National Library of Energy BETA

Sample records for molecular dynamics simulations

  1. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments You are ...

  2. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Authors: Kane, J ...

  3. Communication: Quantum molecular dynamics simulation of liquid...

    Office of Scientific and Technical Information (OSTI)

    Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach Citation Details In-Document Search Title: Communication:...

  4. Molecular dynamics simulation studies of electrolytes andelectrolyte...

    Broader source: Energy.gov (indexed) [DOE]

    Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es40smith.pdf More Documents & Publications Molecular Dynamics Simulation Studies of Electrolytes ...

  5. Sandia Energy - Molecular Dynamics Simulations Predict Fate of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Dynamics Simulations Predict Fate of Uranium in Sediments Home Highlights - Energy Research Molecular Dynamics Simulations Predict Fate of Uranium in Sediments Previous...

  6. Molecular dynamics simulations of microscale fluid transport

    SciTech Connect (OSTI)

    Wong, C.C.; Lopez, A.R.; Stevens, M.J.; Plimpton, S.J.

    1998-02-01

    Recent advances in micro-science and technology, like Micro-Electro-Mechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a Micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these non-equilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and addresses both scaling and modeling issues. For Poiseuille flow, the numerical predictions are compared with existing data to investigate the variation of the friction factor with channel width. For Couette flow, the numerical predictions are used to determine the degree of slip at the liquid/solid boundary. Finally, the results also indicate that shear direction with respect to the wall lattice orientation can be very important. Simulation results of microscale Couette flow and microscale Poiseuille flow for two different surface structures and two different shear directions will be presented.

  7. Nonequilibrium molecular dynamics simulations of confined fluids in contact

    Office of Scientific and Technical Information (OSTI)

    with the bulk (Journal Article) | SciTech Connect Nonequilibrium molecular dynamics simulations of confined fluids in contact with the bulk Citation Details In-Document Search Title: Nonequilibrium molecular dynamics simulations of confined fluids in contact with the bulk A nonequilibrium molecular dynamics (MD) simulation study is reported of the structural and rheological properties of confined n-decane between two Au(111) surfaces in contact with its bulk under constant normal loads or

  8. Molecular dynamics simulation and ab intio studies of electrolytes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications High Voltage Electrolytes for Li-ion Batteries Molecular Dynamics Simulation Studies of Electrolytes and ElectrolyteElectrode Interfaces

  9. Molecular dynamics simulation and ab intio studies of electrolytes...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es058smith2011o.pdf More Documents & Publications Molecular Dynamics Simulation Studies of ...

  10. Molecular Dynamics Simulations of Gas Selectivity in Amorphous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics Simulations of Gas Selectivity in Amorphous Porous Molecular Solids Previous Next List Shan Jiang, Kim E. Jelfs, Daniel Holden, Tom Hasell, Samantha Y. Chong, Maciej...

  11. Molecular Dynamics Simulation Studies of Electrolytes andElectrolyte...

    Broader source: Energy.gov (indexed) [DOE]

    Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es058smith2010p.pdf More Documents & Publications Molecular dynamics simulation and ab intio ...

  12. Large-Scale First-Principles Molecular Dynamics Simulations on...

    Office of Scientific and Technical Information (OSTI)

    the BlueGeneL Platform using the Qbox Code Citation Details In-Document Search Title: Large-Scale First-Principles Molecular Dynamics Simulations on the BlueGeneL Platform using ...

  13. First-principles molecular dynamics simulations of condensed...

    Office of Scientific and Technical Information (OSTI)

    phase V-type nerve agent reaction pathways and energy barriers Citation Details In-Document Search Title: First-principles molecular dynamics simulations of condensed phase V-type ...

  14. Dynamics of Molecular Clouds: Observations, Simulations, and NIF

    Office of Scientific and Technical Information (OSTI)

    Experiments (Conference) | SciTech Connect Conference: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Authors: Kane, J O ; Martinez, D A ; Pound, M W ; Heeter, R F ; Casner, A ; Mancini, R C Publication Date: 2015-01-16 OSTI Identifier: 1179389 Report Number(s): LLNL-CONF-666498 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference

  15. Nonequilibrium molecular dynamics simulations of confined fluids...

    Office of Scientific and Technical Information (OSTI)

    ... COMPUTING, AND INFORMATION SCIENCE; BOUNDARY CONDITIONS; COMPRESSION; ENGINES; GEOMETRY; PHYSICS; DECANE; COMPUTERIZED SIMULATION; RHEOLOGY; GOLD; SHEAR; PRESSURE DEPENDENCE; ...

  16. Molecular Dynamics Simulations from SNL's Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Plimpton, Steve; Thompson, Aidan; Crozier, Paul

    LAMMPS (http://lammps.sandia.gov/index.html) stands for Large-scale Atomic/Molecular Massively Parallel Simulator and is a code that can be used to model atoms or, as the LAMMPS website says, as a parallel particle simulator at the atomic, meso, or continuum scale. This Sandia-based website provides a long list of animations from large simulations. These were created using different visualization packages to read LAMMPS output, and each one provides the name of the PI and a brief description of the work done or visualization package used. See also the static images produced from simulations at http://lammps.sandia.gov/pictures.html The foundation paper for LAMMPS is: S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995), but the website also lists other papers describing contributions to LAMMPS over the years.

  17. Molecular dynamics simulations of hydrogen diffusion in aluminum

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, X. W.; El Gabaly, F.; Stavila, V.; Allendorf, M. D.

    2016-03-23

    In this study, hydrogen diffusion impacts the performance of solid-state hydrogen storage materials and contributes to the embrittlement of structural materials under hydrogen-containing environments. In atomistic simulations, the diffusion energy barriers are usually calculated using molecular statics simulations where a nudged elastic band method is used to constrain a path connecting the two end points of an atomic jump. This approach requires prior knowledge of the “end points”. For alloy and defective systems, the number of possible atomic jumps with respect to local atomic configurations is tremendous. Even when these jumps can be exhaustively studied, it is still unclear howmore » they can be combined to give an overall diffusion behavior seen in experiments. Here we describe the use of molecular dynamics simulations to determine the overall diffusion energy barrier from the Arrhenius equation. This method does not require information about atomic jumps, and it has additional advantages, such as the ability to incorporate finite temperature effects and to determine the pre-exponential factor. As a test case for a generic method, we focus on hydrogen diffusion in bulk aluminum. We find that the challenge of this method is the statistical variation of the results. However, highly converged energy barriers can be achieved by an appropriate set of temperatures, output time intervals (for tracking hydrogen positions), and a long total simulation time. Our results help elucidate the inconsistencies of the experimental diffusion data published in the literature. The robust approach developed here may also open up future molecular dynamics simulations to rapidly study diffusion properties of complex material systems in multidimensional spaces involving composition and defects.« less

  18. Molecular Dynamics Simulation of Binary Fluid in a Nanochannel

    SciTech Connect (OSTI)

    Mullick, Shanta; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, SummerHill, Shimla - 171005 (India); Pathania, Y. [Chitkara University, Atal Shiksha Kunj, Atal Nagar, Barotiwala, Dist Solan, Himachal Pradesh - 174103 (India)

    2011-12-12

    This paper presents the results from a molecular dynamics simulation of binary fluid (mixture of argon and krypton) in the nanochannel flow. The computational software LAMMPS is used for carrying out the molecular dynamics simulations. Binary fluids of argon and krypton with varying concentration of atom species were taken for two densities 0.65 and 0.45. The fluid flow takes place between two parallel plates and is bounded by horizontal walls in one direction and periodic boundary conditions are imposed in the other two directions. To drive the flow, a constant force is applied in one direction. Each fluid atom interacts with other fluid atoms and wall atoms through Week-Chandler-Anderson (WCA) potential. The velocity profile has been looked at for three nanochannel widths i.e for 12{sigma}, 14{sigma} and 16{sigma} and also for the different concentration of two species. The velocity profile of the binary fluid predicted by the simulations agrees with the quadratic shape of the analytical solution of a Poiseuille flow in continuum theory.

  19. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning

    SciTech Connect (OSTI)

    Mugnai, Mauro L.; Elber, Ron

    2015-01-07

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide.

  20. Clustering effects in ionic polymers: Molecular dynamics simulations

    SciTech Connect (OSTI)

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2015-08-18

    Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. Furthermore, these ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing the electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Finally, decrease in electrostatic interaction significantly enhances the mobility of the polymer.

  1. Clustering effects in ionic polymers: Molecular dynamics simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Agrawal, Anupriya; Perahia, Dvora; Grest, Gary S.

    2015-08-18

    Ionic clusters control the structure, dynamics, and transport in soft matter. Incorporating a small fraction of ionizable groups in polymers substantially reduces the mobility of the macromolecules in melts. Furthermore, these ionic groups often associate into random clusters in melts, where the distribution and morphology of the clusters impact the transport in these materials. Here, using molecular dynamic simulations we demonstrate a clear correlation between cluster size and morphology with the polymer mobility in melts of sulfonated polystyrene. We show that in low dielectric media ladderlike clusters that are lower in energy compared with spherical assemblies are formed. Reducing themore » electrostatic interactions by enhancing the dielectric constant leads to morphological transformation from ladderlike clusters to globular assemblies. Finally, decrease in electrostatic interaction significantly enhances the mobility of the polymer.« less

  2. Enhanced molecular dynamics for simulating porous interphase layers in batteries.

    SciTech Connect (OSTI)

    Zimmerman, Jonathan A.; Wong, Bryan Matthew; Jones, Reese E.; Templeton, Jeremy Alan; Lee, Jonathan

    2009-10-01

    Understanding charge transport processes at a molecular level using computational techniques is currently hindered by a lack of appropriate models for incorporating anistropic electric fields in molecular dynamics (MD) simulations. An important technological example is ion transport through solid-electrolyte interphase (SEI) layers that form in many common types of batteries. These layers regulate the rate at which electro-chemical reactions occur, affecting power, safety, and reliability. In this work, we develop a model for incorporating electric fields in MD using an atomistic-to-continuum framework. This framework provides the mathematical and algorithmic infrastructure to couple finite element (FE) representations of continuous data with atomic data. In this application, the electric potential is represented on a FE mesh and is calculated from a Poisson equation with source terms determined by the distribution of the atomic charges. Boundary conditions can be imposed naturally using the FE description of the potential, which then propagates to each atom through modified forces. The method is verified using simulations where analytical or theoretical solutions are known. Calculations of salt water solutions in complex domains are performed to understand how ions are attracted to charged surfaces in the presence of electric fields and interfering media.

  3. Molecular dynamics simulations of methane hydrate using polarizable force fields

    SciTech Connect (OSTI)

    Jiang, H.N.; Jordan, K.D.; Taylor, C.E.

    2007-03-01

    Molecular dynamics simulations of methane hydrate have been carried out using the AMOEBA and COS/G2 polarizable force fields. Properties examined include the temperature dependence of the lattice constant, the OC and OO radial distribution functions and the vibrational spectra. Both the AMOEBA and COS/G2 models are found to successfully account for the available experimental data, with overall slightly better agreement with experiment being found for the AMOEBA model. Several properties calculated using the AMOEBA and COS/G2 models differ appreciable from the corresponding results obtained previously using the polarizable TIP4P-FQ model. This appears to be due to the inadequacy of the treatment of polarization, especially, the restriction of polarization to in-plane only, in the TIP4P-FQ model.

  4. Molecular dynamics simulation of annealed ZnO surfaces

    SciTech Connect (OSTI)

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    The effect of thermally annealing a slab of wurtzite ZnO, terminated by two surfaces, (0001) (which is oxygen-terminated) and (0001{sup ¯}) (which is Zn-terminated), is investigated via molecular dynamics simulation by using reactive force field (ReaxFF). We found that upon heating beyond a threshold temperature of ∼700 K, surface oxygen atoms begin to sublimate from the (0001) surface. The ratio of oxygen leaving the surface at a given temperature increases as the heating temperature increases. A range of phenomena occurring at the atomic level on the (0001) surface has also been explored, such as formation of oxygen dimers on the surface and evolution of partial charge distribution in the slab during the annealing process. It was found that the partial charge distribution as a function of the depth from the surface undergoes a qualitative change when the annealing temperature is above the threshold temperature.

  5. Relationship between nanocrystalline and amorphous microstructures by molecular dynamics simulation

    SciTech Connect (OSTI)

    Keblinski, P.; Phillpot, S.R.; Wolf, D.; Gleiter, H.

    1996-08-01

    A recent molecular dynamics simulation method for growth of fully dense nanocrystalline materials crystallized from melt was used with the Stillinger-Weber three-body potential to synthesize nanocrystalline Si with a grain size up to 75{Angstrom}. Structures of the highly constrained grain boundaries (GBs), triple lines, and point grain junctions were found to be highly disordered and similar to the structure of amorphous Si. These and earlier results for fcc metals suggest that a nanocrystalline microstructure may be viewed as a two-phase system, namely an ordered crystalline phase in the grain interiors connected by an amorphous, intergranular, glue-like phase. Analysis of the structures of bicrystalline GBs in the same materials reveals the presence of an amorphous intergranular equilibrium phase only in the high-energy but not the low-energy GBs, suggesting that only high-energy boundaries are present in nanocrystalline microstructures.

  6. Nucleation Rate Analysis of Methane Hydrate from Molecular Dynamics Simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yuhara, Daisuke; Barnes, Brian C.; Suh, Donguk; Knott, Brandon C.; Beckham, Gregg T.; Yasuoka, Kenji; Wu, David T.; Amadeu K. Sum

    2015-01-06

    Clathrate hydrates are solid crystalline structures most commonly formed from solutions that have nucleated to form a mixed solid composed of water and gas. Understanding the mechanism of clathrate hydrate nucleation is essential to grasp the fundamental chemistry of these complex structures and their applications. Molecular dynamics (MD) simulation is an ideal method to study nucleation at the molecular level because the size of the critical nucleus and formation rate occur on the nano scale. Moreover, various analysis methods for nucleation have been developed through MD to analyze nucleation. In particular, the mean first-passage time (MFPT) and survival probability (SP)more » methods have proven to be effective in procuring the nucleation rate and critical nucleus size for monatomic systems. This study assesses the MFPT and SP methods, previously used for monatomic systems, when applied to analyzing clathrate hydrate nucleation. Because clathrate hydrate nucleation is relatively difficult to observe in MD simulations (due to its high free energy barrier), these methods have yet to be applied to clathrate hydrate systems. In this study, we have analyzed the nucleation rate and critical nucleus size of methane hydrate using MFPT and SP methods from data generated by MD simulations at 255 K and 50 MPa. MFPT was modified for clathrate hydrate from the original version by adding the maximum likelihood estimate and growth effect term. The nucleation rates were calculated by MFPT and SP methods and are within 5%; the critical nucleus size estimated by the MFPT method was 50% higher, than values obtained through other more rigorous but computationally expensive estimates. These methods can also be extended to the analysis of other clathrate hydrates.« less

  7. Molecular Dynamics Simulation of Thermodynamic Properties in Uranium Dioxide

    SciTech Connect (OSTI)

    Wang, Xiangyu; Wu, Bin; Gao, Fei; Li, Xin; Sun, Xin; Khaleel, Mohammad A.; Akinlalu, Ademola V.; Liu, L.

    2014-03-01

    In the present study, we investigated the thermodynamic properties of uranium dioxide (UO2) by molecular dynamics (MD) simulations. As for solid UO2, the lattice parameter, density, and enthalpy obtained by MD simulations were in good agreement with existing experimental data and previous theoretical predictions. The calculated thermal conductivities matched the experiment results at the midtemperature range but were underestimated at very low and very high temperatures. The calculation results of mean square displacement represented the stability of uranium at all temperatures and the high mobility of oxygen toward 3000 K. By fitting the diffusivity constant of oxygen with the Vogel-Fulcher-Tamman law, we noticed a secondary phase transition near 2006.4 K, which can be identified as a strong to fragile supercooled liquid or glass phase transition in UO2. By fitting the oxygen diffusion constant with the Arrhenius equation, activation energies of 2.0 and 2.7 eV that we obtained were fairly close to the recommended values of 2.3 to 2.6 eV. Xiangyu Wang, Bin Wu, Fei Gao, Xin Li, Xin Sun, Mohammed A. Khaleel, Ademola V. Akinlalu and Li Liu

  8. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect (OSTI)

    Pan, Jianjun [University of South Florida, Tampa (USF)] [University of South Florida, Tampa (USF); Cheng, Xiaolin [ORNL] [ORNL; Monticelli, Luca [Institut National de la Sant et de la Recherche Mdicale (INSERM) and INTS, France] [Institut National de la Sant et de la Recherche Mdicale (INSERM) and INTS, France; Heberle, Frederick A [ORNL] [ORNL; Kucerka, Norbert [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,] [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,; Tieleman, D. Peter [University of Calgary, ALberta, Canada] [University of Calgary, ALberta, Canada; Katsaras, John [ORNL] [ORNL

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  9. First-principles molecular dynamics simulations of condensed phase V-type

    Office of Scientific and Technical Information (OSTI)

    nerve agent reaction pathways and energy barriers (Journal Article) | SciTech Connect First-principles molecular dynamics simulations of condensed phase V-type nerve agent reaction pathways and energy barriers Citation Details In-Document Search Title: First-principles molecular dynamics simulations of condensed phase V-type nerve agent reaction pathways and energy barriers Authors: Gee, R H ; Kuo, I W ; Chinn, S C ; Raber, E Publication Date: 2011-07-11 OSTI Identifier: 1184114 Report

  10. Large-Scale First-Principles Molecular Dynamics Simulations on the

    Office of Scientific and Technical Information (OSTI)

    BlueGene/L Platform using the Qbox Code (Conference) | SciTech Connect Conference: Large-Scale First-Principles Molecular Dynamics Simulations on the BlueGene/L Platform using the Qbox Code Citation Details In-Document Search Title: Large-Scale First-Principles Molecular Dynamics Simulations on the BlueGene/L Platform using the Qbox Code We demonstrate that the Qbox code supports unprecedented large-scale First-Principles Molecular Dynamics (FPMD) applications on the BlueGene/L

  11. Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations

    SciTech Connect (OSTI)

    Wang, Jing-Fang; Shanghai Center for Bioinformation Technology, 100 Qinzhou Road, Shanghai 200235; Gordon Life Science Institute, 13784 Torrey Del Mar Drive, San Diego, CA 92130 ; Chou, Kuo-Chen

    2009-12-18

    Rab5a is currently a most interesting target because it is responsible for regulating the early endosome fusion in endocytosis and possibly the budding process. We utilized longtime-scale molecular dynamics simulations to investigate the internal motion of the wild-type Rab5a and its A30P mutant. It was observed that, after binding with GTP, the global flexibility of the two proteins is increasing, while the local flexibility in their sensitive sites (P-loop, switch I and II regions) is decreasing. Also, the mutation of Ala30 to Pro30 can cause notable flexibility variations in the sensitive sites. However, this kind of variations is dramatically reduced after binding with GTP. Such a remarkable feature is mainly caused by the water network rearrangements in the sensitive sites. These findings might be of use for revealing the profound mechanism of the displacements of Rab5a switch regions, as well as the mechanism of the GDP dissociation and GTP association.

