to molecules fails: optical pumping can lead the particle into uncoupled states. An alternative operation in the far off-resonant regime generates only very slow cooling due to the reduced field-molecule coupling. We predict to overcome this by using a strongly driven ring-cavity operated in the sideband cooling regime. As in the optomechanical setups one takes advantage of a collectively enhanced field-molecule coupling strength using a large photon number. A linearized analytical treatment confirmed by full numerical quantum simulations predicts fast cooling despite the off-resonant small single molecule - single photon coupling. Even ground state cooling can be obtained by tuning the cavity field close to the Anti-stokes sideband for sufficiently high trappi...

Schulze, R J; Ritsch, H

2010-01-01T23:59:59.000Z

340

Exploring the mechanome with optical tweezers and single molecule fluorescence  

E-Print Network (OSTI)

The combination of optical tweezers and single molecule fluorescence into an instrument capable of making combined, coincident measurements adds an observable dimension that allows for the examination of the localized ...

Brau, Ricardo R. (Ricardo Rafael), 1979-

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Estimation method for the thermochemical properties of polycyclic aromatic molecules  

E-Print Network (OSTI)

Polycyclic aromatic molecules, including polycyclic aromatic hydrocarbons (PAHs) have attracted considerable attention in the past few decades. They are formed during the incomplete combustion of hydrocarbon fuels and are ...

Yu, Joanna

2005-01-01T23:59:59.000Z

342

The Dance of Atoms in Molecules Captured in Ultrafast Time |...  

Office of Science (SC) Website

vibrating in a molecule have been captured using a technique called laser-induced electron diffraction. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge...

343

Understanding Enzyme Activity Using Single Molecule Tracking (Poster)  

DOE Green Energy (OSTI)

This poster describes single-molecule tracking and total internal reflection fluorescence microscopy. It discusses whether the carbohydrate-binding module (CBM) moves on cellulose, how the CBM binds to cellulose, and the mechanism of cellulosome assembly.

Liu, Y.-S.; Zeng, Y.; Luo, Y.; Xu, Q.; Himmel, M.; Smith S.; Wei, H.; Ding, S.-Y.

2009-06-01T23:59:59.000Z

344

Success Stories: Carbon Explorer  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL Device Monitors Ocean Carbon LBNL Device Monitors Ocean Carbon Imagine waking up each morning and discovering that twenty percent of all plants in your garden had disappeared over night. They had been eaten. Equally astonishing would be the discovery in the afternoon that new plants had taken their place. This is the norm of life in the ocean. Without the ability to accurately observe these daily changes in ocean life cycles, over vast spatial scales, we lack the ability to predict how the ocean will respond to rising CO2 levels, crippling our ability to develop accurate models of global warming or devise strategies to prevent it. The Carbon Explorer, conceived by Berkeley Lab's James K. Bishop in collaboration with Scripps Institution of Oceanography (La Jolla, California) and WET labs, Inc. (Philomath, Oregon), bridges this

345

BNL | Carbon Cycle Science  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle Science & Technology Group aims to increase understanding The Carbon Cycle Science & Technology Group aims to increase understanding of the impacts of global change on managed and unmanaged ecosystems and improve knowledge of possible global change mitigation approaches. The group has three main focus areas. FACE Climate Change Experimental Facility Design and Management The CCS&T group is an internationally recognized leader in the development of Free Air CO2 Enrichment (FACE) research facilities. We are interested in the design and management of manipulative experiments that examine the effects of carbon dioxide, ozone, other atmospheric pollutants, temperature and precipitation on natural and managed ecosystems. FACE Plant Physiology and High Throughput Biochemical Phenotyping At FACE facilities we have studied the mechanisms that underlie the

346

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Perspectives on Carbon Capture and Storage Perspectives on Carbon Capture and Storage - Directions, Challenges, and Opportunities Thomas J. Feeley, III National Energy Technology Laboratory Carbon Capture and Storage November 13-15, 2007 Austin, Texas C Capture & Storage, Austin, TX Nov. 13-15, 2007 U.S. Fossil Fuel Reserves / Production Ratio 250+ Year Supply at Current Demand Levels ! 258 11.7 9.7 0 100 200 300 Coal Oil Natural Gas Anthracite & Bituminous Sub- Bituminous & Lignite Sources: BP Statistical Review, June 2004, - for coal reserves data - World Energy Council; EIA, Advance Summary U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 2003 Annual Report, September 22, 2004 - for oil and gas reserves data. C Capture & Storage, Austin, TX Nov. 13-15, 2007 80 120 160 200 240 1970 1975 1980

347

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Options in the Illinois Basin - Phase III DE-FC26-05NT42588 Robert J. Finley and the MGSC Project Team Illinois State Geological Survey (University of Illinois) and Schlumberger Carbon Services U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 * The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal

348

RMOTC - Testing - Carbon Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Management Carbon Management Ten Sleep Time Structure, 2nd Wall Creek Formation at RMOTC Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC has the field setting, infrastructure, and expertise to play an important role in carbon management testing, demonstration, and research. The unique combination of a publicly-owned and DOE-operated oil field,

349

Carbon-particle generator  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, A.J.

1982-09-29T23:59:59.000Z

350

Carbon Materials Breakout Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Breakout Group Process Materials Breakout Group Process * Day 2, Thursday - Review results of Day 1 and modify if needed - Identify critical R&D needs - Outline R&D plan with key milestones - Report results to plenary Carbon Materials Breakout Group * Key Results - Target: get the science right to engineer carbon materials for hydrogen storage * Integrate theory, experiment, engineering * Understand mechanisms, effects, and interactions ranging from physisorption to chemisorption - Theory * Provide "directional" guidance for experiments (and vice- versa) * Provide baseline theory to elucidate parameters affecting the number and type of binding sites and the heat of their interaction with H2 (∆H ) for a broad range of (highly) modified carbon materials

351

Studying DNA translocation in nanocapillaries using single molecule fluorescence  

E-Print Network (OSTI)

We demonstrate simultaneous measurements of DNA translocation into glass nanopores using ionic current detection and fluorescent imaging. We verify the correspondence between the passage of a single DNA molecule through the nanopore and the accompanying characteristic ionic current blockage. By tracking the motion of individual DNA molecules in the nanocapillary perpendicular to the optical axis and using a model, we can extract an effective mobility constant for DNA in our geometry under high electric fields.

Thacker, Vivek V; Hernández-Ainsa, Silvia; Bell, Nicholas A W; Keyser, Ulrich F; 10.1063/1.4768929

2013-01-01T23:59:59.000Z

352

Carbon microstructures for electrochemical studies  

DOE Green Energy (OSTI)

Thin layers of photoresist were spin coated onto silicon wafers, and then carbonized to form smooth carbon films by heating in nitrogen for 1 hour at temperatures between 600 to 1100 C. Well-defined carbon microstructures on Si wafers that are being considered for electrodes in a microbattery concept were obtained by additional processing steps involving patterning and lithography of the photoresist prior to carbonization. The status of the fabrication of carbon microelectrodes obtained by pyrolysis of photoresist, characterization of the carbons by surface-sensitive techniques and electrochemical analysis by cyclic voltammetry of the I{sup -}/I{sub 3}{sup -} redox reaction is described.

Kostecki, Robert; Song, Xiang Yun; Kinoshita, Kim

2001-06-22T23:59:59.000Z

353

Carbon Capture and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB's SECARB's Mississippi SalineTest Site: A Field Project Update Robert C. Trautz (rtrautz@epri.com) Electric Power Research Institute Senior Project Manager DOE Regional Carbon Sequestration Partnership Annual Review Meeting October 6-8, 2008 Pittsburgh, PA 2 1. Introduction 2. Well Drilling & Completion 3. Reservoir Characterization 4. CO 2 Injection Operations 5. Monitoring and Verification Outline 3 Key Organizations and Acknowledgments SOUTHERN STATES ENERGY BOARD Dr. Gerald (Jerry) R. Hill OTHER FIELD PROJECTS AND SUPPORTING ACTIVITIES * Advanced Resources * Alabama Geological Survey/ SCS * Gulf Coast Carbon Center (TXBEG) * EPRI * Virginia Tech University * Mississippi State University * Others Richard Esposito MISSISSIPPI POWER CO. Rick Berry Richard (Dick) Rhudy Robert (Rob) Trautz

354

Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

355

NETL: 2010 - Carbon Sequestration Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Peer Review Carbon Sequestration Peer Review During March 15 - 19, 2010, a total of 16 projects from NETL's Carbon Sequestration Program were peer reviewed....

356

Carbon nanotubes : synthesis, characterization, and applications  

E-Print Network (OSTI)

around Surface-Attached Carbon Nanotubes. Ind. Eng. Chem.the flexural rigidity of carbon nanotube ensembles. AppliedNanotechnology in Carbon Materials. Acta Metallurgica, 1997.

Deck, Christian Peter

2009-01-01T23:59:59.000Z

357

Equinox Carbon Equities LLC | Open Energy Information  

Open Energy Info (EERE)

Equinox Carbon Equities LLC Jump to: navigation, search Name Equinox Carbon Equities, LLC Place Newport Beach, California Zip 92660 Sector Carbon Product Investment firm focused on...

358

GS Carbon Corporation | Open Energy Information  

Open Energy Info (EERE)

GS Carbon Corporation Jump to: navigation, search Name GS Carbon Corporation Place New York, New York Zip 10119 Sector Carbon Product The company offsets emissions output with...

359

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Carbon Emission Estimates image image Global Per Capita Carbon Emission Estimates...

360

Electron transport through single carbon nanotubes  

E-Print Network (OSTI)

of CNTs in a protective carbon fiber coating enables theencapsulation in a carbon fiber coating [9]. This coatingembedded in an amorphous carbon fiber coating that is not

Chai, G

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Key resources related to carbon cycle and climate change research Recent Greenhouse Gas Concentrations Latest Global Carbon Budget Estimates Illustration of the Global Carbon...

362

Formation of rare earth carbonates using supercritical carbon dioxide  

DOE Patents (OSTI)

The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

1991-09-03T23:59:59.000Z

363

Preparation and Microstructure of Carbon/Carbon Composites ...  

Science Conference Proceedings (OSTI)

Symposium, C. Advanced High-Temperature Structural Materials ... Carbon fiber felts were firstly densified by carbon using chemical vapor infiltration to ... Character Distribution on Oxidation Resistance of ZG30Cr20Ni10 Heat Resistant Steel.

364

Use of Carbon Fiber Composite Molecular Sieves for Air Separation  

SciTech Connect

A novel adsorbent material, 'carbon fiber composite molecular sieve' (CFCMS), has been developed by the Oak Ridge National Laboratory. Its features include high surface area, large pore volume, and a rigid, permeable carbon structure that exhibits significant electrical conductivity. The unique combination of high adsorptive capacity, permeability, good mechanical properties, and electrical conductivity represents an enabling technology for the development of novel gas separation and purification systems. In this context, it is proposed that a fast-cycle air separation process that exploits a kinetic separation of oxygen and nitrogen should be possible using a CFCMS material coupled with electrical swing adsorption (ESA). The adsorption of O{sub 2}, N{sub 2}, and CO{sub 2} on activated carbon fibers was investigated using static and dynamic techniques. Molecular sieving effects in the activated carbon fiber were highlighted by the adsorption of CO{sub 2}, a more sensitive probe molecule for the presence of microporosity in adsorbents. The kinetic studies revealed that O2 was more rapidly adsorbed on the carbon fiber than N{sub 2}, and with higher uptake under equilibrium conditions, providing the fiber contained a high proportion of very narrow micropores. The work indicated that CFCMS is capable of separating O{sub 2} and N{sub 2} from air on the basis of the different diffusion rates of the two molecules in the micropore network of the activated carbon fibers comprising the composite material. In response to recent enquires from several potential users of CFCMS materials, attention has been given to the development of a viable continuous process for the commercial production of CFCMS material. As part of this effort, work was implemented on characterizing the performance of lignin-based activated carbon fiber, a potentially lower cost fiber than the pitch-based fibers used for CFCMS production to date. Similarly, to address engineering issues, measurements were made to characterize the pressure drop of CFCMS as a function of carbon fiber dimensions and monolith density.

Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Gallego, Nidia C [ORNL; Burchell, Timothy D [ORNL

2005-09-01T23:59:59.000Z

365

Activated Carbon Composites for Air Separation  

DOE Green Energy (OSTI)

Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Tsouris, Costas [ORNL; Burchell, Timothy D [ORNL

2011-09-01T23:59:59.000Z

366

The carbon dioxide dilemma  

SciTech Connect

The effect of burning fossil fuels on the global climate is discussed. It may be that as we produce carbon dioxide by burning fossil fuels, we create a greenhouse effect which causes temperatures on earth to rise. Implications of changes in global temperatures are discussed.

Edelson, E.

1982-02-01T23:59:59.000Z

367

Carbon Jungle | Open Energy Information  

Open Energy Info (EERE)

Jungle Jungle Jump to: navigation, search Name Carbon Jungle Place El Segundo, California Zip 90246 Sector Carbon Product Carbon Jungle's mission is to decrease CO2 in the atmosphere by planting and managing tree plantations, increasing awareness of the facts behind increased CO2 in the atmosphere, and giving companies a means to participate in carbon credit trading. References Carbon Jungle[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Carbon Jungle is a company located in El Segundo, California . References ↑ "Carbon Jungle" Retrieved from "http://en.openei.org/w/index.php?title=Carbon_Jungle&oldid=343237" Categories: Clean Energy Organizations

368

Asset Carbon | Open Energy Information  

Open Energy Info (EERE)

Asset Carbon Place United Kingdom Product UK-based startup looking to invest in CDMJI projects. References Asset Carbon1 LinkedIn Connections CrunchBase Profile No CrunchBase...

369

Sensor applications of carbon nanotubes  

E-Print Network (OSTI)

A search of published research on sensing mechanisms of carbon nanotubes was performed to identify applications in which carbon nanotubes might improve on current sensor technologies, in either offering improved performance, ...

Rushfeldt, Scott I

2005-01-01T23:59:59.000Z

370

Diffusion through Carbon Nanotube Semipermeable membranes  

DOE Green Energy (OSTI)

The goal of this project is to measure transport through CNTs and study effects of confinement at molecular scale. This work is motivated by several simulation papers in high profile journals that predict significantly higher transport rates of gases and liquids through carbon nanotubes as compared with similarly-sized nanomaterials (e.g. zeolites). The predictions are based on the effects of confinement, atomically smooth pore walls and high pore density. Our work will provide the first measurements that would compare to and hopefully validate the simulations. Gas flux is predicted to be >1000X greater for SWNTs versus zeolitesi. A high flux of 6-30 H2O/NT/ns {approx} 8-40 L/min for a 1cm{sup 2} membrane is also predicted. Neutron diffraction measurements indicate existence of a 1D water chain within a cylindrical ice sheet inside carbon nanotubes, which is consistent with the predictions of the simulation. The enabling experimental platform that we are developing is a semipermeable membrane made out of vertically aligned carbon nanotubes with gaps between nanotubes filled so that the transport occurs through the nanotubes. The major challenges of this project included: (1) Growth of CNTs in the suitable vertically aligned configuration, especially the single wall carbon nanotubes; (2) Development of a process for void-free filling gaps between CNTs; and (3) Design of the experiments that will probe the small amounts of analyte that go through. Knowledge of the behavior of water upon nanometer-scale confinement is key to understanding many biological processes. For example, the protein folding process is believed to involve water confined in a hydrophobic environment. In transmembrane proteins such as aquaporins, water transport occurs under similar conditions. And in fields as far removed as oil recovery and catalysis, an understanding of the nanoscale molecular transport occurring within the nanomaterials used (e.g. zeolites) is the key to process optimization. Furthermore, advancement of many emerging nanotechnologies in chemistry and biology will undoubtedly be aided by an understanding confined water transport, particularly the details of hydrogen bonding and solvation that become crucial on this length scale. We can envision several practical applications for our devices, including desalination, gas separations, dialysis, and semipermeable fabrics for protection against CW agents etc. The single wall carbon nanotube membranes will be the key platform for applications because they will allow high transport rates of small molecules such as water and eliminate solvated ions or CW agents.

Bakajin, O

2006-02-13T23:59:59.000Z

371

Carbon Sequestration Monitoring Activities  

SciTech Connect

In its 'Carbon Sequestration Technology Roadmap and Program Plan 2007' the U.S. Department of Energy (DOE)'s Office of Fossil Energy National Energy Technology Laboratory (NETL) identified as a major objective extended field tests to fully characterize potential carbon dioxide (CO{sub 2}) storage sites and to demonstrate the long-term storage of sequestered carbon (p. 5). Among the challenges in this area are 'improved understanding of CO{sub 2} flow and trapping within the reservoir and the development and deployment of technologies such as simulation models and monitoring systems' (p. 20). The University of Wyoming (UW), following consultations with the NETL, the Wyoming State Geological Survey, and the Governor's office, identified potential for geologic sequestration of impure carbon dioxide (CO{sub 2}) in deep reservoirs of the Moxa Arch. The Moxa Arch is a 120-mile long north-south trending anticline plunging beneath the Wyoming Thrust Belt on the north and bounded on the south by the Uinta Mountains. Several oil and gas fields along the Moxa Arch contain accumulations of natural CO{sub 2}. The largest of these is the La Barge Platform, which encompasses approximately 800 square miles. Several formations may be suitable for storage of impure CO{sub 2} gas, foremost among them the Madison Limestone, Bighorn Dolomite, and Nugget Sandstone. This project responded to the challenges described above by preparing a geological site characterization study on the Moxa Arch. The project included four priority research areas: (A) geological characterization of geologic structure of the Arch, the fault, and fracture patterns of the target formations and caprocks, (B) experimental characterization of carbon dioxide-brine-rock reactions that may occur, (C) optimization of geophysical and numerical models necessary for measurement, monitoring and verification (MMV), and (D) a preliminary performance assessment. Research work to accomplish these goals was coordinated by one administrative task under the direction of Dr. Carol Frost, Professor of Geology and Geophysics (Task 1.0), and one task devoted to designing and creating an interdisciplinary, project-specific carbon cyberinfrastructure to support collaborative carbon dioxide sequestration research among University of Wyoming scientists and their collaborators, performed by Jeff Hammerlinck, Director of the Wyoming Geographic Information Science Center at the University of Wyoming (Task 1.5). The results of these tasks are presented in the Introduction and in Chapter 1, respectively.

Carol Frost

2010-11-30T23:59:59.000Z

372

Dipolar collisions of polar molecules in the quantum regime  

E-Print Network (OSTI)

Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range, and spatially anisotropic. This is in stark contrast to the dilute gases of ultracold atoms, which have isotropic and extremely short-range, or "contact", interactions. The large electric dipole moment of polar molecules can be tuned with an external electric field; this provides unique opportunities such as control of ultracold chemical reactions, quantum information processing, and the realization of novel quantum many-body systems. In spite of intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here, we report the observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood with a relatively simple model based on quantum threshold laws for scattering of fermionic polar molecules. We directly observe the spatial anisotropy of the dipolar interaction as manifested in measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold polar molecule gas. The large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive dipolar interactions.

K. -K. Ni; S. Ospelkaus; D. Wang; G. Quemener; B. Neyenhuis; M. H. G. de Miranda; J. L. Bohn; J. Ye; D. S. Jin

2010-01-16T23:59:59.000Z

373

decommissioning of carbon dioxide (CO  

NLE Websites -- All DOE Office Websites (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

374

CARBON TECHNOLOGY: I: Petroleum Coke  

Science Conference Proceedings (OSTI)

CARBON TECHNOLOGY: Session I: Petroleum Coke. Sponsored by: LMD Aluminum Committee Program Organizer: Jean-Claude Thomas , Aluminium ...

375

Carbon Fiber Consortium | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Partnerships Carbon Fiber Consortium Manufacturing Industrial Partnerships Staff Partnerships Home | Connect with ORNL | For Industry | Partnerships | Industrial...

376

Carbon Nanotubes Information at NIST  

Science Conference Proceedings (OSTI)

... John Bonevich. Laser Applications Heat Up for Carbon Nanotubes. Longer is Better for Nanotube Optical Properties. Modeling ...

2010-10-05T23:59:59.000Z

377

4th Carbon Nanotube Workshop  

Science Conference Proceedings (OSTI)

... measurments, and disseinate this summary to the nanotube community. ... RM) for length separated single-wall carbon nanotubes in aqueous ...

2013-04-05T23:59:59.000Z

378

Carbon Dioxide Utilization Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Mercury Sorbent Field Testing Program Sorbent Technologies Corporation Western Kentucky University 9292003 Enhanced Practical Photosynthesis Carbon Sequestration ORNL...

379

NETL: Gasifipedia - Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Carbon sequestration, also termed carbon storage, is the permanent storage of CO2, usually in deep geologic formations. Industrially-generated CO2 -- resulting from fossil fuel combustion, gasification, and other industrial processes -- is injected as a supercritical fluid into geologic reservoirs, where it is held in place by natural traps and seals. Carbon storage is one approach to minimizing atmospheric emissions of man-made CO2. As discussed above, the main purpose of CO2 EOR such as the Weyburn Project is tertiary recovery of crude oil, but in effect substantial CO2 remains sequestered/stored as a result. Current Status of CO2 Storage CO2 storage is currently underway in the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway and the Weyburn-Midale CO2 Project in Canada, have been injecting CO2 into geologic storage formations more than a decade. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, as well. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. In addition, a number of smaller pilot projects are underway in different parts of the world to determine suitable locations and technologies for future long-term CO2 storage. To date, more than 200 small-scale CO2 storage projects have been carried out worldwide. A demonstration project that captures CO2 from a pulverized coal power plant and pipes it to a geologic formation for storage recently came online in Alabama.

