Powered by Deep Web Technologies
Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Program and abstracts: IS-MPMI sixth International Symposium on Molecular Plant-Microbe Interactions  

DOE Green Energy (OSTI)

This volume provides abstracts of oral and poster presentations made for the Sixth International Symposium on Molecular Plant-Microbe Interactions.

Not Available

1992-12-31T23:59:59.000Z

2

PMI: Plant-Microbe Interfaces (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)  

SciTech Connect

Christopher Schadt of Oak Ridge National Laboratory on "Plant-Microbe Interactions" in the context of poplar trees at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 held in Walnut Creek, Calif.

Schadt, Christopher [ORNL

2013-03-01T23:59:59.000Z

3

Molecular conformations, interactions, and properties associated...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors Molecular conformations, interactions, and...

4

Detection of molecular interactions  

DOE Patents (OSTI)

A method and assay are described for measuring the interaction between a ligand and an analyte. The assay can include a suspension of colloidal particles that are associated with a ligand of interest. The colloidal particles are maintained in the suspension at or near a phase transition state from a condensed phase to a dispersed phase. An analyte to be tested is then added to the suspension. If the analyte binds to the ligand, a phase change occurs to indicate that the binding was successful.

Groves, John T. (Berkeley, CA); Baksh, Michael M. (Fremont, CA); Jaros, Michal (Brno, CH)

2012-02-14T23:59:59.000Z

5

Three Dimensional Molecular Imaging for Lignocellulosic Materials  

DOE Green Energy (OSTI)

components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

Bohn, Paul W.; Sweedler, Jonathan V.

2011-06-09T23:59:59.000Z

6

2010 Atomic & Molecular Interactions Gordon Research Conference  

SciTech Connect

The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2010 conference continues these traditions. At the 2010 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Dynamics; (2) Quantum Control and Molecules in Strong Fields; (3) Photochemical Dynamics; (4) Complex Molecules and Condensed Phases; and (5) Clusters and Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed.

Todd Martinez

2010-07-23T23:59:59.000Z

7

Molecular motors interacting with their own tracks Max N. Artyomov  

E-Print Network (OSTI)

Molecular motors interacting with their own tracks Max N. Artyomov Department of Chemistry; published 17 April 2008 Dynamics of molecular motors that move along linear lattices and interact with them exactly solvable discrete-state "burnt- bridge" models. Molecular motors are viewed as diffusing particles

8

Molecular Interaction between Botulinum Neurotoxin B and Its...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Interaction between Botulinum Neurotoxin B and Its Protein Receptor Revealed Figure 1 Structure of the HcB-Syt-II complex. a, sA-weighted FO - FC electron density map...

9

Characteristics of Quasi-Molecular State Interaction  

SciTech Connect

The quasi-molecular dipole transition moments have been considered analytically within the framework of the two-state approximation with particular emphasis on their roots (zeros) on spectral manifestations of the roots in the adiabatic diabatic limits. The interrelation between the spectral features the non-adiabatic transitions found in [1] has been demonstrated for excited state charge exchange Al{sup +12}(n = 4)+C{sup +6}{yields}Al{sup +13}+C{sup +5}(n = 2)

Devdariani, A. [Dept.Optics and Spectroscopy St.Petersburg University Ulianovskaya 1, 198904 St. Petersburg (Russian Federation); Dalimier, E. [Physique Atomique dans les Plasmas Denses LULI UMR 7605 CNRS-CEA-Ecole Polytechnique, Universite Paris 6, Case 128, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Kereselidze, T.; Noselidze, I. [Department of Exact and Natural Sciences, Tbilisi State University Chavchavadze Avenue 3, 0128 Tbilisi (Georgia); Rebentrost, F. [Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany); Sauvan, P. [UNED, Dpto Ingeneria Energetica, 12 Juan del Rosal, 28040 Madrid (Spain)

2008-10-22T23:59:59.000Z

10

Inferring molecular interactions pathways from eQTL data  

SciTech Connect

Analysis of expression quantitative trait loci (eQTL) helps elucidate the connection between genotype, gene expression levels, and phenotype. However, standard statistical genetics can only attribute changes in expression levels to loci on the genome, not specific genes. Each locus can contain many genes, making it very difficult to discover which gene is controlling the expression levels of other genes. Furthermore, it is even more difficult to find a pathway of molecular interactions responsible for controlling the expression levels. Here we describe a series of techniques for finding explanatory pathways by exploring graphs of molecular interactions. We show several simple methods can find complete pathways the explain the mechanism of differential expression in eQTL data.

Rashid, Imran; McDermott, Jason E.; Samudrala, Ram

2009-04-20T23:59:59.000Z

11

Three Dimensional Molecular Imaging for Lignocellulosic Materials  

SciTech Connect

The development of high efficiency, inexpensive processing protocols to render biomass components into fermentable substrates for the sequential processing of cell wall components into fuels and important feedstocks for the biorefinery of the future is a key goal of the national roadmap for renewable energy. Furthermore, the development of such protocols depends critically on detailed knowledge of the spatial and temporal infiltration of reagents designed to remove and separate the phenylpropenoid heteropolymer (lignin) from the processable sugar components sequestered in the rigid cell walls of plants. A detailed chemical and structural understanding of this pre-enzymatic processing in space and time was the focus of this program. We worked to develop new imaging strategies that produce real-time molecular speciation information in situ; extract sub-surface information about the effects of processing; and follow the spatial and temporal characteristics of the molecular species in the matrix and correlate this complex profile with saccharification. Spatially correlated SIMS and Raman imaging were used to provide high quality, high resolution subcellular images of Miscanthus cross sections. Furthermore, the combination of information from the mass spectrometry and Raman scattering allows specific chemical assignments of observed structures, difficult to assign from either imaging approach alone and lays the foundation for subsequent heterocorrelated imaging experiments targeted at more challenging biological systems, such as the interacting plant-microbe systems relevant to the rhizosphere.

Bohn, Paul W.; Sweedler, Jonathan V.

2011-06-09T23:59:59.000Z

12

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite  

E-Print Network (OSTI)

E. , Thesis, Reactions of Plutonium(VI) with the Iron Oxideof Uranium, Neptunium, Plutonium, Americium and Technetium;Molecular Interactions of Plutonium(VI) with Synthetic

Hu, Yung-Jin

2011-01-01T23:59:59.000Z

13

2010 Plant Molecular Biology Gordon Research Conference  

SciTech Connect

The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

Michael Sussman

2010-07-23T23:59:59.000Z

14

Homogeneous bubble nucleation predicted by a molecular interaction model  

SciTech Connect

The homogenous bubble nucleation of various hydrocarbons was estimated by the modified classical nucleation theory. In this modification, the kinetic formalism of the classical theory is retained while the surface energy needed for the bubble formation is calculated form the interaction energy between molecules. With a nucleation rate value of J{sub n{sub c}} = 10{sup 22} nuclei/cm{sup 3}s, this modified model gives a very good prediction of the superheat limits of liquids. In another test of the model the complete evaporation time of a butane droplet at its superheat limit is compared with experiments and found to be in good agreement.

Hoyoung Kwak; Sangbum Lee (Chung-Ang Univ., Seoul (Korea))

1991-08-01T23:59:59.000Z

15

Molecular dynamics simulations of the interaction of glucose with imidazole in aqueous solution  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular dynamics simulations of the interaction of glucose with imidazole in Molecular dynamics simulations of the interaction of glucose with imidazole in aqueous solution Mo Chen, Yannick J. Bomble, Michael E. Himmel, John W. Brady PII: S0008-6215(11)00592-1 DOI: 10.1016/j.carres.2011.12.008 Reference: CAR 6026 To appear in: Carbohydrate Research Received Date: 15 June 2011 Revised Date: 22 November 2011 Accepted Date: 8 December 2011 Please cite this article as: Chen, M., Bomble, Y.J., Himmel, M.E., Brady, J.W., Molecular dynamics simulations of the interaction of glucose with imidazole in aqueous solution, Carbohydrate Research (2011), doi: 10.1016/j.carres. 2011.12.008 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

16

Investigation of Molecular Interactions of Myristic Acid with Antibiotic through Viscometric, Acoustic and Refractometric Studies  

Science Conference Proceedings (OSTI)

The IBS Survey report 2008 continues a practice that began in 2003. The first report was published in 2003 followed by in 2005 and recently in 2008. It records recent trends in selected areas that reflect the Malaysia’s achievement of IBS usage ... Keywords: Doxycycline hyclate, molecular interactions, refractometric

C. Roumana; G. Velrajb

2010-05-01T23:59:59.000Z

17

Odd-odd Magnetic Interaction and Spontaneous Ortho-para Transitions in Molecule and Molecular Hydrogen Ion  

E-Print Network (OSTI)

Spontaneous nuclear ortho-para transitions are shown to be possible in hydrogen molecule and molecular ion as due to hyperfine interaction odd-odd relative to the space or spin nuclear coordinate permutations. A part of this interaction inversely proportional to the first power of nuclear mass is found for hydrogen molecular ion.

V. S. Yarunin

2001-08-16T23:59:59.000Z

18

Band Formation in a Molecular Quantum Well via 2D Superatom Orbital Interactions  

SciTech Connect

By scanning tunneling microscopy and spectroscopy, we study nearly free electron band formation of the ?*lowest unoccupied molecular orbital of C?F? on a Cu(111) surface. In fractal islands, the lowest unoccupied molecular orbital energy systematically stabilizes with the number of interacting near-neighbor C?F? molecules. Density functional theory calculations reveal the origin of effective intermo- lecular orbital overlap in the previously unrecognized superatom character of the ?*orbital of ?F? molecules. The discovery of superatom orbitals in planar molecules offers a new universal principle for effective band formation, which can be exploited in designing organic semiconductors with nearly free electron properties

Dougherty, D. B.; Feng, Min; Petek, Hrvoje; Yates, John T.; Zhao, Jin

2012-12-28T23:59:59.000Z

19

Interactions between Ether Phospholipids and Cholesterol as Determined by Scattering and Molecular Dynamics Simulations  

SciTech Connect

Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol s molecular interactions with ether lipids as determined using a combination of small-angle neutron and Xray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup s phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules.

Pan, Jianjun [ORNL; Cheng, Xiaolin [ORNL; Heberle, Frederick A [ORNL; Mostofian, Barmak [ORNL; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Drazba, Paul [ORNL; Katsaras, John [ORNL

2012-01-01T23:59:59.000Z

20

IAEA Coordinated Activities on Evaluation of Atomic, Molecular, and Plasma-Surface Interaction Data for Fusion Applications  

Science Conference Proceedings (OSTI)

Technical Paper / Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea

H.-K. Chung; B. J. Braams

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2012 ATOMIC AND MOLECULAR INTERACTIONS GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR, JULY 15-20, 2012  

SciTech Connect

At the 2012 Atomic and Molecular Interactions Gordon Conference, there will be talks in several broadly defined and partially overlapping areas: ? Intramolecular and single-collision reaction dynamics; ? Photophysics and photochemistry of excited states; ? Clusters, aerosols and solvation; ? Interactions at interfaces; ? Conformations and folding of large molecules; ? Interactions under extreme conditions of temperature and pressure. The theme of the Gordon Research Seminar on Atomic & Molecular Interactions, in keeping with the tradition of the Atomic and Molecular Interactions Gordon Research Conference, is far-reaching and involves fundamental research in the gas and condensed phases along with application of these ideas to practical chemical fields. The oral presentations, which will contain a combination of both experiment and theory, will focus on four broad categories: ? Ultrafast Phenomena; ? Excited States, Photoelectrons, and Photoions; ? Chemical Reaction Dynamics; ? Biomolecules and Clusters.

Zwier, Timothy

2012-07-20T23:59:59.000Z

22

Molecular Simulations of the Effect of Cholesterol on Membrane-Mediated Protein-Protein Interactions  

E-Print Network (OSTI)

5 Molecular Simulation of the Effect of Cholesterol Protein-Properties . . . . . . . . iii 3 Molecular Simulation StudyProtein-Protein In- 4 Molecular Simulation Study of the

de Meyer, Frédérick Jean-Marie

2010-01-01T23:59:59.000Z

23

Molecular dynamics simulation of interaction of H with vacancy in W  

DOE Green Energy (OSTI)

Molecular dynamics simulations were performed to investigate the interaction between H and vacancy in W using an analytical bond-order potential to describe the interactions between W-W, W-H and H-H. The most stable configuration for H in W is the tetrahedron interstitial site. We calculated the binding energies of an H and a vacancy to an H-vacancy cluster (HnVm) in W, respectively, where n and m ranged from 0 to 10. The binding energy was almost unchanged. The binding energy of a vacancy to H-vacancy cluster is about 0.4eV, which is higher than the binding energy of an H to H-vacancy cluster. Vacancy is much easier to binding with H-vacancy cluster than H. And H is easier to stay in the tetrahedron interstitial site or octahedron interstitial site in bcc W.

Li, Xiaochun; Gao, Fei; Lu, Guang-Hong

2009-09-15T23:59:59.000Z

24

2008 Atomic and Molecular Interactions GRC-July 6-11, 2008  

Science Conference Proceedings (OSTI)

The Atomic and Molecular Interactions Gordon Conferences is justifiably recognized for its broad scope, touching on areas ranging from fundamental gas phase and gas-condensed matter collision dynamics, to laser-molecule interactions, photophysics, and unimolecular decay processes. The meeting has traditionally involved scientists engaged in fundamental research in gas and condensed phases and those who apply these concepts to systems of practical chemical and physical interest. A key tradition in this meeting is the strong mixing of theory and experiment throughout. The program for 2008 conference continues these traditions. At the 2008 AMI GRC, there will be talks in 5 broadly defined and partially overlapping areas of intermolecular interactions and chemical dynamics: (1) Photoionization and Photoelectron Spectroscopy; (2) Molecules in Strong Fields; (3) Photodissociation Dynamics; (4) Astrochemistry; and (5) Reaction Dynamics. These areas encompass many of the most productive and exciting areas of chemical physics, including both reactive and nonreactive processes, intermolecular and intramolecular energy transfer, and photodissociation and unimolecular processes. Gas phase dynamics, van der Waals and cluster studies, laser-matter interactions and multiple potential energy surface phenomena will all be discussed. Limited funds are available to support attendance for students and post-docs. Advisors should email the conference chair requesting such support, and the students should apply online as usual.

Arthur Suits Nancy Ryan Gray

2009-06-03T23:59:59.000Z

25

Bonding in boranes and their interaction with molecular hydrogen at extreme conditions  

DOE Green Energy (OSTI)

The effects of high pressure and temperature on the bonding in ammonia borane (AB), NH{sub 3}BH{sub 3} and decaborane (DB), B{sub 10}H{sub 14} and their interactions with molecular hydrogen (H{sub 2}) were investigated using Raman spectroscopy in a diamond anvil cell. At 0.7 GPa, AB becomes amorphous between 120 and 127 C, indicating a positive Clapeyron slope. Heated to 140 C, AB begins to undergo decomposition to polyaminoborane. The amorphous and decomposed AB does not recrystallize back to AB during slow cooling to room temperature or upon application of high pressure up to 3 GPa, underscoring the challenge of rehydrogenation of decomposed AB. The molecular Raman modes broaden in the reacted phase, and the NH{sub 3} modes show no pressure dependence. DB was studied at room temperature up to 11 GPa. The observed frequency dependence with pressure (d{sub {nu}}/dP) and mode Grueneisen parameters varied for different spectral groups, and a new transition was identified at approximately 3 GPa. In both DB and heated AB, we found that they could store additional H{sub 2} with the application of pressure. We estimate that we can store approximately 3 wt % H{sub 2} in heated AB at 3 GPa and 1 wt % H{sub 2} in DB at 4.5 GPa.

Wang, S.

2010-02-24T23:59:59.000Z

26

A molecular mechanics study of morphologic interaction between graphene and Si nanowires on a SiO2 substrate  

Science Conference Proceedings (OSTI)

We study the morphologic interaction between graphene and Si nanowires on a SiO2 substrate, using molecular mechanics simulations. Two cases are considered: (1) a graphene nanoribbon intercalated by a single Si nanowire on a SiO2 ...

Zhao Zhang; Teng Li

2011-01-01T23:59:59.000Z

27

Effects of molecular transport on turbulence-chemistry interactions in a hydrogen-argon-air jet diffusion flame  

DOE Green Energy (OSTI)

A numerical simulation of entrainment, turbulent advection, molecular import and chemical kinetics in a turbulent diffusion flame is used to investigate effects of molecular transport on turbulence-chemistry interactions. A fun finite-rate chemical mechanism is used to represent the combustion of a hydrogen-argon mixture issuing into air. Results based on incorporation of differential diffusion and variable Lewis number are compared to cases with the former effect, or both-effects, suppressed. Significant impact on radical species production and on NO emission index (based on a reduced mechanism for thermal NO) is found. A reduced mechanism for hydrogen-air combustion, omitting both effects and incorporating other simplifications, performs comparably except that its NO predictions agree well with the case of full chemistry and molecular transport, possibly due to cancellation of errors.

Menon, S.; Calhoon, W.H. Jr.; Goldin, G. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Aerospace Engineering; Kerstein, A.R. [Sandia National Labs., Livermore, CA (United States)

1994-01-01T23:59:59.000Z

28

Molecular fluorescent reporters for force and smart surfaces for sensing cell-surface interaction  

E-Print Network (OSTI)

Molecular sensors are powerful because they make it possible to adapt the measurement to the sample instead of a sample to an instrument. Many reporter are available for measuring the chemical properties of a sample, but ...

Barch, Mariya

2009-01-01T23:59:59.000Z

29

Constraint-Based Simulation of Biological Systems Described by Molecular Interaction Maps  

Science Conference Proceedings (OSTI)

We present a method to simulate biochemical networks described by the graphical notation of Molecular Inter- action Maps within stochastic Concurrent Constraint Pro- gramming. Such maps are compact, as they represent im- plicitly a wide set of reactions, ...

Luca Bortolussi; Simone Fonda; Alberto Policriti

2007-11-01T23:59:59.000Z

30

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite  

E-Print Network (OSTI)

spectra were collected at SSRL on beamline 11-2 using a 30%Radiation Lightsource (SSRL) on beamline 10-2 using a fullyBasic Energy Sciences. The SSRL Structural Molecular Biology

Hu, Yung-Jin

2011-01-01T23:59:59.000Z

31

Cocoa Butter and Related CompoundsChapter 14 New Method to Study Molecular Interactions in Fats—Synchrotron Radiation Microbeam X-ray Diffraction  

Science Conference Proceedings (OSTI)

Cocoa Butter and Related Compounds Chapter 14 New Method to Study Molecular Interactions in Fats—Synchrotron Radiation Microbeam X-ray Diffraction Food Science Health Nutrition eChapters Food Science & Technology Health - Nutrition - Bioc

32

Delineating Molecular Interaction Mechanisms in an In Vitro Microbial-Pant Community (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)  

SciTech Connect

Peter Larsen of Argonne National Lab on "Delineating molecular interaction mechanisms in an in vitro microbial-plant community" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, Calif.

Larsen, Peter [Argonne

2013-03-01T23:59:59.000Z

33

Cocoa Butter and Related CompoundsChapter 16 Molecular Interactions of Triacylglycerides in Blends of Cocoa Butter with trans-free Vegetable Oils  

Science Conference Proceedings (OSTI)

Cocoa Butter and Related Compounds Chapter 16 Molecular Interactions of Triacylglycerides in Blends of Cocoa Butter with trans-free Vegetable Oils Food Science Health Nutrition eChapters Food Science & Technology Health - Nutrition - Bioc

34

Spectroscopic and computational investigations of molecular interactions in gas-expanded liquids.  

E-Print Network (OSTI)

??Gas-expanded liquids (GXLs) are a unique class of tunable solvents with unlimited potential. A wide range of solvent properties and solvent interactions and complexes are… (more)

Gohres, John Linton, III

2008-01-01T23:59:59.000Z

35

Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas  

SciTech Connect

Wave-vector resolved radio frequency spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at T{sub c}, and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above T{sub c}.

Perali, A.; Palestini, F.; Pieri, P.; Strinati, G. C. [Dipartimento di Fisica, Universita di Camerino, I-62032 Camerino (Italy); Stewart, J. T.; Gaebler, J. P.; Drake, T. E.; Jin, D. S. [JILA, NIST and University of Colorado, and Department of Physics, University of Colorado, Boulder, Colorado 80309-0449 (United States)

2011-02-11T23:59:59.000Z

36

MicroCantilever (MC) based nanomechanical sensor for detection of molecular interactions  

Science Conference Proceedings (OSTI)

Specific aims of this study are to investigate the mechanism governing surface stress generation associated with chemical or molecular binding on functionalized microcantilevers. Formation of affinity complexes on cantilever surfaces leads to charge redistribution, configurational change and steric hindrance between neighboring molecules resulting in surface stress change and measureable cantilever deformation. A novel interferometry technique employing two adjacent micromachined cantilevers (a sensing/reference pair) was utilized to measure the cantilever deformation. The sensing principle is that binding/reaction of specific chemical or biological species on the sensing cantilever transduces to mechanical deformation. The differential bending of the sensing cantilever respect to the reference cantilever ensures that measured response is insensitive to environmental disturbances. As a proof of principle for the measurement technique, surface stress changes associated with: self-assembly of alkanethiol, hybridization of ssDNA, and the formation of cocaine-aptamer complexes were measured. Dissociation constant (K{sub d}) for each molecular reaction was utilized to estimate the surface coverage of affinity complexes. In the cases of DNA hybridization and cocaine-aptamer binding, measured surface stress was found to be dependent on the surface coverage of the affinity complexes. In order to achieve a better sensitivity for DNA hybridization, immobilization of receptor molecules was modified to enhance the deformation of underlying surface. Single-stranded DNA (ssDNA) strands with thiol-modification on both 3-foot and 5-foot ends were immobilized on the gold surface such that both ends are attached to the gold surface. Immobilization condition was controlled to obtain similar receptor density as single-thiolated DNA strands. Hybridization of double-thiolated DNA strands leads to an almost two orders of magnitude increase in cantilever deformation. In both DNA hybridization and the conventional mode for cocaine detection, the lowest detectable concentration was determined by binding activity between the ligand and receptor molecules. In order to overcome this limitation for cocaine detection, a novel competition sensing mode that relies on rate of aptamers unbinding from the cantilever due to either diffusion or reaction with cocaine as target ligands in solution was investigated. The rate of unbinding is found to be dependent on the concentration of cocaine molecules. A model based on diffusion-reaction equation was developed to explain the experimental observation. Experimental results indicate that the competition mode reduces the lowest detectable threshold to 200 nM which is comparable to that achieved analytical techniques such as mass spectrometry.

Kang, Kyung

2011-05-11T23:59:59.000Z

37

The Molecular Interaction of CAR and JAML Recruits the Central Cell Signal Transducer PI3K  

Science Conference Proceedings (OSTI)

Coxsackie and adenovirus receptor (CAR) is the primary cellular receptor for group B coxsackieviruses and most adenovirus serotypes and plays a crucial role in adenoviral gene therapy. Recent discovery of the interaction between junctional adhesion molecule-like protein (JAML) and CAR uncovered important functional roles in immunity, inflammation, and tissue homeostasis. Crystal structures of JAML ectodomain (2.2 angstroms) and its complex with CAR (2.8 angstroms) reveal an unusual immunoglobulin-domain assembly for JAML and a charged interface that confers high specificity. Biochemical and mutagenesis studies illustrate how CAR-mediated clustering of JAML recruits phosphoinositide 3-kinase (P13K) to a JAML intracellular sequence motif as delineated for the {alpha}{beta} T cell costimulatory receptor CD28. Thus, CAR and JAML are cell signaling receptors of the immune system with implications for asthma, cancer, and chronic nonhealing wounds.

Verdino, Petra; Witherden, Deborah A.; Havran, Wendy L.; Wilson, Ian A. (Scripps)

2010-11-15T23:59:59.000Z

38

Interactive online simulations and curriculum for teaching and learning fundamental concepts in molecular science at the undergraduate level  

E-Print Network (OSTI)

The number of research disciplines that focus, at least in part, on the atomic or molecular level is rapidly increasing. As a result, the concepts that describe the behavior of atoms and molecules, known collectively as ...

Ashe, Colin Alexander

2010-01-01T23:59:59.000Z

39

Molecular nanocomposites.  

Science Conference Proceedings (OSTI)

The goals of this project are to understand the fundamental principles that govern the formation and function of novel nanoscale and nanocomposite materials. Specific scientific issues being addressed include: design and synthesis of complex molecular precursors with controlled architectures, controlled synthesis of nanoclusters and nanoparticles, development of robust two or three-dimensionally ordered nanocomposite materials with integrated functionalities that can respond to internal or external stimuli through specific molecular interactions or phase transitions, fundamental understanding of molecular self-assembly mechanisms on multiple length scales, and fundamental understanding of transport, electronic, optical, magnetic, catalytic and photocatalytic properties derived from the nanoscale phenomena and unique surface and interfacial chemistry for DOE's energy mission.

Voigt, James A.

2010-03-01T23:59:59.000Z

40

Intra-membrane molecular interactions of K%2B channel proteins : application to problems in biodefense and bioenergy.  

SciTech Connect

Ion channel proteins regulate complex patterns of cellular electrical activity and ionic signaling. Certain K+ channels play an important role in immunological biodefense mechanisms of adaptive and innate immunity. Most ion channel proteins are oligomeric complexes with the conductive pore located at the central subunit interface. The long-term activity of many K+ channel proteins is dependent on the concentration of extracellular K+; however, the mechanism is unclear. Thus, this project focused on mechanisms underlying structural stability of tetrameric K+ channels. Using KcsA of Streptomyces lividans as a model K+ channel of known structure, the molecular basis of tetramer stability was investigated by: 1. Bioinformatic analysis of the tetramer interface. 2. Effect of two local anesthetics (lidocaine, tetracaine) on tetramer stability. 3. Molecular simulation of drug docking to the ion conduction pore. The results provide new insights regarding the structural stability of K+ channels and its possible role in cell physiology.

Moczydlowski, Edward G.

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Investigation of the effect of intra-molecular interactions on the gas-phase conformation of peptides as probed by ion mobility-mass spectrometry, gas-phase hydrogen/deuterium exchange, and molecular mechanics  

E-Print Network (OSTI)

Ion mobility-mass spectrometry (IM-MS), gas-phase hydrogen/deuterium (H/D) exchange ion molecule reactions and molecular modeling provide complimentary information and are used here for the characterization of peptide ion structure, including fine structure detail (i.e., cation-? interactions, ?-turns, and charge solvation interactions). IM-MS experiments performed on tyrosine containing tripeptides show that the collision cross-sections of sodiated, potassiated and doubly sodiated species of gly-gly-tyr are smaller than that of the protonated species, while the cesiated and doubly cesiated species are larger. Conversely, all of the alkali-adducted species of try-gly-gly have collision cross-sections that are larger than that of the protonated species. The protonated and alkali metal ion adducted (Na+, K+ and Cs+) species of bradykinin and bradykinin fragments 1-5, 1-6, 1-7, 1-8, 2-7, 5-9 and 2-9 were also studied using IM-MS and the alkali metal ion adducts of these species were found to have cross-sections very close to those of the protonated species. Additionally, multiple peak features observed in the ATDs of protonated bradykinin fragments 1-5, 1-6 and 1-7 are conserved upon alkali metal ion adduction. It was observed from gas-phase H/D ion molecule reactions that alkali adducted species exchange slower and to a lesser extent than protonated species in the tyrosine- and arginine-containing peptides. Experimental and computational results are discussed in terms of peptide ion structure, specifically the intra-molecular interactions present how those interactions change upon alkali salt adduction, as well as with the sequence of the peptide. Additionally, IM-MS data suggests the presence of a compact conformation of bradykinin fragment 1-5 (RPPGF) when starting from organic solvent conditions. As water is added stepwise to methanolic solutions, a more extended conformation is populated. When the starting solution is composed of ?90% water, two distinct mobility profiles are observed as well as a shoulder, indicating the presence of three gas-phase conformations for RPPGF. Gas-phase H/D exchange of [M+H]+ ions prepared from aqueous solvents show a bi-exponential decay, whereas samples prepared from organic solvents show a single exponential decay. The effect of solvent on gas-phase peptide ion structure, i.e., solution-phase memory effects, is discussed and gas-phase structures are compared to know solution-phase structures.

Sawyer, Holly Ann

2004-12-01T23:59:59.000Z

42

Gas Bubbles and Gas Pancakes at Liquid/Solid Interface: A Continuum Theory Incorporated with Molecular Interactions  

E-Print Network (OSTI)

The states of gas accumulated at the liquid-solid interface are analyzed based on the continuum theory where the Hamaker constant is used to describe the long-range interaction at the microscopic scale. The Hamaker constant is always negative, whereas the gas spreading coefficient can be either sign. Despite the complexity of gas, including that the density profile may not be uniform due to absorption on both solid and liquid surfaces, we predict three possible gas states at the liquid-solid interface, i.e. complete wetting, partial wetting and pseudopartial wetting. These possible gas states correspond respectively to a gas pancake (or film) surrounded by a wet solid, a gas bubble with a finite contact angle, and a gas bubble(s) coexisting with a gas pancake. Typical thickness of the gas pancakes is at the nanoscale within the force range of the long-range interaction, whereas the radius of the gas bubbles can be large. The state of gas bubble(s) coexisting with a gas film is predicted theoretically for the first time. Our theoretical results can contribute to the development of a unified picture of gas nucleation at the liquid-solid interface.

Zhaoxia Li; Xuehua Zhang; Lijuan Zhang; Xiaocheng Zeng; Jun Hu; Haiping Fang

2006-08-04T23:59:59.000Z

43

Ab initio molecular dynamics simulations of ion–solid interactions in Gd2Zr2O7 and Gd2Ti2O7  

Science Conference Proceedings (OSTI)

The development of the ab initio molecular dynamics (AIMD) method has made it a powerful tool in describing ion–solid interactions in materials, with the determination of threshold displacement energies with ab initio accuracy, and prediction of a new mechanism for defect generation and new defective states that are different from classical molecular dynamics (MD) simulations. In the present work, this method is employed to study the low energy recoil events in Gd2Zr2O7 and Gd2Ti2O7. The weighted average threshold displacement energies in Gd2Zr2O7 are determined to be 38.8 eV for Gd, 41.4 eV for Zr, 18.6 eV for O48f, and 15.6 eV for O8b, which are smaller than the respective values of 41.8, >53.8, 22.6 and 16.2 eV in Gd2Ti2O7. It reveals that all the ions in Gd2Zr2O7 are more easily displaced than those in Gd2Ti2O7, and anion order–disorder is more likely to be involved in the displacement events than cation disordering. The average charge transfer from the primary knock-on atom to its neighbors is estimated to be [similar]0.15, [similar]0.11 to 0.27 and [similar]0.1 to 0.13 |e| for Gd, Zr (or Ti), and O, respectively. Neglecting the charge transfer in the interatomic potentials may result in the larger threshold displacement energies in classical MD.

Wang, X. J.; Xiao, Haiyan Y.; Zu, Xiaotao; Zhang, Yanwen; Weber, William J.

2012-12-21T23:59:59.000Z

44

Ab initio molecular dynamics simulations of ion-solid interactions in Gd2Zr2O7 and Gd2Ti2O7  

SciTech Connect

The development of ab initio molecular dynamics (AIMD) method has made it a powerful tool in describing ion-solid interactions in materials, with identification determination of threshold displacement energies with ab initio accuracy, and prediction of new mechanism for defect generation and new defective states that are different from classical molecular dynamics (MD) simulations. In the present work, this method is employed to study the low energy recoil events in Gd2Zr2O7 and Gd2Ti2O7. The weighted average threshold displacement energies in Gd2Zr2O7 are determined to be 38.8 eV for Gd, 41.4 eV for Zr, 18.6 eV for O48f, and 15.6 eV for O8b, which are smaller than the respective values of 41.8, >53.8, 22.6 and 16.2 eV in Gd2Ti2O7. It reveals that all the ions in Gd2Zr2O7 are more easily displaced than those in Gd2Ti2O7, and anion order-disorder are more likely to be involved in the displacement events than cation disordering. The average charge transfer from the primary knock-on atom to its neighbors is estimated to be ~0.15, ~0.11-0.27 and ~0.1-0.13 |e| for Gd, Zr (or Ti), and O, respectively. Negligence of the charge transfer in the interatomic potentials may result in the larger threshold displacement energies in classical MD.

Wang, X J [University of Electronic Science and Technology of China (UESTC); Xiao, Haiyan [University of Tennessee, Knoxville (UTK); Zu, X T [University of Electronic Science and Technology of China (UESTC); Zhang, Yanwen [ORNL; Weber, William J [ORNL

2013-01-01T23:59:59.000Z

45

Soft Molecular Computing Computer Science  

E-Print Network (OSTI)

Soft Molecular Computing Max Garzon Computer Science The University of Memphis Memphis, TN 38152@memphis.edu Abstract Molecular computing (MC) utilizes the complex interaction of biomolecules and molecular biology for computational purposes. Five years later, substantial obstacles remain to bring the potential of molecular

Deaton, Russell J.

46

DEPARTlVIENT OF ENERGY P"IAI~ , EERE PROJECT MANAGEMENT...  

NLE Websites -- All DOE Office Websites (Extended Search)

OF ENERGY P"IAI , EERE PROJECT MANAGEMENT CENTER NEPA DETERlVIINATION RECIPIENT: South Dakota State University STATE: SO PROJECT 8eneficial plant microbe interactions and...

47

Interdisciplinary Research and Training Program in the Plant Sciences  

Science Conference Proceedings (OSTI)

Research on plants continued. Topics include: Molecular basis of symbiotic plant-microbe interations; enzymatic mechanisms and regulation of plant cell wall biosynthesis; molecular mechanisms that regulate the expression of genes in plants; resistance of plants to environmental stress; studies on hormone biosynthesis and action; plant cell wall proteins; interaction of nuclear and organelle genomes; sensor transduction in plants; molecular mechanisms of trafficking in the plant cell; regulation of lipid metabolism; molecular bases of plant disease resistance mechanisms; biochemical and molecular aspects of plant pathogenesis; developmental biology of nitrogen-fixing cyanobacteria; environmental control of plant development and its relation to plant hormones.

Wolk, C.P.

1992-01-01T23:59:59.000Z

48

Molecular-Frame Angular Distributions of Resonant Auger Electrons  

NLE Websites -- All DOE Office Websites (Extended Search)

new insights in the dynamic world of molecular phenomena. The molecular frame is the natural reference frame for the study of molecules and their interaction with electromagnetic...

49

Magnetismo Molecular (Molecular Magentism)  

SciTech Connect

The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

Reis, Mario S [Universidade Federal Fluminense, Brasil; Moreira Dos Santos, Antonio F [ORNL

2010-07-01T23:59:59.000Z

50

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

The People of the Molecular Foundry In addition to state-of-the-art instrumentation, Users at the Molecular Foundry benefit from the unique in-house expertise of its researchers....

51

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

The Molecular Foundry The Molecular Foundry Lawrence Berkeley National Laboratory One Cyclotron Road Building 67 Berkeley, CA 94720 Screen reader users: click here for plain HTML Go to Google Maps Home Molecular Foundry, Berkeley, CA Loading... Map Sat Ter Did you mean a different: Did you mean a different: Did you mean a different: Add Destination - Show options Hide options Get Directions Note: Public transit coverage may not be available in this area. Molecular Foundry, Berkeley, CA A Molecular Foundry 67 Cyclotron Rd, Berkeley, CA ‎ foundry.lbl.gov 3 reviews · "Berkeley Lab. About the Foundry. What is the Molecular Foundry? Research Themes; Foundry Careers; Media Gallery; Other User Facilities external link; Contact Us" - lbl.gov Directions Search nearby more See all 14 results for Molecular Foundry, Berkeley, CA

52

Molecular Simulation of Nanofluids Mark J. Biggs  

E-Print Network (OSTI)

Molecular Simulation of Nanofluids Mark J. Biggs School of Chemical Engineering, The University. As the molecules and interactions between them are explicitly modelled in these `molecular simulations', they may the volumes and timescales accessible to molecular simulation are small on the macroscale, they are ideally

Adler, Joan

53

A thread calculus with molecular dynamics  

Science Conference Proceedings (OSTI)

We present a theory of threads, interleaving of threads, and interaction between threads and services with features of molecular dynamics, a model of computation that bears on computations in which dynamic data structures are involved. Threads can interact ... Keywords: Molecular dynamics, Projective limit model, Restriction, Thread algebra, Thread calculus

J. A. Bergstra; C. A. Middelburg

2010-07-01T23:59:59.000Z

54

I. Interaction of ammonia with single crystal rhodium catalysts. II. Hydrogen and nitrogen adsorption on a W(111) surface: a theoretical molecular orbital approach  

DOE Green Energy (OSTI)

Rates of ammonia decomposition on (110), (100), and (111) single crystal faces of rhodium were measured at 580 to 725/sup 0/K and 10/sup -3/ to 500 x 10/sup -3/ torr. The decomposition rates were proportional to P/sub NH/sub 3//sup/1/2/ and P/sub NH/sub 3// at low and high hydrogen pressures, respectively. The H/sub 2/ kinetic order varied from 0 (low P/sub H/sub 2//) to -1.0 (high P/sub H/). The rate was independent of N/sub 2/ pressure. NH/sub 3/ decomposes about 1.5 times faster than ND/sub 3/ on the (110) and (111) faces. Rates on the (110) surface are over 10 times as rapid as on the (111). LEED, Auger, and flash desorption experiments indicated that boron was a significant surface poison and that the Rh(110) surface was essentially nitrogen-free. A rate expression is derived from a model involving surface species Rh/sub 2/NH, RhH, and RhN on a nearly bare RH surface. The rate limiting process involves the concurrent dehydrogenation of Rh/sub 2/NH and desorption of N/sub 2/. A decreasing NH/sub 3/ order (< 1/2) at high P/sub NH/sub 3// and low T is due to buildup of surface intermediates. The relative bonding energies of hydrogen and nitrogen chemisorbed at three sites on a W(111) surface were obtained via the extended Hueckel molecular orbital theory. The preferred site for both H and N chemisorption was determined as the TOP position, i.e., a single coordination site on top of a protruding W atom. The W(111) surface was simulated by truncated arrays of seven tungsten atoms. The basis set for the calculations included the tungsten valence orbitals plus the filled 5p orbitals needed for repulsion at small internuclear distances. N adsorption in the three-fold holes available on the W(111) lattices used disrupted the W--W bonds sufficiently to cause the overall bond energy to be less than for the single coordination site. The dissymmetry between the three-fold lattices and the four-fold W d orbitals may also be a contributing factor.