  12. Growth of bi- and tri-layered graphene on silicon carbide substrate via molecular dynamics simulation

    SciTech Connect (OSTI)

    Min, Tjun Kit; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    Molecular dynamics (MD) simulation with simulated annealing method is used to study the growth process of bi- and tri-layered graphene on a 6H-SiC (0001) substrate via molecular dynamics simulation. Tersoff-Albe-Erhart (TEA) potential is used to describe the inter-atomic interactions among the atoms in the system. The formation temperature, averaged carbon-carbon bond length, pair correlation function, binding energy and the distance between the graphene formed and the SiC substrate are quantified. The growth mechanism, graphitization of graphene on the SiC substrate and characteristics of the surface morphology of the graphene sheet obtained in our MD simulation compare well to that observed in epitaxially grown graphene experiments and other simulation works.

  13. Molecular dynamics and Monte Carlo simulations resolve apparent diffusion rate differences for proteins confined in nanochannels

    SciTech Connect (OSTI)

    Tringe, J. W.; Ileri, N.; Levie, H. W.; Stroeve, P.; Ustach, V.; Faller, R.; Renaud, P.

    2015-08-01

    We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage. Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.

  14. Molecular dynamics and Monte Carlo simulations resolve apparent diffusion rate differences for proteins confined in nanochannels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tringe, J. W.; Ileri, N.; Levie, H. W.; Stroeve, P.; Ustach, V.; Faller, R.; Renaud, P.

    2015-08-01

    We use Molecular Dynamics and Monte Carlo simulations to examine molecular transport phenomena in nanochannels, explaining four orders of magnitude difference in wheat germ agglutinin (WGA) protein diffusion rates observed by fluorescence correlation spectroscopy (FCS) and by direct imaging of fluorescently-labeled proteins. We first use the ESPResSo Molecular Dynamics code to estimate the surface transport distance for neutral and charged proteins. We then employ a Monte Carlo model to calculate the paths of protein molecules on surfaces and in the bulk liquid transport medium. Our results show that the transport characteristics depend strongly on the degree of molecular surface coverage.more » Atomic force microscope characterization of surfaces exposed to WGA proteins for 1000 s show large protein aggregates consistent with the predicted coverage. These calculations and experiments provide useful insight into the details of molecular motion in confined geometries.« less

  15. Modeling ramp compression experiments using large-scale molecular dynamics simulation.

    SciTech Connect (OSTI)

    Mattsson, Thomas Kjell Rene; Desjarlais, Michael Paul; Grest, Gary Stephen; Templeton, Jeremy Alan; Thompson, Aidan Patrick; Jones, Reese E.; Zimmerman, Jonathan A.; Baskes, Michael I.; Winey, J. Michael; Gupta, Yogendra Mohan; Lane, J. Matthew D.; Ditmire, Todd; Quevedo, Hernan J.

    2011-10-01

    Molecular dynamics simulation (MD) is an invaluable tool for studying problems sensitive to atomscale physics such as structural transitions, discontinuous interfaces, non-equilibrium dynamics, and elastic-plastic deformation. In order to apply this method to modeling of ramp-compression experiments, several challenges must be overcome: accuracy of interatomic potentials, length- and time-scales, and extraction of continuum quantities. We have completed a 3 year LDRD project with the goal of developing molecular dynamics simulation capabilities for modeling the response of materials to ramp compression. The techniques we have developed fall in to three categories (i) molecular dynamics methods (ii) interatomic potentials (iii) calculation of continuum variables. Highlights include the development of an accurate interatomic potential describing shock-melting of Beryllium, a scaling technique for modeling slow ramp compression experiments using fast ramp MD simulations, and a technique for extracting plastic strain from MD simulations. All of these methods have been implemented in Sandia's LAMMPS MD code, ensuring their widespread availability to dynamic materials research at Sandia and elsewhere.

  16. Dielectric relaxation of ethylene carbonate and propylene carbonate from molecular dynamics simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chaudhari, Mangesh I.; You, Xinli; Pratt, Lawrence R.; Rempe, Susan B.

    2015-11-24

    Ethylene carbonate (EC) and propylene carbonate (PC) are widely used solvents in lithium (Li)-ion batteries and supercapacitors. Ion dissolution and diffusion in those media are correlated with solvent dielectric responses. Here, we use all-atom molecular dynamics simulations of the pure solvents to calculate dielectric constants and relaxation times, and molecular mobilities. The computed results are compared with limited available experiments to assist more exhaustive studies of these important characteristics. As a result, the observed agreement is encouraging and provides guidance for further validation of force-field simulation models for EC and PC solvents.

  17. Accelerated molecular dynamics and equation-free methods for simulating diffusion in solids.

    SciTech Connect (OSTI)

    Deng, Jie; Zimmerman, Jonathan A.; Thompson, Aidan Patrick; Brown, William Michael; Plimpton, Steven James; Zhou, Xiao Wang; Wagner, Gregory John; Erickson, Lindsay Crowl

    2011-09-01

    Many of the most important and hardest-to-solve problems related to the synthesis, performance, and aging of materials involve diffusion through the material or along surfaces and interfaces. These diffusion processes are driven by motions at the atomic scale, but traditional atomistic simulation methods such as molecular dynamics are limited to very short timescales on the order of the atomic vibration period (less than a picosecond), while macroscale diffusion takes place over timescales many orders of magnitude larger. We have completed an LDRD project with the goal of developing and implementing new simulation tools to overcome this timescale problem. In particular, we have focused on two main classes of methods: accelerated molecular dynamics methods that seek to extend the timescale attainable in atomistic simulations, and so-called 'equation-free' methods that combine a fine scale atomistic description of a system with a slower, coarse scale description in order to project the system forward over long times.

  18. Simulation and dynamics of entropy-driven, molecular self-assembly processes

    SciTech Connect (OSTI)

    Mayer, B.; Kohler, G.,; Rasmussen, S.,

    1997-04-01

    Molecular self-assembly is frequently found to generate higher-order functional structures in biochemical systems. One such example is the self-assembly of lipids in aqueous solution forming membranes, micelles, and vesicles; another is the dynamic formation and rearrangement of the cytoskeleton. These processes are often driven by local, short-range forces and therefore the dynamics is solely based on local interactions. In this paper, we introduce a cellular automata based simulation, the lattice molecular automaton, in which data structures, representing different molecular entities such as water and hydrophilic and hydrophobic monomers, share locally propagated force information on a hexagonal, two-dimensional lattice. The purpose of this level of description is the simulation of entropic and enthalpic flows in a microcanonical, molecular ensemble to gain insight about entropy-driven processes in molecular many-particle systems. Three applications are shown, i.e., modeling structural features of a polar solvent, cluster formation of hydrophobic monomers in a polar environment, and the self-assembly of polymers. Processes leading to phase separation on a molecular level are discussed. A thorough discussion of the computational details, advantages, and limitations of the lattice molecular automaton approach is given elsewhere [B. Mayer and S. Rasmussen (unpublished)]. {copyright} {ital 1997} {ital The American Physical Society}

  19. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fattebert, Jean-Luc; Lau, Edmond Y.; Bennion, Brian J.; Huang, Patrick; Lightstone, Felice C.

    2015-10-22

    Enzymes are complicated solvated systems that typically require many atoms to simulate their function with any degree of accuracy. We have recently developed numerical techniques for large scale First-Principles molecular dynamics simulations and applied them to study the enzymatic reaction catalyzed by acetylcholinesterase. We carried out Density functional theory calculations for a quantum mechanical (QM) sub- system consisting of 612 atoms with an O(N) complexity finite-difference approach. The QM sub-system is embedded inside an external potential field representing the electrostatic effect due to the environment. We obtained finite temperature sampling by First-Principles molecular dynamics for the acylation reaction of acetylcholinemore » catalyzed by acetylcholinesterase. Our calculations shows two energies barriers along the reaction coordinate for the enzyme catalyzed acylation of acetylcholine. In conclusion, the second barrier (8.5 kcal/mole) is rate-limiting for the acylation reaction and in good agreement with experiment.« less

  20. Dispersion curves from short-time molecular dynamics simulation. 1. Diatomic chain results

    SciTech Connect (OSTI)

    Noid, D.W.; Broocks, B.T.; Gray, S.K.; Marple, S.L.

    1988-06-16

    The multiple signal classification method (MUSIC) for frequency estimation is used to compute the frequency dispersion curves of a diatomic chain from the time-dependent structure factor. In this paper, the authors demonstrate that MUSIC can accurately determine the frequencies from very short time trajectories. MUSIC is also used to show how the frequencies can vary in time, i.e., along a trajectory. The method is ideally suited for analyzing molecular dynamics simulations of large systems.

  1. A Linked-Cell Domain Decomposition Method for Molecular Dynamics Simulation on a Scalable Multiprocessor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, L. H.; Brooks III, E. D.; Belak, J.

    1992-01-01

    A molecular dynamics algorithm for performing large-scale simulations using the Parallel C Preprocessor (PCP) programming paradigm on the BBN TC2000, a massively parallel computer, is discussed. The algorithm uses a linked-cell data structure to obtain the near neighbors of each atom as time evoles. Each processor is assigned to a geometric domain containing many subcells and the storage for that domain is private to the processor. Within this scheme, the interdomain (i.e., interprocessor) communication is minimized.

  2. Evaporative cooling of microscopic water droplets in vacuo: Molecular dynamics simulations and kinetic gas theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schlesinger, Daniel; Sellberg, Jonas A.; Nilsson, Anders; Pettersson, Lars G. M.

    2016-03-22

    In the present study, we investigate the process of evaporative cooling of nanometer-sized droplets in vacuum using molecular dynamics simulations with the TIP4P/2005 water model. The results are compared to the temperature evolution calculated from the Knudsen theory of evaporation which is derived from kinetic gas theory. The calculated and simulation results are found to be in very good agreement for an evaporation coefficient equal to unity. Lastly, our results are of interest to experiments utilizing droplet dispensers as well as to cloud micro-physics.

  3. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    SciTech Connect (OSTI)

    Zen, Andrea; Luo, Ye Mazzola, Guglielmo Sorella, Sandro; Guidoni, Leonardo

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  4. Dynamical consequences of a constraint on the Langevin thermostat in molecular cluster simulation

    SciTech Connect (OSTI)

    Stinson, Jake L.; Kathmann, Shawn M.; Ford, Ian J.

    2014-11-17

    We investigate some unusual behaviour observed while performing molecular dynamics simulations with the DL_POLY_4.03 code. Under the standard Langevin thermostat, atoms appear to be thermalised to different temperatures, depending on their mass and on the total number of particles in the system. We find that an imposed constraint whereby no thermal noise acts on the centre of mass of the system is the cause of the unexpected behaviour. This is demonstrated by solving the stochastic dynamics for the constrained thermostat and comparing the results with simulation data. The effect of the constraint can be considerable for small systems with disparate masses. By removing the constraint the Langevin thermostat may be restored to its intended behaviour and this has been implemented as an option in DL_POLY_4.05. SMK was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  5. Substructured multibody molecular dynamics.

    SciTech Connect (OSTI)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  6. Molecular dynamics simulations of H{sub 2} adsorption in tetramethyl ammonium lithium phthalocyanine crystalline structures.

    SciTech Connect (OSTI)

    Lamonte, K.; Gomez Gualdron, D.; Scanlon, L. G.; Sandi, G.; Feld, W.; Balbuena, P. B.; Chemical Sciences and Engineering Division; Texas A&M Univ.; Wright-Patterson Air Force Base; Wright State Univ.

    2008-11-01

    Tetramethyl ammonium lithium phthalocyanine is explored as a potential material for storage of molecular hydrogen. Density functional theory calculations are used to investigate the molecular structure and the dimer conformation. Additional scans performed to determine the interactions of a H{sub 2} molecule located at various distances from the molecular sites are used to generate a simple force field including dipole-induced-dipole interactions. This force field is employed in molecular dynamics simulations to calculate adsorption isotherms at various pressures. The regions of strongest adsorption are quantified as functions of temperature, pressure, and separation between molecules in the adsorbent phase, and compared to the regions of strongest binding energy as given by the proposed force field. It is found that the total adsorption could not be predicted only from the spatial distribution of the strongest binding energies; the available volume is the other contributing factor even if the volume includes regions of much lower binding energy. The results suggest that the complex anion is primarily involved in the adsorption process with molecular hydrogen, whereas the cation serves to provide access for hydrogen adsorption in both sides of the anion molecular plane, and spacing between the planes.

  7. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore,more » by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.« less

  8. A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation

    SciTech Connect (OSTI)

    Zhang, Xing; Lei, Dongsheng; Zhang, Lei; Rames, Matthew; Zhang, Shengli

    2015-03-20

    Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore, by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.

  9. Molecular dynamics simulations of organic SIMS with Cu{sub n} (n=1-3) clusters

    SciTech Connect (OSTI)

    Townes, J. A.; White, A. K.; Krantzman, K. D.; Garrison, B. J.

    1999-06-10

    Molecular dynamics simulations have been performed to study the effect of cluster size on the emission yield and damage cross section in organic SIMS. A model system composed of a monolayer of biphenyl molecules on a Cu(001) substrate was bombarded with Cu{sub n} (n=1-3) projectiles at kinetic energies of 0.100 keV per atom. The yield increases with cluster size, but a nonlinear enhancement in yield is not observed. The yield-to-damage ratio, on the other hand, increases with the use of clusters, indicating that clusters have the potential to improve the sensitivity of SIMS.

  10. Simulations of fluorescence solvatochromism in substituted PPV oligomers from excited state molecular dynamics with implicit solvent

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bjorgaard, J. A.; Nelson, T.; Kalinin, K.; Kuzmenko, V.; Velizhanin, K. A.; Tretiak, S.

    2015-04-28

    In this study, an efficient method of treating solvent effects in excited state molecular dynamics (ESMD) is implemented and tested by exploring the solvatochromic effects in substituted p-phenylene vinylene oligomers. A continuum solvent model is used which has very little computational overhead. This allows simulations of ESMD with solvent effects on the scale of hundreds of picoseconds for systems of up to hundreds of atoms. At these time scales, solvatochromic shifts in fluoresence spectra can be described. Solvatochromic shifts in absorption and fluorescence spectra from ESMD are compared with time-dependent density functional theory calculations and experiments.

  11. Molecular dynamics simulations of grain boundaries in thin nanocrystalline silicon films

    SciTech Connect (OSTI)

    Berman, G.P.; Doolen, G.D.; Mainieri, R.; Campbell, D.K.; Luchnikov, V.A. |

    1997-10-01

    Using molecular dynamics simulations, the grain boundaries in thin polycrystalline silicon films (considered as promising material for future nanoelectronic devices) are investigated. It is shown that in polysilicon film with randomly oriented grains the majority of grain boundaries are disordered. However, some grains with small mutual orientation differences can form extended crystalline patterns. The structure of the grain boundaries satisfies the thermodynamical criterion. The majority of atoms in the grain boundaries are tetrahedrally coordinated with the nearest neighbors, even though the grain boundaries are disordered. The grain boundary matter is characterized as an amorphous phase with a characteristic tetragonality value.

  12. Molecular Dynamics Simulations of Displacement Cascades in Single and Polycrystalline Zirconia

    SciTech Connect (OSTI)

    Du Jincheng

    2009-03-10

    Displacement cascades in zirconia have been studied using classical molecular dynamics simulations. Polycrystalline zirconia with nano-meter grains were created using Voronoi polyhedra construction and studied in comparison with single crystalline zirconia. The results show that displacement cascades with similar kinetic energy generated larger number of displaced atoms in polycrystalline than in the single crystal structure. The fraction of atoms with coordination number change was also higher in polycrystalline zirconia that was explained to be due to the diffusion of oxygen and relaxation at grain boundaries.

  13. Water around fullerene shape amphiphiles: A molecular dynamics simulation study of hydrophobic hydration

    SciTech Connect (OSTI)

    Varanasi, S. R. E-mail: guskova@ipfdd.de; John, A.; Guskova, O. A. E-mail: guskova@ipfdd.de; Sommer, J.-U.

    2015-06-14

    Fullerene C{sub 60} sub-colloidal particle with diameter ?1 nm represents a boundary case between small and large hydrophobic solutes on the length scale of hydrophobic hydration. In the present paper, a molecular dynamics simulation is performed to investigate this complex phenomenon for bare C{sub 60} fullerene and its amphiphilic/charged derivatives, so called shape amphiphiles. Since most of the unique properties of water originate from the pattern of hydrogen bond network and its dynamics, spatial, and orientational aspects of water in solvation shells around the solute surface having hydrophilic and hydrophobic regions are analyzed. Dynamical properties such as translational-rotational mobility, reorientational correlation and occupation time correlation functions of water molecules, and diffusion coefficients are also calculated. Slower dynamics of solvent moleculeswater retardationin the vicinity of the solutes is observed. Both the topological properties of hydrogen bond pattern and the dangling OH groups that represent surface defects in water network are monitored. The fraction of such defect structures is increased near the hydrophobic cap of fullerenes. Some dry regions of C{sub 60} are observed which can be considered as signatures of surface dewetting. In an effort to provide molecular level insight into the thermodynamics of hydration, the free energy of solvation is determined for a family of fullerene particles using thermodynamic integration technique.

  14. Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation

    SciTech Connect (OSTI)

    Liu, M. [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing100190 (China); Department of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Qiu, L., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com; Zheng, X. H., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com; Zhu, J.; Tang, D. W. [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing100190 (China)

    2014-09-07

    In this article, molecular dynamics simulation was performed to study the heat transport in secondary particles chain of silica aerogel. The two adjacent particles as the basic heat transport unit were modelled to characterize the heat transfer through the calculation of thermal resistance and vibrational density of states (VDOS). The total thermal resistance of two contact particles was predicted by non-equilibrium molecular dynamics simulations (NEMD). The defects were formed by deleting atoms in the system randomly first and performing heating and quenching process afterwards to achieve the DLCA (diffusive limited cluster-cluster aggregation) process. This kind of treatment showed a very reasonable prediction of thermal conductivity for the silica aerogels compared with the experimental values. The heat transport was great suppressed as the contact length increased or defect concentration increased. The constrain effect of heat transport was much significant when contact length fraction was in the small range (<0.5) or the defect concentration is in the high range (>0.5). Also, as the contact length increased, the role of joint thermal resistance played in the constraint of heat transport was increasing. However, the defect concentration did not affect the share of joint thermal resistance as the contact length did. VDOS of the system was calculated by numerical method to characterize the heat transport from atomic vibration view. The smaller contact length and greater defect concentration primarily affected the longitudinal acoustic modes, which ultimately influenced the heat transport between the adjacent particles.

  15. Mean ionic activity coefficients in aqueous NaCl solutions from molecular dynamics simulations

    SciTech Connect (OSTI)

    Mester, Zoltan; Panagiotopoulos, Athanassios Z.

    2015-01-28

    The mean ionic activity coefficients of aqueous NaCl solutions of varying concentrations at 298.15 K and 1 bar have been obtained from molecular dynamics simulations by gradually turning on the interactions of an ion pair inserted into the solution. Several common non-polarizable water and ion models have been used in the simulations. Gibbs-Duhem equation calculations of the thermodynamic activity of water are used to confirm the thermodynamic consistency of the mean ionic activity coefficients. While the majority of model combinations predict the correct trends in mean ionic activity coefficients, they overestimate their values at high salt concentrations. The solubility predictions also suffer from inaccuracies, with all models underpredicting the experimental values, some by large factors. These results point to the need for further ion and water model development.

  16. Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation

    SciTech Connect (OSTI)

    Dumpala, Santoshrupa; Broderick, Scott R.; Rajan, Krishna; Khalilov, Umedjon; Neyts, Erik C.; Duin, Adri C. T. van; Provine, J; Howe, Roger T.

    2015-01-05

    In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO{sub 2} and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.