380

5, 40834113, 2005 Black Carbon  

E-Print Network (OSTI)

ACPD 5, 4083­4113, 2005 Black Carbon Specific Absorption in the Mexico City Metropolitan Area J. C and Physics Discussions Measurements of Black Carbon Specific Absorption in the Mexico City Metropolitan Area License. 4083 #12;ACPD 5, 4083­4113, 2005 Black Carbon Specific Absorption in the Mexico City Metropolitan

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Carbon Accounting in Forest Ecosystems  

E-Print Network (OSTI)

. Carbon Pools: Above ground biomass Belowground BiomassBelowground Biomass Soil Organic Carbon Dead: · Aboveground biomassAboveground biomass · Belowground biomass · Soil Organic Carbon · Litter · Dead Wood· Dead Wood · (Wood Products) T�V S�D Industrie Service GmbH #12;Principles · Biomass is usually measured

Pettenella, Davide

382

Research Report Forests and carbon  

E-Print Network (OSTI)

Research Report Forests and carbon: valuation, discounting and risk management #12;#12;Forests and carbon: valuation, discounting and risk management Gregory Valatin Forestry Commission: Edinburgh-0-85538-815-7 Valatin, G. (2010). Forests and carbon: valuation, discounting and risk management. Forestry Commission

383

NETL: Carbon Storage - Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Southeast Regional Carbon Sequestration Partnership Southeast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing SECARB efforts can be found on their website. The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board (SSEB), represents a 13-State region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia, and portions of Kentucky and West Virginia. SECARB is comprised of over 100 participants representing Federal and State governments, industry, academia, and non-profit organizations. Southeast Regional Carbon Sequestration Partnership Region Southeast Regional Carbon Sequestration Partnership Region The primary goal of SECARB is to develop the necessary framework and

384

Optomechanics with molecules in a strongly pumped ring cavity  

E-Print Network (OSTI)

Cavity cooling of an atom works best on a cyclic optical transition in the strong coupling regime near resonance, where small cavity photon numbers suffice for trapping and cooling. Due to the absence of closed transitions a straightforward application to molecules fails: optical pumping can lead the particle into uncoupled states. An alternative operation in the far off-resonant regime generates only very slow cooling due to the reduced field-molecule coupling. We predict to overcome this by using a strongly driven ring-cavity operated in the sideband cooling regime. As in the optomechanical setups one takes advantage of a collectively enhanced field-molecule coupling strength using a large photon number. A linearized analytical treatment confirmed by full numerical quantum simulations predicts fast cooling despite the off-resonant small single molecule - single photon coupling. Even ground state cooling can be obtained by tuning the cavity field close to the Anti-stokes sideband for sufficiently high trapping frequency. Numerical simulations show quantum jumps of the molecules between the lowest two trapping levels, which can be be directly and continuously monitored via scattered light intensity detection.

R. J. Schulze; C. Genes; H. Ritsch

2010-03-02T23:59:59.000Z

385

Flexible single molecule simulation of reaction-diffusion processes  

SciTech Connect

An algorithm is developed for simulation of the motion and reactions of single molecules at a microscopic level. The molecules diffuse in a solvent and react with each other or a polymer and molecules can dissociate. Such simulations are of interest e.g. in molecular biology. The algorithm is similar to the Green's function reaction dynamics (GFRD) algorithm by van Zon and ten Wolde where longer time steps can be taken by computing the probability density functions (PDFs) and then sample from the distribution functions. Our computation of the PDFs is much less complicated than GFRD and more flexible. The solution of the partial differential equation for the PDF is split into two steps to simplify the calculations. The sampling is without splitting error in two of the coordinate directions for a pair of molecules and a molecule-polymer interaction and is approximate in the third direction. The PDF is obtained either from an analytical solution or a numerical discretization. The errors due to the operator splitting, the partitioning of the system, and the numerical approximations are analyzed. The method is applied to three different systems involving up to four reactions. Comparisons with other mesoscopic and macroscopic models show excellent agreement.

Hellander, Stefan, E-mail: stefan.hellander@it.uu.s [Division of Scientific Computing, Department of Information Technology, Uppsala University, P.O. Box 337, SE-75105 Uppsala (Sweden); Loetstedt, Per, E-mail: perl@it.uu.s [Division of Scientific Computing, Department of Information Technology, Uppsala University, P.O. Box 337, SE-75105 Uppsala (Sweden)

2011-05-10T23:59:59.000Z

386

Tracing Fuel Component Carbon in the Emissions from Diesel Engines  

DOE Green Energy (OSTI)

The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place {sup 14}C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in {sup 14}C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific {sup 14}C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO{sub 2}, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable {sup 14}C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of {sup 14}C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

Buchholz, B A; Mueller, C J; Martin, G C; Cheng, A S E; Dibble, R W; Frantz, B R

2002-10-14T23:59:59.000Z

387

Available Technologies: Acceleration of Carbon Dioxide ...  

APPLICATIONS OF TECHNOLOGY: Carbon dioxide capture and sequestration; ADVANTAGES: Accelerated capture of carbon dioxide; Effective at extremely dilute (nanomolar ...

388

Vertically Aligned and Periodically Distributed Carbon Nanotube  

Science Conference Proceedings (OSTI)

Presentation Title, Vertically Aligned and Periodically Distributed Carbon Nanotube (CNT) ... Application of Carbon Nanotubes – Energy to Bioelectronic Sensor.

389

MESOPOROUS CARBON MATERIALS - Energy Innovation Portal  

Building Energy Efficiency ... Solar Thermal; ... wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for ...

390

Apparatus And Method For Tracking A Molecule Or Particle In Three...  

NLE Websites -- All DOE Office Websites (Extended Search)

Apparatus And Method For Tracking A Molecule Or Particle In Three Dimensions Apparatus And Method For Tracking A Molecule Or Particle In Three Dimensions An apparatus and method...

391

6, 34193463, 2006 Black carbon or  

E-Print Network (OSTI)

ACPD 6, 3419­3463, 2006 Black carbon or brown carbon M. O. Andreae and A. Gelencs´er Title Page Chemistry and Physics Discussions Black carbon or brown carbon? The nature of light-absorbing carbonaceous;ACPD 6, 3419­3463, 2006 Black carbon or brown carbon M. O. Andreae and A. Gelencs´er Title Page

Paris-Sud XI, Université de

392

Carbon Cycle 2.0  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Cycle 2.0 Carbon Cycle 2.0 Pioneering science for sustainable energy solutions Artificial Photosynthesis Energy Storage Combustion Carbon Capture & Storage Developing World Efficiency Photovoltaics Biofuels Energy Analysis Climate Modeling Carbon Cycle 2.0 is... 1. A vision for * a global energy system integrated with the Earth's natural carbon cycles * an interactive Berkeley Lab environment with a shared sense of purpose 2. A program development plan that will allow us to deepen our capabilities and provide more opportunities to have impact 3. An attempt to integrate our basic research with applications using models of technology deployment constraints 4. Set of internal activities aimed at priming the effort

393

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes  

NLE Websites -- All DOE Office Websites (Extended Search)

The mechanism of HF formation in LiPF6 based organic carbonate electrolytes The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Title The mechanism of HF formation in LiPF6 based organic carbonate electrolytes Publication Type Journal Article Year of Publication 2012 Authors Lux, Simon F., Ivan T. Lucas, Elad Pollak, Stefano Passerini, Martin Winter, and Robert Kostecki Journal Electrochemistry Communications Volume 14 Start Page 47 Issue 1 Pagination 47-50 Date Published 01/2012 Keywords Hydrofluoric acid, LiPF6 degradation, Lithium ion batteries, spectroscopic ellipsometry Abstract Spectroscopic ellipsometry was used to study the time-dependent formation of HF upon the thermal degradation of LiPF6 at 50 °C in a lithium ion battery electrolyte containing ethylene carbonate and diethyl carbonate. The generated HF was monitored by following the etching rate of a 300 nm thick SiO2 layer, grown on both sides of a silicon wafer substrate, as a function of the immersion time in the electrolyte at 50 °C. It was found that the formation of HF starts after 70 h of exposure time and occurs following several different phases. The amount of generated HF was calculated using an empirical formula correlating the etching rate to the temperature. Combining the results of the HF formation with literature data, a simplified mechanism for the formation of the HF involving LiPF6 degradation, and a simplified catalytical reaction pathway of the formed HF and silicon dioxide are proposed to describe the kinetics of HF formation.

394

Contribution of HD molecules in cooling of the primordial gas  

E-Print Network (OSTI)

We study the effects of HD molecules on thermochemical evolution of the primordial gas behind shock waves, possibly arised in the process of galaxy formation. We find the critical shock velocity when deuterium transforms efficiently into HD molecules which then dominate gas cooling. Above this velocity the shocked gas is able to cool down to the temperature of the cosmic microwave background. Under these conditions the corresponding Jeans mass depends only on redshift and initial density of baryons $M_J \\propto \\delta_c^{-0.5} (1+z)^{0.5}$. At $z\\simgt 45$ HD molecules heat shocked gas, and at larger redshift their contribution to thermal evolution becomes negligible.

E. O. Vasiliev; Yu. A. Shchekinov

2005-07-26T23:59:59.000Z

395

A genetic algorithm based method for docking flexible molecules  

SciTech Connect

The authors describe a computational method for docking flexible molecules into protein binding sites. The method uses a genetic algorithm (GA) to search the combined conformation/orientation space of the molecule to find low energy conformation. Several techniques are described that increase the efficiency of the basic search method. These include the use of several interacting GA subpopulations or niches; the use of a growing algorithm that initially docks only a small part of the molecule; and the use of gradient minimization during the search. To illustrate the method, they dock Cbz-GlyP-Leu-Leu (ZGLL) into thermolysin. This system was chosen because a well refined crystal structure is available and because another docking method had previously been tested on this system. Their method is able to find conformations that lie physically close to and in some cases lower in energy than the crystal conformation in reasonable periods of time on readily available hardware.

Judson, R.S. [Sandia National Labs., Livermore, CA (United States); Jaeger, E.P.; Treasurywala, A.M. [Sterling-Winthrop Inc., Collegeville, PA (United States)

1993-11-01T23:59:59.000Z

396

Spectroscopic investigations of small-molecule interactions on metal oxide surfaces. Final report, September 1, 1978-December 31, 1981  

DOE Green Energy (OSTI)

Angle integrated and angle resolved ultraviolet photoelectron spectroscopy (UPS and ARPES) and high resolution electron energy loss spectroscopy (HREELS) have been performed on the low index single crystal surfaces of zinc oxide. Study of CO/ZnO shows that the mode of binding is dominated by 5sigma donation from the carbon end of the molecule to the unsaturated surface zinc ion with little ..pi.. backbonding to the CO2..pi..* orbital. This electronic structure is verified by a HREELS study. The geometry of CO binding is consistent with LEED studies where no symmetry changing reconstructions are observed to occur, and where the CO molecule forms an approximately linear Zn-C-O surface complex along the coordinatively unsaturated directions of the surface zinc ions. Implications of these studies to the mechanism of methanol synthesis is described. These UPS studies have also provided insight into the bonding interaction between small molecules such as NH/sub 3/ and CO/sub 2/ (as well as H/sub 2/O, C/sub 2/H/sub 4/, CH/sub 3/OH, H/sub 2/S and CH/sub 3/SH) and the ZnO single crystal surfaces.

Solomon, E. I.; McFeely, F. R.

1982-06-28T23:59:59.000Z

397

CARBON7510.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Author's personal copy Author's personal copy NMR a critical tool to study the production of carbon fiber from lignin Marcus Foston a , Grady A. Nunnery b , Xianzhi Meng a , Qining Sun a , Frederick S. Baker b , Arthur Ragauskas a, * a BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332, United States b Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087, United States A R T I C L E I N F O Article history: Received 7 April 2012 Accepted 6 September 2012 Available online 14 September 2012 A B S T R A C T The structural changes occurring to hardwood Alcell TM lignin as a result of fiber devolatiliza- tion/extrusion, oxidative thermo-stabilization and carbonization are investigated in this study by solid-state and solution nuclear magnetic resonance

398

CHARTER FOR THE CARBON SEQUESTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHARTER FOR THE CARBON SEQUESTRATION CHARTER FOR THE CARBON SEQUESTRATION LEADERSHIP FORUM (CSLF): A CARBON CAPTURE AND STORAGE TECHNOLOGY INITIATIVE The undersigned national governmental entities (collectively the "Members") set forth the following Terms of Reference for the Carbon Sequestration Leadership Forum (CSLF), a framework for international cooperation in research and development for the separation, capture, transportation and storage of carbon dioxide. The CSLF will seek to realize the promise of carbon capture and storage over the coming decades, making it commercially competitive and environmentally safe. 1. Purpose of the CSLF To facilitate the development of improved cost-effective technologies for the separation and capture of carbon dioxide for its transport and long-term safe storage; to make these

399

CARBON DIOXIDE FIXATION.  