Vavere, A.

1979-01-01T23:59:59.000Z

55

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

SEMINARS ARCHIVE The Molecular Foundry regularly offers seminars and events that feature compelling research and information for those who investigate at the nanoscale. Seminars...

56

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

EVENTS ARCHIVE The Molecular Foundry regularly offers seminars and events that feature compelling research and information for those who investigate at the nanoscale. Seminars...

57

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

efficient energy storage and conversion. Electron donors and acceptors at interfaces Molecular level design and synthesis has created tailor-made electron donors and acceptors...

58

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers Information about current openings at the Molecular Foundry and complete application information is available from LBNL Human Resources. Please follow the application...

59

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

the Future, Atom by Atom Organized into six interdependent research Facilities, The Molecular Foundry, along with Berkeley Lab's additional User programs and affiliated research...

60

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Sign-Up (Resource Database) Weekly Seminars Users' Executive Committee (UEC) The Molecular Foundry Users' Association is composed of all Foundry Users. Upon beginning work on...

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Management Code of Conduct Conflict Resolution Beginning your project Access to the Molecular Foundry is free of charge for approved, non-proprietary research. (Proprietary...

62

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

SEMINARS The Molecular Foundry regularly offers seminars and events that feature compelling research and information for those who investigate at the nanoscale. Seminars occur on...

63

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

is equipped with a variety of tools to aid in work with biomolecules, microbes, molecular biology techniques and cell culture. These tools include: a BioFlo fermentor (14 L),...

64

Molecular Cell Noncooperative Interactions between Transcription  

E-Print Network (OSTI)

the definition of anatomical boundaries during development. Here we show that NF-kB, a TF controlling noncoop- eratively. We observed that increasing concentra- tions of NF-kB are translated into gradual by combining quantitative measurements and a minimal physical model of an NF-kB-dependent promoter. We

Bulyk, Martha L.

65

Molecular fountain.  

SciTech Connect

A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

Strecker, Kevin E.; Chandler, David W.

2009-09-01T23:59:59.000Z

66

Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water  

Science Conference Proceedings (OSTI)

The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Huenenberger, J. Chem. Phys. 124, 224501 (2006); M. M. Reif and P. H. Huenenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +}) and halide (F{sup -}, Cl{sup -}, Br{sup -}, I{sup -}) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998); Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, {Delta}G{sub hyd} {sup O-minus} [H{sup +}]=-1100, -1075 or -1050 kJ mol{sup -1}, resulting in three sets L, M, and H for the SPC water model and three sets L{sub E}, M{sub E}, and H{sub E} for the SPC/E water model (alternative sets can easily be interpolated to intermediate {Delta}G{sub hyd} {sup O-minus} [H{sup +}] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective ionic radius entering into the calculation of the correction terms is also evaluated and found to be very limited. Ultimately, it is expected that comparison with other experimental ionic properties (e.g., derivative single-ion solvation properties, as well as data concerning ionic crystals, melts, solutions at finite concentrations, or nonaqueous solutions) will permit to validate one specific set and thus, the associated {Delta}G{sub hyd} {sup O-minus} [H{sup +}] value (atomistic consistency assumption). Preliminary results (first-peak positions in the ion-water radial distribution functions, partial molar volumes of ionic salts in water, and structural properties of ionic crystals) support a value of {Delta}G{sub hyd} {sup O-minus} [H{sup +}] close to -1100 kJ{center_dot}mol{sup -1}.

Reif, Maria M.; Huenenberger, Philippe H. [Laboratory of Physical Chemistry, ETH Zuerich, CH-8093 Zuerich (Switzerland)

2011-04-14T23:59:59.000Z

67

Nanostructured gene and drug delivery systems based on molecular self-assembly  

E-Print Network (OSTI)

Molecular self-assembly describes the assembly of molecular components into complex, supramolecular structures governed by weak, non-covalent interactions. In recent years, molecular self-assembly has been used extensively ...

Wood, Kris Cameron

2007-01-01T23:59:59.000Z

68

Molecular Foundry  

NLE Websites -- All DOE Office Websites

Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE About the Foundry What is the Molecular Foundry? Research Themes Foundry Careers Media Gallery Other User Facilities external link Contact Us Go News & Highlights Users People Facilities Imaging and Manipulation Nanofabrication Theory Inorganic Biological Organic NCEM external link Seminars & Events Publications The Molecular Foundry is a Department of Energy-funded nanoscience research facility that provides users from around the world with access to cutting-edge expertise and instrumentation in a collaborative, multidisciplinary environment. Call for Proposals: The next deadline for standard proposals is Through March 31, 2014 Find out more information about becoming a Molecular Foundry facilities User. 2013 Annual User Meeting Postponed - Date TBD

69

Atomic, Molecular and Optical Physics Group | Advanced Photon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic, Molecular and Optical Physics homeimg We seek a predictive understanding of intense x-ray and optical interactions with matter. We study new phenomena induced by intense...

70

Molecular Engineering Approaches to Highly Structured Materials  

E-Print Network (OSTI)

Design and synthesis of novel supramolecular architectures is an interesting area of research in the last two decades. Intermolecular interactions assisted self-assembly of molecular and macromolecular building blocks play ...

Valiyaveettil, Suresh

71

Biological Interfaces | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Interfaces A scientist examines bacteria isolated from the rhizosphere of a poplar tree as part of research on plant-microbe interactions.Source: ORNL Flickr site ORNL...

72

NEWTON's Molecular Biology Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Biology Videos Do you have a great molecular biology video? Please click our Ideas page. Featured Videos: University of Berkeley - Molecular Biology Lectures University...

73

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

See the Foundry's full equipment list See the Foundry's full equipment list Organic and Macromolecular Synthesis Capabilities & Tools Major Instruments and Capabilities AB SCIEX TF4800 MALDI TOF-TOF Mass Spectrometer This instrument is the tandem time-of-flight mass spectrometer systems, providing the excellent level of molecular mass coverage in the range of molecular masses 500 and 150,000 Da, high throughput, and confidence in both qualitative and quantitative analyses. The analyzer combines all of the advantages of MALDI in a flexible, easy-to-use, ultra-high-performance mass spectrometer with all the advanced capabilities of software. On-axis laser provides high sensitivity to identify and quantitate low-abundance compounds in complex samples. High-resolution precursor ion selection lets

74

Molecular Phylogeny Reconstruction  

E-Print Network (OSTI)

Molecular Phylogeny Reconstruction Sudhir Kumar, Arizona State University, Tempe, Arizona, USA Alan Filipski, Arizona State University, Tempe, Arizona, USA Molecular phylogenetics deals with the inference molecular data. By modelling patterns of molecular change in protein and deoxyribonucleic acid (DNA

Kumar, Sudhir

75

From Molecular Computing to Molecular Programming  

E-Print Network (OSTI)

From Molecular Computing to Molecular Programming Masami Hagiya Graduate School of Science of the Japanese Molecular Computer Project, and foresee the future of the #12;eld. In addition to describing the major achievements of the project, Suyama's Dynamic Programming Molecular Computer and Sakamoto

Hagiya, Masami

76

The Role of XAFS in Advancing the Frontiers of Molecular  

E-Print Network (OSTI)

The Role of XAFS in Advancing the Frontiers of Molecular Environmental Science Donald L. Sparks S information on the molecular aspects and interactions of a compounds No direct electronic information Magnetic under high vacuum (ex-situ) #12;#12;Molecular Environmental Science Study of the chemical and physical

Sparks, Donald L.

77

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

See the Foundry's full equipment list See the Foundry's full equipment list Nanofabrication Capabilities & Tools Major Capabilities: Instruments and Labs Zeiss Crossbeam 1540 EsB The Molecular Foundry Zeiss Cross-beam is one of the most versatile lithographic and inspection tools allowing fabrication of complex prototypes for nanoelectronics, nano-optical antenna, modifying scanning probe tips, rapid electrical contacting and many other applications. The 1500XB Cross Beam combines the Gemini field emission column (FESEM) with the Orsay Physics focused ion beam (FIB). In addition, the instrument offers a multi-channel gas injection system to allow ion and electron beam induced deposition (IBID and EBID) and chemically assisted ion beam etching (CAIBE). The tool can be used for lithographic patterning of materials or

78

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory of Nanostructured Materials Theory of Nanostructured Materials The Theory of Nanostructured Materials Facility at the Molecular Foundry is focused on expanding our understanding of materials at the nanoscale. Our research connects the structural and dynamical properties of materials to their functions, such as electrical conductivity and storage, light-harvesting for electricity and fuel, or gas separation and sequestration. We develop and employ a broad range of tools, including advanced electronic-structure theory, excited-state methods, model Hamiltonians, and statistical mechanical models. This combination of approaches reveals how materials behave at the nanoscale, in pursuit of materials and devices that meet global energy and sustainability needs. Electronic structure of complex materials and interfaces for energy

79

<interaction num ...  

Science Conference Proceedings (OSTI)

... interaction> gun powder wiki ... num="4"> Guinness sales per day ... num="5"> Guinness sale of pints ...

2012-02-28T23:59:59.000Z

80

Interactive Jobs  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Jobs Interactive Jobs Interactive Jobs Interactive Batch Jobs The login nodes on Genepool should not be used for heavy interactive work. These login nodes are shared amoungst all Genepool users so heavy CPU or memory usage will affect other Genepool users. 10 nodes have been reserved on Genepool for high priority and interactive work. Each user can use up to 2 slots at a time in the high priority queue. Use the qlogin command to run jobs interactively. The example below shows how to request an interactive session on Genepool . genepool:$~> qlogin -l high.c This will put you directly onto a node where you can do interactive work. kmfagnan@genepool01:~$ qlogin -l high.c Your job 1459021 ("QLOGIN") has been submitted waiting for interactive job to be scheduled ......

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Molecular Biology DEGREE PROGRAMME  

E-Print Network (OSTI)

BSc (Hons) Molecular Biology DEGREE PROGRAMME GUIDE 2013-2014 #12;BSc (Hons) Molecular Biology - Year 2 - Year 3 - Year 4 Introduction Molecular biology aims to understand living systems by focusing on the molecular components upon which they are built. Molecular biology is one of great successes of 20th century

Siddharthan, Advaith

82

Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofabrication Nanofabrication Our facility strives to gain insight into fundamental nanofabrication processes, as well as the generation of structures that control light, electron, or energy flow, and how those, and other, nanoscale structures interact with light on ultrafast time scales. Measuring plasmonic structures High yield and performance optical transformers are fabricated by nanoimprint lithography for near-field probe and ultra-resolution sub-surface imaging (a). The new ultrafast laser lab uses second harmonic generation imaging to probe the plasmonic enhancement frequency response of these and other photonic and plasmonic structures. Integrating multi-modal optical devices A new analytical device has been developed that uses a fluidic channel to deliver a specific target to a plasmonic hot spot created by a nanoantenna

83

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

PEOPLE JOB OPPORTUNITIES USER'S ASSOCIATION CONTACT US Foundry Intranet DOE Basic Energy Sciences User Facilities Molecular Foundry Seminar "Tuning Phonons in Molecular...

84

NEWTON's Molecular Biology Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Biology Archive: Loading Most Recent Molecular Biology Questions: Cytoplasm pH DNA Extract and Cold Alcohol Albino Gene Loci Male Development Candy and Bacteria Revisited...

85

From Molecular Cell Engineering to Biologically Inspired Engineering DONALD E. INGBER  

E-Print Network (OSTI)

From Molecular Cell Engineering to Biologically Inspired Engineering DONALD E. INGBER Departments) Abstract--The field of Molecular Cell Engineering melds techniques from molecular cell biology, engineering, such as how cells self organize through collective interactions among thousands of individ- ual molecular

Ingber, Donald E.

86

Molecular mean field theory for liquid water  

E-Print Network (OSTI)

Attractive bonding interactions between molecules typically have inherent conservation laws which influence the statistical properties of such systems in terms of corresponding sum rules. We considered lattice water as an example and enunciated the consequences of the sum rule through a general computational procedure called "Molecular mean field" theory. Fluctuations about mean field are computed and many of the liquid properties have been deduced and compared with Monte Carlo simulation, molecular dynamics and experimental results. Large correlation lengths are seen to be a consequence of the sum rule in liquid phase. Long range Coulomb interactions are shown to have minor effects on our results.

Jampa Maruthi Pradeep Kanth; Ramesh Anishetty

2010-04-09T23:59:59.000Z

87

Fluctuating-friction molecular motors  

E-Print Network (OSTI)

Abstract. We show that the correlated stochastic fluctuation of the friction coefficient can give rise to long-range directional motion of a particle undergoing Brownian random walk in a constant periodic energy potential landscape. The occurrence of this motion requires the presence of two additional independent bodies interacting with the particle via friction and via the energy potential, respectively, which can move relative to each other. Such three-body system generalizes the classical Brownian ratchet mechanism, which requires only two interacting bodies. In particular, we describe a simple two-level model of fluctuating-friction molecular motor that can be solved analytically. In our previous work [M.K., L.M and D.P. 2000 J. Nonlinear Opt. Phys. Mater. 9 157] this model has been first applied to understanding the fundamental mechanism of the photoinduced reorientation of dye-doped liquid crystals. Applications of the same idea to other fields such as molecular biology and nanotechnology can however be envisioned. As an example, in this paper we work out a model of the actomyosin system based on the fluctuating-friction mechanism. PACS numbers: 05.40.+j, 42.70.Df, 87.10.+eFluctuating-friction molecular motors 2 1.

unknown authors

2001-01-01T23:59:59.000Z

88

A molecular mechanics force field for lignin  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Molecular Mechanics Force Field for Lignin LOUKAS PETRIDIS, JEREMY C. SMITH Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 Received 14 February 2008; Revised 8 May 2008; Accepted 12 June 2008 DOI 10.1002/jcc.21075 Published online 1 August 2008 in Wiley InterScience (www.interscience.wiley.com). Abstract: A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived using the RESP electrostatic potential fitting method supplemented by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. Finally, the force field is validated

89

REVIEW ARTICLE Molecular Anions  

E-Print Network (OSTI)

REVIEW ARTICLE Molecular Anions Jack Simons Chemistry Department, Henry Eyring Center ReceiVed: February 28, 2008 The experimental and theoretical study of molecular anions has undergone on the experimental front. Theoretical developments on the electronic structure and molecular dynamics fronts now

Simons, Jack

90

Molecular Cell Short Article  

E-Print Network (OSTI)

Molecular Cell Short Article Nucleosome Organization Affects the Sensitivity of Gene Expression to Promoter Mutations Gil Hornung,1 Moshe Oren,2 and Naama Barkai1,* 1Department of Molecular Genetics 2Department of Molecular Cell Biology Weizmann Institute of Science, Rehovot, Israel *Correspondence: naama

Barkai, Naama

91

Fluctuating-friction molecular motors  

E-Print Network (OSTI)

We show that the correlated stochastic fluctuation of the friction coefficient can give rise to long-range directional motion of a particle undergoing Brownian random walk in a constant periodic energy potential landscape. The occurrence of this motion requires the presence of two additional independent bodies interacting with the particle via friction and via the energy potential, respectively, which can move relative to each other. Such three-body system generalizes the classical Brownian ratchet mechanism, which requires only two interacting bodies. In particular, we describe a simple two-level model of fluctuating-friction molecular motor that can be solved analytically. In our previous work [M.K., L.M and D.P. 2000 J. Nonlinear Opt. Phys. Mater. vol. 9, 157] this model has been first applied to understanding the fundamental mechanism of the photoinduced reorientation of dye-doped liquid crystals. Applications of the same idea to other fields such as molecular biology and nanotechnology can however be envisioned. As an example, in this paper we work out a model of the actomyosin system based on the fluctuating-friction mechanism.

Lorenzo Marrucci; Domenico Paparo; Markus Kreuzer

2001-10-12T23:59:59.000Z

92

Entanglement creation in cold molecular gases using strong laser pulses  

E-Print Network (OSTI)

While many-particle entanglement can be found in natural solids and strongly interacting atomic and molecular gases, generating highly entangled states between weakly interacting particles in a controlled and scalable way presents a significant challenge. We describe here a one-step method to generate entanglement in a dilute gas of cold polar molecules. For molecules in optical traps separated by a few micrometers, we show that maximally entangled states can be created using the strong off-resonant pulses that are routinely used in molecular alignment experiments. We show that the resulting alignment-mediated entanglement can be detected by measuring laser-induced fluorescence with single-site resolution and that signatures of this molecular entanglement also appear in the microwave absorption spectra of the molecular ensemble. We analyze the robustness of these entangled molecular states with respect to intensity fluctuations of the trapping laser and discuss possible applications of the system for quantum information processing.

Felipe Herrera; Sabre Kais; K. Birgitta Whaley

2013-02-26T23:59:59.000Z

93

Molecular dynamics study of nanoparticle evolution in a background gas under laser ablation conditions  

E-Print Network (OSTI)

Molecular dynamics study of nanoparticle evolution in a background gas under laser ablation,7] are used to explain the evaporation­condensation process. Molecular dynamics (MD) method [4,5,8,9] directly simulates molecular movement and interactions and can be used to investigate the evaporation process

Zhigilei, Leonid V.

94

Molecular basis for activation of G protein-coupled receptor kinases  

E-Print Network (OSTI)

Molecular basis for activation of G protein-coupled receptor kinases Cassandra A Boguth1,3 , Puja regulated by acti- vated GPCRs, but the molecular basis for this interaction is not understood. Herein, we to discriminate between active and inactive GPCRs. The molecular basis for how these protein families can identify

Rosenberg, Noah

95

A molecular mechanics force field for lignin  

DOE Green Energy (OSTI)

A CHARMM molecular mechanics force field for lignin is derived. Parameterization is based on reproducing quantum mechanical data of model compounds. Partial atomic charges are derived using the RESP electrostatic potential fitting method supplemented by the examination of methoxybenzene:water interactions. Dihedral parameters are optimized by fitting to critical rotational potentials and bonded parameters are obtained by optimizing vibrational frequencies and normal modes. Finally, the force field is validated by performing a molecular dynamics simulation of a crystal of a lignin fragment molecule and comparing simulation-derived structural features with experimental results. Together with the existing force field for polysaccharides, this lignin force field will enable full simulations of lignocellulose.

Petridis, Loukas [ORNL; Smith, Jeremy C [ORNL

2009-02-01T23:59:59.000Z

96

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL Masthead A-Z Index Berkeley Lab masthead Phone Book Jobs Search The Molecular Foundry Home DOE - Office of Science ABOUT US FACILITIESCAPABILITIES RESEARCH BECOMING A USER...

97

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

PEOPLE JOB OPPORTUNITIES USER'S ASSOCIATION CONTACT US Foundry Intranet DOE Basic Energy Sciences User Facilities Molecular Foundry Seminar "Atomic Structure and Applications...

98

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

PEOPLE JOB OPPORTUNITIES USER'S ASSOCIATION CONTACT US Foundry Intranet DOE Basic Energy Sciences User Facilities Molecular Foundry Seminar Mineralization at the Organic...

99

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

PEOPLE JOB OPPORTUNITIES USER'S ASSOCIATION CONTACT US Foundry Intranet DOE Basic Energy Sciences User Facilities Molecular Foundry Seminar "What Happens to Crystals When...

100

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Brett Helms, Berkeley Lab Title: Building Our Understanding of Nanocrystal Surface Structure Using Heterometallic Molecular Beacons Location: 67-3111 Chemla room View the Foundry...

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A Molecular Simulation Study  

Science Conference Proceedings (OSTI)

Presentation Title, Enhanced CO2 Adsorption in Ti-exchanged Zirconium Organic Frameworks – A Molecular Simulation Study. Author(s), Ravichandar Babarao ...

102

Turbulent molecular clouds  

E-Print Network (OSTI)

Stars form within molecular clouds but our understanding of this fundamental process remains hampered by the complexity of the physics that drives their evolution. We review our observational and theoretical knowledge of molecular clouds trying to confront the two approaches wherever possible. After a broad presentation of the cold interstellar medium and molecular clouds, we emphasize the dynamical processes with special focus to turbulence and its impact on cloud evolution. We then review our knowledge of the velocity, density and magnetic fields. We end by openings towards new chemistry models and the links between molecular cloud structure and star--formation rates.

Hennebelle, Patrick

2012-01-01T23:59:59.000Z

103

The Molecular Foundry  

NLE Websites -- All DOE Office Websites (Extended Search)

Seminar Schedule Abstract: The intriguing prospects of molecular electronics, nanotechnology, biomaterials, and the aim to close the gap between synthetic and biological...

104

Educational Molecular Biology Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Biology Games Do you have a great game? Please click our Ideas page. Featured Games: Biology Games fom biologyjunction.com Biology Games fom biologyjunction.com...

105

Computational modeling of protein-biomolecule interactions with application to mechanotransduction and antibody maturation  

E-Print Network (OSTI)

Cell survival, growth, differentiation, migration, and communication all depend on the appropriate combination of specific interactions between proteins and biomolecules. Therefore, understanding the molecular mechanisms ...

Zyto, Aurore

2008-01-01T23:59:59.000Z

106

Molecular models for explosives  

Science Conference Proceedings (OSTI)

Any fundamental understanding of detonations and explosives' behavior requires as a starting point a knowledge of molecular properties. Indeed, there is a sizable literature concerning observed decomposition kinetics, x-ray crystal structures, heats of formation, etc. for explosives. As a result of this extensive experimental work, a large and ever increasing number of observed properties of explosives are available. Given sufficient data, models for the prediction of molecular properties can be developed and calibrated. Nevertheless, many desirable molecular properties can be obtained with considerable effort and, in many cases, experimental measurements are not possible for practical reasons; e.g., bond dissociation energies are very difficult to obtain for explosives. Consequently, theoretical methods for obtaining these properties are quite desirable. In addition, it is oftentimes desired to estimate the properties of unknown molecules. Consequently, methods for the estimation of molecular properties, which might seem quite crude by other standards, can be of considerable practical value. We present in this paper some of our recent efforts at extending and developing molecular models for explosives. These efforts fall into three main areas: Estimation of crystal densities of organic nitrates and perchlorates by an entirely empirical group additivity method; calculation of molecular heats of formation and bond dissociation energies (BDE's) by a semi-empirical molecular orbital method (AM1); and the electronic structure of nitrobenzene as obtained from non-empirical (sometimes called ab initio molecular orbital calculations. 10 refs.

Ritchie, J.P.; Bachrach, S.M.

1987-01-01T23:59:59.000Z

107

CSMB | Center for Structural Molecular Biology | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

CSMB CSMB Capabilities Working with CSMB Home | User Facilities | CSMB CSMB | Center for Structural Molecular Biology SHARE The Center for Structural Molecular Biology at ORNL is dedicated to developing instrumentation and methods for determining the 3-dimensional structures of proteins, nucleic acids (DNA/RNA) and their higher order complexes. The tools of the CSMB will help understand how these macromolecular systems are formed and how they interact with other systems in living cells. The focus of the CSMB is to bridge the information gap between cellular function and the molecular mechanisms that drive it. The suite of tools being developed by the CSMB includes: Bio-SANS, a Small-Angle Neutron Scattering (SANS) facility for biological samples, has been completed at the ORNL High-Flux Isotope

108

Computational methods for molecular docking  

Science Conference Proceedings (OSTI)

This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Recently, it has been demonstrated that the knowledge of the three-dimensional structure of the protein can be used to derive new protein ligands with improved binding properties. This tutorial focuses on the following questions: What is its binding affinity toward a particular receptor? What are putative conformations of a ligand at the binding site? What are the similarities of different ligands in terms of their recognition capabilities? Where and in which orientation will a ligand bind to the active site? How is a new putative protein ligand selected? An overview is presented of the algorithms which are presently used to handle and predict protein-ligand interactions and to dock small molecule ligands into proteins.

Klebe, G. [BASF AG, Ludwigshafen (Germany); Lengauer, T.

1995-12-31T23:59:59.000Z

109

Molecular Statics and Molecular Dynamics Simulations of the ...  

Science Conference Proceedings (OSTI)

Presentation Title, Molecular Statics and Molecular Dynamics Simulations of the Critical Stress for Motion of a/3 Screw Dislocations in a-Ti at Low ...

110

Radiation in molecular dynamic simulations  

DOE Green Energy (OSTI)

Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion, and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability.

Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M

2008-10-13T23:59:59.000Z

111

Investigating molecular interactions in modified acyl carrier proteins  

E-Print Network (OSTI)

our society’s demands. Biodiesel, composed of fatty acidfeasible ways to produce biodiesel from microbial sources,

Haushalter, Robert William

2011-01-01T23:59:59.000Z

112

A Molecular Dynamics  

Science Conference Proceedings (OSTI)

A Tale of Two States and More: Modeling of New Generation of Lattice Stability from Zero ... Analysis of Nano Fluid Using CFD-A Hybrid Approach for Cooling Purpose ... Molecular Dynamics Simulations of Grain Boundary Free Energy and

113

A Molecular Dynamic Study  

Science Conference Proceedings (OSTI)

A Tale of Two States and More: Modeling of New Generation of Lattice Stability from Zero ... Analysis of Nano Fluid Using CFD-A Hybrid Approach for Cooling Purpose ... Molecular Dynamics Simulations of Grain Boundary Free Energy and

114

Stochastic Event-Driven Molecular Dynamics  

Science Conference Proceedings (OSTI)

A novel Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm is developed for the simulation of polymer chains suspended in a solvent. SEDMD combines event-driven molecular dynamics (EDMD) with the Direct Simulation Monte Carlo (DSMC) method. The polymers are represented as chains of hard-spheres tethered by square wells and interact with the solvent particles with hard-core potentials. The algorithm uses EDMD for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in EDMD, rather, the momentum and energy exchange in the solvent is determined stochastically using DSMC. The coupling between the solvent and the solute is consistently represented at the particle level retaining hydrodynamic interactions and thermodynamic fluctuations. However, unlike full MD simulations of both the solvent and the solute, in SEDMD the spatial structure of the solvent is ignored. The SEDMD algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard-wall subjected to uniform shear. SEDMD closely reproduces results obtained using traditional EDMD simulations with two orders of magnitude greater efficiency. Results question the existence of periodic (cycling) motion of the polymer chain.

Donev, Aleksandar [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-9900 (United States)], E-mail: aleks.donev@gmail.com; Garcia, Alejandro L. [Department of Physics, San Jose State University, San Jose, CA 95192 (United States); Alder, Berni J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-9900 (United States)

2008-02-01T23:59:59.000Z

115

Molecular Programming Pseudo-code Representation to Molecular Electronics  

E-Print Network (OSTI)

This research paper is proposing the idea of pseudo code representation to molecular programming used in designing molecular electronics devices. Already the schematic representation of logical gates like AND, OR, NOT etc.from molecular diodes or resonant tunneling diode are available. This paper is setting a generic pseudo code model so that various logic gates can be formulated. These molecular diodes have designed from organic molecules or Bio-molecules. Our focus is on to give a scenario of molecular computation through molecular programming. We have restricted our study to molecular rectifying diode and logic device as AND gate from organic molecules only.

Pradhan, Manas Ranjan

2010-01-01T23:59:59.000Z

116

Giant Molecular Magnetocapacitance  

Science Conference Proceedings (OSTI)

Capacitance of a nanoscale system is usually thought of having two contributions, a classical electrostatic contribution and a quantum contribution dependent on the density of states and/or molecular orbitals close to the Fermi energy. In this letter we demonstrate that in molecular nano-magnets and other magnetic nanoscale systems, the quantum part of the capacitance becomes spin-dependent, and is tunable by an external magnetic field. This molecular magnetocapacitance can be realized using single molecule nano-magnets and/or other nano-structures that have antiferromagnetic ground states. As a proof of principle, first-principles calculation of the nano-magnet [Mn3O(sao)3(O2CMe)(H2O)(py)3] shows that the charging energy of the high-spin state is 260 meV lower than that of the low-spin state, yielding a 6% difference in capacitance. A magnetic field of ~40T can switch the spin state, thus changing the molecular capacitance. A smaller switching field may be achieved using nanostructures with a larger moment. Molecular magnetocapacitance may lead to revolutionary device designs, e.g., by exploiting the Coulomb blockade magnetoresistance whereby a small change in capacitance can lead to a huge change in resistance.

Wu, Yuning [University of Florida, Gainesville; Zhang, Xiaoguang [ORNL; Cheng, Hai-Ping [University of Florida

2013-01-01T23:59:59.000Z

117

Substructured multibody molecular dynamics.  

SciTech Connect

We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

2006-11-01T23:59:59.000Z

118

Emergence of Molecular Chirality by Vibrational Raman Scattering  

E-Print Network (OSTI)

In this study, we apply the monitoring master equation describing decoherence of internal states to an optically active molecule prepared in a coherent superposition of nondegenerate internal states interacting with thermal photons at low temperatures. We use vibrational Raman scattering theory up to the first chiral-sensitive contribution, i.e., the mixed electric-magnetic interaction, to obtain scattering amplitudes in terms of molecular polarizability tensors. The resulting density matrix is used to obtain elastic decoherence rates.

Farhad Taher Ghahramani; Afshin Shafiee

2013-11-15T23:59:59.000Z

119

Molecular Dynamics Simulations of Microscale Fluid Transport  

E-Print Network (OSTI)

Recent advances in micro-science and technology, like Micro-ElectroMechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these nonequilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and address both scaling and modeling issues...

C. C. Wong; A. R. Lopez; M.J. Stevens; S. J. Plimpton; Category Uc; Like Micro-electro

1998-01-01T23:59:59.000Z

120

Atomic and Molecular Databases and Data Evaluation Activities at the National Institute for Fusion Science  

Science Conference Proceedings (OSTI)

Technical Paper / Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea

Izumi Murakami; Daiji Kato; Masatoshi Kato; Hiroyuki A. Sakaue

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bounding the electrostatic free energies associated with linear continuum models of molecular solvation  

Science Conference Proceedings (OSTI)

The importance of electrostatic interactions in molecular biology has driven extensive research toward the development of accurate and efficient theoretical and computational models. Linear continuum electrostatic theory has been surprisingly successful

Jaydeep P. Bardhan; Matthew G. Knepley; Mihai Anitescu

2009-01-01T23:59:59.000Z

122

Role of the Molecular Sublayer in the Melting or Freezing of Sea Ice  

Science Conference Proceedings (OSTI)

In an earlier paper, a second-moment turbulence closure model was applied to the problem of the dynamic and thermodynamic interaction of sea ice and the ocean surface mixed layer. An overly simplistic parameterization of the molecular sublayers ...

Michael Steele; George L. Mellor; Miles G. Mcphee

1989-01-01T23:59:59.000Z

123

Molecular Cell XIAP Induces NF-kB Activation  

E-Print Network (OSTI)

Molecular Cell Article XIAP Induces NF-kB Activation via the BIR1/TAB1 Interaction and BIR1 NF-kB and MAP kinase activation during TGF-b and BMP receptor signaling and upon overexpression. Here with TAB1 to induce NF-kB activation. TAB1 is an upstream adaptor for the activation of the kinase TAK1

Wu, Hao

124

Nano Research Kinetics of Molecular Recognition Mediated Nanoparticle  

E-Print Network (OSTI)

Nano Research Kinetics of Molecular Recognition Mediated Nanoparticle Self-Assembly Chinmay Soman1 the streptavidin-biotin interaction [9] 0078 Nano Res (2009) 2: 78 84 DOI 10.1007/s12274-009-9005-z Research Article #12;79Nano Res (2009) 2: 78 84 are incubated with specific antigens in a physiological buffer

125

Molecular Pathogenesis of MALT lymphoma  

E-Print Network (OSTI)

underlying the pathogenesis of MALT lymphoma………………………………………………………. 193 7.2.1 Aberrant molecular mechanisms of translocation positive MALT lymphoma……………………………………..………………..…. 194 7.2.2 Aberrant molecular mechanism of translocation negative MALT...

Hamoudi, Rifat A

2010-01-01T23:59:59.000Z

126

Molecular dynamics study of sodium using a model pseudopotential  

Science Conference Proceedings (OSTI)

The dynamics of sodium is investigated using the coulomb and Born-Mayer interaction augmented by a model pseudopotential to represent the electron interactions including screening, exchange, and correlation. The model parameters were previously determined and have been shown to accurately reproduce experimental equation-of-state, lattice vibration, and crystal phase properties of sodium in the harmonic limit. In this paper the equation-of-state and structural properties are examined in molecular dynamics calculations. The long range effects of the potential are included. Typically, each particle interacts with about 500 neighbors. The calculated equation of state of sodium in the hcp, bcc, and liquid structures is discussed.

Swanson, R.E.; Straub, G.K.; Holian, B.L.

1981-01-01T23:59:59.000Z

127

Molecular dynamics simulations and drug discovery  

E-Print Network (OSTI)

JE: On the determination of molecular fields. II. From thescalability for parallel molecular dynamics. J Comput PhysKale L, Schulten K: Scalable molecular dynamics with NAMD. J

Durrant, Jacob D; McCammon, J Andrew

2011-01-01T23:59:59.000Z

128

Molecular Gas in Early-type Galaxies  

E-Print Network (OSTI)

toward the center (first seen in the molecular gas in A+The EVLA . . . . . . . . . . . . . . . . 3.3 Molecular LineProfile . . . . . . . . . . . . . . 3.4 Molecular Gas

Alatalo, Katherine Anne

2012-01-01T23:59:59.000Z

129

PIA - Environmental Molecular Sciences Laboratory (EMSL) User...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory...

130

MSD Molecular Materials - Argonne National Laboratories, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Molecular Materials Molecular Materials Group carries out synthesis and characterization of novel materials whose unique properties originate at the molecular level. Our...

131

Molecular regulators of neurogenesis in Alzheimer's disease  

E-Print Network (OSTI)

and Pike, C. (1993). Molecular cascades in adaptive versusA. , and Saitoh, T. (1997). Molecular mechanisms of synapticBroeckhoven, C. (1998). Molecular genetics of Alzheimer's

Crews, Leslie Anne

2010-01-01T23:59:59.000Z

132

Molecular Biophysics Trainees are supported through the  

E-Print Network (OSTI)

Molecular Biophysics Trainees are supported through the College of Sciences at GeorgiaTech Research StudentsintheMolecularBiophysicstraining programmayconductthesisresearchwithany ofthefacultymemberslistedinthisbrochure. Studentsreceiveastipendsupplementfrom theprogram. InterestedingraduatestudyinMolecular Biophysics

Bennett, Gisele

133

Connecting the Molecular and the Continuum Scales  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecting the Molecular and the Continuum Scales Connecting the Molecular and the Continuum Scales Key Challenges: A molecular-scale understanding of structure and surface...

134

NEWTON's Molecular Biology References  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Biology References Molecular Biology References Do you have a great reference link? Please click our Ideas page. Featured Reference Links: The Vitual Museum of Bacteria The Vitual Museum of Bacteria Visit the virtual museum of bacteria to learn more about bacteria and germs! This site brings together many links on bacteria, bacteriology, and related topics available on the web. It also provides crystal-clear information about many aspects of bacteria. The American Society of Cell Biology Cell Biology Educational Resources This site, sponsered by the American Society of Cell Biology, provides additional web links to everything from, general educational sites, to biology course materials, to teaching tools and more. National Center for Biotechnology Information National Center for Biotechnology Information

135

Towards Molecular Programming Masami Hagiya  

E-Print Network (OSTI)

Towards Molecular Programming Masami Hagiya JST CREST and Department of Computer Science, Graduate research in the field of DNA and molecular computing by summarizing a recent international confer- ence and biotechnology, and the principles and methods for designing molecular systems with information

Hagiya, Masami

136

Molecular Implementation of Combinatory Computing  

E-Print Network (OSTI)

Molecular Implementation of Combinatory Computing for Nanostructure Synthesis and Control: Progress Molecular combinatory computing makes use of a small set of chemical re- actions that together have by several simulated nano-assembly applications, and discuss a possible molecular implementation in terms

MacLennan, Bruce

137

The molecular evolution of development  

E-Print Network (OSTI)

The molecular evolution of development Michael D. Purugganan Summary Morphological differences in understanding the genetic basis behind the evolution of developmental systems. Molecular evolutionary genetics-day attempts to study the evolution of development are centered at the molecular level and exploit

Purugganan, Michael D.