  17. Insights into photodissociation dynamics of acetaldehyde from ab initio calculations and molecular dynamics simulations

    SciTech Connect (OSTI)

    Chen Shilu; Fang Weihai

    2009-08-07

    In the present paper we report a theoretical study on mechanistic photodissociation of acetaldehyde (CH{sub 3}CHO). Stationary structures for H{sub 2} and CO eliminations in the ground state (S{sub 0}) have been optimized with density functional theory method, which is followed by the intrinsic reaction coordinate and ab initio molecular dynamics calculations to confirm the elimination mechanism. Equilibrium geometries, transition states, and intersection structures for the C-C and C-H dissociations in excited states were determined by the complete-active-space self-consistent field (CASSCF) method. Based on the CASSCF optimized structures, the potential energy profiles for the dissociations were refined by performing the single-point calculations using the multireference configuration interaction method. Upon the low-energy irradiation of CH{sub 3}CHO (265 nm<{lambda}<318 nm), the T{sub 1} C-C bond fission following intersystem crossing from the S{sub 1} state is the predominant channel and the minor channel, the ground-state elimination to CH{sub 4}+CO after internal conversion (IC) from S{sub 1} to S{sub 0}, could not be excluded. With the photon energy increasing, another pathway of IC, achieved via an S{sub 1}/S{sub 0} intersection point resulting from the S{sub 1} C-C bond fission, becomes accessible and increases the yield of CH{sub 4}+CO.

  18. Molecular dynamics simulation of mechanical deformation of ultra-thin metal and ceramic films

    SciTech Connect (OSTI)

    Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

    1995-04-01

    We present an overview of the molecular dynamics computer simulation method as employed in the study of the mechanical properties of surfaces at the manometer scale. The embedded atom method is used to model a clean metal surface and the bond-order model is used to model ceramic surfaces. The computer experiment consists of the indentation and scraping of a hard diamond-like tool into and across the surface. Results are presented for the (111) surface of copper and silver and for the (100) surface of silicon. We explicitly demonstrate in our point indentation simulations that nanoscale plasticity in metals takes place by nondislocation mechanisms, a result suggested by recent nanoindentation experiments. We also observe the surface to accommodate nearly the entire volume of the tip and the annealing out of plastic work as the tip is removed. In our orthogonal cutting simulation, we observe an interesting phenomenon: the system dynamically reorients the gain in front of the tool tip to minimize the work performed on the shear plane (i.e. the shear plane becomes an easy slip plane). Silicon transforms into an amorphous state which then flows plastically.

  19. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations

    SciTech Connect (OSTI)

    Shimojo, Fuyuki; Hattori, Shinnosuke [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States) [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Kalia, Rajiv K.; Mou, Weiwei; Nakano, Aiichiro; Nomura, Ken-ichi; Rajak, Pankaj; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States)] [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Kunaseth, Manaschai [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States) [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); National Nanotechnology Center, Pathumthani 12120 (Thailand); Ohmura, Satoshi [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States) [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Shimamura, Kohei [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States) [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, and Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395 (Japan)

    2014-05-14

    We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at the peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786?432 cores for a 50.3 10{sup 6}-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16?661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques are employed for efficiently calculating the long-range exact exchange correction and excited-state forces. The NAQMD trajectories are analyzed to extract the rates of various excitonic processes, which are then used in KMC simulation to study the dynamics of the global exciton flow network. This has allowed the study of large-scale photoexcitation dynamics in 6400-atom amorphous molecular solid, reaching the experimental time scales.

  20. Quantify Water Extraction by TBP/Dodecane via Molecular Dynamics Simulations

    SciTech Connect (OSTI)

    Khomami, Bamin; Cui, Shengting; de Almeida, Valmor F.; Felker, Kevin

    2013-05-16

    The purpose of this project is to quantify the interfacial transport of water into the most prevalent nuclear reprocessing solvent extractant mixture, namely tri-butyl- phosphate (TBP) and dodecane, via massively parallel molecular dynamics simulations on the most powerful machines available for open research. Specifically, we will accomplish this objective by evolving the water/TBP/dodecane system up to 1 ms elapsed time, and validate the simulation results by direct comparison with experimentally measured water solubility in the organic phase. The significance of this effort is to demonstrate for the first time that the combination of emerging simulation tools and state-of-the-art supercomputers can provide quantitative information on par to experimental measurements for solvent extraction systems of relevance to the nuclear fuel cycle. Results: Initially, the isolated single component, and single phase systems were studied followed by the two-phase, multicomponent counterpart. Specifically, the systems we studied were: pure TBP; pure n-dodecane; TBP/n-dodecane mixture; and the complete extraction system: water-TBP/n-dodecane two phase system to gain deep insight into the water extraction process. We have completely achieved our goal of simulating the molecular extraction of water molecules into the TBP/n-dodecane mixture up to the saturation point, and obtained favorable comparison with experimental data. Many insights into fundamental molecular level processes and physics were obtained from the process. Most importantly, we found that the dipole moment of the extracting agent is crucially important in affecting the interface roughness and the extraction rate of water molecules into the organic phase. In addition, we have identified shortcomings in the existing OPLS-AA force field potential for long-chain alkanes. The significance of this force field is that it is supposed to be optimized for molecular liquid simulations. We found that it failed for dodecane and/or longer chains for this particular solvent extraction application. We have proposed a simple way to circumvent the artificial crystallization of the chains at ambient temperature.

  1. Molecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greathouse, Jeffery A.; Cygan, Randall T.; Fredrich, Joanne T.; Jerauld, Gary R.

    2016-02-01

    In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to themore » transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.« less

  2. Structure of rigid polymers confined to nanoparticles: Molecular dynamics simulations insight

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maskey, Sabina; Lane, J. Matthew D.; Perahia, Dvora; Grest, Gary S.

    2016-02-04

    Nanoparticles (NPs) grafted with organic layers form hybrids able to retain their unique properties through integration into the mesoscopic scale. The organic layer structure and response often determine the functionality of the hybrids on the mesoscopic length scale. Using molecular dynamics (MD) simulations, we probe the conformation of luminescent rigid polymers, dialkyl poly(p-phenylene ethynylene)s (PPE), end-grafted onto a silica nanoparticle in different solvents as the molecular weights and polymer coverages are varied. We find that, in contrast to NP-grafted flexible polymers, the chains are fully extended independent of the solvent. In toluene and decane, which are good solvents, the graftedmore » PPEs chains assume a similar conformation to that observed in dilute solutions. In water, which is a poor solvent for the PPEs, the polymer chains form one large cluster but remain extended. The radial distribution of the chains around the core of the nanoparticle is homogeneous in good solvents, whereas in poor solvents clusters are formed independent of molecular weights and coverages. As a result, the clustering is distinctively different from the response of grafted flexible and semiflexible polymers.« less

  3. Molecular dynamics simulations of 30 and 2 keV Ga in Si

    SciTech Connect (OSTI)

    Giannuzzi, Lucille A.; Garrison, Barbara J.

    2007-09-15

    Focused Ga{sup +} ion beams are routinely used at high incident angles for specimen preparation. Molecular dynamics simulations of 2 and 30 keV Ga bombardment of Si(011) at a grazing angle of 88 deg. were conducted to assess sputtering characteristics and damage depth. The bombardment of atomically flat surfaces and surfaces with vacancies shows little energy transfer yielding ion reflection. The bombardment of surfaces with adatoms allows for the coupling of the energy of motion parallel to the surface into the substrate resulting in sputtering. The adatom and one other Si atom eject, and motion in the substrate occurs down to a depth of 13 A. Experimental evidence shows that sputtering is a reality, suggesting that an atomically flat surface is never achieved.

  4. Solvent Electrostriction-Driven Peptide Folding Revealed by Quasi Gaussian Entropy Theory and Molecular Dynamics Simulation

    SciTech Connect (OSTI)

    Noe, F [University of Heidelberg; Daidone, Isabella [University of Heidelberg; Smith, Jeremy C [ORNL; DiNola, Alfredo [University of Rome; Amadei, Andrea [University of Rome 'Tor Vergata', Rome, Italy

    2008-08-01

    A quantitative understanding of the complex relationship between microscopic structure and the thermodynamics driving peptide and protein folding is a major goal of biophysical chemistry. Here, we present a methodology comprising the use of an extended quasi-Gaussian entropy theory parametrized using molecular dynamics simulation that provides a complete description of the thermodynamics of peptide conformational states. The strategy is applied to analyze the conformational thermodynamics of MR121-GSGSW, a peptide well characterized in experimental studies. The results demonstrate that the extended state of the peptide possesses the lowest partial molar entropy. The origin of this entropy decrease is found to be in the increase of the density and orientational order of the hydration water molecules around the peptide, induced by the 'unfolding'. While such a reduction of the configurational entropy is usually associated with the hydrophobic effect, it is here found to be mainly due to the interaction of the solute charges with the solvent, that is, electrostriction.

  5. Solvent Electrostriction Driven Peptide Folding revealed by Quasi-Gaussian Entropy Theory and Molecular Dynamics Simulation

    SciTech Connect (OSTI)

    Noe, F [University of Heidelberg; Daidone, Isabella [University of Heidelberg; Smith, Jeremy C [ORNL; DiNola, Alfredo [University of Rome; Amadei, Andrea [University of Rome 'Tor Vergata', Rome, Italy

    2008-06-01

    A quantitative understanding of the complex relationship between microscopic structure and the thermodynamics driving peptide and protein folding is a major goal of biophysical chemistry. Here, we present a methodology comprising the use of an extended quasi-Gaussian entropy theory parametrized using molecular dynamics simulation that provides a complete description of the thermodynamics of peptide conformational states. The strategy is applied to analyze the conformational thermodynamics of MR121-GSGSW, a peptide well characterized in experimental studies. The results demonstrate that the extended state of the peptide possesses the lowest partial molar entropy. The origin of this entropy decrease is found to be in the increase of the density and orientational order of the hydration water molecules around the peptide, induced by the 'unfolding'. While such a reduction of the configurational entropy is usually associated with the hydrophobic effect, it is here found to be mainly due to the interaction of the solute charges with the solvent, that is, electrostriction.

  6. Melting behaviour of gold-platinum nanoalloy clusters by molecular dynamics simulations

    SciTech Connect (OSTI)

    Ong, Yee Pin; Yoon, Tiem Leong; Lim, Thong Leng

    2015-04-24

    The melting behavior of bimetallic gold-platinum nanoclusters is studied by applying Brownian-type isothermal molecular dynamics (MD) simulation, a program modified from the cubic coupling scheme (CCS). The process begins with the ground-state structures obtained from global minimum search algorithm and proceeds with the investigation of the effect of temperature on the thermal properties of gold-platinum nanoalloy clusters. N-body Gupta potential has been employed in order to account for the interactions between gold and platinum atoms. The ground states of the nanoalloy clusters, which are core-shell segregated, are heated until they become thermally segregated. The detailed melting mechanism of the nanoalloy clusters is studied via this approach to provide insight into the thermal stability of the nanoalloy clusters.

  7. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    SciTech Connect (OSTI)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; Johns, Douglas G.; Charles, M. Arthur; Ren, Gang

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobic environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.

  8. HDL surface lipids mediate CETP binding as revealed by electron microscopy and molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Meng; Charles, River; Tong, Huimin; Zhang, Lei; Patel, Mili; Wang, Francis; Rames, Matthew J.; Ren, Amy; Rye, Kerry-Anne; Qiu, Xiayang; et al

    2015-03-04

    Cholesteryl ester transfer protein (CETP) mediates the transfer of cholesterol esters (CE) from atheroprotective high-density lipoproteins (HDL) to atherogenic low-density lipoproteins (LDL). CETP inhibition has been regarded as a promising strategy for increasing HDL levels and subsequently reducing the risk of cardiovascular diseases (CVD). Although the crystal structure of CETP is known, little is known regarding how CETP binds to HDL. Here, we investigated how various HDL-like particles interact with CETP by electron microscopy and molecular dynamics simulations. Results showed that CETP binds to HDL via hydrophobic interactions rather than protein-protein interactions. The HDL surface lipid curvature generates a hydrophobicmore » environment, leading to CETP hydrophobic distal end interaction. This interaction is independent of other HDL components, such as apolipoproteins, cholesteryl esters and triglycerides. Thus, disrupting these hydrophobic interactions could be a new therapeutic strategy for attenuating the interaction of CETP with HDL.« less

  9. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    SciTech Connect (OSTI)

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, Tina M.

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to compare the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.

  10. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; Krumhansl, James L.; Nenoff, Tina M.

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to comparemore » the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm–1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba2+ and Mg2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs+ and Na+), which have relatively small hydration enthalpies.« less

  11. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-12-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-μs MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculationsmore » of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that protein–solvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.« less

  12. Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering

    SciTech Connect (OSTI)

    Wall, Michael E.; Van Benschoten, Andrew H.; Sauter, Nicholas K.; Adams, Paul D.; Fraser, James S.; Terwilliger, Thomas C.

    2014-12-01

    X-ray diffraction from protein crystals includes both sharply peaked Bragg reflections and diffuse intensity between the peaks. The information in Bragg scattering is limited to what is available in the mean electron density. The diffuse scattering arises from correlations in the electron density variations and therefore contains information about collective motions in proteins. Previous studies using molecular-dynamics (MD) simulations to model diffuse scattering have been hindered by insufficient sampling of the conformational ensemble. To overcome this issue, we have performed a 1.1-?s MD simulation of crystalline staphylococcal nuclease, providing 100-fold more sampling than previous studies. This simulation enables reproducible calculations of the diffuse intensity and predicts functionally important motions, including transitions among at least eight metastable states with different active-site geometries. The total diffuse intensity calculated using the MD model is highly correlated with the experimental data. In particular, there is excellent agreement for the isotropic component of the diffuse intensity, and substantial but weaker agreement for the anisotropic component. The decomposition of the MD model into protein and solvent components indicates that proteinsolvent interactions contribute substantially to the overall diffuse intensity. In conclusion, diffuse scattering can be used to validate predictions from MD simulations and can provide information to improve MD models of protein motions.

  13. Lubricant characterization by molecular simulation

    SciTech Connect (OSTI)

    Moore, J.D.; Cui, S.T.; Cummings, P.T.; Cochran, H.D.

    1997-12-01

    The authors have reported the calculation of the kinematic viscosity index of squalane from nonequilibrium molecular dynamics simulations. This represents the first accurate quantitative prediction of this measure of lubricant performance by molecular simulation. Using the same general alkane potential model, this computational approach offers the possibility of predicting the performance of potential lubricants prior to synthesis. Consequently, molecular simulation is poised to become an important tool for future lubricant development.

  14. High-rate Plastic Deformation of Nanocrystalline Tantalum to Large Strains: Molecular Dynamics Simulation

    SciTech Connect (OSTI)

    Rudd, R E

    2009-02-05

    Recent advances in the ability to generate extremes of pressure and temperature in dynamic experiments and to probe the response of materials has motivated the need for special materials optimized for those conditions as well as a need for a much deeper understanding of the behavior of materials subjected to high pressure and/or temperature. Of particular importance is the understanding of rate effects at the extremely high rates encountered in those experiments, especially with the next generation of laser drives such as at the National Ignition Facility. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum to investigate the processes associated with plastic deformation for strains up to 100%. We use initial atomic configurations that were produced through simulations of solidification in the work of Streitz et al [Phys. Rev. Lett. 96, (2006) 225701]. These 3D polycrystalline systems have typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. This analysis technique is robust and fast, and has been used to compute the orientations on the fly during our parallel MD simulations on supercomputers. We find both dislocation and twinning processes are important, and they interact in the weak strain hardening in these extremely fine-grained microstructures.

  15. Molecular Dynamics Simulation and Analysis of Interfacial Water at Selected Sulfide Mineral Surfaces under Anaerobic Conditions

    SciTech Connect (OSTI)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2014-04-10

    In this paper, we report on a molecular dynamics simulation (MDS) study of the behavior of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. The study revealed the interfacial water structure and wetting characteristics of the pyrite (100) surface, galena (100) surface, chalcopyrite (012) surface, sphalerite (110) surface, and molybdenite surfaces (i.e., the face, armchair-edge, and zigzag-edge surfaces), including simulated contact angles, relative number density profiles, water dipole orientations, hydrogen-bonding, and residence times. For force fields of the metal and sulfur atoms in selected sulfide minerals used in the MDS, we used the universal force field (UFF) and another set of force fields optimized by quantum chemical calculations for interactions with interfacial water molecules at selected sulfide mineral surfaces. Simulation results for the structural and dynamic properties of interfacial water molecules indicate the natural hydrophobic character for the selected sulfide mineral surfaces under anaerobic conditions as well as the relatively weak hydrophobicity for the sphalerite (110) surface and two molybdenite edge surfaces. Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE, funded work performed by Liem X. Dang. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions.

  16. Molecular Dynamics Simulations of Tri-n-butyl-phosphate/n-Dodecane Mixture: Thermophysical Properties and Molecular Structure

    SciTech Connect (OSTI)

    de Almeida, Valmor F; Cui, Shengting; Khomami, Bamin

    2014-01-01

    Molecular dynamics simulations of tri-n-butyl-phosphate (TBP)/n-dodecane mixture in the liquid phase have been carried out using two recently developed TBP force field models (J. Phys. Chem. B 2012, 116, 305) in combination with the all-atom optimized potentials for liquid simulations (OPLS-AA) force field model for n-dodecane. Specifically, the electric dipole moment of TBP, mass density of the mixture, and the excess volume of mixing were computed with TBP mole fraction ranging from 0 to 1. It is found that the aforementioned force field models accurately predict the mass density of the mixture in the entire mole fraction range. Commensurate with experimental measurements, the electric dipole moment of the TBP was found to slightly increase with the mole fraction of TBP in the mixture. Also, in accord with experimental data, the excess volume of mixing is positive in the entire mole fraction range, peaking at TBP mole fraction range 0.3 0.5. Finally, a close examination of the spatial pair correlation functions between TBP molecules, and between TBP and n-dodecane molecules, revealed formation of TBP dimers through self-association at close distance, a phenomenon with ample experimental evidence.

  17. Nonequilibrium Molecular Dynamics Simulations of the Rheology of Confined and Bulk Alkane Liquids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Classical Molecular Dynamics Codes and Coupling of Length Scales Peter T. Cummings 1,2 , Normand Modine 3 and Randy Cygan 4 1 Chemical and Biomolecular Engineering, Vanderbilt U. 2 Center for Nanophase Materials Sciences, ORNL 3 Center for Integrated Nanotechnologies, SNL 4 Geochemistry Department, SNL BES / ASCR / NERSC Workshop Hilton Washington DC/Rockville Executive Meeting Center February 9-10, 2010 Tuesday, February 9, 2010 Classical Molecular Dynamics  A reminder...  For N atoms,

  18. Molecular dynamics simulations of shock waves in hydroxyl-terminated polybutadiene melts: Mechanical and structural responses

    SciTech Connect (OSTI)

    Frhlich, Markus G. E-mail: ThompsonDon@missouri.edu; Sewell, Thomas D. Thompson, Donald L. E-mail: ThompsonDon@missouri.edu

    2014-01-14

    The mechanical and structural responses of hydroxyl-terminated cis-1,4-polybutadiene melts to shock waves were investigated by means of all-atom non-reactive molecular dynamics simulations. The simulations were performed using the OPLS-AA force field but with the standard 12-6 Lennard-Jones potential replaced by the Buckingham exponential-6 potential to better represent the interactions at high compression. Monodisperse systems containing 64, 128, and 256 backbone carbon atoms were studied. Supported shock waves were generated by impacting the samples onto stationary pistons at impact velocities of 1.0, 1.5, 2.0, and 2.5 km s{sup ?1}, yielding shock pressures between approximately 2.8 GPa and 12.5 GPa. Single-molecule structural properties (squared radii of gyration, asphericity parameters, and orientational order parameters) and mechanical properties (density, shock pressure, shock temperature, and shear stress) were analyzed using a geometric binning scheme to obtain spatio-temporal resolution in the reference frame centered on the shock front. Our results indicate that while shear stress behind the shock front is relieved on a ?0.5 ps time scale, a shock-induced transition to a glass-like state occurs with a concomitant increase of structural relaxation times by several orders of magnitude.