DOE Green Energy (OSTI)

Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

FUJITA,E.

2000-01-12T23:59:59.000Z

400

Carbonate fuel cell matrix  

DOE Patents (OSTI)

A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

Farooque, M.; Yuh, C.Y.

1996-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Carbonate fuel cell matrix  

DOE Patents (OSTI)

A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

Farooque, Mohammad (Huntington, CT); Yuh, Chao-Yi (New Milford, CT)

1996-01-01T23:59:59.000Z

402

Carbon taxes and India  

Science Conference Proceedings (OSTI)

Using the Indian module of the Second Generation Model 9SGM, we explore a reference case and three scenarios in which greenhouse gas emissions were controlled. Two alternative policy instruments (carbon taxes and tradable permits) were analyzed to determine comparative costs of stabilizing emissions at (1) 1990 levels (the 1 X case), (2) two times the 1990 levels (the 2X case), and (3) three times the 1990 levels (the 3X case). The analysis takes into account India`s rapidly growing population and the abundance of coal and biomass relative to other fuels. We also explore the impacts of a global tradable permits market to stabilize global carbon emissions on the Indian economy under the following two emissions allowance allocation methods: (1) {open_quotes}Grandfathered emissions{close_quotes}: emissions allowances are allocated based on 1990 emissions. (2) {open_quotes}Equal per capita emissions{close_quotes}: emissions allowances are allocated based on share of global population. Tradable permits represent a lower cost method to stabilize Indian emissions than carbon taxes, i.e., global action would benefit India more than independent actions.

Fisher-Vanden, K.A.; Pitcher, H.M.; Edmonds, J.A.; Kim, S.H. [Pacific Northwest Lab., Richland, WA (United States); Shukla, P.R. [Indian Institute of Management, Ahmedabad (India)

1994-07-01T23:59:59.000Z

403

Syngas Segregation Induced by Confinement in Carbon Nanotubes: A Combined First-Principles and Monte Carlo Study  

E-Print Network (OSTI)

Syngas Segregation Induced by Confinement in Carbon Nanotubes: A Combined First of the concave and convex surfaces of CNTs formed by graphene layers. As a result, syngas molecules are enriched of CO/H2 inside CNTs increases with respect to the composition of syngas in the exterior gas phase

Bao, Xinhe

404

Dendrimer Templated Synthesis of One Nanometer Rh and Pt Particles Supported on Mesoporous Silica: Catalytic Activity for Ethylene and Pyrrole Hydrogenation.  

DOE Green Energy (OSTI)

Monodisperse rhodium (Rh) and platinum (Pt) nanoparticles as small as {approx}1 nm were synthesized within a fourth generation polyaminoamide (PAMAM) dendrimer, a hyperbranched polymer, in aqueous solution and immobilized by depositing onto a high-surface-area SBA-15 mesoporous support. X-ray photoelectron spectroscopy indicated that the as-synthesized Rh and Pt nanoparticles were mostly oxidized. Catalytic activity of the SBA-15 supported Rh and Pt nanoparticles was studied with ethylene hydrogenation at 273 and 293 K in 10 torr of ethylene and 100 torr of H{sub 2} after reduction (76 torr of H{sub 2} mixed with 690 torr of He) at different temperatures. Catalysts were active without removing the dendrimer capping but reached their highest activity after hydrogen reduction at a moderate temperature (423 K). When treated at a higher temperature (473, 573, and 673 K) in hydrogen, catalytic activity decreased. By using the same treatment that led to maximum ethylene hydrogenation activity, catalytic activity was also evaluated for pyrrole hydrogenation.

Huang, Wenyu; Kuhn, John N.; Tsung, Chia-Kuang; Zhang, Yawen; Habas, Susan E.; Yang, Peidong; Somorjai, Gabor A.

2008-05-09T23:59:59.000Z

405

Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Credits in Carbon Credits in Carbon Dioxide Sequestration Activities K. Thomas Klasson and Brian H. Davison Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6226 Presentation First National Conference on Carbon Sequestration May 14-17, 2001 Washington, DC "The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes." * Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725 1 Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities

406

Coherent resonant tunneling through an artificial molecule C. A. Stafford  

E-Print Network (OSTI)

Coherent resonant tunneling through an artificial molecule C. A. Stafford Fakulta¨t fu¨r Physik PRB 58C. A. STAFFORD, R. KOTLYAR, AND S. DAS SARMA #12;Coulomb blockade12 for C Cg to a ballistic /e 1 follows from the particle-hole symmetry of Eq. 1 . 7094 PRB 58C. A. STAFFORD, R. KOTLYAR, AND S

Stafford, Charles

407

Single Molecule Study of Cellulase Hydrolysis of Crystalline Cellulose  

DOE Green Energy (OSTI)

This report seeks to elucidate the role of cellobiohydrolase-I (CBH I) in the hydrolysis of crystalline cellulose. A single-molecule approach uses various imaging techniques to investigate the surface structure of crystalline cellulose and changes made in the structure by CBH I.

Liu, Y.-S.; Luo, Y.; Baker, J. O.; Zeng, Y.; Himmel, M. E.; Smith, S.; Ding, S.-Y.

2009-12-01T23:59:59.000Z

408

Analytical evaluation of the electrostatic potential for diatomic molecules  

Science Conference Proceedings (OSTI)

The technique of expanding Lowdin alpha-functions in a Taylor series has been further developed and applied to the problem of the electrostatic potential due to H{sub 2} with given 1s, 2s, 2p Slater-type orbitals. In contrast to other methods, the approach is completely analytic, and capable of arbitrary precision. The ultimate accuracy of our method is dependent upon the number of partial waves used; here by use of only 13 harmonics excellent results are achieved. The methods are readily generalized to larger molecules. The electron-molecule static interaction potentials is of central importance to calculations of cross sections for electron-molecule collisions. In this paper, using the diatomic hydrogen molecule of Fraga and Ransil, the authors introduce a fully analytic method and make a few comparisons with computer runs using the codes of Morrison and Schmid et al. They, as well as others, need numerical integrals for the potential. The authors analytical methods avoid cancellation errors and singularities by expanding the exponentials in the Lowdin alpha-functions, which are used to represent displaced orbitals in a spherical harmonic series.

Jones, H.W.; Etemadi, B.; Weatherford, C.A.

1988-01-01T23:59:59.000Z

409

Single-molecule electron diffraction imaging with charge replacement  

E-Print Network (OSTI)

We investigate the possibility of non-destructive electron diffraction imaging of a single molecule to determine its structure. The molecular specimen will be held on a free-standing sheet of graphene. Due to the high conductivity of graphene, electrons lost by ionization would be rapidly replaced, enabling repeated nondestructive interrogation. Limits of resolution, maximum particle size and required electron flux are assessed.

Fill, E E; Raizen, M

2008-01-01T23:59:59.000Z

410

Imaging Small Molecules by Scanning Probe Microscopy Shirley Chiang  

E-Print Network (OSTI)

1 Imaging Small Molecules by Scanning Probe Microscopy Shirley Chiang Department of Physics. Ohtani, R.J. Wilson, S. Chiang, and C.M. Mate, "Scanning Tunneling Microscopy Observations of Benzene. V.M. Hallmark, S. Chiang, J.F. Rabolt, J.D. Swalen, and R.J. Wilson, "Observation of Atomic

Chiang, Shirley

411

Free energy reconstruction from nonequilibrium single-molecule pulling experiments  

E-Print Network (OSTI)

Free energy reconstruction from nonequilibrium single-molecule pulling experiments Gerhard Hummer also drives the system away from equilibrium. Nevertheless, we show how equilibrium free energy of an extension of Jarzynski's remarkable identity between free energies and the irreversible work. Recent

Weeks, Eric R.

412

Analyte sensing mediated by adapter/carrier molecules  

DOE Patents (OSTI)

This invention relates to an improved method and system for sensing of one or more analytes. A host molecule, which serves as an adapter/carrier, is used to facilitate interaction between the analyte and the sensor element. A detectable signal is produced reflecting the identity and concentration of analyte present.

Bayley, Hagan (College Station, TX); Braha, Orit (College Station, TX); Gu, LiQun (Bryan, TX)

2002-07-30T23:59:59.000Z

413

Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation  

SciTech Connect

Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported catalysts were determined by elemental analysis (ICP-MS) and H2 chemisorption isotherms, respectively. Ethylene hydrogenation rates over the Pt nanocrystals were independent of both size and shape and comparable to Pt single crystals. For pyrrole hydrogenation, the nanocubes enhanced ring-opening ability and thus showed a higher selectivity to n-butylamine as compared to nanopolyhedra.

Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong

2009-03-02T23:59:59.000Z

414

Electrochemical Investigation of Li–Al Anodes in Oligo(ethylene glycol) Dimethyl Ether/LiPF6  

DOE Green Energy (OSTI)

1 M LiPF{sub 6} dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight 500 g mol{sup -1} was investigated as a new electrolyte (OEGDME500, 1 M LiPF{sub 6}) for metal deposition and battery applications. At 25 C a conductivity of 0.48 x 10{sup -3} S cm{sup -1} was obtained and at 85 C, 3.78 x 10{sup -3} S cm{sup -1}. The apparent activation barrier for ionic transport was evaluated to be 30.7 kJ mol{sup -1}. OEGDME500, 1 M LiPF{sub 6} allows operating temperature above 100 C with very attractive conductivity. The electrolyte shows excellent performance at negative and positive potentials. With this investigation, we report experimental results obtained with aluminum electrodes using this electrolyte. At low current densities lithium ion reduction and re-oxidation can be achieved on aluminum electrodes at potentials about 280 mV more positive than on lithium electrodes. In situ X-ray diffraction measurements collected during electrochemical lithium deposition on aluminum electrodes show that the shift to positive potentials is due to the negative Gibbs free energy change of the Li-Al alloy formation reaction.

Zhou, Y.N.; Yang, X.; Wang, X.J.; Lee, H.S.; Nam, K.W.; Haas, O.

2010-11-01T23:59:59.000Z

415

Nuclear Magnetic Resonance Investigation of Dynamics in Poly(Ethylene Oxide) Based Lithium Polyether-ester-sulfonate Ionomers  

SciTech Connect

Nuclear magnetic resonance (NMR) spectroscopy has been utilized to investigate the dynamics of poly(ethylene oxide)-based lithium sulfonate ionomer samples that have low glass transition temperatures. 1H and 7Li spin-lattice relaxation times (T1) of the bulk polymer and lithium ions, respectively, were analyzed in samples with a range of ion contents. The temperature dependence of T1 values along with the presence of minima in T1 enabled correlation times and activation energies to be obtained for both the segmental motion of the polymer backbone and the hopping motion of lithium cations. Similar activation energies of both the polymer and lithium ions in the lower ion content samples indicate that the polymer segmental motion and lithium ion hopping motion are correlated even though their respective correlation times differ significantly. A divergent trend is observed for correlation times and activation energies of the highest ion content sample due to the presence of ionic aggregation. Details about the polymer and cation dynamics on the nanosecond timescale are discussed and complement the findings of X-ray scattering and Quasi Elastic Neutron Scattering experiments.

Roach, David J.; Dou, Shichen; Colby, Ralph H.; Mueller, Karl T.

