Sample records for molecular foundry foundry

  1. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's full equipment list

  2. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's full equipment listThe

  3. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's full equipment listThe

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSee the Foundry's

  5. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacility AMFInnovationMolecularOne of

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacility AMFInnovationMolecularOne

  7. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacility AMFInnovationMolecularOneThe

  8. Molecular Foundry, Berkeley, California (Revised)

    SciTech Connect (OSTI)

    Carlisle, N.

    2008-03-01T23:59:59.000Z

    This case study provides information on the Molecular Foundry, which incorporates Labs21 principles in its design and construction. The design includes many of the strategies researched at Lawrence Berkeley Laboratory for energy efficient cleanroom and data centers. The result is an energy efficient high-performing sustainable laboratory.

  9. Laboratories for the 21st Century: Case Studies, Molecular Foundry, Berkeley, California

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    This case study provides information on the Molecular Foundry, which incorporates Labs21 principles in its design and construction. The design includes many of the strategies researched at Lawrence Berkeley Laboratory for energy efficient cleanroom and data centers.

  10. Foundry energy conservation workbook

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The foundry industry is a significant user of energy, and therefore, a natural candidate for efforts to save energy and improve efficiency by both governmental agencies and technical/trade associations. These efforts are designed to both improve the national energy position and improve the industry's efficiency and profitability. Increased energy cost and the reduced availability of fossil fuels at certain times have provided the incentive to curb waste and to utilize purchased energy wisely. Energy costs now approach and sometimes exceed 10% of the sales dollar of many foundries. Although energy use by foundries has gradually decreased on a per/ton basis in recent years, the foundry industry must continue to find ways to utilize energy more efficiently. This workbook provides ways to achieve this goal.

  11. MACHINE AND FOUNDRY COMPANY

    Office of Legacy Management (LM)

    MACHINE AND FOUNDRY COMPANY kt '- : :' ENGINEERING DIVISIOJ ---. Cl FIELD iRIP ,REP@?T ,' i;:z;zy MEETING REPORT : .I.-.-' Y ::,:I :. &, .I7 ENGINEERING REPORT- : T, ...

  12. Foundry energy conservation workbook

    SciTech Connect (OSTI)

    none,

    1990-10-01T23:59:59.000Z

    This report discusses methods for promoting energy conservation in foundries. Use of electric power, natural gas, and coke are evaluated. Waste heat recovery systems are considered. Energy consumption in the specific processes of electric melting, natural gas melting, heat treatments, ladle melting, and coke fuel melting is described. An example energy analysis is included. (GHH)

  13. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peter Vahjen at Lander University Research Interests My research is focused on the synthesis and characterization of porous, crystalline materials such as metal-organic...

  14. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacility

  15. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacilityUtilizing seven research

  16. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacilityUtilizing seven

  17. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacilityUtilizing sevenImaging and

  18. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacilityUtilizing sevenImaging

  19. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacilityUtilizing

  20. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacilityUtilizingNational Center for

  1. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacilityUtilizingNational Center

  2. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacilityUtilizingNational

  3. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacilityUtilizingNationalMedia

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacilityUtilizingNationalMediaNEWS

  5. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture inFacilityUtilizingNationalMediaNEWSThe

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture

  7. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item$altMagnet TimeThe

  8. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu, StephenNational IgnitionRequest Magnet Time SearchThe

  9. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTS ARCHIVE The

  10. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTS ARCHIVE TheSEMINARS

  11. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTS ARCHIVE

  12. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTS ARCHIVEBiological

  13. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTS ARCHIVEBiologicalSee

  14. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTS

  15. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSee the

  16. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSee theSee the

  17. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSee theSee

  18. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSee theSeeSee the

  19. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSee theSeeSee theNCEM

  20. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSee theSeeSee

  1. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSee theSeeSeeOrganic

  2. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSee

  3. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSeeTheory of

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSeeTheory

  5. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSeeTheoryNEWS ARCHIVE

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSeeTheoryNEWS

  7. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model VerificationEVENTSSeeTheoryNEWSAlex

  8. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model

  9. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand Brand Senior Research

  10. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand Brand Senior

  11. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand Brand SeniorAndrew Minor

  12. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand Brand SeniorAndrew

  13. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand Brand SeniorAndrewBranden

  14. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand Brand

  15. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand BrandBruce Cohen Cohen

  16. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand BrandBruce Cohen

  17. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand BrandBruce CohenChengyu

  18. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand BrandBruce

  19. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand BrandBruceColin Ophus

  20. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand BrandBruceColin OphusDavid

  1. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand BrandBruceColin

  2. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand BrandBruceColinElaine Chan

  3. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand BrandBruceColinElaine

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand BrandBruceColinElaineD.

  5. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand BrandBruceColinElaineD.Gang

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa Brand

  7. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. James Schuck Schuck

  8. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. James Schuck SchuckNeaton

  9. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. James Schuck

  10. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. James SchuckJim Ciston

  11. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. James SchuckJim

  12. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. James SchuckJimKaren

  13. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. James SchuckJimKarenLiana

  14. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. James

  15. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. JamesMatt Francis francis

  16. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. JamesMatt Francis

  17. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. JamesMatt FrancisNate

  18. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. JamesMatt FrancisNatePaul

  19. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. JamesMatt

  20. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. JamesMattRita Garcia

  1. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. JamesMattRita GarciaRon

  2. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. JamesMattRita

  3. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP. JamesMattRitaStefano

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.

  5. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.Teresa Williams Williams

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.Teresa Williams

  7. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.Teresa WilliamsTracy

  8. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.Teresa WilliamsTracyUlrich

  9. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.Teresa

  10. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.TeresaYi Liu Liu Staff

  11. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.TeresaYi Liu Liu

  12. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.TeresaYi Liu LiuAgenda

  13. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.TeresaYi Liu

  14. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.TeresaYi LiuPosters

  15. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.TeresaYi

  16. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.TeresaYiSymposia Breakout

  17. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.TeresaYiSymposia

  18. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.TeresaYiSymposiaUser Guide

  19. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa BrandP.TeresaYiSymposiaUser

  20. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.ModelAlyssa

  1. automobile foundry workers: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robert J. 8 Automatic Foundry Brake Disk Inspection through CiteSeer Summary: We present a fully automated raw foundry brake disk visual inspection system in which three...

  2. Reduced Energy Consumption for Melting in Foundries

    E-Print Network [OSTI]

    ­ 336 ­ 007 TM 06 ­ 07 Department of Manufacturing Engineering and Management Technical University at the Technical University of Denmark, DTU. The project has been financed by the Danish transmission system-melted, and hence reduce the energy consumption for melting in foundries. Traditional gating systems are known

  3. What is the Foundry? We created the Foundry to accelerate regional economic growth through the

    E-Print Network [OSTI]

    Linhardt, Robert J.

    as they start and grow real companies. The entrepreneurial context is exactly the right size in which-demand), obviating the requirement for appointment-based, transmission-style classroom "learning". Foundry source for these additional resources are always our own graduates). We built it this way so that groups

  4. BENEFICIAL UTILIZATION OF USED FOUNDRY SANDS AS CONSTRUCTION MATERIALS

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    and state environmental agencies began to pay increasing attention to industrial pollution, safety and wasteBENEFICIAL UTILIZATION OF USED FOUNDRY SANDS AS CONSTRUCTION MATERIALS By Tarun R. Naik Director - 6696 Fax: (414) 229 - 6958 #12;-2- Beneficial Utilization of Used Foundry Sands as Construction

  5. Molecular Foundry UEC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'. WilliamEnergy Innovation PortalNEPTUNESolar

  6. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    SciTech Connect (OSTI)

    Paul J. Tikalsky, Hussain U. Bahia, An Deng and Thomas Snyder

    2004-10-15T23:59:59.000Z

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: a statistically sound evaluation of the characterization of foundry sand, a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at Nini, Ndes, and Nmax. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  7. Excess Foundry Sand Characterization and Experimental Investigation in Controlled Low-Strength Material and Hot-Mixing Asphalt

    SciTech Connect (OSTI)

    Pauul J. Tikalsky

    2004-10-31T23:59:59.000Z

    This report provides technical data regarding the reuse of excess foundry sand. The report addresses three topics: (1) a statistically sound evaluation of the characterization of foundry sand, (2) a laboratory investigation to qualify excess foundry sand as a major component in controlled low-strength material (CLSM), and (3) the identification of the best methods for using foundry sand as a replacement for natural aggregates for construction purposes, specifically in asphalt paving materials. The survival analysis statistical technique was used to characterize foundry sand over a full spectrum of general chemical parameters, metallic elements, and organic compounds regarding bulk analysis and leachate characterization. Not limited to characterization and environmental impact, foundry sand was evaluated by factor analyses, which contributes to proper selection of factor and maximization of the reuse marketplace for foundry sand. Regarding the integration of foundry sand into CLSM, excavatable CLSM and structural CLSM containing different types of excess foundry sands were investigated through laboratory experiments. Foundry sand was approved to constitute a major component in CLSM. Regarding the integration of foundry sand into asphalt paving materials, the optimum asphalt content was determined for each mixture, as well as the bulk density, maximum density, asphalt absorption, and air voids at N{sub ini}, N{sub des}, and N{sub max}. It was found that foundry sands can be used as an aggregate in hot-mix asphalt production, but each sand should be evaluated individually. Foundry sands tend to lower the strength of mixtures and also may make them more susceptible to moisture damage. Finally, traditional anti-stripping additives may decrease the moisture sensitivity of a mixture containing foundry sand, but not to the level allowed by most highway agencies.

  8. A Split-Foundry Asynchronous FPGA Benjamin Hill, Robert Karmazin, Carlos Tadeo Ortega Otero, Jonathan Tse, and Rajit Manohar

    E-Print Network [OSTI]

    Manohar, Rajit

    manufacturing introduces additional complexity to the design process, such as FEOL/BEOL mask alignment the risks to IP or reducing production costs [4,5]. Split manufacturing separates a design into Front End foundry performs FEOL manufacturing, then ships wafers to a trusted foundry for BEOL fabrication. Split

  9. Manufacturing Energy and Carbon Footprint - Sector: Foundries (NAICS 3315), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomyDr.EnergyManufacturingAllComputers,FoodFoundries

  10. The Molecular Foundry Users Association Organizational Charter

    E-Print Network [OSTI]

    Eisen, Michael

    is charged with preparing a slate of candidates for election by TMFUA members in good standing to the UEC. The final candidate slate shall be presented to TMFUA members via either e-mail or UEC website. In preparing this slate, the Nominating Committee shall actively solicit input from TMFUA membership. This slate shall

  11. A recommended safety program for the Mabry Foundry and Machine Company and Iron Castings Incorporated of Beaumont, Texas

    E-Print Network [OSTI]

    Begnaud, Edward Marshall

    1954-01-01T23:59:59.000Z

    A RECONEENDED SAFETY PROGRAN FOR THE MABRY FOUNDRY AND NACHINE CONPANY AND IRON CASTINSS INCORPORATED OF BEAUNONT, TEXAS Edward Naz'shall Begnaud Appz'oved as to style and content by: n o osa ee n v sos') LfBRARY, A 4 M COLLEGE OF Texgt A... RECOMMENDED SAFETY PROGRAM FOR THE MABRY FOUNDRY AND MACHINE COMPANY AND IRON CASTINGS INCORPORATED OF BEAUMONT, TNXAS Edward Marshall Bsgnaud ll I Submitted to ths Graduate School of the Agricultuxal and. Mechanical College of Texas in Partial...

  12. A survey of foundries that cast red brass products to ascertain an effective pouring rate of molten metal

    E-Print Network [OSTI]

    Tom, Ronald Kee

    1974-01-01T23:59:59.000Z

    A SURVEY OF FOUNDRIES THAT CAST RED BRASS PRODUCTS TO ASCERTAIN AN EFPECTIVE POURING RATE OF MOLTEN METAL A Thesis by RONALD KEE TOM Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1974 Major Subject: Industrial Technology A SURVEY OF FOUNDRIES THAT CAST RED BRASS PRODUCTS TO ASCERTAIN AN EFFECTIVE POURING RATE OF MOLTEN METAL A Thesis by RONALD KEE TOM Approved as to style and content by...

  13. Declining metal levels at Foundry Cove (Hudson River, New York): Response to localized dredging of contaminated sediments

    E-Print Network [OSTI]

    Levinton, Jeffrey

    Declining metal levels at Foundry Cove (Hudson River, New York): Response to localized dredging 31 August 2006; received in revised form 11 January 2007; accepted 11 January 2007 Dredging freshwater marsh was polluted with battery-factory wastes (1953e1979) and dredged in 1994e1995. Eight years

  14. Production Specialist mFoundry needs a talented Production Specialist to work on our product development team. The

    E-Print Network [OSTI]

    Ravikumar, B.

    and research for new or complementary products areas. · Support the sales and client services teams throughProduction Specialist mFoundry needs a talented Production Specialist to work on our product development team. The Mobile Production Specialist is responsible for providing graphic and technical

  15. Full-scale remediation of a grey iron foundry waste surface impoundment

    SciTech Connect (OSTI)

    Krueger, R.C.; Chowdhury, A.K.; Warner, M.A. (RMT, Inc., Madison, WI (United States))

    1991-08-01T23:59:59.000Z

    A large grey iron foundry was facing remediation of a surface impoundment containing approximately 300,000 cubic yards of EP-Toxic sludge. The sludge was generated by the settling of wastewater solids from air emission control systems connected with cupola melting operations. Bench-scale treatability testing was used to evaluate various chemical treatment possibilities for rendering the sludge non-EP-Toxic. Several phosphate sources and different engineering options were evaluated for cost-effectiveness of full-scale remediation. The most economical option was to dredge the solids continuously as a slurry (while the impoundment remained in operation) with injection of phosphoric acid into the slurry pipeline. The treatment process was controlled by monitoring residual phosphate in the treated slurry. The remediation process was tested in a month-long field trial using full-scale equipment, and was followed by successful remediation during a 6-month period. A technical overview and performance data on the remediation process are presented.

  16. Elaine Chan Fosters ALS/Molecular Foundry Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4: Efficient Water UseEighthElaine Chan

  17. Toyota Collaborates with the ALS and Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances » TopTours Sign InTowardsToyota

  18. Sustainability innovation foundry %3CU%2B2013%3E FY13 : merging research and operations.

    SciTech Connect (OSTI)

    Mizner, Jack Harry,; Passell, Howard David; Keller, Elizabeth James Kistin; Gordon, Margaret Ellen; McNeish, Jerry A. [Sandia National Laboratories, Livermore, CA] [Sandia National Laboratories, Livermore, CA; Sullivan, Kristina [Sandia National Laboratories, Livermore, CA] [Sandia National Laboratories, Livermore, CA

    2013-12-01T23:59:59.000Z

    Sustainability is a critical national security issue for the U.S. and other nations. Sandia National Laboratories (SNL) is already a global leader in sustainability science and technology (SS&T) as documented in this report. This report documents the ongoing work conducted this year as part of the Sustainability Innovation Foundry (SIF). The efforts of the SIF support Sandia's national and international security missions related to sustainability and resilience revolving around energy use, water use, and materials, both on site at Sandia and externally. The SIF leverages existing Sandia research and development (R&D) in sustainability science and technology to support new solutions to complex problems. The SIF also builds on existing Sandia initiatives to support transformation of Sandia into a fully sustainable entity in terms of materials, energy, and water use. In the long term, the SIF will demonstrate the efficacy of sustainability technology developed at Sandia through prototyping and test bed approaches and will provide a common platform for support of solutions to the complex problems surrounding sustainability. Highlights from this year include the Sustainability Idea Challenge, improvements in facilities energy use, lectures and presentations from relevant experts in sustainability [Dr. Barry Hughes, University of Denver], and significant development of the Institutional Transformation (IX) modeling tools to support evaluation of proposed modifications to the SNL infrastructure to realize energy savings.

  19. MACHINE AND FOUNDRY COMPANY

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I2 m.m\Ll 1vr*M

  20. The Molecular Foundry (MF) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for...

  1. Office of Sponsored Projects & Industry Partnerships AGREEMENT TYPES FOR USE OF THE MOLECULAR FOUNDRY

    E-Print Network [OSTI]

    Lee, Jason R.

    AGREEMENT (CRADA) - STANDARD · Incoming User data may be proprietary · User may keep their generated research results private (no expectation to publish) · For a standard CRADA, LBNL data generated is non Research and Development Agreement (CRADA) ­ NON-STANDARD Note: For Use in exceptional circumstances only

  2. The Molecular Foundry User Proposal Form Proposal: MELOSH_05-04-2009_16-09-29

    E-Print Network [OSTI]

    Lee, Jason R.

    : Monday, May 04, 2009 Photoemission of GaN and GaAs nanowires. Project Leader: Name: Prof. Nickolas Melosh. This is a Sample Only proposal. This proposal is not a follow on proposal. In previous photoemission tests GaN or electron emission. We would like to investigate the photoemissive properties of p-type and n-type GaN

  3. The Molecular Foundry (TMF) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionals » High School Rules,SubsurfaceSupplyThe BestThe

  4. Foundries (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment of Energy's2 Fossil Energy Today

  5. MECS 2006 - Foundries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment1| DepartmentCementFood

  6. Liancheng Huafu Foundry Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKoreaLaorLeopold Kostal GmbHLi County

  7. EA-1441: Environmental Assessment

    Broader source: Energy.gov [DOE]

    Construction and Operation of the Molecular Foundry at Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California

  8. EA-1441: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Construction and Operation of the Molecular Foundry Lawrence Berkeley National Laboratory, California

  9. aluminium foundry alloys: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    samples were prepared from high purity aluminium (99.9%) powder Gubicza, Jen 5 Corrosion fatigue behaviour of 5083-H111 and 6061-T651 aluminium alloy welds. Open Access...

  10. Fushun Koshuha Foundry Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife EnergyFreightFulong WindFusermann Jump to:Fushun

  11. Jiangsu FAW Foundry Stock Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co LtdTN LLC Jump to:PtyJYTWind JumpFAW

  12. DOE - Office of Legacy Management -- American Machine and Foundry Co -

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizona

  13. DOE - Office of Legacy Management -- American Machine and Foundry Co -

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NY 63 Buffalo - NY 63 FUSRAP

  14. DOE - Office of Legacy Management -- Clarksville Foundry and Machine Co -

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NYBowen LabSouth, Illinois,TN 08

  15. X FAB Semiconductor Foundries AG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung'sWoongjin PolysiliconWuxiWyomingWyomingX FAB

  16. NERSC Helps Researchers Discover a Potential On-Off Switch for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Lawrence Berkeley National Laboratory's (Berkeley Lab) Molecular Foundry and Columbia University found that electrical resistance through a molecular junction-a...