138

Effects of size, shape, crystal plane and atomic discrete structure on interactions between carbon nanoparticles  

Science Conference Proceedings (OSTI)

Understanding various interaction forces between building blocks is of great importance to their selfassembly. In this paper, the effects of size, crystal plane, shape and atomic discrete structure on interaction potentials between carbon nanoparticles ... Keywords: Hamaker approach, carbon, interaction, molecular dynamics simulation, nanoparticle

Weifu Sun; Qinghua Zeng; Aibing Yu

2012-02-01T23:59:59.000Z

139

Molecular mechanisms of intercellular communication: transmembrane signaling  

SciTech Connect

This short discussion of transmembrane signaling depicts a particular class of signaling devices whose functional characteristics may well be representative of broader classes of membrane switches. These multicomponent aggregates are characterized by tight organization of interacting components which function by conformational interactions to provide sensitive, amplified, rapid, and modulated responses. It is clear that the essential role of such switches in cell-cell interactions necessitated their appearance early in the history of the development of multicellular organisms. It also seems clear that once such devices made their appearance, the conformationally interactive moieties were firmly locked into a regulatory relationship. Since modification of interacting components could perturb or interfere with the functional integrity of the whole switch, genetic drift was only permitted at the input and outflow extremes. However, the GTP binding moiety and its interacting protein domains on contiguous portions of the receptor and readout components were highly conserved. The observed stringent evolutionary conservation of the molecular features of these membrane switches thus applies primarily to the central (GTP binding) elements. An extraordinary degree of variation was permitted within the domains of signal recognition and enzymatic output. Thus, time and evolution have adapted the central logic of the regulatory algorithm to serve a great variety of cellular purposes and to recognize a great variety of chemical and physical signals. This is exemplified by the richness of the hormonal and cellular dialogues found in primates such as man. Here the wealth of intercellular communiation can support the composition and performance of symphonies and the study of cellular immunology.

Bitensky, M.W.; George, J.S.; Siegel, H.N.; McGregor, D.M.

1982-01-01T23:59:59.000Z

140

Molecular Cell Short Article  

E-Print Network (OSTI)

of an HBO1 complex, ING4 has also been reported to repress transcription of the NF-kB and hypoxia response to directly interact with the RelA subunit of NF-kB and with Egln1/HPH2 (hypoxia inducible factor Prolyl

Gozani, Or

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Assessment of Molecular Modeling & Simulation  

Science Conference Proceedings (OSTI)

This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

None

2002-01-03T23:59:59.000Z

142

EMSL: Capabilities: Molecular Science Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

understand complex chemical systems at the molecular level by coupling the power of advanced computational chemistry techniques with existing and rapidly evolving...

143

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally...

144

EMSL: Capabilities: Molecular Science Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Chinook Supercomputer MSC User Policies Molecular Science Software Suite Graphics and Visualization Lab MSC Information MSC Research Meet the MSC Staff Related EMSL...

145

LAMMPS Molecular Dynamics Simulator - TMS  

Science Conference Proceedings (OSTI)

Nov 8, 2007 ... LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator. LAMMPS has potentials for soft materials (biomolecules, ...

146

Transport of Molecular Motor Dimers in Burnt-Bridge Models  

E-Print Network (OSTI)

Dynamics of molecular motor dimers, consisting of rigidly bound particles that move along two parallel lattices and interact with underlying molecular tracks, is investigated theoretically by analyzing discrete-state stochastic continuous-time burnt-bridge models. In these models the motion of molecular motors is viewed as a random walk along the lattices with periodically distributed weak links (bridges). When the particle crosses the weak link it can be destroyed with a probability $p$, driving the molecular motor motion in one direction. Dynamic properties and effective generated forces of dimer molecular motors are calculated exactly as a function of a concentration of bridges $c$ and burning probability $p$ and compared with properties of the monomer motors. It is found that the ratio of the velocities of the dimer and the monomer can never exceed 2, while the dispersions of the dimer and the monomer are not very different. The relative effective generated force of the dimer (as compared to the monomer) also cannot be larger than 2 for most sets of parameters. However, a very large force can be produced by the dimer in the special case of $c=1/2$ for non-zero shift between the lattices. Our calculations do not show the significant increase in the force generated by collagenase motor proteins in real biological systems as predicted by previous computational studies. The observed behavior of dimer molecular motors is discussed by considering in detail the particle dynamics near burnt bridges.

Alexander Yu. Morozov; Anatoly B. Kolomeisky

2007-09-21T23:59:59.000Z

147

Self assembled molecular monolayers on high surface area materials as molecular getters  

DOE Patents (OSTI)

The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium.

King, David E. (Lakewood, CO); Herdt, Gregory C. (Denver, CO); Czanderna, Alvin W. (Denver, CO)

1997-01-01T23:59:59.000Z

148

Self assembled molecular monolayers on high surface area materials as molecular getters  

DOE Patents (OSTI)

The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium. 9 figs.

King, D.E.; Herdt, G.C.; Czanderna, A.W.

1997-01-07T23:59:59.000Z

149

Gas Phase Molecular Dynamics  

Science Conference Proceedings (OSTI)

The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution high-sensitivity laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular flee radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule.

Hall, G.E.; Prrese, J.M.; Sears, T.J.; Weston, R.E.

1999-05-21T23:59:59.000Z

150

GAS PHASE MOLECULAR DYNAMICS  

SciTech Connect

The goal of this research is the understanding of elementary chemical and physical processes important in the combustion of fossil fuels. Interest centers on reactions involving short-lived chemical intermediates and their properties. High-resolution, high-sensitivity, laser absorption methods are augmented by high temperature flow-tube reaction kinetics studies with mass-spectrometric sampling. These experiments provide information on the energy levels, structures and reactivity of molecular free radical species and, in turn, provide new tools for the study of energy flow and chemical bond cleavage in the radicals in chemical systems. The experimental work is supported by theoretical and computational work using time-dependent quantum wavepacket calculations that provide insights into energy flow between the vibrational modes of the molecule. The work of group members Fockenberg and Muckerman is described in separate abstracts of this volume.

SEARS,T.J.; HALL,G.E.; PRESES,J.M.; WESTON,R.E.,JR.

1999-06-09T23:59:59.000Z

151

Molecular beam kinetics  

SciTech Connect

The design of a crossed molecular beam ''supermachine'' for neutral-- neutral collisions is discussed. The universal electron bombardment ionizer, mass filter, and ion detection system of the detector, the supersonic nozzle sources, the differential pumping arrangement for the sources and detector, the time-of-flight detection of scattered products, and the overall configuration of the apparatus are described. The elastic scattering of two systems, CH$sub 4$ + Ar and NH$sub 3$ + Ar, has been measured using the supermachine with two supersonic nozzle sources. The rainbow structure and the interference oscillations are seen in each system. The best fit to the data was found using a Morse--Spline--Van der Waals (MSV) potential. The three potential parameters epsilon, r/sub m/, and $beta$ were found to be 2.20(+-0.04) x 10$sup -14$ ergs, 3.82(+-0.04)A, and 7.05 +- 0.20 for CH$sub 4$ + Ar, and 2.21(+-0.04) x 10$sup - 14$ ergs 3.93 (+-0.05)A, and 8.45 +- 0.30 for NH$sub 3$ + Ar. A new phenomenon in crossed molecular beams of condensation of a molecule on a cluster to form a complex was observed. A bromine molecule condensed on clusters of chlorine (Cl$sub 2$)/sub chi/ and ammonia (NH$sub 3$)/sub chi/. The value of chi for measurements in these experiments ranges from 7 to 40 for chlorine clusters and from 10 to 70 ammonia clusters. (auth)

Behrens, R. Jr.

1975-11-01T23:59:59.000Z

152

Simplicity in interaction design  

Science Conference Proceedings (OSTI)

Attaining simplicity is a key challenge in interaction design. Our approach relies on a minimalist design exercise to explore the communication capacity for interaction components. This approach results in expressive design solutions, useful perspectives ... Keywords: expressiveness, interface design, simplicity, usability

Angela Chang; James Gouldstone; Jamie Zigelbaum; Hiroshi Ishii

2007-02-01T23:59:59.000Z

153

Interactions of Cl- and OH Radical in Aqueous Solution  

Science Conference Proceedings (OSTI)

Fundamental understanding of ion-radical interactions in aqueous solutions is of significant relevance to many environmentally important applications. An important example can be found in the problem involving the excess production of molecular chlorine in marine layer, where interactions between OH radical and Cl- species have been implicated as the main reason for the unexpectedly high concentration of Cl2. Current understanding of this process is hindered due to uncertainty regarding the nature of the [OHCl]- complex in aqueous phase.

Valiev, Marat; D'Auria, Rafaella; Tobias, Douglas J.; Garrett, Bruce C.

2009-08-06T23:59:59.000Z

154

Computational Studies in Molecular Geochemistry and Biogeochemistry  

SciTech Connect

The ability to predict the transport and transformations of contaminants within the subsurface is critical for decisions on virtually every waste disposal option facing the Department of Energy (DOE), from remediation technologies such as in situ bioremediation to evaluations of the safety of nuclear waste repositories. With this fact in mind, the DOE has recently sponsored a series of workshops on the development of a Strategic Simulation Plan on applications of high perform-ance computing to national problems of significance to the DOE. One of the areas selected for application was in the area of subsurface transport and environmental chemistry. Within the SSP on subsurface transport and environmental chemistry several areas were identified where applications of high performance computing could potentially significantly advance our knowledge of contaminant fate and transport. Within each of these areas molecular level simulations were specifically identified as a key capability necessary for the development of a fundamental mechanistic understanding of complex biogeochemical processes. This effort consists of a series of specific molecular level simulations and program development in four key areas of geochemistry/biogeochemistry (i.e., aqueous hydrolysis, redox chemistry, mineral surface interactions, and microbial surface properties). By addressing these four differ-ent, but computationally related, areas it becomes possible to assemble a team of investigators with the necessary expertise in high performance computing, molecular simulation, and geochemistry/biogeochemistry to make significant progress in each area. The specific targeted geochemical/biogeochemical issues include: Microbial surface mediated processes: the effects of lipopolysacchardies present on gram-negative bacteria. Environmental redox chemistry: Dechlorination pathways of carbon tetrachloride and other polychlorinated compounds in the subsurface. Mineral surface interactions: Describing surfaces at multiple scales with realistic surface functional groups Aqueous Hydrolysis Reactions and Solvation of Highly Charged Species: Understanding the formation of polymerized species and ore formation under extreme (Hanford Vadose Zone and geothermo) conditions. By understanding on a fundamental basis these key issues, it is anticipated that the impacts of this research will be extendable to a wide range of biogeochemical issues. Taken in total such an effort truly represents a “Grand Challenge” in molecular geochemistry and biogeochemistry.

Felmy, Andrew R.; Bylaska, Eric J.; Dixon, David A.; Dupuis, Michel; Halley, James W.; Kawai, R.; Rosso, Kevin M.; Rustad, James R.; Smith, Paul E.; Straatsma, TP; Voth, Gregory A.; Weare, John H.; Yuen, David A.

2006-04-18T23:59:59.000Z

155

Interactive Intelligent Systems  

Science Conference Proceedings (OSTI)

... in applying interactive system utility measurements against some hard problems in both the intelligence community (IC) and the military (DARPA). ...

2011-09-08T23:59:59.000Z

156

Is interactivity actually important?  

Science Conference Proceedings (OSTI)

It appears that it is a well-accepted assumption that interactivity will improve the entertainment and/or learning value of a media. This paper reviews various studies exploring the role of interactivity and reports on a study conducted to see whether ... Keywords: game engine, interactivity, learning, simulation, training

Debbie Richards

2006-12-01T23:59:59.000Z

157

Fluctuations in molecular dynamics simulations  

Science Conference Proceedings (OSTI)

Statistical fluctuations of a system about its equilibrium state, monitored in a molecular dynamics simulation, are an effective means of computing the thermodynamic and kinetic properties of interfaces in metals and alloys. In this work, three applications ... Keywords: Fluctuations, Grain boundaries, Interfaces, Interfacial free energy, Mobility, Molecular dynamics

J. J. Hoyt; Z. T. Trautt; M. Upmanyu

2010-03-01T23:59:59.000Z

158

PDSF Interactive Nodes  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive (login) Nodes Interactive (login) Nodes Interactive (login) Nodes There are 4 interactive nodes at PDSF, pdsf[1-4].nersc.gov, that should be accessed via ssh to pdsf.nersc.gov. These are the gateways to accessing the rest of PDSF. Users can submit batch jobs as well as view and manipulate their files and directories from the interactive nodes. The configuration of the interactive nodes is shown in the table below. Processor Clock Speed (GHz) Architecture Cores Total Memory (GB) Scratch Space (GB) Intel Xeon X5650 2.67 x86_64 12 47 184 Because these nodes are shared by many users anything disruptive you might do affects not only your work but their work, too. Please take a look at the Best Practices page for guidance about what you should and should not do on the interactive nodes.

159

Nuclear-spin dependent parity violation in diatomic molecular ions  

E-Print Network (OSTI)

Nuclear-spin-dependent (NSD) parity violating (PV) effects can be strongly enhanced in diatomic molecules containing heavy atoms. Future measurements are anticipated to provide nuclear anapole moments and strength constants for PV nuclear forces. In light molecules, the NSD electroweak electron-nucleus interaction may also be detected. Here we calculate NSD PV effects for molecular ions. Our calculations are motivated by rapid developments in trapping techniques for such systems at low temperatures.

Borschevsky, A; Dzuba, V A; Beloy, K; Flambaum, V V; Schwerdtfeger, P A

2012-01-01T23:59:59.000Z

160

2011 Archaea: Ecology, Metabolism, & Molecular Biology  

Science Conference Proceedings (OSTI)

Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

Keneth Stedman

2011-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Application of optimal prediction to molecular dynamics  

SciTech Connect

Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is {delta}-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.

Barber IV, John Letherman

2004-12-01T23:59:59.000Z

162

Molecular probe technology detects bacteria without culture  

E-Print Network (OSTI)

clinical samples, the molecular probes for L. brevis werepublished the design of our molecular probes (Figure 1a) and3, “1“, a majority of the molecular probes for that genome

2012-01-01T23:59:59.000Z

163

Introduction to Accelerated Molecular Dynamics  

SciTech Connect

Molecular Dynamics is the numerical solution of the equations of motion of a set of atoms, given an interatomic potential V and some boundary and initial conditions. Molecular Dynamics is the largest scale model that gives unbiased dynamics [x(t),p(t)] in full atomistic detail. Molecular Dynamics: is simple; is 'exact' for classical dynamics (with respect to a given V); can be used to compute any (atomistic) thermodynamical or dynamical properties; naturally handles complexity -- the system does the right thing at the right time. The physics derives only from the interatomic potential.

Perez, Danny [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

164

Introduction to Accelerated Molecular Dynamics  

SciTech Connect

Molecular Dynamics is the numerical solution of the equations of motion of a set of atoms, given an interatomic potential V and some boundary and initial conditions. Molecular Dynamics is the largest scale model that gives unbiased dynamics [x(t),p(t)] in full atomistic detail. Molecular Dynamics: is simple; is 'exact' for classical dynamics (with respect to a given V); can be used to compute any (atomistic) thermodynamical or dynamical properties; naturally handles complexity -- the system does the right thing at the right time. The physics derives only from the interatomic potential.

Perez, Danny [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

165

Chemistry Central Journal Commentary Molecular biology: Self-sustaining chemistry  

E-Print Network (OSTI)

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells. Molecular biology in Chemistry Central Journal At the outset, let me pose two important questions: Why

Paul Wrede

2007-01-01T23:59:59.000Z

166

PDSF Interactive Batch Jobs  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Batch Jobs Interactive Batch Jobs Running Interactive Batch Jobs You cannot login to the PDSF batch nodes directly but you can run an interactive session on a batch node using either qlogin or qsh. This can be useful if you are doing something that is potentially disruptive or if the interactive nodes are overloaded. qlogin will give you an interactive session in the same window as your original session on PDSF, however, you must have your ssh keys in place. Due to system limitations there is a small (but important) difference in the user environment you get when you use qlogin. When you receive a shell prompt with qlogin, your CHOS environment is not set up for you. In order to set up the CHOS environment of your choice you will need to manually chos into the chos environment of your choice:

167

Molecular Dynamics Simulation of Thermoset Fracture with ...  

Science Conference Proceedings (OSTI)

The effects of resin chain extensibility and dilution on fracture behavior are studied by testing a variety of molecular systems. The molecular bases for precursors ...

168

Is Gravity an Interaction?  

E-Print Network (OSTI)

We consider a possibility that gravity is not an interaction but a manifestation of a symmetry based on a Galois field.

Felix M. Lev

2009-05-06T23:59:59.000Z

169

Apparatus for molecular weight separation  

DOE Patents (OSTI)

The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

Smith, Richard D. (Richland, WA); Liu, Chuanliang (Haverhill, MA)

2001-01-01T23:59:59.000Z

170

Molecular Bond: EMSL's bimonthly newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Email not displaying correctly? View it on the website. The Molecular Bond newsletter banner December 2013 Allison A. Campbell, EMSL Director I'm pleased to share with you the...

171

PIA - Industry Interactive Procurement System (IIPS) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Interactive Procurement System (IIPS) PIA - Industry Interactive Procurement System (IIPS) PIA - Industry Interactive Procurement System (IIPS) PIA - Industry Interactive...

172

Size-exclusion chromatography system for macromolecular interaction analysis  

DOE Patents (OSTI)

A low pressure, microcomputer controlled system employing high performance liquid chromatography (HPLC) allows for precise analysis of the interaction of two reversibly associating macromolecules such as proteins. Since a macromolecular complex migrates faster than its components during size-exclusion chromatography, the difference between the elution profile of a mixture of two macromolecules and the summation of the elution profiles of the two components provides a quantifiable indication of the degree of molecular interaction. This delta profile is used to qualitatively reveal the presence or absence of significant interaction or to rank the relative degree of interaction in comparing samples and, in combination with a computer simulation, is further used to quantify the magnitude of the interaction in an arrangement wherein a microcomputer is coupled to analytical instrumentation in a novel manner.

Stevens, Fred J. (Downers Grove, IL)

1988-01-01T23:59:59.000Z

173

An Interactive Derivation Viewer  

Science Conference Proceedings (OSTI)

This work describes the Interactive Derivation Viewer (IDV) tool for graphical rendering of derivations that are written in the TPTP language. IDV provides an interactive interface that allows the user to quickly view various features of the derivation. ... Keywords: Derivation viewer, Proof synopsis

Steven Trac; Yury Puzis; Geoff Sutcliffe

2007-05-01T23:59:59.000Z

174

Foldable interactive displays  

Science Conference Proceedings (OSTI)

Modern computer displays tend to be in fixed size, rigid, and rectilinear rendering them insensitive to the visual area demands of an application or the desires of the user. Foldable displays offer the ability to reshape and resize the interactive surface ... Keywords: augmented reality, foldable displays, interactive, mobile, orientation sensitivity, privacy, projection

Johnny C. Lee; Scott E. Hudson; Edward Tse

2008-10-01T23:59:59.000Z

175

Handheld Projector Interaction  

E-Print Network (OSTI)

The recent trend towards miniaturization of projection technology indicates that handheld devices will soon have the ability to project information onto any surface, thus enabling interaction and applications that are not possible with current handheld devices. This opens up an emerging research area on interaction using handheld projectors. With the ability to project information, a handheld device can surmount the limitations of its small internal screen by creating a larger information display on an external surface. By doing so, the display and interaction space can be expanded to cover almost an entire physical environment. Large amounts of data can be displayed, a rich interaction vocabulary can be supported, and multiple co-located people can share the viewing experience at the same time. In this thesis, I investigate research issues involved in the design, implementation, and user performance and behaviors regarding the usage of interactive handheld projectors. I create a handheld projector interaction prototype platform, and explore interaction concepts and techniques to support both single and multi-user interaction using one or several handheld projectors. I also empirically investigate the user behaviors

Xiang Cao

2009-01-01T23:59:59.000Z

176

Molecular Weight & Energy Transport 7 September 2011  

E-Print Network (OSTI)

Molecular Weight & Energy Transport 7 September 2011 Goals · Review mean molecular weight · Practice working with diffusion Mean Molecular Weight 1. We will frequently use µ, µe, and µI (the mean molecular weight per particle, per free electron, and per ion, respectively). Let's practice computing

Militzer, Burkhard

177

Molecular Nanosprings for Protein-Based Nanorobotics  

E-Print Network (OSTI)

Molecular Nanosprings for Protein-Based Nanorobotics Mustapha Hamdi 1 , Antoine Ferreira 1 antoine.ferreira@ensi-bourges.fr , mavro@coe.neu.edu This paper presents a molecular mechanics study using a molecular dynamics software (NAMD2) for characterization of molecular elastic joints for bio nanorobotic

Mavroidis, Constantinos

178

Molecular image resolution in electron microscopy  

Science Conference Proceedings (OSTI)

In order to determine the ultimate molecular resolution attainable with a conventional electron microscope

Natsu Uyeda; Takashi Kobayashi; Eiji Suito; Yoshiyasu Harada

1972-01-01T23:59:59.000Z

179

MASTER OF SCIENCE IN MOLECULAR BIOTECHNOLOGY The Master of Science program in molecular  

E-Print Network (OSTI)

MASTER OF SCIENCE IN MOLECULAR BIOTECHNOLOGY The Master of Science program in molecular at the University of Kansas Medical Center. Molecular Biotechnology Molecular Biotechnology involves the use and development of laboratory tech- niques to study and modify nucleic acids and proteins. Molecular biotechnology

Peterson, Blake R.

180

A Molecular Based Model for Polymer Viscoelasticity: Intra-and Inter-Molecular  

E-Print Network (OSTI)

A Molecular Based Model for Polymer Viscoelasticity: Intra- and Inter-Molecular Variability H viscoelasticity based on a stick-slip continuum molecular-based model. The model developed is a continuum tube-system is composed of long molecular chains. The dynamics of these molecular chains are developed by modeling them

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

EI7157_Molecular_Electronics.xls Allgemeine Daten  

E-Print Network (OSTI)

EI7157_Molecular_Electronics.xls Allgemeine Daten: Modulnummer: EI7157 Modulbezeichnung (dt.): Molecular Electronics Modulbezeichnung (en.): Molecular Electronics Modulniveau: MSc Kürzel: Untertitel7157_Molecular_Electronics.xls Beschreibung: Inhalt: Introduction to organic chemistry. Molecular

Kuehnlenz, Kolja

182

The Entire Molecular Biology Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Biology Archives Molecular Biology Archives Molecular Biology, Since May 2000 Table of Contents: Blood pH and Oxygen DNA Extraction Flesh Eating Bacteria Amino Acid Differences Lyme Disease Effects Vinegar and Alcohol Mosquito and Blood Caffeine and Smoking Bread Mold and pH Hemocyanin and Hemerythrin Hodospin Man-made Bacteria Pregnancy Tips mRNA Killing Bacteria Gram Stain Milk Bacteria Denatured Protein Pseudmands Bacteria Nucleotide Order Bacteria Resistance Albinism Genes DNA Healing Re-constitution of Proteins H. pylori and Multiple sclerosis Smallest Organism Sugars and Fats Bacteria Systematics Slow Regeneration Media Cultures Butter and Bacteria AIDS and Survival in Air Cell Intelligence Giardia gingivalis Meat Bacteria Pus and Immune Cells Chalones Culture of T. ferrooxisans Amphibian E. coli

183

Gas-Phase Molecular Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas-Phase Molecular Dynamics Gas-Phase Molecular Dynamics The Gas-Phase Molecular Dynamics Group is dedicated to developing and applying spectroscopic and theoretical tools to challenging problems in chemical physics related to reactivity, structure, dynamics and kinetics of transient species. Recent theoretical work has included advances in exact variational solution of vibrational quantum dynamics, suitable for up to five atoms in systems where large amplitude motion or multiple strongly coupled modes make simpler approximations inadequate. Other theoretical work, illustrated below, applied direct dynamics, quantum force trajectory calculations to investigate a series of reactions of the HOCO radical. The potential energy surface for the OH + CO/ H + CO2 reaction, showing two barriers (TS1 and TS2) and the deep HOCO well along the minimum energy pathway. The inset figure shows the experimental and calculated reactivity of HOCO with selected collision partners. See J.S. Francisco, J.T. Muckerman and H.-G. Yu, "HOCO radical chemistry,"

184

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

185

Atomic, Molecular & Optical Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Atomic, Molecular and Optical Sciences Atomic, Molecular and Optical Sciences The goal of the program is to understand the structure and dynamics of atoms and molecules using photons and ions as probes. The current program is focussed on studying inner-shell photo-ionization and photo-excitation of atoms and molecules, molecular orientation effects in slow collisions, slowing and cooling molecules, and X-ray photo-excitation of laser-dressed atoms. The experimental and theoretical efforts are designed to break new ground and to provide basic knowledge that is central to the programmatic goals of the Department of Energy (DOE). Unique LBNL facilities such as the Advanced Light Source (ALS), the ECR ion sources at the 88-inch cyclotron, and the National Energy Research Scientific Computing Center (NERSC) are

186

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Vibration Print Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

187

Ab-Initio Molecular Dynamics  

E-Print Network (OSTI)

Computer simulations and molecular dynamics in particular, is a very powerful method to provide detailed and essentially exact informations of classical many-body problems. With the advent of \\textit{ab-initio} molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method as well as novel hybrid scheme that unifies best of either approach are discussed. The predictive power is demonstrated by a series of applications ranging from insulators to semiconductors and even metals in condensed phases.

Kühne, Thomas D

2012-01-01T23:59:59.000Z

188

Molecular separation method and apparatus  

DOE Patents (OSTI)

A method and apparatus for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve.

Villa-Aleman, Eliel (3108 Roses Run, Aiken, SC 29803)

1996-01-01T23:59:59.000Z

189

Interactions V3 Composite  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Physics The science of matter, space and time INTERACTIONS The science of matter, space and time High Energy Physics is the Science of Interactions s "Since we (and everything in the universe) are made mostly of empty space, and even particles of matter are just vibrating chunks of energy, what is it that makes us essentially us? It's all about relationships-the way the particles and forces interact. It's all of a piece, a tapestry of relationships woven in space and time." -K.C. Cole, science writer, Los Angeles Times " Every cubic inch of space is a miracle." -Walt Whitman The deepest secrets of the universe The science of matter, space and time INTERACTIONS: Unlocking the deepest secrets of the universe s What is the universe made of ?

190

Human-machine interactions  

DOE Patents (OSTI)

Digital technology utilizing a cognitive model based on human naturalistic decision-making processes, including pattern recognition and episodic memory, can reduce the dependency of human-machine interactions on the abilities of a human user and can enable a machine to more closely emulate human-like responses. Such a cognitive model can enable digital technology to use cognitive capacities fundamental to human-like communication and cooperation to interact with humans.

Forsythe, J. Chris (Sandia Park, NM); Xavier, Patrick G. (Albuquerque, NM); Abbott, Robert G. (Albuquerque, NM); Brannon, Nathan G. (Albuquerque, NM); Bernard, Michael L. (Tijeras, NM); Speed, Ann E. (Albuquerque, NM)

2009-04-28T23:59:59.000Z

191

Product placement in interactive games  

Science Conference Proceedings (OSTI)

Modern computer and video games offer a dynamic means of interactive advertising for a wide range of commercial products. This article details an exploratory study in the area of interactive, in-game advertising. Various key forms of interactive advertising ... Keywords: computer games, interactive advertising, interactive media, product placement, video games

Barry Ip

2009-10-01T23:59:59.000Z

192

Electron Trapping by Molecular Vibration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Trapping by Molecular Electron Trapping by Molecular Vibration Electron Trapping by Molecular Vibration Print Wednesday, 27 April 2005 00:00 In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping, giving rise to a broad feature in the photoelectron spectrum known as a shape resonance. This process represents a novel type of symmetry-breaking phenomenon that has not been observed previously but appears to be widespread. Such coupling between electronic motion and nuclear motion becomes increasingly important as scientists learn more about the geometry and dynamics of novel chemical structures such as those found in nanodevices and transient chemical species, and the results have implications for studies that use photoelectron spectroscopy as a diagnostic tool.

193

Molecular Foundry, Berkeley, California (Revised)  

SciTech Connect

This case study provides information on the Molecular Foundry, which incorporates Labs21 principles in its design and construction. The design includes many of the strategies researched at Lawrence Berkeley Laboratory for energy efficient cleanroom and data centers. The result is an energy efficient high-performing sustainable laboratory.

Carlisle, N.

2008-03-01T23:59:59.000Z

194

Magnetoresistance of Nanoscale Molecular Devices  

E-Print Network (OSTI)

are of fundamental nature, leading to the understanding of current-voltage relations. Due to their small flux is how to set up a nanoscale device so that the magnetic field can control the current flowing through it, Jerusalem 91904, Israel Received April 5, 2005 ABSTRACT Affecting the current through a molecular

Rabani, Eran

195

Kinetic modelling of molecular hydrogen transport in microporous carbon materials.  

DOE Green Energy (OSTI)

The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H{sub 2}/D{sub 2} and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D{sub 2} transport is dramatically favored over H{sub 2}. However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients - implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H{sub 2}/D{sub 2} in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage through the pore mouth, is also the rate determining step.

Hankel, M.; Zhang, H.; Nguyen, T. X.; Bhatia, S. K.; Gray, S. K.; Smith, S. C. (Center for Nanoscale Materials); (The Univ. of Queensland)

2011-01-01T23:59:59.000Z

196

Fundamental Interactions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Fundamental Interactions Fundamental Interactions Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Fundamental Interactions Print Text Size: A A A RSS Feeds FeedbackShare Page Research emphasis is placed on structural and dynamical studies of atoms, molecules, and nanostructures, and the description of their interactions in full quantum detail, with the aim of providing a complete understanding of reactive chemistry in the gas phase, condensed phase, and at interfaces. Novel sources of photons, electrons, and ions are used to probe and control atomic, molecular, and nanoscale matter. Ultrafast optical and x-ray

197

Target Dependence of Single-Electron-Capture Cross Sections for Slow Be, B, C, Fe, Ni, and W Ions Colliding with Atomic and Molecular Targets  

Science Conference Proceedings (OSTI)

Technical Paper / Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea

M. Imai; Y. Iriki; A. Itoh

198

Fundamental Symmetries and Interactions  

E-Print Network (OSTI)

In nuclear physics numerous possibilities exist to investigate fundamental symmetries and interactions. In particular, the precise measurements of properties of fundamental fermions, searches for new interactions in ?-decays, and violations of discrete symmeties offer possibilities to search for physics beyond standard theory. Precise measurements of fundamental constants can be carried out. Low energy experiments allow to probe New Physics at mass scales far beyond the reach of present accelerators or such planned for the future and at which predicted new particles could be produced directly. 1. Fundamental Forces and Symmetries Symmetries play an important and crucial role in physics. Global symmetries give rise to conservation laws and local symmetries yield forces [ 1]. To date we know four fundamental interactions: (i) Electromagnetism, (ii) Weak Interactions, (iii) Strong Interactions, and (iv) Gravitation. These four forces are fundamental in the sense that all observed dynamical processes in physics can be traced back to one or a combination of them. Together with fundamental symmetries they from a framework on which all physical descriptions ultimately rest.

Klaus P. Jungmann A; Kernfysisch Versneller Instituut

2005-01-01T23:59:59.000Z

199

NVLAP Interactive Web Site (NIWS)  

Science Conference Proceedings (OSTI)

Welcome to the NVLAP Interactive Web Site (NIWS). ... The URL for the NVLAP Interactive Web Site (NIWS) is: https://www-s.nist.gov/niwsapp. ...

2012-02-03T23:59:59.000Z

200

Molecular dynamics simulations of H{sub 2} adsorption in tetramethyl ammonium lithium phthalocyanine crystalline structures.  

DOE Green Energy (OSTI)

Tetramethyl ammonium lithium phthalocyanine is explored as a potential material for storage of molecular hydrogen. Density functional theory calculations are used to investigate the molecular structure and the dimer conformation. Additional scans performed to determine the interactions of a H{sub 2} molecule located at various distances from the molecular sites are used to generate a simple force field including dipole-induced-dipole interactions. This force field is employed in molecular dynamics simulations to calculate adsorption isotherms at various pressures. The regions of strongest adsorption are quantified as functions of temperature, pressure, and separation between molecules in the adsorbent phase, and compared to the regions of strongest binding energy as given by the proposed force field. It is found that the total adsorption could not be predicted only from the spatial distribution of the strongest binding energies; the available volume is the other contributing factor even if the volume includes regions of much lower binding energy. The results suggest that the complex anion is primarily involved in the adsorption process with molecular hydrogen, whereas the cation serves to provide access for hydrogen adsorption in both sides of the anion molecular plane, and spacing between the planes.

Lamonte, K.; Gomez Gualdron, D.; Scanlon, L. G.; Sandi, G.; Feld, W.; Balbuena, P. B.; Chemical Sciences and Engineering Division; Texas A& M Univ.; Wright-Patterson Air Force Base; Wright State Univ.

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps  

E-Print Network (OSTI)

The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor molecular junction model yields currents which transfer charge (electron and holes) unevenly to the two leads in the absence of a bias potential. The utility of this mechanism for charge pumping in steady state conditions is proposed.

Volkovich, Roie

2010-01-01T23:59:59.000Z

202

Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps  

E-Print Network (OSTI)

The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor molecular junction model yields currents which transfer charge (electron and holes) unevenly to the two leads in the absence of a bias potential. The utility of this mechanism for charge pumping in steady state conditions is proposed.

Roie Volkovich; Uri Peskin

2010-12-01T23:59:59.000Z

203

Molecular recognition in gas sensing: Results from acoustic wave and in-situ FTIR measurements  

SciTech Connect

Surface acoustic wave (SAW) measurements were combined with direct, in-situ molecular spectroscopy to understand the interactions of surface-confined sensing films with gas-phase analytes. This was accomplished by collecting Fourier-transform infrared external-reflectance spectra (FTIR-ERS) on operating SAW devices during dosing of their specifically coated surfaces with key analytes.

Hierlemann, A.; Ricco, A.J. [Sandia National Labs., Albuquerque, NM (United States). Microsensor Research and Development Dept.; Bodenhoefer, K.; Goepel, W. [Univ. Tuebingen (Germany). Inst. fuer Physikalische und Theoretische Chemie

1998-06-01T23:59:59.000Z

204

Dike/Drift Interactions  

Science Conference Proceedings (OSTI)

This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses of the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).

E. Gaffiney

2004-11-23T23:59:59.000Z

205

Argonne Chemical Sciences & Engineering - People - Fundamental Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundamental Interactions Fundamental Interactions Atomic, Molecular, and Optical Physics Linda Young, Argonne Distinguished Fellow and Group Leader phone: 630/252-8878, fax: 630/252-6210, e-mail: young@anl.gov Ph.D., Chemical Physics, University of California, Berkeley Ultrafast x-ray and laser science Strong-field control of x-ray processes Atomic and molecular behavior in strong-electromagnetic fields Precision measurements in atom traps Robert W. Dunford, Physicist phone: 630/252-4052, fax: 630/252-2864, email: dunford@anl.gov Ph.D., Physics, University of Michigan Experimental atomic physics Elliot Kanter, Physicist phone: 630/252-4050, fax: 630/252-2864, e-mail: kanter@anl.gov Bertold Krässig, Physicist phone 630/252-9230, fax 630/252-6210, e-mail kraessig@anl.gov Ph.D. / Dr. Rer. Nat., Physics, University of Freiburg, Germany

206

Ab initio investigation of intermolecular interactions in solid benzene  

E-Print Network (OSTI)

A computational strategy for the evaluation of the crystal lattice constants and cohesive energy of the weakly bound molecular solids is proposed. The strategy is based on the high level ab initio coupled-cluster determination of the pairwise additive contribution to the interaction energy. The zero-point-energy correction and non-additive contributions to the interaction energy are treated using density functional methods. The experimental crystal lattice constants of the solid benzene are reproduced, and the value of 480 meV/molecule is calculated for its cohesive energy.

O. Bludsky; M. Rubes; P. Soldan

2008-01-04T23:59:59.000Z

207

Fundamental Symmetries and Interactions  

E-Print Network (OSTI)

In Nuclear Physics numerous possibilities exist to investigate fundamental symmetries and interactions. In particular, the precise measurements of properties of fundamental fermions, searches for new interactions in $\\beta$-decays, and violations of discrete symmeties offer possibilities to search for physics beyond Standard Theory. Precise measurements of fundamental constants can be carried out. Low energy experiments allow to probe New Physics at mass scales far beyond the reach of present accelerators or such planned for the future and at which predicted new particles could be produced directly.

Klaus P. Jungmann

2005-02-10T23:59:59.000Z

208

Molecular dynamics simulation of strongly coupled QCD plasmas  

E-Print Network (OSTI)

The properties of a strongly interacting quark plasma are investigated by molecular dynamics method including non-abelian quark-quark potential. Our main goal is to study the thermalization process in this system. We find an interesting resonance-like behaviour: at a characteristic time close to the inverse plasma frequency the quark plasma is heated up substantially via energy transfer from quark potential energy into one particle kinetic energy. Color rotation mechanism enhances the effectivity of this heating process, leading to a very fast thermalization with high temperature.