  19. Ab initio molecular dynamics simulation of pressure-induced phase transformation of BeO

    SciTech Connect (OSTI)

    Xiao, H. Y.; Duan, G.; Zu, X. T.; Weber, W. J.

    2011-05-05

    Ab initio molecular dynamics (MD) method has been used to study high pressure-induced phase transformation in BeO based on the local density approximation (LDA) and the generalized gradient approximation (GGA). Both methods show that the wurtzite (WZ) and zinc blende (ZB) BeO transforms to the rocksalt (RS) structure smoothly at high pressure. The transition pressures obtained from the LDA method are about 40 GPa larger than the GGA result for both WZ ? RS and ZB ? RS phase transformations, and the phase transformation mechanisms revealed by the LDA and GGA methods are different. For WZ ? RS phase transformations both mechanisms obtained from the LDA and GGA methods are not comparable to the previous ab initio MD simulations of WZ BeO at 700 GPa based on the GGA method. It is suggested that the phase transformation mechanisms of BeO revealed by the ab initio MD simulations are affected remarkably by the exchangecorrelation functional employed and the way of applying pressure.

  20. Tractionseparation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations

    SciTech Connect (OSTI)

    Barrows, Wesley; Dingreville, Rmi; Spearot, Douglas

    2015-10-19

    A statistical approach combined with molecular dynamics simulations is used to study the influence of hydrogen on intergranular decohesion. This methodology is applied to a Ni ?3(112)[110] symmetric tilt grain boundary. Hydrogenated grain boundaries with different H concentrations are constructed using an energy minimization technique with initial H atom positions guided by Monte Carlo simulation results. Decohesion behavior is assessed through extraction of a tractionseparation relationship during steady-state crack propagation in a statistically meaningful approach, building upon prior work employing atomistic cohesive zone volume elements (CZVEs). A sensitivity analysis is performed on the numerical approach used to extract the tractionseparation relationships, clarifying the role of CZVE size, threshold parameters necessary to differentiate elastic and decohesion responses, and the numerical averaging technique. Results show that increasing H coverage at the Ni ?3(112)[110] grain boundary asymmetrically influences the crack tip velocity during propagation, leads to a general decrease in the work of separation required for crack propagation, and provides a reduction in the peak stress in the extracted tractionseparation relationship. Furthermore the present framework offers a meaningful vehicle to pass atomistically derived interfacial behavior to higher length scale formulations for intergranular fracture.

  1. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    SciTech Connect (OSTI)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-02-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsic mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.

  2. Traction–separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barrows, Wesley; Dingreville, Rémi; Spearot, Douglas

    2015-10-19

    A statistical approach combined with molecular dynamics simulations is used to study the influence of hydrogen on intergranular decohesion. This methodology is applied to a Ni Σ3(112)[11¯0] symmetric tilt grain boundary. Hydrogenated grain boundaries with different H concentrations are constructed using an energy minimization technique with initial H atom positions guided by Monte Carlo simulation results. Decohesion behavior is assessed through extraction of a traction–separation relationship during steady-state crack propagation in a statistically meaningful approach, building upon prior work employing atomistic cohesive zone volume elements (CZVEs). A sensitivity analysis is performed on the numerical approach used to extract the traction–separationmore » relationships, clarifying the role of CZVE size, threshold parameters necessary to differentiate elastic and decohesion responses, and the numerical averaging technique. Results show that increasing H coverage at the Ni Σ3(112)[11¯0] grain boundary asymmetrically influences the crack tip velocity during propagation, leads to a general decrease in the work of separation required for crack propagation, and provides a reduction in the peak stress in the extracted traction–separation relationship. Furthermore the present framework offers a meaningful vehicle to pass atomistically derived interfacial behavior to higher length scale formulations for intergranular fracture.« less

  3. A new shared-memory programming paradigm for molecular dynamics simulations on the Intel Paragon

    SciTech Connect (OSTI)

    D`Azevedo, E.F.; Romine, C.H.

    1994-12-01

    This report describes the use of shared memory emulation with DOLIB (Distributed Object Library) to simplify parallel programming on the Intel Paragon. A molecular dynamics application is used as an example to illustrate the use of the DOLIB shared memory library. SOTON-PAR, a parallel molecular dynamics code with explicit message-passing using a Lennard-Jones 6-12 potential, is rewritten using DOLIB primitives. The resulting code has no explicit message primitives and resembles a serial code. The new code can perform dynamic load balancing and achieves better performance than the original parallel code with explicit message-passing.

  4. Development of EEM based siliconwater and silicawater wall potentials for non-reactive molecular dynamics simulations

    SciTech Connect (OSTI)

    Kim, Junghan; Iype, Eldhose; Frijns, Arjan J.H.; Nedea, Silvia V.; Steenhoven, Anton A. van

    2014-07-01

    Molecular dynamics simulations of heat transfer in gases are computationally expensive when the wall molecules are explicitly modeled. To save computational time, an implicit boundary function is often used. Steele's potential has been used in studies of fluidsolid interface for a long time. In this work, the conceptual idea of Steele's potential was extended in order to simulate watersilicon and watersilica interfaces. A new wall potential model is developed by using the electronegativity-equalization method (EEM), a ReaxFF empirical force field and a non-reactive molecular dynamics package PumMa. Contact angle simulations were performed in order to validate the wall potential model. Contact angle simulations with the resulting tabulated wall potentials gave a siliconwater contact angle of 129, a quartzwater contact angle of 0, and a cristobalitewater contact angle of 40, which are in reasonable agreement with experimental values.

  5. Molecular dynamics simulations of uranyl adsorption and structure on the basal surface of muscovite

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Cygan, Randall T.

    2014-02-05

    Anthropogenic activities have led to an increased concentration of uranium on the Earth’s surface and potentially in the subsurface with the development of nuclear waste repositories. Uranium is soluble in groundwater, and its mobility is strongly affected by the presence of clay minerals in soils and in subsurface sediments. We use molecular dynamics simulations to probe the adsorption of aqueous uranyl (UO22+) ions onto the basal surface of muscovite, a suitable proxy for typically ultrafine-grained clay phases. Model systems include the competitive adsorption between potassium counterions and aqueous ions (0.1 M and 1.0 M UO2Cl2 , 0.1 M NaCl). Wemore » find that for systems with potassium and uranyl ions present, potassium ions dominate the adsorption phenomenon. Potassium ions adsorb entirely as inner-sphere complexes associated with the ditrigonal cavity of the basal surface. Uranyl ions adsorb in two configurations when it is the only ion species present, and in a single configuration in the presence of potassium. Finally, the majority of adsorbed uranyl ions are tilted less than 45° relative to the muscovite surface, and are associated with the Si4Al2 rings near aluminum substitution sites.« less

  6. Molecular dynamics simulation for arrangement of nickel atoms filled in carbon nanotubes

    SciTech Connect (OSTI)

    Bai, Liu Zhenyu, Zhao; Lirui, Liu

    2014-08-28

    Carbon Nanotubes (CNTs) filled with metals can be used in capacitors, sensors, rechargeable batteries, and so on. Atomic arrangement of the metals has an important role in the function of the composites. The tips of CNTs were opened, and then nickel was filled by means of hydrothermal oxidation/ultrasonic vibration method. The tests of TEM, HREM, and EDX (energy-dispersive X-ray spectroscopy) analysis showed that Ni was filled in CNTs successfully. The atomic arrangement of nickel filled into single wall carbon nanotubes was investigated by molecular dynamics simulation. The radial distribution function and bond orientation order were established to analyze the atomic arrangement of nickel filled in carbon nanotubes during the cooling process. The results show that nickel atoms became in order gradually and preferably crystallized on the inner wall of carbon nanotubes when the temperature decreased from 1600?K. After it cooled to 100?K, the arrangement of nickel atoms in outermost circle was regular and dense, but there were many defects far from the wall of CNTs. According to the calculation of bond orientation order parameters Q{sub 6} and its visualization, the structure of nickel is Face-centered cube (f.c.c). (1,1,1){sub Ni} was close on the inner surface of carbon nanotubes. Radial direction of CNTs was [1,1,1] crystal orientation. Axial direction of CNTs, namely, filling direction, was [1{sup }, 1{sup },2] crystal orientation.

  7. Effect of point defects on the thermal conductivity of UO2: molecular dynamics simulations

    SciTech Connect (OSTI)

    Liu, Xiang-Yang; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-07-21

    The thermal conductivity of uranium dioxide (UO2) fuel is an important materials property that affects fuel performance since it is a key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. [1] The thermal conductivity of UO2 nuclear fuel is also affected by fission gas, fission products, defects, and microstructural features such as grain boundaries. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of irradiation induced point defects on the thermal conductivity of UO2, as a function of defect concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel [2].

  8. Molecular dynamics simulations of uranyl adsorption and structure on the basal surface of muscovite

    SciTech Connect (OSTI)

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Cygan, Randall T.

    2014-02-05

    Anthropogenic activities have led to an increased concentration of uranium on the Earth’s surface and potentially in the subsurface with the development of nuclear waste repositories. Uranium is soluble in groundwater, and its mobility is strongly affected by the presence of clay minerals in soils and in subsurface sediments. We use molecular dynamics simulations to probe the adsorption of aqueous uranyl (UO22+) ions onto the basal surface of muscovite, a suitable proxy for typically ultrafine-grained clay phases. Model systems include the competitive adsorption between potassium counterions and aqueous ions (0.1 M and 1.0 M UO2Cl2 , 0.1 M NaCl). We find that for systems with potassium and uranyl ions present, potassium ions dominate the adsorption phenomenon. Potassium ions adsorb entirely as inner-sphere complexes associated with the ditrigonal cavity of the basal surface. Uranyl ions adsorb in two configurations when it is the only ion species present, and in a single configuration in the presence of potassium. Finally, the majority of adsorbed uranyl ions are tilted less than 45° relative to the muscovite surface, and are associated with the Si4Al2 rings near aluminum substitution sites.

  9. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    SciTech Connect (OSTI)

    Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli

    2014-05-15

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801){sup 0.298} (one-phase approach), 1850(1 + P/12.806){sup 0.357} (two-phase approach). The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment.

  10. Inter-cage dynamics in structure I, II, and H fluoromethane hydrates as studied by NMR and molecular dynamics simulations

    SciTech Connect (OSTI)

    Trueba, Alondra Torres; Kroon, Maaike C.; Peters, Cor J.; Moudrakovski, Igor L.; Ratcliffe, Christopher I.; Ripmeester, John A.; Alavi, Saman

    2014-06-07

    Prospective industrial applications of clathrate hydrates as materials for gas separation require further knowledge of cavity distortion, cavity selectivity, and defects induction by guest-host interactions. The results presented in this contribution show that under certain temperature conditions the guest combination of CH{sub 3}F and a large polar molecule induces defects on the clathrate hydrate framework that allow intercage guest dynamics. {sup 13}C NMR chemical shifts of a CH{sub 3}F/CH{sub 4}/TBME sH hydrate and a temperature analysis of the {sup 2}H NMR powder lineshapes of a CD{sub 3}F/THF sII and CD{sub 3}F/TBME sH hydrate, displayed evidence that the populations of CH{sub 4} and CH{sub 3}F in the D and D{sup ?} cages were in a state of rapid exchange. A hydrogen bonding analysis using molecular dynamics simulations on the TBME/CH{sub 3}F and TBME/CH{sub 4} sH hydrates showed that the presence of CH{sub 3}F enhances the hydrogen bonding probability of the TBME molecule with the water molecules of the cavity. Similar results were obtained for THF/CH{sub 3}F and THF/CH{sub 4} sII hydrates. The enhanced hydrogen bond formation leads to the formation of defects in the water hydrogen bonding lattice and this can enhance the migration of CH{sub 3}F molecules between adjacent small cages.

  11. Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach

    SciTech Connect (OSTI)

    Hyeon-Deuk, Kim; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 ; Ando, Koji

    2014-05-07

    Liquid para-hydrogen (p-H{sub 2}) is a typical quantum liquid which exhibits strong nuclear quantum effects (NQEs) and thus anomalous static and dynamic properties. We propose a real-time simulation method of wave packet (WP) molecular dynamics (MD) based on non-empirical intra- and inter-molecular interactions of non-spherical hydrogen molecules, and apply it to condensed-phase p-H{sub 2}. The NQEs, such as WP delocalization and zero-point energy, are taken into account without perturbative expansion of prepared model potential functions but with explicit interactions between nuclear and electron WPs. The developed MD simulation for 100 ps with 1200 hydrogen molecules is realized at feasible computational cost, by which basic experimental properties of p-H{sub 2} liquid such as radial distribution functions, self-diffusion coefficients, and shear viscosities are all well reproduced.

  12. Mass transport properties of Pu/DT mixtures from orbital free molecular dynamics simulations

    SciTech Connect (OSTI)

    Kress, Joel David; Ticknor, Christopher; Collins, Lee A.

    2015-09-16

    Mass transport properties (shear viscosity and diffusion coefficients) for Pu/DT mixtures were calculated with Orbital Free Molecular Dynamics (OFMD). The results were fitted to simple functions of mass density (for ρ=10.4 to 62.4 g/cm3) and temperature (for T=100 up to 3,000 eV) for Pu/DT mixtures consisting of 100/0, 25/75, 50/50, and 75/25 by number.

  13. Molecular dynamics simulations of D{sub 2}O ice photodesorption

    SciTech Connect (OSTI)

    Arasa, C.; Andersson, S.; Cuppen, H. M.; Dishoeck, E. F. van; Kroes, G. J.

    2011-04-28

    Molecular dynamics (MD) calculations have been performed to study the ultraviolet (UV) photodissociation of D{sub 2}O in an amorphous D{sub 2}O ice surface at 10, 20, 60, and 90 K, in order to investigate the influence of isotope effects on the photodesorption processes. As for H{sub 2}O, the main processes after UV photodissociation are trapping and desorption of either fragments or D{sub 2}O molecules. Trapping mainly takes place in the deeper monolayers of the ice, whereas desorption occurs in the uppermost layers. There are three desorption processes: D atom, OD radical, and D{sub 2}O molecule photodesorption. D{sub 2}O desorption takes places either by direct desorption of a recombined D{sub 2}O molecule, or when an energetic D atom produced by photodissociation kicks a surrounding D{sub 2}O molecule out of the surface by transferring part of its momentum. Desorption probabilities are calculated for photoexcitation of D{sub 2}O in the top four monolayers and are compared quantitatively with those for H{sub 2}O obtained from previous MD simulations of UV photodissociation of amorphous water ice at different ice temperatures [Arasa et al., J. Chem. Phys. 132, 184510 (2010)]. The main conclusions are the same, but the average D atom photodesorption probability is smaller than that of the H atom (by about a factor of 0.9) because D has lower kinetic energy than H, whereas the average OD radical photodesorption probability is larger than that of OH (by about a factor of 2.5-2.9 depending on ice temperature) because OD has higher translational energy than OH for every ice temperature studied. The average D{sub 2}O photodesorption probability is larger than that of H{sub 2}O (by about a factor of 1.4-2.3 depending on ice temperature), and this is entirely due to a larger contribution of the D{sub 2}O kick-out mechanism. This is an isotope effect: the kick-out mechanism is more efficient for D{sub 2}O ice, because the D atom formed after D{sub 2}O photodissociation has a larger momentum than photogenerated H atoms from H{sub 2}O, and D transfers momentum more easily to D{sub 2}O than H to H{sub 2}O. The total (OD + D{sub 2}O) yield has been compared with experiments and the total (OH + H{sub 2}O) yield from previous simulations. We find better agreement when we compare experimental yields with calculated yields for D{sub 2}O ice than when we compare with calculated yields for H{sub 2}O ice.

  14. Adapting SAFT-? perturbation theory to site-based molecular dynamics simulation. I. Homogeneous fluids

    SciTech Connect (OSTI)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2013-12-21

    In this work, we aim to develop a version of the Statistical Associating Fluid Theory (SAFT)-? equation of state (EOS) that is compatible with united-atom force fields, rather than experimental data. We rely on the accuracy of the force fields to provide the relation to experimental data. Although, our objective is a transferable theory of interfacial properties for soft and fused heteronuclear chains, we first clarify the details of the SAFT-? approach in terms of site-based simulations for homogeneous fluids. We show that a direct comparison of Helmholtz free energy to molecular simulation, in the framework of a third order Weeks-Chandler-Andersen perturbation theory, leads to an EOS that takes force field parameters as input and reproduces simulation results for Vapor-Liquid Equilibria (VLE) calculations. For example, saturated liquid density and vapor pressure of n-alkanes ranging from methane to dodecane deviate from those of the Transferable Potential for Phase Equilibria (TraPPE) force field by about 0.8% and 4%, respectively. Similar agreement between simulation and theory is obtained for critical properties and second virial coefficient. The EOS also reproduces simulation data of mixtures with about 5% deviation in bubble point pressure. Extension to inhomogeneous systems and united-atom site types beyond those used in description of n-alkanes will be addressed in succeeding papers.

  15. Assessment of Molecular Modeling & Simulation

    SciTech Connect (OSTI)

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  16. Hybrid Quantum Mechanics/Molecular Mechanics-Based Molecular Dynamics Simulation of Acid-Catalyzed Dehydration of Polyols in Liquid Water

    SciTech Connect (OSTI)

    Caratzoulas, Stavros; Courtney, Timothy; Vlachos, Dionisios G.

    2011-01-01

    We use the conversion of protonated glycerol to acrolein for a case study of the mechanism of acid-catalyzed dehydration of polyols in aqueous environments. We employ hybrid Quamtum Mechanics/Molecular Mechanics Molecular Dynamics (QM/MM MD) simulations with biased sampling and perform free energy calculations for the elementary steps of the reaction. We investigate the effects of solvent dynamics and in particular the role of quantum mechanical water in the dehydration mechanism. We present results supporting a mechanism that proceeds via water-mediated proton transfers and thus through an enol intermediate. We find that the first dehydration may take place by two, low-energy pathways requiring, respectively, 20.9 and 18.8 kcal/mol of activation free energy. The second dehydration requires 19.9 kcal/mol of activation free energy while for the overall reaction we compute a free energy change of -8 kcal/mol.

  17. Predicting solute partitioning in lipid bilayers: Free energies and partition coefficients from molecular dynamics simulations and COSMOmic

    SciTech Connect (OSTI)

    Jakobtorweihen, S. Ingram, T.; Gerlach, T.; Smirnova, I.; Zuniga, A. Chaides; Keil, F. J.

    2014-07-28

    Quantitative predictions of biomembrane/water partition coefficients are important, as they are a key property in pharmaceutical applications and toxicological studies. Molecular dynamics (MD) simulations are used to calculate free energy profiles for different solutes in lipid bilayers. How to calculate partition coefficients from these profiles is discussed in detail and different definitions of partition coefficients are compared. Importantly, it is shown that the calculated coefficients are in quantitative agreement with experimental results. Furthermore, we compare free energy profiles from MD simulations to profiles obtained by the recent method COSMOmic, which is an extension of the conductor-like screening model for realistic solvation to micelles and biomembranes. The free energy profiles from these molecular methods are in good agreement. Additionally, solute orientations calculated with MD and COSMOmic are compared and again a good agreement is found. Four different solutes are investigated in detail: 4-ethylphenol, propanol, 5-phenylvaleric acid, and dibenz[a,h]anthracene, whereby the latter belongs to the class of polycyclic aromatic hydrocarbons. The convergence of the free energy profiles from biased MD simulations is discussed and the results are shown to be comparable to equilibrium MD simulations. For 5-phenylvaleric acid the influence of the carboxyl group dihedral angle on free energy profiles is analyzed with MD simulations.