  17. A comparison of time study standards and methods-time measurement standards for three foundry operations

    E-Print Network [OSTI]

    Bruckart, Richard F

    1952-01-01T23:59:59.000Z

    Qntstozi~~~ plan by zzhich this is acczrzplishad 98 by use Qf tha eystazz 182own as 11ctliod 'Z~I6 "Itaaaurailazzt, FzI98 9222IBSmgatJcn hcs sou~4 ":6 cozzpare 6~8+9. QPoratiozi t9866 aab b7 this syatezII and by %6 %Qual t9zlie study syaIIOIII 922...&do gobvab GbolO6 bave 8aM AeG tbo YGN 4tmoo S833. vd. bjLjn Vw ax~~& aS ooaihor af no1-. oa& . Mmoe Samd, by i in%i'B?GI Og, 58 an?SI Ore'j'lF the teohni. -;ae tj". . . . ?ISBlV 8:Sa??LBS thau 8;ch Bein. '"'i Ij?6B is ISI~?!-. :&-r, ajo?I;Ir~dicain shat...

  18. A comparison of time study standards and methods-time measurement standards for three foundry operations 

    E-Print Network [OSTI]

    Bruckart, Richard F

    1952-01-01T23:59:59.000Z

    :, b'ujl;?. 'i, ' 5 ~+-'~~y obssssc~, no I maubuer, hQV, 8+, Orienosd?. ~aniarj?i6?449 error OF BOSS t?jism. /~a i . ' 'ssy'iIQI- A, , %%vs' '?Itsy. , ?sn' ~', tu sj?, "she, . -' ~'0'. y 0X' . '", ' ' MS ItlR6@BSus * . ?'J~utjsh' XB...+ 'khan 6 6", "NG3" PaVe GCIGugS @3. th. the X jght hands Gh5ah fe G ten~9:;:Ch GNVG of the' box Gvb, of, me m~e IIto Sn Gyyrcwd, ists' loqsCf, OGIVE. The 3, 6f& hend ye~fb~s m, "king&& G foa~kooh move 'to an SkTpceWmte 3GGGtdon~ GGC1 -s IiC3AG& Gf Cbe...

  19. DOE - Office of Legacy Management -- American Machine and Foundry Co - Bus

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NY 63 Buffalo - NY 63

  20. DOE - Office of Legacy Management -- American Machine and Foundry Co - NY

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NY 63 Buffalo - NY 6326 NY

  1. DOE - Office of Legacy Management -- American Steel Foundries Elmes-King

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NY 63 Buffalo - NY0-01Div -

  2. DOE - Office of Legacy Management -- Birdsboro Steel and Foundry Co - PA 31

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo - NY 63HillFacility -

  3. DOE - Office of Legacy Management -- U S Pipe and Foundry Co - NJ 23

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K LeDowntown SiteTracerlabPA

  4. Reflections on our Past, Present, and Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and quantum materials. Additional projects include the upgrade of existing beamlines-SAX-WAX (together with the Molecular Foundry), small molecule crystallography, spin-ARPES,...

  5. Summer Series 2012 - Conversation with Omar Yaghi (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Yaghi, Omar

    2012-07-11T23:59:59.000Z

    Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

  6. Nanomachines: How Viruses Work, and How We Can Stop Them

    ScienceCinema (OSTI)

    Carolyn Bertozzi

    2010-01-08T23:59:59.000Z

    Nature's Nasty Nanomachines: How Viruses Work, and How We Can Stop Them. Carolyn Bertozzi, director of Berkeley Lab's Molecular Foundry, discusses this topic at a Feb. 21, 2009 Nano*High talk.

  7. Summer Series 2012 - Conversation with Omar Yaghi

    ScienceCinema (OSTI)

    Omar Yaghi

    2013-06-24T23:59:59.000Z

    Jeff Miller, head of Public Affairs, sat down in conversation with Omar Yaghi, director of the Molecular Foundry, in the first of a series of "powerpoint-free" talks on July 11th 2012, at Berkeley Lab.

  8. Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's full equipment

  9. Sponsors of CIEEDAC: Natural Resources Canada, Environment Canada, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Foundry Association, Canadian Gas Association, Canadian Petroleum

    E-Print Network [OSTI]

    on energy in the industrial sector or publications by NRCan that reflect energy consumption in various des ressources naturelles, Québec. Ministry of Energy Mines and Petroleum Resource, BC. CIEEDAC An Inventory of Industrial Energy and Emissions Databases in Canada, 2007 Prepared for Natural Resources Canada

  10. Sponsors of CIEEDAC: Environment Canada, Natural Resources Canada, Aluminium Association of Canada, Automobile Parts Manufacturing Association, Brewers Association of Canada, Canadian Fertilizer Institute, Canadian Foundry Association, Canadian Fuels

    E-Print Network [OSTI]

    Sponsors of CIEEDAC: Environment Canada, Natural Resources Canada, Aluminium Association) ........................................................................................ 3 1.3.2 Medium Term (25 years ................................................................................................... 14 3.2.2 Medium Term

  11. Molecular Simulation Study of the Competitive Adsorption of H2O and CO2 in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's full equipmentby

  12. Molecular orientation in soft matter thin films studied by resonant soft

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's full equipmentbyx-ray

  13. Molecular Simulation Studies of Separation of CO2/N2, CO2/CH4, and CH4/N2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's full equipmentby ZIFs

  14. MFR PAPER 1038 Inexpensive plastic containers

    E-Print Network [OSTI]

    is Raytheon Company, Foundry Ave., Waltham, MA 02154; John H. Green is a research micro- biologist, College

  15. Draft 2-5-06 appendix B: Land Leases

    E-Print Network [OSTI]

    Lee, Jason R.

    background Draft 2-5-06 appendix B: Land Leases appendices tract / Parcel / Buildings acres Wilson (Grizzly Peak Substation) 0.50 The Berkeley Lab main site is a 202 acre parcel of land owned and managed Figure F.1 3 Photo the new Molecular Foundry building earned the u.s. green building council's "silver

  16. Omar Yaghi on Chemistry and Metal Organic Frameworks

    ScienceCinema (OSTI)

    Omar Yaghi

    2013-06-24T23:59:59.000Z

    In this edited version of the hour long talk, Omar Yaghi, director of the Molecular Foundry, sat down in conversation with Jeff Miller, head of Public Affairs, on July 11th, 2012 to discuss his fascination with the hidden world of chemistry and his work on Metal Organic Frameworks.

  17. Vibrational Coupling

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    By homing in on the distribution patterns of electrons around an atom, a team of scientists team with Berkeley Lab's Molecular Foundry showed how certain vibrations from benzene thiol cause electrical charge to "slosh" onto a gold surface (left), while others do not (right). The vibrations that cause this "sloshing" behavior yield a stronger SERS signal.

  18. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    chemicals, light industry (iron foundries, cold storage andindustry ? Use of CHP ? Debottlenecking ? Increased production capacity ? Better use of production capacity ? Energy management Cold storage

  19. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    industry (iron foundries, cold storage and refrigeration,Energy management Cold storage and refrigeration ? Newelectric power; heat/cold storage; heat pumps using ambient

  20. Y-12 Work for Others ? a historical perspective, part 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    propeller blade in H1 Foundry, machined the blade using computer numerical controlled equipment, and inspected the blade using a coordinate measuring machine. Based on the...

  1. Article for Modern Casting The University of Wisconsin-Milwaukee's Center for By-Products Utilization (CBU) is one of the

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    . Formed in 1988, by companies interested primarily in coal ash utilization, the CBU is dedicated environmental regulations to significantly reduce the amount of foundry waste disposed in landfills

  2. ITP Metal Casting: Metalcasting Industry Technology Roadmap

    Broader source: Energy.gov (indexed) [DOE]

    foundries spend a higher proportion of their funds available for capital improvements on pollution control equipment. The industry as a whole, however, invests significantly in...

  3. 10Anniversary IPIL/HOUSTON

    E-Print Network [OSTI]

    Azevedo, Ricardo

    .L.P. Baker Botts L.L.P. Baker Hughes Incorporated Bracewell & Giuliani LLP Conley Rose, P.C. Data Foundry

  4. In Conversation with Jim Schuck: Nano-optics

    ScienceCinema (OSTI)

    Jim Schuck and Alice Egan

    2010-01-08T23:59:59.000Z

    Sponsored by Berkeley Lab's Materials Sciences Division (MSD), "In Conversation with" is a next generation science seminar series. Host Alice Egan is the assistant to MSD Director Miquel Salmeron. Alice conducts a fun and informative interview, touching on the lives and work of the guest. The first In Conversation With took place July 9 with Jim Schuck, a staff scientist in the Molecular Foundry's Imaging and Manipulation Facility as our first guest. He discussed the world of Nano-optics.

  5. Alterations in prey capture and induction of metallothioneins in grass shrimp fed cadmium-contaminated prey

    SciTech Connect (OSTI)

    Wallace, W.G.; Hoexum Brouwer, T.M.; Brouwer, M.; Lopez, G.R.

    2000-04-01T23:59:59.000Z

    The aquatic oligochaete Limnodrilus hoffmeisteri from a Cd-contaminated cove on the Hudson River, Foundry Cove, New York, USA, has evolved Cd resistance. Past studies have focused on how the mode of detoxification of Cd by these Cd-resistant worms influences Cd trophic transfer to the grass shrimp Palaemonetes pugio. In the present study, the authors investigate reductions in prey capture in grass shrimp fed Cd-contaminated prey. They also investigate the induction of metal-binding proteins, metallothioneins, in these Cd-exposed shrimp. Grass shrimp were fed field-exposed Cd-contaminated Foundry Cove oligochaetes or laboratory-exposed Cd-contaminated Artemia salina. Following these exposures, the ability of Cd- dosed and control shrimp to capture live A. salina was compared. Results show that shrimp fed laboratory-exposed Cd-contaminated A. salina for 2 weeks exhibit significant reductions in their ability to successfully capture prey (live A. salina). Reductions in prey capture were also apparent, though not as dramatic in shrimp fed for 1 week on field-exposed Cd-contained Foundry Cove oligochaetes. Shrimp were further investigated for their subcellular distribution of Cd to examine if alterations in prey capture could be linked to saturation of Cd-metallothionein. Cd-dosed shrimp produced a low molecular weight CD-binding metallothionein protein in a dose- and time-dependent manner. Most importantly, successful prey capture decreased with increased Cd body burdens and increased Cd concentration bound to high molecular weight proteins.

  6. Integration, Verification and Layout of a Complex Multimedia SOC

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    submicron semiconductor processing from the technology side together make system- on-chip (SOC) reality. On the other hand, semiconductor foundry has to expand its service scope from wafer manufacturing to mask, there is a need to bridge the gap between system houses and wafer foundry. We call such company SOC design service

  7. u.s. department of commerce national institute of standards and technology manufacturing extension partnership W W W . n i s t . g o v / m e p 1 -8 0 0 -m e p -4 m F g

    E-Print Network [OSTI]

    Perkins, Richard A.

    reduce costs, gain competitive advantage and minimize environmental impacts using a team of energy Foundry is a third generation family-owned business. Located in Lannon, Wisconsin-based with less than 100 of commercial applications. AFW Foundry was experiencing increased demand in its air-set business, leading

  8. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    ;2 INTRODUCTION Fly ash and bottom ash are generated due to combustion of coal in electric power plants. The annual production of fly ash and bottom ash by coal-burning power plants in the United States/bronze foundries, etc. Currently, large volumes of fly ash, bottom ash, and used foundry sand are disposed

  9. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    -first Century, Hyderabad, India, February 1999. Department of Civil EngineeringandMechanics College) of foundry by-products, including foundry sand and slag. Most of these by-products are landfilled, primarily due to non-availability of economically attractive use options. Landfilling is not a desirable option

  10. ICSICSICSICS http://cc.ee.ntu.edu.tw/~thlin/

    E-Print Network [OSTI]

    Hung, Shih-Hao

    (duplexer; RF passive device)· SWr GMD44 (duplexer; RF passive device) · Invensense MPU3050 MPU3050 Triple software ICS 15 #12;ICSICS IC d ig h IC design house Start-up company Design service company FoundryFoundry System house ... Pain is inevitable; suffering is optional. 16 #12;

  11. Microsoft Word - TMF Strategic Plan - final2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide Capture in the PresenceEnergyMolecular Foundry

  12. An electron microscopy study of wear in polysilicon microelectromechanical systems in ambient air

    E-Print Network [OSTI]

    Ritchie, Robert

    in bulk silicon, can severely impact the durability and reliability of microelectromechanical system in the multiuser microelectromechanical system process MUMPs foundry and Sandia Ultra-planar, Multi-level MEMS

  13. Improving the manufacturing yield of investment cast turbine blades through robust design

    E-Print Network [OSTI]

    Margetts, David (David Lawrence)

    2008-01-01T23:59:59.000Z

    The manufacturing of turbine blades is often outsourced to investment casting foundries by aerospace companies that design and build jet engines. Aerospace companies have found that casting defects are an important cost ...

  14. Mr. Andrew Wallo, III

    Office of Legacy Management (LM)

    1956 and continued to operate the foundry until 1966. The building is now used as an engineering labor- atory. Radioactive materials have not been used in the build- ing for...

  15. Climate VISION: Private Sector Initiatives: Semiconductors: Resources...

    Office of Scientific and Technical Information (OSTI)

    by Scott Bartos, U.S. EPA. Estimating the Impact of Migration to Asian Foundry Production on Attaining the WSC 2010 PFC Reduction Goal. (PDF 458 KB) 11th Annual ISESH...

  16. Industrial Dojo Program Fosters Industrial Internet Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Launches Cloud Foundry 'Industrial Dojo,' Contributes to Open Source to Foster Continued...

  17. Remediation of Petroleum-Contaminated Groundwater Using High Carbon Content Fly Ash

    E-Print Network [OSTI]

    Aydilek, Ahmet

    investigations. Recycled materials, such as tire chips (Kim et al 1997) and foundry sand (Lee et al. 2004) have in the utilization of recycled materials for remediation of contaminated groundwater as a part of sorptive barrier

  18. VLSI implementation of a chaotic encryption algorithm with applications to secure communications

    E-Print Network [OSTI]

    Gonzalez, Octavio A

    1998-01-01T23:59:59.000Z

    the MOSIS foundry. The baseband cryptosystem has a signal dynamic range of []1.5V using []3V power supplies and is capable of sustaining digital information rates of up to 100Kb/s....

  19. ANL-FF-262i

    Office of Legacy Management (LM)

    from our foundry's graphite-melted uranium is remote because of the metalIs high carbon content. High purity metal isto be considered a possible solution of many of the...

  20. Raw Encounters: Chinese Managers, African Workers and the Politics of Casualization in Africa’s Chinese Enclaves

    E-Print Network [OSTI]

    Lee, Ching Kwan

    2009-01-01T23:59:59.000Z

    1,028 employees in the smelter, foundry, exploration anda shopping complex and a smelter which is in progress…” 31new $220 million copper smelter in February 2007 was called

  1. Magnetismo Molecular (Molecular Magentism)

    SciTech Connect (OSTI)

    Reis, Mario S [Universidade Federal Fluminense, Brasil; Moreira Dos Santos, Antonio F [ORNL

    2010-07-01T23:59:59.000Z

    The new synthesis processes in chemistry open a new world of research, new and surprising materials never before found in nature can now be synthesized and, as a wonderful result, observed a series of physical phenomena never before imagined. Among these are many new materials the molecular magnets, the subject of this book and magnetic properties that are often reflections of the quantum behavior of these materials. Aside from the wonderful experience of exploring something new, the theoretical models that describe the behavior these magnetic materials are, in most cases, soluble analytically, which allows us to know in detail the physical mechanisms governing these materials. Still, the academic interest in parallel this subject, these materials have a number of properties that are promising to be used in technological devices, such as in computers quantum magnetic recording, magnetocaloric effect, spintronics and many other devices. This volume will journey through the world of molecular magnets, from the structural description of these materials to state of the art research.

  2. Clean Metal Casting

    SciTech Connect (OSTI)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05T23:59:59.000Z

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  3. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Melting Efficiency Improvement

    SciTech Connect (OSTI)

    Principal Investigator Kent Peaslee; Co-PIà ƒ  ¢Ã ‚  € à ‚  ™ s: Von Richards, Jeffrey Smith

    2012-07-31T23:59:59.000Z

    Steel foundries melt recycled scrap in electric furnaces and typically consume 35-100% excess energy from the theoretical energy requirement required to pour metal castings. This excess melting energy is multiplied by yield losses during casting and finishing operations resulting in the embodied energy in a cast product typically being three to six times the theoretical energy requirement. The purpose of this research project was to study steel foundry melting operations to understand energy use and requirements for casting operations, define variations in energy consumption, determine technologies and practices that are successful in reducing melting energy and develop new melting techniques and tools to improve the energy efficiency of melting in steel foundry operations.

  4. Sandia Energy - Molecular Geochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecular spectroscopy, and molecular simulation to complex multicomponent and multiphase systems; particular emphasis on the use of molecular simulation and various...

  5. Molecular Science Computing | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Capabilities Molecular Science Computing Overview Cell Isolation and Systems Analysis Deposition and Microfabrication Mass Spectrometry Microscopy Molecular Science...

  6. Molecular Science Computing | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Science Computing Overview Cell Isolation and Systems Analysis Deposition and Microfabrication Mass Spectrometry Microscopy Molecular Science Computing NMR and EPR...