P. Hartmann; Z. Donko; P. Levai; G. J. Kalman

2006-01-06T23:59:59.000Z

209

Molecular Dynamics Simulation of Collisions between Hydrogen and Graphite  

E-Print Network (OSTI)

Abstract. Hydrogen adsorption by graphite is examined by classical molecular dynamics simulation using a modified Brenner REBO potential. Such interactions are typical in chemical sputtering experiments, and knowledge of the fundamental behavior of hydrogen and graphene in collisional conditions is essential for modeling the sputtering mechanism. The hydrogen adsorption rate is found to be dependent on the incident hydrogen energy and not on graphene temperature. Rather than destroying the graphene, hydrogen incidence at energies of less than 100 eV can be classified into three regimes of adsorption, reflection and penetration through one or more graphene layers. Incidence at the lowest energies is shown to distort the graphene structure. 1.

unknown authors

2005-01-01T23:59:59.000Z

210

Interactions in the air: adding further depth to interactive tabletops  

Science Conference Proceedings (OSTI)

Although interactive surfaces have many unique and compelling qualities, the interactions they support are by their very nature bound to the display surface. In this paper we present a technique for users to seamlessly switch between interacting on the ... Keywords: 3D, 3D graphics, computer vision, depth-sensing cameras, holoscreen, interactive surfaces, surfaces, switchable diffusers, tabletop

Otmar Hilliges; Shahram Izadi; Andrew D. Wilson; Steve Hodges; Armando Garcia-Mendoza; Andreas Butz

2009-10-01T23:59:59.000Z

211

Institute for Molecular Engineering | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Learn more about the Institute for Molecular Engineering. Learn more about the Institute for Molecular Engineering. When completed in early 2015, the William Eckhardt Research Center at the University of Chicago will be the home of the Institute of Molecular Engineering. Institute for Molecular Engineering The new Institute for Molecular Engineering explores innovative technologies that address fundamental societal problems through advances in nanoscale manipulation and design at a molecular scale. Addressing Societal Problems with Molecular Science With renowned scientists from around the world, the Institute for Molecular Engineering is defining a nascent field of study that has the potential to address fundamental problems of societal import. The Institute was created in partnership with the University of Chicago and builds on the tradition

212

14th international symposium on molecular beams  

SciTech Connect

This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation & dynamics; and surfaces.

Not Available

1992-09-01T23:59:59.000Z

213

14th international symposium on molecular beams  

Science Conference Proceedings (OSTI)

This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation dynamics; and surfaces.

Not Available

1992-01-01T23:59:59.000Z

214

PML Researchers Open Door to Advanced Molecular ...  

Science Conference Proceedings (OSTI)

... of thinking for molecular electronics,” Pookpanratana states ... not propagate into the electronic properties that ... about predicting the electrical properties ...

2013-04-10T23:59:59.000Z

215

Molecular Mechanisms of Uranium Reduction by Clostridia  

SciTech Connect

The objective of this research is to elucidate systematically the molecular mechanisms involved in the reduction of uranium by Clostridia.

Francis, A.J.; Matin, A.C.; Gao, W.; Chidambaram, D.; Barak, Y.; Dodge, C.J.

2006-04-05T23:59:59.000Z

216

Molecular Dynamics Simulations of Thermoset Polymers for ...  

Science Conference Proceedings (OSTI)

Materials Genomics Past & Future: From CALPHAD to Flight · Modelling the Properties of Multi-Component Commercial Alloys · Molecular Dynamics ...

217

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with...

218

The Molecular Basis for Water Taste in Drosophila  

E-Print Network (OSTI)

odorant receptors: a molecular basis for odor recognition.J. , Weissman, J. , Julius, D. Molecular basis of infraredDarnell, J. (2000). Molecular Cell Biology, 4th edition.

Cameron, Peter

2010-01-01T23:59:59.000Z

219

Molecular mechanisms of HIV gp120-induced neurotoxicity  

E-Print Network (OSTI)

G. and M. Kaul. 2010. Molecular mechanisms of neuroinvasionet al. , 2007). However, the molecular mechanism of p38 MAPKOF CALIFORNIA, SAN DIEGO Molecular Mechanisms of HIV gp120-

Medders, Kathryn Elizabeth

2010-01-01T23:59:59.000Z

220

Molecular Characterization of a Novel Class of DNA Binding Proteins  

E-Print Network (OSTI)

Current Protocols in Molecular Biology. Wiley, New York, NY.1997. Biological and molecular features of the relationshipsand G. Darai. 2002. Molecular anatomy of Chilo iridescent

Spears, Tatsinda Verity

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Molecular mechanisms of B cell tolerance, proliferation and motility  

E-Print Network (OSTI)

ERK signaling is a molecular switch integrating opposingsuperfamilies and their molecular evolution. Genome Biol,13789–13794. Figure 3-1: Molecular domains of SHEP1. SHEP1

Browne, Cecille D.

2010-01-01T23:59:59.000Z

222

The Molecular Basis for Recognition of Oomycete Effectors in Arabidopsis  

E-Print Network (OSTI)

Bailey, K. , et al. , Molecular cloning of ATR5Emoy2 fromResistance proteins: molecular switches of plant defence, inresistance. EMBO (European Molecular Biology Organization)

Krasileva, Ksenia V.

2011-01-01T23:59:59.000Z

223

BE.442 Molecular Structure of Biological Materials, Fall 2002  

E-Print Network (OSTI)

Basic molecular structural principles of biological materials. Molecular structures of various materials of biological origin, including collagen, silk, bone, protein adhesives, GFP, self-assembling peptides. Molecular ...

Zhang, Shuguang, Dr.

224

BE.442 Molecular Structure of Biological Materials, Fall 2005  

E-Print Network (OSTI)

Basic molecular structural principles of biological materials. Molecular structures of various materials of biological origin, including collagen, silk, bone, protein adhesives, GFP, self-assembling peptides. Molecular ...

Zhang, Shuguang, Dr.

225

Carbon Isotope Separation and Molecular Formation in Laser-Induced...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Isotope Separation and Molecular Formation in Laser-Induced Plasmas by Laser Ablation Molecular Isotopic Spectrometry Title Carbon Isotope Separation and Molecular Formation...

226

The Development of New User REsearch Capabilities in Environmental Molecular Science  

NLE Websites -- All DOE Office Websites (Extended Search)

0654 0654 PNNL-16054 1 The Development of New User Research Capabilities in Environmental Molecular Science: Workshop Report Held August 1-2, 2006 W.R. Wiley Environmental Molecular Sciences Laboratory Richland, WA Executive Summary On August 1, and 2, 2006, 104 scientists representing 40 institutions including 24 Universities and 5 National Laboratories gathered at the W.R. Wiley Environmental Molecular Sciences Laboratory, a National scientific user facility, to outline important science challenges for the next decade and identify major capabilities needed to pursue advanced research in the environmental molecular sciences. EMSL's four science themes served as the framework for the workshop. The four science themes are 1) Biological Interactions and Interfaces, 2) Geochemistry/Biogeochemistry and Surface

227

Stochastic Event-Driven Molecular Dynamics  

Science Conference Proceedings (OSTI)

A novel Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm is developed for the simulation of polymer chains suspended in a solvent. SEDMD combines event-driven molecular dynamics (EDMD) with the Direct Simulation Monte Carlo (DSMC) method. ... Keywords: Complex flow, DSMC, Event-driven molecular dynamics, Polymer suspension

Aleksandar Donev; Alejandro L. Garcia; Berni J. Alder

2008-02-01T23:59:59.000Z

228

CELL, MOLECULAR AND DEVELOPMENTAL BIOLOGY Graduation Requirements  

E-Print Network (OSTI)

CELL, MOLECULAR AND DEVELOPMENTAL BIOLOGY Graduation Requirements: A minimum 2.0 average in all in Biology III: Cell Structure and Function (2 cr.; fall) 6. BIOL 24100 Biology IV: Genetics and Molecular Biology (3 cr.; spring) 7. BIOL 24200 Laboratory in Genetics and Molecular Biology (2 cr.; spring) 8. BIOL

Jiang, Wen

229

Molecular Clouds and Millimetre Michael Burton  

E-Print Network (OSTI)

Molecular Clouds and Millimetre Astronomy Michael Burton School of Physics, University of New South of the Astronomical Society of Australia July 21, 1995 Abstract A condensed summary of molecular cloud astrophysics is presented. Some examples of the power of combining near--IR and mm molecular line observations are given

Burton, Michael

230

Molecular Cell Independence of Repressive Histone Marks  

E-Print Network (OSTI)

Molecular Cell Article Independence of Repressive Histone Marks and Chromatin Compaction during Children, Toronto, ON M5G 1X8, Canada 7MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK 8Cancer, Belgium 17Present address: Department of Biochemistry and Molecular Biology, Peking University, Health

Babu, M. Madan

231

Molecular Clocks: Determining the Age of  

E-Print Network (OSTI)

Molecular Clocks: Determining the Age of the Human­Chimpanzee Divergence Michael I Jensen `molecular clock') allows for the estimation of the time of divergence between modern species, dependent on calibrating the clock with known divergence dates from the fossil record. The molecular clock gives dates

Seaman, Michael I.

232

Interactive geometry remeshing  

Science Conference Proceedings (OSTI)

We present a novel technique, both flexible and efficient, for interactive remeshing of irregular geometry. First, the original (arbitrary genus) mesh is substituted by a series of 2D maps in parameter space. Using these maps, our algorithm is then able ...

Pierre Alliez; Mark Meyer; Mathieu Desbrun

2002-07-01T23:59:59.000Z

233

Analyzing interacting BPEL processes  

Science Conference Proceedings (OSTI)

This paper addresses the problem of analyzing the interaction between BPEL processes. We present a technology chain that starts out with a BPEL process and transforms it into a Petri net model. On the model we decide controllability of the process ... Keywords: business process modeling and analysis, formal models in business process management, petri nets, process verification and validation

Niels Lohmann; Peter Massuthe; Christian Stahl; Daniela Weinberg

2006-09-01T23:59:59.000Z

234

Interaction with William Carnall  

SciTech Connect

A personal account is given of interaction with William T. Carnall during the period 1977-1988, when I made regular visits to the Argonne National Laboratory to discuss the theoretical background to the spectroscopic work he was carrying out on the lanthanides and actinides.

Judd, Brian R. [Henry A. Rowland Department of Physics and Astronomy, Johns Hopkins University, Bloomberg Center, Baltimore, MD 21218-2686 (United States)]. E-mail: juddbr@pha.jhu.edu

2005-02-15T23:59:59.000Z

235

Interactive reflection editing  

Science Conference Proceedings (OSTI)

Effective digital content creation tools must be both efficient in the interactions they provide but also allow full user control. There may be occasions, when art direction requires changes that contradict physical laws. In particular, it is known that ... Keywords: graphics hardware, intuitive editing, lighting design, non-photorealistc rendering, perception, post-production

Tobias Ritschel; Makoto Okabe; Thorsten Thormählen; Hans-Peter Seidel

2009-12-01T23:59:59.000Z

236

Interacting with human physiology  

Science Conference Proceedings (OSTI)

We propose a novel system that incorporates physiological monitoring as part of the human-computer interface. The sensing element is a thermal camera that is employed as a computer peripheral. Through bioheat modeling of facial imagery almost the full ... Keywords: Blood flow, Breath rate, Cardiac pulse, Facial tracking, Human-computer interaction, Sleep apnea, Stress, Thermal imaging

I. Pavlidis; J. Dowdall; N. Sun; C. Puri; J. Fei; M. Garbey

2007-10-01T23:59:59.000Z

237

Transport Characteristics of Molecular Motors  

E-Print Network (OSTI)

Properties of transport of molecular motors are investigated. A simplified model based on the concept of Brownian ratchets is applied. We analyze a stochastic equation of motion by means of numerical methods. The transport is systematically studied with respect to its energetic efficiency and quality expressed by an effective diffusion coefficient. We demonstrate the role of friction and non-equilibrium driving on the transport quantifiers and identify regions of a parameter space where motors are optimally transported.

Machura, Lukasz; Luczka, Jerzy; 10.1016/j.biosystems.2008.05.033

2011-01-01T23:59:59.000Z

238

Molecular Science Computing: 2010 Greenbook  

SciTech Connect

This 2010 Greenbook outlines the science drivers for performing integrated computational environmental molecular research at EMSL and defines the next-generation HPC capabilities that must be developed at the MSC to address this critical research. The EMSL MSC Science Panel used EMSL’s vision and science focus and white papers from current and potential future EMSL scientific user communities to define the scientific direction and resulting HPC resource requirements presented in this 2010 Greenbook.

De Jong, Wibe A.; Cowley, David E.; Dunning, Thom H.; Vorpagel, Erich R.

2010-04-02T23:59:59.000Z

239

Steven Weinberg, Weak Interactions, and Electromagnetic Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Steven Weinberg and Steven Weinberg and Weak and Electromagnetic Interactions Resources with Additional Information Steven Weinberg Courtesy Dr. Steven Weinberg Steven "Weinberg is a professor of physics and astronomy at UT [The University of Texas] Austin and is founding director of the Theory Group in the College of Natural Sciences. [He is] well known for his development of a field theory that unifies the electromagnetic and weak nuclear forces, and for other major contributions to physics and cosmology ... Weinberg's work has been honored with numerous prizes, including the Nobel Prize in Physics in 1979 and the National Medal of Science in 1991. Weinberg is the author of the prize-winning book The First Three Minutes: A Modern View of the Origin of the Universe (which has been translated into 22 foreign languages) as well as Gravitation and Cosmology, The Discovery of Subatomic Particles, Dreams of a Final Theory and The Quantum Theory of Fields. ... Weinberg was the recipient of the Scientist as Poet prize from Rockefeller University for "extraordinary achievements in conveying - with passionate clarity - the ideas, history, explanatory power and aesthetic dimensions of fundamental physics." The citation mentioned two of Weinberg's books.

240

Fundamental Interaction Mechanisms of Engineered ...  

Science Conference Proceedings (OSTI)

Fundamental Interaction Mechanisms of Engineered Nanomaterials with DNA. Summary: We utilized isotope-dilution liquid ...

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Shape resonances in molecular fields  

SciTech Connect

A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by X-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field.

Dehmer, J.L.

1984-01-01T23:59:59.000Z

242

Shape resonances in molecular fields  

SciTech Connect

A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field.

Dehmer, J.L.

1984-01-01T23:59:59.000Z

243

Molecular to fluid dynamics: The consequences of stochastic molecular motion Stefan Heinz*  

E-Print Network (OSTI)

Molecular to fluid dynamics: The consequences of stochastic molecular motion Stefan Heinz) The derivation of fluid dynamic equations from molecular equations is considered. This is done on the basis of a stochastic model for the molecular motion which can be obtained by a projection of underlying determin- istic

Heinz, Stefan

244

Journal of Molecular Graphics and Modelling 21 (2003) 499515 A priori molecular descriptors in QSAR  

E-Print Network (OSTI)

Journal of Molecular Graphics and Modelling 21 (2003) 499­515 A priori molecular descriptors in QSAR: a case of HIV-1 protease inhibitors II. Molecular graphics and modeling Rudolf Kiralj, Márcia M; accepted 14 November 2002 Abstract Molecular graphics and modeling methods illustrated the chemical

Ferreira, Márcia M. C.

245

Dynamic neurotransmitter interactions measured with PET  

SciTech Connect

Positron emission tomography (PET) has become a valuable interdisciplinary tool for understanding physiological, biochemical and pharmacological functions at a molecular level in living humans, whether in a healthy or diseased state. The utility of tracing chemical activity through the body transcends the fields of cardiology, oncology, neurology and psychiatry. In this, PET techniques span radiochemistry and radiopharmaceutical development to instrumentation, image analysis, anatomy and modeling. PET has made substantial contributions in each of these fields by providing a,venue for mapping dynamic functions of healthy and unhealthy human anatomy. As diverse as the disciplines it bridges, PET has provided insight into an equally significant variety of psychiatric disorders. Using the unique quantitative ability of PET, researchers are now better able to non-invasively characterize normally occurring neurotransmitter interactions in the brain. With the knowledge that these interactions provide the fundamental basis for brain response, many investigators have recently focused their efforts on an examination of the communication between these chemicals in both healthy volunteers and individuals suffering from diseases classically defined as neurotransmitter specific in nature. In addition, PET can measure the biochemical dynamics of acute and sustained drug abuse. Thus, PET studies of neurotransmitter interactions enable investigators to describe a multitude of specific functional interactions in the human brain. This information can then be applied to understanding side effects that occur in response to acute and chronic drug therapy, and to designing new drugs that target multiple systems as opposed to single receptor types. Knowledge derived from PET studies can be applied to drug discovery, research and development (for review, see (Fowler et al., 1999) and (Burns et al., 1999)). Here, we will cover the most substantial contributions of PET to understanding biologically distinct neurochemical systems that interact to produce a variety of behaviors and disorders. Neurotransmitters are neither static nor isolated in their distribution. In fact, it is through interactions with other neurochemically distinct systems that the central nervous system (CNS) performs its vital role in sustaining life. Exclusive quantitative capabilities intrinsic to PET make this technology a suitable experimental tool to measure not only the regional distribution of specific receptors and their subtypes, but also the dynamic properties of neuroreceptors and their inherent influence on related neurotransmitter pathways. The ability to investigate dynamic properties in a non-invasive and reproducible manner provides a powerful tool that can extend our current knowledge of these interactions. Coupled with innovative paradigms including pharmacologic manipulations, physiologic models and reconstruction theories, knowledge derived from PET studies can greatly advance our understanding of normal and abnormal brain function.

Schiffer, W.K.; Dewey, S.L.

2001-04-02T23:59:59.000Z

246

Vibrations of Jammed Disk Packings with Hertzian Interactions  

E-Print Network (OSTI)

Contact breaking and Hertzian interactions between grains can both give rise to nonlinear vibrational response of static granular packings. We perform molecular dynamics simulations at constant energy in 2D of frictionless bidisperse disks that interact via Hertzian spring potentials as a function of energy and measure directly the vibrational response from the Fourier transform of the velocity autocorrelation function. We compare the measured vibrational response of static packings near jamming onset to that obtained from the eigenvalues of the dynamical matrix to determine the temperature above which the linear response breaks down. We compare packings that interact via single-sided (purely repulsive) and double-sided Hertzian spring interactions to disentangle the effects of the shape of the potential from contact breaking. Our studies show that while Hertzian interactions lead to weak nonlinearities in the vibrational behavior (e.g. the generation of harmonics of the eigenfrequencies of the dynamical matrix), the vibrational response of static packings with Hertzian contact interactions is dominated by contact breaking as found for systems with repulsive linear spring interactions.

Carl F. Schreck; Corey S. O'Hern; Mark D. Shattuck

2013-09-03T23:59:59.000Z

247

BioPPISVMExtractor: A protein-protein interaction extractor for biomedical literature using SVM and rich feature sets  

Science Conference Proceedings (OSTI)

Protein-protein interactions play a key role in various aspects of the structural and functional organization of the cell. Knowledge about them unveils the molecular mechanisms of biological processes. However, the amount of biomedical literature regarding ... Keywords: Conditional random fields, Information extraction, Protein-protein interaction, Support vector machines, Text mining

Zhihao Yang; Hongfei Lin; Yanpeng Li

2010-02-01T23:59:59.000Z

248

Interaction Region Papers  

NLE Websites -- All DOE Office Websites (Extended Search)

IR (Interaction Region) Magnets with Ramesh Gupta IR (Interaction Region) Magnets with Ramesh Gupta as the major author (unless noted): R. Gupta, et. al, "React & Wind Nb3Sn Common Coil Dipole", ASC 2006, August 27- September 1, 2006 in Seattle, WA, USA . *** Click Here for Talk ***. R. Gupta, "Modular Design and Modular Program for High Gradient Quadrupoles", ASC 2006, August 27- September 1, 2006 in Seattle, WA, USA. *** Click Here for Poster ***. Racetrack Magnet Designs and Technologies, WAMDO@CERN, April 2-6, 2006 (Click here for the oral presentation). R. Gupta, et. al, "Optimization of Open Midplane Dipole Design for LHC IR Upgrade," Presented at the 2005 Particle Accelerator Conference, Knoxville, TN, USA (2005). *** Click Here for Poster *** R. Gupta, et al., “Open Midplane Dipole Design for LHC IR

249

Interactive optical panel  

DOE Patents (OSTI)

An interactive optical panel assembly 34 includes an optical panel 10 having a plurality of ribbon optical waveguides 12 stacked together with opposite ends thereof defining panel first and second faces 16, 18. A light source 20 provides an image beam 22 to the panel first face 16 for being channeled through the waveguides 12 and emitted from the panel second face 18 in the form of a viewable light image 24a. A remote device 38 produces a response beam 40 over a discrete selection area 36 of the panel second face 18 for being channeled through at least one of the waveguides 12 toward the panel first face 16. A light sensor 42,50 is disposed across a plurality of the waveguides 12 for detecting the response beam 40 therein for providing interactive capability.

Veligdan, James T. (Manorville, NY)

1995-10-03T23:59:59.000Z

250

Ligand-Receptor Interactions  

E-Print Network (OSTI)

The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the ...

Bongrand, Pierre

2008-01-01T23:59:59.000Z

251

Electron: Cluster interactions  

SciTech Connect

Beam depletion spectroscopy has been used to measure absolute total inelastic electron-sodium cluster collision cross sections in the energy range from E {approximately} 0.1 to E {approximately} 6 eV. The investigation focused on the closed shell clusters Na{sub 8}, Na{sub 20}, Na{sub 40}. The measured cross sections show an increase for the lowest collision energies where electron attachment is the primary scattering channel. The electron attachment cross section can be understood in terms of Langevin scattering, connecting this measurement with the polarizability of the cluster. For energies above the dissociation energy the measured electron-cluster cross section is energy independent, thus defining an electron-cluster interaction range. This interaction range increases with the cluster size.

Scheidemann, A.A. [Washington Univ., Seattle, WA (United States). Dept. of Chemistry; Kresin, V.V. [Lawrence Livermore National Lab., CA (United States); Knight, W.D. [California Univ., Berkeley, CA (United States). Dept. of Physics

1994-02-01T23:59:59.000Z

252

Dynamic Properties of Molecular Motors in Burnt-Bridge Models  

E-Print Network (OSTI)

Dynamic properties of molecular motors that fuel their motion by actively interacting with underlying molecular tracks are studied theoretically via discrete-state stochastic ``burnt-bridge'' models. The transport of the particles is viewed as an effective diffusion along one-dimensional lattices with periodically distributed weak links. When an unbiased random walker passes the weak link it can be destroyed (``burned'') with probability p, providing a bias in the motion of the molecular motor. A new theoretical approach that allows one to calculate exactly all dynamic properties of motor proteins, such as velocity and dispersion, at general conditions is presented. It is found that dispersion is a decreasing function of the concentration of bridges, while the dependence of dispersion on the burning probability is more complex. Our calculations also show a gap in dispersion for very low concentrations of weak links which indicates a dynamic phase transition between unbiased and biased diffusion regimes. Theoretical findings are supported by Monte Carlo computer simulations.

Maxim N. Artyomov; Alexander Yu. Morozov; Ekaterina Pronina; Anatoly B. Kolomeisky

2007-05-04T23:59:59.000Z

253

Interaction walkthrough: evaluation of safety critical interactive systems  

Science Conference Proceedings (OSTI)

Usability evaluation methods are a battery of techniques for assessing the usability of interactive systems or of proposed interactive systems. This paper describes a new evaluation method, particularly appropriate for evaluating safety critical and ...

Harold Thimbleby

2006-07-01T23:59:59.000Z

254

Molecular ingredients of heterogeneous catalysis  

Science Conference Proceedings (OSTI)

The purpose of this paper is to present a review and status report to those in theoretical chemistry of the rapidly developing surface science of heterogeneous catalysis. The art of catalysis is developing into science. This profound change provides one with opportunities not only to understand the molecular ingredients of important catalytic systems but also to develop new and improved catalyst. The participation of theorists to find answers to important questions is sorely needed for the sound development of the field. It is the authors hope that some of the outstanding problems of heterogeneous catalysis that are identified in this paper will be investigated. For this purpose the paper is divided into several sections. The brief Introduction to the methodology and recent results of the surface science of heterogeneous catalysis is followed by a review of the concepts of heterogeneous catalysis. Then, the experimental results that identified the three molecular ingredients of catalysis, structure, carbonaceous deposit and the oxidation state of surface atoms are described. Each section is closed with a summary and a list of problems that require theoretical and experimental scrutiny. Finally attempts to build new catalyst systems and the theoretical and experimental problems that appeared in the course of this research are described.

Somorjai, G.A.

1982-06-01T23:59:59.000Z

255

Photoionization of excited molecular states  

DOE Green Energy (OSTI)

Rapid advances in laser and detector technologies are making it possible to investigate molecular photophysics and photochemistry in powerful new ways. For example, resonantly enhanced multiphoton ionization (REMPI) measurements, in which the total (or the mass selected) ion current is monitored as a function of laser wavelength, have yielded extensive and often novel information on the spectroscopy of the resonant intermediate states. With the addition of photoelectron spectrometry (PES) to analyze the kinetic energy of the ejected electrons, it is possible to determine the branching ratios into different electronic, vibrational, and rotational levels of the product ion and to focus directly on both the dynamics of the multiphoton ionization process and the photoionization of excited state species. In the present paper, we report several REMPI/PES studies of H/sub 2/ and N/sub 2/. The results reflect both the spectroscopy and the dynamics of photoionization of excited molecular states and are discussed in terms of the selection rules for photoionization and the relative probabilities of photoionization from Rydberg and valence states. In some cases, in accordance with the Franck-Condon principle, the results demonstrate that resonant multiphoton ionization through Rydberg states may be a powerful technique for the production of electronic, vibrational, and rotational state selected ions. However, in other cases, systematic departures from Franck-Condon behavior are observed, which reflect the more subtle dynamics of excited state photoionization.

Dehmer, P.M.; Dehmer, J.L.; Pratt, S.T.

1984-01-01T23:59:59.000Z

256

Molecular Hydrogen in Infrared Cirrus  

E-Print Network (OSTI)

We combine data from our recent FUSE survey of interstellar molecular hydrogen absorption toward 50 high-latitude AGN with COBE-corrected IRAS 100 micron emission maps to study the correlation of infrared cirrus with H2. A plot of the H2 column density vs. IR cirrus intensity shows the same transition in molecular fraction, f_H2, as seen with total hydrogen column density, N_H. This transition is usually attributed to H2 self-shielding, and it suggests that many diffuse cirrus clouds contain H2 in significant fractions, f_H2 = 1-30%. These clouds cover approximately 50% of the northern sky at latitudes b > 30 degrees, at temperature-corrected 100 micron intensities D_100 > 1.5 MJy/sr. The sheetlike cirrus clouds, with hydrogen densities n_H > 30 cm^-3, may be compressed by dynamical processes at the disk-halo interface, and they are conducive to H2 formation on grain surfaces. Exploiting the correlation between N(H2) and 100 micron intensity, we estimate that cirrus clouds at b > 30 contain approximately 3000 M_sun in H2. Extrapolated over the inner Milky Way, the cirrus may contain 10^7 M_sun of H2 and 10^8 M_sun in total gas mass. If elevated to 100 pc, their gravitational potential energy is ~10^53 erg.

Kristen Gillmon; J. Michael Shull

2005-07-25T23:59:59.000Z

257

Molecular Design of Branched and Binary Molecules at Ordered Interfaces  

SciTech Connect

This study examined five different branched molecular architectures to discern the effect of design on the ability of molecules to form ordered structures at interfaces. Photochromic monodendrons formed kinked packing structures at the air-water interface due to the cross-sectional area mismatch created by varying number of alkyl tails and the hydrophilic polar head group. The lower generations formed orthorhombic unit cell with long range ordering despite the alkyl tails tilted to a large degree. Favorable interactions between liquid crystalline terminal groups and the underlying substrate were observed to compel a flexible carbosilane dendrimer core to form a compressed elliptical conformation which packed stagger within lamellae domains with limited short range ordering. A twelve arm binary star polymer was observed to form two dimensional micelles at the air-water interface attributed to the higher polystyrene block composition. Linear rod-coil molecules formed a multitude of packing structures at the air-water interface due to the varying composition. Tree-like rod-coil molecules demonstrated the ability to form one-dimensional structures at the air-water interface and at the air-solvent interface caused by the preferential ordering of the rigid rod cores. The role of molecular architecture and composition was examined and the influence chemically competing fragments was shown to exert on the packing structure. The amphiphilic balance of the different molecular series exhibited control on the ordering behavior at the air-water interface and within bulk structures. The shell nature and tail type was determined to dictate the preferential ordering structure and molecular reorganization at interfaces with the core nature effect secondary.

Kirsten Larson Genson

2005-12-27T23:59:59.000Z

258

A BUBBLING NEARBY MOLECULAR CLOUD: COMPLETE SHELLS IN PERSEUS  

SciTech Connect

We present a study of the shells (and bubbles) in the Perseus molecular cloud using the COMPLETE survey large-scale {sup 12}CO(1-0) and {sup 13}CO(1-0) maps. The 12 shells reported here are spread throughout most of the Perseus cloud and have circular or arc-like morphologies with a range in radius of about 0.1-3 pc. Most of them have not been detected before most likely because maps of the region lacked the coverage and resolution needed to distinguish them. The majority of the shells are coincident with infrared nebulosity of similar shape and have a candidate powering source near the center. We suggest that they are formed by the interaction of spherical or very wide angle winds powered by young stars inside or near the Perseus molecular cloud-a cloud that is commonly considered to be forming mostly low-mass stars. Two of the 12 shells are powered by high-mass stars close to the cloud, while the others appear to be powered by low- or intermediate-mass stars in the cloud. We argue that winds with a mass loss rate of about 10{sup -8} to 10{sup -6} M{sub Sun} yr{sup -1} are required to produce the observed shells. Our estimates indicate that the energy input rate from these stellar winds is similar to the turbulence dissipation rate. We conclude that in Perseus the total energy input from both collimated protostellar outflows and powerful spherical winds from young stars is sufficient to maintain the turbulence in the molecular cloud. Large-scale molecular line and IR continuum maps of a sample of clouds will help determine the frequency of this phenomenon in other star-forming regions.

Arce, Hector G. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Borkin, Michelle A. [School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 (United States); Goodman, Alyssa A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Pineda, Jaime E. [ESO, 85748 Garching (Germany); Beaumont, Christopher N., E-mail: hector.arce@yale.edu, E-mail: michelle_borkin@harvard.edu, E-mail: agoodman@cfa.harvard.edu, E-mail: jaime.pineda@manchester.ac.uk, E-mail: beaumont@ifa.hawaii.edu, E-mail: cbeaumont@cfa.harvard.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

2011-12-01T23:59:59.000Z

259

MIXING OF CLUMPY SUPERNOVA EJECTA INTO MOLECULAR CLOUDS  

SciTech Connect

Several lines of evidence, from isotopic analyses of meteorites to studies of the Sun's elemental and isotopic composition, indicate that the solar system was contaminated early in its evolution by ejecta from a nearby supernova. Previous models have invoked supernova material being injected into an extant protoplanetary disk, or isotropically expanding ejecta sweeping over a distant (>10 pc) cloud core, simultaneously enriching it and triggering its collapse. Here, we consider a new astrophysical setting: the injection of clumpy supernova ejecta, as observed in the Cassiopeia A supernova remnant, into the molecular gas at the periphery of an H II region created by the supernova's progenitor star. To track these interactions, we have conducted a suite of high-resolution (1500{sup 3} effective) three-dimensional numerical hydrodynamic simulations that follow the evolution of individual clumps as they move into molecular gas. Even at these high resolutions, our simulations do not quite achieve numerical convergence, due to the challenge of properly resolving the small-scale mixing of ejecta and molecular gas, although they do allow some robust conclusions to be drawn. Isotropically exploding ejecta do not penetrate into the molecular cloud or mix with it, but, if cooling is properly accounted for, clumpy ejecta penetrate to distances {approx}10{sup 18} cm and mix effectively with large regions of star-forming molecular gas. In fact, the {approx}2 M{sub Sun} of high-metallicity ejecta from a single core-collapse supernova is likely to mix with {approx}2 Multiplication-Sign 10{sup 4} M{sub Sun} of molecular gas material as it is collapsing. Thus, all stars forming late ( Almost-Equal-To 5 Myr) in the evolution of an H II region may be contaminated by supernova ejecta at the level {approx}10{sup -4}. This level of contamination is consistent with the abundances of short-lived radionuclides and possibly some stable isotopic shifts in the early solar system and is potentially consistent with the observed variability in stellar elemental abundances. Supernova contamination of forming planetary systems may be a common, universal process.

Pan Liubin; Desch, Steven J.; Scannapieco, Evan; Timmes, F. X. [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 (United States)

2012-09-01T23:59:59.000Z

260

Interactive fracture design model  

DOE Green Energy (OSTI)

A computer program is described that can be used to design a fracture stimulation treatment for a geothermal reservoir. The program uses state-of-the-art methods to calculate the temperature of the fracture fluid as a function of time and distance in the fracture. This information is used to determine the temperature dependent properties of the fracture fluid. These fluid properties are utilized to calculate the fracture geometry as a function of time. The fracture geometry and temperature distribution of the fracture fluid are coupled so the subroutines that calculate these distributions have been made interactive.

Not Available

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Minimal framework density molecular sieves for natural gas storage. Final report, January 1992-April 1993  

SciTech Connect

A study of the ability of the aluminophosphate family of molecular sieves to adsorb methane is summarized. The work examines the sieves chosen for their lowest framework density and smallest pore diameter system. These materials represent a possible improvement in systems for on-board storage of natural gas as their physical properties can improve methane capacity inside the cavities and maximize framework-adsorbate interaction. The study details the topology of the aluminophospate molecular sieves and compares them to the aluminosilicate zeolites. Experimental procedures for synthesizing the sieves are described.

Szostak, R.

1993-02-10T23:59:59.000Z

262

Molecular Ensemble Based Remote Quantum Storage for Charge Qubit via Quasi-Dark State  

E-Print Network (OSTI)

We propose a quantum storage scheme independent of the current time-control schemes, and study a "quantum data bus" (transmission line resonator) in a hybrid system consisting of a circuit QED system integrated with a cold molecular ensemble. Here, an effective interaction between charge qubit and molecule is mediated by the off-resonate field in the data bus. Correspondingly, the charge state can be mapped into the collective quasi-spin state of the molecular ensemble via the standard dark state based adiabatic manipulation.

Zhang, H R; Gong, Z R; Sun, C P

2009-01-01T23:59:59.000Z

263

Molecular Ensemble Based Remote Quantum Storage for Charge Qubit via Quasi-Dark State  

E-Print Network (OSTI)

We propose a quantum storage scheme independent of the current time-control schemes, and study a "quantum data bus" (transmission line resonator) in a hybrid system consisting of a circuit QED system integrated with a cold molecular ensemble. Here, an effective interaction between charge qubit and molecule is mediated by the off-resonate field in the data bus. Correspondingly, the charge state can be mapped into the collective quasi-spin state of the molecular ensemble via the standard dark state based adiabatic manipulation.

H. R. Zhang; Y. B. Gao; Z. R. Gong; C. P. Sun

2009-04-16T23:59:59.000Z

264

The interactions of water and perfluorodiethyl ether on Ru(100)  

DOE Green Energy (OSTI)

We have studied the interactions of water and perfluorodiethyl ether on Ru(100) in order to model the effects of surface structure and humidity on the bonding and decomposition of perfluoroalkyl ether lubricants with metal surfaces. In order to understand the interactions on Ru(100), we have first investigated the interactions of each of these adsorbates alone on the clean surface. The interactions of water with Ru(100) have been studied using both thermal desorption spectroscopy (TDS) and electron energy loss spectroscopy (EELS). From these studies we conclude that a small amount of water dissociates on this surface (5--10% of a monolayer), but water is adsorbed in a predominantly molecular form on this surface with an increasing degree of hydrogen-bonding with increasing coverage. The effects of hydrogen and oxygen coadsorption on the interactions of water with this surface have also been studied using TDS. Finally, the interactions of coadsorbed water and perfluorodiethyl ether on Ru(100) have been investigated using TDS.

Leavitt, P.

1990-09-21T23:59:59.000Z

265

Molecular analysis of placodal development in zebrafish  

E-Print Network (OSTI)

Vertebrates have evolved a unique way to sense their environment: placodallyderived sense organs. These sensory structures emerge from a crescent-shaped domain, the preplacodal domain, which surrounds the anterior neural plate and generates the paired sense organs as well as the cranial ganglia. For decades, embryologists have attempted to determine the tissue interactions required for induction of various placodal tissues. More recently, technological advances have allowed investigators to ask probing questions about the molecular nature of placodal development. In this dissertation I largely focus on development of the otic placode. I utilize loss-of-function techniques available in the zebrafish model system to demonstrate that two members of the fibroblast growth factors family of secreted ligands, Fgf3 and Fgf8, are redundantly required for otic placode induction. I go on to show that these factors are expressed in periotic tissues from the beginning of gastrulation. These findings are consistent with a model where Fgf3 and Fgf8 signal to preotic tissue to induce otic-specific gene expression. This model does not address other potential inducers in otic induction. A study using chick explant cultures suggests that a member of the Wnt family of secreted ligands also has a role in otic induction. I therefore test the relative roles of Wnt and Fgf in otic placode induction. The results demonstrate that Wnt functions primarily to correctly position the Fgf expression domain and that it is these Fgf factors which are directly received by future otic cells. Lastly, I examine the function of the muscle segment homeobox (msx) gene family expressed in the preplacodal domain. This study demonstrates that Msx proteins refine the boundary between the preplacodal domain and the neural plate. Further, msx genes function in the differentiation and survival of posterior placodal tissues (including the otic field), neural crest and dorsal neural cell types. Loss of Msx function results in precocious cell death and morphogenesis defects which may reflect perturbed BMP signaling.

Phillips, Bryan T.