  18. Molecular dynamics simulation of Coulomb explosion, melting and shock wave creation in silicon after an ionization pulse

    SciTech Connect (OSTI)

    Li, Zhongyu; Shao, Lin; Chen, Di; Wang, Jing

    2014-04-14

    Strong electronic stopping power of swift ions in a semiconducting or insulating substrate can lead to localized electron stripping. The subsequent repulsive interactions among charged target atoms can cause Coulomb explosion. Using molecular dynamics simulation, we simulate Coulomb explosion in silicon by introducing an ionization pulse lasting for different periods, and at different substrate temperatures. We find that the longer the pulse period, the larger the melting radius. The observation can be explained by a critical energy density model assuming that melting required thermal energy density is a constant value and the total thermal energy gained from Coulomb explosion is linearly proportional to the ionization period. Our studies also show that melting radius is larger at higher substrate temperatures. The temperature effect is explained due to a longer structural relaxation above the melting temperature at original ionization boundary due to lower heat dissipation rates. Furthermore, simulations show the formation of shock waves, created due to the compression from the melting core.

  19. An efficient parallelization scheme for molecular dynamics simulations with many-body, flexible, polarizable empirical potentials: Application to water

    SciTech Connect (OSTI)

    Fanourgakis, Georgios S.; Tipparaju, Vinod; Nieplocha, Jarek; Xantheas, Sotiris S.

    2007-01-01

    An efficient parallelization scheme for classical Molecular Dynamics simulations with flexible polarizable empirical potentials is presented. It is based on the standard Ewald summation technique to handle the long-range electrostatic and induction interactions. The algorithm for this parallelization scheme is designed for systems containing several thousands of polarizable sites in the simulation box. Its performance is evaluated during Molecular Dynamics simulations under periodic boundary conditions with unit cell sizes ranging from 128-512 water molecules employing two exible, polarizable water models [POL1(F) and TTM2-F] containing 1 and 3 polarizable sites respectively. The efficiency of the algorithm, is evaluated against a flexible, pairwise-additive water model (TIP4F). The benchmarks were performed on both shared and distributed memory platforms. As a result of the efficient calculations of the induced dipole moments, a superlinear scaling as a function of the number of the processors is observed in several cases. To the best of our knowledge, this is the first attempt for a parallel implementation of a polarizable potential under periodic boundary conditions. Guidelines for adapting the algorithm for larger systems are also discussed. This research was performed in part using the Molecular Science Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences laboratory, a national scientific user facility sponsored by the U.S. Department of Energys Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.

  20. Radiation damage in cubic-ZrO2 and yttria-stabilized zirconia from molecular dynamics simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aidhy, Dilpuneet S; Zhang, Yanwen; Weber, William J

    2015-01-01

    We perform molecular dynamics simulation on cubic ZrO2 and yttria-stabilized zirconia (YSZ) to elucidate defect cluster formation resulting from radiation damage, and evaluate the impact of Y-dopants. Interstitial clusters composed of split-interstitial building blocks, i.e., Zr-Zr or Y-Zr are formed. Oxygen vacancies control cation defect migration; in their presence, Zr interstitials aggregate to form split-interstitials whereas in their absence Zr interstitials remain immobile, as isolated single-interstitials. Y-doping prevents interstitial cluster formation due to sequestration of oxygen vacancies.

  1. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations

    SciTech Connect (OSTI)

    Lee, Mal Soon; McGrail, B. Peter; Rousseau, Roger J.; Glezakou, Vassiliki Alexandra

    2015-10-12

    The interface between a solid and a complex multi-component liquid forms a unique reaction environment whose structure and composition can significantly deviate from either bulk or liquid phase and is poorly understood due the innate difficulty to obtain molecular level information. Feldspar minerals, as typified by the Ca-end member Anorthite, serve as prototypical model systems to assess the reactivity and ion mobility at solid/water-bearing supercritical fluid (WBSF) interfaces due to recent X-ray based measurements that provide information on water-film formation, and cation vacancies at these surfaces. Using density functional theory based molecular dynamics, which allows the evaluation of reactivity and condensed phase dynamics on equal footing, we report on the structure and dynamics of water nucleation and surface aggregation, carbonation and Ca mobilization under geologic carbon sequestration scenarios (T=323 K and P=90 bar). We find that water has a strong enthalpic preference for aggregation on a Ca-rich, O-terminated anorthite (001) surface, but entropy strongly hinders the film formation at very low water concentrations. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies, when in contact with supercritical CO2. Cation vacancies of this type can form readily in the presence of a water layer that allows for facile and enthalpicly favorable Ca2+ extraction and solvation. Apart from providing unprecedented molecular level detail of a complex three component (mineral, water and scCO2) system), this work highlights the ability of modern capabilities of AIMD methods to begin to qualitatively and quantitatively address structure and reactivity at solid-liquid interfaces of high chemical complexity. This work was supported by the US Department of Energy, Office of Fossil Energy (M.-S. L., B. P. M. and V.-A. G.) and the Office of Basic Energy Science, Division of Chemical Sciences, Geosciences and Biosciences (R.R.), and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle. Computational resources were provided by PNNLs Platform for Institutional Computing (PIC), the W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energys Office of Biological and Environmental Research located at PNNL and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.

  2. 369 TFlop/s molecular dynamics simulations on the Roadrunner general-purpose heterogeneous supercomputer

    SciTech Connect (OSTI)

    Swaminarayan, Sriram; Germann, Timothy C; Kadau, Kai; Fossum, Gordon C

    2008-01-01

    The authors present timing and performance numbers for a short-range parallel molecular dynamics (MD) code, SPaSM, that has been rewritten for the heterogeneous Roadrunner supercomputer. Each Roadrunner compute node consists of two AMD Opteron dual-core microprocessors and four PowerXCell 8i enhanced Cell microprocessors, so that there are four MPI ranks per node, each with one Opteron and one Cell. The interatomic forces are computed on the Cells (each with one PPU and eight SPU cores), while the Opterons are used to direct inter-rank communication and perform I/O-heavy periodic analysis, visualization, and checkpointing tasks. The performance measured for our initial implementation of a standard Lennard-Jones pair potential benchmark reached a peak of 369 Tflop/s double-precision floating-point performance on the full Roadrunner system (27.7% of peak), corresponding to 124 MFlop/Watt/s at a price of approximately 3.69 MFlops/dollar. They demonstrate an initial target application, the jetting and ejection of material from a shocked surface.

  3. Anharmonic lattice dynamics of Ag2O studied by inelastic neutron scattering and first-principles molecular dynamics simulations

    SciTech Connect (OSTI)

    Lan, Tian [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Li, Chen [ORNL] [ORNL; Niedziela, Jennifer L [ORNL] [ORNL; Smith, Hillary [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Abernathy, Douglas L [ORNL] [ORNL; Rossman, George [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena; Fultz, B. [California Institute of Technology, Pasadena] [California Institute of Technology, Pasadena

    2014-01-01

    Inelastic neutron scattering measurements on silver oxide (Ag2O) with the cuprite structure were performed at temperatures from 40 to 400 K, and Fourier transform far-infrared spectra were measured from 100 to 300 K. The measured phonon densities of states and the infrared spectra showed unusually large energy shifts with temperature, and large linewidth broadenings. First principles molecular dynamics (MD) calculations were performed at various temperatures, successfully accounting for the negative thermal expansion (NTE) and local dynamics. Using the Fourier-transformed velocity autocorrelation method, the MD calculations reproduced the large anharmonic effects of Ag2O, and were in excellent agreement with the neutron scattering data. The quasiharmonic approximation (QHA) was less successful in accounting for much of the phonon behavior. The QHA could account for some of the NTE below 250 K, although not at higher temperatures. Strong anharmonic effects were found for both phonons and for the NTE. The lifetime broadenings of Ag2O were explained by anharmonic perturbation theory, which showed rich interactions between the Ag-dominated modes and the O-dominated modes in both up- and down-conversion processes.

  4. Effect of Cu2+ Activation on Interfacial Water Structure at the Sphalerite Surface as Studied by Molecular Dynamics Simulation

    SciTech Connect (OSTI)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.; Wick, Collin D.

    2015-12-10

    In the first part of this paper, an experimental contact angle study of the fresh and Cu2+ activated sphalerite-ZnS surface as well as the covellite-CuS (001) surface is reported describing the increased hydrophobic character of the surface during Cu2+ activation. In addition to these experimental results, the fresh sphalerite-ZnS (110), copper-zinc sulfide-CuZnS2 (110), villamaninite- CuS2 (100), and covellite-CuS (001) surfaces were examined using Molecular Dynamics Simulation (MDS). Our MDS results on the behavior of interfacial water at the fresh sphalerite-ZnS (110), copper-zinc sulfide-CuZnS2 (110), villamaninite-CuS2 (100), and covellite-CuS (001) surfaces include simulated contact angles, water number density distribution, water dipole orientation, water residence time, and hydrogen-bonding considerations. The copper content at the Cu2+ activated sphalerite surface seems to account for the increased hydrophobicity as revealed by both experimental and MD simulated contact angle measurements. The relatively greater hydrophobic character developed at the Cu2+ activated sphalerite surface and at the copper-zinc sulfide surface has been described by MDS, based on the structure of interfacial water and its dynamic properties. L.X.D. acknowledges funding from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  5. Final technical report [ACCELERATED MOLECULAR DYNAMICS SIMULATIONS OF REACTIVE HYDROCARBON SYSTEMS

    SciTech Connect (OSTI)

    Stuart, Steven J.

    2014-02-25

    The research activities in this project consisted of four different sub-projects. Three different accelerated dynamics techniques (parallel replica dynamics, hyperdynamics, and temperature-accelerated dynamics) were applied to the modeling of pyrolysis of hydrocarbons. In addition, parallel replica dynamics was applied to modeling of polymerization.

  6. The liquid surface of chiral ionic liquids as seen from molecular dynamics simulations combined with intrinsic analysis

    SciTech Connect (OSTI)

    Lísal, Martin

    2013-12-07

    We present molecular-level insight into the liquid/gas interface of two chiral room-temperature ionic liquids (RTILs) derived from 1-n-butyl-3-methylimidazolium bromide ([bmim][Br]); namely, (R)-1-butyl-3-(3-hydroxy-2-methylpropyl)imidazolium bromide (hydroxypropyl) and 1-butyl-3-[(1R)-nopyl]imidazolium bromide (nopyl). We use our currently developed force field which was validated against the experimental bulk density, heat of vaporization, and surface tension of [bmim][Br]. The force field for the RTILs adopts the Chemistry at Harvard Molecular Mechanics (CHARMM) parameters for the intramolecular and repulsion-dispersion interactions along with the reduced partial atomic charges based on ab initio calculations. The net charges of the ions are around ±0.8e, which mimic the anion to cation charge transfer and many-body effects. Molecular dynamics simulations in the slab geometry combined with the intrinsic interface analysis are employed to provide a detailed description of the RTIL/gas interface in terms of the structural and dynamic properties of the interfacial, sub-interfacial, and central layers at a temperature of 300 K. The focus is on the comparison of the liquid/gas interface for the chiral RTILs with the interface for parent [bmim][Br]. The structure of the interface is elucidated by evaluating the surface roughness, intrinsic atomic density profiles, and orientation ordering of the cations. The dynamics of the ions at the interfacial region is characterized by computing the survival probability, and normal and lateral self-diffusion coefficients in the layers.

  7. A Scalable O(N) Algorithm for Large-Scale Parallel First-Principles Molecular Dynamics Simulations

    SciTech Connect (OSTI)

    Osei-Kuffuor, Daniel; Fattebert, Jean-Luc

    2014-01-01

    Traditional algorithms for first-principles molecular dynamics (FPMD) simulations only gain a modest capability increase from current petascale computers, due to their O(N3) complexity and their heavy use of global communications. To address this issue, we are developing a truly scalable O(N) complexity FPMD algorithm, based on density functional theory (DFT), which avoids global communications. The computational model uses a general nonorthogonal orbital formulation for the DFT energy functional, which requires knowledge of selected elements of the inverse of the associated overlap matrix. We present a scalable algorithm for approximately computing selected entries of the inverse of the overlap matrix, based on an approximate inverse technique, by inverting local blocks corresponding to principal submatrices of the global overlap matrix. The new FPMD algorithm exploits sparsity and uses nearest neighbor communication to provide a computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic orbitals are confined, and a cutoff beyond which the entries of the overlap matrix can be omitted when computing selected entries of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to O(100K) atoms on O(100K) processors, with a wall-clock time of O(1) minute per molecular dynamics time step.

  8. Direct comparisons of X-ray scattering and atomistic molecular dynamics simulations for precise acid copolymers and ionomers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Buitrago, C. Francisco; Bolintineanu, Dan; Seitz, Michelle E.; Opper, Kathleen L.; Wagener, Kenneth B.; Stevens, Mark J.; Frischknecht, Amalie Lucile; Winey, Karen I.

    2015-02-09

    Designing acid- and ion-containing polymers for optimal proton, ion, or water transport would benefit profoundly from predictive models or theories that relate polymer structures with ionomer morphologies. Recently, atomistic molecular dynamics (MD) simulations were performed to study the morphologies of precise poly(ethylene-co-acrylic acid) copolymer and ionomer melts. Here, we present the first direct comparisons between scattering profiles, I(q), calculated from these atomistic MD simulations and experimental X-ray data for 11 materials. This set of precise polymers has spacers of exactly 9, 15, or 21 carbons between acid groups and has been partially neutralized with Li, Na, Cs, or Zn. Inmore » these polymers, the simulations at 120 °C reveal ionic aggregates with a range of morphologies, from compact, isolated aggregates (type 1) to branched, stringy aggregates (type 2) to branched, stringy aggregates that percolate through the simulation box (type 3). Excellent agreement is found between the simulated and experimental scattering peak positions across all polymer types and aggregate morphologies. The shape of the amorphous halo in the simulated I(q) profile is in excellent agreement with experimental I(q). We found that the modified hard-sphere scattering model fits both the simulation and experimental I(q) data for type 1 aggregate morphologies, and the aggregate sizes and separations are in agreement. Given the stringy structure in types 2 and 3, we develop a scattering model based on cylindrical aggregates. Both the spherical and cylindrical scattering models fit I(q) data from the polymers with type 2 and 3 aggregates equally well, and the extracted aggregate radii and inter- and intra-aggregate spacings are in agreement between simulation and experiment. Furthermore, these dimensions are consistent with real-space analyses of the atomistic MD simulations. By combining simulations and experiments, the ionomer scattering peak can be associated with the average distance between branches of type 2 or 3 aggregates. Furthermore, this direct comparison of X-ray scattering data to the atomistic MD simulations is a substantive step toward providing a comprehensive, predictive model for ionomer morphology, gives substantial support for this atomistic MD model, and provides new credibility to the presence of stringy, branched, and percolated ionic aggregates in precise ionomer melts.« less

  9. Molecular dynamics simulations of n-hexane at 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide interface

    SciTech Connect (OSTI)

    Lisal, Martin; Izak, Pavel

    2013-07-07

    Molecular dynamics simulations of n-hexane adsorbed onto the interface of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([bmim][Tf{sub 2}N]) are performed at three n-hexane surface densities, ranged from 0.7 to 2.3 {mu}mol/m{sup 2} at 300 K. For [bmim][Tf{sub 2}N] room-temperature ionic liquid, we use a non-polarizable all-atom force field with the partial atomic charges based on ab initio calculations for the isolated ion pair. The net charges of the ions are {+-}0.89e, which mimics the anion to cation charge transfer and polarization effects. The OPLS-AA force field is employed for modeling of n-hexane. The surface tension is computed using the mechanical route and its value decreases with increase of the n-hexane surface density. The [bmim][Tf{sub 2}N]/n-hexane interface is analyzed using the intrinsic method, and the structural and dynamic properties of the interfacial, sub-interfacial, and central layers are computed. We determine the surface roughness, global and intrinsic density profiles, and orientation ordering of the molecules to describe the structure of the interface. We further compute the survival probability, normal and lateral self-diffusion coefficients, and re-orientation correlation functions to elucidate the effects of n-hexane on dynamics of the cations and anions in the layers.

  10. Neutron Scattering of Residual Hydrogen in 1,4-Dioxane-D8 Liquid. Understanding Measurements with Molecular Dynamics Simulations

    SciTech Connect (OSTI)

    de Almeida, Valmor F.; Liu, Hongjun; Herwig, Kenneth W.; Kidder, Michelle

    2016-01-01

    That incoherent scattering from protiated molecular liquids adds a constant background to the measured scattering intensity is well known, but less appreciated is the fact that coherent scattering is also induced by the presence of hydrogen in a deuterated liquid. In fact, the scattering intensity can be very sensitive, in the small-q region, with respect to the amounts and distribution of residual H in the system. We used 1,4-dioxane liquid to demonstrate that the partial structure factors of the HD and DD atom pairs contribute significantly to inter-molecular scattering and that uncertainty in the extent of deuteration account for discrepancies between simulations and measurements. Both contributions to uncertainty have similar magnitudes: scattering interference of the hydrogen-deuterium pair, and complementary interference from the deuterium-deuterium pair by virtue of chemical inhomogeneity. This situation arises in practice since deuteration of liquids is often 99% or less. A combined experimental and extensive computational study of static thermal neutron scattering of 1,4-dioxane demonstrates the foregoing. We show, through simulations, that the reason for the differences is the content of protiated dioxane (vendors quote 1%). We estimate that up to 5% (at 298K and at 343K) protiated mole fraction may be involved in generating the scattering differences. Finally, we find that the particular distribution of hydrogen in the protiated molecules affects the results significantly; here we considered molecules to be either fully protiated or fully deuterated. This scenario best reconciles the computational and experimental results, and leads us to speculate that the deuteration synthesis process tends to leave a molecule either fully deuterated or fully protiated. Although we have used 1,4-dioxane as a model liquid, the effects described in this study extend to similar liquids and similar systematic experimental/computational studies can be performed to either understand measurements or calibrate/validate molecular dynamics models.

  11. Effect of Surface Oxidation on Interfacial Water Structure at a Pyrite (100) Surface as Studied by Molecular Dynamics Simulation

    SciTech Connect (OSTI)

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.; Wick, Collin D.

    2015-06-01

    In the first part of this paper, a Scanning Electron Microscopy and contact angle study of a pyrite surface (100) is reported describing the relationship between surface oxidation and the hydrophilic surface state. In addition to these experimental results, the following simulated surface states were examined using Molecular Dynamics Simulation (MDS): fresh unoxidized (100) surface; polysulfide at the (100) surface; elemental sulfur at the (100) surface. Crystal structures for the polysulfide and elemental sulfur at the (100) surface were simulated using Density Functional Theory (DFT) quantum chemical calculations. The well known oxidation mechanism which involves formation of a metal deficient layer was also described with DFT. Our MDS results of the behavior of interfacial water at the fresh and oxidized pyrite (100) surfaces without/with the presence of ferric hydroxide include simulated contact angles, number density distribution for water, water dipole orientation, water residence time, and hydrogen-bonding considerations. The significance of the formation of ferric hydroxide islands in accounting for the corresponding hydrophilic surface state is revealed not only from experimental contact angle measurements but also from simulated contact angle measurements using MDS. The hydrophilic surface state developed at oxidized pyrite surfaces has been described by MDS, on which basis the surface state is explained based on interfacial water structure. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE funded work performed by Liem X. Dang. Battelle operates the Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.