  7. OPTIMIZATION OF TRANSIENT HEATER SETTINGS TO PROVIDE SPATIALLY UNIFORM HEATING IN

    E-Print Network [OSTI]

    Morton, David

    in foundries, baking ovens that cook food, infrared heating systems that cure painted surfaces, and rapidOPTIMIZATION OF TRANSIENT HEATER SETTINGS TO PROVIDE SPATIALLY UNIFORM HEATING IN MANUFACTURING PROCESSES INVOLVING RADIANT HEATING K. J. Daun, J. R. Howell, and D. P. Morton Department of Mechanical

  8. UWM-CBU Concrete Materials Technology Series Program No. 72 Construction Demonstration for Use of Residuals and Reject Fibers

    E-Print Network [OSTI]

    Saldin, Dilano

    residual solids in structural-grade ready-mixed concrete, as well as in flowable slurry (CLSM). Flowable Slurry is a very low-strength concrete-like material that is usually made from one or more of the materials such as coal ash, wood ash, used foundry sand, post-consumer crushed glass, concrete sand, water

  9. By By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By By-Products Utilization THE ROLE OF FLOWABLE SLURRY IN SUSTAINABLE DEVELOPMENTS of Flowable Slurry in Sustainable Developments in Civil Engineering Tarun R. Naik and Rudolph N. Kraus Materials (CLSM) incorporating industrial by-products (coal fly ash, and used foundry sand). CLSM reference

  10. JOURNAL DE PHYSIQUE Colloque C3, suppl6ment au n09, Tome 48, septembre 1987

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    recycling due to mixing with other aluminium alloys and other aircraft materials such as stainless steel aluminium smelters for conversion to aluminium-silicon foundry alloys. The paper seeks to quantify property measurements on laboratory cast samples of two aluminium-silicon alloys containing up to 8000 ppm

  11. Power-Performance Study of Block-Level Monolithic 3D-ICs Considering Inter-Tier Performance Variations

    E-Print Network [OSTI]

    Lim, Sung Kyu

    interconnects are used on the bottom tier to withstand a high temperature process on the non- bottom tiers. We) the small size of MIVs enables ultra-high inte- gration density, considerably reducing silicon area and cost- formance envelope, and (3) the manufacturing process is entirely foundry-driven, and does not involve

  12. MAIN APPLICATIONS Spot welding

    E-Print Network [OSTI]

    De Luca, Alessandro

    IRB 6400 MAIN APPLICATIONS Spot welding Press tending Material handling Machine tending Palletizing N Poke welding All IRB 6400R-versions have Foundry Plus protection. For details, see under manipulator 6400PE 1600 kg Others 2060 - 2390 kg ENVIRONMENT Ambient temperature Manipulator 5 ­ 50°C Relative

  13. Measurement and Simulation of Distortion of a Steel Bracket Casting D. Galles and C. Beckermann

    E-Print Network [OSTI]

    Beckermann, Christoph

    . Beckermann Mechanical and Industrial Engineering Department, University of Iowa, Iowa City, Iowa 52242 create interactions at the mold- metal interface and generate stresses. These stresses induce mechanical-consuming rework or scrapping of the part, significantly impacting the profitability of the foundry. A thorough

  14. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    on "Management & Use of Coal Combustion Products (CCPS)" held in San Antonio, TX, January 2001. Department concrete mixtures were produced for and at the production plant of an architectural precast concrete. Majority of the foundry sand generated in Wisconsin and elsewhere are landfilled at high disposal costs

  15. Properties of Field Manufactured Cast-Concrete Products Utilizing Recycled Materials

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    in appropriate concrete mixtures, thus reducing the need to landfill or otherwise dispose it. Fly ash from coal, coal-combustion bottom ash, and used foundry sand. A total of 18 mixture proportions with and without for these products or even improving these properties. Although coal- combustion fly ash, bottom ash, and used

  16. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    of coal fly ash, coal bottom ash, and used foundry sand in concrete, bricks, blocks, and8 paving stones, Wisconsin. She is involved in management,11 disposal, and sale of coal-combustion by-products. She alsoCenter for By-Products Utilization UNDER-UTILIZED COAL-COMBUSTION PRODUCTS IN PERMEABLE ROADWAY

  17. Access to Destinations: Application of Accessibility Measures for Non-AutoTravel Modes

    E-Print Network [OSTI]

    Minnesota, University of

    within a vehicle driven by a teen driver. Development of a Platoon-Priority Control Strategy without. To overcome this issue, platoon-priority signal control systems have been developed to progress platoons material (RCM), and foundry sand. Assessment of these materials was done in terms of their hydraulic

  18. Simulation of Heat Treatment Distortion R.A. Hardin1

    E-Print Network [OSTI]

    Beckermann, Christoph

    quenched in water and in oil. Unfortunately, due to the lack of documentation on the heat treatment process a test piece casting to be produced at a participating foundry to provide data on heat treatmentSimulation of Heat Treatment Distortion R.A. Hardin1 and C. Beckermann2 1 Research Engineer, 2

  19. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Presentationand Publicationat the CBIP International Conference onFly Ash Disposal & Utilization,New Delhi, India, January 1998 foundry sand and slag. Most of these by-products are landfilled, primarily due to non-availability of economically attractive use options. Landfilling is not a desirable option because it not only causes huge

  20. NOAA Selects Muskegon Lake as Habitat Focus Area

    E-Print Network [OSTI]

    , foundries, a coal-fired power plant, and a paper mill. Muskegon Lake has suffered water quality concerns on the fishery, aquatic organisms and vegetation in Muskegon Lake; · monitoring the socio-economic impacts Fisheries, and the Great Lakes Environmental Research Laboratory have implemented numerous projects

  1. SIGNALSDepartment of Electrical and Computer Engineering Spring 2013, Vol. XII, Issue 3

    E-Print Network [OSTI]

    Amin, S. Massoud

    and computer engineering professor in the University's College of Science and Engineering. "However, today-based systems." The research also will have an impact beyond the world of computer science and engineering. Industry partners include Applied Materials, GLOBAL- FOUNDRIES, IBM, Intel Corporation, Micron Technology

  2. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies

    E-Print Network [OSTI]

    44 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2009, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

  3. (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies

    E-Print Network [OSTI]

    46 CLAYS (Data in thousand metric tons unless otherwise noted) Domestic Production and Use: In 2008, clay and shale production was reported in 41 States. About 190 companies operated approximately 830% drilling mud, 17% foundry sand bond, 14% iron ore pelletizing, and 20% other uses; common clay--57% brick

  4. ADVANCED MATERIALS & PROCESSES FEBRUARY 2011 25 These are the winning entries

    E-Print Network [OSTI]

    of duplex stainless steel (material in accordance to ASTM A 890- 5A: Standard Specification for Castings Duplex Steel Etched with LBI Lukasz Boron Foundry Research Institute Krakow, Poland Microstructure Laboratory (PNNL) Richland, Wash. SEM microphotograph of corrosion products on X65 steel after 9 days

  5. (Data in thousand metric tons of silicon content unless otherwise noted) Domestic Production and Use: Estimated value of silicon alloys and metal produced in the United States in 2013

    E-Print Network [OSTI]

    .19 billion. Three companies produced silicon materials in seven plants, all east of the Mississippi River company produced both products at two plants. Most ferrosilicon was consumed in the ferrous foundry producers of aluminum and aluminum alloys and the chemical industry. The semiconductor and solar industries

  6. MICROFLUIDICS-BASED STRATEGIES FOR PROTEIN CRYSTALLOGRAPHY

    E-Print Network [OSTI]

    Quake, Stephen R.

    MICROFLUIDICS-BASED STRATEGIES FOR PROTEIN CRYSTALLOGRAPHY Thesis by Megan J. Anderson In Partial of this project. #12;iv I would also like to thank all of the microfluidic foundry technicians who provided me laboratories to produce high-quality protein crystals, the use of microfluidic technology for structural

  7. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    PRACTICE By Rudolph N. Kraus, Tarun R. Naik, and Yoon-moon Chun Report No. CBU-2006-12 REP-611 April 2006 to be mined, cement continues to be manufactured or imported, and energy is consumed in the processing briefly describes the uses of coal ash, wood ash, and used foundry sand, in concrete. Typically, one

  8. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    . Naik, Rudolph N. Kraus, Shiw S. Singh, Lori- Lynn C. Pennock, and Bruce Ramme Report No. CBU-2001 with numerous projects on the use of by-product materials including utilization of used foundry sand and fly ash;2 INTRODUCTION Wood FA is generated due to combustion of wood for energy production at pulp and paper mills, saw

  9. Assessing the capabilities of patternshop measurement systems

    SciTech Connect (OSTI)

    Peters, F.E.; Voigt, R.C.

    1995-12-01T23:59:59.000Z

    Casting customers continue to demand tighter dimensional tolerances for casting features. The foundry then places demands on the patternshop to produce more accurate patterns. Control of all sources of dimensional variability, including measurement system variability in the foundry and patternshop, is important to insure casting accuracy. Sources of dimensional casting errors will be reviewed, focusing on the importance of accurate patterns. The foundry and patternshop together must work within the tolerance limits established by the customer. In light of contemporary pattern tolerances, the patternshop must review its current measurement methods. The measurement instrument must have sufficient resolution to detect part variability. In addition, the measurement equipment must be used consistently by all patternmakers to insure adequacy of the measurement system. Without these precautions, measurement error can significantly contribute to overall pattern variability. Simple robust methods to check the adequacy of pattern measurement systems are presented. These tests will determine the variability that is contributed by the measurement equipment and by the operators. Steps to control measurement variability once it has been identified are also provided. Measurement system errors for various types of measurement equipment are compared to the allowable pattern tolerances, that are established together by the foundry and patternshop.

  10. Hall of Honor 2014: Pursuing Explanations, Discovering Robert Brooks

    E-Print Network [OSTI]

    Buehrer, R. Michael

    , and in education that inquiry must be guided by practicality, and that technological progress is useless without that inquiry must be guided by practicality, and that technological progress is useless without a dedication, but there is something more about his experience that earns his recognition in the Foundry Management & Technology Hall

  11. This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 5836

    E-Print Network [OSTI]

    Mailhes, Corinne

    matrix composites and improved secondary aluminium alloys. These research works led to the publication Toulouse cedex 4, France) Aluminium silicon alloys are one of the most used groups of foundry alloys due the metallurgical quality before casting the part. Key words: A356 aluminium alloy; solidification; thermal analysis

  12. MARSAME Appendix C C. EXAMPLES OF COMMON RADIONUCLIDES

    E-Print Network [OSTI]

    Ra and progeny Depleted uranium collimators Metal Foundry 40 K 60 Co 137 Cs Thorium series control devices) 226 Ra and progeny Depleted uranium January 2009 C-1 NUREG-1575, Supp. 1 #12;Appendix C-thorium alloys Nickel-thorium alloys 147 Pm (lighted dials and gauges) 226 Ra and progeny (radium dials) Depleted

  13. Mineral resources of Cactus Plain and East Cactus Plain Wilderness Study Areas, La Paz County, Arizona

    SciTech Connect (OSTI)

    Tosdal, R.M.; Eppinger, R.G.; Erdman, J.A.; Hanna, W.F.; Pitkin, J.A.; Blank, H.R. Jr.; O'Leary, R.M.; Watterson, J.R. (US Geological Survey (US)); Kreidler, T.J. (US Bureau of Mines (US))

    1990-01-01T23:59:59.000Z

    This paper reports on geologic, geochemical, and geophysical studies in the Cactus Plain and East Cactus Plain Wilderness Study Areas outlined in areas with moderate to high potential for gold, silver, copper, lead, zinc, barite, fluorite, manganese, and sand suitable for foundry, fracturing, and abrasive uses and low resource potential for beryllium, uranium and bentonitic clays.

  14. Hardware Trojans in Wireless Cryptographic ICs

    E-Print Network [OSTI]

    Makris, Yiorgos

    Partly because of design outsourcing and migration of fabrication foundries to low-cost areas across manufacturing defects but is not geared toward uncovering such ma- licious hardware modifications. Destructive milestone because it first demonstrated the utility of statistical analysis toward constructing effective

  15. CLAY AND SHALE--2001 18.1 CLAY AND SHALE

    E-Print Network [OSTI]

    %), drilling mud (17%), foundry sand bond (20%), and iron ore pelletizing (14%) for bentonite; brick (55 achievable control technology (MACT) requirements for the clay processing and manufacturing industries or used. Clay production was reported in all States except Alaska, Delaware, Hawaii, Idaho, New Hampshire

  16. ANNUAL REPORT 2013 A Message from the Vice President

    E-Print Network [OSTI]

    Das, Suman

    of AT&T Mobility, "When we locate a Foundry facility, our number one criterion is to be part and abandoned warehouses. A collaboration of university, business, and political leaders boldly transformed of Business, multidisciplinary research facilities, a global learning center to promote the exchange of ideas

  17. Molecular information ratchets 

    E-Print Network [OSTI]

    Wilson, Adam Christopher

    2012-11-28T23:59:59.000Z

    In the emerging aield of molecular machines, a molecular ratchet is a chemical system that allows the positional displacement of a submolecular component of be captured and directionally relea ...

  18. EMSL - Molecular Science Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    computing Resources and Techniques Molecular Science Computing - Sophisticated and integrated computational capabilities, including scientific consultants, software, Cascade...

  19. Molecular electrostatic potentials by systematic molecular fragmentation

    SciTech Connect (OSTI)

    Reid, David M.; Collins, Michael A. [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)] [Research School of Chemistry, Australian National University, Canberra, ACT 0200 (Australia)

    2013-11-14T23:59:59.000Z

    A simple method is presented for estimating the molecular electrostatic potential in and around molecules using systematic molecular fragmentation. This approach estimates the potential directly from the electron density. The accuracy of the method is established for a set of organic molecules and ions. The utility of the approach is demonstrated by estimating the binding energy of a water molecule in an internal cavity in the protein ubiquitin.

  20. Atomic and molecular supernovae

    SciTech Connect (OSTI)

    Liu, W.

    1997-12-01T23:59:59.000Z

    Atomic and molecular physics of supernovae is discussed with an emphasis on the importance of detailed treatments of the critical atomic and molecular processes with the best available atomic and molecular data. The observations of molecules in SN 1987A are interpreted through a combination of spectral and chemical modelings, leading to strong constraints on the mixing and nucleosynthesis of the supernova. The non-equilibrium chemistry is used to argue that carbon dust can form in the oxygen-rich clumps where the efficient molecular cooling makes the nucleation of dust grains possible. For Type Ia supernovae, the analyses of their nebular spectra lead to strong constraints on the supernova explosion models.

  1. DEPARTAMENTO DE BIOMEDICINA MOLECULAR

    E-Print Network [OSTI]

    . Estudio celular y mo- lecular de malaria maternal. rohernan@mail.cinvestav.mx ÍndiceÍndiceÍndice #12 (1994) Cinvestav. Temas de investigación: Estudio molecular y celular de las proteínas involucradas en el patogénesis de la amibiasis y caracterización molecular de la motilidad celular en Entamoeba

  2. Molecular heat pump

    E-Print Network [OSTI]

    Dvira Segal; Abraham Nitzan

    2005-10-11T23:59:59.000Z

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  3. Asymptotic Analysis of Cooperative Molecular Motor System

    E-Print Network [OSTI]

    Durrett, Richard

    Mesoscale Model for Collections of Molecular Motors Stochastic Asymptotic Techniques #12;Molecular Motors

  4. Substructured multibody molecular dynamics.

    SciTech Connect (OSTI)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01T23:59:59.000Z

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  5. (Quantum Molecular Dynamics Method) (Classical Molecular Dynamics Method)

    E-Print Network [OSTI]

    Maruyama, Shigeo

    1-1 (Quantum Molecular Dynamics Method) (Classical Molecular Dynamics Method) 2) Verlet(Verlet's leap frog) (17)(18) ( ) i i ii m t t t t t t F vv + -= + 22 (17

  6. Big Thinking: The Power of Nanoscience (LBNL Science at the Theater)

    SciTech Connect (OSTI)

    Milliron, Delia; Sanili, Babak; Weber-Bargioni, Alex; Xu, Ting

    2011-06-06T23:59:59.000Z

    Science at the Theater, June 6th, 2011: Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Alex Weber-Bargioni: How can we see things at the nanoscale? Alex is pioneering new methods that provide unprecedented insight into nanoscale materials and molecular interactions. The goal is to create rules for building nanoscale materials. Babak Sanii: Nature is an expert at making nanoscale devices such as proteins. Babak is developing ways to see these biological widgets, which could help scientists develop synthetic devices that mimic the best that nature has to offer. Ting Xu: How are we going to make nanoscale devices? A future in which materials and devices are able to assemble themselves may not be that far down the road. Ting is finding ways to induce a wide range of nanoscopic building blocks to assemble into complex structures. Delia Milliron: The dividends of nanoscience could reshape the way we live, from smart windows and solar cells to artificial photosynthesis and improved medical diagnosis. Delia is at the forefront of converting fundamental research into nanotechnology. Moderated by Jim DeYoreo, interim director of the Molecular Foundry, a facility located at Berkeley Lab where scientists from around the world address the myriad challenges in nanoscience.

  7. Molecular Gas in Early-type Galaxies

    E-Print Network [OSTI]

    Alatalo, Katherine Anne

    2012-01-01T23:59:59.000Z

    toward the center (first seen in the molecular gas in A+3.4 Molecular Gas Mass . . . . . . .of the molecular gas . . . . . . . . . . 2.4.3 Mass of

  8. B13+: Photodriven Molecular Wankel Engine. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B13+: Photodriven Molecular Wankel Engine. B13+: Photodriven Molecular Wankel Engine. Abstract: Synthetic molecular motors that are capable of delivering controlled movement upon...

  9. Molecular Biology DEGREE PROGRAMME

    E-Print Network [OSTI]

    Levi, Ran

    to the course co-ordinator for that module (See University Catalogue of Courses or SMS World Wide Web Pages in molecular biology have a wide range of career options, including virtually all areas of biology, medicine with mastering statistics, graphics and word processing software packages. General Enquiries The Degree Programme

  10. Integration, Verification and Layout of a Complex Multimedia SOC

    E-Print Network [OSTI]

    Chen, Chien-Liang; Lin, Youn-Long

    2011-01-01T23:59:59.000Z

    We present our experience of designing a single-chip controller for advanced digital still camera from specification all the way to mass production. The process involves collaboration with camera system designer, IP vendors, EDA vendors, silicon wafer foundry, package and testing houses, and camera maker. We also co-work with academic research groups to develop a JPEG codec IP and memory BIST and SOC testing methodology. In this presentation, we cover the problems encountered, our solutions, and lessons learned.

  11. (Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2003, clay and shale production was reported in all States except Alaska,

    E-Print Network [OSTI]

    ; bentonite-- 25% pet waste absorbent, 21% drilling mud, 21% foundry sand bond, 15% iron ore pelletizing,300 Imports for consumption: Artificially activated clay and earth 17 18 21 27 20 Kaolin 57 63 114 158 275,980 Consumption, apparent 37,500 35,600 34,800 34,600 34,600 Price, average, dollars per ton: Ball clay 40 42 42

  12. The western river steamboat: structure and machinery, 1811 to 1860 

    E-Print Network [OSTI]

    Kane, Adam Isaac

    2001-01-01T23:59:59.000Z

    , Jeffersonville, Indiana, showing two steamboat hulls being framed and behind them another steamer being fitted with braces for the hogging chains. . . . . . . . . 43 Fig. B. Photograph of the Howard Ship Yard showing the vast amount of timber needed... . The Steamboat and the Cotton Economy . Population Increase . Ancillary Industries . Steamboat Building Foundry Work . Lumbering 25 28 30 32 33 36 38 40 41 43 44 IV: INTRODUCTORY PHASE (1811 TO 1820) 47 Individual Steamboats Structural...