2012-01-07T23:59:59.000Z

416

Using Hydrophilic Ionic Liquid, [bmim]BF 4 – Ethylene Glycol System as a Novel Media for the Rapid Synthesis  

E-Print Network (OSTI)

In this work, we present a novel method for the synthesis of copper nanoparticles. We utilize the charge compensatory effect of ionic liquid [bmim]BF4 in conjunction with ethylene glycol for providing electro-steric stabilization to copper nanoparticles prepared from copper sulphate using hydrazine hydrate as a reducing agent. The formed copper nanoparticles showed extended stability over a period of one year. Copper nanoparticles thus prepared were characterized by powder X-ray diffraction measurements (pXRD), transmission electron microscopy (TEM) and quasi elastic light scattering (QELS) techniques. Powder X-ray diffraction (pXRD) analysis revealed relevant Bragg’s reflection for crystal structure of copper. Powder X-ray diffraction plots also revealed no oxidized material of copper nanoparticles. TEM showed nearly uniform distribution of the particles in methanol and confirmed by QELS. Typical applications of copper nanoparticles include uses in conductive films, lubrication and nanofluids. Currently efforts are under way in our laboratory for using these nanoparticles as catalysts for a variety of organic reactions.

Manika Dewan; Ajeet Kumar; Amit Saxena; Arnab De; Subho Mozumdar

2011-01-01T23:59:59.000Z

417

Enhancement of the predicted drug hepatotoxicity in gel entrapped hepatocytes within polysulfone-g-poly (ethylene glycol) modified hollow fiber  

Science Conference Proceedings (OSTI)

Collagen gel-based 3D cultures of hepatocytes have been proposed for evaluation of drug hepatotoxicity because of their more reliability than traditional monolayer culture. The collagen gel entrapment of hepatocytes in hollow fibers has been proven to well reflect the drug hepatotoxicity in vivo but was limited by adsorption of hydrophobic drugs onto hollow fibers. This study aimed to investigate the impact of hollow fibers on hepatocyte performance and drug hepatotoxicity. Polysulfone-g-poly (ethylene glycol) (PSf-g-PEG) hollow fiber was fabricated and applied for the first time to suppress the drug adsorption. Then, the impact of hollow fibers was evaluated by detecting the hepatotoxicity of eight selected drugs to gel entrapped hepatocytes within PSf and PSf-g-PEG hollow fibers, or without hollow fibers. The hepatocytes in PSf-g-PEG hollow fiber showed the highest sensitivity to drug hepatotoxicity, while those in PSf hollow fiber and cylindrical gel without hollow fiber underestimated the hepatotoxicity due to either drug adsorption or low hepatic functions. Therefore, the 3D culture of gel entrapped hepatocytes within PSf-g-PEG hollow fiber would be a promising tool for investigation of drug hepatotoxicity in vitro.

Shen Chong [Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China); Zhang Guoliang [Institute of Biological and Environmental Engineering, Zhejiang University of Technology, Zhejiang 310012 (China); Meng Qin, E-mail: mengq@zju.edu.c [Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

2010-12-01T23:59:59.000Z

418

Electrochemical Investigation of Li-Al Anodes in Oligo (ethylene glycol) Dimethyl ether/LiPF6  

DOE Green Energy (OSTI)

LiPF{sub 6} dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight 5 g mol{sup -1} was investigated as a new electrolyte (OEGDME5, 1 M LiPF{sub 6}) for metal deposition and battery applications. At 25 C a conductivity of .48 x 1{sup -3} S cm{sup -1} was obtained and at 85 C, 3.78 x 1{sup -3} S cm{sup -1}. The apparent activation barrier for ionic transport was evaluated to be 3.7 kJ mol{sup -1}. OEGDME5, 1 M LiPF{sub 6} allows operating temperature above 1 C with very attractive conductivity. The electrolyte shows excellent performance at negative and positive potentials. With this investigation, we report experimental results obtained with aluminum electrodes using this electrolyte. At low current densities lithium ion reduction and re-oxidation can be achieved on aluminum electrodes at potentials about 28 mV more positive than on lithium electrodes. In situ X-ray diffraction measurements collected during electrochemical lithium deposition on aluminum electrodes show that the shift to positive potentials is due to the negative Gibbs free energy change of the Li-Al alloy formation reaction.

Y Zhou; X Wang; H Lee; K Nam; X Yang; O Haas

2011-12-31T23:59:59.000Z

419

Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature  

Science Conference Proceedings (OSTI)

The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800 K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. (author)

Choi, B.C.; Chung, S.H. [Clean Combustion Research Center, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

2010-12-15T23:59:59.000Z

420

A DNS study on the stabilization mechanism of a turbulent lifted ethylene jet flame in highly-heated coflow  

SciTech Connect

Direct numerical simulation (DNS) of the near-field of a three-dimensional spatially-developing turbulent ethylene jet flame in highly-heated coflow is performed with a reduced mechanism to determine the stabilization mechanism. The DNS was performed at a jet Reynolds number of 10,000 with over 1.29 billion grid points. The results show that auto-ignition in a fuel-lean mixture at the flame base is the main source of stabilization of the lifted jet flame. The Damkoehler number and chemical explosive mode (CEM) analysis also verify that auto-ignition occurs at the flame base. In addition to auto-ignition, Lagrangian tracking of the flame base reveals the passage of large-scale flow structures and their correlation with the fluctuations of the flame base similar to a previous study (Yoo et al., J. Fluid Mech. 640 (2009) 453-481) with hydrogen/air jet flames. It is also observed that the present lifted flame base exhibits a cyclic 'saw-tooth' shaped movement marked by rapid movement upstream and slower movement downstream. This is a consequence of the lifted flame being stabilized by a balance between consecutive auto-ignition events in hot fuel-lean mixtures and convection induced by the high-speed jet and coflow velocities. This is confirmed by Lagrangian tracking of key variables including the flame-normal velocity, displacement speed, scalar dissipation rate, and mixture fraction at the stabilization point.

Yoo, Chun S [Sandia National Laboratories (SNL)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Monitoring soil carbon will prepare growers for a carbon trading system  

E-Print Network (OSTI)

they obtain a soil carbon sequestration amount over 10 yearsLal R. 2004. Soil carbon sequestration to mitigate climateto estimate soil carbon sequestration based on estimates of

Suddick, Emma C; Ngugi, Moffatt K; Paustian, Keith; Six, Johan

2013-01-01T23:59:59.000Z

422

Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico  

E-Print Network (OSTI)

B v + B d ) C T = Total carbon B v = biomass contained indevelopment through carbon sequestration: experiences in2000) Rural livelihoods and carbon management, IIED Natural

Osborne, Tracey Muttoo

2010-01-01T23:59:59.000Z

423

Black Carbon’s Properties and Role in the Environment: A Comprehensive Review  

E-Print Network (OSTI)

NOAA/ESRL. Mauna Loa Carbon Dioxide Annual Mean Data.H. Can reducing black carbon emissions counteract globalanalysis of black carbon in soils. Global Biogeochem. Cycle.

Shrestha, Gyami

2010-01-01T23:59:59.000Z

424

ON CALCULATING THE TRANSFER OF CARBON-13 IN RESERVOIR MODELS OF THE CARBON CYCLE  

E-Print Network (OSTI)

7. Keeling. C. D. 1973. The carbon dioxide cycle: reservoirexchange of atmospheric carbon dioxide with the oceans andmodel to study the carbon dioxide exchange in nature. Tellus

Tans, Pieter P.

2013-01-01T23:59:59.000Z

425

Tensile testing and stabilization/carbonization studies of polyacrylonitrile/carbon nanotube composite fibers .  

E-Print Network (OSTI)

??This study focuses on the processing, structure and properties of polyacrylonitrile (PAN)/ carbon nanotube (CNT) composite carbon fibers. Small diameter PAN/CNT based carbon fibers have… (more)

Lyons, Kevin Mark

2012-01-01T23:59:59.000Z

426

RADIATION SYNTHESIS OF CARBON DIOXIDE IN ICE-COATED CARBON: IMPLICATIONS FOR INTERSTELLAR GRAINS AND ICY MOONS  

Science Conference Proceedings (OSTI)

We report the synthesis of carbon dioxide on an amorphous carbon-13 substrate coated with amorphous water ice from irradiation with 100 keV protons at 20 K and 120 K. The quantitative studies show that the CO{sub 2} is dispersed in the ice; its column density increases with ion fluence to a maximum value (in 10{sup 15} molecules cm{sup -2}) of {approx}1 at 20 K and {approx}3 at 120 K. The initial yield is 0.05 (0.1) CO{sub 2} per incident H{sup +} at 20 (120) K. The CO{sub 2} destruction process, which limits the maximum column density, occurs with an effective cross section of {approx}2.5 (4.1) Multiplication-Sign 10{sup -17} cm{sup 2} at 20 (120) K. We discuss radiation-induced oxidation by reactions of radicals in water with the carbon surface and demonstrate that these reactions can be a significant source of condensed carbon dioxide in interstellar grains and in icy satellites in the outer solar system.

Raut, U.; Fulvio, D.; Baragiola, R. A. [Laboratory for Atomic and Surface Physics, University of Virginia, Thornton Hall, Charlottesville, VA 22904 (United States); Loeffler, M. J. [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Mail Code 69, Greenbelt, MD 20771 (United States)

2012-06-20T23:59:59.000Z

427

NETL: Carbon Storage - Midwest Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

MRCSP MRCSP Carbon Storage Midwest Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing MRCSP efforts can be found on their website. The Midwest Regional Carbon Sequestration Partnership (MRCSP) was established to assess the technical potential, economic viability, and public acceptability of carbon storage within a region consisting of nine contiguous states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. A group of leading universities, state geological surveys, non-governmental organizations and private companies, led by Battelle Memorial Institute, has been assembled to carry out this research. The MRCSP currently consists of nearly 40 members; each contributing technical knowledge, expertise and cost sharing.

428

Carbon Ion Pump for Carbon Dioxide Removal - Energy Innovation ...  

coal fired power plants; oil or gas fired power plants; cement production; bio-fuel combustion; Separation of carbon dioxide from other combustion ...

429

Method for joining carbon-carbon composites to metals  

DOE Patents (OSTI)

A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

Lauf, Robert J. (Oak Ridge, TN); McMillan, April D. (Knoxville, TN); Moorhead, Arthur J. (Knoxville, TN)

1997-01-01T23:59:59.000Z

430

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...  

Open Energy Info (EERE)

Technologies Project Type Topic 2 Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more...

431

Method for joining carbon-carbon composites to metals  

DOE Patents (OSTI)

A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

1997-07-15T23:59:59.000Z

432

NETL: Carbon Storage - North American Carbon Atlas Partnership...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Carbon Atlas Partnership (NACAP) NACAP Logo NACAP Logo The United States, Canada, and Mexico participate in a joint CO2 mapping initiative called the North American...

433

Program on Technology Innovation: Novel Carbon Sorbents  

Science Conference Proceedings (OSTI)

A new approach has been developed for making activated carbons and catalytic carbons with high surface areas. A novel carbonization process using alkali organic and metal salt precursors can yield carbons with a narrow, customized, pore size distribution as well as high adsorption capacity and catalytic activity. This report summarizes initial attempts to produce high-surface-area carbons with porous structure and carbons with added nanoscale catalyst using the novel carbonization process.