  12. Accelerated Molecular Dynamics Methods | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molecular Dynamics Methods Accelerated Molecular Dynamics Methods This presentation on Accelerated Molecular Dynamics Methods was given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006. PDF icon storage_theory_session_voter.pdf More Documents & Publications Simulations of Kinetic Events at the Atomic Scale Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Waste Characterization, Reduction, and Repackaging Facility (WCRRF)

  13. Molecular dynamics simulations of the effects of salts on the aggregation properties of benzene in water.

    SciTech Connect (OSTI)

    Smith, P. E.

    2003-07-16

    The specific aims of the project were: to provide an atomic level description of the interactions between benzene, water and ions in solutions. To determine the degree of association between two benzene molecules in aqueous and salt solutions. To investigate the structure and dynamics of the interface between benzene and water or salt solution.

  14. A wrench in the works of human acetylcholinesterase: Soman induced conformational changes revealed by molecular dynamics simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bennion, Brian J.; Essiz, Sebnem G.; Lau, Edmond Y.; Fattebert, Jean -Luc; Emigh, Aiyana; Lightstone, Felice C.; Salsbury , Jr, Freddie

    2015-04-13

    Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone andmore » sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.« less

  15. Molecular dynamics simulation of diffusion coefficients and structural properties of some alkylbenzenes in supercritical carbon dioxide at infinite dilution

    SciTech Connect (OSTI)

    Wang, Jinyang; Zhong, Haimin; Qiu, Wenda; Chen, Liuping; Feng, Huajie

    2014-03-14

    The binary infinite dilute diffusion coefficients, D{sub 12}{sup ?}, of some alkylbenzenes (Ph-C{sub n}, from Ph-H to Ph-C{sub 12}) from 313 K to 333 K at 15 MPa in supercritical carbon dioxide (scCO{sub 2}) have been studied by molecular dynamics (MD) simulation. The MD values agree well with the experimental ones, which indicate MD simulation technique is a powerful way to predict and obtain diffusion coefficients of solutes in supercritical fluids. Besides, the local structures of Ph-C{sub n}/CO{sub 2} fluids are further investigated by calculating radial distribution functions and coordination numbers. It qualitatively convinces that the first solvation shell of Ph-C{sub n} in scCO{sub 2} is significantly influenced by the structure of Ph-C{sub n} solute. Meanwhile, the mean end-to-end distance, the mean radius of gyration and dihedral angle distribution are calculated to gain an insight into the structural properties of Ph-C{sub n} in scCO{sub 2}. The abnormal trends of radial distribution functions and coordination numbers can be reasonably explained in term of molecular flexibility. Moreover, the computed results of dihedral angle clarify that flexibility of long-chain Ph-C{sub n} is the result of internal rotation of C-C single bond (?{sub c-c}) in alkyl chain. It is interesting that compared with n-alkane, because of the existence of benzene ring, the flexibility of alkyl chain in Ph-C{sub n} with same carbon atom number is significantly reduced, as a result, the carbon chain dependence of diffusion behaviors for long-chain n-alkane (n ? 5) and long-chain Ph-C{sub n} (n ? 4) in scCO{sub 2} are different.

  16. Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parkes, Marie V.; Demir, Hakan; Teich-McGoldrick, Stephanie L.; Sholl, David S.; Greathouse, Jeffery A.; Allendorf, Mark D.

    2014-03-28

    Molecular dynamics simulations were used to investigate trends in noble gas (Ar, Kr, Xe) diffusion in the metal-organic frameworks HKUST-1 and ZIF-8. Diffusion occurs primarily through inter-cage jump events, with much greater diffusion of guest atoms in HKUST-1 compared to ZIF-8 due to the larger cage and window sizes in the former. We compare diffusion coefficients calculated for both rigid and flexible frameworks. For rigid framework simulations, in which the framework atoms were held at their crystallographic or geometry optimized coordinates, sometimes dramatic differences in guest diffusion were seen depending on the initial framework structure or the choice of frameworkmore » force field parameters. When framework flexibility effects were included, argon and krypton diffusion increased significantly compared to rigid-framework simulations using general force field parameters. Additionally, for argon and krypton in ZIF-8, guest diffusion increased with loading, demonstrating that guest-guest interactions between cages enhance inter-cage diffusion. No inter-cage jump events were seen for xenon atoms in ZIF-8 regardless of force field or initial structure, and the loading dependence of xenon diffusion in HKUST-1 is different for rigid and flexible frameworks. Diffusion of krypton and xenon in HKUST-1 depends on two competing effects: the steric effect that decreases diffusion as loading increases, and the “small cage effect” that increases diffusion as loading increases. Finally, a detailed analysis of the window size in ZIF-8 reveals that the window increases beyond its normal size to permit passage of a (nominally) larger krypton atom.« less

  17. On computing stress in polymer systems involving multi-body potentials from molecular dynamics simulation

    SciTech Connect (OSTI)

    Fu, Yao E-mail: jhsong@cec.sc.edu; Song, Jeong-Hoon E-mail: jhsong@cec.sc.edu

    2014-08-07

    Hardy stress definition has been restricted to pair potentials and embedded-atom method potentials due to the basic assumptions in the derivation of a symmetric microscopic stress tensor. Force decomposition required in the Hardy stress expression becomes obscure for multi-body potentials. In this work, we demonstrate the invariance of the Hardy stress expression for a polymer system modeled with multi-body interatomic potentials including up to four atoms interaction, by applying central force decomposition of the atomic force. The balance of momentum has been demonstrated to be valid theoretically and tested under various numerical simulation conditions. The validity of momentum conservation justifies the extension of Hardy stress expression to multi-body potential systems. Computed Hardy stress has been observed to converge to the virial stress of the system with increasing spatial averaging volume. This work provides a feasible and reliable linkage between the atomistic and continuum scales for multi-body potential systems.

  18. Solution-state structure and affinities of cyclodextrin: Fentanyl complexes by nuclear magnetic resonance spectroscopy and molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.; Valdez, Carlos A.

    2016-02-04

    Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less

  19. Anisotropy of the solid–liquid interface properties of the Ni–Zr B33 phase from molecular dynamics simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wilson, S. R.; Mendelev, M. I.

    2015-01-08

    Solid–liquid interface (SLI) properties of the Ni–Zr B33 phase were determined from molecular dynamics simulations. In order to perform these measurements, a new semi-empirical potential for Ni–Zr alloy was developed that well reproduces the material properties required to model SLIs in the Ni50.0Zr50.0 alloy. In particular, the developed potential is shown to provide that the solid phase emerging from the liquid Ni50.0Zr50.0alloy is B33 (apart from a small fraction of point defects), in agreement with the experimental phase diagram. The SLI properties obtained using the developed potential exhibit an extraordinary degree of anisotropy. It is observed that anisotropies in bothmore » the interfacial free energy and mobility are an order of magnitude larger than those measured to date in any other metallic compound. Moreover, the [0 1 0] interface is shown to play a significant role in the observed anisotropy. Our data suggest that the [0 1 0] interface simultaneously corresponds to the lowest mobility, the lowest free energy and the highest stiffness of all inclinations in B33 Ni–Zr. This finding can be understood by taking into account a rather complicated crystal structure in this crystallographic direction.« less

  20. Effect of surface free energies on the heterogeneous nucleation of water droplet: A molecular dynamics simulation approach

    SciTech Connect (OSTI)

    Xu, W.; Lan, Z.; Peng, B. L.; Wen, R. F.; Ma, X. H.

    2015-02-07

    Heterogeneous nucleation of water droplet on surfaces with different solid-liquid interaction intensities is investigated by molecular dynamics simulation. The interaction potentials between surface atoms and vapor molecules are adjusted to obtain various surface free energies, and the nucleation process and wetting state of nuclei on surfaces are investigated. The results indicate that near-constant contact angles are already established for nano-scale nuclei on various surfaces, with the contact angle decreasing with solid-liquid interaction intensities linearly. Meanwhile, noticeable fluctuation of vapor-liquid interfaces can be observed for the nuclei that deposited on surfaces, which is caused by the asymmetric forces from vapor molecules. The formation and growth rate of nuclei are increasing with the solid-liquid interaction intensities. For low energy surface, the attraction of surface atoms to water molecules is comparably weak, and the pre-existing clusters can depart from the surface and enter into the bulk vapor phase. The distribution of clusters within the bulk vapor phase becomes competitive as compared with that absorbed on surface. For moderate energy surfaces, heterogeneous nucleation predominates and the formation of clusters within bulk vapor phase is suppressed. The effect of high energy particles that embedded in low energy surface is also discussed under the same simulation system. The nucleation preferably initiates on the high energy particles, and the clusters that formed on the heterogeneous particles are trapped around their original positions instead of migrating around as that observed on smooth surfaces. This feature makes it possible for the heterogeneous particles to act as fixed nucleation sites, and simulation results also suggest that the number of nuclei increases monotonously with the number of high energy particles. The growth of nuclei on high energy particles can be divided into three sub-stages, beginning with the formation of a wet-spot, increase of contact angle with near-constant contact line, and finally growth with constant contact angle. The growth rate of nuclei also increases with the size of high energy particles.

  1. A coarse-graining approach for molecular simulation that retains the dynamics of the all-atom reference system by implementing hydrodynamic interactions

    SciTech Connect (OSTI)

    Markutsya, Sergiy; Lamm, Monica H.

    2014-11-07

    We report on a new approach for deriving coarse-grained intermolecular forces that retains the frictional contribution that is often discarded by conventional coarse-graining methods. The approach is tested for water and an aqueous glucose solution, and the results from the new implementation for coarse-grained molecular dynamics simulation show remarkable agreement with the dynamics obtained from reference all-atom simulations. The agreement between the structural properties observed in the coarse-grained and all-atom simulations is also preserved. We discuss how this approach may be applied broadly to any existing coarse-graining method where the coarse-grained models are rigorously derived from all-atom reference systems.

  2. Adapting SAFT-? perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    SciTech Connect (OSTI)

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-07-14

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-? WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-? refers to the particular form of statistical associating fluid theory that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ?2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ?1% from simulation data while the theory reproduces the excess accumulation of ethane at the interface.

  3. Simulations of the quart (101-bar1)/water interface: A comparison of classical force fields, ab initi molecular dynamics, and x-ray reflectivity experiments.

    SciTech Connect (OSTI)

    Skelton, Adam; Fenter, Paul; Kubicki, James D.; Wesolowski, David J; Cummings, Peter T

    2011-01-01

    Classical molecular dynamics (CMD) simulations of the (1011) surface of quartz interacting with bulk liquid water are performed using three different classical force fields, Lopes et al., ClayFF, and CHARMM water contact angle (CWCA), and compared to ab initio molecular dynamics (AIMD) and X-ray reflectivity (XR) results. The axial densities of the water and surface atoms normal to the surface are calculated and compared to previous XR experiments. Favorable agreement is shown for all the force fields with respect to the position of the water atoms. Analyses such as the radial distribution functions between water and hydroxyl atoms and the average cosine of the angle between the water dipole vector and the normal of the surface are also calculated for each force field. Significant differences are found between the different force fields from such analyses, indicating differing descriptions of the structured water in the near vicinity of the surface. AIMD simulations are also performed to obtain the water and hydroxyl structure for comparison among the predictions of the three classical force fields to better understand which force field is most accurate. It is shown that ClayFF exhibits the best agreement with the AIMD simulations for water hydroxyl radial distribution functions, suggesting that ClayFF treats the hydrogen bonding more accurately.

  4. Sandia Energy - Simulations Reveal Ion Dynamics in Polymer Electrolyte

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and their effects on material properties is important for improved design. Recent molecular-dynamics simulations have revealed new details of ion motion in model ionomers....

  5. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  6. Interactions of aqueous amino acids and proteins with the (110) surface of ZnS in molecular dynamics simulations

    SciTech Connect (OSTI)

    Nawrocki, Grzegorz; Cieplak, Marek

    2014-03-07

    The growing usage of nanoparticles of zinc sulfide as quantum dots and biosensors calls for a theoretical assessment of interactions of ZnS with biomolecules. We employ the molecular-dynamics-based umbrella sampling method to determine potentials of mean force for 20 single amino acids near the ZnS (110) surface in aqueous solutions. We find that five amino acids do not bind at all and the binding energy of the remaining amino acids does not exceed 4.3 kJ/mol. Such energies are comparable to those found for ZnO (and to hydrogen bonds in proteins) but the nature of the specificity is different. Cysteine can bind with ZnS in a covalent way, e.g., by forming the disulfide bond with S in the solid. If this effect is included within a model incorporating the Morse potential, then the potential well becomes much deeperthe binding energy is close to 98 kJ/mol. We then consider tryptophan cage, a protein of 20 residues, and characterize its events of adsorption to ZnS. We demonstrate the relevance of interactions between the amino acids in the selection of optimal adsorbed conformations and recognize the key role of cysteine in generation of lasting adsorption. We show that ZnS is more hydrophobic than ZnO and that the density profile of water is quite different than that forming near ZnOit has only a minor articulation into layers. Furthermore, the first layer of water is disordered and mobile.

  7. Application of computational fluid dynamics for the simulation of cryogenic molecular sieve bed absorber of hydrogen isotopes recovery system for Indian LLCB-TBM

    SciTech Connect (OSTI)

    Gayathri Devi, V.; Sircar, A.; Sarkar, B.

    2015-03-15

    One of the most challenging tasks in the design of the fuel cycle system lies in the effective design of Tritium Extraction System (TES) which involves proper extraction and purification of tritium in the fuel cycle of the fusion reactor. Indian Lead Lithium cooled Ceramic Breeder Test Blanket Module (LLCB-TBM) would extract hydrogen isotopes through Cryogenic Molecular Sieve Bed (CMSB) adsorber system. A prototype Hydrogen Isotopes Recovery System (HIRS) is being developed to validate the concepts for tritium extraction by adsorption mass transfer mechanism. In this study, a design model has been developed and analyzed to simulate the adsorption mass transfer kinetics in a fixed bed adsorption column. The simulation leads primarily to effective design of HIRS, which is a state-of-the-art technology. The paper describes the process simulation approach and the results of Computational Fluid Dynamics (CFD) analysis. The effects of different operating conditions are studied to investigate their influence on the hydrogen isotopes adsorption capacity. The results of the present simulation study would be used to understand the best optimized transport phenomenon before realizing the TES as a system for LLCB-TBM. (authors)

  8. Molecular dynamics simulation of radiation damage in CaCd{sub 6} quasicrystal cubic approximant up to 10 keV

    SciTech Connect (OSTI)

    Chen, P. H.; Avchachov, K.; Nordlund, K.; Pussi, K.

    2013-06-21

    Due to the peculiar nature of the atomic order in quasicrystals, examining phase transitions in this class of materials is of particular interest. Energetic particle irradiation can provide a way to modify the structure locally in a quasicrystal. To examine irradiation-induced phase transitions in quasicrystals on the atomic scale, we have carried out molecular dynamics simulations of collision cascades in CaCd{sub 6} quasicrystal cubic approximant with energies up to 10 keV at 0 and 300 K. The results show that the threshold energies depend surprisingly strongly on the local coordination environments. The energy dependence of stable defect formation exhibits a power-law dependence on cascade energy, and surviving defects are dominated by Cd interstitials and vacancies. Only a modest effect of temperature is observed on defect survival, while irradiation temperature increases lead to a slight increase in the average size of both vacancy clusters and interstitial clusters.

  9. Cantera Aerosol Dynamics Simulator

    Energy Science and Technology Software Center (OSTI)

    2004-09-01

    The Cantera Aerosol Dynamics Simulator (CADS) package is a general library for aerosol modeling to address aerosol general dynamics, including formation from gas phase reactions, surface chemistry (growth and oxidation), bulk particle chemistry, transport by Brownian diffusion, thermophoresis, and diffusiophoresis with linkage to DSMC studies, and thermal radiative transport. The library is based upon Cantera, a C++ Cal Tech code that handles gas phase species transport, reaction, and thermodynamics. The method uses a discontinuous galerkinmore » formulation for the condensation and coagulation operator that conserves particles, elements, and enthalpy up to round-off error. Both O-D and 1-D time dependent applications have been developed with the library. Multiple species in the solid phase are handled as well. The O-D application, called Tdcads (Time Dependent CADS) is distributed with the library. Tdcads can address both constant volume and constant pressure adiabatic homogeneous problems. An extensive set of sample problems for Tdcads is also provided.« less

  10. A molecular dynamics investigation of the unusual concentration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    138, 228-234 (2011) DOI: 10.1016j.micromeso.2010.09.032 Full-size image (19 K) Abstract: Molecular Dynamics (MD) simulations were carried out to determine the self-diffusivitiy,...

  11. A molecular dynamics investigation of the diffusion characteristics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    137, 83-91 (2011) DOI: 10.1016j.micromeso.2010.08.026 Full-size image (36 K) Abstract: Molecular dynamics (MD) simulations are used to investigate the diffusion characteristics...

  12. Thermal transport in UO2 with defects and fission products by molecular dynamics simulations

    SciTech Connect (OSTI)

    Liu, Xiang-Yang; Cooper, Michael William Donald; Mcclellan, Kenneth James; Lashley, Jason Charles; Byler, Darrin David; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-10-14

    The importance of the thermal transport in nuclear fuel has motivated a wide range of experimental and modelling studies. In this report, the reduction of thermal transport in UO2 due to defects and fission products has been investigated using non-equilibrium MD simulations, with two sets of empirical potentials for studying the degregation of UO2 thermal conductivity including a Buckingham type interatomic potential and a recently developed EAM type interatomic potential. Additional parameters for U5+ and Zr4+ in UO2 have been developed for the EAM potential. The thermal conductivity results from MD simulations are then corrected for the spin-phonon scattering through Callaway model formulations. To validate the modelling results, comparison was made with experimental measurements on single crystal hyper-stoichiometric UO2+x samples.

  13. Molecular dynamics simulations and thermochemistry of reactive ion etching of silicon by chlorine, chlorine dimer, bromine, and bromine dimer cations

    SciTech Connect (OSTI)

    Valone, S.M.; Hanson, D.E.; Kress, J.D.

    1998-05-08

    Simulations of Cl plasma etch of Si surfaces with MD techniques agree reasonably well with the available experimental information on yields and surface morphologies. This information has been supplied to a Monte Carlo etch profile resulting in substantial agreement with comparable inputs provided through controlled experiments. To the extent that more recent measurements of etch rates are more reliable than older ones, preliminary MD simulations using bond-order corrections to the atomic interactions between neighboring Si atoms on the surface improves agreement with experiment through an increase in etch rate and improved agreement with XPS measurements of surface stoichiometry. Thermochemical and geometric analysis of small Si-Br molecules is consistent with the current notions of the effects of including brominated species in etchant gases.