  13. Review of PennDOT Publication 408 for the use of recycled co-product materials: Summary recommendations. Final report

    SciTech Connect (OSTI)

    Van Tassel, E.L.; Tikalsky, P.J.; Christensen, D.W.

    1999-04-30T23:59:59.000Z

    The purpose of this project is to decrease the institutional or perceived institutional barriers for the use of recycled and co-product materials including glass, steel slag, foundry sand, fly ash, shingle tabs, reclaimed Portland cement concrete, and scrap tires in the Pennsylvania Department of Transportation`s (PennDOT) Publications 408, Commonwealth of Pennsylvania Department of Transportation Specifications. This report reviews potential uses of each material, identifies the project that used these materials, and provides direction for future specification development.

  14. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low BTU fuel from castings

    DOE Patents [OSTI]

    Scheffer, Karl D. (121 Governor Dr., Scotia, NY 12302)

    1984-07-03T23:59:59.000Z

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.

  15. Yield improvement and defect reduction in steel casting

    SciTech Connect (OSTI)

    Kent Carlson

    2004-03-16T23:59:59.000Z

    This research project investigated yield improvement and defect reduction techniques in steel casting. Research and technology development was performed in the following three specific areas: (1) Feeding rules for high alloy steel castings; (2) Unconventional yield improvement and defect reduction techniques--(a) Riser pressurization; and (b) Filling with a tilting mold; and (3) Modeling of reoxidation inclusions during filling of steel castings. During the preparation of the proposal for this project, these areas were identified by the High Alloy Committee and Carbon and Low Alloy Committee of the Steel Founders' Society of America (SFSA) as having the highest research priority to the steel foundry industry. The research in each of the areas involved a combination of foundry experiments, modeling and simulation. Numerous SFSA member steel foundries participated in the project through casting trials and meetings. The technology resulting from this project will result in decreased scrap and rework, casting yield improvement, and higher quality steel castings produced with less iteration. This will result in considerable business benefits to steel foundries, primarily due to reduced energy and labor costs, increased capacity and productivity, reduced lead-time, and wider use and application of steel castings. As estimated using energy data provided by the DOE, the technology produced as a result of this project will result in an energy savings of 2.6 x 10{sup 12} BTU/year. This excludes the savings that were anticipated from the mold tilting research. In addition to the energy savings, and corresponding financial savings this implies, there are substantial environmental benefits as well. The results from each of the research areas listed above are summarized.

  16. Final Technical Report

    SciTech Connect (OSTI)

    Thiel, Jerry; Giese, Scott R; Beckermann, Christoph; Combi, Joan; Yavorsky, James; Cannon, Fred

    2009-09-30T23:59:59.000Z

    The Center for Advanced Biobased was created with funding supplied by the Department of Energy to study biobased alternatives to petroleum based materials used in the manufacture of foundry sand binders. The project was successful in developing two new biobased polymers that are based on renewable agricultural materials or abundant naturally occurring organic materials. The technology has the potential of replacing large amounts of chemicals produced from oil with environmentally friendly alternatives.

  17. Thin porridges (atoles) prepared from maize and sorghum

    E-Print Network [OSTI]

    Vivas Rodriguez, Nancy Esther

    1985-01-01T23:59:59.000Z

    ". Traditionally atoles are prepared from maize; however, they are also made from oats, rice, wheat and occasionally, barley. Atole, a creamy and free-flowing product, is prepared from wet milled pastes or dry milled flours (mostly endosperm fractions) which...; rice-like products; noodles; and snacks (Rooney and Murty 1982). It can also be used for production of many non-food items. For example, some industrial uses include aluminium ore refining, building materials, charcoal bri quettes and foundry...

  18. System and process for the abatement of casting pollution, reclaiming resin bonded sand, and/or recovering a low Btu fuel from castings

    DOE Patents [OSTI]

    Scheffer, K.D.

    1984-07-03T23:59:59.000Z

    Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.

  19. Collector main replacement at Indianapolis Coke

    SciTech Connect (OSTI)

    Sickle, R.R. Van

    1997-12-31T23:59:59.000Z

    Indianapolis Coke is a merchant coke producer, supplying both foundry and blast furnace coke to the industry. The facility has three coke batteries: two 3 meter batteries, one Wilputte four divided and one Koppers Becker. Both batteries are underjet batteries and are producing 100% foundry coke at a net coking time of 30.6 hours. This paper deals with the No. 1 coke battery, which is a 72 oven, gun fired, 5 meter Still battery. No. 1 battery produces both foundry and blast furnace coke at a net coking rate of 25.4 hours. No. 1 battery was commissioned in 1979. The battery is equipped with a double collector main. Although many renovations have been completed to the battery, oven machinery and heating system, to date no major construction projects have taken place. Deterioration of the collector main was caused in part from elevated levels of chlorides in the flushing liquor, and temperature fluctuations within the collector main. The repair procedures are discussed.

  20. Statistical analysis of the mechanical properties of thin walled ductile iron castings

    SciTech Connect (OSTI)

    Schrems, Karol K.; Hawk, Jeffrey A.; Dogan, Omer N.; Druschitz, A.P. (Intermet)

    2003-01-01T23:59:59.000Z

    Ductile iron castings have long been used in the automotive market. Ductile iron is inexpensive to produce and has desirable fracture resistance and mechanical properties. However, the weight of ductile iron is driving an effort to reduce wall thickness in order to increase fuel economy. Traditionally, cast iron has been cast into thick, bulky shapes. Reducing the section size of cast iron can be done, but pushes foundry practice into new areas. A consortium of foundries, foundry suppliers, and automotive manufacturers has been pursuing the use of thin walled ductile cast iron. This paper investigates the mechanical behavior of three experimental heats of thin-wall castings in order to evaluate property trends and limits. Castings as thin as 1.7 mm (0.07 in) have been successfully cast. The study was designed to investigate the effects of thickness and different casting heats on the dependent variables of ultimate tensile strength, yield strength, elongation-to-failure, reduction in area, and hardness. The ultimate tensile strength of the castings is found to increase as the casting thickness decreases. Conversely, the elongation-to-failure is found to decrease as the casting thickness decreases. Heat-to-heat differences were found, but they were usually within the scatter of the data.

  1. FPGA Acceleration of Discrete Molecular Dynamics Simulation

    E-Print Network [OSTI]

    Herbordt, Martin

    ' & $ % FPGA Acceleration of Discrete Molecular Dynamics Simulation Joshua Model Thesis submitted UNIVERSITY COLLEGE OF ENGINEERING Thesis FPGA Acceleration of Discrete Molecular Dynamics Simulation Acceleration of Discrete Molecular Dynamics Simulation Joshua Model ABSTRACT Molecular dynamics simulation

  2. Photoelectron Angular Distribution and Molecular Structure in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Angular Distribution and Molecular Structure in Multiply Charged Anions. Photoelectron Angular Distribution and Molecular Structure in Multiply Charged Anions. Abstract:...

  3. Molecular conformations, interactions, and properties associated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors Molecular conformations, interactions, and...

  4. Sandia Energy - Molecular Geochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink Gallery Mesa delMissionMolecular

  5. Assessment of Molecular Modeling & Simulation

    SciTech Connect (OSTI)

    None

    2002-01-03T23:59:59.000Z

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  6. QSAR of Progestogens: Use of a Priori and Computed Molecular Descriptors and Molecular Graphics

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    QSAR of Progestogens: Use of a Priori and Computed Molecular Descriptors and Molecular Graphics) and molecular graphics and modeling descriptors were employed. Mo- lecular graphics and modeling studies

  7. Molecular Gas in Galaxies

    E-Print Network [OSTI]

    F. Combes

    2000-07-21T23:59:59.000Z

    Knowledge of the molecular component of the ISM is fundamental to understand star formation. The H2 component appears to dominate the gas mass in the inner parts of galaxies, while the HI component dominates in the outer parts. Observation of the CO and other lines in normal and starburst galaxies have questioned the CO-to-H2 conversion factor, and detection of CO in dwarfs have shown how sensitive the conversion f actor is to metallicity. Our knowledge has made great progress in recent years, because of sensitivity and spatial resolution improvements. Large-scale CO maps of nearby galaxies are now available, which extend our knowledge on global properties, radial gradients, and spiral structure of the molecular ISM. Millimetric interferometers reveal high velocity gradients in galaxy nuclei, and formation of embedded structures, like bars within bars. Galaxy interactions are very effective to enhance gas concentrations and trigger starbursts. Nuclear disks or rings are frequently observed, that concentrate the star formation activity. Since the density of starbursting galaxies is strongly increasing with redshift, the CO lines and the mm dust emission are a privileged tool to follow evolution of galaxies and observe the ISM dynamics at high redshift: they could give an answer about the debated question of the star-formation history, since many massive remote starbursts could be dust-enshrouded.

  8. Sandia National Laboratories: Molecular Geochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of aqueous uranyl carbonate interacting with the basal surface of sodium montmorillonite. Free energy profiles for cation adsorption to gibbsite surface calculated from molecular...

  9. Fluorescence of molecular excimers

    SciTech Connect (OSTI)

    Nurmukhametov, R.N.; Sakhno, T.V.; Saukov, G.G.; Khakhel, O.A. [L. Ya. Karpov Research Physiochemical Institute, Moscow (Russian Federation)

    1995-11-01T23:59:59.000Z

    The phenomena of excimer fluorescence are most thoroughly studied in solutions of polycyclic aromatic hydrocarbons (PAHs). Therefore, excimer formation is usually treated with reference to molecules of this class of compounds. In the literature, only a qualitative picture of the energetics of excimer formation is given. It is assumed that dimerization of electron-excited and unexcited molecules is followed by the splitting of molecular electron-excited levels. PAH molecules are characterized by two lower excited levels: {sup 1}L{sub a} and {sup 1}L{sub b} (according to Platt`s classification). The S{sub 1}* state of some PAH compounds (e.g., naphthalene, phenanthrene, pyrene) is {sup 1}L{sub b}, while in other PAH (anthracene, naphthacene, perylene, etc.) it is the {sup 1}L{sub a} state. It is assumed that the {sup 1}L{sub a}-level is split more significantly than the {sup 1}L{sub b} level. Therefore, for all PAH investigated the excimer state is described as a lower-lying component of the split {sup 1}L{sub a} level. Quantum-chemical consideration of the splitting of electron levels of PAH molecules in excimers is undertaken. Unfortunately, in this case the description is also of a qualitative character. In the cited work, a correlation is noted between the energy of the {sup 1}L{sub a} state of the molecule and the wave number corresponding to the maximum of the emission band of the excimer. However, it does not give the wavelength of the maximum of the excimer band for some PAH, in other words, a definite dependence of the position of this band on molecular structure. The present work is devoted to a search for an answer to this question.

  10. Molecular Weight & Energy Transport 7 September 2011

    E-Print Network [OSTI]

    Militzer, Burkhard

    't transport the bulk of the energy in the sun. #12;Molecular Weight & Energy Transport 7 September 2011 Goals · Review mean molecular weight this intuitively before looking back at your quantitative results. #12;molecular weight & energy transport 2 Energy

  11. Transition metal complex-based molecular machines 

    E-Print Network [OSTI]

    Sooksawat, Dhassida

    2015-06-30T23:59:59.000Z

    Inspired by the performance and evolutionarily-optimised natural molecular machines that carry out all the essential tasks contributing to the molecular basis of life, chemists aim towards fabricating synthetic molecular ...

  12. Junction Plasmon-Induced Molecular Reorientation. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Junction Plasmon-Induced Molecular Reorientation. Junction Plasmon-Induced Molecular Reorientation. Abstract: Time and frequency dependent intensity variations in sequences of...

  13. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the...

  14. Conformational Transitions in Molecular Systems

    E-Print Network [OSTI]

    Michael Bachmann; Wolfhard Janke

    2009-02-17T23:59:59.000Z

    Proteins are the "work horses" in biological systems. In almost all functions specific proteins are involved. They control molecular transport processes, stabilize the cell structure, enzymatically catalyze chemical reactions; others act as molecular motors in the complex machinery of molecular synthetization processes. Due to their significance, misfolds and malfunctions of proteins typically entail disastrous diseases, such as Alzheimer's disease and bovine spongiform encephalopathy (BSE). Therefore, the understanding of the trinity of amino acid composition, geometric structure, and biological function is one of the most essential challenges for the natural sciences. Here, we glance at conformational transitions accompanying the structure formation in protein folding processes.

  15. Molecular biomechanics of collagen molecules

    E-Print Network [OSTI]

    Chang, Shu-Wei

    Collagenous tissues, made of collagen molecules, such as tendon and bone, are intriguing materials that have the ability to respond to mechanical forces by altering their structures from the molecular level up, and convert ...

  16. Molecular Gas in Quasar Hosts

    E-Print Network [OSTI]

    Richard Barvainis

    1997-01-29T23:59:59.000Z

    The study of molecular gas in quasar host galaxies addresses a number of interesting questions pertaining to the hosts' ISM, to unified schemes relating quasars and IR galaxies, and to the processes fueling nuclear activity. In this contribution I review observations of molecular gas in quasar hosts from z=0.06 to z=4.7. The Cloverleaf quasar at z=2.5 is featured as a case where there are now enough detected transitions (four in CO, and one each in CI and HCN) to allow detailed modeling of physical conditions in the molecular ISM. We find that the CO-emitting gas is warmer, denser, and less optically thick than that found in typical Galactic molecular clouds. These differences are probably due to the presence of the luminous quasar in the nucleus of the Cloverleaf's host galaxy.

  17. Ab-Initio Molecular Dynamics

    E-Print Network [OSTI]

    Thomas D. Kühne

    2013-03-26T23:59:59.000Z

    Computer simulation methods, such as Monte Carlo or Molecular Dynamics, are very powerful computational techniques that provide detailed and essentially exact information on classical many-body problems. With the advent of ab-initio molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method and the recently devised efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics, which unifies best of both schemes are discussed. The predictive power of this novel second-generation Car-Parrinello approach is demonstrated by a series of applications ranging from liquid metals, to semiconductors and water. This development allows for ab-initio molecular dynamics simulations on much larger length and time scales than previously thought feasible.

  18. Ab-Initio Molecular Dynamics

    E-Print Network [OSTI]

    Kühne, Thomas D

    2012-01-01T23:59:59.000Z

    Computer simulations and molecular dynamics in particular, is a very powerful method to provide detailed and essentially exact informations of classical many-body problems. With the advent of \\textit{ab-initio} molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method as well as novel hybrid scheme that unifies best of either approach are discussed. The predictive power is demonstrated by a series of applications ranging from insulators to semiconductors and even metals in condensed phases.

  19. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03T23:59:59.000Z

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  20. Radiative transfer in molecular lines

    E-Print Network [OSTI]

    A. Asensio Ramos; J. Trujillo Bueno; J. Cernicharo

    2001-02-15T23:59:59.000Z

    The highly convergent iterative methods developed by Trujillo Bueno and Fabiani Bendicho (1995) for radiative transfer (RT) applications are generalized to spherical symmetry with velocity fields. These RT methods are based on Jacobi, Gauss-Seidel (GS), and SOR iteration and they form the basis of a new NLTE multilevel transfer code for atomic and molecular lines. The benchmark tests carried out so far are presented and discussed. The main aim is to develop a number of powerful RT tools for the theoretical interpretation of molecular spectra.

  1. Molecular weight and molecular weight distribution of kraft lignins

    SciTech Connect (OSTI)

    Schmidl, W.; Dong, D.; Fricke, A.L. (Univ. of Florida, Gainesville, FL (United States))

    1990-01-01T23:59:59.000Z

    Kraft lignins are the lignin degradation products from kraft pulping. They are complex, heterogeneous polymers with some polar character. The molecular weight of kraft lignins greatly affect the physical properties of black liquors, and are of primary importance in separation from black liquor and in evaluating potential uses. Several purified kraft lignins from slash pine were analyzed for number average molecular weight by vapor pressure osmometry (VPO), for weight average molecular weight by low angle laser light scattering (LALLS), and for the molecular weight distribution by high temperature size exclusion chromatography (SEC). The lignins were run in tetrahydrofuran (THF), N,N-dimethyl formamide (DMF), DMF with 0.1M LiBr, and pyridine at conditions above the Theta temperature. Experimental methods are discussed. The results show that VPO may be used to determine M[sub n] for kraft lignins if the purity of the lignins and the identity of the impurities are known. LALLS can be used to determine M[sub w] for kraft lignins if measurements are made at or above the Theta temperature of the lignin-solvent pair. SEC should be used at temperatures at, or above, the Theta temperature of the lignin-solvent pair. Size separation is highly dependent on the solvent used, and DMF is a much better solvent than THF for high temperature SEC. Future work using moment resolution procedures to derive an accurate calibration curve are also discussed.

  2. Molecular dynamics simulation and ab intio studies of electrolytes...

    Broader source: Energy.gov (indexed) [DOE]

    DFT calculations on molecular clusters and electrode surfaces, reactive molecular dynamics simulations allowing modeling of SEI formation, and classical molecular dynamics...

  3. Amorphous Molecular Organic Solids for Gas Adsorption. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Organic Solids for Gas Adsorption. Amorphous Molecular Organic Solids for Gas Adsorption. Abstract: We show that molecular organic compounds with large accessible...

  4. aluminophosphate molecular sieves: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performing ethyleneethane (C?H?C?H?) separation carbon molecular sieve (CMS) dense film membranes. (more) Rungta, Meha 2012-01-01 15 Molecular Squares as Molecular Sieves:...

  5. aluminophosphate molecular sieve: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performing ethyleneethane (C?H?C?H?) separation carbon molecular sieve (CMS) dense film membranes. (more) Rungta, Meha 2012-01-01 15 Molecular Squares as Molecular Sieves:...

  6. aluminosilicate molecular sieve: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performing ethyleneethane (C?H?C?H?) separation carbon molecular sieve (CMS) dense film membranes. (more) Rungta, Meha 2012-01-01 14 Molecular Squares as Molecular Sieves:...

  7. alpo4 molecular sieves: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performing ethyleneethane (C?H?C?H?) separation carbon molecular sieve (CMS) dense film membranes. (more) Rungta, Meha 2012-01-01 15 Molecular Squares as Molecular Sieves:...

  8. BE.442 Molecular Structure of Biological Materials, Fall 2005

    E-Print Network [OSTI]

    Zhang, Shuguang, Dr.