2009-03-23T23:59:59.000Z

434

ARM - Field Campaign - Aircraft Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsAircraft Carbon govCampaignsAircraft Carbon Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aircraft Carbon 2006.07.01 - 2008.09.30 Lead Scientist : Margaret Torn For data sets, see below. Description Airborne trace-gas measurements at ARM-SGP provided valuable data for addressing carbon-cycle questions highlighted by the US Climate Change Research Program and the North American Carbon Program. A set of carbon-cycle instruments and sample collection systems were added to an ARM-managed aircraft at ARM-SGP user facility. A separate (in-place) grant covered the cost of developing the instrument systems, analyzing the data, and ingesting all data to the ARM data archives. In the short-term (~1 y) we had two priorities. The first was to acquire

435

Agricultural Carbon Mitigation in Europe  

NLE Websites -- All DOE Office Websites (Extended Search)

Agricultural Carbon Mitigation in Europe Agricultural Carbon Mitigation in Europe Agricultural Carbon Mitigation in Europe Smith P, Powlson DS, Smith JU, Falloon P, and Coleman K. 2000. Meeting Europe's climate change commitments: Quantitative estimates of the potential for carbon mitigation by agriculture. Global Climate Change 6:525-539. Abstract Under the Kyoto Protocol, the European Union is committed to a reduction in CO2 emissions to 92% of baseline (1990) levels during the first commitment period (2008-2012). The Kyoto Protocol allows carbon emissions to be offset by demonstrable removal of carbon from the atmosphere. Thus, land-use / land-management change and forestry activities that are shown to reduce atmospheric CO2 levels can be included in the Kyoto targets. These activities include afforestation, reforestation and deforestation (article

436

Redox Reactions of Metalloporphyrins and their Role in Catalyzed Reduction of Carbon Dioxide  

Science Conference Proceedings (OSTI)

Pulse radiolysis and laser photolysis are used to study redox processes of metalloporphyrins and related complexes in order to evaluate these light absorbing molecules as sensitizers and intermediates in solar energy conversion schemes. The main thrust of the current studies is to investigate the role of reduced metalloporphyrins as intermediates in the catalyzed reduction of carbon dioxide. Studies involve cobalt and iron porphyrins, phthalocyanines, corroles, and corrins as homogeneous catalysts for reduction of carbon dioxide in solution. The main aim is to understand the mechanisms of these photochemical schemes in order to facilitate their potential utilization.

Neta, P.

2002-09-01T23:59:59.000Z

437

Questions and Answers - I am not clear on what a molecule is. If water is a  

NLE Websites -- All DOE Office Websites (Extended Search)

is the difference betweena compound and a molecule? is the difference between<br>a compound and a molecule? Previous Question (What is the difference between a compound and a molecule?) Questions and Answers Main Index Next Question (Biggest and smallest atom?) Biggest and smallest atom? I am not clear on what a molecule is. If water is a molecule, is it also a compound because the hydrogen and oxygen have been chemically combined? If so, how do you determine whether a substance is a compound or a molecule? A molecule is what you get when any atoms join together. A compound is what you get when atoms of two or more different elements join together. All compounds are molecules, but not all molecules are compounds. Water is a molecule because it is made from atoms that have been chemically combined. It is also a compound because the atoms that make water are not

438

SWP Carbon Sequestration Training Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Center Presentation, October 2010 SWP Carbon Sequestration Training Center Principal Investigators: New Mexico Tech, Andrew Campbell and Peter Mozley University of Utah,...

439

Carbon Sequestration in European Soils  

NLE Websites -- All DOE Office Websites (Extended Search)

Preliminary Estimates for Five Scenarios Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments...

440

Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnership Presented to: Regional Carbon Sequestration Partnerships Annual Review Meeting Development Phase Field Tests Pittsburgh, PA October 5, 2010 Presented by: Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board Acknowledgements  This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory.  Cost share and research support provided by SECARB/SSEB Carbon Management Partners Through innovations in energy and environmental policies, programs and technologies, the Southern States Energy Board enhances economic development and the quality of life in the South. - SSEB Mission Statement SSEB Carbon Management Program  Established 2003  Characterizing Southeast Region

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Industrial Carbon Management Initiative (ICMI)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Carbon Management Initiative Industrial Carbon Management Initiative (ICMI) Background The ICMI project is part of a larger program called Carbon Capture Simulation and Storage Initiative (C2S2I). The C2S2I has a goal of expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a feedstock for the industrial sector. The American Recovery and Re-Investment Act (ARRA)-funded

442

ARM - Measurement - Black carbon concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Campaign Instruments AEROSCARBON : Aerosol Carbon Analyzer AETH : Aethalometer DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments SP2 : Single Particle...

443

Extra Low Carbon Alloy 718  

Science Conference Proceedings (OSTI)

of carbon content, magnesium add itions, thermomechan processing, and heat treatment on the mechanical properties of Allvac ical. 718 have been investigated

444

Carbon nanotube IR detectors (SV)  

SciTech Connect

Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

Leonard, F. L.

2012-03-01T23:59:59.000Z

445

Carbon microtubes - Energy Innovation Portal  

A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 ...

446

Carbon Emissions: Petroleum Refining Industry  

U.S. Energy Information Administration (EIA)

Energy-Related Carbon Emissions for the Petroleum and Coal Products Industry, 1994. Petroleum refining is by far the largest component of the petroleum and ...

447

Carbon Encapsulated Platinum Nanoparticles: Growth ...  

Science Conference Proceedings (OSTI)

Such patterned assembly of carbon encapsulated nanoparticles was further studied for .... Silica Nanoparticles for His-tagged Proteins Capture and Separation.

448

Carbon-assisted flyer plates  

DOE Patents (OSTI)

A laser driven flyer plate utilizing an optical fiber connected to a laser. The end of the optical fiber has a layer of carbon and a metal layer deposited onto it. The carbon layer provides the laser induced plasma which is superior to the plasma produced from most metals. The carbon layer plasma is capable of providing a flatter flyer plate, converting more of the laser energy to driving plasma, promoting a higher flyer plate acceleration, and providing a more uniform pulse behind the plate. In another embodiment, the laser is in optical communication with a substrate onto which a layer of carbon and a layer of metal have been deposited.

Stahl, David B. (Los Alamos, NM); Paisley, Dennis L. (Santa Fe, NM)

1994-01-01T23:59:59.000Z

449

Lignin-Based Carbon Fiber.  

E-Print Network (OSTI)

??This study was undertaken in support of the Biorefinery concept applicable to hardwood Kraft mills. The “near neutral hemicellulose extraction process” uses sodium carbonate and… (more)

Luo, Jie

2010-01-01T23:59:59.000Z

450

Geologic Carbon Storage Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Corporation 9302005 Enhanced Microbial Pathways for Methane Production from Oil Shale Western Research Institute 1012005 Carbon Sequestration for Existing Power Plants...

451

carbon emissions | OpenEI  

Open Energy Info (EERE)

2010 (4 years ago) Date Updated Unknown Keywords capacity carbon emissions energy demand Energy Generation fossil fuels GHG emissions UK Data applicationvnd.openxmlformats-office...

452

First Proof of Ferromagnetic Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

a way to understand and control magnetism in nanodevices such as graphene sheets and carbon nanotubes. Ferromagnetism is an "ordering phenomenon" in which the spins of...

453

Hydrogen Storage in Carbon Nanotubes  

NLE Websites -- All DOE Office Websites (Extended Search)

STORAGE IN CARBON NANOTUBES JOHN E. FISCHER UNIVERSITY OF PENNSYLVANIA * SOME BASIC NOTIONS * BINDING SITES AND ENERGIES * PROCESSING TO ENHANCE CAPACITY: EX: ELECTROCHEMICAL Li...

454

Industrial Carbon Capture Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

Industrial Carbon Capture Project SelectionsSeptember 2, 2010These projects have been selected for negotiation of awards; final award amounts may vary.

455

Lithium Diffusion in Graphitic Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

Volume 1 Start Page 1176 Issue 8 Pagination 1176-1180 Keywords anode, diffusion, graphene, lithium ion battery, transport Abstract Graphitic carbon is currently considered the...

456

Sonochemical reduction of carbon dioxide.  

E-Print Network (OSTI)

??Emissions from the combustion of fossil fuels and cement production are responsible for approximately 75% of the increase of carbon dioxide (CO2) concentration in the… (more)

Koblov, Alexander

2011-01-01T23:59:59.000Z

457

Carbon Capture & Storage in Canada  

NLE Websites -- All DOE Office Websites (Extended Search)

- Canada - Carbon Storage Program Infrastructure Annual Review Meeting Pittsburgh, PA November 16, 2011 Dr. Frank Mourits Office of Energy Research and Development Natural...

458

Carbon Sequestration Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science July 2001 Focus Area Overview Presentation Mission and Scope Program Relationships Scientific Challenges Research Plans Facility Plans Princeton.ppt 7/16/01 Carbon Sequestration Science Focus Area New Projects Contribute to Sequestration Science Systems Integration Virtual Simulation of CO 2 Capture Technologies Cleanup Stream Gas Gasification Gasification MEA CO 2 Capture Facility Oxygen Membrane 3 km 2 inch tube 800m - 20 °C, 20 atm Liquid CO 2 , 100 tons ~1 kg CO 2 / s = 5 MW ^ CO 2 Coal Other Fuels Coal Other Fuels CO 2 Sequestration Aquifer H 2 O Flue gas H 2 O CH 4 CH 4 CO 2 Oil field Oil well Power plant CH 4 Coal - bed Aquiclude H 2 O CO 2 /N 2 CO 2 N 2 CO 2 CO 2 CO 2 CO 2 CO 2 Water Rock , 2 Coal Other Fuels Coal Other Fuels Combustor Oxygen Membrane Princeton.ppt 7/16/01 Carbon Sequestration Science Focus Area

459

Carbon dioxide and climate  

SciTech Connect

Scientific and public interest in greenhouse gases, climate warming, and global change virtually exploded in 1988. The Department's focused research on atmospheric CO{sub 2} contributed sound and timely scientific information to the many questions produced by the groundswell of interest and concern. Research projects summarized in this document provided the data base that made timely responses possible, and the contributions from participating scientists are genuinely appreciated. In the past year, the core CO{sub 2} research has continued to improve the scientific knowledge needed to project future atmospheric CO{sub 2} concentrations, to estimate climate sensitivity, and to assess the responses of vegetation to rising concentrations of CO{sub 2} and to climate change. The Carbon Dioxide Research Program's goal is to develop sound scientific information for policy formulation and governmental action in response to changes of atmospheric CO{sub 2}. The Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1990 and gives a brief overview of objectives, organization, and accomplishments.

1990-10-01T23:59:59.000Z

460

Carbon Efficiency, Carbon Reduction Potential, and Economic Development in  

Open Energy Info (EERE)

Carbon Efficiency, Carbon Reduction Potential, and Economic Development in Carbon Efficiency, Carbon Reduction Potential, and Economic Development in the People's Republic of China Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Efficiency, Carbon Reduction Potential, and Economic Development in the People's Republic of China Agency/Company /Organization: Asian Development Bank Sector: Energy Focus Area: Energy Efficiency, Industry Topics: Low emission development planning, Policies/deployment programs, Background analysis Resource Type: Publications, Case studies/examples Website: www.adb.org/documents/studies/carbon-efficiency-prc/carbon-efficiency- Country: China UN Region: Eastern Asia Coordinates: 35.86166°, 104.195397° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.86166,"lon":104.195397,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide  

Open Energy Info (EERE)

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more common fluid for extracting volatile oil and fragrance compounds from various raw materials that are used in perfumery. Furthermore, its use as a heat transmission fluid is very attractive because of the greater uptake capability of heat from hot reservoir rock, compared with that of water. However, one concern was the reactivity of CO2 with clay and rock minerals in aqueous and non-aqueous environments. So if this reaction leads to the formation of water-soluble carbonates, such formation could be detrimental to the integrity of wellbore infrastructure.