  14. Does fluoride disrupt hydrogen bond network in cationic lipid bilayer? Time-dependent fluorescence shift of Laurdan and molecular dynamics simulations

    SciTech Connect (OSTI)

    Pokorna, Sarka; Jurkiewicz, Piotr; Hof, Martin; Vazdar, Mario; Cwiklik, Lukasz; Jungwirth, Pavel

    2014-12-14

    Time-dependent fluorescence shift (TDFS) of Laurdan embedded in phospholipid bilayers reports on hydration and mobility of the phospholipid acylgroups. Exchange of H{sub 2}O with D{sub 2}O prolongs the lifetime of lipid-water and lipid-water-lipid interactions, which is reflected in a significantly slower TDFS kinetics. Combining TDFS measurements in H{sub 2}O and D{sub 2}O hydrated bilayers with atomistic molecular dynamics (MD) simulations provides a unique tool for characterization of the hydrogen bonding at the acylgroup level of lipid bilayers. In this work, we use this approach to study the influence of fluoride anions on the properties of cationic bilayers composed of trimethylammonium-propane (DOTAP). The results obtained for DOTAP are confronted with those for neutral phosphatidylcholine (DOPC) bilayers. Both in DOTAP and DOPC H{sub 2}O/D{sub 2}O exchange prolongs hydrogen-bonding lifetime and does not disturb bilayer structure. These results are confirmed by MD simulations. TDFS experiments show, however, that for DOTAP this effect is cancelled in the presence of fluoride ions. We interpret these results as evidence that strongly hydrated fluoride is able to steal water molecules that bridge lipid carbonyls. Consequently, when attracted to DOTAP bilayer, fluoride disrupts the local hydrogen-bonding network, and the differences in TDFS kinetics between H{sub 2}O and D{sub 2}O hydrated bilayers are no longer observed. A distinct behavior of fluoride is also evidenced by MD simulations, which show different lipid-ion binding for Cl{sup ?} and F{sup ?}.

  15. Ab initio molecular dynamics simulations of short-range order in Zr50Cu45Al5 and Cu50Zr45Al5 metallic glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Yuxiang; Huang, Li; Wang, C. Z.; Kramer, M. J.; Ho, K. M.

    2016-02-01

    In this study, comparative analysis between Zr-rich Zr50Cu45Al5 and Cu-rich Cu50Zr45Al5 metallic glasses (MGs) is extensively performed to locate the key structural motifs accounting for their difference of glass forming ability. Here we adopt ab initio molecular dynamics simulations to investigate the local atomic structures of Zr50Cu45Al5 and Cu50Zr45Al5 MGs. A high content of icosahedral-related (full and distorted) orders was found in both samples, while in the Zr-rich MG full icosahedrons <0,0,12,0> is dominant, and in the Cu-rich one the distorted icosahedral orders, especially <0,2,8,2> and <0,2,8,1>, are prominent. And the <0,2,8,2> polyhedra in Cu50Zr45Al5 MG mainly originate from Al-centeredmore » clusters, while the <0,0,12,0> in Zr50Cu45Al5 derives from both Cu-centered clusters and Al-centered clusters. These difference may be ascribed to the atomic size difference and chemical property between Cu and Zr atoms. The relatively large size of Zr and large negative heat of mixing between Zr and Al atoms, enhancing the packing density and stability of metallic glass system, may be responsible for the higher glass forming ability of Zr50Cu45Al5.« less

  16. The thermal conductivity of mixed fuel UxPu1-xO2: molecular dynamics simulations

    SciTech Connect (OSTI)

    Liu, Xiang-Yang; Cooper, Michael William Donald; Stanek, Christopher Richard; Andersson, Anders David Ragnar

    2015-10-16

    Mixed oxides (MOX), in the context of nuclear fuels, are a mixture of the oxides of heavy actinide elements such as uranium, plutonium and thorium. The interest in the UO2-PuO2 system arises from the fact that these oxides are used both in fast breeder reactors (FBRs) as well as in pressurized water reactors (PWRs). The thermal conductivity of UO2 fuel is an important material property that affects fuel performance since it is the key parameter determining the temperature distribution in the fuel, thus governing, e.g., dimensional changes due to thermal expansion, fission gas release rates, etc. For this reason it is important to understand the thermal conductivity of MOX fuel and how it differs from UO2. Here, molecular dynamics (MD) simulations are carried out to determine quantitatively, the effect of mixing on the thermal conductivity of UxPu1-xO2, as a function of PuO2 concentrations, for a range of temperatures, 300 – 1500 K. The results will be used to develop enhanced continuum thermal conductivity models for MARMOT and BISON by INL. These models express the thermal conductivity as a function of microstructure state-variables, thus enabling thermal conductivity models with closer connection to the physical state of the fuel.

  17. Quantitative in-situ scanning electron microscope pull-out experiments and molecular dynamics simulations of carbon nanotubes embedded in palladium

    SciTech Connect (OSTI)

    Hartmann, S., E-mail: steffen.hartmann@etit.tu-chemnitz.de; Blaudeck, T.; Hermann, S.; Wunderle, B. [Technische Universitt Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Hlck, O. [Technische Universitt Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Fraunhofer IZM Berlin, Gustav-Meyer-Allee 25, 13355 Berlin (Germany); Schulz, S. E.; Gessner, T. [Technische Universitt Chemnitz, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Fraunhofer ENAS Chemnitz, Technologie-Campus 3, 09126 Chemnitz (Germany)

    2014-04-14

    In this paper, we present our results of experimental and numerical pull-out tests on carbon nanotubes (CNTs) embedded in palladium. We prepared simple specimens by employing standard silicon wafers, physical vapor deposition of palladium and deposition of CNTs with a simple drop coating technique. An AFM cantilever with known stiffness connected to a nanomanipulation system was utilized inside a scanning electron microscope (SEM) as a force sensor to determine forces acting on a CNT during the pull-out process. SEM-images of the cantilever attached to a CNT have been evaluated for subsequent displacement steps with greyscale correlation to determine the cantilever deflection. We compare the experimentally obtained pull-out forces with values of numerical investigations by means of molecular dynamics and give interpretations for deviations according to material impurities or defects and their influence on the pull-out data. We find a very good agreement of force data from simulation and experiment, which is 17 nN and in the range of 1061 nN, respectively. Our findings contribute to the ongoing research of the mechanical characterization of CNT-metal interfaces. This is of significant interest for the design of future mechanical sensors utilizing the intrinsic piezoresistive effect of CNTs or other future devices incorporating CNT-metal interfaces.

  18. Dynamic Power Grid Simulation

    Energy Science and Technology Software Center (OSTI)

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  19. Application of optimal prediction to molecular dynamics

    SciTech Connect (OSTI)

    Barber IV, John Letherman

    2004-12-01

    Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is {delta}-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.

  20. Evaluating mixture adsorption models using molecular simulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecular simulation Previous Next List Joseph A. Swisher, Li-Chiang Lin, Jihan Kim, Berend Smit, AICHE J., 59, 3054-3064 (2013) DOI: 10.1002aic.14058 Abstract: The design of ...

  1. Dynamic Simulation Nuclear Power Plants

    Energy Science and Technology Software Center (OSTI)

    1992-03-03

    DSNP (Dynamic Simulator for Nuclear Power-Plants) is a system of programs and data files by which a nuclear power plant, or part thereof, can be simulated. The acronym DSNP is used interchangeably for the DSNP language, the DSNP libraries, the DSNP precompiler, and the DSNP document generator. The DSNP language is a special-purpose, block-oriented, digital-simulation language developed to facilitate the preparation of dynamic simulations of a large variety of nuclear power plants. It is amore » user-oriented language that permits the user to prepare simulation programs directly from power plant block diagrams and flow charts by recognizing the symbolic DSNP statements for the appropriate physical components and listing these statements in a logical sequence according to the flow of physical properties in the simulated power plant. Physical components of nuclear power plants are represented by functional blocks, or modules. Many of the more complex components are represented by several modules. The nuclear reactor, for example, has a kinetic module, a power distribution module, a feedback module, a thermodynamic module, a hydraulic module, and a radioactive heat decay module. These modules are stored in DSNP libraries in the form of a DSNP subroutine or function, a block of statements, a macro, or a combination of the above. Basic functional blocks such as integrators, pipes, function generators, connectors, and many auxiliary functions representing properties of materials used in nuclear power plants are also available. The DSNP precompiler analyzes the DSNP simulation program, performs the appropriate translations, inserts the requested modules from the library, links these modules together, searches necessary data files, and produces a simulation program in FORTRAN.« less

  2. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral...

    Office of Scientific and Technical Information (OSTI)

    Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Citation Details In-Document Search Title: Molecular Simulation of ...

  3. Parallel Molecular Dynamics Program for Molecules

    Energy Science and Technology Software Center (OSTI)

    1995-03-07

    ParBond is a parallel classical molecular dynamics code that models bonded molecular systems, typically of an organic nature. It uses classical force fields for both non-bonded Coulombic and Van der Waals interactions and for 2-, 3-, and 4-body bonded (bond, angle, dihedral, and improper) interactions. It integrates Newton''s equation of motion for the molecular system and evaluates various thermodynamical properties of the system as it progresses.

  4. On Eliminating Synchronous Communication in Molecular Simulations to Improve Scalability

    SciTech Connect (OSTI)

    Straatsma, TP; Chavarría-Miranda, Daniel

    2013-12-01

    Molecular dynamics simulation, as a complementary tool to experimentation, has become an important methodology for the understanding and design of molecular systems as it provides access to properties that are difficult, impossible or prohibitively expensive to obtain experimentally. Many of the available software packages have been parallelized to take advantage of modern massively concurrent processing resources. The challenge in achieving parallel efficiency is commonly attributed to the fact that molecular dynamics algorithms are communication intensive. This paper illustrates how an appropriately chosen data distribution and asynchronous one-sided communication approach can be used to effectively deal with the data movement within the Global Arrays/ARMCI programming model framework. A new put_notify capability is presented here, allowing the implementation of the molecular dynamics algorithm without any explicit global or local synchronization or global data reduction operations. In addition, this push-data model is shown to very effectively allow hiding data communication behind computation. Rather than data movement or explicit global reductions, the implicit synchronization of the algorithm becomes the primary challenge for scalability. Without any explicit synchronous operations, the scalability of molecular simulations is shown to depend only on the ability to evenly balance computational load.

  5. First principles molecular dynamics without self-consistent field optimization

    SciTech Connect (OSTI)

    Souvatzis, Petros; Niklasson, Anders M. N.

    2014-01-28

    We present a first principles molecular dynamics approach that is based on time-reversible extended Lagrangian Born-Oppenheimer molecular dynamics [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] in the limit of vanishing self-consistent field optimization. The optimization-free dynamics keeps the computational cost to a minimum and typically provides molecular trajectories that closely follow the exact Born-Oppenheimer potential energy surface. Only one single diagonalization and Hamiltonian (or Fockian) construction are required in each integration time step. The proposed dynamics is derived for a general free-energy potential surface valid at finite electronic temperatures within hybrid density functional theory. Even in the event of irregular functional behavior that may cause a dynamical instability, the optimization-free limit represents a natural starting guess for force calculations that may require a more elaborate iterative electronic ground state optimization. Our optimization-free dynamics thus represents a flexible theoretical framework for a broad and general class of ab initio molecular dynamics simulations.

  6. Methods and Tools to allow molecular flow simulations to be coupled to higher level continuum descriptions of flows in porous/fractured media and aerosol/dust dynamics

    SciTech Connect (OSTI)

    Loyalka, Sudarshan

    2015-04-09

    The purpose of this project was to develop methods and tools that will aid in safety evaluation of nuclear fuels and licensing of nuclear reactors relating to accidents.The objectives were to develop more detailed and faster computations of fission product transport and aerosol evolution as they generally relate to nuclear fuel and/or nuclear reactor accidents. The two tasks in the project related to molecular transport in nuclear fuel and aerosol transport in reactor vessel and containment. For both the tasks, explorations of coupling of Direct Simulation Monte Carlo with Navier-Stokes solvers or the Sectional method were not successful. However, Mesh free methods for the Direct Simulation Monte Carlo method were successfully explored.These explorations permit applications to porous and fractured media, and arbitrary geometries.The computations were carried out in Mathematica and are fully parallelized. The project has resulted in new computational tools (algorithms and programs) that will improve the fidelity of computations to actual physics, chemistry and transport of fission products in the nuclear fuel and aerosol in reactor primary and secondary containments.

  7. Molecular Dynamics and Energy Minimization Based on Embedded Atom Method

    Energy Science and Technology Software Center (OSTI)

    1995-03-01

    This program performs atomic scale computer simulations of the structure and dynamics of metallic system using energetices based on the Embedded Atom Method. The program performs two types of calculations. First, it performs local energy minimization of all atomic positions to determine ground state and saddle point energies and structures. Second, it performs molecular dynamics simulations to determine thermodynamics or miscroscopic dynamics of the system. In both cases, various constraints can be applied to themore » system. The volume of the system can be varied automatically to achieve any desired external pressure. The temperature in molecular dynamics simulations can be controlled by a variety of methods. Further, the temperature control can be applied either to the entire system or just a subset of the atoms that would act as a thermal source/sink. The motion of one or more of the atoms can be constrained to either simulate the effects of bulk boundary conditions or to facilitate the determination of saddle point configurations. The simulations are performed with periodic boundary conditions.« less

  8. Simulation and sequential dynamical systems

    SciTech Connect (OSTI)

    Mortveit, H.S.; Reidys, C.M.

    1999-06-01

    Computer simulations have a generic structure. Motivated by this the authors present a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {yields} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper), which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes.

  9. Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl-CaCl?) solutions

    SciTech Connect (OSTI)

    Bourg, Ian C.; Sposito, Garrison

    2011-01-01

    We report new molecular dynamics results elucidating the structure of the electrical double layer (EDL) on smectite surfaces contacting mixed NaClCaCl2 electrolyte solutions in the range of concentrations relevant to pore waters in geologic repositories for CO2 or high-level radioactive waste (0.341.83 molc dm-3). Our results confirm the existence of three distinct ion adsorption planes (0-, ?-, and d-planes), often assumed in EDL models, but with two important qualifications: (1) the location of the ?- and d-planes are independent of ionic strength or ion type and (2) indifferent electrolyte ions can occupy all three planes. Charge inversion occurred in the diffuse ion swarm because of the affinity of the clay surface for CaCl+ ion pairs. Therefore, at concentrations {>=0.34 molc dm-3}, properties arising from long-range electrostatics at interfaces (electrophoresis, electro-osmosis, co-ion exclusion, colloidal aggregation) will not be correctly predicted by most EDL models. Co-ion exclusion, typically neglected by surface speciation models, balanced a large part of the clay mineral structural charge in the more concentrated solutions. Water molecules and ions diffused relatively rapidly even in the first statistical water monolayer, contradicting reports of rigid ice-like structures for water on clay mineral surfaces.

  10. Structure, solvation, and dynamics of Mg{sup 2+}, Ca{sup 2+}, Sr{sup 2+}, and Ba{sup 2+} complexes with 3-hydroxyflavone and perchlorate anion in acetonitrile medium: A molecular dynamics simulation study

    SciTech Connect (OSTI)

    Agieienko, Vira N.; Kolesnik, Yaroslav V.; Kalugin, Oleg N.

    2014-05-21

    Molecular dynamics simulations of complexes of Mg{sup 2+}, Ca{sup 2+}, Sr{sup 2+}, and Ba{sup 2+} with 3-hydroxyflavone (flavonol, 3HF) and ClO {sub 4}{sup ?} in acetonitrile were performed. The united atoms force field model was proposed for the 3HF molecule using the results of DFT quantum chemical calculations. 3HF was interpreted as a rigid molecule with two internal degrees of freedom, i.e., rotation of the phenyl ring and of the OH group with respect to the chromone moiety. The interatomic radial distribution functions showed that interaction of the cations with flavonol occurs via the carbonyl group of 3HF and it is accompanied with substitution of one of the acetonitrile molecules in the cations first solvation shells. Formation of the cation3HF complexes does not have significant impact on the rotation of the phenyl ring with respect to the chromone moiety. However, the orientation of the flavonol's OH-group is more sensitive to the interaction with doubly charged cations. When complex with Mg{sup 2+} is formed, the OH-group turns out of the plane of the chromone moiety that leads to rupture of intramolecular H-bond in the ligand molecule. Complexation of Ca{sup 2+}, Sr{sup 2+}, and BaClO {sub 4}{sup +} with 3HF produces two structures with different OH-positions, as in the free flavonol with the intramolecular H-bond and as in the complex with Mg{sup 2+} with disrupted H-bonding. It was shown that additional stabilization of the [MgClO{sub 4}(3HF)]{sup +} and [BaClO{sub 4}(3HF)]{sup +} complexes is determined by strong affinity of perchlorate anion to interact with flavonol via intracomplex hydrogen bond between an oxygen atom of the anion and the hydrogen atom of the 3-hydroxyl group. Noticeable difference in the values of the self-diffusion coefficients for Kt{sup 2+} from one side and ClO {sub 4}{sup ?}, 3HF, and AN in the cations coordination shell from another side implies quite weak interaction between cation, anion, and ligands in the investigated complexes.

  11. Reaction dynamics in polyatomic molecular systems

    SciTech Connect (OSTI)

    Miller, W.H.

    1993-12-01

    The goal of this program is the development of theoretical methods and models for describing the dynamics of chemical reactions, with specific interest for application to polyatomic molecular systems of special interest and relevance. There is interest in developing the most rigorous possible theoretical approaches and also in more approximate treatments that are more readily applicable to complex systems.

  12. A molecular dynamics study of polymer/graphene interfacial systems

    SciTech Connect (OSTI)

    Rissanou, Anastassia N.; Harmandaris, Vagelis

    2014-05-15

    Graphene based polymer nanocomposites are hybrid materials with a very broad range of technological applications. In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of the hybrid systems to the properties of the corresponding bulk ones, as well as to theoretical predictions.

  13. simulate the dynamic distribution of lithium in the electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulate the dynamic distribution of lithium in the electrode - Sandia Energy Energy ... simulate the dynamic distribution of lithium in the electrode HomeTag:simulate the ...

  14. Parallel Implementation of Power System Dynamic Simulation

    SciTech Connect (OSTI)

    Jin, Shuangshuang; Huang, Zhenyu; Diao, Ruisheng; Wu, Di; Chen, Yousu

    2013-07-21

    Dynamic simulation of power system transient stability is important for planning, monitoring, operation, and control of electrical power systems. However, modeling the system dynamics and network involves the computationally intensive time-domain solution of numerous differential and algebraic equations (DAE). This results in a transient stability implementation that may not maintain the real-time constraints of an online security assessment. This paper presents a parallel implementation of the dynamic simulation on a high-performance computing (HPC) platform using parallel simulation algorithms and computation architectures. It enables the simulation to run even faster than real time, enabling the look-ahead capability of upcoming stability problems in the power grid.

  15. Combined statistical and dynamical assessment of simulated

    Office of Scientific and Technical Information (OSTI)

    vegetation-rainfall in North Africa during the mid-Holocene* (Journal Article) | SciTech Connect Combined statistical and dynamical assessment of simulated vegetation-rainfall in North Africa during the mid-Holocene* Citation Details In-Document Search Title: Combined statistical and dynamical assessment of simulated vegetation-rainfall in North Africa during the mid-Holocene* A negative feedback of vegetation cover on subsequent annual precipitation is simulated for the mid-Holocene over

  16. The 2011 Dynamics of Molecular Collisions Conference

    SciTech Connect (OSTI)

    Nesbitt, David J.