    Basic molecular structural principles of biological materials. Molecular structures of various materials of biological origin, including collagen, silk, bone, protein adhesives, GFP, self-assembling peptides. Molecular ...

  9. RMP Colloquia Modeling molecular motors

    E-Print Network [OSTI]

    Jülicher, Frank

    The authors present general considerations and simple models for the operation of isothermal motors at small structural differences from the usual Carnot engines. Turning to more explicit models for a single motorRMP Colloquia Modeling molecular motors Frank Ju¨licher,* Armand Ajdari, and Jacques Prost

  10. Gnzburg, Germany Molecular Diabetology and

    E-Print Network [OSTI]

    Pfeifer, Holger

    April 12th ­ 14th 2010 Günzburg, Germany Molecular Diabetology and Endocrinology in Medicine GRK-Einstein-Allee 23 89081 Ulm, Germany Contact Person: Erika Thanner Speaker GRK 1208 Prof. Dr. J. Köhrle Institut für Experimentelle Endokrinologie, Charité Berlin Augustenburger Platz 1 13353 Berlin, Germany Contact Person: Elke

  11. Challenges for molecular neuroimaging with MRI

    E-Print Network [OSTI]

    Lelyveld, Victor S.

    Magnetic resonance (MRI)-based molecular imaging methods are beginning to have impact in neuroscience. A growing number of molecular imaging agents have been synthesized and tested in vitro, but so far relatively few have ...

  12. FPGA ACCELERATION OF MOLECULAR DYNAMICS SIMULATIONS

    E-Print Network [OSTI]

    Herbordt, Martin

    ' & $ % FPGA ACCELERATION OF MOLECULAR DYNAMICS SIMULATIONS YONGFENG GU Dissertation submitted;BOSTON UNIVERSITY COLLEGE OF ENGINEERING Dissertation FPGA ACCELERATION OF MOLECULAR DYNAMICS SIMULATIONS DYNAMICS SIMULATIONS (Order No. ) YONGFENG GU Boston University, College of Engineering, 2008 Major

  13. Statistical Analysis of Molecular Signal Recording

    E-Print Network [OSTI]

    Glaser, Joshua I.

    A molecular device that records time-varying signals would enable new approaches in neuroscience. We have recently proposed such a device, termed a “molecular ticker tape”, in which an engineered DNA polymerase (DNAP) ...

  14. Transient Dynamics in Molecular Junctions: Coherent Bichromophoric Molecular Electron Pumps

    E-Print Network [OSTI]

    Roie Volkovich; Uri Peskin

    2010-12-01T23:59:59.000Z

    The possibility of using single molecule junctions as electron pumps for energy conversion and storage is considered. It is argued that the small dimensions of these systems enable to make use of unique intra-molecular quantum coherences in order to pump electrons between two leads and to overcome relaxation processes which tend to suppress the pumping efficiency. In particular, we demonstrate that a selective transient excitation of one chromophore in a bi-chromophoric donor-bridge-acceptor molecular junction model yields currents which transfer charge (electron and holes) unevenly to the two leads in the absence of a bias potential. The utility of this mechanism for charge pumping in steady state conditions is proposed.

  15. Journal of Molecular Graphics and Modelling 21 (2003) 499515 A priori molecular descriptors in QSAR

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    Journal of Molecular Graphics and Modelling 21 (2003) 499­515 A priori molecular descriptors in QSAR: a case of HIV-1 protease inhibitors II. Molecular graphics and modeling Rudolf Kiralj, Márcia M; accepted 14 November 2002 Abstract Molecular graphics and modeling methods illustrated the chemical

  16. Molecular Ecology NCGR May 2003 Physiology and Molecular Ecology of Synechococcus WH8102

    E-Print Network [OSTI]

    Molecular Ecology NCGR May 2003 1 Physiology and Molecular Ecology of Synechococcus WH8102 DOE is to provide a summary of the literature on the physiology and molecular ecology of bacteria and in particular to be a comprehensive review. Excellent current detailed reviews are available on the physiology and molecular ecology

  17. Hierarchical analysis of molecular spectra

    SciTech Connect (OSTI)

    Davis, M.J.

    1996-03-01T23:59:59.000Z

    A novel representation of molecular spectra in terms of hierarchical trees has proven to be an important aid for the study of many significant problems in gas-phase chemical dynamics. Trees are generated from molecular spectra by monitoring the changes that occur in a spectrum as resolution is changed in a continuous manner. A tree defines a genealogy among all lines of a spectrum. This allows for a detailed understanding of the assignment of features of a spectrum that may be difficult to obtain any other way as well as an understanding of intramolecular energy transfer time scales, mechanisms, and pathways. The methodology has been applied to several problems: transition state spectroscopy, intramolecular energy transfer in highly excited molecules, high-resolution overtone spectroscopy, and the nature of the classical-quantum correspondence when there is classical chaos (``quantum chaos``).

  18. Molecular engineering with bridged polysilsesquioxanes

    SciTech Connect (OSTI)

    LOY,DOUGLAS A.; SHEA,KENNETH J.

    2000-05-09T23:59:59.000Z

    Bridged polysilsesquioxanes are a class of hybrid organic-inorganic materials that permit molecular engineering of bulk properties including porosity. Prepared by sol-gel polymerization of monomers with two or more trialkoxysilyl groups, the materials are highly cross-linked amorphous polymers that are readily obtained as gels. The bridging configuration of the hydrocarbon group insures that network polymers are readily formed and that the organic functionality is homogeneously distributed throughout the polymeric scaffolding at the molecular level. This permits the bulk properties, including surface area, pore size, and dielectric constant to be engineered through the selection of the bridging organic group. Numerous bridging groups have been incorporated. This presentation will focus on the effects that the length, flexibility, and substitution geometry of the hydrocarbon bridging groups have on the properties of the resulting bridged polysilsesquioxanes. Details of the preparation, characterization, and some structure property relationships of these bridged polysilsesquioxanes will be given.

  19. Molecular gas and AGN fueling

    E-Print Network [OSTI]

    F. Combes

    2003-08-01T23:59:59.000Z

    CO emission, tracing the molecular content and distribution in galaxies, is a privileged tool to trace gas towards the nucleus, since the HI tracer is in general depleted there. A review is done of recent CO line observations, with sufficient spatial resolution to indicate the morphology and kinematics of the gas near the nucleus. The puzzling result that nuclei presently observed in an active phase have little sign of fueling, is discussed.

  20. Molecular Science Computing: 2010 Greenbook

    SciTech Connect (OSTI)

    De Jong, Wibe A.; Cowley, David E.; Dunning, Thom H.; Vorpagel, Erich R.

    2010-04-02T23:59:59.000Z

    This 2010 Greenbook outlines the science drivers for performing integrated computational environmental molecular research at EMSL and defines the next-generation HPC capabilities that must be developed at the MSC to address this critical research. The EMSL MSC Science Panel used EMSL’s vision and science focus and white papers from current and potential future EMSL scientific user communities to define the scientific direction and resulting HPC resource requirements presented in this 2010 Greenbook.

  1. Journal of Molecular Graphics and Modelling 21 (2003) 435448 A priori molecular descriptors in QSAR: a case of

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    Journal of Molecular Graphics and Modelling 21 (2003) 435­448 A priori molecular descriptors- panion paper, Part II, which interprets a priori molecular descriptors in terms of molecular graphics

  2. Synchrotrons Explore Water's Molecular Mysteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ...SuccessSurprisingSynchrotrons Explore Water's Molecular

  3. Costs Models in Design and Manufacturing of Sand Casting Products

    E-Print Network [OSTI]

    Nicolas Perry; Magali Mauchand; Alain Bernard

    2010-11-26T23:59:59.000Z

    In the early phases of the product life cycle, the costs controls became a major decision tool in the competitiveness of the companies due to the world competition. After defining the problems related to this control difficulties, we will present an approach using a concept of cost entity related to the design and realization activities of the product. We will try to apply this approach to the fields of the sand casting foundry. This work will highlight the enterprise modelling difficulties (limits of a global cost modelling) and some specifics limitations of the tool used for this development. Finally we will discuss on the limits of a generic approach.

  4. New designs in the reconstruction of coke-sorting systems

    SciTech Connect (OSTI)

    A.S. Larin; V.V. Demenko; V.L. Voitanik [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

    2009-07-15T23:59:59.000Z

    In recent Giprokoks designs for the reconstruction of coke-sorting systems, high-productivity vibrational-inertial screens have been employed. This permits single-stage screening and reduction in capital and especially operating expenditures, without loss of coke quality. In two-stage screening, >80 mm coke (for foundry needs) is additionally separated, with significant improvement in quality of the metallurgical coke (25-80 mm). New designs for the reconstruction of coke-sorting systems employ mechanical treatment of the coke outside the furnace, which offers new scope for stabilization of coke quality and permits considerable improvement in mechanical strength and granulometric composition of the coke by mechanical crushing.

  5. Automating An Industrial Power Plant 

    E-Print Network [OSTI]

    Williams, D. R.; McCowen, R. R.

    1987-01-01T23:59:59.000Z

    and electricity requirements of the Component Works as well as all of the heat and a portion of the electricity needed by the adjacent John Deere Foundry. This paper describes the automation of an eXisting industrial power plant and tells how the project...AUTlliATING AN INDUSTRIAL POWER PLANT DAVID R. WILLIAMS, P.E. Energy Coordi?nator John Deere Component Works Waterloo, Iowa ABSTRACT The need for an upgrade of boiler and turbine controls in the 15 MW coal-fired cogeneration plant...

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1TITAN XThree Foundry

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1TITANArronSmartFoundry

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014Weber-BargioniFoundry

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014Weber-BargioniFoundryRachel

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ ofIn WaterFoundry

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry Volunteers

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry4 Weber-Bargioni

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry4

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry4Organic

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry4OrganicA New

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry4OrganicA

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry4OrganicAXiang

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/Water InterfaceFoundry

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/Water InterfaceFoundryOn the

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/Water InterfaceFoundryOn

  2. Monthly Teleconferences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's fullMonthly NUG

  3. More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's fullMonthly NUGBiology

  4. Morris named NPO assistant manager for Environment, Safety Health and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's fullMonthly

  5. Move to CRT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's fullMonthly User

  6. Move your data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's fullMonthly UserNews

  7. Moving | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's fullMonthly

  8. Multimedia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's fullMonthlyMultimedia

  9. Multimedia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry's

  10. Multiscale Speciation of U and Pu at Chernobyl, Hanford, Los Alamos,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB, Mayak, and

  11. Muwei Zhang | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB, Mayak,

  12. My Success Is a Success For the Whole Team | Center for Bio-Inspired Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB, Mayak,Fuel

  13. MyNERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,

  14. N A T I O N A L S E C U R I T Y C L E A N E N E R G Y E N V

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O N A L

  15. NEES - EFRC | University of Maryland Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O N A

  16. NEESConnect | NEES - EFRC | University of Maryland Energy Frontier Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O N

  17. NERPs Definition | Savannah River National Environmental Park

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O

  18. NERSC Accounts and Allocations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O

  19. NERSC Acknowledgement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O

  20. NERSC Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O

  1. NERSC Benchmarking and Workload Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O

  2. NERSC Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O CS

  3. NERSC Computational Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O CS

  4. NERSC Featured Announcements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O CS

  5. NERSC HPC Achievement Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O CS

  6. NERSC History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O CS

  7. NERSC Image and Video Galleries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O CS

  8. NERSC Job Logs and Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O CS

  9. NERSC Journal Cover Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I O

  10. NERSC MOTD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I OLive

  11. NERSC Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I

  12. NERSC Publications and Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I User

  13. NERSC Science Engagement Leads

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I

  14. NERSC Science Highlights Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I User

  15. NERSC Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I User

  16. NERSC Stakeholders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T I

  17. NERSC Systems History

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T IHistory

  18. NERSC Testbeds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T IHistory

  19. NERSC Training and Tutorials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T IHistory

  20. NERSC User Demographics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T IHistory

  1. NERSC Users Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T IHistory

  2. NERSC Workshops and Training Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T IHistory

  3. NERSC's Data Transfer Nodes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,T

  4. NERSC, Cray Move Forward With Next-Generation Scientific Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire AFB,TNERSC,

  5. NETL Business Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuire

  6. NETL Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuireNETL Contact

  7. NETL: Available Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuireNETL

  8. NETL: Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuireNETLCareers

  9. NETL: Coal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee the Foundry'sMcGuireNETLCareersCoal

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree Foundry Scientists Receive

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree Foundry Scientists ReceiveNew

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree Foundry Scientists

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree Foundry ScientistsStudy

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree Foundry

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better Way of

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better Way

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better WayDOE Deputy

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better WayDOE

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better WayDOEOn the

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better WayDOEOn

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5 CLAIRE

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5 CLAIREOne

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5Berkley Lab

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5Berkley LabA

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5Berkley

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5Berkley4

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryAEnhanced Water Vapor

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryAEnhanced Water

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryAEnhanced WaterMapping

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryAEnhanced

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryAEnhancedNon-invasive

  15. Towards Using Molecular States as Qubits

    SciTech Connect (OSTI)

    Goswami, Debabrata; Goswami, Tapas; Kumar, S. K. Karthick; Das, Dipak K. [Department of Chemistry, Indian Institute of Technology Kanpur Kanpur-208016 (India)

    2011-09-23T23:59:59.000Z

    Molecular systems are presented as possible qubit systems by exploring non-resonant molecular fragmentation of n-propyl benzene with femtosecond laser pulses as a model case. We show that such laser fragmentation process is dependent on the phase and polarization characteristics of the laser. The effect of the chirp and polarization of the femtosecond pulse when applied simultaneously is mutually independent of each other, which makes chirp and polarization as useful 'logic' implementing parameters for such molecular qubits.

  16. Molecular Components of Catalytic Selectivity

    SciTech Connect (OSTI)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-07-02T23:59:59.000Z

    Selectivity, that is, to produce one molecule out of many other thermodynamically feasible product molecules, is the key concept to develop 'clean manufacturing' processes that do not produce byproducts (green chemistry). Small differences in potential energy barriers for elementary reaction steps control which reaction channel is more likely to yield the desired product molecule (selectivity), instead of the overall activation energy for the reaction that controls turnover rates (activity). Recent studies have demonstrated the atomic- or molecular-level tailoring of parameters such as the surface structures of active sites that give rise to nanoparticle size and shape dependence of turnover rates and reaction selectivities. Here, we highlight seven molecular components that influence reaction selectivities. These include: surface structure, adsorbate-induced restructuring, adsorbate mobility, reaction intermediates, surface composition, charge transport, and oxidation states for model metal single crystal and colloid nanoparticle catalysts. We show examples of their functioning and describe in-situ instruments that permit us to investigate their roles in surface reactions.

  17. Molecular Hydrogen in Infrared Cirrus

    E-Print Network [OSTI]

    Kristen Gillmon; J. Michael Shull

    2005-07-25T23:59:59.000Z

    We combine data from our recent FUSE survey of interstellar molecular hydrogen absorption toward 50 high-latitude AGN with COBE-corrected IRAS 100 micron emission maps to study the correlation of infrared cirrus with H2. A plot of the H2 column density vs. IR cirrus intensity shows the same transition in molecular fraction, f_H2, as seen with total hydrogen column density, N_H. This transition is usually attributed to H2 self-shielding, and it suggests that many diffuse cirrus clouds contain H2 in significant fractions, f_H2 = 1-30%. These clouds cover approximately 50% of the northern sky at latitudes b > 30 degrees, at temperature-corrected 100 micron intensities D_100 > 1.5 MJy/sr. The sheetlike cirrus clouds, with hydrogen densities n_H > 30 cm^-3, may be compressed by dynamical processes at the disk-halo interface, and they are conducive to H2 formation on grain surfaces. Exploiting the correlation between N(H2) and 100 micron intensity, we estimate that cirrus clouds at b > 30 contain approximately 3000 M_sun in H2. Extrapolated over the inner Milky Way, the cirrus may contain 10^7 M_sun of H2 and 10^8 M_sun in total gas mass. If elevated to 100 pc, their gravitational potential energy is ~10^53 erg.

  18. Radiation in molecular dynamic simulations

    SciTech Connect (OSTI)

    Glosli, J; Graziani, F; More, R; Murillo, M; Streitz, F; Surh, M

    2008-10-13T23:59:59.000Z

    Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The new technique passes a key test: it relaxes to a blackbody spectrum for a plasma in local thermodynamic equilibrium. This new tool also provides a method for assessing the accuracy of energy and momentum exchange models in hot dense plasmas. As an example, we simulate the evolution of non-equilibrium electron, ion, and radiation temperatures for a hydrogen plasma using the new molecular dynamics simulation capability.

  19. A Molecular Dynamics Investigation of Hydrolytic Polymerization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrolytic Polymerization in a Metal-Hydroxide Gel. A Molecular Dynamics Investigation of Hydrolytic Polymerization in a Metal-Hydroxide Gel. Abstract: The early stages of the...

  20. Molecular dynamics simulation studies of electrolytes andelectrolyte...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. es40smith.pdf More Documents & Publications Molecular Dynamics Simulation Studies of...

  1. Molecular Characterization of Nitrogen Containing Organic Compounds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning...

  2. Molecular Characterization of Biomass Burning Aerosols Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

  3. Molecular biology of signal transduction in plants

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This volume contains abstracts of oral presentations and poster sessions of the 1991 Cold Springs Harbor Meeting entitled Molecular Biology of Signal Transduction in Plants.

  4. Molecular architecture and functionalization of graphene surface...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular architecture and functionalization of graphene surface; Synthesis and characterization Wednesday, November 12, 2014 - 3:00pm SLAC, Redtail Hawk Conference Room 108A...

  5. Molecular dynamics simulation of threshold displacement energies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental estimates in ceramics. Citation: Moreira PA, R Devanathan, J Yu, and WJ Weber.2009."Molecular dynamics simulation of threshold displacement energies in...

  6. Molecular Characterization of Organic Aerosols Using Nanospray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in OA, which is important for understanding chemical aging phenomena. Citation: Roach PJ, J Laskin, and A Laskin.2010."Molecular Characterization of Organic Aerosols Using...

  7. Institute for Molecular Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at a molecular scale has the potential for societal impact in such areas as energy, health care, and the environment. The institute benefits from leading scientists and...

  8. Distribution Category: Atomic, Molecular, and Chemical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic, Molecular, and Chemical Physics (UC-411) ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, TIlinois 60439 ANLI APSILS-151 RESULTS OF DESIGN CALCULATIONS FOR THE...