2004-12-01T23:59:59.000Z

266

Solid-solid collapse transition in a two dimensional model molecular system  

E-Print Network (OSTI)

Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte Carlo (MC) simulations to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB) which for a specific set of parameters sustains three solid phases: honeycomb, oblique and triangular. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by heating. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common believe and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as linear strip followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions which enables the dominance of stabilizing energy over the destabilizing surface energy. The nuclei of stable oblique phase are wetted by intermediate order particles which minimizes the surface free energy. We observe different pathways for pressure and temperature induced transitions.

Rakesh S. Singh; Biman Bagchi

2013-04-11T23:59:59.000Z

267

Eighth international congress on nitrogen fixation  

DOE Green Energy (OSTI)

This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

Not Available

1990-01-01T23:59:59.000Z

268

Eighth international congress on nitrogen fixation. Final program  

DOE Green Energy (OSTI)

This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

Not Available

1990-12-31T23:59:59.000Z

269

Refining interaction designs through simplicity  

Science Conference Proceedings (OSTI)

With more and more devices in our surroundings, users increasingly-consume applications and digital services which compete for their attention. Therefore, users appreciate simplicity when they interact with them because a less intrusive interaction allows ... Keywords: interaction, mobile devices, simplicity, user-centered design

Pablo Muñoz; Pau Giner; Vicente Pelechano

2010-11-01T23:59:59.000Z

270

Programming Languages For Interactive Computing  

Science Conference Proceedings (OSTI)

Traditional programming languages are algorithmic: they are best suited to writing programs that acquire all their inputs before executing and only produce a result on termination. By contrast most applications are interactive: they maintain ongoing ... Keywords: declarative concurrency, incremental computation, interaction, interactive programming languages, modal languages, persistent computation, retroactive data structures, semantic computing, transactional concurrency

Roly Perera

2008-05-01T23:59:59.000Z

271

Junction Plasmon-Induced Molecular Reorientation  

SciTech Connect

Time and frequency dependent intensity variations in sequences of Raman spectra recorded at plasmonic junctions can be assigned to molecular reorientation. This is revealed through Raman trajectories recorded at a nanojunction formed between a silver AFM tip and a corrugated silver surface coated with biphenyl-4,4’-dithiol. Molecular motion is not observed when the tip is retracted and only surface enhancement is operative. In effect, junction plasmon induced molecular reorientation is tracked.

El-Khoury, Patrick Z.; Hu, Dehong; Hess, Wayne P.

2013-10-17T23:59:59.000Z

272

Production of high molecular weight polylactic acid  

DOE Patents (OSTI)

A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

Bonsignore, P.V.

1995-11-28T23:59:59.000Z

273

Production of high molecular weight polylactic acid  

DOE Patents (OSTI)

A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

Bonsignore, Patrick V. (Joilet, IL)

1995-01-01T23:59:59.000Z

274

Moveable Interactive Projected Displays  

E-Print Network (OSTI)

Video projectors have typically been used to display images on surfaces whose geometric relationship to the projector remains constant, such as walls or pre-calibrated surfaces. In this paper, we present a technique for projecting content onto moveable surfaces that adapts to the motion and location of the surface to simulate an active display. This is accomplished using a projector based location tracking techinque. We use light sensors embedded into the moveable surface and project low-perceptibility Graycoded patterns to first discover the sensor locations, and then incrementally track them at interactive rates. We describe how to reduce the perceptibility of tracking patterns, achieve interactive tracking rates, use motion modeling to improve tracking performance, and respond to sensor occlusions. A group of tracked sensors can define quadrangles for simulating moveable displays while single sensors can be used as control inputs. By unifying the tracking and display technology into a single mechanism, we can substantially reduce the cost and complexity of implementing applications that combine motion tracking and projected imagery.

Using Projector Based; Johnny C. Lee; Scott E. Hudson; Jay W. Summet; Paul H. Dietz

2005-01-01T23:59:59.000Z

275

Molecular Epidemiology of Human Cancer Risk  

Science Conference Proceedings (OSTI)

Epidemiology has identified several etiological factors in lung cancer, of which the most ... Finally, most molecular epidemiology studies include genetic research.

276

Molecular Dynamics of Martenstic Phase Transitions  

Science Conference Proceedings (OSTI)

Presentation Title, Kinetics of martensitic phase transformation: Molecular Dynamics of Martenstic ... A Comparison of Coulombic and Plastic Shear Faults in Ice.

277

Molecular Human Reproduction Page 1 of 10  

E-Print Network (OSTI)

doi:10.1093/molehr/gah205 Splice variants of the relaxin and INSL3 receptors reveal unanticipated molecular complexity

Marco Muda; Chaomei He; Paolo G. V. Martini; Tania Ferraro; Sharon Layfield; Deanne Taylor; Colette Chevrier; Rene Schweickhardt; Christie Kelton; Peter L. Ryan; Ross A. D. Bathgate

2005-01-01T23:59:59.000Z

278

Carbon Nanohoops: Molecular Templates for Precision Nanotube ...  

Ramesh Jasti and Carolyn Bertozzi of Berkeley Lab have developed a technique to build carbon-ring “nanohoops,” molecular building blocks for the ...

279

Molecular biology of signal transduction in plants  

Science Conference Proceedings (OSTI)

This volume contains abstracts of oral presentations and poster sessions of the 1991 Cold Springs Harbor Meeting entitled Molecular Biology of Signal Transduction in Plants.

Not Available

1991-01-01T23:59:59.000Z

280

DL_POLY Molecular Simulation Package  

Science Conference Proceedings (OSTI)

Jan 8, 2008 ... DL_POLY is a general purpose serial and parallel molecular dynamics simulation package developed at Daresbury Laboratory by W. Smith, ...

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Molecular Foundry - Our Mission and History  

NLE Websites -- All DOE Office Websites (Extended Search)

One of the World's Premier Nanotechnology Research Institutions Nanotechnology lab Founded in 2006 by the Department of Energy (DOE), the Molecular Foundry is a critical part of...

282

Molecular and Systems Biology | Biosciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

the molecular function information derived from these studies will enable synthetic biology approaches that modulate the system response by manipulating components of...

283

Molecular and Systems Biology | Biosciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular and Systems Biology BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne...

284

SLAC National Accelerator Laboratory - Molecular Graphene Heralds...  

NLE Websites -- All DOE Office Websites (Extended Search)

Press Release Archive Molecular Graphene Heralds New Era of 'Designer Electrons' March 14, 2012 Menlo Park, Calif. - Researchers from Stanford University and the U.S. Department of...

285

Molecular structures on crystalline metallic surfaces - From STM images to molecular electronics  

Science Conference Proceedings (OSTI)

We present results from scanning tunneling microscopy obtained for organic molecules - coronene and different phthalocyanine derivatives - adsorbed on crystalline metallic substrates under UHV conditions. Molecular structures resolved till to submolecular ... Keywords: Molecular electronics, Nanoscale structures, Organic molecules, Scanning tunneling microscopy

M. Hietschold; M. Lackinger; S. Griessl; W. M. Heckl; T. G. Gopakumar; G. W. Flynn

2005-12-01T23:59:59.000Z

286

Running Interactive Jobs on Carver  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Jobs Interactive Jobs Interactive Jobs Overview There are two types of interactive jobs. The first type runs on a login node. These applications are typically pre- and post-processing jobs, data management programs, or some other type of "tool". Note that it is not possible to run any MPI application on Carver login nodes. The second type of interactive job runs on one or more Carver compute nodes. Because the only way to gain access to the compute nodes is through the batch system, these types of jobs may more accurately be called "interactive batch" jobs. The remainder of this section focuses on these types of jobs. Usage Basic usage: carver% qsub -I The above command creates an interactive shell on a compute node, in the user's home directory. As a batch job, it has default values for batch

287

Running Interactive Jobs on Hopper  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Jobs Interactive Jobs Interactive Jobs To run an interactive job on Hopper's compute nodes you must request the number of nodes you want and have the system allocate resources from the pool of free nodes. The following command requests 2 nodes using the interactive queue. hopper% qsub -I -V -q interactive -l mppwidth=48 The -I flag specifies an interactive job. The -V flag passes your current environment variable settings to the compute environment. The -q flag specifies the name of the queue and -l mppwidth determines the number of nodes to allocate for your job, but not as you might expect. The number of nodes given to your job (remember, the system allocates nodes, not cores), is the value of mppwidth divided by the umber of cores per node. On Hopper, with 24 cores per node, the number of nodes is mppwidth/24 plus one more if

288

Local molecular field theory for the treatment of electrostatics  

E-Print Network (OSTI)

We examine in detail the theoretical underpinnings of previous successful applications of local molecular field (LMF) theory to charged systems. LMF theory generally accounts for the averaged effects of long-ranged components of the intermolecular interactions by using an effective or restructured external field. The derivation starts from the exact Yvon-Born-Green hierarchy and shows that the approximation can be very accurate when the interactions averaged over are slowly varying at characteristic nearest-neighbor distances. Application of LMF theory to Coulomb interactions alone allows for great simplifications of the governing equations. LMF theory then reduces to a single equation for a restructured electrostatic potential that satisfies Poisson's equation defined with a smoothed charge density. Because of this charge smoothing by a Gaussian of width sigma, this equation may be solved more simply than the detailed simulation geometry might suggest. Proper choice of the smoothing length sigma plays a major role in ensuring the accuracy of this approximation. We examine the results of a basic confinement of water between corrugated wall and justify the simple LMF equation used in a previous publication. We further generalize these results to confinements that include fixed charges in order to demonstrate the broader impact of charge smoothing by sigma. The slowly-varying part of the restructured electrostatic potential will be more symmetric than the local details of confinements.

Jocelyn M. Rodgers; John D. Weeks

2008-09-17T23:59:59.000Z

289

Hadron nucleus interactions  

SciTech Connect

The elastic and inelastic scattering of intermediate energy (less than or equal to 1 GeV) protons by nuclei is considered first. The discussion focuses on the determination of the proton-nucleus optical potential in terms of the elementary nucleon-nucleon scattering amplitudes and the properties of the target and residual nucleus. The result is a series of terms for the optical potential. Then the interaction of pions with nuclei for energies in the neighborhood of the ..delta..-resonance is discussed. In this energy domain an incident pion will with high probability be absorbed by a nucleon to produce the ..delta..-resonance and thus form a ..delta..-particle hole state in the nucleus. Next, the subject of hypernuclei is taken up. The ..lambda.. hypernuclei and a recently observed ..sigma.. hypernuclei comprise situations in which the core nucleus can be probed by a baryon of roughly the same mass as a nucleon, with similar albeit not identical interactions with nucleons. But the ..lambda.. (or ..sigma..) does not need to satisfy the Pauli exclusion principle with respect to the nucleons, and therefore can be in orbits forbidden to it if it were a nucleon. As the energy of the projectile increases, it becomes correspondingly more important to take relativistic effects into account. The importance of these effects is strikingly revealed by experiments involving the collision of ultrarelativistic hadrons, protons, pions, kaons (up to Fermilab energies) with nuclei. This phenomenon forms part of the final topic, which includes as well as the collision of relativistic heavy ion projectiles with nuclei. A nuclear Weiszaecker-Williams method developed for dealing with peripheral collisions is described. 32 figures, 10 tables. (RWR)

Feshbach, H.

1980-10-01T23:59:59.000Z

290

GenAlyzer: interactive visualization of sequence similarities between entire genomes  

Science Conference Proceedings (OSTI)

Summary: Genalyzer is a software tool designed for the interactive visualization of sequence matches between DNA or protein sequences. It provides visualizations on different levels of granularity, from complete overviews via zoomed regions to ... Keywords: Drosophila, accessory gland protein, gene duplication, gene expression, molecular evolution, selection

Jomuna V. Choudhuri; Chris Schleiermacher; Stefan Kurtz; Robert Giegerich

2004-08-01T23:59:59.000Z

291

Fast Molecular Solvation Energetics and Forces Computation  

Science Conference Proceedings (OSTI)

The total free energy of a molecule includes the classical molecular mechanical energy (which is understood as the free energy in vacuum) and the solvation energy, which is caused by the change of the environment of the molecule (solute) from vacuum ... Keywords: error analysis, fast summation, generalized Born, molecular surface

Chandrajit Bajaj; Wenqi Zhao

2009-11-01T23:59:59.000Z

292

Introducing complete graphs in molecular connectivity studies  

Science Conference Proceedings (OSTI)

The mathematical model of the molecular polarizability of fifty-four organic compounds, of the lattice enthalpy of twenty metal halides, and of the partition coefficient of twenty-five organic compounds has been used to test four different complete graph, ... Keywords: Mathematical model, algorithms, chemical graphs, complete graphs, core electrons, molecular connectivity, polarizability

Lionello Pogliani

2005-01-01T23:59:59.000Z

293

Learning molecular biology by VR playing  

Science Conference Proceedings (OSTI)

Learning by playing is one of the natural way for knowledge and skill acquisition. This paper addresses the issue of learning molecular biology by Virtual Reality (VR) based playing. A software system MolecularStudio is developed using the VR Technology ... Keywords: VR, biology, computer game, learning, playing

BF Lu; KT Lim; JM Zheng; YY Cai

2004-06-01T23:59:59.000Z

294

Atomic Molecular and Optical Science | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Atomic Molecular and Optical Science Atomic Molecular and Optical Science Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Scientific Highlights Reports & Activities Principal Investigators' Meetings BES Home Research Areas Atomic Molecular and Optical Science Print Text Size: A A A RSS Feeds FeedbackShare Page This research area supports theory and experiments to understand structural and dynamical properties of atoms, molecules, and nanostructures. The research emphasizes the fundamental interactions of these systems with photons and electrons to characterize and control their behavior. These efforts aim to develop accurate quantum mechanical descriptions of properties and dynamical processes of atoms, molecules, and nanoscale

295

2012 CELLULAR & MOLECULAR FUNGAL BIOLOGY GORDON RESEARCH CONFERENCE, JUNE 17 - 22, 2012  

SciTech Connect

The Gordon Research Conference on CELLULAR & MOLECULAR FUNGAL BIOLOGY was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

Judith Berman

2012-06-22T23:59:59.000Z

296

Connecting the Molecular and the Continuum Scales  

NLE Websites -- All DOE Office Websites (Extended Search)

Connecting the Connecting the Molecular and the Continuum Scales Connecting the Molecular and the Continuum Scales Key Challenges: A molecular-scale understanding of structure and surface chemistry of clay mineral surface nanoparticles. Why it Matters: With a ubiquitous presence in natural materials and strong surface reactions, nanoparticles figure importantly in a broad range of phenomena, from climate change to contaminant remediation. Accomplishments: Used molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients of water tracers and representative cations (Na+,Cs+,Sr2+) in Smectite and found a simple way to accurately relate this to bulk, pore-scale diffusion. The result is that a remarkably simple expression relates Dinterlayer to the pore-scale

297

Yuan T. Lee's Crossed Molecular Beam Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Yuan T. Lee's Crossed Molecular Beam Experiment Yuan T. Lee's Crossed Molecular Beam Experiment Home | Staff | Search | Advisory Committee | User Facilities | Laboratories | Congress | Budget Yuan T. Lee's Crossed Molecular Beam Experiment http://web.archive.org/web/20000902074635/www.er.doe.gov/production/bes/YuanLee_Exp.html (1 of 4)4/7/2006 2:46:13 PM Yuan T. Lee's Crossed Molecular Beam Experiment The above illustration was drawn by Professor Yuan T. Lee, who shared the 1986 Nobel Prize in Chemistry. It shows the design for his crossed molecular beam experiment described in the story beginning on page 27 of "Basic Energy Sciences: Summary of Accomplishments" (DOE/ER-0455P, May 1990); the story is also copied below. The purpose of this experiment was to study the chemical reaction of sodium atoms with oxygen molecules. In the experiment, a beam of sodium atoms (green,

298

Investigation of a V{sub 15} magnetic molecular nanocluster by the Monte Carlo method  

SciTech Connect

Exchange interactions in a V{sub 15} magnetic molecular nanocluster are considered, and the process of magnetization reversal for various values of the set of exchange constants is analyzed by the Monte Carlo method. It is shown that the best agreement between the field dependence of susceptibility and experimental results is observed for the following set of exchange interaction constants in a V{sub 15} magnetic molecular nanocluster: J = 500 K, J Prime = 150 K, J Double-Prime = 225 K, J{sub 1} = 50 K, and J{sub 2} = 50 K. It is observed for the first time that, in a strong magnetic field, for each of the three transitions from low-spin to high-spin states, the heat capacity exhibits two closely spaced maxima.

Khizriev, K. Sh., E-mail: kamal71@mail.ru [Russian Academy of Sciences, Kh.I. Amirkhanov Institute of Physics, Dagestan Scientific Center (Russian Federation); Dzhamalutdinova, I. S.; Taaev, T. A. [Dagestan State University (Russian Federation)

2013-06-15T23:59:59.000Z

299

Abundant molecular gas in the intergalactic medium of Stephan's Quintet  

E-Print Network (OSTI)

Stephan's Quintet (SQ) is a system consisting of at least four interacting galaxies which is well known for its complex dynamical and star formation history. It possesses a rich intergalactic medium (IGM), where hydrogen clouds, both atomic and molecular, associated with two starbursts (refered to as SQ A and B) have been found. In order to study the extent, origin and fate of the intergalactic molecular gas and its relation to the formation of stars outside galaxies and Tidal Dwarf Galaxies (TDGs), we mapped with the IRAM 30m antenna the carbon monoxide (CO) towards several regions of the IGM in SQ. In both SQ A and B, we detected unusually large amounts of molecular gas (3.1 times 10^9 msun and 7 times 10^8 msun, respectively). In contrast, no significant CO detection was achieved towards HII regions south of the pair NGC 7318a/b despite their high H alpha luminosities. The molecular gas is very extended in both SQ A and SQ B, over areas of between 15 and 25 kpc. The CO clouds seem to have otherwise different properties and may be of a different nature. The integrated CO line of SQ A is in particular much wider than in SQ B. Its CO spectrum shows emission at two velocities (6000 and 6700 km s^{-1}) that are coincident with two HI lines. The strongest emission at 6000 km s^{-1} is however spatially offset from the HI emission and situated on a ridge south-east of the starburst region. In SQ B the CO emission coincides with that of tracers of star formation (halpha, 15 mu m and radio continuum). The CO peak lies slightly offset from the HI peak towards a steep HI gradient. This is indicating that the molecular gas is forming in-situ, possibly in a region of compressed HI, with subsequent star formation. The star forming region at SQ B is the object in SQ that most resembles a TDG.

Ute Lisenfeld; Jonathan Braine; Pierre-Alain Duc; Stephane Leon; Vassilis Charmandaris; Elias Brinks

2002-08-28T23:59:59.000Z

300

Collective behavior in random interaction  

E-Print Network (OSTI)

Recent investigations have looked at the many-body spectra of random two-body interactions. In fermion systems, such as the interacting shell model, one finds pairing-like spectra, while in boson systems, such as IBM-1, one finds rotational and vibrational spectra. We discuss the search for random ensembles of fermion interactions that yield rotational and vibrational spectra, and in particular present results from a new ensemble, the ``random quadrupole-quadrupole ensemble''

Johnson, C W; Johnson, Calvin W.; Nam, Hai Ah

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Collective behavior in random interaction  

E-Print Network (OSTI)

Recent investigations have looked at the many-body spectra of random two-body interactions. In fermion systems, such as the interacting shell model, one finds pairing-like spectra, while in boson systems, such as IBM-1, one finds rotational and vibrational spectra. We discuss the search for random ensembles of fermion interactions that yield rotational and vibrational spectra, and in particular present results from a new ensemble, the ``random quadrupole-quadrupole ensemble''

Calvin W. Johnson; Hai Ah Nam

2006-01-30T23:59:59.000Z

302

The Four Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Cuatro Interacciones Cuatro Interacciones Avanzar Volver Principal ESTOY PERDIDO! El universo que conocemos y amamos existe debido a que las partículas fundamentales interactúan, ya sea porque decaen o se aniquilan, o bien porque responden a una fuerza debida a la presencia de otra partícula (por ejemplo, durante una colisión). Hay cuatro interacciones entre partículas: Fuerte, débil, gravitatoria, electromagnética Para aclarar las cosas, damos a continuación dos definiciones: Fuerza: El efecto que aparece sobre una partícula debido a la presencia de otra partícula. Interacción: Las fuerzas y los decaimientos que afectan a una partícula dada. Una Interacción no es lo mismo que una fuerza dado que a la palabra "interacción" se le asigna un significado más amplio. A pesar que los dos

303

Industry Interactive Procurement System (IIPS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Interactive Industry Interactive Industry Interactive Industry Interactive Procurement System Procurement System (IIPS) (IIPS) Douglas Baptist, Project Manager Information Management Systems Division US Department of Energy IIPS Functions Issue synopses, solicitations and related documents via the Internet Receive and Respond to Solicitation Specific Questions Receive proposal, bid or application information electronically Provide access to proposal information to authorized personnel through a web browser Conduct negotiations or obtain clarifications Issue award documents IIPS Security Security Plan in place and approved by DOE's Chief Information Officer System security tested by DOE's Computer Incident Advisory Capability team Security measures include: - Encryption on the IIPS server

304

Surprising Quasiparticle Interactions in Graphene  

NLE Websites -- All DOE Office Websites (Extended Search)

Surprising Quasiparticle Interactions in Graphene Print Until now, the world's electronics have been dominated by silicon, whose properties, while excellent, significantly limit...

305

Molecular Simulations of the Effect of Cholesterol on Membrane-Mediated Protein-Protein Interactions  

E-Print Network (OSTI)

Heimburg, 2003. Analyzing heat capacity profiles of peptide-1983. Apparent molar heat capacities of phospholipids inA calorimeter records the heat capacity of a sample by

de Meyer, Frédérick Jean-Marie

2010-01-01T23:59:59.000Z

306

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite  

E-Print Network (OSTI)

Office of Science, Climate and Environmental Sciences Division and the Office of Civilian Radioactive Waste Management

Hu, Yung-Jin

2011-01-01T23:59:59.000Z

307

Design and fabrication of a microfluidies gradient generator system for high-throughput molecular interaction studies  

E-Print Network (OSTI)

Design and fabrication of a microfluidics system capable of generating reproducible and controlled micro-biochemical environments that can be used as a diagnostic assay and microreactor is important. Here, a simple technique ...

Chen, Guan-Jong, 1981-

2004-01-01T23:59:59.000Z

308

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite  

E-Print Network (OSTI)

in aqueous solution for Pu(VI) taken from Guillaumont etTable 3. Least-squares fits of Pu L III -edge XANES data toIV) Figure 4. Energy (eV) Pu Solution Speciation pH Figure

Hu, Yung-Jin

2011-01-01T23:59:59.000Z

309

Molecular dynamics simulations of interactions between hydrogen and fusion-relevant materials.  

E-Print Network (OSTI)

??In a thermonuclear reactor fusion between hydrogen isotopes takes place, producing helium and energy. The so-called divertor is the part of the fusion reactor vessel… (more)

Rooij, E.D. de

2010-01-01T23:59:59.000Z

310

Molecular Interactions of Plutonium(VI) with Synthetic Manganese-Substituted Goethite  

E-Print Network (OSTI)

Lightsource, a national user facility operated by Stanfordnational scientific user facility sponsored by DOE's Office

Hu, Yung-Jin

2011-01-01T23:59:59.000Z

311

Molecular Dynamic Studies of Transportan Interacting with a DPPC Lipid Bilayer  

E-Print Network (OSTI)

histogram analysis method (WHAM).72 III. Results and Discussion A. Behavior of Combustion-Generated Carbon

Wong-Ekkabut, Jirasak

312

Molecular Simulations of the Effect of Cholesterol on Membrane-Mediated Protein-Protein Interactions  

E-Print Network (OSTI)

histogram analysis method (WHAM) (211, 212). According toobtained by solving the coupled WHAM equations: e ??f i = Pob- tained by solving the WHAM equations. This step was

de Meyer, Frédérick Jean-Marie

2010-01-01T23:59:59.000Z

313

The Vroman effect: a molecular level description of fibrinogen displacement  

E-Print Network (OSTI)

Investigations of specific and nonspecific interactions of biomolecules at liquid/solid interfaces are presented. To investigate specific multivalent ligand-receptor interactions, bivalent antibodies and haptens bound to solid supported membrane were used as models for ligand-receptor coupling. Novel microfabrication strategies, which included spatially addressed bilayer arrays and heterogeneous microfluidic assays, in conjunction with total internal reflection microscopy, was employed to achieve this goal. These high throughput techniques allow thermodynamic data of binding interactions to be acquired with only a few microliters of analyte and superior signal to noise. The results yield both the first and second dissociation constant for bivalent IgG antibodies with membrane bound hapten molecules. Studies were conducted both as a function of hapten density and cholesterol content in the membrane. Another research area of this dissertation is the molecular level description of nonspecific adsorption and displacement of the model protein, fibrinogen, onto hydrophilic surfaces. Techniques such as atomic force microscopy, immunochemical assays, fluorescence microscopy, and vibrational sum frequency spectroscopy were employed to probe this system. The results demonstrate that the protein's ?C domains play the critical role. When fibrinogen is adsorbed to a hydrophilic surface via these moieties, its displacement rate in the presence of human plasma is approximately 170 times faster than when these domains are not in direct surface contact. Even more significantly, spectroscopic studies show evidence for highly aligned Arg and Lys residues interacting with the negatively charged substrate only when the ?C domains make direct surface contact. The interfacial ordering of these residues appears to be the hallmark of a weak and labile electrostatic attraction between the substrate and the adsorbed macromolecule.

Jung, Seung-Yong

2003-12-01T23:59:59.000Z

314

Quantum dynamics of bio-molecular systems in noisy environments  

E-Print Network (OSTI)

We discuss three different aspects of the quantum dynamics of bio-molecular systems and more generally complex networks in the presence of strongly coupled environments. Firstly, we make a case for the systematic study of fundamental structural elements underlying the quantum dynamics of these systems, identify such elements and explore the resulting interplay of quantum dynamics and environmental decoherence. Secondly, we critically examine some existing approaches to the numerical description of system-environment interaction in the non-perturbative regime and present a promising new method that can overcome some limitations of existing methods. Thirdly, we present an approach towards deciding and quantifying the non-classicality of the action of the environment and the observed system-dynamics. We stress the relevance of these tools for strengthening the interplay between theoretical and experimental research in this field.

M. B. Plenio; S. F. Huelga

2012-02-05T23:59:59.000Z

315

Molecular dynamics studies of interfacial water at the alumina surface.  

DOE Green Energy (OSTI)

Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

Argyris, Dr. Dimitrios [University of Oklahoma; Ho, Thomas [ORNL; Cole, David [Ohio State University

2011-01-01T23:59:59.000Z

316

Molecular gas in nearby elliptical radio galaxies  

E-Print Network (OSTI)

Powerful radio-AGN are hosted by massive elliptical galaxies which are usually very poor in molecular gas. Nevertheless the central Black Hole (BH) needs molecular gas for the nuclear activity. Thus it is important to study the origin, the distribution and the kinematics of the molecular gas in such objects. We have performed at the IRAM-30m telescope a survey of the CO(1-0) and CO(2-1) emission in the most powerful radio galaxies of the Local Universe, selected only on the basis of their radio continuum fluxes. The main result of that survey is the low content in molecular gas of such galaxies compared to Seyfert galaxies. The median value of the molecular gas mass is 4x10^8 Msun. Moreover, the CO spectra indicate the presence of a central molecular gas disk in some of these radio galaxies. We complemented this survey with photometric data of SPITZER and IRAS fluxes with the purpose to study the dust and its relation with the molecular gas and AGN.

B. Ocana-Flaquer; S. Leon; J. Lim; F. Combes; Dinh-V-Trung

2008-03-31T23:59:59.000Z

317

Molecular gas in nearby elliptical radio galaxies  

E-Print Network (OSTI)

Powerful radio-AGN are hosted by massive elliptical galaxies which are usually very poor in molecular gas. Nevertheless the central Black Hole (BH) needs molecular gas for the nuclear activity. Thus it is important to study the origin, the distribution and the kinematics of the molecular gas in such objects. We have performed at the IRAM-30m telescope a survey of the CO(1-0) and CO(2-1) emission in the most powerful radio galaxies of the Local Universe, selected only on the basis of their radio continuum fluxes. The main result of that survey is the low content in molecular gas of such galaxies compared to Seyfert galaxies. The median value of the molecular gas mass is 4x10^8 Msun. Moreover, the CO spectra indicate the presence of a central molecular gas disk in some of these radio galaxies. We complemented this survey with photometric data of SPITZER and IRAS fluxes with the purpose to study the dust and its relation with the molecular gas and AGN.

Ocana-Flaquer, B; Lim, J; Combes, F; Dinh-V-Trung,

2008-01-01T23:59:59.000Z

318

Tight-binding model for hydrogen-silicon interactions  

SciTech Connect

We have developed an empirical tight-binding model for use in molecular-dynamics simulations to study hydrogen-silicon systems. The hydrogen-silicon interaction is constructed to reproduce the electronic energy levels and vibration frequencies of silane (SiH{sub 4}). Further use of the model in the studies of disilane (Si{sub 2}H{sub 6}) and of hydrogen on the Si(111) surface also yields results in good agreement with first-principles calculations and experiments.

Min, B.J.; Lee, Y.H.; Wang, C.Z.; Chan, C.T.; Ho, K.M. (Microelectronics Research Center, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States) Department of Physics and Astronomy, Ames Laboratory, Iowa State University, Ames, Iowa 50011 (United States))

1992-03-15T23:59:59.000Z

319

High Pressure Materials Research: Novel Extended Phases of Molecular Triatomics  

DOE Green Energy (OSTI)

Application of high pressure significantly alters the interatomic distance and thus the nature of intermolecular interaction, chemical bonding, molecular configuration, crystal structure, and stability of solid [1]. With modern advances in high-pressure technologies [2], it is feasible to achieve a large (often up to a several-fold) compression of lattice, at which condition material can be easily forced into a new physical and chemical configuration [3]. The high-pressure thus offers enhanced opportunities to discover new phases, both stable and metastable ones, and to tune exotic properties in a wide-range of atomistic length scale, substantially greater than (often being several orders of) those achieved by other thermal (varying temperatures) and chemical (varying composition or making alloys) means. Simple molecular solids like H{sub 2}, C, CO{sub 2}, N{sub 2}, O{sub 2}, H{sub 2}O, CO, NH{sub 3}, and CH{sub 4} are bounded by strong covalent intramolecular bonds, yet relatively weak intermolecular bonds of van der Waals and/or hydrogen bonds. The weak intermolecular bonds make these solids highly compressible (i.e., low bulk moduli typically less than 10 GPa), while the strong covalent bonds make them chemically inert at least initially at low pressures. Carbon-carbon single bonds, carbon-oxygen double bonds and nitrogen-nitrogen triple bonds, for example, are among the strongest. These molecular forms are, thus, often considered to remain stable in an extended region of high pressures and high temperatures. High stabilities of these covalent molecules are also the basis of which their mixtures are often presumed to be the major detonation products of energetic materials as well as the major constituents of giant planets. However, their physical/chemical stabilities are not truly understood at those extreme pressure-temperature conditions. In fact, an increasing amount of experimental evidences contradict the assumed stability of these materials at high pressures and temperatures.

Yoo, C

2004-05-26T23:59:59.000Z

320

Light-matter Interactions in Semiconductor Nanostructures  

Science Conference Proceedings (OSTI)

Light-matter interactions in Semiconductor Nanostructures. ... We investigate the interaction of light with semiconductor-based nanostructures. ...

2012-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building a Collaboratory in Environmental and Molecular Science  

SciTech Connect

A Collaboratory is a meta-laboratory that spans multiple geographical areas with collaborators interacting via electronic means. Collaboratories are designed to enable close ties between scientists in a given research area, promote collaborations involving scientists in diverse areas, accelerate the development and dissemination of basic knowledge, and minimize the time-lag between discovery and application. PNL is developing the concept of an Environmental and Molecular Sciences Collaboratory (EMSC) as a natural evolution of the EMSL project. The goal of the EMSC is to increase the efficiency of research and reduce the time required to implement new environmental remediation and preservation technologies. The EMSC will leverage the resources (intellectual and physical) of the EMSL by making them more accessible to remote collaborators as well as by making the resources of remote sites available to local researchers. It will provide a common set of computer hardware and software tools to support remote collaboration, a key step in establishing a collaborative culture for scientists in the theoretical, computational, and experimental molecular sciences across the nation. In short, the EMSC will establish and support an `electronic community of scientists researching and developing innovative environmental preservation and restoration technologies.

Kouzes, R.T.; Myers, J.D.; Devaney, D.M.; Dunning, T.H.; Wise, J.A.

1994-03-01T23:59:59.000Z

322

Molecular surface-free continuum model for electrodiffusion processes  

E-Print Network (OSTI)

Molecular surface-free continuum model for electrod-of introduc- ing a molecular surface and the painful task ofreaction kinet- ics, and molecular surface de?ned as an

Lu, Benzhuo; McCammon, J. Andrew

2008-01-01T23:59:59.000Z

323

Molecular Communication for Nanomachines Using Intercellular Calcium Signaling  

E-Print Network (OSTI)

Molecular Communication for Nanomachines Using Intercellular Calcium Signaling Tadashi Nakano, Irvine, Irvine, CA 92697, USA Abstract -- Molecular communication is engineered biological communication the design of a molecular communication system based on intercellular calcium signaling networks. This paper

Baykal, Buyurman

324

Molecular geomicrobiology: genes and geochemical cycling Jennifer Macalady 1  

E-Print Network (OSTI)

Frontiers Molecular geomicrobiology: genes and geochemical cycling Jennifer Macalady 1 , Jillian F occurs. Yet, the field of molecular geomicrobiology remains in its infancy. In the foreseeable future, merging of modern biogeochemistry with molecularly resolved ecological studies will inspire

Macalady, Jenn

325

Molecular Dynamics Study of Krypton Isotopes Physisorbed on Graphite  

E-Print Network (OSTI)

Equations of Motion in Molecular Dynamics” Lecture Notes,OF CALIFORNIA RIVERSIDE Molecular Dynamics Study of Krypton2.5 Choice of Time step in Molecular Dynamics 2.6 Desorption

Bader, Karson

2012-01-01T23:59:59.000Z

326

EI7272_Molecular Electronics.xls Allgemeine Daten  

E-Print Network (OSTI)

EI7272_Molecular Electronics.xls Allgemeine Daten: Modulnummer: EI7272 Modulbezeichnung (dt.): Molekulare Elektronik Modulbezeichnung (en.): Molecular Electronics Modulniveau: MSc Kürzel: Mol #12;EI7272_Molecular Electronics.xls Modulbeschreibung Beschreibung: Inhalt: 1) Introduction, history

Kuehnlenz, Kolja

327

Dissipative particle dynamics with attractive and repulsive particle-particle interactions  

Science Conference Proceedings (OSTI)

In molecular dynamics simulations, a combination of short-range repulsive and long-range attractive interactions allows the behavior of gases, liquids, solids, and multiphase systems to be simulated. We demonstrate that dissipative particle dynamics (DPD) simulations with similar pairwise particle-particle interactions can also be used to simulate the dynamics of multiphase fluids. In these simulations, the positive, short-range, repulsive part of the interaction potentials were represented by polynomial spline functions such as those used as smoothing functions in smoothed particle hydrodynamics, and the negative long-range part of the interaction has the same form but a different range and amplitude. If a single spline function corresponding to a purely repulsive interaction is used, the DPD fluid is a gas, and we show that the Poiseuille flow of this gas can be described accurately by the Navier-Stokes equation at low Reynolds numbers. In a two-component system in which the purely repulsive interactions between different components are substantially larger than the purely repulsive intracomponent interactions, separation into two gas phases occurs, in agreement with results obtained using DPD simulations with standard repulsive particle-particle interactions. Finally, we show that a combination of short-range repulsive interactions and long-range attractive interactions can be used to simulate the behavior of liquid drops surrounded by a gas. Similar models can be used to simulate a wide range of processes such as multiphase fluid flow through fractures and porous media with complex geometries and wetting behaviors.

Paul Meakin; Moubin Liu; Hai Huang

2006-01-01T23:59:59.000Z

328

B13+: Photodriven Molecular Wankel Engine  

Science Conference Proceedings (OSTI)

Synthetic molecular motors that are capable of delivering controlled movement upon energy input are one of the key building blocks in nanomachinery. The major energy sources of molecular motors are from chemical reactions, photon beams, or electric current, which are converted into mechanical forces through the excitation of the electronic states of the molecule. The energy scale of the electronic excitation is normally two orders of magnitude larger than the molecular vibrational frequencies. To reduce the heat dissipation and increase the energy utilization efficiency, a motor running purely on the electronic ground-state (GS) potential energy surfaces is highly desirable.

Zhang, Jin; Sergeeva, Alina P.; Sparta, Manuel; Alexandrova, Anastassia N.