462

Carbon dioxide sequestration in cement kiln dust through mineral carbonation  

Science Conference Proceedings (OSTI)

Carbon sequestration through the formation of carbonates is a potential means to reduce CO{sub 2} emissions. Alkaline industrial solid wastes typically have high mass fractions of reactive oxides that may not require preprocessing, making them an attractive source material for mineral carbonation. The degree of mineral carbonation achievable in cement kiln dust (CKD) under ambient temperatures and pressures was examined through a series of batch and column experiments. The overall extent and potential mechanisms and rate behavior of the carbonation process were assessed through a complementary set of analytical and empirical methods, including mass change, thermal analysis, and X-ray diffraction. The carbonation reactions were carried out primarily through the reaction of CO{sub 2} with Ca(OH){sub 2}, and CaCO{sub 3} was observed as the predominant carbonation product. A sequestration extent of over 60% was observed within 8 h of reaction without any modifications to the waste. Sequestration appears to follow unreacted core model theory where reaction kinetics are controlled by a first-order rate constant at early times; however, as carbonation progresses, the kinetics of the reaction are attenuated by the extent of the reaction due to diffusion control, with the extent of conversion never reaching completion. 35 refs., 3 figs., 1 tab.

Deborah N. Huntzinger; John S. Gierke; S. Komar Kawatra; Timothy C. Eisele; Lawrence L. Sutter [University of Michigan, Ann Arbor, MI (United States). Department of Civil and Environmental Engineering

2009-03-15T23:59:59.000Z

463

Carbon Dioxide Carbonates in the Earth;s Mantle: Implications to the Deep Carbon Cycle  

SciTech Connect

An increase in the ionic character in C-O bonds at high pressures and temperatures is shown by the chemical/phase transformation diagram of CO{sub 2}. The presence of carbonate carbon dioxide (i-CO{sub 2}) near the Earth's core-mantle boundary condition provides insights into both the deep carbon cycle and the transport of atmospheric CO{sub 2} to anhydrous silicates in the mantle and iron core.

Yoo, Choong-Shik; Sengupta, Amartya; Kim, Minseob (Princeton); (WSU)

2012-05-22T23:59:59.000Z

464

Abatement of Air Pollution: Control of Carbon Dioxide Emissions...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program (Connecticut) Abatement of Air Pollution: Control of Carbon Dioxide EmissionsCarbon Dioxide Budget Trading Program...

465

Intermediate Temperature Carbon - Carbon Composite Structures. CRADA Final Report  

SciTech Connect

The objective of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC (the "Contractor") and Synterials, Inc. (the "Participant") was to demonstrate promising processing methods, which can lead to producing Carbon-Carbon Composites (CCC), with tensile and interlaminar properties comparable to those of organic matrix composites and environmental stability at 1200 F for long periods of time. The participant synthesized carbon-carbon composites with two different fiber coatings and three different matrices. Both parties evaluated the tensile and interlaminar properties of these materials and characterized the microstructure of the matrices and interfaces. It was found that fiber coatings of carbon and boron carbide provided the best environmental protection and resulted in composites with high tensile strength.

Lara-Curzio, Edgar [ORNL

2007-06-01T23:59:59.000Z

466

Plasmachemical Synthesis of Carbon Suboxide  

E-Print Network (OSTI)

A nonthermal carbon monoxide plasma is known to produce a solid deposition which is thought to be a polymer of carbon suboxide (C3O2); however there are very few investigations of this deposition in the literature. This thesis contains an analysis of the theoretical thermodynamics and kinetics of carbon suboxide formation as well as experimental results. The theoretical analysis suggests that carbon suboxide may be an equilibrium product even at ambient conditions but favors lower temperatures; furthermore if solid carbon is considered to be kinetically limited, and therefore not a product, then carbon suboxide is more likely to be a product under these pseudo-equilibrium conditions. Experimentally, solid films were produced in a dielectric barrier discharge (DBD) containing pure carbon monoxide. Optical emission spectroscopy was used to analyze the plasma and models of the emission spectra were created to determine the plasma temperatures. Deposition rates were determined to be on the order of 0.2 mg/min at a power of about 10W; it is expected however that these conditions are not optimized. The overall kinetics of carbon suboxide was analyzed and optimal conditions for operation can be estimated. Characterization of the solid depositions were carried out using Solid State Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR), Electrospray Ionization Mass Spectroscopy (ESI-MS), and Matrix-assisted Laser Desorption Ionization Mass Spectroscopy (MALDI-MS). The characteristics of the film are very comparable to hydrolyzed carbon suboxide polymer suggesting that carbon suboxide polymer were in fact created in the carbon monoxide plasma at atmospheric conditions.

Geiger, Robert

2013-05-01T23:59:59.000Z

467

Small-Molecule Inhibition of TNF-alpha  

NLE Websites -- All DOE Office Websites (Extended Search)

Small-Molecule Inhibition of TNF-alpha Tumour necrosis factor is a polypeptide cytokine involved in inflammation and the acute phase response. TNF-alpha is present in larger quantities in persons with rheumatoid arthritis or Crohn's disease. Direct inhibition of TNF-a by the commercial biological agents etanercept (Enbrel), infliximab (Remicade), adalimumab (Humira), has produced significant advances in rheumatoid arthritis treatment and validated the extra-cellular inhibition of this proinflammatory cytokine as an effective therapy. However, despite considerable incentives, viable leads for analogous small-molecule inhibitors of TNF-a have not been reported (1). Such drugs with attendant advantages in manufacturing, patient accessibility, administration, and compliance would represent a major advance in the treatment of TNF-a mediated diseases.

468

Prospects for Doppler cooling of three-electronic-level molecules  

Science Conference Proceedings (OSTI)

Analogous to the extension of laser cooling techniques from two-level to three-level atoms, Doppler cooling of molecules with an intermediate electronic state is considered. In particular, we use a rate-equation approach to simulate cooling of SiO{sup +}, in which population buildup in the intermediate state is prevented by its short lifetime. We determine that Doppler cooling of SiO{sup +} can be accomplished without optically repumping from the intermediate state, at the cost of causing undesirable parity flips and rotational diffusion. Since the necessary repumping would require a large number of continuous-wave lasers, optical pulse shaping of a femtosecond laser is proposed as an attractive alternative. Other candidate three-electron-level molecules are also discussed.

Nguyen, J. H. V.; Odom, B. [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

2011-05-15T23:59:59.000Z

469

Apparatus and method of determining molecular weight of large molecules  

DOE Patents (OSTI)

A mass spectrometer determines the mass of multiply charged high molecular weight molecules. This spectrometer utilizes an ion detector which is capable of simultaneously measuring the charge z and transit time of a single ion as it passes through the detector. From this transit time, the velocity of the single ion may then be derived, thus providing the mass-to-charge ratio m/z for a single ion which has been accelerated through a known potential. Given z and m/z, the mass m of the single ion can then be calculated. Electrospray ions with masses in excess of 1 MDa and charge numbers greater than 425 e.sup.- are readily detected. The on-axis single ion detection configuration enables a duty cycle of nearly 100% and extends the practical application of electrospray mass spectrometry to the analysis of very large molecules with relatively inexpensive instrumentation.

Fuerstenau, Stephen (Montrose, CA); Benner, W. Henry (Danville, CA); Madden, Norman (Livermore, CA); Searles, William (Fremont, CA)

1998-01-01T23:59:59.000Z

470

Energy Carrier Transport In Surface-Modified Carbon Nanotubes  

E-Print Network (OSTI)

Carbon nanotubes are made into films or bulks, their surface or junction morphology in the networks can be modified to obtain desired electrical transport properties by various surface modification methods. The methods include incorporation of organic molecules or inorganic nanoparticles, debundling of nanotubes by dispersing agents, and microwave irradiation. Because carbon nanotubes have unique carrier transport characteristics along a sheet of graphite in a cylindrical shape, the properties can be dramatically changed by the modification. This is ideal for developing high-performance materials for thermoelectric and photovoltaic energy conversion applications. In this research, decoration of various organic/inorganic nanomaterials on carbon nanotubes was employed to enhance their electrical conductivity, to improve thermoelectric power factor by modulating their electrical conductance and thermopower, or to obtain n-type converted carbon nanotube. The electrical conductivity of double-wall nanotubes (DWNTs) decorated with tetrafluoro-tetracyanoquinodimethane (F4TCNQ) was increased up to 5.9 × 10^5 S/m. The sheet resistances were measured to be 42 ?/sq at 75% of transmittance for HNO3/SOCl2-treated DWNT films, making their electrical conductivities 200~300% better than those of the pristine DWNT films. A series of experiments at different ion concentrations and reaction time periods were systematically performed in order to find optimum nanomaterial formation conditions and corresponding electronic transport changes for better thermoelectric power factor. For example, the thermoelectric power factors were improved by ~180% with F4TCNQ on DWNTs, ~200% with Cu on SWNTs, and ~140% with Fe on single-walled nanotubes (SWNTs). Also SWNTs was converted from p-type to n-type with a large thermopower (58 ?V/K) by using polyethyleneimine (PEI) without vacuum or controlled environment. This transport behavior is believed to be from charge interactions resulted from the difference between the work functions/reduction potentials of nanotubes and nanomaterials. In addition, different dispersing agents were utilized with DWNT and SWNTs to see a debundling effect in a film network. The highest electrical conductivity of ~1.72×10^6 S/m was obtained from DWNT film which was fabricated with a nanotube solution dispersed by chlorosulfonic acid. Debundling of nanotubes in the film network has been demonstrated to be a critical parameter in order to get such high electrical property. In the last experiment, Au nanoparticle decoration on carbon nanotube bundle was performed and a measurement of themophysical properties has done before and after modifying carbon nanotube surface. Carbon nanotube bundle, herein, was bridged on microdevice to enable the measurement work. This study demonstrates a first step toward a breakthrough in order to extract the potential of carbon nanotubes regarding electron transport properties.

Ryu, Yeontack

2012-12-01T23:59:59.000Z

471

Spin Properties of Transition-Metallorganic Self-Assembled Molecules  

SciTech Connect

This report summarizes SRI's accomplishments on the project, 'Spin Properties of Transition-Metallorganic Self-Assembled Molecules' funded by the Office of Basic Energy Sciences, US Department of Energy. We have successfully carried out all tasks identified in our proposal and gained significant knowledge and understanding of spin-polarized electronic structure, spin relaxation, and spin-dependent transport in transition-metallorganic molecules and enhohedral fullerenes. These molecules contain integrated spin and charge components and will enable us to achieve sophisticated functions in spintronics and quantum computing at molecular level with simple circuitry and easy fabrication. We have developed microscopic theories that describe the underlying mechanisms of spin-dependent porcesses and constructed quantitative modeling tools that compute several important spin properties. These results represent the basic principles governing the spin-dependent behaviors in nanostructures containing such molecules. Based on these results we have shown that novel device functions, such as electrically controlled g-factor and noninvasive electrical detection of spin dynamics, can be achieved in these nanostructures. Some of our results have been published in peer-reviewed journals and presented at professional conferences. In addition, we have established a close collaboration with experimentalists at Oxford University, UK (Dr. J. Morton and Prof. G. Briggs), Princeton University (Dr. A. Tyryshkin and Prof. S. Lyon), University of Delaware (Prof. E. Nowak), and University of California (Profs. R. Kawakami and J. Shi), who have been studying related systems and supplying us with new experimental data. We have provided our understanding and physical insights to the experimentalists and helped analyze their experimental measurements. The collaboration with experimentalists has also broadened our research scope and helped us focus on the most relevant issues concerning these materials.