  9. Sandia National Laboratories: Molecular Simulations Guide Nanowire...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Summit Experimental Smart Outlet Brings Flexibility, Resiliency to Grid Architecture Molecular Simulations Guide Nanowire Research On March 7, 2012, in Capabilities,...

  10. Molecular to fluid dynamics: The consequences of stochastic molecular motion Stefan Heinz*

    E-Print Network [OSTI]

    Heinz, Stefan

    to derive a hierarchy of algebraic expressions for the molecular stress tensor and heat flux. A scaling of ordinary irreversible thermodynamics [3]) transport equations for the molecular stress tensor and heat flux equations. The stochastic model is used to derive fluid dynamic equations where the molecular stress tensor

  11. Thermoelectric effect in molecular electronics

    E-Print Network [OSTI]

    M. Paulsson; S. Datta

    2003-01-14T23:59:59.000Z

    We provide a theoretical estimate of the thermoelectric current and voltage over a Phenyldithiol molecule. We also show that the thermoelectric voltage is (1) easy to analyze, (2) insensitive to the detailed coupling to the contacts, (3) large enough to be measured and (4) give valuable information, which is not readily accessible through other experiments, on the location of the Fermi energy relative to the molecular levels. The location of the Fermi-energy is poorly understood and controversial even though it is a central factor in determining the nature of conduction (n- or p-type). We also note that the thermoelectric voltage measured over Guanine molecules with an STM by Poler et al., indicate conduction through the HOMO level, i.e., p-type conduction.

  12. Computational methods for molecular docking

    SciTech Connect (OSTI)

    Klebe, G. [BASF AG, Ludwigshafen (Germany); Lengauer, T.

    1995-12-31T23:59:59.000Z

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Recently, it has been demonstrated that the knowledge of the three-dimensional structure of the protein can be used to derive new protein ligands with improved binding properties. This tutorial focuses on the following questions: What is its binding affinity toward a particular receptor? What are putative conformations of a ligand at the binding site? What are the similarities of different ligands in terms of their recognition capabilities? Where and in which orientation will a ligand bind to the active site? How is a new putative protein ligand selected? An overview is presented of the algorithms which are presently used to handle and predict protein-ligand interactions and to dock small molecule ligands into proteins.

  13. Optimal prediction in molecular dynamics

    E-Print Network [OSTI]

    Benjamin Seibold

    2008-08-22T23:59:59.000Z

    Optimal prediction approximates the average solution of a large system of ordinary differential equations by a smaller system. We present how optimal prediction can be applied to a typical problem in the field of molecular dynamics, in order to reduce the number of particles to be tracked in the computations. We consider a model problem, which describes a surface coating process, and show how asymptotic methods can be employed to approximate the high dimensional conditional expectations, which arise in optimal prediction. The thus derived smaller system is compared to the original system in terms of statistical quantities, such as diffusion constants. The comparison is carried out by Monte-Carlo simulations, and it is shown under which conditions optimal prediction yields a valid approximation to the original system.

  14. Electron localization following attosecond molecular photoionization

    E-Print Network [OSTI]

    Kling, Matthias

    - second pump­probe strategies as a powerful tool for investigating the complex molecular dynamics , their use in studying atomic photo- excitation and photoionization6,7 and electron dynamics in solids8 has and biomolecular complexes11,12 . Extremely fast molecular dynamics involving electron correlation can also

  15. Photoassociative molecular spectroscopy for atomic radiative lifetimes.

    E-Print Network [OSTI]

    Boyer, Edmond

    very far apart, in so-called long- range molecular states, their mutual interaction is ruled by plain atomic properties. The high- resolution spectroscopic study of some molecular excited states populated by photoassociation of cold atoms (photoassociative spectroscopy) gives a good illustration of this property

  16. Clinical Molecular Geneticist Two-Year Fellowship

    E-Print Network [OSTI]

    Finley Jr., Russell L.

    Clinical Molecular Geneticist Two-Year Fellowship YEAR 1 YEAR 2 MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY A.M. 11-12 DNA Sign- out conference Lab Research & Clinical Training Lab Research & Clinical Training (includes rotation in Molecular Microbiology lab) Lab Research & Clinical Training Lab Research

  17. Molecular Simulation of Nanofluids Mark J. Biggs

    E-Print Network [OSTI]

    Adler, Joan

    Molecular Simulation of Nanofluids Mark J. Biggs School of Chemical Engineering, The University of Adelaide, South Australia, Australia, 5005. mark.biggs@adelaide.edu.au Models of nanofluid systems ­ which suited in many cases to those of nanofluid systems. It is for this reason that molecular simulation has

  18. Molecular interactions with ice: Molecular embedding, adsorption, detection, and release

    SciTech Connect (OSTI)

    Gibson, K. D.; Langlois, Grant G.; Li, Wenxin; Sibener, S. J., E-mail: s-sibener@uchicago.edu [The James Franck Institute and Department of Chemistry, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637 (United States); Killelea, Daniel R. [Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Ave., Chicago, Illinois 60660 (United States)

    2014-11-14T23:59:59.000Z

    The interaction of atomic and molecular species with water and ice is of fundamental importance for chemistry. In a previous series of publications, we demonstrated that translational energy activates the embedding of Xe and Kr atoms in the near surface region of ice surfaces. In this paper, we show that inert molecular species may be absorbed in a similar fashion. We also revisit Xe embedding, and further probe the nature of the absorption into the selvedge. CF{sub 4} molecules with high translational energies (?3 eV) were observed to embed in amorphous solid water. Just as with Xe, the initial adsorption rate is strongly activated by translational energy, but the CF{sub 4} embedding probability is much less than for Xe. In addition, a larger molecule, SF{sub 6}, did not embed at the same translational energies that both CF{sub 4} and Xe embedded. The embedding rate for a given energy thus goes in the order Xe > CF{sub 4} > SF{sub 6}. We do not have as much data for Kr, but it appears to have a rate that is between that of Xe and CF{sub 4}. Tentatively, this order suggests that for Xe and CF{sub 4}, which have similar van der Waals radii, the momentum is the key factor in determining whether the incident atom or molecule can penetrate deeply enough below the surface to embed. The more massive SF{sub 6} molecule also has a larger van der Waals radius, which appears to prevent it from stably embedding in the selvedge. We also determined that the maximum depth of embedding is less than the equivalent of four layers of hexagonal ice, while some of the atoms just below the ice surface can escape before ice desorption begins. These results show that energetic ballistic embedding in ice is a general phenomenon, and represents a significant new channel by which incident species can be trapped under conditions where they would otherwise not be bound stably as surface adsorbates. These findings have implications for many fields including environmental science, trace gas collection and release, and the chemical composition of astrophysical icy bodies in space.

  19. Signature molecular descriptor : advanced applications.

    SciTech Connect (OSTI)

    Visco, Donald Patrick, Jr. (Tennessee Technological University, Cookeville, TN)

    2010-04-01T23:59:59.000Z

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report provides details on a technique to describe molecules on a computer, called Signature, as well as the computer-aided molecule design algorithm built around Signature. Two applications are provided of the CAMD algorithm with Signature. The first describes the design of green solvents based on data in the GlaxoSmithKline (GSK) Solvent Selection Guide. The second provides novel non-steroidal glucocorticoid receptor ligands with some optimally predicted properties. In addition to using the CAMD algorithm with Signature, it is demonstrated how to employ Signature in a high-throughput screening study. Here, after classifying both active and inactive inhibitors for the protein Factor XIa using Signature, the model developed is used to screen a large, publicly-available database called PubChem for the most active compounds.

  20. Control of hydrogen release and uptake in amine borane molecular...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uptake in amine borane molecular complexes: Thermodynamics of ammonia borane, ammonium Control of hydrogen release and uptake in amine borane molecular complexes: Thermodynamics of...

  1. Molecular dynamics simulation and ab intio studies of electrolytes...

    Broader source: Energy.gov (indexed) [DOE]

    Molecular dynamics simulation and ab intio studies of electrolytes and electrolyteelectrode interfaces Molecular dynamics simulation and ab intio studies of electrolytes and...

  2. Molecular Dynamics Simulation of the AgCl/Electrolyte Interfacial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation of the AgClElectrolyte Interfacial Capacity. Molecular Dynamics Simulation of the AgClElectrolyte Interfacial Capacity. Abstract: Molecular dynamics simulation of the...

  3. Comparative molecular dynamics analysis of tapasin-dependent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecular dynamics analysis of tapasin-dependent and -independent MHC class I alleles. Comparative molecular dynamics analysis of tapasin-dependent and -independent MHC class I...

  4. Atomic and Molecular Adsorption on Re(0001). | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Adsorption on Re(0001). Atomic and Molecular Adsorption on Re(0001). Abstract: Using periodic, self-consistent density functional theory calculations, the adsorption of...

  5. Combined Quantum Mechanical and Molecular Mechanics Studies of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical and Molecular Mechanics Studies of the Electron-Transfer Reactions Involving Carbon Tetrachloride in Combined Quantum Mechanical and Molecular Mechanics Studies of the...

  6. Electron-Stimulated Production of Molecular Oxygen in Amorphous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water. Electron-Stimulated Production of Molecular Oxygen in Amorphous Solid Water. Abstract: The low-energy, electron-stimulated production of molecular oxygen from pure amorphous...

  7. Functionalized Graphene Sheets as Molecular Templates for Controlled...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as Molecular Templates for Controlled Nucleation and Self-Assembly of Metal Oxide-Graphene Functionalized Graphene Sheets as Molecular Templates for Controlled Nucleation and...

  8. MESTRADO EM MICROBIOLOGIA MICROBIOLOGIA MOLECULAR E CELULAR Instituto Superior Tcnico

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    MESTRADO EM MICROBIOLOGIA MICROBIOLOGIA MOLECULAR E CELULAR ­ Instituto Superior Técnico Objectivos. * Biologia Celular e Molecular, C. Azevedo, C.E. Sunkel, 2012, LIDEL ­ Edições Técnicas, Lisboa. #12;

  9. The influence of molecular orientation on organic bulk heterojunction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The influence of molecular orientation on organic bulk heterojunction solar cells The influence of molecular orientation on organic bulk heterojunction solar cells Print Monday, 28...

  10. Chitosan Molecular Structure as a Function of N-Acetylation....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chitosan Molecular Structure as a Function of N-Acetylation. Abstract: Molecular dynamics simulations have been carried out to characterize the structure and solubility of...

  11. Neutron Powder Diffraction and Molecular Simulation Study of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powder Diffraction and Molecular Simulation Study of the Structural Evolution of Ammonia Borane from 15 to 340 K. Neutron Powder Diffraction and Molecular Simulation Study of the...

  12. An efficient parallelization scheme for molecular dynamics simulations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficient parallelization scheme for molecular dynamics simulations with many-body, flexible, polarizable empirical An efficient parallelization scheme for molecular dynamics...

  13. B13+: Photodriven Molecular Wankel Engine

    SciTech Connect (OSTI)

    Zhang, Jin; Sergeeva, Alina P.; Sparta, Manuel; Alexandrova, Anastassia N.

    2012-07-09T23:59:59.000Z

    Synthetic molecular motors that are capable of delivering controlled movement upon energy input are one of the key building blocks in nanomachinery. The major energy sources of molecular motors are from chemical reactions, photon beams, or electric current, which are converted into mechanical forces through the excitation of the electronic states of the molecule. The energy scale of the electronic excitation is normally two orders of magnitude larger than the molecular vibrational frequencies. To reduce the heat dissipation and increase the energy utilization efficiency, a motor running purely on the electronic ground-state (GS) potential energy surfaces is highly desirable.

  14. The efficiency of the molecular motors

    E-Print Network [OSTI]

    Yunxin Zhang

    2009-02-12T23:59:59.000Z

    Molecular motors convert chemical energy into mechanical work while operating in an environment dominated by Brownian motion. The aim of this paper is to explore the flow of energy between the molecular motors and its surroundings, in particular, its efficiency. Based on the Fokker-Planck equation with either $N$ or infinite chemical states, we find that the energy efficiency of the molecular motors, whether the Stokes efficiency or the usual thermodynamic efficiency, is strictly bounded by 1, because of the dissipation of the energy in both the overdamped surroundings and in the process of the chemical reaction.

  15. Niobate-based octahedral molecular sieves

    DOE Patents [OSTI]

    Nenoff, Tina M.; Nyman, May D.

    2003-07-22T23:59:59.000Z

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  16. Niobate-based octahedral molecular sieves

    DOE Patents [OSTI]

    Nenoff, Tina M.; Nyman, May D.

    2006-10-17T23:59:59.000Z

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  17. Reactions of small molecular systems

    SciTech Connect (OSTI)

    Wittig, C. [Univ. of Southern California, Los Angeles, CA (United States)

    1993-12-01T23:59:59.000Z

    This DOE program remains focused on small molecular systems relevant to combustion. Though a number of experimental approaches and machines are available for this research, the authors` activities are centered around the high-n Rydberg time-of-flight (HRTOF) apparatus in this laboratory. One student and one postdoc carry out experiments with this machine and also engage in small intra-group collaborations involving shared equipment. This past year was more productive than the previous two, due to the uninterrupted operation of the HRTOF apparatus. Results were obtained with CH{sub 3}OH, CH{sub 3}SH, Rg-HX complexes, HCOOH, and their deuterated analogs where appropriate. One paper is in print, three have been accepted for publication, and one is under review. Many preliminary results that augur well for the future were obtained with other systems such as HNO{sub 3}, HBr-HI complexes, toluene, etc. Highlights from the past year are presented below that display some of the features of this program.

  18. WANTED: Undergraduate Research Assistant Betelgeuse's Molecular Inventory

    E-Print Network [OSTI]

    Harper, Graham

    WANTED: Undergraduate Research Assistant Betelgeuse's Molecular Inventory GHRS Pre-COSTAR LSA G140L Assistant Opportunity We are seeking an undergraduate research assistant to help make an inventory

  19. Novel molecular architectures from iptycene polymers

    E-Print Network [OSTI]

    Tsui, Nicholas T. (Nicholas Tang)

    2007-01-01T23:59:59.000Z

    This thesis explored the incorporation of iptycenes into polymers as a means to enhance the mechanical properties. Iptycene structures were targeted because they possess a unique structural property called internal molecular ...

  20. Intra-molecular refrigeration in enzymes

    E-Print Network [OSTI]

    Hans J. Briegel; Sandu Popescu

    2009-12-14T23:59:59.000Z

    We present a simple mechanism for intra-molecular refrigeration, where parts of a molecule are actively cooled below the environmental temperature. We discuss the potential role and applications of such a mechanism in biology, in particular in enzymatic reactions.

  1. Molecular Selectivity of Brown Carbon Chromophores. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of strong brown carbon chromophores. Citation: Laskin J, A Laskin, S Nizkorodov, PJ Roach, PA Eckert, MK Gilles, B Wang, HJ Lee, and Q Hu.2014."Molecular Selectivity of Brown...

  2. Analysis of programmable molecular electronic systems

    E-Print Network [OSTI]

    Ma, Yuefei

    2007-09-17T23:59:59.000Z

    of the programmable molecular array is performed. First, theoretical calculations for single molecules are carried out. The effect of bias voltage on the electron transmission through the molecule is reported. Next, electrical measurements are conducted...

  3. Molecular Nanomagnets of Fe(III) 

    E-Print Network [OSTI]

    Gass, Ian Andrew

    2008-01-01T23:59:59.000Z

    Two routes for preparing polymetallic clusters of iron have been investigated: the first strategy is to make molecular analogues of naturally occurring magnetic oxides using controlled hydrolysis and the second involves ...

  4. Genetics and molecular biology of breast cancer

    SciTech Connect (OSTI)

    King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

    1992-12-31T23:59:59.000Z

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  5. Environmental Molecular Sciences Laboratory 2007 Annual Report

    SciTech Connect (OSTI)

    Showalter, Mary Ann; Foster, Nancy S.

    2008-03-19T23:59:59.000Z

    This annual report provides details on the research conducted at the Environmental Molecular Sciences Laboratory in Fiscal Year 2007 and path forward for capability upgrades in Fiscal Year 2008.

  6. Combinatorial molecular optimization of cement hydrates

    E-Print Network [OSTI]

    Abdolhosseini Qomi, Mohammad

    Despite its ubiquitous presence in the built environment, concrete’s molecular-level properties are only recently being explored using experimental and simulation studies. Increasing societal concerns about concrete’s ...

  7. Comprehensive molecular profiling of lung adenocarcinoma

    E-Print Network [OSTI]

    Lander, Eric S.

    Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, ...

  8. 12.458 Molecular Biogeochemistry, Fall 2006

    E-Print Network [OSTI]

    Summons, Roger

    This course covers all aspects of molecular biosignatures from their pathways of lipid biosynthesis, the distribution patterns of lipid biosynthetic pathways with regard to phylogeny and physiology, isotopic contents, ...

  9. Loose mechanochemical coupling of molecular motors

    E-Print Network [OSTI]

    Yunxin Zhang

    2011-05-05T23:59:59.000Z

    In living cells, molecular motors convert chemical energy into mechanical work. Its thermodynamic energy efficiency, i.e. the ratio of output mechanical work to input chemical energy, is usually high. However, using two-state models, we found the motion of molecular motors is loosely coupled to the chemical cycle. Only part of the input energy can be converted into mechanical work. Others is dissipated into environment during substeps without contributions to the macro scale unidirectional movement.

  10. New silicotitanate molecular sieve and condensed phases

    SciTech Connect (OSTI)

    Nenoff, Tina M.; Nyman, May D.

    2000-11-01T23:59:59.000Z

    This patent application relates to an invention for a new silicotitanate molecular sieve ion exchange material for the capture and immobilization of divalent cations from aqueous and/or hydrocarbon solutions, including elements such as radioactive strontium or industrial RCRA metal cations. The invention also relates to the ability to either recycle the captured metal for future use or to encapsulate the cation through thermal treatment of the molecular sieve to a condensed phase.

  11. The Application of XML Languages for Integrating Molecular Resources

    E-Print Network [OSTI]

    Rzepa, Henry S.