2012-07-09T23:59:59.000Z

329

Preservation of interactive multimedia performances  

Science Conference Proceedings (OSTI)

Preservation of Interactive Multimedia Performances (IMPs) is becoming important, as they are getting more and more popular in the performing arts communities. Preservation requires keeping not only all the necessary components for the production ... Keywords: IMP, cataloguing, digital preservation, interactive multimedia performances, ontologies, performing arts, querying, search, semantic processing

Kia Ng; Tran Vu Pham; Bee Ong; Alexander Mikroyannidis; David Giaretta

2008-07-01T23:59:59.000Z

330

Persuasive interaction for collectivist cultures  

Science Conference Proceedings (OSTI)

Persuasive technology is defined as "any interactive product designed to change attitudes or behaviours by making desired outcomes easier to achieve". It can take the form of interactive web applications, hand held devices, and games. To date there has ... Keywords: culture, games, persuasive technology

Rilla Khaled; Robert Biddle; James Noble; Pippin Barr; Ronald Fischer

2006-01-01T23:59:59.000Z

331

Sketching interactive systems with sketchify  

Science Conference Proceedings (OSTI)

Recent discussions in the interaction design community have called attention to sketching as an omnipresent element of any disciplined activity of design, and have pointed out that sketching should be extended beyond the simple creation of a pencil trace ... Keywords: Sketching, design process, interaction design, rapid prototyping, user interface software tools

Željko Obrenovic; Jean-Bernard Martens

2011-04-01T23:59:59.000Z

332

Multiple Partonic Interactions in Herwig++  

E-Print Network (OSTI)

We review the implementation of a model for multiple partonic interactions in Herwig++. Moreover, we show how recent studies on the colour structure of events in Herwig++ led to a significant improvement in the description of soft inclusive observables in pp interactions at the LHC.

Stefan Gieseke; Christian Rohr; Andrzej Siodmok

2013-02-20T23:59:59.000Z

333

Multimodal feedback for tabletop interactions  

Science Conference Proceedings (OSTI)

This paper presents a study into the use of different modalities in providing per contact feedback for interactions on tabletop computers. We replicate the study by Wigdor et al. [3] and confirm their results, and extend the study to examine not ... Keywords: audio, mobile phone, multimodal, tabletop interaction, tactile

Christopher McAdam; Stephen Brewster

2011-11-01T23:59:59.000Z

334

Molecular Assemblies, Genes and Genomics Integrated Efficiently (MAGGIE)  

Science Conference Proceedings (OSTI)

Final report on MAGGIE. We set ambitious goals to model the functions of individual organisms and their community from molecular to systems scale. These scientific goals are driving the development of sophisticated algorithms to analyze large amounts of experimental measurements made using high throughput technologies to explain and predict how the environment influences biological function at multiple scales and how the microbial systems in turn modify the environment. By experimentally evaluating predictions made using these models we will test the degree to which our quantitative multiscale understanding wilt help to rationally steer individual microbes and their communities towards specific tasks. Towards this end we have made substantial progress towards understanding evolution of gene families, transcriptional structures, detailed structures of keystone molecular assemblies (proteins and complexes), protein interactions, biological networks, microbial interactions, and community structure. Using comparative analysis we have tracked the evolutionary history of gene functions to understand how novel functions evolve. One level up, we have used proteomics data, high-resolution genome tiling microarrays, and 5' RNA sequencing to revise genome annotations, discover new genes including ncRNAs, and map dynamically changing operon structures of five model organisms: For Desulfovibrio vulgaris Hildenborough, Pyrococcus furiosis, Sulfolobus solfataricus, Methanococcus maripaludis and Haiobacterium salinarum NROL We have developed machine learning algorithms to accurately identify protein interactions at a near-zero false positive rate from noisy data generated using tagfess complex purification, TAP purification, and analysis of membrane complexes. Combining other genome-scale datasets produced by ENIGMA (in particular, microarray data) and available from literature we have been able to achieve a true positive rate as high as 65% at almost zero false positives when applied to the manually curated training set. Applying this method to the data representing around a quarter of the fraction space for water soluble proteins in D. vulgaris, we obtained 854 reliable pair wise interactions. Further, we have developed algorithms to analyze and assign significance to protein interaction data from bait pull-down experiments and integrate these data with other systems biology data through associative biclustering in a parallel computing environment. We will 'fill-in' missing information in these interaction data using a 'Transitive Closure' algorithm and subsequently use 'Between Commonality Decomposition' algorithm to discover complexes within these large graphs of protein interactions. To characterize the metabolic activities of proteins and their complexes we are developing algorithms to deconvolute pure mass spectra, estimate chemical formula for m/z values, and fit isotopic fine structure to metabolomics data. We have discovered that in comparison to isotopic pattern fitting methods restricting the chemical formula by these two dimensions actually facilitates unique solutions for chemical formula generators. To understand how microbial functions are regulated we have developed complementary algorithms for reconstructing gene regulatory networks (GRNs). Whereas the network inference algorithms cMonkey and Inferelator developed enable de novo reconstruction of predictive models for GRNs from diverse systems biology data, the RegPrecise and RegPredict framework developed uses evolutionary comparisons of genomes from closely related organisms to reconstruct conserved regulons. We have integrated the two complementary algorithms to rapidly generate comprehensive models for gene regulation of understudied organisms. Our preliminary analyses of these reconstructed GRNs have revealed novel regulatory mechanisms and cis-regulatory motifs, as well asothers that are conserved across species. Finally, we are supporting scientific efforts in ENIGMA with data management solutions and by integrating all of the algorithms, software and data into

Nitin S. Baliga

2011-05-26T23:59:59.000Z

335

Molecular Assemblies, Genes and Genomics Integrated Efficiently (MAGGIE)  

SciTech Connect

Final report on MAGGIE. We set ambitious goals to model the functions of individual organisms and their community from molecular to systems scale. These scientific goals are driving the development of sophisticated algorithms to analyze large amounts of experimental measurements made using high throughput technologies to explain and predict how the environment influences biological function at multiple scales and how the microbial systems in turn modify the environment. By experimentally evaluating predictions made using these models we will test the degree to which our quantitative multiscale understanding wilt help to rationally steer individual microbes and their communities towards specific tasks. Towards this end we have made substantial progress towards understanding evolution of gene families, transcriptional structures, detailed structures of keystone molecular assemblies (proteins and complexes), protein interactions, biological networks, microbial interactions, and community structure. Using comparative analysis we have tracked the evolutionary history of gene functions to understand how novel functions evolve. One level up, we have used proteomics data, high-resolution genome tiling microarrays, and 5' RNA sequencing to revise genome annotations, discover new genes including ncRNAs, and map dynamically changing operon structures of five model organisms: For Desulfovibrio vulgaris Hildenborough, Pyrococcus furiosis, Sulfolobus solfataricus, Methanococcus maripaludis and Haiobacterium salinarum NROL We have developed machine learning algorithms to accurately identify protein interactions at a near-zero false positive rate from noisy data generated using tagfess complex purification, TAP purification, and analysis of membrane complexes. Combining other genome-scale datasets produced by ENIGMA (in particular, microarray data) and available from literature we have been able to achieve a true positive rate as high as 65% at almost zero false positives when applied to the manually curated training set. Applying this method to the data representing around a quarter of the fraction space for water soluble proteins in D. vulgaris, we obtained 854 reliable pair wise interactions. Further, we have developed algorithms to analyze and assign significance to protein interaction data from bait pull-down experiments and integrate these data with other systems biology data through associative biclustering in a parallel computing environment. We will 'fill-in' missing information in these interaction data using a 'Transitive Closure' algorithm and subsequently use 'Between Commonality Decomposition' algorithm to discover complexes within these large graphs of protein interactions. To characterize the metabolic activities of proteins and their complexes we are developing algorithms to deconvolute pure mass spectra, estimate chemical formula for m/z values, and fit isotopic fine structure to metabolomics data. We have discovered that in comparison to isotopic pattern fitting methods restricting the chemical formula by these two dimensions actually facilitates unique solutions for chemical formula generators. To understand how microbial functions are regulated we have developed complementary algorithms for reconstructing gene regulatory networks (GRNs). Whereas the network inference algorithms cMonkey and Inferelator developed enable de novo reconstruction of predictive models for GRNs from diverse systems biology data, the RegPrecise and RegPredict framework developed uses evolutionary comparisons of genomes from closely related organisms to reconstruct conserved regulons. We have integrated the two complementary algorithms to rapidly generate comprehensive models for gene regulation of understudied organisms. Our preliminary analyses of these reconstructed GRNs have revealed novel regulatory mechanisms and cis-regulatory motifs, as well asothers that are conserved across species. Finally, we are supporting scientific efforts in ENIGMA with data management solutions and by integrating all of the algorithms, software and data into

Nitin S. Baliga

2011-05-26T23:59:59.000Z

336

Dual molecular imaging for targeting metalloproteinase activity and apoptosis in atherosclerosis: molecular imaging facilitates understanding of pathogenesis  

E-Print Network (OSTI)

pathogenesis to superior molecular imaging, and back. J AmZhou J, Yala- manchili P, et al. Molecular imaging of matrixJapan. Haider et al Dual molecular imaging for targeting

2009-01-01T23:59:59.000Z

337

Instructional JAVA modules based on molecular simulation - TMS  

Science Conference Proceedings (OSTI)

Nov 9, 2007 ... This website contains a selection of instructional JAVA modules designed to increase understanding of molecular simulations and molecular ...

338

Molecular, Cellular, Developmental Biology and Genetics Graduate Student Seminar Series  

E-Print Network (OSTI)

Molecular, Cellular, Developmental Biology and Genetics Graduate Student Seminar Series FALL 2013 regulation of torsinA during cellular polarization #12;Molecular, Cellular, Developmental Biology

Amin, S. Massoud

339

Available Technologies: A New Molecular Method for Cargo ...  

Stanford and Lawrence Berkeley Labs researchers have developed a molecular method based on guanidinium-rich molecular transporters (GR-MoTrs) for ...

340

Molecular stretching in polymer melts undergoing steady elongational flow.  

E-Print Network (OSTI)

Molecular stretching in polymer melts undergoing steady elongational flow. Kell Mortensen Centre DTU, Lyngby, Denmark The molecular stretching of a polymer melt undergoing steady elongational

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Molecular Biosciences Trainee Progress Report (To Be Completed by Student)  

E-Print Network (OSTI)

Molecular Biosciences Trainee Progress Report (To Be Completed by Student) Trainee name: Ph. #12;Molecular Biosciences Trainee Progress Advisory Committee Report Trainee: Major Advisor: MBTG

Sheridan, Jennifer

342

Audit of the Department of Energy's Environmental Molecular Sciences...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Molecular Sciences Laboratory, IG-0371 Audit of the Department of Energy's Environmental Molecular Sciences Laboratory, IG-0371 Audit of the Department of Energy's...

343

Running Interactive Jobs on Edison  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Jobs Interactive Jobs Interactive Jobs To run an interactive job on Edison's compute nodes you must request the number of nodes you want and have the system allocate resources from the pool of free nodes. The following command requests 2 nodes using the debug queue. edison% qsub -I -V -q debug -l mppwidth=48 The -I flag specifies an interactive job. The -V flag passes your current environment variable settings to the compute environment. The -q flag specifies the name of the queue and -l mppwidth determines the number of nodes to allocate for your job, but not as you might expect. The number of nodes given to your job (remember, the system allocates nodes, not cores), is the value of mppwidth divided by the number of cores per node. On Edison, with 24 cores per node, the number of nodes is mppwidth/24 plus one

344

Running Interactive Jobs on Edison  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Jobs Interactive Jobs Interactive Jobs To run an interactive job on Edison's compute nodes you must request the number of nodes you want and have the system allocate resources from the pool of free nodes. The following command requests 2 nodes using the debug queue. edison% qsub -I -V -q debug -l mppwidth=32 The -I flag specifies an interactive job. The -V flag passes your current environment variable settings to the compute environment. The -q flag specifies the name of the queue and -l mppwidth determines the number of nodes to allocate for your job, but not as you might expect. The number of nodes given to your job (remember, the system allocates nodes, not cores), is the value of mppwidth divided by the number of cores per node. On Edison, with 16 cores per node, the number of nodes is mppwidth/16 plus one

345

Phonostat: Thermostatting phonons in molecular dynamics simulations  

E-Print Network (OSTI)

Thermostat algorithms in a molecular dynamics simulation maintain an average temperature of a system by regulating the atomic velocities rather than the internal degrees of freedom. Herein, we present a “phonostat” algorithm ...

Raghunathan, Rajamani

346

Carotenoids & Retinoids Molecular Aspects and Health Issues  

Science Conference Proceedings (OSTI)

The chapters in this book represent an account of the information presented at the Safety of ß-Carotene and a workshop on Carotenoids and Retinoids: Molecular Aspects and Health Issues, combined with several additional invited contributions to cover topics

347

Micronutrients and Health: Molecular Biological Mechanisms  

Science Conference Proceedings (OSTI)

This book contains papers presented at a workshop on micronutrients and health held in 2000. Micronutrients and Health: Molecular Biological Mechanisms Health acid analysis aocs april articles chloropropanediol contaminants detergents dietary fats divisi

348

Genetics and molecular biology of breast cancer  

SciTech Connect

This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

1992-12-31T23:59:59.000Z

349

Molecular Dynamics Study of Nucleation during Crystallization  

Science Conference Proceedings (OSTI)

A Tale of Two States and More: Modeling of New Generation of Lattice Stability from Zero ... Analysis of Nano Fluid Using CFD-A Hybrid Approach for Cooling Purpose ... Molecular Dynamics Simulations of Grain Boundary Free Energy and

350

Yuan T. Lee and Molecular Beam Studies  

Office of Scientific and Technical Information (OSTI)

and the spectroscopy of ionic and molecular clusters. Lee was born in Hsinchu, Taiwan, China and as a youth experienced the adversity of WWII and Japanese occupation. At the war's...

351

NETL: Syngas Processing Systems - Molecular Separations Using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular Separations Using Micro-Defect Free Ultra Thin Films Project Number: DE-SC00000868 Eltron Research and Development, Inc., in a Phase II SBIR project, is developing a...

352

Molecular dynamics calculation of free energy  

Science Conference Proceedings (OSTI)

The results of a systematic study of a recently proposed method by Frenkel and Ladd for calculating free energies via molecular dynamics are reported. Internal measures of the error

J. F. Lutsko; D. Wolf; S. Yip

1988-01-01T23:59:59.000Z

353

Microdialysis unit for molecular weight separation  

DOE Patents (OSTI)

The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

Smith, Richard D. (Richland, WA); Liu, Chuanliang (Richland, WA)

1999-01-01T23:59:59.000Z

354

12.458 Molecular Biogeochemistry, Fall 2006  

E-Print Network (OSTI)

This course covers all aspects of molecular biosignatures from their pathways of lipid biosynthesis, the distribution patterns of lipid biosynthetic pathways with regard to phylogeny and physiology, isotopic contents, ...

Summons, Roger

355

Environmental Molecular Sciences Laboratory 2007 Annual Report  

DOE Green Energy (OSTI)

This annual report provides details on the research conducted at the Environmental Molecular Sciences Laboratory in Fiscal Year 2007 and path forward for capability upgrades in Fiscal Year 2008.

Showalter, Mary Ann; Foster, Nancy S.

2008-03-19T23:59:59.000Z

356

Environmental Molecular Sciences Laboratory 2007 Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1-1-40 Environmental Molecular Sciences Laboratory 2007 Annual Report Section 1-1-41 Peter T. Smith, Manager, Business Support Services (509) 371-6018, peter.smith@pnl.gov...

357

Molecular Simulation Study of Diverting Materials Used in Matrix Acidizing  

E-Print Network (OSTI)

Recently there has been a great deal of attention in the oilfield industry focused on the phenomenal properties of viscoelastic surfactants (VES). The interest is motivated by their applications as switchable smart fluids, their surface tension, and their thickening and rheology enhancement in aqueous solution. Surfactant molecules in solution are known for their ability to assemble spontaneously into complex structures. Under certain thermodynamic conditions, temperature and electrolyte concentrations, wormlike micelles are formed. These micelles share similar equilibrium and dynamic properties with polymer solutions, However, micellar chains can break and recombine spontaneously which make them part of the more general class of living polymers. It is vital to understand the properties of viscoelastic wormlike micelles with regard to their flow in porous media. The overall objective of this study is to establish a better understanding of counterion effect on behavior of VES. The dependence of macroscopic properties on intermolecular interactions of complex fluid systems such as VES is an enormous challenge. To achieve our objective, we use first-principle calculations and molecular dynamics (MD) simulations to resolve the full chemical details in order to study how the structure of the micellar and solution properties depends on the chemical structure of the surfactant head group (HG) and type of counterion. In particular, we run simulations for different structures in gas-phase and aqueous solutions together with their salt counterions at room temperature and atmospheric pressure. For this purpose, we consider four types of surfactant HG (anionic, cationic, betaine and amidoamine oxide) together with the most common ions present in the acidizing fluid of a carbonate reservoir such as Ca2+, Mg2+, Fe2+, Fe3+, Mn2+ and Zn2+, Cl-, OH- and HS-. Hydration of ions as well as interactions with surfactant the HG are studied using density functional theory (DFT). The results give important insight into the links between molecular details of VES HG structure and observed solution properties. This study proposes for the first time the possible mechanisms that explain the exotic behavior of VES at high Fe(III) concentration. Also, our MD simulation suggests that distribution of chloride ion around surfactant molecules is responsible for their viscosity behavior in HCl solution. We believe that our results are an important step to develop more systematic procedures for the molecular design and formulation of more effective and efficient VES systems.

Sultan, Abdullah S.

2009-08-01T23:59:59.000Z

358

Rotating fiber array molecular driver and molecular momentum transfer device constructed therewith  

DOE Patents (OSTI)

A rotating fiber array molecular driver is disclosed which includes a magnetically suspended and rotated central hub to which is attached a plurality of elongated fibers extending radially therefrom. The hub is rotated so as to straighten and axially extend the fibers and to provide the fibers with a tip speed which exceeds the average molecular velocity of fluid molecules entering between the fibers. Molecules colliding with the sides of the rotating fibers are accelerated to the tip speed of the fiber and given a momentum having a directional orientation within a relatively narrow distribution angle at a point radially outward of the hub, which is centered and peaks at the normal to the fiber sides in the direction of fiber rotation. The rotating fiber array may be used with other like fiber arrays or with other stationary structures to form molecular momentum transfer devices such as vacuum pumps, molecular separators, molecular coaters, or molecular reactors.

Milleron, Norman (1854 San Juan, Berkeley, CA 94707)

1983-01-01T23:59:59.000Z

359

New silicotitanate molecular sieve and condensed phases  

DOE Patents (OSTI)

This patent application relates to an invention for a new silicotitanate molecular sieve ion exchange material for the capture and immobilization of divalent cations from aqueous and/or hydrocarbon solutions, including elements such as radioactive strontium or industrial RCRA metal cations. The invention also relates to the ability to either recycle the captured metal for future use or to encapsulate the cation through thermal treatment of the molecular sieve to a condensed phase.

Nenoff, Tina M.; Nyman, May D.

2000-11-01T23:59:59.000Z

360

Carotenoids & Retinoids; Molecular Aspects and Health IssuesChapter 15 Molecular Analysis of the Vitamin A Biosynthetic Pathway  

Science Conference Proceedings (OSTI)

Carotenoids & Retinoids; Molecular Aspects and Health Issues Chapter 15 Molecular Analysis of the Vitamin A Biosynthetic Pathway Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press   ...

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS  

Science Conference Proceedings (OSTI)

We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

Sawada, Tsuyoshi [Joint ALMA Office, Alonso de Cordova 3107, Vitacura, Santiago 763-0355 (Chile); Hasegawa, Tetsuo [NAOJ Chile Observatory, Joaquin Montero 3000 Oficina 702, Vitacura, Santiago 763-0409 (Chile); Koda, Jin, E-mail: sawada.tsuyoshi@nao.ac.jp [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

2012-11-01T23:59:59.000Z

362

October 23, 2012 13:0 Molecular Physics Roughsurfacepaper Molecular Physics  

E-Print Network (OSTI)

[4]. Further manipulations, such as optical molecular centrifuge [5] and alignment- dependent strong]. Laser control of the gas-surface scattering process was achieved using multiphoton ionization

Manson, Joseph R.

363

Shifting of infrared radiation using rotational raman resonances in diatomic molecular gases  

DOE Patents (OSTI)

A device for shifting the frequency of infrared radiation from a CO.sub.2 laser by stimulated Raman scattering in either H.sub.2 or D.sub.2. The device of the preferred embodiment comprises an H.sub.2 Raman laser having dichroic mirrors which are reflective for 16 .mu.m radiation and transmittive for 10 .mu.m, disposed at opposite ends of an interaction cell. The interaction cell contains a diatomic molecular gas, e.g., H.sub.2, D.sub.2, T.sub.2, HD, HT, DT and a capillary waveguide disposed within the cell. A liquid nitrogen jacket is provided around the capillary waveguide for the purpose of cooling. In another embodiment the input CO.sub.2 radiation is circularly polarized using a Fresnel rhomb .lambda./4 plate and applied to an interaction cell of much longer length for single pass operation.

Kurnit, Norman A. (Santa Fe, NM)

1980-01-01T23:59:59.000Z

364

The electronic structure of condensed molecular systems  

Science Conference Proceedings (OSTI)

We have reviewed some of the basic properties of the electronic structure of condensed molecular systems. For the rare-gas solids, we concentrated our discussion on changes in the ground- and excited-state crystal-atomic wave functions as calculated with an approximate theoretical method. Compression of these wave functions leads to a softening of the equation of state at high densities, which seems to account for much of the total many-body effects. This compression is a true many-body effect and cannot be easily decomposable into a sum of 3-body and higher terms. We reviewed the electronic properties of four molecular systems, each manifesting different behavior at high densities. Because of a general lack of theory of the electronic structure of molecular solids, we restricted ourselves to a descriptive account. Solid oxygen, for instance, seems to exhibit the beginnings of covalent bonding between the ..pi..* orbitals on adjacent molecules in its epsilon phase. It was a combination of optical-absorption data and infrared and Raman spectroscopy that led to these conclusions. Iodine is unique in that it becomes metallic as a molecular crystal at pressures easily obtainable experimentally. It is interesting that the x-ray data, which indicates a transition to a monatomic lattice at 21 GPa, and the Moessbauer spectra, which implies that molecular character is retained to 30 GPa, are in such disagreement. The next system discussed, solid acetylene, is a nice example of high-pressure polymerization and study of this system should shed light on the polymerization of more complicated systems. Finally, we briefly discussed the predicted dissociation of solid molecular nitrogen at high pressures. Here, theory has made a prediction and experiment has disproven it. Molecular systems show a diverse range of behavior in electronic structures at high pressures, from metallization to chemistry; theory is lagging. 68 refs., 10 figs.

LeSar, R.A.

1988-01-01T23:59:59.000Z

365

Running Interactive Jobs on Dirac  

NLE Websites -- All DOE Office Websites (Extended Search)

requests 8 cores on one node using the interactive queue (and you will run on either Tesla or Fermi nodes): % qsub -I -V -q diracint -l nodes1:ppn8 If you want to request...

366

Running Interactive Jobs on Edison  

NLE Websites -- All DOE Office Websites (Extended Search)

the pool of free nodes. The following command requests 2 nodes using the debug queue. edison% qsub -I -V -q debug -l mppwidth32 The -I flag specifies an interactive job. The -V...

367

Interactions of the Tropical Oceans  

Science Conference Proceedings (OSTI)

The authors have investigated the interactions of the tropical oceans on interannual timescales by conducting a series of uncoupled atmospheric and oceanic general circulation experiments and hybrid-coupled model simulations. The results ...

M. Latif; T. P. Barnett

1995-04-01T23:59:59.000Z

368

Designing with interactive example galleries  

Science Conference Proceedings (OSTI)

Designers often use examples for inspiration; examples offer contextualized instances of how form and content integrate. Can interactive example galleries bring this practice to everyday users doing design work, and does working with examples help the ... Keywords: design thinking, examples

Brian Lee; Savil Srivastava; Ranjitha Kumar; Ronen Brafman; Scott R. Klemmer

2010-04-01T23:59:59.000Z

369

Magical experiences in interaction design  

Science Conference Proceedings (OSTI)

This paper is a description of design experiments performed to investigate the use of magical experiences in interaction design of consumer electronics. Magical experiences are usually associated with a passive audience watching a magician, but it is ...

Sam de Jongh Hepworth

2007-08-01T23:59:59.000Z

370

CAT: an interactive graphics code  

SciTech Connect

CAT is an interactive graphics code available on the Cray machine. In addition to plotting, it can manipulate data in many ways, including performing arithmetic operations, rearranging data, and interpolating.

Holian, K.S.

1985-05-01T23:59:59.000Z

371

Lollipops and Ice Fishing: Molecular Rulers Used to Probe ...  

Science Conference Proceedings (OSTI)

Lollipops and Ice Fishing: Molecular Rulers Used to Probe Nanopores. For Immediate Release: April 27, 2010. ...

2011-10-03T23:59:59.000Z

372

Mix Masters: NIST Scientists Image the Molecular Structure of ...  

Science Conference Proceedings (OSTI)

... Imaging the molecular structure of polyethylene blends with broadband coherent Raman microscopy. ACS Macro Lett. ...

2012-11-29T23:59:59.000Z

373

Viscoelastic properties of confined molecular layers Alois Wrger  

E-Print Network (OSTI)

- canol [17] reported a modulation of viscoelastic response, with a period corresponding to the molecular

Paris-Sud XI, Université de

374

Molecular Dynamics Method in Microscale Heat Transfer Shigeo Maruyama  

E-Print Network (OSTI)

1 Molecular Dynamics Method in Microscale Heat Transfer Shigeo Maruyama Department of Mechanical://www.photon.t.u-tokyo.ac.jp/~maruyama/ 1. INTRODUCTION Molecular level understandings are becoming more important and molecular based to take account of nuclei in size of molecular clusters. The effect of the surfactant on the heat and mass

Maruyama, Shigeo

375

Molecular dynamics simulations of ordered alkane chains physisorbed on graphite  

E-Print Network (OSTI)

Molecular dynamics simulations of ordered alkane chains physisorbed on graphite Reinhard Hentschke molecular axes oriented parallel to the substrate. Here we employ molecular dynamics (MD) simulations to obtain more details on the molecular order and dynamics within the alkane lamellae as a function

Peters, Achim

376

Molecular oxygen in the rho Ophiuchi cloud  

E-Print Network (OSTI)

Molecular oxygen, O2 has been expected historically to be an abundant component of the chemical species in molecular clouds and, as such, an important coolant of the dense interstellar medium. However, a number of attempts from both ground and from space have failed to detect O2 emission. The work described here uses heterodyne spectroscopy from space to search for molecular oxygen in the interstellar medium. The Odin satellite carries a 1.1 m sub-millimeter dish and a dedicated 119 GHz receiver for the ground state line of O2. Starting in 2002, the star forming molecular cloud core rho Oph A was observed with Odin for 34 days during several observing runs. We detect a spectral line at v(LSR) = 3.5 km/s with dv(FWHM) = 1.5 km/s, parameters which are also common to other species associated with rho Ohp A. This feature is identified as the O2 (N_J = 1_1 - 1_0) transition at 118 750.343 MHz. The abundance of molecular oxygen, relative to H2,, is 5E-8 averaged over the Odin beam. This abundance is consistently lower than previously reported upper limits.

B. Larsson; R. Liseau; L. Pagani; P. Bergman; P. Bernath; N. Biver; J. H. Black; R. S. Booth; V. Buat; J. Crovisier; C. L. Curry; M. Dahlgren; P. J. Encrenaz; E. Falgarone; P. A. Feldman; M. Fich; H. G. Flore'n; M. Fredrixon; U. Frisk; G. F. Gahm; M. Gerin; M. Hagstroem; J. Harju; T. Hasegawa; Aa. Hjalmarson; C. Horellou; L. E. B. Johansson; K. Justtanont; A. Klotz; E. Kyroelae; S. Kwok; A. Lecacheux; T. Liljestroem; E. J. Llewellyn; S. Lundin; G. Me'gie; G. F. Mitchell; D. Murtagh; L. H. Nordh; L. -Aa. Nyman; M. Olberg; A. O. H. Olofsson; G. Olofsson; H. Olofsson; G. Persson; R. Plume; H. Rickman; I. Ristorcelli; G. Rydbeck; Aa. Sandqvist; F. v. Sche'ele; G. Serra; S. Torchinsky; N. F. Tothill; K. Volk; T. Wiklind; C. D. Wilson; A. Winnberg; G. Witt

2007-02-19T23:59:59.000Z

377

Final Report: Molecular Basis for Microbial Adhesion and Geochemical Surface Reactions: A Study Across Scales  

SciTech Connect

Computational chemistry was used to help provide a molecular level description of the interactions of Gram-negative microbial membranes with subsurface materials. The goal is to develop a better understanding of the molecular processes involved in microbial metal binding, microbial attachment to mineral surfaces, and, eventually, oxidation/reduction reactions (electron transfer) that can occur at these surfaces and are mediated by the bacterial exterior surface. The project focused on the interaction of the outer microbial membrane, which is dominated by an exterior lipopolysaccharide (LPS) portion, of Pseudomonas aeruginosa with the mineral goethite and with solvated ions in the environment. This was originally a collaborative project with T.P. Straatsma and B. Lowery of the Pacific Northwest National Laboratory. The University of Alabama effort used electronic structure calculations to predict the molecular behavior of ions in solution and the behavior of the sugars which form a critical part of the LPS. The interactions of the sugars with metal ions are expected to dominate much of the microscopic structure and transport phenomena in the LPS. This work, in combination with the molecular dynamics simulations of Straatsma and the experimental electrochemistry and microscopy measurements of Lowry, both at PNNL, is providing new insights into the detailed molecular behavior of these membranes in geochemical environments. The effort at The University of Alabama has three components: solvation energies and structures of ions in solution, prediction of the acidity of the critical groups in the sugars in the LPS, and binding of metal ions to the sugar anions. An important aspect of the structure of the LPS membrane as well as ion transport in the LPS is the ability of the sugar side groups such as the carboxylic acids and the phosphates to bind positively charged ions. We are studying the acidity of the acidic side groups in order to better understand the ability of these groups to bind metal ions. We need to understand the solvation properties of the metal ions in solution and their ability to bind not only to the sugars but to proteins and to other anions. Our goal is then to be able to predict the ability of the side groups to bind metal ions. One result from the earlier molecular dynamics simulations is the exclusion of water from the inner hydrophobic part of the membrane. We thus need to investigate the binding of the cations in media with different dielectric constants.

Dixon, David Adams [The University of Alabama

2013-06-27T23:59:59.000Z

378

Molecular Dynamics Study of a Surfactant-Mediated Decane-Water Interface: Effect of Molecular Architecture of Alkyl Benzene Sulfonate  

E-Print Network (OSTI)

Molecular Dynamics Study of a Surfactant-Mediated Decane-Water Interface: Effect of Molecular; In Final Form: May 25, 2004 The effect of molecular architecture of a surfactant, particularly and molecular alignment at the interface, than other surfactants simulated in this study. Furthermore

Goddard III, William A.

379

2-6 Molecular Science Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

MSCF Overview MSCF Overview Molecular Science Computing Facility The Molecular Science Computing Facility (MSCF) supports a wide range of computational activities in environmental molecular research, from benchmark calculations on small mole- cules to reliable calculations on large molecules, and from solids to simulations of large bio- molecules and reactive chemical transport modeling. The MSCF provides an integrated production computing environment with links to external facilities within the U.S. Depart- ment of Energy (DOE), collaborating universities, and industry. Instrumentation & Capabilities * MPP2. Production cluster of 980 HP rx2600 nodes, 1960 1.5 gigahertz IA64 processors, 450 terabytes local disk, 6.8 terabytes memory, 11.8 teraflops * Lustre. Shared cluster

380

Dudley Herschbach: Chemical Reactions and Molecular Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Dudley Herschbach: Dudley Herschbach: Chemical Reactions and Molecular Beams Resources with Additional Information Dudley Herschbach Courtesy of Texas A&M University As a co-recipient of the 1986 Nobel Prize in Chemistry, 'Dudley Herschbach was cited for "providing a much more detailed understanding of how chemical reactions take place". Using molecular beams, he studied elementary reactions such as K + CH3I and K + Br2, where it became possible to correlate reaction dynamics with the electronic structures of reactants and products. Exchanges proceeded through a persistent complex that lasted for many rotational periods, with product angular distributions reflecting the degree of reagent entanglement. Later this work was extended to H + Cl2, Cl + HI, halogen substitution reactions with vinyl and allyl halides, as well as such systems as Xe + Ar2 → XeAr + Ar. Herschbach has been a pioneer in the measurement and theoretical interpretation of vector properties of reaction dynamics, a field known as "molecular stereodynamics".

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Langevin molecular dynamics derived from Ehrenfest dynamics  

E-Print Network (OSTI)

Stochastic Langevin molecular dynamics for nuclei is derived from quantum classical molecular dynamics, also called Ehrenfest dynamics, at positive temperature, assuming that the molecular bulk system is in equilibrium and that the initial data for the electrons is stochastically perturbed from the ground state. The initial electron probability distribution is derived from the Liouville equilibrium solution generated by the nuclei acting as a heat bath for the electrons. The diffusion and friction coefficients in the Langevin equation satisfy Einstein's fluctuation-dissipation relation. The fluctuating initial data yields, in addition to the fluctuating diffusion terms, also a contribution to the drift, modifying the standard ab initio Born-Oppenheimer solution at zero temperature, where the electrons are in their ground state for the current nuclear configuration. The dissipative friction mechanism comes from the evolution of the electron ground state, due to slow dynamics of the nuclei, while the modified d...

Szepessy, Anders

2007-01-01T23:59:59.000Z

382

Molecular Hydrogen Emission from Protoplanetary Disks  

E-Print Network (OSTI)

We have modeled self-consistently the density and temperature profiles of gas and dust in protoplanetary disks, taking into account irradiation from a central star. Making use of this physical structure, we have calculated the level populations of molecular hydrogen and the line emission from the disks. As a result, we can reproduce the observed strong line spectra of molecular hydrogen from protoplanetary disks, both in the ultraviolet (UV) and the near-infrared, but only if the central star has a strong UV excess radiation.

H. Nomura; T. J. Millar

2005-05-06T23:59:59.000Z

383

1984 Bibliography of atomic and molecular processes  

Science Conference Proceedings (OSTI)

This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howard, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

1985-04-01T23:59:59.000Z

384

1985 bibliography of atomic and molecular processes  

SciTech Connect

This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howald, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

1986-06-01T23:59:59.000Z

385

MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Mar.  

NLE Websites -- All DOE Office Websites (Extended Search)

MICROBIOLOGY MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, Mar. 2009, p. 62-70 Vol. 73, No. 1 1092-2172/09/$08.00ϩ0 doi:10.1128/MMBR.00028-08 Copyright © 2009, American Society for Microbiology. All Rights Reserved. Environmental Proteomics: a Paradigm Shift in Characterizing Microbial Activities at the Molecular Level Martin Keller 1 * and Robert Hettich 2 Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, 1 and Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 2 INTRODUCTION .........................................................................................................................................................62 Does Microbial Composition Affect Ecosystem Processes? ................................................................................62 Proteomics

386

Quasielastic He atom scattering from surfaces: A stochastic description of the dynamics of interacting adsorbates  

E-Print Network (OSTI)

The study of diffusion and low frequency vibrational motions of particles on metal surfaces is of paramount importance; it provides valuable information on the nature of the adsorbate-substrate and the substrate-substrate interactions. In particular, the experimental broadening observed in the diffusive peak with increasing coverage is usually interpreted in terms of a dipole-dipole like interaction among adsorbates via extensive molecular dynamics calculations within the Langevin framework. Here we present an alternative way to interpret this broadening by means of a purely stochastic description, namely the interacting single adsorbate approximation, where two noise sources are considered: (1) a Gaussian white noise accounting for the surface friction and temperature, and (2) a white shot noise replacing the interaction potential between adsorbates. Standard Langevin numerical simulations for flat and corrugated surfaces (with a separable potential) illustrate the dynamics of Na atoms on a Cu(100) surface w...

Martinez-Casado, R; Sanz, A S; Miret-Artés, S

2007-01-01T23:59:59.000Z

387

Running Interactive Jobs on Franklin  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactive Jobs Interactive Jobs Interactive Jobs Serial Code or Commands Franklin is a massively parallel high-performance computing platform and is intended and designed to run large parallel codes. While it is possible to run serial jobs on Franklin, it is discouraged. Any code or command that is not preceeded by the aprun command will execute serially on a service (usually login) node. The login nodes are for executing general UNIX shell commands, building code, and submitting jobs intended to run on the compute nodes. The service nodes are shared by many users, so. please do not run your compute- or memory-intensive jobs on these nodes. NERSC may kill running processes that severely degrade service node performance. If your job will run for more than 5 minutes, or use more than 1 GB of memory it should not

388

From interaction to participation: configuring space through embodied interaction  

Science Conference Proceedings (OSTI)

When computation moves off the desktop, how will it transform the new spaces that it comes to occupy? How will people encounter and understand these spaces, and how will they interact with each other through the augmented capabilities of such spaces? ...

Amanda Williams; Eric Kabisch; Paul Dourish

2005-09-01T23:59:59.000Z

389

BNL | Aerosol, Cloud, Precipitation Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud-Aerosol-Precipitation Interactions Cloud-Aerosol-Precipitation Interactions Atmospheric aerosols exert important "indirect effects" on clouds and climate by serving as cloud condensation nuclei (CCN) and ice nuclei that affect cloud radiative and microphysical properties. For example, an increase in CCN increases the number concentration of droplets enhances cloud albedo, and suppresses precipitation that alters cloud coverage and lifetime. However, in the case of moist and strong convective clouds, increasing aerosols may increase precipitation and enhance storm development. Although aerosol-induced indirect effects on climate are believed to have a significant impact on global climate change, estimating their impact continues to be one of the most uncertain climate forcings.