Zhi Gang Yu

2010-06-30T23:59:59.000Z

472

Casimir Momentum of a Chiral Molecule in a Magnetic Field  

E-Print Network (OSTI)

In a classical description, a neutral, polarizable object acquires a kinetic momentum when exposed to crossed electric and magnetic fields. In the presence of only a magnetic field no such momentum exists classically, although it is symmetry-allowed for an object lacking mirror symmetry. We perform a full QED calculation to show that the quantum vacuum coupled to a chiral molecule provides a kinetic "Casimir" momentum directed along the magnetic field, proportional to its rotatory power and the fine structure constant.

Manuel Donaire; Bart van Tiggelen; Geert L. J. A. Rikken

2013-04-24T23:59:59.000Z

473

Selected topics on the electronic structure of small molecules  

DOE Green Energy (OSTI)

A systematic procedure is presented for constructing symmetrized functions of the coordinates of N fermion particles which may be used as trial wavefunctions in a quantum mechanical description of an N-electron molecular system. The functions are symmetrized with respect to the mathematical point group of operators which commute with the system's electronic Born-Oppenheimer Hamiltonian, as well as the permutation group. The procedure is essentially the Clebsch--Gordan geneological coupling method (which is well-known from its application to the coupling of angular momenta) applied to the finite groups which describe the symmetry operations of a molecule. The coupling procedure is applied to the study of the electronic structure of several states of the diatomic molecule sulfur oxide. The advantage of the coupling procedure in this study is that it results in entirely real N-particle functions which are constructed from entirely real single-particle functions. The use of complex functions tends to be cumbersome from a computational point of view and should be avoided when possible. Also, a simple model is presented which provides insight into some of the electric and magnetic properties of small molecules. The probability distribution of the electrons in a molecule is approximated by that of a single particle moving in a three-dimensional anisotropic harmonic oscillator potential. Within this approximation the molecular electric polarizability, the magnetic susceptibility, and the magnetic shielding of a nuclear spin due to currents generated in the electron distribution by a magnetic field (the chemical shift) are computed using perturbation theory. The model exhibits Van Vleck paramagnetism for the last two properties. The predictions for the three properties provided by the model as applied to molecular hydrogen, H/sub 2/, are compared with experimental results.

Swope, W.C.

1979-04-01T23:59:59.000Z

474

Proof that the Hydrogen-antihydrogen Molecule is Unstable  

E-Print Network (OSTI)

In the framework of nonrelativistic quantum mechanics we derive a necessary condition for four Coulomb charges $(m_{1}^+, m_{2}^-, m_{3}^+, m_{4}^-)$, where all masses are assumed finite, to form the stable system. The obtained stability condition is physical and is expressed through the required minimal ratio of Jacobi masses. In particular this provides the rigorous proof that the hydrogen-antihydrogen molecule is unstable. This is the first result of this sort for four particles.

D. K. Gridnev; C. Greiner

2005-02-08T23:59:59.000Z

475

Density Functional Theory with Dissipation: Transport through Single Molecules  

SciTech Connect

A huge amount of fundamental research was performed on this grant. Most of it focussed on fundamental issues of electronic structure calculations of transport through single molecules, using density functional theory. Achievements were: (1) First density functional theory with dissipation; (2) Pseudopotential plane wave calculations with master equation; (3) Weak bias limit; (4) Long-chain conductance; and (5) Self-interaction effects in tunneling.

Kieron Burke

2012-04-30T23:59:59.000Z

476

Computational study of the transport mechanisms of molecules and ions in solid materials  

E-Print Network (OSTI)

Transport of ions and molecules in solids is a very important process in many technological applications, for example, in drug delivery, separation processes, and in power sources such as ion diffusion in electrodes or in solid electrolytes. Progress in the understanding of the ionic and molecular transport mechanisms in solids can be used to substantially increase the performance of devices. In this dissertation we use ab initio calculations and molecular dynamics simulations to investigate the mechamisn of transport in solid. We first analyze molecular transport and storage of H2. Different lightweight carbon materials have been of great interest for H2 storage. However, pure carbon materials have low H2 storage capacity at ambient conditions and cannot satisfy current required storage capacities. Modification of carbon materials that enhance the interaction between H2 and absorbents and thus improve the physisorption of H2, is needed for hydrogen storage. In this dissertation, corannulene and alkali metal-doped corannulene are investigated as candidate materials for hydrogen storage. Molecularalso investigated. Using computational chemistry, we predict enhanced H2 adsorption on molecular systems with modification and hydrogen uptake can reach DOE target of 6.5wt% at at 294 bar at 273 K, and 309 bar at 300 K. In the second part of this dissertation, we study the lithium ion transport from a solid electrolyte phase to a solid electrode phase. Improvement of ionic transport in solid electrolytes is a key element in the development of the solid lithium ion batteries. One promising material is dilithium phthalocyanine (Li2Pc), which upon self-assembly may form conducting channels for fast ion transport. Computational chemistry is employed to investigate such phenomena: (1) to analyze the crystalline structure of Li2Pc and formation of conducting channels; (2) to understand the transport of Li ions inside channels driven by an electric field; (3) to study the continuity of the conducting channels through interface. The study shows Li2Pc has higher conductivity than PEO as electrolyte.

Zhang, Yingchun

2006-05-01T23:59:59.000Z

477

Photoassociative creation of ultracold heteronuclear 6Li40K* molecules  

E-Print Network (OSTI)

We investigate the formation of weakly bound, electronically excited, heteronuclear 6Li40K* molecules by single-photon photoassociation in a magneto-optical trap. We performed trap loss spectroscopy within a range of 325 GHz below the Li(2S_(1/2))+K(4P_(3/2)) and Li(2S_(1/2))+K(4P_(1/2)) asymptotic states and observed more than 60 resonances, which we identify as rovibrational levels of 7 of 8 attractive long-range molecular potentials. The long-range dispersion coefficients and rotational constants are derived. We find large molecule formation rates of up to ~3.5x10^7s^(-1), which are shown to be comparable to those for homonuclear 40K_2*. Using a theoretical model we infer decay rates to the deeply bound electronic ground-state vibrational level X^1\\Sigma^+(v'=3) of ~5x10^4s^(-1). Our results pave the way for the production of ultracold bosonic ground-state 6Li40K molecules which exhibit a large intrinsic permanent electric dipole moment.

Ridinger, Armin; Salez, Thomas; Fernandes, Diogo Rio; Bouloufa, Nadia; Dulieu, Olivier; Salomon, Christophe; Chevy, Frederic

2011-01-01T23:59:59.000Z

478

Dissociative Electron Attachment to Polyatomic Molecules - I : Water  

E-Print Network (OSTI)

Using the velocity map imaging technique, we studied and characterized the process of Dissociative Electron Attachment (DEA) in polyatomic molecules like Water, Hydrogen Sulphide, Ammonia, Methane, Formic Acid and Propyl Amine. We present the details of these studies in a series of 5 articles. In the first article here, we discuss the DEA process in gas phase water ($H_{2}O$ and $D_{2}O$) molecules. Electrons of 6.5 eV, 8.5 eV and 12 eV are captured by water molecules in neutral ground state to form $H_{2}O^{-*}$ ($D_{2}O^{-*}$) resonant states which dissociate into an anion fragment and one or more neutrals. Kinetic energy and angular distributions of the fragment anions $H^{-}$($D^{-}$) and $O^{-}$ produced from the three negative ion resonant states in the entire $2\\pi$ scattering range are obtained. Unique angular distribution patterns are observed at the 8.5 eV and 11.8 eV resonances showing dissociation dynamics beyond the axial recoil approximation.

Ram, N Bhargava; Krishnakumar, E

2010-01-01T23:59:59.000Z

479

Large Magnetization at Carbon Surfaces  

NLE Websites -- All DOE Office Websites (Extended Search)

Large Magnetization at Carbon Large Magnetization at Carbon Surfaces Large Magnetization at Carbon Surfaces Print Wednesday, 31 August 2011 00:00 From organic matter to pencil lead, carbon is a versatile element. Now, another use has been found: magnets. One would not expect pure carbon to be magnetic, but for more than ten years scientists have suspected that carbon can be made to be magnetic by doping it with nonmagnetic materials, changing its order ever so slightly. Years ago, the first x-ray images obtained using the scanning transmission x-ray microscope at ALS Beamline 11.0.2 provided valuable insight into how proton irradiation can cause carbon to transform into a ferromagnetic material. Now, researchers are using x-ray spectroscopy at ALS Beamline 4.0.2 to study the magnetism of proton-irradiated graphite surfaces in order to understand the effects of hydrogen (i.e. protons) on the electronic structure of carbon. In studying the properties of electrons responsible for magnetic order in graphite, researchers found that a very large magnetic moment is essentially switched on when hydrogen atoms are incorporated at the surface of graphite.

480

LOW CARBON & 570 million GVA  

E-Print Network (OSTI)

,240 PEOPLE, CONTRIBUTING £570 MILLION IN GVA. Across Sheffield City Region, the low carbon and renewable sec nuclear, wind, solar, geo-thermal and tidal power. The total market value of the low carbon environmental goods and services sector for Sheffield City Region is estimated at £1,620 million. Independent research

Wrigley, Stuart

Note: This page contains sample records for the topic "molecule ethylene carbonate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Single Molecule Switches and Molecular Self-Assembly: Low Temperature STM Investigations and Manipulations  

SciTech Connect

This dissertation is devoted to single molecule investigations and manipulations of two porphyrin-based molecules, chlorophyll-a and Co-popphyrin. The molecules are absorbed on metallic substrates and studied at low temperatures using a scanning tunneling microscope. The electronic, structural and mechanical properties of the molecules are investigated in detail with atomic level precision. Chlorophyll-a is the key ingredient in photosynthesis processes while Co-porphyrin is a magnetic molecule that represents the recent emerging field of molecular spintronics. Using the scanning tunneling microscope tip and the substrate as electrodes, and the molecules as active ingredients, single molecule switches made of these two molecules are demonstrated. The first switch, a multiple and reversible mechanical switch, is realized by using chlorophyll-a where the energy transfer of a single tunneling electron is used to rotate a C-C bond of the molecule's tail on a Au(111) surface. Here, the det

Iancu, Violeta

2006-08-01T23:59:59.000Z

482

ARM - Measurement - Organic Carbon Concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsOrganic Carbon Concentration govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Organic Carbon Concentration The concentration of carbon bound in organic compounds. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments ACSM : Aerosol Chemical Speciation Monitor Field Campaign Instruments AEROSCARBON : Aerosol Carbon Analyzer AEROSMASSSPEC : Aerosol Mass Spectrometer Datastreams AOS : Aerosol Observing System Datastreams

483

Method for producing carbon nanotubes  

DOE Patents (OSTI)

Method for producing carbon nanotubes. Carbon nanotubes were prepared using a low power, atmospheric pressure, microwave-generated plasma torch system. After generating carbon monoxide microwave plasma, a flow of carbon monoxide was directed first through a bed of metal particles/glass beads and then along the outer surface of a ceramic tube located in the plasma. As a flow of argon was introduced into the plasma through the ceramic tube, ropes of entangled carbon nanotubes, attached to the surface of the tube, were produced. Of these, longer ropes formed on the surface portion of the tube located in the center of the plasma. Transmission electron micrographs of individual nanotubes revealed that many were single-walled.

Phillips, Jonathan (Santa Fe, NM); Perry, William L. (Jemez Springs, NM); Chen, Chun-Ku (Albuquerque, NM)

2006-02-14T23:59:59.000Z

484

NETL: Carbon Capture FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

How is CO2 captured? How is CO2 captured? Chilled Ammonia CO2 Capture Process Fac