    The Application of XML Languages for Integrating Molecular Resources Content 1) The Application of XML Languages for Integrating Molecular Resources 2) Georgios V. Gkoutos,a Peter Murray-Rust,b Henry S of Molecular Resources 7) Molecular Integration based on XML 8) The ChemDig Project 9) Chemical Markup Language

  12. Heat Treatment Procedure Qualification for Steel Castings

    SciTech Connect (OSTI)

    Professor Robert C. Voigt

    2003-02-02T23:59:59.000Z

    The science of heat treatment has been well studied and is the basis from which existing specifications and practices for the heat treatment of steel castings have been developed. Although these existing specifications address the general needs of steel castings to be heat-treated, they do not take into account the variability in the parameters that govern the processes. The need for a heat treatment qualification procedure that accounts for this variability during heat treatment is an important step toward heat treatment quality assurance. The variability in temperatures within a heat treatment furnace is one such variable that a foundry has to contend with in its day-to-day activity. Though specifications indicate the temperatures at which a particular heat treatment has to be conducted, heat treatment specifications do not adequately account for all aspects of heat treatment quality assurance. The heat treatment qualification procedure will comprise of a robust set of rules and guidelines that ensure that foundries will still be able to operate within the set of constraints imposed on them by non-deterministic elements within the processes.

  13. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    SciTech Connect (OSTI)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31T23:59:59.000Z

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  14. Food equipment manufacturer takes a slice out of its scrap rate

    SciTech Connect (OSTI)

    Bernard, D.; Hannahs, J. [PMI Food Equipment Group, Troy, OH (United States); Carter, M. [MicroWeld Engineering, Worthington, OH (United States)

    1996-09-01T23:59:59.000Z

    The PMI Food Equipment Group began manufacturing circular slicer knives for its commercial Hobart line of slicers in the early 1930s. The company manufacturers the only cast knife in the food industry. The cast knives offer superior edge retention and overall corrosion resistance. The slicer knives are cast in PMI`s foundry. The casting process sometimes produces shrinkage voids or gas bubbles in the knife blank. Surface discontinuities often do not appear until rough cutting or final machining, i.e., after several hours of value-added manufacturing. Knife blanks with these discontinuities were scrapped and sent back to the foundry for remelting. To scrap the knives at that point meant the cost for casting plus the value-added machining added up to a considerable amount. Weld repair allows the recovery of casting and machining expenses equal to a significant percentage of the total manufacturing cost of slicer knives. Repair costs include welding, grinding, shipping, surface finishing and material handling. Other good applications for this GMAW-P process include repair of jet engine components, rotating process industry equipment, and hardfacing of cutting tools and dies. In addition, dissimilar metals and any material that is heat treated to develop its properties such as precision investment castings are excellent applications. The low resultant distortion, elimination of postweld heat treatment and non-line-of-site welding capability solves thin wall, limited access and precision machined component repair challenges.

  15. Dimensional variability of production steel castings

    SciTech Connect (OSTI)

    Peters, F.E.; Risteu, J.W.; Vaupel, W.G.; DeMeter, E.C.; Voigt, R.C.

    1994-12-31T23:59:59.000Z

    Work is ongoing to characterize the dimensional variability of steel casting features. Data are being collected from castings produced at representative Steel Founders` Society of America foundries. Initial results based on more than 12,500 production casting feature measurements are presented for carbon and low alloy steel castings produced in green sand, no-bake, and shell molds. A comprehensive database of casting, pattern, and feature variables has been developed so that the influence of the variables on dimensional variability can be determined. Measurement system analysis is conducted to insure that large measurement error is not reported as dimensional variability. Results indicate that the dimensional variability of production casting features is less than indicated in current US (SFSA) and international (ISO) standards. Feature length, casting weight, parting line and molding process all strongly influence dimensional variability. Corresponding pattern measurements indicate that the actual shrinkage amount for casting features varies considerably. This variation in shrinkage will strongly influence the ability of the foundry to satisfy customer dimensional requirements.

  16. Molecular Surgery with Pulsed Electric Fields: Molecular Dynamics Simulations of Nanopore Formation and

    E-Print Network [OSTI]

    Southern California, University of

    Molecular Surgery with Pulsed Electric Fields: Molecular Dynamics Simulations of Nanopore Formation Family Department of Chemical Engineering and Materials Science, §Department of Electrical Engineering of water molecules spanning the membrane, decay within a few nanoseconds when the electric field is removed

  17. Determining the Overpotential for a Molecular Electrocatalyst

    SciTech Connect (OSTI)

    Appel, Aaron M.; Helm, Monte L.

    2014-02-07T23:59:59.000Z

    “The additional potential (beyond the thermodynamic requirement) needed to drive a reaction at a certain rate is called the overpotential.”1 Over the last decade there has been considerable interest in the design and testing of molecular electrocatalysis for the interconversion of renewable energy and chemical fuels.2-5 One of the primary motivations for such research is the replacement of expensive and rare precious metal catalysts, such as platinum, with cheaper, more abundant metals.2,6-8 To become competitive with current electrocatalytic energy conversion technologies, new catalysts must be robust, fast, and energy-efficient. This last feature, the energy-efficiency, is dependent upon the overpotential. For molecular catalysts, the determination and reporting of overpotentials can be complicated by the frequent dependence on assumptions, especially when working in nonaqueous solvents. As overpotentials become lower, the meaningful comparison of molecular catalysts will require improved accuracy and precision. The intended purpose of this viewpoint is to provide a clear and concise description of overpotential and recommendation for its determination in molecular electrocatalysis. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  18. 1984 Bibliography of atomic and molecular processes

    SciTech Connect (OSTI)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howard, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1985-04-01T23:59:59.000Z

    This annotated bibliography includes papers on atomic and molecular processes published during 1984. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  19. 1985 bibliography of atomic and molecular processes

    SciTech Connect (OSTI)

    Barnett, C.F.; Gilbody, H.B.; Gregory, D.C.; Griffin, P.M.; Havener, C.C.; Howald, A.M.; Kirkpatrick, M.I.; McDaniel, E.W.; Meyer, F.W.; Morgan, T.J. (comps.)

    1986-06-01T23:59:59.000Z

    This annotated bibliography includes papers on atomic and molecular processes published during 1985. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  20. Closed-orbit recurrences in molecular hydrogen

    SciTech Connect (OSTI)

    Wright, J. D.; DiSciacca, J. M.; Lambert, J. M.; Morgan, T. J. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2010-06-15T23:59:59.000Z

    Using scaled-energy Stark spectroscopy, we report the observation of recurrences due to closed orbits, both geometric and diffractive, in the {nu}=0, R=1, nd Rydberg series of H{sub 2} (16molecular closed-orbit theory prediction of diffractive trajectories due to inelastic scattering of the excited electron on the molecular core. We have made similar measurements in He, and a comparison between the recurrence properties of H{sub 2} and its united atom equivalent is given.

  1. Physics with fast molecular-ion beams

    SciTech Connect (OSTI)

    Kanter, E.P.

    1980-01-01T23:59:59.000Z

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  2. 1982 bibliography of atomic and molecular processes

    SciTech Connect (OSTI)

    Barnett, C.F.; Crandall, D.H.; Gilbody, H.B.; Gregory, D.C.; Kirkpatrick, M.I.; McDaniel, E.W.; McKnight, R.H.; Meyer, F.W.; Morgan, T.J.; Phaneuf, R.A. (comps.)

    1984-05-01T23:59:59.000Z

    This annotated bibliography includes papers on atomic and molecular processes published during 1982. Sources include scientific journals, conference proceedings, and books. Each entry is designated by one or more of the 114 categories of atomic and molecular processes used by the Controlled Fusion Atomic Data Center, Oak Ridge National Laboratory to classify data. Also indicated is whether the work was experimental or theoretical, what energy range was covered, what reactants were investigated, and the country of origin of the first author. Following the bibliographical listing, the entries are indexed according to the categories and according to reactants within each subcategory.

  3. Molecular diffusion in plasma-polymerized tetrafluoroethylene

    SciTech Connect (OSTI)

    Butler, M.A.; Buss, R.J. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States))

    1992-11-01T23:59:59.000Z

    Diffusion of an array of molecules in micrometer-thick films of plasma-polymerized tetrafluoroethylene has been measured using an optical interferometric technique. The diffusivity is approximately independent of molecular size up to a molar volume of about 100 cm{sup 3} and drops rapidly for larger molecules. For much larger molecules no penetration of the films is observed. These results suggest that plasma-polymerized tetrafluoroethylene films are heavily cross linked and that this limits the size of the molecules that can penetrate the polymer. The temperature dependence and the molecular size dependence of the diffusivities are discussed in the context of free-volume theory.

  4. Molecular Hydrogen Emission from Protoplanetary Disks

    E-Print Network [OSTI]

    H. Nomura; T. J. Millar

    2005-05-06T23:59:59.000Z

    We have modeled self-consistently the density and temperature profiles of gas and dust in protoplanetary disks, taking into account irradiation from a central star. Making use of this physical structure, we have calculated the level populations of molecular hydrogen and the line emission from the disks. As a result, we can reproduce the observed strong line spectra of molecular hydrogen from protoplanetary disks, both in the ultraviolet (UV) and the near-infrared, but only if the central star has a strong UV excess radiation.

  5. Control-volume representation of molecular dynamics

    E-Print Network [OSTI]

    E. R. Smith; D. M. Heyes; D. Dini; T. A. Zaki

    2012-05-24T23:59:59.000Z

    A Molecular Dynamics (MD) parallel to the Control Volume (CV) formulation of fluid mechanics is developed by integrating the formulas of Irving and Kirkwood, J. Chem. Phys. 18, 817 (1950) over a finite cubic volume of molecular dimensions. The Lagrangian molecular system is expressed in terms of an Eulerian CV, which yields an equivalent to Reynolds' Transport Theorem for the discrete system. This approach casts the dynamics of the molecular system into a form that can be readily compared to the continuum equations. The MD equations of motion are reinterpreted in terms of a Lagrangian-to-Control-Volume (\\CV) conversion function $\\vartheta_{i}$, for each molecule $i$. The \\CV function and its spatial derivatives are used to express fluxes and relevant forces across the control surfaces. The relationship between the local pressures computed using the Volume Average (VA, Lutsko, J. Appl. Phys 64, 1152 (1988)) techniques and the Method of Planes (MOP, Todd et al, Phys. Rev. E 52, 1627 (1995)) emerges naturally from the treatment. Numerical experiments using the MD CV method are reported for equilibrium and non-equilibrium (start-up Couette flow) model liquids, which demonstrate the advantages of the formulation. The CV formulation of the MD is shown to be exactly conservative, and is therefore ideally suited to obtain macroscopic properties from a discrete system.

  6. Huntington's disease: underlying molecular mechanisms and emerging

    E-Print Network [OSTI]

    Morimoto, Richard

    transcriptional mechanism also dictates the expression of polygluta- mine proteins. Here, we summarize the key with no disease modifying treatments available [1]. At the molecular level, HD is caused by a CAG trinu- cleotide is composed of proteins involved in transcription, DNA maintenance, cell cycle regulation, cellular orga

  7. ORIGINAL ARTICLE Phylogeny, molecular ecology and taxonomy

    E-Print Network [OSTI]

    Green, Andy J.

    ORIGINAL ARTICLE Phylogeny, molecular ecology and taxonomy of southern Iberian lineages of Triops that in total, the species is divided into six distinct clades, comprising T. m. mauritanicus, T. m. simplex supplementary material The online version of this article (doi:10.1007/s13127-010-0026-y) contains supplementary

  8. Molecular Biology Basics Planning Restriction Enzyme Digests

    E-Print Network [OSTI]

    Aris, John P.

    Molecular Biology Basics Planning Restriction Enzyme Digests A. Checklist: Buffer type Addition of BSA Optimum temperature Number of units of enzyme B. Plan to digest DNA with an "excess" of enzyme activity. Plan for the "excess" to be divided between time of digestion and number of units of enzyme

  9. Molecular gas and the dynamics of galaxies

    E-Print Network [OSTI]

    F. Combes

    1999-02-01T23:59:59.000Z

    In this review, I discuss some highlights of recent research on molecular gas in galaxies; large-scale CO maps of nearby galaxies are being made, which extend our knowledge on global properties, radial gradients, and spiral structure of the molecular ISM. Very high resolution are provided by the interferometers, that reveal high velocity gradients in galaxy nuclei, and formation of embedded structures, like bars within bars. Observation of the CO and other lines in starburst galaxies have questioned the H2-to-CO conversion factor. Surveys of dwarfs have shown how the conversion factor depends on metallicity. The molecular content is not deficient in galaxy clusters, as is the atomic gas. Galaxy interactions are very effective to enhance gas concentrations and trigger starbursts. Nuclear disks or rings are frequently observed, that concentrate the star formation activity. Since the density of starbursting galaxies is strongly increasing with redshift, the CO lines are a privileged tool to follow evolution of galaxies and observe the ISM dynamics at high redshift: due to the high excitation of the molecular gas, the stronger high-$J$ CO lines are redshifted into the observable band, which facilitates the detection.

  10. Molecular Cell Signaling Motifs and Weber's Law

    E-Print Network [OSTI]

    Molecular Cell Previews Signaling Motifs and Weber's Law James E. Ferrell, Jr.1,* 1Department that Weber's law of sensory perception may apply to a number of cell signaling processes. Most of us can shouting in our ear. This is the essence of Weber's law, put forward by the German physiologist Ernst Weber

  11. THERMODYNAMICS Molecular Simulation of Multicomponent Reaction

    E-Print Network [OSTI]

    Lisal, Martin

    THERMODYNAMICS Molecular Simulation of Multicomponent Reaction and Phase Equilibria in MTBE Ternary System Martin Lisal´ E. Hala Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals N1G 2W1, Canada Ivo Nezbeda E. Hala Laboratory of Thermodynamics, Institute of Chemical Process

  12. CeBiTec Symposium Molecular Biotechnology

    E-Print Network [OSTI]

    Moeller, Ralf

    : Bacterial and Environmental Biotechnology Chair: Volker F. Wendisch 12:30 Jörn Kalinowski (Technology for biotechnological applications 14:30 Coffee and Cake / Poster Presentation Session II: Biopolymers Chair: Dirk9th CeBiTec Symposium Molecular Biotechnology Center for Interdisciplinary Research (Zi

  13. Brownian Ratchets: Molecular Separations in Lipid Bilayers

    E-Print Network [OSTI]

    Boxer, Steven G.

    Brownian Ratchets: Molecular Separations in Lipid Bilayers Supported on Patterned Arrays Alexander van Oudenaarden and Steven G. Boxer* Brownian ratchets use a time-varying asymmetric potential that can be applied to separate diffusing particles or molecules. A new type of Brownian ratchet

  14. Molecular Cell Negative Regulation of Vps34

    E-Print Network [OSTI]

    Molecular Cell Article Negative Regulation of Vps34 by Cdk Mediated Phosphorylation Tsuyoshi Furuya Hughes Medical Institute Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5Haldeman interacts with Beclin 1, an ortholog of Atg6 in yeast, to regulate the production of PtdIns3P and autophagy

  15. Molecular Cluster Perturbation Theory. I. Formalism

    E-Print Network [OSTI]

    Jason N. Byrd; Nakul Jindal; Robert W. Molt, Jr.; Rodney J. Bartlett; Beverly A. Sanders; Victor F. Lotrich

    2015-03-23T23:59:59.000Z

    We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wavefunctions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wavefunctions that are infinite-order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/Aces4 parallel architecture, making use of the advanced dynamic memory control and fine grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts, lattice site dipole moments, and harmonic vibrational frequencies via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size (without using any periodic boundary conditions) was expanded up to 1,000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.

  16. The mean molecular mass of Titan's atmosphere

    E-Print Network [OSTI]

    Withers, Paul

    , Mars, Mars #12;Science Questions · Mean molecular mass (µ) -> Chemical composition · How did Titan form? · Current reservoirs of volatiles · Ethane/methane puddles/ocean · Thermal structure of atmosphere #12, delicate, etc ­ T/p sensors are simple, cheap, reliable · Is it possible to know µ based on simple

  17. Molecular sieving silica membrane fabrication process

    DOE Patents [OSTI]

    Raman, N.K.; Brinker, C.J.

    1999-08-10T23:59:59.000Z

    A process is described for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film. 11 figs.

  18. ScheduleDay 1: Molecular Evolution Introduction

    E-Print Network [OSTI]

    Goldschmidt, Christina

    -Cantor Model Do Exercise Read Ponting, study slides from day 3 and find questions. Day 3: Comparative Genomics Lecture: Comparative Genomics Prepare Projects Practical: Models of Sequence Evolution Read HSW1, study questions. Day 10: Projects Project 1 ­ Population Genomics: Selective Sweeps Project 2 ­ Molecular

  19. EVOLUTION AT MOLECULAR RESOLUTIONa P. SCHUSTER

    E-Print Network [OSTI]

    Schuster, Peter

    EVOLUTION AT MOLECULAR RESOLUTIONa P. SCHUSTER Institute for Theoretical Chemistry, University. In the simplest conceivable case, in vitro evolution of RNA molecules, both phenomena can be incorporated led to the no- tion of quasispecies which has been applied successfully to evolution of molecules

  20. Reaction dynamics in polyatomic molecular systems

    SciTech Connect (OSTI)

    Miller, W.H. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01T23:59:59.000Z

    The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.

  1. Molecular Cluster Perturbation Theory. I. Formalism

    E-Print Network [OSTI]

    Jason N. Byrd; Nakul Jindal; Robert W. Molt, Jr.; Rodney J. Bartlett; Beverly A. Sanders; Victor F. Lotrich

    2015-01-14T23:59:59.000Z

    We present second-order molecular cluster perturbation theory (MCPT(2)), a linear scaling methodology to calculate arbitrarily large systems with explicit calculation of individual wavefunctions in a coupled-cluster framework. This new MCPT(2) framework uses coupled-cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wavefunctions that are infinite-order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/ACES parallel architecture, making use of the advanced dynamic memory control and fine grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts and lattice site dipole moments via explicit calculation of the bulk system for the polar and non-polar polymorphs of solid hydrogen fluoride. The explicit lattice size without periodic boundary conditions was expanded up to 1,000 HF molecules, with 32,000 basis functions and 10,000 electrons. Our obtained HF lattice site dipole moments and harmonic vibrational frequencies agree well with the existing literature.

  2. A Quadratic Assignment Formulation of the Molecular

    E-Print Network [OSTI]

    Neumaier, Arnold

    in molecular bio­ physics and biochemistry is the protein folding problem (Gierasch and King 1990). The protein­ tion concern. The value of computation of protein folding patterns is that although it is now quite conformation problem'' does not in itself solve the protein folding problem; however, this general approach

  3. Applications to Computational Molecular Biology Giuseppe Lancia

    E-Print Network [OSTI]

    Lancia, Giuseppe

    of the first type Bioinformatics problems, and reserve the term Computational Biology for the study of problemsApplications to Computational Molecular Biology Giuseppe Lancia 1 Introduction Computational decade. The seeds for the birth of Computational Biology were sowed in the end of the Seventies, when

  4. Computer simulations of adsorption and molecular recognition phenomena in molecularly imprinted polymers 

    E-Print Network [OSTI]

    Dourado, Eduardo Manuel de Azevedo

    2011-11-22T23:59:59.000Z

    Molecularly imprinted polymers (MIPs) are a novel, promising family of porous materials with potential applications ranging from separations, chemical sensing and catalysis to drug delivery and artificial immunoassays. The ...