390

Intra-cellular traffic: bio-molecular motors on filamentary tracks  

E-Print Network (OSTI)

Molecular motors are macromolecular complexes which use some form of input energy to perform mechanical work. The filamentary tracks, on which these motors move, are made of either proteins (e.g., microtubules) or nucleic acids (DNA or RNA). Often, many such motors move simultaneously on the same track and their collective properties have superficial similarities with vehicular traffic on highways. The models we have developed provide ``unified'' description: in the low-density limit, a model captures the transport properties of a single motor while, at higher densities the same model accounts for the collective spatio-temporal organization of interacting motors. By drawing analogy with vehicular traffic, we have introduced novel quantities for characterizing the nature of the spatio-temporal organization of molecular motors on their tracks. We show how the traffic-like intracellular collective phenomena depend on the mechano-chemistry of the corresponding individual motors.

Debashish Chowdhury; Aakash Basu; Ashok Garai; Philip Greulich; Katsuhiro Nishinari; Andreas Schadschneider; Tripti Tripathi

2008-01-15T23:59:59.000Z

391

Molecular cloud regulated star formation in galaxies  

E-Print Network (OSTI)

We describe a numerical implementation of star formation in disk galaxies, in which the conversion of cooling gas to stars in the multiphase interstellar medium is governed by the rate at which molecular clouds are formed and destroyed. In the model, clouds form from thermally unstable ambient gas and get destroyed by feedback from massive stars and thermal conduction. Feedback in the ambient phase cycles gas into a hot galactic fountain or wind. We model the ambient gas hydrodynamically using smoothed particle hydrodynamics (SPH). However, we cannot resolve the Jeans mass in the cold and dense molecular gas and, therefore, represent the cloud phase with ballistic particles that coagulate when colliding. We show that this naturally produces a multiphase medium with cold clouds, a warm disk, hot supernova bubbles and a hot, tenuous halo. Our implementation of this model is based on the Gadget N-Body code. We illustrate the model by evolving an isolated Milky Way-like galaxy and study the properties of a disk formed in a rotating spherical collapse. Many observed properties of disk galaxies are reproduced well, including the molecular cloud mass spectrum, the molecular fraction as a function of radius, the Schmidt law, the stellar density profile and the appearance of a galactic fountain.

C. M. Booth; T. Theuns; T. Okamoto

2007-01-30T23:59:59.000Z

392

Molecular sieving silica membrane fabrication process  

DOE Patents (OSTI)

A process is described for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film. 11 figs.

Raman, N.K.; Brinker, C.J.

1999-08-10T23:59:59.000Z

393

Chemically modified electrodes: molecular design for electroanalysis  

Science Conference Proceedings (OSTI)

Electrochemical methods traditionally have found important applications in sample analysis and organic and inorganic synthesis. The electrode surface itself can be a powerful tool. This article is an update of chemically modified electrodes (CMEs) and rational molecular design of electrode surfaces.

Murray, R.W.; Ewing, A.G.; Durst, R.A.

1987-03-01T23:59:59.000Z

394

Nonlinear optical response from periodic molecular structures  

Science Conference Proceedings (OSTI)

The explicit expressions of all independent components of the molecular crystal nonlinear susceptibility (NS) tensor (of any order) are given through the independent components of hyperpolarizability (HP) tensors of the constituting molecules. This expression ... Keywords: Hartree-Fock time-dependent approach, Hyperpolarizability, Lorentz tensor, Madelung potential, nonlinear susceptibility, reaction field theory

M. Mestechkin

2008-04-01T23:59:59.000Z

395

Molecular sieving silica membrane fabrication process  

DOE Patents (OSTI)

A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

Raman, Narayan K. (400 Maple St. SE., Apartment 112, Albuquerque, NM 87106); Brinker, Charles Jeffrey (14 Eagle Nest Dr., NE., Albuquerque, NM 87122)

1998-01-01T23:59:59.000Z

396

Molecular sieving silica membrane fabrication process  

DOE Patents (OSTI)

A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

Raman, Narayan K. (Monroeville, PA); Brinker, Charles Jeffrey (Albuquerque, NM)

1999-01-01T23:59:59.000Z

397

Molecular communication options for long range nanonetworks  

Science Conference Proceedings (OSTI)

Nanotechnology is an emerging field of science devoted to provide new opportunities in a vast range of areas. In this paper, different techniques are proposed to enable the long range interconnection of nano-machines, deployed over distances from a few ... Keywords: Axons and action potential, Fluorescent proteins, MOLED, Molecular communication, Nanonetworks

Lluís Parcerisa Giné; Ian F. Akyildiz

2009-11-01T23:59:59.000Z

398

Protein Structure Suggests Role as Molecular Adapter  

NLE Websites -- All DOE Office Websites (Extended Search)

Protein Structure Suggests Role Protein Structure Suggests Role as Molecular Adapter Protein Structure Suggests Role as Molecular Adapter Print Wednesday, 24 June 2009 00:00 To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the replisome. An essential step in replisome assembly is the loading of ring-shaped helicases (motor proteins) onto the separated strands of DNA. Dedicated ATP-fueled proteins regulate the loading; however, the mechanism by which these proteins recruit and deposit helicases has remained unclear. To better understand this process, researchers at the University of California, Berkeley, recently determined the structure of the ATPase region of DnaC, a bacterial helicase loader. The structure revealed that DnaC is a close cousin of DnaA, the protein thought to be responsible for unwinding DNA. Unexpectedly, the team further found that DnaC forms a right-handed helix similar to the state adopted by ATP-bound DnaA. These findings, together with biochemical studies, implicate DnaC as a molecular adapter that uses ATP-activated DnaA as a docking site for ensuring that DnaB (the ring-shaped helicase) is correctly deposited at the onset of replication.

399

Final Technical Report for "Feature Extraction, Characterization, and Visualization for Protein Interaction via Geometric and Topological Methods"  

SciTech Connect

Shape analysis plays an important role in many applications. In particular, in molecular biology, analyzing molecular shapes is essential to the fundamental problem of understanding how molecules interact. This project aims at developing efficient and effective algorithms to characterize and analyze molecular structures using geometric and topological methods. Two main components of this project are (1) developing novel molecular shape descriptors; and (2) identifying and representing meaningful features based on those descriptors. The project also produces accompanying (visualization) software. Results from this project (09/2006â??10/2009) include the following publications. We have also set up web-servers for the software developed in this period, so that our new methods are accessible to a broader scientific community. The web sites are given below as well. In this final technical report, we first list publications and software resulted from this project. We then briefly explain the research conducted and main accomplishments during the period of this project.

Wang, Yusu

2013-03-25T23:59:59.000Z

400

INTERACTIONS  

Science Conference Proceedings (OSTI)

... The Exxon Research and Engineering Company is a member of the Participating Research Team (PRT) that operates, maintains, and conducts ...

1999-06-25T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Multimodal smart interactive presentation system  

Science Conference Proceedings (OSTI)

The authors propose a system that allows presenters to control presentations in a natural way by their body gestures and vocal commands. Thus a presentation no longer follows strictly a rigid sequential structure but can be delivered in various flexible ... Keywords: gesture recognition, natural interaction, presentation system, smart environment, speech recognition

Hoang-An Le, Khoi-Nguyen C. Mac, Truong-An Pham, Vinh-Tiep Nguyen, Minh-Triet Tran

2013-07-01T23:59:59.000Z

402

Precision Tests of Electroweak Interactions  

Science Conference Proceedings (OSTI)

The status of the precision tests of the electroweak interactions is reviewed in this paper. An emphasis is put on the Standard Model analysis based on measurements at LEP/SLC and the Tevatron. The results of the measurements of the electroweak mixing angle in the NuTeV experiment and the future prospects are discussed.

Akhundov, Arif [Institute of Physics, Azerbaijan Academy of Sciences, 370143 Baku (Azerbaijan); Departamento de Fisica Teorica and IFIC, Universidad de Valencia-CSIC, 46100 Valencia (Spain)

2008-04-21T23:59:59.000Z

403

Interaction between economic dynamical systems  

Science Conference Proceedings (OSTI)

The paper considers economic dynamical systems, the state spaces being the Riemannian manifolds. Between two economic dynamical systems, global feedforward and the feedback interaction is defined and the connection between their linearization and prolongation ... Keywords: economic dynamical system, economic flow, feedback, feedforward, linearization, prolongation by derivation

Constantin Patrascoiu

2009-07-01T23:59:59.000Z

404

Audio interaction with multimedia information  

Science Conference Proceedings (OSTI)

Interacting with multimedia information stored in systems or on the web points up several difficulties inherent in the signal nature of such information. These difficulties are especially evident when palmtop devices are used for such purposes. Developing ... Keywords: audio features, audio-to-score, digital audio processing, multimedia information, pattern matching, score-to-audio, softcomputing, speech-to-text, text-to-speech

Mario Malcangi

2009-12-01T23:59:59.000Z

405

Interacting new generalized Chaplygin gas  

E-Print Network (OSTI)

We have presented a model in which the new generalized Chaplygin gas interacts with matter. We find that there exists a stable scaling solution at late times in the evolution of the universe. Moreover, the phantom crossing scenario is observed in this model.

Mubasher Jamil

2009-06-22T23:59:59.000Z

406

Personalization for unobtrusive service interaction  

Science Conference Proceedings (OSTI)

Increasingly, mobile devices play a key role in the communication between users and the services embedded in their environment. With ever greater number of services added to our surroundings, there is a need to personalize services according to the user ... Keywords: Context-awareness, Feature modeling, Interaction adaptation, Obtrusiveness adaptation, Personalization

Miriam Gil; Pau Giner; Vicente Pelechano

2012-06-01T23:59:59.000Z

407

Interactive anonymization of sensitive data  

Science Conference Proceedings (OSTI)

There has been much recent work on algorithms for limiting disclosure in data publishing, however they have not been put to use in any toolkit for practicioners. We will demonstrate CAT, the Cornell Anonymization Toolkit, designed for interactive anonymization. ... Keywords: data anonymization, l-diversity

Xiaokui Xiao; Guozhang Wang; Johannes Gehrke

2009-06-01T23:59:59.000Z

408

Brain-computer interaction: can multimodality help?  

Science Conference Proceedings (OSTI)

This paper is a short introduction to a special ICMI session on brain-computer interaction. During this paper, we first discuss problems, solutions, and a five-year view for brain-computer interaction. We then talk further about unique issues with multimodal ... Keywords: bandwidth, brain-computer interaction, hybrid BCIs, multimodal interaction

Anton Nijholt; Brendan Z. Allison; Rob J.K. Jacob

2011-11-01T23:59:59.000Z

409

Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function  

E-Print Network (OSTI)

Recent advances have led to the emergence of molecular biomechanics as an essential element of modern biology. These efforts focus on theoretical and experimental studies of the mechanics of proteins and nucleic acids, and ...

Bao, Gang

410

Tensor of molecular optical activity. Dispersion of the molecular optical rotation  

E-Print Network (OSTI)

The tensor of molecular optical activity (TMOA) is explicitly derived. It is shown that to evaluate a large number of effects related with molecular optical activity at arbitrary frequency $\\omega$ of the incident light, one needs to know only four TMOA tensors which have twelve irreducible (tensor) components. An additional amplification factor contains one $3 \\times 3$ tensor of light scattering with three irreducible components. The explicit dependence of all irreducible components of TMOA upon $\\omega$ and some molecular parameters is derived and discussed. We apply TMOA to explain the dispersion of optical rotation in dilute solutions of organic molecules. This study opens a new avenue in application of methods of modern Quantum Electrodynamics to molecular optical activity.

Frolov, Alexei M

2010-01-01T23:59:59.000Z

411

Transforming molecular biology research through extreme acceleration of AMBER molecular dynamics simulations: sampling for the 99%  

Science Conference Proceedings (OSTI)

This talk will cover recent developments in the acceleration of Molecular Dynamics Simulations using NVIDIA Graphics Processing units with the AMBER software package. In particular it will focus on recent algorithmic improvements aimed at accelerating ...

Ross C. Walker; Levi Pierce; Romelia Salomon

2012-07-01T23:59:59.000Z

412

The Molecular Foundry - Inorganic Nanostructures - Staff Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Interactions in Self-Assembled Magnetic Binary Nanocrystal Superlattice Membranes," Nano Letters, 10(12), 5103-5108 (2010). pdf M. A. Caldwell, B. Haynor, S. Aloni, D. F....

413

Role of Water States on Water Uptake and Proton Transport in Nafion using Molecular Simulations and Bimodal Network  

SciTech Connect

Using molecular simulations and a bimodal domain network, the role of water state on Nafion water uptake and water and proton transport is investigated. Although the smaller domains provide moderate transport pathways, their effectiveness remains low due to strong, resistive water molecules/domain surface interactions. The water occupancy of the larger domains yields bulk-like water, and causes the observed transition in the water uptake and significant increases in transport properties.

Michigan, U.; Hwang, Gi Suk; Kaviany, Massoud; Gostick, Jeffrey T.; Kientiz, Brian; Weber, Adam Z.; Kim, Moo Hwan

2010-11-19T23:59:59.000Z

414

Molecular Cell Hierarchical Modularity and the Evolution  

E-Print Network (OSTI)

,4,7 Zongtian Tong,8 Pedro Beltrao,1,4 Michael Shales,1,4 Hong Qu,1,4 Sean R. Collins,9 Joseph I. Kliegman,1). Unlike protein-protein interactions (PPIs), which are limited to gene products that interact physi- cally with the kinesins klp5 and klp6, whose protein products form a heterocomplex (Garcia et al., 2002) that functionally

415

Exact Solutions of Burnt-Bridge Models for Molecular Motor Transport  

E-Print Network (OSTI)

Transport of molecular motors, stimulated by interactions with specific links between consecutive binding sites (called ``bridges''), is investigated theoretically by analyzing discrete-state stochastic ``burnt-bridge'' models. When an unbiased diffusing particle crosses the bridge, the link can be destroyed (``burned'') with a probability $p$, creating a biased directed motion for the particle. It is shown that for probability of burning $p=1$ the system can be mapped into one-dimensional single-particle hopping model along the periodic infinite lattice that allows one to calculate exactly all dynamic properties. For general case of $pmotor proteins.

Alexander Yu. Morozov; Ekaterina Pronina; Anatoly B. Kolomeisky; Maxim N. Artyomov

2006-10-24T23:59:59.000Z

416

Numerical study: Iron corrosion-resistance in lead-bismuth eutectic coolant by molecular dynamics method  

Science Conference Proceedings (OSTI)

In this present work, we report numerical results of iron (cladding) corrosion study in interaction with lead-bismuth eutectic coolant of advanced nuclear reactors. The goal of this work is to study how the oxygen can be used to reduce the corrosion rate of cladding. The molecular dynamics method was applied to simulate corrosion process. By evaluating the diffusion coefficients, RDF functions, MSD curves of the iron and also observed the crystal structure of iron before and after oxygen injection to the coolant then we concluded that a significant and effective reduction can be achieved by issuing about 2% number of oxygen atoms to lead-bismuth eutectic coolant.

Arkundato, Artoto; Su'ud, Zaki; Abdullah, Mikrajuddin; Widayani,; Celino, Massimo [Nuclear Physics and Biophysics Research Division, Physics Department Institut Teknologi Bandung, Jl. Ganesha 10, Bandung Physics Department, Faculty of Mathematical and Natural Sciences Universitas (Indonesia); Nuclear Physics and Biophysics Research Division, Physics Department Institut Teknologi Bandung, Jl. Ganesha 10, Bandung (Indonesia); ENEA, CR Cassacia, Via Anguillarese 301, Roma (Italy)

2012-06-06T23:59:59.000Z

417

Integrative viral molecular epidemiology: hepatitis C virus modeling  

Science Conference Proceedings (OSTI)

Traditional molecular epidemiology of viral infections is based onidentifying genetic markers to assist in epidemiological investigation. The limitationsof early molecular technologies led to preponderance of analyticalmethodology focused on the viral ...

James Lara; Zoya Dimitrova; Yuri Khudyakov

2008-05-01T23:59:59.000Z

418

Molecular Thermodynamic Modeling of Droplet-Type Microemulsions  

E-Print Network (OSTI)

Molecular Thermodynamic Modeling of Droplet-Type Microemulsions Livia A. Moreira and Abbas a molecular thermodynamic theory for droplet-type microemulsions, both water-in-oil and oil

Firoozabadi, Abbas

419

Probing Core-Hole Localization in Molecular Nitrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole...

420

OpenAtom -- Ab initio molecular dynamics package  

Science Conference Proceedings (OSTI)

OpenAtom is a highly scalable and portable parallel application for molecular dynamics simulations at the quantum level. It implements the Car-Parrinello ab-initio Molecular Dynamics (CPAIMD) method.

Roberto Car Mark E. Tuckerman Glenn J. Martyna Nick Nystrom Michael Klein Josep Torrellas Klaus Schulten Jack Dongarra Eric Bohm Abhinav Bhatele Laxmikant Kale Sameer Kumar Anshu Arya Ramprasad Venkataraman

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Surface detection, meshing and analysis during large molecular dynamics simulations  

SciTech Connect

New techniques are presented for the detection and analysis of surfaces and interfaces in atomistic simulations of solids. Atomistic and other particle-based simulations have no inherent notion of a surface, only atomic positions and interactions. The algorithms we introduce here provide an unambiguous means to determine which atoms constitute the surface, and the list of surface atoms and a tessellation (meshing) of the surface are determined simultaneously. The algorithms have been implemented and demonstrated to run automatically (on the fly) in a large-scale parallel molecular dynamics (MD) code on a supercomputer. We demonstrate the validity of the method in three applications in which the surfaces and interfaces evolve: void surfaces in ductile fracture, the surface morphology due to significant plastic deformation of a nanoscale metal plate, and the interfaces (grain boundaries) and void surfaces in a nanoscale polycrystalline system undergoing ductile failure. The technique is found to be quite robust, even when the topology of the surfaces changes as in the case of void coalescence where two surfaces merge into one. It is found to add negligible computational overhead to an MD code, and is much less expensive than other techniques such as the solvent-accessible surface.

Dupuy, L M; Rudd, R E

2005-08-01T23:59:59.000Z

422

Supercritical fluid molecular spray film deposition and powder formation  

DOE Patents (OSTI)

Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

Smith, Richard D. (Richland, WA)

1986-01-01T23:59:59.000Z

423

Molecular dynamics simulation of UO2 nanocrystals melting  

E-Print Network (OSTI)

In this article we study melting of uranium dioxide (UO2) nanocrystals (NC) isolated in vacuum (i.e. non-periodic boundary conditions) using molecular dynamics (MD) in the approximation of pair potentials and rigid ions. We calculate the size dependence of the temperature and heat of melting, the density jump for crystals of cubic shape and volumes up to 1000 nm^3 (50000 particles). Linear and parabolic extrapolations of these dependences to macroscopic (infinite) size are considered, the parabolic is found to be better suited for the analysis of data on the temperature and the heat of melting. The closest to the modern experimental data estimates of the melting temperature of macrocrystals are obtained using the interaction potentials Goel-08 (2969K), Yakub-09 (3105K) and MOX-07 (3291K). The density jump at melting is well reproduced by Yakub-09 (8.66%) and MOX-07 (7.97%). The heat of fusion for all sets of the potentials considered is found to be underestimated by 50-75%, possibly because of the excluded he...

Boyarchenkov, A S; Nekrasov, K A; Kupryazhkin, A Ya

2011-01-01T23:59:59.000Z

424

Belowground Carbon Cycling Processes at the Molecular Scale  

NLE Websites -- All DOE Office Websites (Extended Search)

919 919 Belowground Carbon Cycling Processes at the Molecular Scale An EMSL Science Theme Advisory Panel Workshop Workshop Date: February 19-21, 2013 Prepared for the U.S. Department of Energy's Office of Biological and Environmental Research under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 Belowground Carbon Cycling Processes at the Molecular Scale iii Executive Summary As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an Environmental Molecular

425

High Heating Rate Thermal Desorption for Molecular Surface ...  

High Heating Rate Thermal Desorption for Molecular Surface Sampling Note: The technology described above is an early stage opportunity. Licensing ...

426

Molecular Weight Effects in Guar Gum Adsorption on Talc  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Water and Energy in Mineral Processing. Presentation Title, Molecular Weight ...

427

Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages  

E-Print Network (OSTI)

article as: Lancaster, Molecular evolutionary rates predictRW, Albert VA: Molecular rates parallel diversificationevolutionary divergence at the molecular level. Science 7.

Lancaster, Lesley T

2010-01-01T23:59:59.000Z

428

MOLECULAR SIEVING ACTION OF THE CELL MEMBRANE DURING GRADUAL OSMOTIC HEMOLYSIS  

E-Print Network (OSTI)

Reynaers, H. , 1966. Molecular properties of hemoglobin.Britten, 1973. Comment on the Molecular basis of fluidity inand N. Tara, 1970. of molecular crystals: the liquid

MacGregor II, R.D.

2010-01-01T23:59:59.000Z

429

Molecular Basis of Coupling 3'-end Processing to Transcription in Mammals  

E-Print Network (OSTI)

and Vagner, S. (2010). Molecular mechanisms of eukaryoticand Manley J.L. (2009). Molecular architecture of the humanand Manley J.L. (2009). Molecular architecture of the human

Ngo, Benson

2012-01-01T23:59:59.000Z

430

Molecular analysis of the gut microbiota of identical twins with Crohn's disease  

E-Print Network (OSTI)

Scheynius A, et al. (2007). Molecular fingerprinting of theN, Pace NR (2007). Molecular-phylogenetic characterizationMolecular analysis of the gut microbiota of identical twins

Dicksved, Johan

2008-01-01T23:59:59.000Z

431

Molecular and computational approaches to identification of genes underlying complex traits  

E-Print Network (OSTI)

Press; 2002. Paterson AH. Molecular Dissection of ComplexCALIFORNIA, SAN DIEGO Molecular and computational approachesof Doctor of Philosophy in Molecular Pathology by Martin L.

Jirout, Martin L.

2008-01-01T23:59:59.000Z

432

Molecular beam epitaxy of SrTiO3 with a growth window  

E-Print Network (OSTI)

Materials Fundamentals of Molecular Beam Epitaxy (AcademicMolecular beam epitaxy of SrTiO 3 with a growth windowgrowth window in conventional molecular beam epitaxy (MBE)

Stemmer, Susanne

2009-01-01T23:59:59.000Z

433

Molecular bond selective x-ray scattering for nanoscale analysis of soft matter  

E-Print Network (OSTI)

submitted for publication Molecular bond selective x-rayorbital to a ?* C = C molecular orbital (8). The energy offrom the 1s atomic to ?* molecular orbitals that are

2005-01-01T23:59:59.000Z

434

Molecular Mechanisms of Kinetochore-Microtubule Attachment Via the Ndc80 Complex  

E-Print Network (OSTI)

and Meraldi, P. (2010). Molecular control of kinetochore-E. , and Westermann, S. (2011). Molecular architecture andand Tanaka, T.U. (2005). Molecular mechanisms of kinetochore

Alushin, Gregory Matthew

2012-01-01T23:59:59.000Z

435

Molecular Analysis of Microglial Activation and Macrophage Recruitment in Murine Models of Neuroinflammation.  

E-Print Network (OSTI)

OF CALIFORNIA RIVERSIDE Molecular Analysis of Microglialof Philosophy in Cell, Molecular, and Developmental BiologyNMDA receptors : molecular mechanisms and therapeutic

Puntambekar, Shweta

2009-01-01T23:59:59.000Z

436

MOLECULAR DYNAMICS STUDY OF THE THERMAL CONDUCTIVITY OF AMORPHOUS NANOPOROUS SILICA  

E-Print Network (OSTI)

Domain size effects in molecular dynamics simulation ofC. H. , 2010. “Size effects in molecular dynamics thermaland nanowires using molecular dynamics simulations”.

Coquil, Thomas; Fang, Jin; Pilon, Laurent

2011-01-01T23:59:59.000Z

437

Molecular characterization of Vibrio cholerae outbreak strains with altered El Tor biotype from southern India  

E-Print Network (OSTI)

0171-7 ORIGINAL PAPER Molecular characterization of VibrioKeywords Vibrio cholerae Á Molecular characterization ÁIn this study, we report molecular characterization of 44 V.

Goel, A. K.; Jain, M.; Kumar, P.; Jiang, S. C.

2010-01-01T23:59:59.000Z

438

MEIS: Molecular Environmental & Interface Science  

NLE Websites -- All DOE Office Websites (Extended Search)

People People BL 11-2 Reports &Publications Model Compound Library SixPACK Glitch Curves MES User Resources & Instrumentation Environmental Remediation Science at SSRL MEIS Home SSRL Stanford EMSI SLAC Beam line resources and instrumentation Fundamental and applied research Why synchrotrons for environmental science? Molecular Environmental Science (MES) research at SSRL focuses on the fundamental interfacial, molecular- and nano-scale processes that control contaminant and nutrient cycling in the biosphere with the goal of elucidating global elemental cycles and anthropogenic influences on the environment. Key areas of investigation include the: (a) Structural chemistry of water and dissolved solutes, (b) Structural chemistry and reactivity of complex natural environmental materials with respect to heavy

439

Molecular Science Research Center, 1991 annual report  

SciTech Connect

During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

Knotek, M.L.

1992-03-01T23:59:59.000Z

440

Turbulence in the Molecular Interstellar Medium  

E-Print Network (OSTI)

Abstract. The observational record of turbulence within the molecular gas phase of the interstellar medium is summarized. We briefly review the analysis methods used to recover the velocity structure function from spectroscopic imaging and the application of these tools on sets of cloud data. These studies identify a near-invariant velocity structure function that is independent of local the environment and star formation activity. Such universality accounts for the cloud-to-cloud scaling law between the global line-width and size of molecular clouds found by Larson (1981) and constrains the degree to which supersonic turbulence can regulate star formation. In addition, the evidence for large scale driving sources necessary to sustain supersonic flows is summarized.

Mark H. Heyer; Chris Brunt

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Chapter_6_Foreign_Interaction  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foreign Interaction Foreign Interaction This chapter describes the security procedures adopted by DOE HQ to implement the requirements of the following Executive Order and DOE directives: * Executive Order 12344 (as prescribed by 42 U.S.C. 7158) * DOE Oder 142.3A, Unclassified Foreign Visits and Assignments Program * DOE Order 470.4B, Safeguards and Security Program, Appendix B, Section 4 * DOE Order 475.1, Counterintelligence Program * DOE Order 551.1C, Official Foreign Travel * DOE Manual 552.1-1A, U.S. Department of Energy Travel Manual * DOE Order 552.1A, Change 1, Travel Policy and Procedures The directives have two objectives: the first objective is to protect DOE sensitive and classified information from being disclosed to foreign nationals, except when authorized by international

442

GPU-accelerated molecular visualization on petascale supercomputing platforms  

Science Conference Proceedings (OSTI)

Petascale supercomputers create new opportunities for the study of the structure and function of large biomolecular complexes such as viruses and photosynthetic organelles, permitting all-atom molecular dynamics simulations of tens to hundreds of millions ... Keywords: GPU, many-core, molecular surface, molecular visualization, parallel rendering, ray tracing

John E. Stone, Kirby L. Vandivort, Klaus Schulten

2013-11-01T23:59:59.000Z

443

Modeling molecular polarizabilities with graph-theoretical concepts  

Science Conference Proceedings (OSTI)

A model study of the molecular polarizabilities of a wide heterogeneous class of organic compounds was carried out. The model of this property was based on graph-theoretical molecular connectivity and pseudoconnectivity basis indices, including the corresponding ... Keywords: complete graphs, core electrons, graph-theoretical connectivity indices, molecular polarizabilities

Lionello Pogliani

2004-12-01T23:59:59.000Z

444

Molecular Partitioning during Host Cell Penetration by Toxoplasma gondii  

E-Print Network (OSTI)

Molecular Partitioning during Host Cell Penetration by Toxoplasma gondii Audra J. Charron and L. David Sibley Department of Molecular Microbiology, Washington University School of Medicine, St. Louis of molecular reporters for raft and nonraft membrane sub- domains was monitored during parasite invasion

Arnold, Jonathan

445

Molecular rectifying diodes from self-assembly on silicon  

E-Print Network (OSTI)

Molecular rectifying diodes from self-assembly on silicon Stéphane Lenfant , Christophe Krzeminski a molecular rectifying junction made from a sequential self-assembly on silicon. The device structure consists resonance through the highest occupied molecular orbital of the -group in good agreement with our

Paris-Sud XI, Université de

446

From molecular changes to customised therapy A. Hemminki*,1  

E-Print Network (OSTI)

Review From molecular changes to customised therapy A. Hemminki*,1 Division of Human Gene Therapy 35294-3300, USA Received 1 October 2001; accepted 9 October 2001 Abstract The revolution in molecular-associated defects, and molecular chemotherapy for delivering toxic substances locally to tumour cells. Viruses which

Hemminki, Akseli

447

Molecular Thermodynamics of Asphaltene Precipitation in Reservoir Fluids  

E-Print Network (OSTI)

Molecular Thermodynamics of Asphaltene Precipitation in Reservoir Fluids Jianzhong Wu and John M Institute, Palo Alto, CA 94304 A pre®iously described molecular-thermodynamic framework, based on colloid. Gi®en the composition of the medium, and asphaltene and resin concentra- tions, the molecular

Firoozabadi, Abbas

448

Molecular Combinatory Computing for Nanostructure Synthesis and Control  

E-Print Network (OSTI)

Molecular Combinatory Computing for Nanostructure Synthesis and Control Bruce MacLennan Department-- Molecular combinatory computing makes use of a small set of chemical reactions that together have simulated nano-assembly applications, and discuss a possible molecular implementation in terms of covalently

Tennessee, University of

449

Molecular Combinatory Computing for Nanostructure Synthesis and Control  

E-Print Network (OSTI)

Molecular Combinatory Computing for Nanostructure Synthesis and Control Bruce MacLennan Department--- Molecular combinatory computing makes use of a small set of chemical reactions that together have the approach by several simulated nano­assembly applications, and discuss a possible molecular implementation

Tennessee, University of

450

Molecular and morphological methods for identifying plankton: what makes a  

E-Print Network (OSTI)

HORIZONS Molecular and morphological methods for identifying plankton: what makes a successful of planktologists in monographs or at the bench. Despite recent rapid growth of molecular methods, taxonomists have been slow to incorporate molecular information in a formal way into species descriptions. Likewise

Katz, Laura

451

Molecular correlations in a supercooled liquid L. Fabbian,1  

E-Print Network (OSTI)

Molecular correlations in a supercooled liquid L. Fabbian,1 A. Latz,2 R. Schilling,2 F. Sciortino,1 1998; revised manuscript received 22 March 2000 We present static and dynamic properties of molecular effort in the direction of solving the molecular mode-coupling theory MMCT equations for supercooled

Sciortino, Francesco

452

Molecular Lines as Diagnostics of Solar and Stellar Magnetic Fields  

E-Print Network (OSTI)

Molecular Lines as Diagnostics of Solar and Stellar Magnetic Fields S.V. Berdyugina1, S.K. Solanki2 (Berdyugina et al. 2000; Berdyugina & Solanki 2001a). The synthetic Stokes profiles of various molecular and sunspot temperature. Introducing molecular lines into the inversion of sunspot spectra leads

Berdyugina, Svetlana

453

Molecular dynamics simulation of Li surface erosion and bubble formation  

E-Print Network (OSTI)

Molecular dynamics simulation of Li surface erosion and bubble formation Z. Insepov *, A. Hassanein Structure and dynamical properties of liquid Li containing He atoms were studied by the Molecular Dynamics devices. Molecular dynamics (MD) method is capable of studying important collision processes and providing

Harilal, S. S.

454

MOLECULAR AND ENVIRONMENTAL PLANT SCIENCES January 24,2000  

E-Print Network (OSTI)

BY-LAWS of the FACULTY OF MOLECULAR AND ENVIRONMENTAL PLANT SCIENCES Revised January 24,2000 #12;By-Laws of the Faculty of Molecular and Environmental Plant Sciences Article I. PulJ)ose and Intent The Interdisciplinary Faculty of Molecular and Environmental Plant Sciences (Faculty) shall promote and advise

455

Molecular pulses: Population inversion with positively chirped short pulses  

E-Print Network (OSTI)

Molecular pulses: Population inversion with positively chirped short pulses Jianshu Cao of molecular systems can be achieved with intense positively chirped broadband laser pulses. To provide and a four-level model is designed to demonstrate for molecular systems the correlation between the sign

Cao, Jianshu

456

$\\{Q\\bar{q}\\}\\{\\bar{Q}^{(')}q\\}$ molecular states  

E-Print Network (OSTI)

Masses for $\\{Q\\bar{q}\\}\\{\\bar{Q}^{(')}q\\}$ molecular states are systematically studied in QCD sum rules. The interpolating currents representing the related molecular states are proposed. Technically, contributions of the operators up to dimension six are included in operator product expansion (OPE). Mass spectra for molecular states with $\\{Q\\bar{q}\\}\\{\\bar{Q}^{(')}q\\}$ configurations are obtained.

Zhang, Jian-Rong

2009-01-01T23:59:59.000Z

457

Molecular Electronics Michael Zwolak and Massimiliano Di Ventra  

E-Print Network (OSTI)

Molecular Electronics Michael Zwolak and Massimiliano Di Ventra Department of Physics, Virginia) are fast approaching. Alternative technologies are thus being investigated. Molecular electronics is one of these alternatives. Molecular electronics can be loosely defined as a subfield of nanotechnology that envisions

Zwolak, Michael

458

How molecular imaging is speeding up antiangiogenic drug development  

E-Print Network (OSTI)

How molecular imaging is speeding up antiangiogenic drug development Weibo Cai,1 Jianghong Rao,1 Sanjiv S. Gambhir,1,2 and Xiaoyuan Chen1 1 The Molecular Imaging Program at Stanford, Department. The shift in recent drug discovery to novel agents against specific molecular targets high- lights the need

Rao, Jianghong

459

The Determination of Molecular Structure from Rotational Spectra  

DOE R&D Accomplishments (OSTI)

An analysis is presented concerning the average molecular configuration variations and their effects on molecular structure determinations. It is noted that the isotopic dependence of the zero-point is often primarily governed by the isotopic variation of the average molecular configuration. (J.R.D.)

Laurie, V. W.; Herschbach, D. R.

1962-07-00T23:59:59.000Z

460

Molecular Science Research Center 1992 annual report  

Science Conference Proceedings (OSTI)

The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

Knotek, M.L.

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Molecular Mechanism of Biological Proton Transport  

Science Conference Proceedings (OSTI)

Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

Pomes, R.

1998-09-01T23:59:59.000Z

462

Intelligent systems for the molecular biologist  

SciTech Connect

This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. In this paper, one objective is to identify properties of DNA sequences that determine their function, by computer-aided statistical analysis and to accurately predict its function, given a new sequence. A related problem is to predict protein structure and function from the sequence.

Brutlag, D.L.

1995-12-31T23:59:59.000Z

463

Molecular Cell Hydrogen Sulfide-Linked Sulfhydration  

E-Print Network (OSTI)

Molecular Cell Article Hydrogen Sulfide-Linked Sulfhydration of NF-kB Mediates Its Antiapoptotic@jhmi.edu DOI 10.1016/j.molcel.2011.10.021 SUMMARY Nuclear factor kB (NF-kB) is an antiapoptotic tran- scription factor. We show that the antiapoptotic actions of NF-kB are mediated by hydrogen sulfide (H2S

Dong, Xinzhong

464

Structural Interactions in Spatial Panels  

E-Print Network (OSTI)

; Pesaran et al., 2004, Holly et al., 2008), socio-cultural distance (Conley and Topa, 2002; Bhattacharjee and Jensen-Butler, 2005), and transportation costs and time (Gibbons and Machin, 2005; Bhattacharjee and Jensen-Butler, 2005) have been highlighted... at higher lags in the dynamic panel data model), who are correlated with the above set of endogenous variables, but not with the idiosyncratic errors ?1?? ?2?? ? ? ? ? ??? from the interaction error equation (2). In social networks agents who have weak ties...

Bhattacharjee, Arnab; Holly, Sean

465

Strongly interacting parton matter equilibration  

Science Conference Proceedings (OSTI)

We study the kinetic and chemical equilibration in 'infinite' parton matter within the Parton-Hadron-String Dynamics transport approach. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different energy densities. Particle abundances, kinetic energy distributions, and the detailed balance of the off-shell quarks and gluons in the strongly-interacting quarkgluon plasma are addressed and discussed.

Ozvenchuk, V., E-mail: ozvenchuk@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies (Germany); Linnyk, O. [Goethe-Universitaet, Institut fuer Theoretische Physik (Germany); Bratkovskaya, E. [Frankfurt Institute for Advanced Studies (Germany); Gorenstein, M. [NAS Ukraine, Bogolyubov Institute for Theoretical Physics (Ukraine); Cassing, W. [Justus-Liebig Universitaet, Institut fuer Theoretische Physik (Germany)

2012-07-15T23:59:59.000Z

466

Molecular Dynamics Simulations of Heat Transfer In Nanoscale Liquid Films  

E-Print Network (OSTI)

Molecular Dynamics (MD) simulations of nano-scale flows typically utilize fixed lattice crystal interactions between the fluid and stationary wall molecules. This approach cannot properly model thermal interactions at the wall-fluid interface. In order to properly simulate the flow and heat transfer in nano-scale channels, an interactive thermal wall model is developed. Using this model, the Fourier’s law of heat conduction is verified in a 3.24 nm height channel, where linear temperature profiles with constant thermal conductivity is obtained. The thermal conductivity is verified using the predictions of Green-Kubo theory. MD simulations at different wall wettability ( ??f /? ) and crystal bonding stiffness values (K) have shown temperature jumps at the liquid/solid interface, corresponding to the well known Kapitza resistance. Using systematic studies, the thermal resistance length at the interface is characterized as a function of the surface wettability, thermal oscillation frequency, wall temperature and thermal gradient. An empirical model for the thermal resistance length, which could be used as the jump-coefficient of a Navier boundary condition, is developed. Temperature distributions in the nano-channels are predicted using analytical solution of the continuum heat conduction equation subjected to the new temperature jump condition, and validated using the MD results. Momentum and heat transfer in shear driven nanochannel flows are also investigated. Work done by the viscous stresses heats the fluid, which is dissipated through the channel walls, maintained at isothermal conditions. Spatial variations in the fluid density, kinematic viscosity, shear- and energy dissipation rates are presented. The energy dissipation rate is almost a constant for ??f /? < 0.6, which results in parabolic temperature profiles in the domain with temperature jumps due to the Kapitza resistance at the liquid/solid interfaces. Using the energy dissipation rates predicted by MD simulations and the continuum energy equation subjected to the temperature jump boundary conditions developed in this study, the analytical solutions are obtained for the temperature profiles, which agree well with the MD results.