  5. auf molecular imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in molecular such as the use of 18 F-deox- yglucose in positron-emission tomography (PET) ima- ging. Molecular imaging McKenzie, Rick 3 Sparse image reconstruction for...

  6. advance molecular imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in molecular such as the use of 18 F-deox- yglucose in positron-emission tomography (PET) ima- ging. Molecular imaging McKenzie, Rick 6 New Thermal Imaging Camera Advances UNL...

  7. atherosclerosis molecular imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in molecular such as the use of 18 F-deox- yglucose in positron-emission tomography (PET) ima- ging. Molecular imaging McKenzie, Rick 4 Sparse image reconstruction for...

  8. OpenAtom -- Ab initio molecular dynamics package

    SciTech Connect (OSTI)

    Roberto Car

    2008-01-01T23:59:59.000Z

    OpenAtom is a highly scalable and portable parallel application for molecular dynamics simulations at the quantum level. It implements the Car-Parrinello ab-initio Molecular Dynamics (CPAIMD) method.

  9. animal studies molecular: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Molecular dynamics of B DNA Supplementary Animations Chemistry Websites Summary: Molecular dynamics of B...

  10. BE.462J Molecular Principles of Biomaterials, Spring 2003

    E-Print Network [OSTI]

    Irvine, Darrell J.

    Analysis and design at a molecular scale of materials used in contact with biological systems, including biotechnology and biomedical engineering. Topics include molecular interactions between bio- and synthetic molecules ...

  11. FPGA-BASED MULTIGRID COMPUTATION FOR MOLECULAR DYNAMICS SIMULATIONS

    E-Print Network [OSTI]

    Herbordt, Martin

    FPGA-BASED MULTIGRID COMPUTATION FOR MOLECULAR DYNAMICS SIMULATIONS Yongfeng Gu Martin C. Herbordt serial code. 1. INTRODUCTION Molecular Dynamics simulations (MD) are a fundamental tool for gaining Computer Architecture and Automated Design Laboratory Department of Electrical and Computer Engineering

  12. Optical activity of electronically delocalized molecular aggregates: Nonlocal response formulation

    E-Print Network [OSTI]

    Mukamel, Shaul

    Optical activity of electronically delocalized molecular aggregates: Nonlocal response formulation and optical rotation in small optically active molecules, larger conjugated molecules, and molecular aggregates is developed using spatially nonlocal electric and magnetic optical response tensors (r

  13. Top 10 plant pathogenic bacteria in molecular plant pathology.

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Foster, G.D. (2012) The top 10 fungal pathogens in molecularBLACKWELL PUBLISHING LTD Top 10 plant pathogenic bacteriaC. and Foster, G.D. (2011) Top 10 plant viruses in molecular

  14. Experimental Tools to Study Molecular Recognition within the Nanoparticle Corona

    E-Print Network [OSTI]

    Kruss, Sebastian

    Advancements in optical nanosensor development have enabled the design of sensors using synthetic molecular recognition elements through a recently developed method called Corona Phase Molecular Recognition (CoPhMoRe). The ...

  15. QSAR, Molecular Graphics and Modeling Study on -Lactam Antibiotics as

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    QSAR, Molecular Graphics and Modeling Study on -Lactam Antibiotics as Substrates of the Multidrug of them in non-linear form. Molecular graphics and docking studies: 2D and 3D docking of some drugs

  16. Processing and thermal properties of molecularly oriented polymers

    E-Print Network [OSTI]

    Skow, Erik (Erik Dean)

    2007-01-01T23:59:59.000Z

    High molecular weight polymers that are linear in molecular construction can be oriented such that some of their physical properties in the oriented direction are enhanced. For over 50 years polymer orientation and processing ...

  17. Hydrodynamical simulations of the decay of high-speed molecular turbulence. I. Dense molecular regions

    E-Print Network [OSTI]

    Georgi Pavlovski; Michael D. Smith; Mordecai-Mark Mac Low; Alexander Rosen

    2002-08-15T23:59:59.000Z

    We present the results from three dimensional hydrodynamical simulations of decaying high-speed turbulence in dense molecular clouds. We compare our results, which include a detailed cooling function, molecular hydrogen chemistry and a limited C and O chemistry, to those previously obtained for decaying isothermal turbulence. After an initial phase of shock formation, power-law decay regimes are uncovered, as in the isothermal case. We find that the turbulence decays faster than in the isothermal case because the average Mach number remains higher, due to the radiative cooling. The total thermal energy, initially raised by the introduction of turbulence, decays only a little slower than the kinetic energy. We discover that molecule reformation, as the fast turbulence decays, is several times faster than that predicted for a non-turbulent medium. This is caused by moderate speed shocks which sweep through a large fraction of the volume, compressing the gas and dust. Through reformation, the molecular density and molecular column appear as complex patterns of filaments, clumps and some diffuse structure. In contrast, the molecular fraction has a wider distribution of highly distorted clumps and copious diffuse structure, so that density and molecular density are almost identically distributed during the reformation phase. We conclude that molecules form in swept-up clumps but effectively mix throughout via subsequent expansions and compressions.

  18. Achieving Energy Conservation in Poisson-Boltzmann Molecular Dynamics

    E-Print Network [OSTI]

    Zhao, Hongkai

    1 Achieving Energy Conservation in Poisson-Boltzmann Molecular Dynamics: Accuracy and Precision University, Raleigh, NC 27695 Abstract Violation of energy conservation in Poisson-Boltzmann molecular is the observed violation of energy conservation in Poisson-Boltzmann molecular dynamics, in part due to its

  19. Molecular Dynamics Simulations on High-Performance Reconfigurable

    E-Print Network [OSTI]

    Herbordt, Martin

    23 Molecular Dynamics Simulations on High-Performance Reconfigurable Computing Systems MATT CHIU. 2010. Molecular dynamics simulations on high performance recon- figurable computing systems. ACM Trans://doi.acm.org/10.1145/1862648.1862653. 1. INTRODUCTION Molecular dynamics simulation (MD) is a

  20. Material Transfer Agreement Molecular Libraries Screening Centers Network (MLSCN)

    E-Print Network [OSTI]

    Baker, Chris I.

    Institutes of Health (NIH) Roadmap Molecular Libraries and Imaging Initiative Background Information The NIH Roadmap Molecular Libraries and Imaging Initiative is a research program designed to develop small organic activities funded under the NIH Roadmap Molecular Libraries and Imaging Initiative and carried out

  1. Classical density functional theory to tackle solvation in molecular liquids

    E-Print Network [OSTI]

    Jeanmairet, Guillaume; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-01-01T23:59:59.000Z

    We present a brief review of the classical density functional theory of atomic and molecular fluids. We focus on the application of the theory to the determination of the solvation properties of arbitrary molecular solutes in arbitrary molecular solvent. This includes the prediction of the solvation free energies, as well as the characterization of the microscopic, three-dimensional solvent structure.

  2. Molecular graphics approach to bacterial AcrB proteinb-lactam antibiotic molecular recognition in drug efflux mechanism

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    Molecular graphics approach to bacterial AcrB protein­b-lactam antibiotic molecular recognition graphics study of the pump components AcrB and TolC, 16 b-lactam antibiotics and 7 other substrates; Multidrug resistance; Molecular graphics; Vestibules; Pore 1. Introduction Transmembrane solute transporters

  3. QSAR de alguns inibidores peptdicos da enzima HIV-1 protease utilizando "a priori" descritores moleculares e molecular graphics

    E-Print Network [OSTI]

    Ferreira, Márcia M. C.

    moleculares e molecular graphics Rudolf Kiralj (PQ), Márcia Miguel Castro Ferreira (PQ) rudolf-calculator count/calculation using only 1D and 2D chemical formula). A work on COMBINE (COMparative BINding Energy of molecular graphics, are discussed in terms both of the a priori approach and of the HIV-1 protease inhibitor

  4. Self-doped molecular composite battery electrolytes

    DOE Patents [OSTI]

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08T23:59:59.000Z

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  5. Traffic by small teams of molecular motors

    E-Print Network [OSTI]

    Melanie J. I. Müller; Janina Beeg; Rumiana Dimova; Stefan Klumpp; Reinhard Lipowsky

    2008-07-07T23:59:59.000Z

    Molecular motors transport various cargos along cytoskeletal filaments, analogous to trucks on roads. In contrast to vehicles, however, molecular motors do not work alone but in small teams. We describe a simple model for the transport of a cargo by one team of motors and by two teams of motors, which walk into opposite directions. The cooperation of one team of motors generates long-range transport, which we observed experimentally in vitro. Transport by two teams of motors leads to a variety of bidirectional motility behaviour and to dynamic instabilities reminiscent of spontaneous symmetry breaking. We also discuss how cargo transport by teams of motors allows the cell to generate robust long-range bidirectional transport.

  6. Molecular Science Research Center, 1991 annual report

    SciTech Connect (OSTI)

    Knotek, M.L.

    1992-03-01T23:59:59.000Z

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  7. Counting molecular-beam grown graphene layers

    SciTech Connect (OSTI)

    Plaut, Annette S. [School of Physics, University of Exeter, Exeter EX4 4QL (United Kingdom)] [School of Physics, University of Exeter, Exeter EX4 4QL (United Kingdom); Wurstbauer, Ulrich [Department of Physics, Columbia University, New York, New York 10027 (United States)] [Department of Physics, Columbia University, New York, New York 10027 (United States); Pinczuk, Aron [Department of Physics, Columbia University, New York, New York 10027 (United States) [Department of Physics, Columbia University, New York, New York 10027 (United States); Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Garcia, Jorge M. [MBE Lab, IMM-Instituto de Microelectronica de Madrid (CNM-CSIC), Madrid, E-28760 (Spain)] [MBE Lab, IMM-Instituto de Microelectronica de Madrid (CNM-CSIC), Madrid, E-28760 (Spain); Pfeiffer, Loren N. [Electrical Engineering Department, Princeton University, New Jersey 08544 (United States)] [Electrical Engineering Department, Princeton University, New Jersey 08544 (United States)

    2013-06-17T23:59:59.000Z

    We have used the ratio of the integrated intensity of graphene's Raman G peak to that of the silicon substrate's first-order optical phonon peak, accurately to determine the number of graphene layers across our molecular-beam (MB) grown graphene films. We find that these results agree well both, with those from our own exfoliated single and few-layer graphene flakes, and with the results of Koh et al.[ACS Nano 5, 269 (2011)]. We hence distinguish regions of single-, bi-, tri-, four-layer, etc., graphene, consecutively, as we scan coarsely across our MB-grown graphene. This is the first, but crucial, step to being able to grow, by such molecular-beam-techniques, a specified number of large-area graphene layers, to order.

  8. Dust Emission from the Perseus Molecular Cloud

    E-Print Network [OSTI]

    S. Schnee; J. Li; A. A. Goodman; A. I. Sargent

    2008-05-27T23:59:59.000Z

    Using far-infrared emission maps taken by IRAS and Spitzer and a near-infrared extinction map derived from 2MASS data, we have made dust temperature and column density maps of the Perseus molecular cloud. We show that the emission from transiently heated very small grains and the big grain dust emissivity vary as a function of extinction and dust temperature, with higher dust emissivities for colder grains. This variable emissivity can not be explained by temperature gradients along the line of sight or by noise in the emission maps, but is consistent with grain growth in the higher density and lower temperature regions. By accounting for the variations in the dust emissivity and VSG emission, we are able to map the temperature and column density of a nearby molecular cloud with better accuracy than has previously been possible.

  9. Simulated Quantum Computation of Molecular Energies

    E-Print Network [OSTI]

    Alán Aspuru-Guzik; Anthony D. Dutoi; Peter J. Love; Martin Head-Gordon

    2006-04-26T23:59:59.000Z

    The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.

  10. Institute for Molecular Medicine Research Program

    SciTech Connect (OSTI)

    Phelps, Michael E

    2012-12-14T23:59:59.000Z

    The objectives of the project are the development of new Positron Emission Tomography (PET) imaging instrumentation, chemistry technology platforms and new molecular imaging probes to examine the transformations from normal cellular and biological processes to those of disease in pre-clinical animal models. These technology platforms and imaging probes provide the means to: 1. Study the biology of disease using pre-clinical mouse models and cells. 2. Develop molecular imaging probes for imaging assays of proteins in pre-clinical models. 3. Develop imaging assays in pre-clinical models to provide to other scientists the means to guide and improve the processes for discovering new drugs. 4. Develop imaging assays in pre-clinical models for others to use in judging the impact of drugs on the biology of disease.

  11. Molecular Life Science | Daniel Loos | loos@mls.uni-luebeck.de IM FOCUS DAS LEBEN

    E-Print Network [OSTI]

    Lübeck, Universität zu

    Was ist Molecular Life Science? Hämoglobin. Protein Data Bank: 1HHO #12;Daniel Loos Molecular Life Science

  12. Molecular Mechanism of Biological Proton Transport

    SciTech Connect (OSTI)

    Pomes, R.

    1998-09-01T23:59:59.000Z

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  13. Stochastic heating of a molecular nanomagnet

    E-Print Network [OSTI]

    L. Chotorlishvili; P. Schwab; Z. Toklikishvili; J. Berakdar

    2010-07-02T23:59:59.000Z

    We study the excitation dynamics of a single molecular nanomagnet by static and pulsed magnetic fields. Based on a stability analysis of the classical magnetization dynamics we identify analytically the fields parameters for which the energy is stochastically pumped into the system in which case the magnetization undergoes diffusively and irreversibly a large angle deflection. An approximate analytical expression for the diffusion constant in terms of the fields parameters is given and assessed by full numerical calculations.

  14. Molecular Science Research Center 1992 annual report

    SciTech Connect (OSTI)

    Knotek, M.L.

    1994-01-01T23:59:59.000Z

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  15. Nanoscale molecularly imprinted polymers and method thereof

    DOE Patents [OSTI]

    Hart, Bradley R. (Brentwood, CA); Talley, Chad E. (Brentwood, CA)

    2008-06-10T23:59:59.000Z

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  16. Frontiers of NMR in Molecular Biology

    SciTech Connect (OSTI)

    NONE

    1999-08-25T23:59:59.000Z

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  17. 2004 Reversible Associations in Structure & Molecular Biology

    SciTech Connect (OSTI)

    Edward Eisenstein Nancy Ryan Gray

    2005-03-23T23:59:59.000Z

    The Gordon Research Conference (GRC) on 2004 Gordon Research Conference on Reversible Associations in Structure & Molecular Biology was held at Four Points Sheraton, CA, 1/25-30/2004. The Conference was well attended with 82 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students.

  18. Molecular modeling gives insight into nonionic surfactants

    SciTech Connect (OSTI)

    Gdanski, R.

    1995-11-01T23:59:59.000Z

    This paper describes the study of a nonionic surfactant through the use of molecular modeling software. The surfactant was decyl alcohol capped with 8 moles of ethylene oxide. This nonionic surfactant is a strong water-wetting agent as well as a good aqueous foaming agent. Four molecular dynamics studies of a single surfactant molecule were conducted under the following conditions: at a water surface at 80 F; in bulk water at 260 F; in bulk hexane at 80 F; at a hexane/water interface at 80 F. The conformations of the surfactant were observed and compared to known solubility data. The results from molecular modeling dynamics calculations will provide new insights into the behavior of surfactant molecules at surfaces and interfaces. This methodology was also extended to aggregates of surfactants to promote understanding of wetting behavior and non-emulsification behavior. In this paper, two studies were performed involving aggregates: one in bulk water at 80 F and another in bulk water at 260 F.

  19. Molecular heat pump for rotational states

    E-Print Network [OSTI]

    C. Lazarou; M. Keller; B. M. Garraway

    2010-01-25T23:59:59.000Z

    In this work we investigate the theory for three different uni-directional population transfer schemes in trapped multilevel systems which can be utilized to cool molecular ions. The approach we use exploits the laser-induced coupling between the internal and motional degrees of freedom so that the internal state of a molecule can be mapped onto the motion of that molecule in an external trapping potential. By sympathetically cooling the translational motion back into its ground state the mapping process can be employed as part of a cooling scheme for molecular rotational levels. This step is achieved through a common mode involving a laser-cooled atom trapped alongside the molecule. For the coherent mapping we will focus on adiabatic passage techniques which may be expected to provide robust and efficient population transfers. By applying far-detuned chirped adiabatic rapid passage pulses we are able to achieve an efficiency of better than 98% for realistic parameters and including spontaneous emission. Even though our main focus is on cooling molecular states, the analysis of the different adiabatic methods has general features which can be applied to atomic systems.

  20. Molecular Selectivity of Brown Carbon Chromophores

    SciTech Connect (OSTI)

    Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Roach, Patrick J.; Eckert, Peter A.; Gilles, Mary K.; Wang, Bingbing; Lee, Hyun Ji; Hu, Qichi

    2014-09-18T23:59:59.000Z

    Complementary methods of high-resolution mass spectrometry and micro-spectroscopy were utilized for molecular analysis of secondary organic aerosol (SOA) generated from ozonolysis of two structural monoterpene isomers: D-limonene (LSOA) and a-pinene (PSOA). Laboratory simulated aging of LSOA and PSOA, through conversion of carbonyls into imines mediated by NH3 vapors in humid air, resulted in selective browning of the LSOA sample, while the PSOA sample remained white. Comparative analysis of the reaction products in the aged LSOA and PSOA samples provided insights into chemistry relevant to formation of brown carbon chromophores. A significant fraction of carbonyl-imine conversion products with identical molecular formulas were detected in both samples. This reflects the high level of similarity in the molecular composition of these two closely related SOA materials. Several highly conjugated products were detected exclusively in the brown LSOA sample and were identified as potential chromophores responsible for the observed color change. The majority of the unique products in the aged LSOA sample with the highest number of double bonds contain two nitrogen atoms. We conclude that chromophores characteristic of the carbonyl- imine chemistry in LSOA are highly conjugated oligomers of secondary imines (Schiff bases) present at relatively low concentrations. Formation of this type of conjugated compounds in PSOA is hindered by the structural rigidity of the a-pinene oxidation products. Our results suggest that the overall light-absorbing properties of SOA may be determined by trace amounts of strong brown carbon chromophores.