Kim, Bo Hung

2009-05-01T23:59:59.000Z

467

Surprising Quasiparticle Interactions in Graphene  

NLE Websites -- All DOE Office Websites (Extended Search)

Surprising Quasiparticle Interactions in Graphene Print Surprising Quasiparticle Interactions in Graphene Print Until now, the world's electronics have been dominated by silicon, whose properties, while excellent, significantly limit the size and power consumption of today's computer chips. In order to develop ever smaller and more efficient devices, scientists have turned their attention to carbon, which can be formed into nanostructures like nanotubes, whose properties can be tuned from metallic to semiconducting. However, using carbon nanotubes for complex circuits is nearly impossible because their location and functionality in devices cannot be controlled at will, making them a poor substitute for silicon. Graphene, however, does not have these limitations. This single sheet of carbon atoms that is the building block of carbon nanotubes, C60 molecules, and graphite turns out to have similar functionality but with the added benefit that it can be grown with conventional methods and patterned into devices. Now, a group of scientists from Germany and the ALS, using angle-resolved photoemission spectroscopy (ARPES) at ALS Beamine 7.0.1, have succeeded in making the first measurement of the carrier lifetime in graphene over a wide energy scale and have found surprising new interactions that suggest new kinds of devices.

468

Pokey: Interaction Through Covert Structured  

E-Print Network (OSTI)

In this paper we describe a method to support interaction with a cellphone based projectorcamera system. We describe a novel approach that uses a technique known in Computer Vision as structured light. It is based on projecting a pattern of light with known geometric properties onto a scene while imaging it with a camera. The distortions of the known pattern in the resulting image are due to the scene geometry which can be readily estimated. The main contribution of this paper is that the structure is created as consequence of the way raster-scan, laser-based microprojectors operate, and is in fact invisible to the user. The structure of the projected light is sensed through careful synchronization within the camera-projector system and is imperceptible to the user. In this paper we describe the technique, and test it with a cell-phone based application that exploits this method while providing a natural interactive environment with no additional special equipment. The system enables manual interaction with a projected application using only the rasterizing projector and camera that will be part of next generation cell phones.

Paul Beardsley; Yui Ivanov; Biliana Kaneva; Shoji Tanaka; Christopher Wren; Paul Beardsley; Yuri Ivanov; Biliana Kaneva; Shoji Tanaka; Christopher R. Wren

2008-01-01T23:59:59.000Z

469

Gauge Interaction as Periodicity Modulation  

E-Print Network (OSTI)

The paper is devoted to a geometrical interpretation of gauge invariance in terms of the formalism of field theory in compact space-time dimensions [arXiv:0903.3680]. In this formalism, the kinematic information of an interacting elementary particle is encoded on the relativistic geometrodynamics of the boundary of the theory through local transformations of the underlying space-time coordinates. Therefore, gauge interaction is described as invariance of the theory under local deformations of the boundary, the resulting local variations of field solution are interpreted as internal transformations, and the internal symmetries of the gauge theory turn out to be related to corresponding local space-time symmetries. In the case of local infinitesimal isometric transformations, Maxwell's kinematics and gauge invariance are inferred directly from the variational principle. Furthermore we explicitly impose periodic conditions at the boundary of the theory as semi-classical quantization condition in order to investigate the quantum behavior of gauge interaction. In the abelian case the result is a remarkable formal correspondence with scalar QED.

Donatello Dolce

2011-10-03T23:59:59.000Z

470

Surprising Quasiparticle Interactions in Graphene  

NLE Websites -- All DOE Office Websites (Extended Search)

Surprising Quasiparticle Surprising Quasiparticle Interactions in Graphene Surprising Quasiparticle Interactions in Graphene Print Wednesday, 31 October 2007 00:00 Until now, the world's electronics have been dominated by silicon, whose properties, while excellent, significantly limit the size and power consumption of today's computer chips. In order to develop ever smaller and more efficient devices, scientists have turned their attention to carbon, which can be formed into nanostructures like nanotubes, whose properties can be tuned from metallic to semiconducting. However, using carbon nanotubes for complex circuits is nearly impossible because their location and functionality in devices cannot be controlled at will, making them a poor substitute for silicon. Graphene, however, does not have these limitations. This single sheet of carbon atoms that is the building block of carbon nanotubes, C60 molecules, and graphite turns out to have similar functionality but with the added benefit that it can be grown with conventional methods and patterned into devices. Now, a group of scientists from Germany and the ALS, using angle-resolved photoemission spectroscopy (ARPES) at ALS Beamine 7.0.1, have succeeded in making the first measurement of the carrier lifetime in graphene over a wide energy scale and have found surprising new interactions that suggest new kinds of devices.

471

MOLECULAR GAS IN INFRARED ULTRALUMINOUS QSO HOSTS  

Science Conference Proceedings (OSTI)

We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO) hosts observed with the IRAM 30 m telescope. The cold molecular gas reservoir in these objects is in a range of (0.2-2.1) Multiplication-Sign 10{sup 10} M{sub Sun} (adopting a CO-to-H{sub 2} conversion factor {alpha}{sub CO} = 0.8 M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1}). We find that the molecular gas properties of IR QSOs, such as the molecular gas mass, star formation efficiency (L{sub FIR}/L'{sub CO}), and CO (1-0) line widths, are indistinguishable from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of low- and high-redshift CO-detected QSOs reveals a tight correlation between L{sub FIR} and L'{sub CO(1-0)} for all QSOs. This suggests that, similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust heated by star formation rather than by active galactic nuclei (AGNs), confirming similar findings from mid-infrared spectroscopic observations by Spitzer. A correlation between the AGN-associated bolometric luminosities and the CO line luminosities suggests that star formation and AGNs draw from the same reservoir of gas and there is a link between star formation on {approx}kpc scale and the central black hole accretion process on much smaller scales.

Xia, X. Y.; Hao, C.-N. [Tianjin Astrophysics Center, Tianjin Normal University, Tianjin 300387 (China); Gao, Y.; Tan, Q. H. [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Mao, S. [National Astronomical Observatories of China, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Omont, A. [Institut d'Astrophysique de Paris, UMR7095, UPMC and CNRS, 98bis boulevard Arago, F-75014 Paris (France); Flaquer, B. O.; Leon, S. [Instituto de Radioastronomia Milimetrica (IRAM), Avenida Divina Pastora 7, Nucleo Central, 18012 Granada (Spain); Cox, P., E-mail: xyxia@bao.ac.cn [Institut de Radio Astronomie Millimetrique (IRAM), F-38406 St. Martin d'Heres (France)

2012-05-10T23:59:59.000Z

472

Molecular heat pump for rotational states  

E-Print Network (OSTI)

In this work we investigate the theory for three different uni-directional population transfer schemes in trapped multilevel systems which can be utilized to cool molecular ions. The approach we use exploits the laser-induced coupling between the internal and motional degrees of freedom so that the internal state of a molecule can be mapped onto the motion of that molecule in an external trapping potential. By sympathetically cooling the translational motion back into its ground state the mapping process can be employed as part of a cooling scheme for molecular rotational levels. This step is achieved through a common mode involving a laser-cooled atom trapped alongside the molecule. For the coherent mapping we will focus on adiabatic passage techniques which may be expected to provide robust and efficient population transfers. By applying far-detuned chirped adiabatic rapid passage pulses we are able to achieve an efficiency of better than 98% for realistic parameters and including spontaneous emission. Even though our main focus is on cooling molecular states, the analysis of the different adiabatic methods has general features which can be applied to atomic systems.

C. Lazarou; M. Keller; B. M. Garraway

2010-01-25T23:59:59.000Z

473

Photoelectron spectroscopy of supersonic molecular beams  

DOE Green Energy (OSTI)

A new technique for performing high resolution molecular photoelectron spectroscopy is described, beginning with its conceptual development, through the construction of a prototypal apparatus, to the initial applications on a particularly favorable molecular system. The distinguishing features of this technique are: (1) the introduction of the sample in the form of a collimated supersonic molecular beam; and (2) the use of an electrostatic deflection energy analyzer which is carefully optimized in terms of sensitivity and resolution. This combination makes it possible to obtain photoelectron spectra at a new level of detail for many small molecules. Three experiments are described which rely on the capability to perform rotationally-resolved photoelectron spectroscopy on the hydrogen molecule and its isotopes. The first is a measurement of the ionic vibrational and rotational spectroscopic constants and the vibrationally-selected photoionization cross sections. The second is a determination of the photoelectron asymmetry parameter, ..beta.., for selected rotational transitions. The third is an investigation of the rotational relaxation in a free jet expansion, using photoelectron spectroscopy as a probe of the rotational state population distributions. In the closing chapter an assessment is made of the successes and limitations of the technique, and an indication is given of areas for further improvement in future spectrometers.

Pollard, J.E.

1982-05-01T23:59:59.000Z

474

Dynamical Study of Guest-Host Orientational Interaction in LiquidCrystalline Materials  

SciTech Connect

Guest-host interaction has long been a subject of interest in many disciplines. Emphasis is often on how a small amount of guest substance could significantly affect the properties of a host material. This thesis describe our work in studying a guest-host effect where dye-doping of liquid crystalline materials greatly enhances the optical Kerr nonlinearity of the material. The dye molecules, upon excitation and via intermolecular interaction, provides an extra torque to reorient the host molecules, leading to the enhanced optical Kerr nonlinearity. We carried out a comprehensive study on the dynamics of the photoexcited dye-doped liquid crystalline medium. Using various experimental techniques, we separately characterized the dynamical responses of the relevant molecular species present in the medium following photo-excitation, and thus were able to follow the transient process in which photo-excitation of the dye molecules exert through guest-host interaction a net torque on the host LC material, leading to the observed enhanced molecular reorientation. We also observed for the first time the enhanced reorientation in a pure liquid crystal system, where the guest population is created through photoexcitation of the host molecules themselves. Experimental results agree quantitatively with the time-dependent theory based on a mean-field model of the guest-host interaction.

Truong, Thai Viet

2005-12-20T23:59:59.000Z

475

Molecular structures in charmonium spectrum: The $XYZ$ puzzle  

E-Print Network (OSTI)

We study in the framework of a constituent quark model the possible contributions of molecular structures to the XYZ charmonium like states. We analyze simultaneously the $c\\bar{c}$ structures and the possible molecular components in a formalism which allows us to treat channels below and above thresholds. The only molecular state found in the $1^{++}$ sector correspond to the X(3872). Molecular resonances also appear with other quantum numbers. So, the so called Y(3940) and the X(3915) are suggested to be $J^{PC}=0^{++}$ charmonium states. In the $J^{PC}=1^{--}$ sector we also found significant contributions of the molecular structures which can affect the phenomenology.

Ortega, P G; Fernandez, F

2012-01-01T23:59:59.000Z

476

Photo of the Week: Studying the Rhizosphere | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Studying the Rhizosphere Studying the Rhizosphere Photo of the Week: Studying the Rhizosphere December 18, 2013 - 4:48pm Addthis Scientists at Pacific Northwest National Laboratory study the microbial interactions in the plant root systems, the rhizosphere. The rhizosphere represents a critical zone where plant roots, microbes and minerals interface, and where biogeochemical weathering provides nutrients to plants. This research program will broaden our understanding of the biogeochemistry of plant-microbe-soil interactions. Shown are the spores of an opportunistic soil fungus Penicillium sp. that associates with the plant roots, microbial biofilms and soil minerals. | Photo courtesy of Pacific Northwest National Laboratory. Scientists at Pacific Northwest National Laboratory study the microbial

477

Molecular-Frame Angular Distributions of Resonant Auger Electrons  

NLE Websites -- All DOE Office Websites (Extended Search)

Molecular-Frame Angular Molecular-Frame Angular Distributions of Resonant Auger Electrons Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Wednesday, 27 May 2009 00:00 Molecular-frame electron angular distribution (MFAD) measurements provide access to an unprecedented level of detailed information about phenomena involving quantum coherence, such as phases of photoelectron waves, symmetry breaking in molecular dissociation, core-hole localization in molecules, and molecular double-slit interference, all of which are hidden in conventional gas-phase electron spectroscopy, owing to the random orientation of the molecules. While most MFAD studies to date have focused on photoelectrons, an international team of scientists from Western Michigan University, the ALS, and Tohoku University in Japan has successfully used a novel approach to determine for the first time the molecular-frame angular distributions of resonantly excited Auger electrons in carbon monoxide.

478

Molecular Simulation Study of Alkyl Monolayers on Si(111) Luzheng Zhang  

E-Print Network (OSTI)

Molecular Simulation Study of Alkyl Monolayers on Si(111) Luzheng Zhang Department of Chemical of Washington, Seattle, Washington 98195 Received April 30, 2001 Molecular mechanics and molecular dynamics) surface. The optimal molecular packing was found basedontheconsiderationofthreemajorfactors

Zhang, Luzheng

479

Molecular mechanism of gas adsorption into ionic liquids: A molecular dynamics study  

Science Conference Proceedings (OSTI)

Room temperature ionic liquids (RTILs) have been shown to be versatile and tunable solvents that can be used in many chemical applications. In this study, we developed a dynamical, molecular-scale picture of the gas dissolution and interfacial processes in RTILs using molecular simulations. These simulations can provide the free energies associated with transporting a gas solute across various RTIL interfaces and physical insights into the interfacial properties and transport molecular mechanism of gas sorption processes. For CO2 sorption, the features in the potential of mean force (PMF) of CO2 using both polarizable and non-polarizable force fields are similar qualitatively. However, we observed some quantitative differences, and we describe the causes of these differences in this paper. We also show the significant impact of ionic-liquid chemical structures on the gas sorption process, and we discuss their influence on the H2O transport mechanism.

Dang, Liem X.; Chang, Tsun-Mei

2012-01-19T23:59:59.000Z

480

The importance of intra-molecular electron spin relaxation in small molecular semiconductors  

E-Print Network (OSTI)

Electron spin relaxation rate (eSR) is investigated on several organic semiconductors of different morphologies and molecular structures, using avoided level crossing muon spectroscopy as a local spin probe. We find that two functionalized acenes (polycrystalline tri(isopropyl)silyl-pentacene and amorphous 5,6,11,12-tetraphenyltetracene) exhibit eSRs with an Arrhenius-like temperature dependence, each with two characteristic energy scales similar to those expected from vibrations. Polycrystalline tris(8-hydroxyquinolate)gallium shows a similar behavior. The observed eSR for these molecules is no greater than 0.85 MHz at 300 K. The variety of crystal structures and transport regimes that these molecules possess, as well as the local nature of the probe, strongly suggest an intra-molecular phenomenon general to many organic semiconductors, contrasting the commonly assumed spin relaxation models based on inter-molecular charge carrier transport.

L. Schulz; M. Willis; L. Nuccio; P. Shusharov; S. Fratini; F. L. Pratt; W. P. Gillin; T. Kreouzis; M. Heeney; N. Stingelin; C. A. Stafford; D. J. Beesley; C. Bernhard; J. E. Anthony; I. Mckenzie; J. S. Lord; A. J. Drew

2010-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "molecular plant-microbe interactions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Interaction of Ekman Layers and Islands  

Science Conference Proceedings (OSTI)

The circulation induced by the interaction of surface Ekman transport with an island is considered using both numerical models and linear theory. The basic response is similar to that found for the interaction of Ekman layers and an infinite ...

Michael A. Spall; Joseph Pedlosky

2013-05-01T23:59:59.000Z

482

Analyzing Interaction Orderings with Model Checking  

Science Conference Proceedings (OSTI)

Human-Computer Interaction (HCI) systems control an ongoing interaction between end-users and computer-based systems. For software-intensive systems, a Graphic User Interface (GUI) is often employed for enhanced usability. Traditional approaches to validation ...

Matthew B. Dwyer; Robby; Oksana Tkachuk; Willem Visser

2004-09-01T23:59:59.000Z

483

Multimodal human computer interaction: a survey  

Science Conference Proceedings (OSTI)

In this paper we review the major approaches to multimodal human computer interaction from a computer vision perspective. In particular, we focus on body, gesture, gaze, and affective interaction (facial expression recognition, and emotion in audio). ...

Alejandro Jaimes; Nicu Sebe

2005-10-01T23:59:59.000Z

484

Calculating excited states of molecular aggregates by the renormalized excitonic method  

E-Print Network (OSTI)

In this paper, we apply the recently developed \\emph{ab initio} renormalized excitonic method (REM) to the excitation energy calculations of various molecular aggregates, through the extension of REM to the time-dependent density functional theory (TDDFT). Tested molecular aggregate systems include one-dimensional hydrogen-bonded water chains, ring crystals with $\\pi$-$\\pi$ stacking or van-der Waals interactions and the general aqueous systems with polar and non-polar solutes. The basis set factor as well as the effect of the exchange-correlation functionals are also investigated. The results indicate that the REM-TDDFT method with suitable basis set and exchange-correlation functionals can give good descriptions of excitation energies and excitation area for lowest electronic excitations in the molecular aggregate systems with economic computational costs. It's shown that the deviations of REM-TDDFT excitation energies from those by standard TDDFT are much less than 0.1 eV and the computational time can be r...

Ma, Yingjin

2013-01-01T23:59:59.000Z

485

International Conference on the Cell and Molecular Biology of Chlamydomonas  

DOE Green Energy (OSTI)

The 2010 Conference on the Cell and Molecular Biology of Chlamydomonas was held June 6-10 near Boston, MA, and attracted a record 273 participants, 146 from US labs, 10 from Canada, and the remainder from 18 other countries. The single-celled algal protist Chlamydomonas is a key research organism for many investigators, including those who study photosynthesis, cell motility, adaptation to environmental stresses, the evolution of multicellularity, and the production of biofuels. Chlamydomonas researchers gather every two years at a research conference to exchange methods, develop collaborative efforts, disseminate recent findings, and plan large-scale studies to improve the usefulness of this unique research organism. This conference provides the only opportunity for Chlamydomonas scientists who work on different research problems to meet face to face, and greatly speeds progress in their respective fields. An important function of these Chlamydomonas conferences is to promote and showcase the work of younger scientists, and to attract new investigators into the Chlamydomonas community. DOE award SC0004085 was used to offset the travel and registration costs for 18 young investigators, 9 of whom were women, including one African American. Most of these scientists would not have been able to attend the conference without DOE support. A total of 208 research presentations were made at the meeting, 80 talks (63 presented by students, postdocs, and pre-tenured faculty) and 128 posters. Cell motility and biofuels/metabolism were the best-represented research areas, with a total of 77 presentations. This fact underscores the growing importance of Chlamydomonas as a research and production tool in the rapidly expanding world of biofuels research. A total of 28 talks and posters were presented on the topics of photosynthesis and stress responses, which were among the next best-represented research areas. As at several recent Chlamydomonas meetings, important advances were reported in the area of tool development, advances that conference attendees should be able to employ in their own labs to speed the analysis of gene function. In summary, support from DOE award SC0004085 helped to make the 2010 Conference on the Cell and Molecular Biology of Chlamydomonas an unqualified success. Thanks to that support it was possible to attract a new cohort of young investigators to this biennial conference. These young scientists benefited from the opportunity to present their results to, and to interact with, the international Chlamydomonas research community. The Chlamydomonas community benefited by learning about the advances reported by these scientists, and it will continue to benefit from the contributions these investigators will make as their training and careers progress.

Dr. Stephen Miller

2010-06-10T23:59:59.000Z

486

Dynamic positioning systems: usability and interaction styles  

Science Conference Proceedings (OSTI)

This paper describes the first steps of a research project directed towards human computer interaction (HCI) within the maritime environment and on maritime equipment. The focus is at this stage mainly on interaction with Dynamic Positioning Systems ... Keywords: bi-manual interaction, dynamic positioning, gestures, graphical user interface, maritime environment, multi-touch, safety critical situations

Frøy Birte Bjørneseth; Mark D. Dunlop; Jann Peter Strand

2008-10-01T23:59:59.000Z

487

Interactivity dimension: media, contents, and user perception  

Science Conference Proceedings (OSTI)

This research explores interactivity dimension in the portal media (such as Yahoo, Naver, Daum, Paran, and Nate). The research is designed to measure user's perception of interactivity in the portal site at the three levels including 1) media 2) contents, ... Keywords: CMC, HCI, communication, community, hypertext, interactivity, interface

Sang Hee Kweon; Eun Joung Cho; Eun Mee Kim

2008-09-01T23:59:59.000Z

488

Interaction Comparison among Media Internet Genre  

Science Conference Proceedings (OSTI)

This research explores interactivity dimension in the portal media (such as Yahoo, Naver, Daum, Paran, and Nate). The research is designed to measure user's perception of interactivity in the portal site at the three levels including 1) media 2) contents, ... Keywords: CMC, Communication, Community, HCI, Hypertext, Interactivity, Interface

Sang Hee Kweon; Eun Joung Cho; Ae Jin Cho

2009-07-01T23:59:59.000Z

489

Composition dependence of the interaction parameter in isotopic polymer blends  

SciTech Connect

Isotopic polymer mixtures lack the structural asymmetries and specific interactions encountered in blends of chemically distinct species. In this respect, they form ideal model systems for exploring the limitations of the widely-used Flory-Huggins (FH) lattice model and for testing and improving new theories of polymer thermodynamics. The FH interaction parameter between deuterium-labeled and unlabeled segments of the same species ([sub [chi]HD]) should in principle be independent of concentration ([phi]), through previous small-angle neutron scattering (SANS) experiments have shown that it exhibits a minimum at [phi] [approximately] 0.5 for poly(vinylethylene) (PVE) and poly(ethylethylene) (PEE). The authors report new data on polyethylene (PE) as a function of molecular weight, temperature (T), and [phi], which show qualitatively similar behavior. However, measurements on [sub [chi]HD]([phi]) for polystyrene (PS) show a maximum at [phi] [approximately]0.5, in contrast to PVE, PEE, and PE. Reproducing the concentration dependence of [phi] in different model isotopic systems should serve as a sensitive test of the way in which theories of polymer thermodynamics can account for the details of the local packing and also the effects of noncombinatorial entropy, which appear to be the main cause of the variation of [sub [chi]HD]([phi]) for PE. These data also serve to quantify the effects of isotopic substitution in SANS experiments on polyolefin blends and thus lay the ground work for definitive studies of the compatibility of branched and linear polyethylenes.

Londono, J.D.; Narten, A.H.; Wignall, G.D. (Oak Ridge National Lab., TN (United States)); Honnell, K.G.; Hsieh, E.T.; Johnson, T.W. (Phillips Petroleum Co., Bartlesville, OK (United States). Research and Development); Bates, F.S. (Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering)

1994-05-09T23:59:59.000Z

490

Probing the hydration structure of polarizable halides: a multi-edge XAFS and molecular dynamics study of the iodide anion.  

DOE Green Energy (OSTI)

A comprehensive analysis of the H2O structure about aqueous iodide (I-) is reported from molecular dynamics (MD) simulation and x-ray absorption fine structure (XAFS) measurements. XAFS spectra from the iodide K-, L1-, and L3- edges were co-refined to establish the complete structure of the first hydration shell about aqueous I-. The results show approximately 6.3 water molecules located at I-H and I-O distances of 2.65 Å and 3.50 Å, respectively. Whereas the I-O bond is moderately disordered (Debye Waller factor, ?2 = 0.017 Å2) due to the relatively low charge-to-ion radius ratio, the I-H interaction shows even higher disorder (?2 = 0.036 Å2) due to the variable angular orientation of water at the ion surface. Molecular dynamics simulations employing both DFT (+dispersion) and classical potentials generate quite similar structures and they both agree to a large extent with the structure from the experimental XAFS. However the DFT-MD simulations provide a description of molecular structure that is more consistent with the XAFS experiment data. We employ a molecular anaylsis in which we incrementally evaluate the structural contributions from each of the nearest-neighbor water molecules about the iodide to provide a clear picture of the hydrated structure. For the DFT description of molecular interaction, a water molecule in the first shell has more freedom to rotate about the O atom when compared to motions resulting from a classical potential. Further, the hydrogen bonding of first-shell water with the second shell water establishes an strong ordering of the water about I- surface leading to characteristic O-I-O angles of 79 and 142°. This ordering, in addition to the higher coordination number leads to a more symmetric solvation from the DFT-MD configurations relative to the classical potential simulation.

Fulton, John L.; Schenter, Gregory K.; Baer, Marcel; Mundy, Christopher J.; Dang, Liem X.; Balasubramanian, Mahalingam

2010-10-14T23:59:59.000Z

491

CO2 interaction with geomaterials.  

SciTech Connect

This work compares the sorption and swelling processes associated with CO2-coal and CO2-clay interactions. We investigated the mechanisms of interaction related to CO2 adsortion in micropores, intercalation into sub-micropores, dissolution in solid matrix, the role of water, and the associated changes in reservoir permeability, for applications in CO2 sequestration and enhanced coal bed methane recovery. The structural changes caused by CO2 have been investigated. A high-pressure micro-dilatometer was equipped to investigate the effect of CO2 pressure on the thermoplastic properties of coal. Using an identical dilatometer, Rashid Khan (1985) performed experiments with CO2 that revealed a dramatic reduction in the softening temperature of coal when exposed to high-pressure CO2. A set of experiments was designed for -20+45-mesh samples of Argonne Premium Pocahontas No.3 coal, which is similar in proximate and ultimate analysis to the Lower Kittanning seam coal that Khan used in his experiments. No dramatic decrease in coal softening temperature has been observed in high-pressure CO2 that would corroborate the prior work of Khan. Thus, conventional polymer (or 'geopolymer') theories may not be directly applicable to CO2 interaction with coals. Clays are similar to coals in that they represent abundant geomaterials with well-developed microporous structure. We evaluated the CO2 sequestration potential of clays relative to coals and investigated the factors that affect the sorption capacity, rates, and permanence of CO2 trapping. For the geomaterials comparison studies, we used source clay samples from The Clay Minerals Society. Preliminary results showed that expandable clays have CO2 sorption capacities comparable to those of coal. We analyzed sorption isotherms, XRD, DRIFTS (infrared reflectance spectra at non-ambient conditions), and TGA-MS (thermal gravimetric analysis) data to compare the effects of various factors on CO2 trapping. In montmorillonite, CO2 molecules may remain trapped for several months following several hours of exposure to high pressure (supercritical conditions), high temperature (above boiling point of water) or both. Such trapping is well preserved in either inert gas or the ambient environment and appears to eventually result in carbonate formation. We performed computer simulations of CO2 interaction with free cations (normal modes of CO2 and Na+CO2 were calculated using B3LYP / aug-cc-pVDZ and MP2 / aug-cc-pVDZ methods) and with clay structures containing interlayer cations (MD simulations with Clayff potentials for clay and a modified CO2 potential). Additionally, interaction of CO2 with hydrated Na-montmorillonite was studied using density functional theory with dispersion corrections. The sorption energies and the swelling behavior were investigated. Preliminary modeling results and experimental observations indicate that the presence of water molecules in the interlayer region is necessary for intercalation of CO2. Our preliminary conclusion is that CO2 molecules may intercalate into interlayer region of swelling clay and stay there via coordination to the interlayer cations.

Guthrie, George D. (U.S. Department of Energy, Pittsburgh, PA); Al-Saidi, Wissam A. (University of Pittsburgh, Pittsburgh, PA); Jordan, Kenneth D. (University of Pittsburgh, Pittsburgh, PA); Voora, Vamsee, K. (University of Pittsburgh, Pittsburgh, PA); Romanov, Vyacheslav N. (U.S. Department of Energy, Pittsburgh, PA); Lopano, Christina L (U.S. Department of Energy, Pittsburgh, PA); Myshakin, Eugene M. (URS Corporation, Pittsburgh, PA); Hur, Tae Bong (University of Pittsburgh, Pittsburgh, PA); Warzinski, Robert P. (U.S. Department of Energy, Pittsburgh, PA); Lynn, Ronald J. (URS Corporation, Pittsburgh, PA); Howard, Bret H. (U.S. Department of Energy, Pittsburgh, PA); Cygan, Randall Timothy

2010-09-01T23:59:59.000Z

492

Langevin molecular dynamics derived from Ehrenfest dynamics  

E-Print Network (OSTI)

Stochastic Langevin molecular dynamics for nuclei is derived from the Ehrenfest Hamiltonian system (also called quantum classical molecular dynamics) in a Kac-Zwanzig setting, with the initial data for the electrons stochastically perturbed from the ground state and the ratio, $M$, of nuclei and electron mass tending to infinity. The Ehrenfest nuclei dynamics is approximated by the Langevin dynamics with accuracy $o(M^{-1/2})$ on bounded time intervals and by $o(1)$ on unbounded time intervals, which makes the small $\\mathcal{O}(M^{-1/2})$ friction and $o(M^{-1/2})$ diffusion terms visible. The initial electron probability distribution is a Gibbs density at low temperture, derived by a stability and consistency argument: starting with any equilibrium measure of the Ehrenfest Hamiltonian system, the initial electron distribution is sampled from the equilibrium measure conditioned on the nuclei positions, which after long time leads to the nuclei positions in a Gibbs distribution (i.e. asymptotic stability); by consistency the original equilibrium measure is then a Gibbs measure.The diffusion and friction coefficients in the Langevin equation satisfy the Einstein's fluctuation-dissipation relation.

Anders Szepessy

2007-12-21T23:59:59.000Z

493

Molecular Jet of IRAS 04166+2706  

E-Print Network (OSTI)

The molecular outflow from IRAS 04166+2706 was mapped with the Submillimeter Array (SMA) at 350 GHz continuum and CO J = 3$-$2 at an angular resolution of ~1 arcsec. The field of view covers the central arc-minute, which contains the inner four pairs of knots of the molecular jet. On the channel map, conical structures are clearly present in the low velocity range (|V$-$V$_0$|$$|V$-$V$_0$|$>$30 km $s^{-1}$). The higher angular resolution of ~1 arcsec reveals the first blue-shifted knot (B1) that was missing in previous PdBI observation of Sant\\'iago-Garc\\'a et al. (2009) at an offset of ~6 arcsec to the North-East of the central source. This identification completes the symmetric sequence of knots in both the blue- and red-shifted lobes of the outflow. The innermost knots R1 and B1 have the highest velocities within the sequence. Although the general features appear to be similar to previous CO J = 2$-$1 images in Sant\\'iago-Garc\\'a et al. (2009), the emission in CO J = 3$-$2 almost always peaks further away ...

Wang, Liang-Yao; Su, Yu-Nung; Santiago-García, Joaquín; Tafalla, Mario; Zhang, Qizhou; Hirano, Naomi; Lee, Chin-Fei

2013-01-01T23:59:59.000Z

494

Communicating art through interactive technology: new approaches for interaction design in art museums  

Science Conference Proceedings (OSTI)

This paper discusses new approaches to interaction design for communication of art in the physical museum space. In contrast to the widespread utilization of interactive technologies in cultural heritage and natural science museums it is generally a ... Keywords: art museums, audio augmentation, body as an interaction device, communicating art, interaction design, user experience

Karen Johanne Kortbek; Kaj Grønbæk

2008-10-01T23:59:59.000Z

495

Electron, Photon, and Positron Scattering Dynamics of Complex Molecular Targets  

E-Print Network (OSTI)

Electron scattering cross sections have been computed for pyridine and pyrimidine using the static-exchange approximation with model potential to account for dynamic electron correlation. To obtain well-converged orbitals, we have expanded all partial waves to a maximum angular momentum of l = 60 for both targets. We have obtained total cross sections for electron scattering energies to 20 eV. Both targets display similar features, namely a dipole-induced increase in the integrated cross section at scattering energies below 5 eV, and peaks corresponding to resonances in b1, a2, and b1 symmetries. These resonances were investigated through a Siegert eigenstate analysis and Breit-Wigner fit of the SECP eigenphase sums. They were also compared to the virtual orbitals obtained from a minimum basis set Hartree-Fock calculation on both targets. We consider electron scattering resonances from cis-diamminedichloroplatinum, [Pt(NH3)2Cl2], the ligand molecular species Cl2 (1Sigma+g ), and the isolated transition metal center Pt in a nondegenerate atomic state (1S) at the SECP level of theory. As a rigorous comparison to the single-state, single-configuration SECP level results of these smaller, yet electron dense targets, we have also considered scattering from ground state Cl2 and Pt in the 1S and 3D states in the multichannel configuration-interaction (MCCI) approximation originally developed for photoionization for scattering up to 10 eV. Photoionization cross sections and angular distributions in the recoil frame (RFPAD) and molecular frame (MFPAD) have been computed for inner-shell C 1s and Cl 2p ionization from the chloroalkanes chloromethane and chloroethane, with ionization leading to a variety of ionic fragment states. We have also computed valence level ionization from the nitro molecule nitromethane CH3NO2 leading to the dissociation of the CN bond. All of these calculations were performed in the frozen-core Hartree-Fock approximation. Even at this level of theory, we obtain computed results that compare well to the photoelectronphotoion coincidence measurements. The fullerene C20 is the smallest fullerene predicted to exist, with most relevant structural calculations suggesting the reduction of the icosahedral symmetry into one in which the target species possesses at maximum only a dihedral axis. We have computed positron scattering cross sections for the molecule in two low-symmetry structural isomers Ci and C2, within the HF approximation. Density functional expressions were used to incorporate important positron-electron interactions within the calculation. We have found similar cross sections and resonance features for both isomers, including a positron scattering resonance whose density is found within the framework of the fullerene cluster.

Carey, Ralph

2012-05-01T23:59:59.000Z

496

Identification of Anonymous Endogenous Interactions  

E-Print Network (OSTI)

Introduction In theoretical studies of social interactions, we hypothesize a process and seek to deduce the implied outcomes. In inferential studies, we face an inverse logical problem. Given observations of outcomes and maintained assumptions, we seek to deduce the actual process generating the observations. Econometricians have long found it useful to separate inferential problems into statistical and identification components (see Koopmans, 1949). Studies of identification seek to characterize the conclusions that could be drawn if one could use a given sampling process to obtain an unlimited number of observations. Studies of statistical inference seek to characterize the generally weaker conclusions that can be drawn from a finite number of observations. Analysis of identification logically comes first. Negative identification findings imply that statistical inference is fruitless: it makes no sense to try to use a sample of finite size to infer something that could not be learned

Charles F. Manski

1995-01-01T23:59:59.000Z

497

Compact submanifolds supporting singular interactions  

E-Print Network (OSTI)

A quantum particle moving under the influence of singular interactions on embedded surfaces furnish an interesting example from the spectral point of view. In these problems, the possible occurrence of a bound state is perhaps the most important aspect. Such systems can be introduced as quadratic forms and generically they do not require renormalization. Yet an alternative path through the resolvent is also beneficial to study various properties. In the present work, we address these issues for compact surfaces embedded in a class of ambient manifolds. We discover that there is an exact bound state solution written in terms of the heat kernel of the ambient manifold for a range of coupling strengths. Moreover, we develop techniques to estimate bounds on the ground state energy when several surfaces, each of which admits a bound state solution, coexist.

Kaynak, Burak Tevfik

2013-01-01T23:59:59.000Z

498

Dynamics of interacting dark energy  

E-Print Network (OSTI)

Dark energy and dark matter are only indirectly measured via their gravitational effects. It is possible that there is an exchange of energy within the dark sector, and this offers an interesting alternative approach to the coincidence problem. We consider two broad classes of interacting models where the energy exchange is a linear combination of the dark sector densities. The first class has been previously investigated, but we define new variables and find a new exact solution, which allows for a more direct, transparent and comprehensive analysis. The second class has not been investigated in general form before. We give general conditions on the parameters in both classes to avoid unphysical behavior (such as negative energy densities).

Caldera-Cabral, Gabriela; Urena-Lopez, L Arturo

2008-01-01T23:59:59.000Z

499

Dynamics of interacting dark energy  

E-Print Network (OSTI)

Dark energy and dark matter are only indirectly measured via their gravitational effects. It is possible that there is an exchange of energy within the dark sector, and this offers an interesting alternative approach to the coincidence problem. We consider two broad classes of interacting models where the energy exchange is a linear combination of the dark sector densities. The first class has been previously investigated, but we define new variables and find a new exact solution, which allows for a more direct, transparent and comprehensive analysis. The second class has not been investigated in general form before. We give general conditions on the parameters in both classes to avoid unphysical behavior (such as negative energy densities).

Gabriela Caldera-Cabral; Roy Maartens; L. Arturo Urena-Lopez

2008-12-10T23:59:59.000Z

500

Compact submanifolds supporting singular interactions  

E-Print Network (OSTI)

A quantum particle moving under the influence of singular interactions on embedded surfaces furnish an interesting example from the spectral point of view. In these problems, the possible occurrence of a bound state is perhaps the most important aspect. Such systems can be introduced as quadratic forms and generically they do not require renormalization. Yet an alternative path through the resolvent i