    2011-07-11

    The Dynamics of Molecular Collisions Conference focuses on all aspects of molecular collisions--experimental & theoretical studies of elastic, inelastic, & reactive encounters involving atoms, molecules, ions, clusters, & surfaces--as well as half collisions--photodissociation, photo-induced reaction, & photodesorption. The scientific program for the meeting in 2011 included exciting advances in both the core & multidisciplinary forefronts of the study of molecular collision processes. Following the format of the 2009 meeting, we also invited sessions in special topics that involve interfacial dynamics, novel emerging spectroscopies, chemical dynamics in atmospheric, combustion & interstellar environments, as well as a session devoted to theoretical & experimental advances in ultracold molecular samples. Researchers working inside & outside the traditional core topics of the meeting are encouraged to join the conference. We invite contributions of work that seeks understanding of how inter & intra-molecular forces determine the dynamics of the phenomena under study. In addition to invited oral sessions & contributed poster sessions, the scientific program included a formal session consisting of five contributed talks selected from the submitted poster abstracts. The DMC has distinguished itself by having the Herschbach Medal Symposium as part of the meeting format. This tradition of the Herschbach Medal was first started in the 2007 meeting chaired by David Chandler, based on a generous donation of funds & artwork design by Professor Dudley Herschbach himself. There are two such awards made, one for experimental & one for theoretical contributions to the field of Molecular Collision Dynamics, broadly defined. The symposium is always held on the last night of the meeting & has the awardees are asked to deliver an invited lecture on their work. The 2011 Herschbach Medal was dedicated to the contributions of two long standing leaders in Chemical Physics, Professor Yuan T. Lee & Professor George Schatz. Professor Lees research has been based on the development & use of advanced chemical kinetics & molecular beams to investigate & manipulate the behavior of fundamental chemical reactions. Lees work has been recognized by many awards, including the Nobel Prize for Chemistry in 1986, as well as Sloan Fellow, Dreyfus Scholar, Fellowship in the American Academy of Arts & Sciences, Fellowship in the American Physical Society, Guggenheim Fellow, Member National Academy of Sciences, Member Academia Sinica, E.O. Lawrence Award, Miller Professor, Berkeley, Fairchild Distinguished Scholar, Harrison Howe Award, Peter Debye Award, & the National Medal of Science. Lee also has served as the President of the Academia Sinica in Taiwan (ROC). Professor Schatzs research group is interested in using theory & computation to describe physical phenomena in a broad range of applications relevant to chemistry, physics, biology & engineering. Among the types of applications that we interested are: optical properties of nanoparticles & nanoparticle assemblies; using theory to model polymer properties; DNA structure, thermodynamics & dynamics; modeling self assembly & nanopatterning; & gas phase reaction dynamics. Among his many awards & distinctions have been appointment as an Alfred P. Sloan Research Fellow, Camille & Henry Dreyfus Teacher-Scholar, the Fresenius Award, Fellow of the American Physical Society, the Max Planck Research Award, Fellowship in the American Association for the Advancement of Science, & election to the International Academy of Quantum Molecular Sciences & the American Academy of Arts & Sciences. Dr Schatz is also lauded for his highly successful work as Editor for the Journal of Physical Chemistry. We requested $10,000 from DOE in support of this meeting. The money was distributed widely among the student & post doctoral fellows & some used to attract the very best scientists in the field. The organizers were committed to encouraging women & minorities as well as encourage the field of Chemical Physics in scientific

  17. Molecular Dynameomics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynameomics Molecular Dynameomics DaggettHiResWhitebg.png Key Challenges: Perform molecular dynamics simulations to characterize both native (i.e. biologically active) and...

  18. Nano-crystallization and magnetic mechanisms of Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} amorphous alloy by ab initio molecular dynamics simulation

    SciTech Connect (OSTI)

    Wang, Yaocen; Takeuchi, Akira; Makino, Akihiro; Liang, Yunye; Kawazoe, Yoshiyuki

    2014-05-07

    Iron-based amorphous and nano-crystalline alloys have attracted a growing interest due to their potential in the application of magnetic coil production. However, fundamental understanding of the nano-crystallization mechanisms and magnetic features in the amorphous structure are still lack of knowledge. In the present work, we performed ab initio molecular dynamics simulation to clarify the ionic and electronic structure in atomic scale, and to derive the origin of the good magnetic property of Fe{sub 85}Si{sub 2}B{sub 8}P{sub 4}Cu{sub 1} amorphous alloy. The simulation gave a direct evidence of the Cu-P bonding preference in the amorphous alloy, which may promote nucleation in nano-crystallization process. On the other hand, the electron transfer and the band/orbital features in the amorphous alloy suggests that alloying elements with large electronegativity and the potential to expand Fe disordered matrix are preferred for enhancing the magnetization.

  19. Investigation of Interfacial and Bulk Dissociation of HBr, HCl, and HNO3 Using Density Functional Theory-Based Molecular Dynamics Simulations

    SciTech Connect (OSTI)

    Baer, Marcel; Tobias, Douglas J.; Mundy, Christopher J.

    2014-12-18

    In this study we investigate the free energy barrier associated with the dissociation of strong acids, XH (HBr, HCl and HNO3) deprotonation, and subsequent formation of ionpairs, X___H3O+ in the vicinity of the air-water interface. We will show that the free energy for acid dissociation for HCl and HNO3 show significant differences at the air-water than under bulk solvation conditions producing a picture where at the interface associated molecular species can be stable. For the strongest acid we consider, HBr the more traditional picture of acids is preserved in the vicinity of the air-water interface. Our results have implications for our understanding of acids, and their surface tensions at the air-water interface.

  20. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    SciTech Connect (OSTI)

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

  1. Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    White, Alexander J.; Gorshkov, Vyacheslav N.; Tretiak, Sergei; Mozyrsky, Dmitry

    2015-07-07

    Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficientmore » as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In many cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.« less

  2. The high pressure structure and equation of state of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) up to 20 GPa: X-ray diffraction measurements and first principles molecular dynamics simulations

    SciTech Connect (OSTI)

    Stavou, Elissaios; Manaa, M. Riad; Zaug, Joseph M.; Kuo, I-Feng W.; Pagoria, Philip F.; Crowhurst, Jonathan C.; Armstrong, Michael R.; Kalkan, Bora

    2015-10-14

    Recent theoretical studies of 2,6-diamino-3,5-dinitropyrazine-1-oxide (C4H4N6O5 Lawrence Livermore Molecule No. 105, LLM-105) report unreacted high pressure equations of state that include several structural phase transitions, between 8 and 50 GPa, while one published experimental study reports equation of state (EOS) data up to a pressure of 6 GPa with no observed transition. Here we report the results of a synchrotron-based X-ray diffraction study and also ambient temperature isobaric-isothermal atomistic molecular dynamics simulations of LLM-105 up to 20 GPa. We find that the ambient pressure phase remains stable up to 20 GPa; there is no indication of a pressure induced phase transition. We do find a prominent decrease in b-axis compressibility starting at approximately 13 GPa and attribute the stiffening to a critical length where inter-sheet distance becomes similar to the intermolecular distance within individual sheets. The ambient temperature isothermal equation of state was determined through refinements of measured X-ray diffraction patterns. The pressure-volume data were fit using various EOS models to yield bulk moduli with corresponding pressure derivatives. As a result, we find very good agreement between the experimental and theoretically derived EOS.

  3. The high pressure structure and equation of state of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) up to 20 GPa: X-ray diffraction measurements and first principles molecular dynamics simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stavou, Elissaios; Manaa, M. Riad; Zaug, Joseph M.; Kuo, I-Feng W.; Pagoria, Philip F.; Crowhurst, Jonathan C.; Armstrong, Michael R.; Kalkan, Bora

    2015-10-14

    Recent theoretical studies of 2,6-diamino-3,5-dinitropyrazine-1-oxide (C4H4N6O5 Lawrence Livermore Molecule No. 105, LLM-105) report unreacted high pressure equations of state that include several structural phase transitions, between 8 and 50 GPa, while one published experimental study reports equation of state (EOS) data up to a pressure of 6 GPa with no observed transition. Here we report the results of a synchrotron-based X-ray diffraction study and also ambient temperature isobaric-isothermal atomistic molecular dynamics simulations of LLM-105 up to 20 GPa. We find that the ambient pressure phase remains stable up to 20 GPa; there is no indication of a pressure induced phasemore » transition. We do find a prominent decrease in b-axis compressibility starting at approximately 13 GPa and attribute the stiffening to a critical length where inter-sheet distance becomes similar to the intermolecular distance within individual sheets. The ambient temperature isothermal equation of state was determined through refinements of measured X-ray diffraction patterns. The pressure-volume data were fit using various EOS models to yield bulk moduli with corresponding pressure derivatives. As a result, we find very good agreement between the experimental and theoretically derived EOS.« less

  4. Reactive Molecular Simulations of Protonation of Water Clusters...

    Office of Scientific and Technical Information (OSTI)

    of Water Clusters and Depletion of Acidity in H-ZSM-5 Zeolite Citation Details In-Document Search Title: Reactive Molecular Simulations of Protonation of Water Clusters ...

  5. Isomorphic phase transformation in shocked cerium using molecular dynamics

    SciTech Connect (OSTI)

    Dupont, Virginie; Germann, Timothy C; Chen, Shao - Ping

    2010-08-12

    Cerium (Ce) undergoes a significant ({approx}16%) volume collapse associated with an isomorphic fcc-fcc phase transformation when subject to compressive loading. We present here a new Embedded Atom Method (EAM) potential for Cerium that models two minima for the two fcc phases. We show results from its use in Molecular Dynamics (MD) simulations of Ce samples subjected to shocks with pressures ranging from 0.5 to 25 GPa. A split wave structure is observed, with an elastic precursor followed by a plastic wave. The plastic wave causes the expected fcc-fcc phase transformation. Comparisons to experiments and MD simulations on Cesium (Cs) indicate that three waves could be observed. The construction of the EAM potential may be the source of the difference.

  6. Mechanical unfolding of a beta-hairpin using molecular dynamics

    SciTech Connect (OSTI)

    Bryant, Zev; Pande, Vijay S.; Rokhsar, Daniel S.

    1999-10-16

    Single molecule mechanical unfolding experiments have the potential to provide insights into the details of protein folding pathways. To investigate the relationship between force-extension unfolding curves and microscopic events, we performed molecular dynamics simulations of the mechanical unfolding of the C-terminal hairpin of protein G. We have studied the dependence of the unfolding pathway on pulling speed, cantilever stiffness, and attachment points. Under conditions which generate low forces, the unfolding trajectory mimics the untethered, thermally accessible pathway previously proposed based on high temperature studies. In this stepwise pathway, complete breakdown of backbone hydrogen bonds precedes dissociation of the hydrophobic cluster. Under more extreme conditions, the cluster and hydrogen bonds break simultaneously. Transitions between folding intermediates can be identified in our simulations as features of the calculated force-extension curves.

  7. Equation of state of dense plasmas: Orbital-free molecular dynamics as the limit of quantum molecular dynamics for high-Z elements

    SciTech Connect (OSTI)

    Danel, J.-F.; Blottiau, P.; Kazandjian, L.; Piron, R.; Torrent, M.

    2014-10-15

    The applicability of quantum molecular dynamics to the calculation of the equation of state of a dense plasma is limited at high temperature by computational cost. Orbital-free molecular dynamics, based on a semiclassical approximation and possibly on a gradient correction, is a simulation method available at high temperature. For a high-Z element such as lutetium, we examine how orbital-free molecular dynamics applied to the equation of state of a dense plasma can be regarded as the limit of quantum molecular dynamics at high temperature. For the normal mass density and twice the normal mass density, we show that the pressures calculated with the quantum approach converge monotonically towards those calculated with the orbital-free approach; we observe a faster convergence when the orbital-free approach includes the gradient correction. We propose a method to obtain an equation of state reproducing quantum molecular dynamics results up to high temperatures where this approach cannot be directly implemented. With the results already obtained for low-Z plasmas, the present study opens the way for reproducing the quantum molecular dynamics pressure for all elements up to high temperatures.

  8. Molecular beam studies of reaction dynamics

    SciTech Connect (OSTI)

    Lee, Y.T.

    1993-12-01

    The major thrust of this research project is to elucidate detailed dynamics of simple elementary reactions that are theoretically important and to unravel the mechanism of complex chemical reactions or photochemical processes that play important roles in many macroscopic processes. Molecular beams of reactants are used to study individual reactive encounters between molecules or to monitor photodissociation events in a collision-free environment. Most of the information is derived from measurement of the product fragment energy, angular, and state distributions. Recent activities are centered on the mechanisms of elementary chemical reactions involving oxygen atoms with unsaturated hydrocarbons, the dynamics of endothermic substitution reactions, the dependence of the chemical reactivity of electronically excited atoms on the alignment of excited orbitals, the primary photochemical processes of polyatomic molecules, intramolecular energy transfer of chemically activated and locally excited molecules, the energetics of free radicals that are important to combustion processes, the infrared-absorption spectra of carbonium ions and hydrated hydronium ions, and bond-selective photodissociation through electric excitation.

  9. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    SciTech Connect (OSTI)

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materials science, chemistry, and biology.

  10. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  11. On Extended-Term Dynamic Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation Ricky Concepcion, Ryan Elliott Sandia National Laboratories Albuquerque, NM 87185 {rconcep, rtellio}@sandia.gov Matt Donnelly Montana Tech Butte, MT 59701 mdonnelly@mtech.edu Juan Sanchez-Gasca GE Energy Schenectady, NY 12345 juan1.sanchez@ge.com Abstract-The uncontrolled intermittent availability of renew- able energy sources makes integration of such devices into today's grid a challenge. Thus, it is imperative

  12. Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions

    Office of Scientific and Technical Information (OSTI)

    and Determination of Contact Angles. (Journal Article) | SciTech Connect Journal Article: Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide Brine and Clay Mineral Interactions and Determination of Contact Angles. Abstract not provided. Authors: Tenney, Craig M ; Cygan, Randall T. Publication Date: 2013-08-01 OSTI Identifier: 1106710 Report Number(s):

  13. Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide, Brine, and Clay Mineral Authors: Tenney, Craig M ; Cygan, Randall T Publication Date: 2014-02-04 OSTI Identifier: 1161868 DOE Contract Number: SC0001114 Resource Type: Journal Article Resource Relation: Journal Name: Environmental Science & Technology; Journal Volume: 48; Related Information: CFSES

  14. Molecular Simulation of Protein Aggregation (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Molecular Simulation of Protein Aggregation Citation Details In-Document Search Title: Molecular Simulation of Protein Aggregation Authors: Bratko, Dusan ; Cellmer, Troy ; Prausnitz, John M. ; Blanch, Harvey W. Publication Date: 2006-10-01 OSTI Identifier: 926889 Report Number(s): LBNL--61957 R&D Project: 402201; BnR: KC0302040 DOE Contract Number: DE-AC02-05CH11231 Resource Type: Journal Article Resource Relation: Journal Name: Biotechnology and Bioengineering; Journal Volume:

  15. Computational simulation of dynamic impact problems

    SciTech Connect (OSTI)

    Muenz, T.W.; Rix, K.S.; Willam, K.J.

    1996-12-31

    Recent advances of computing methods make it possible to examine dynamic failure and complicated contact-impact load scenarios in time and space. The response simulation for these extreme load conditions needs to capture dynamic contact between the impactor and the deformable target and progressive failure in the target. Independently from the impact scenario, two basic approaches may be used to describe the failure process in an appropriate manner, namely the Discrete Failure Approach and the Smeared Failure Approach. In the contribution the dynamic impact of a pendulum test and the failure scenario in notched cylindrical specimens (Charpy-type IZOD test) are examined using the explicit dynamic finite element code DYNA3D. The study focuses on the question, whether the smeared crack approach is able to capture the dynamic failure process using von Mises plasticity with a plastic strain-based failure limiter. The computational results indicate that upon consistent mesh refinement the overall energy dissipation approaches the value observed in laboratory experiments.

  16. Brownian Dynamics Simulation of Protein Solutions: Structural and Dynamical Properties

    SciTech Connect (OSTI)

    Mereghetti, Paolo; Gabdoulline, Razif; Wade, Rebecca C.

    2010-12-01

    The study of solutions of biomacromolecules provides an important basis for understanding the behavior of many fundamental cellular processes, such as protein folding, self-assembly, biochemical reactions, and signal transduction. Here, we describe a Brownian dynamics simulation procedure and its validation for the study of the dynamic and structural properties of protein solutions. In the model used, the proteins are treated as atomically detailed rigid bodies moving in a continuum solvent. The protein-protein interaction forces are described by the sum of electrostatic interaction, electrostatic desolvation, nonpolar desolvation, and soft-core repulsion terms. The linearized Poisson-Boltzmann equation is solved to compute electrostatic terms. Simulations of homogeneous solutions of three different proteins with varying concentrations, pH, and ionic strength were performed. The results were compared to experimental data and theoretical values in terms of long-time self-diffusion coefficients, second virial coefficients, and structure factors. The results agree with the experimental trends and, in many cases, experimental values are reproduced quantitatively. There are no parameters specific to certain protein types in the interaction model, and hence the model should be applicable to the simulation of the behavior of mixtures of macromolecules in cell-like crowded environments.

  17. Dynamical analysis of highly excited molecular spectra

    SciTech Connect (OSTI)

    Kellman, M.E.

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  18. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    SciTech Connect (OSTI)

    Khabaz, Fardin Khare, Ketan S. Khare, Rajesh

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Youngs modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.

  19. Filaments in simulations of molecular cloud formation

    SciTech Connect (OSTI)

    Gmez, Gilberto C.; Vzquez-Semadeni, Enrique

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ?15 pc and masses ?600 M {sub ?} above density n ? 10{sup 3} cm{sup 3} (?2 10{sup 3} M {sub ?} at n > 50 cm{sup 3}). The density profile exhibits a central flattened core of size ?0.3 pc and an envelope that decays as r {sup 2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ?30 M {sub ?} Myr{sup 1} pc{sup 1}.

  20. Dynamics of micelle-nanoparticle systems undergoing shear: a coarse-grained molecular dynamics approach

    SciTech Connect (OSTI)

    Rolfe, Bryan A.; Chun, Jaehun; Joo, Yong L.

    2013-09-05

    Recent experimental work has shown that polymeric micelles can template nanoparticles via interstitial sites in shear-ordered micelle solutions. In the current study, we report simulation results based on a coarse-grained molecular dynamics (CGMD) model of a solvent/polymer/nanoparticle system. Our results demonstrate the importance of polymer concentration and the micelle corona length in 2D shear-ordering of neat block copolymer solutions. Although our results do not show strong 3D ordering during shear, we find that cessation of shear allows the system to relax into a 3D configuration of greater order than without shear. It is further shown that this post-shear relaxation is strongly dependent on the length of the micelle corona. For the first time, we demonstrate the presence and importance of a flow disturbance surrounding micelles in simple shear flow at moderate Pclet numbers. This disturbance is similar to what is observed around simulated star polymers and ellipsoids. The extent of the flow disturbance increases as expected with a longer micelle corona length. It is further suggested that without proper consideration of these dynamics, a stable nanoparticle configuration would be difficult to obtain.

  1. On sequential dynamical systems and simulation

    SciTech Connect (OSTI)

    Barrett, C.L.; Mortveit, H.S.; Reidys, C.M.

    1999-06-01

    The generic structure of computer simulations motivates a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {r_arrow} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper) which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes. This will be done using both combinatorial/algebraic techniques and probabilistic techniques. Finally the authors give results on dynamical system properties for some special systems.

  2. VUV studies of molecular photofragmentation dynamics

    SciTech Connect (OSTI)

    White, M.G.

    1993-12-01

    State-resolved, photoion and photoelectron methods are used to study the neutral fragmentation and ionization dynamics of small molecules relevant to atmospheric and combustion chemistry. Photodissociation and ionization are initiated by coherent VUV radiation and the fragmentation dynamics are extracted from measurements of product rovibronic state distributions, kinetic energies and angular distributions. The general aim of these studies is to investigate the multichannel interactions between the electronic and nuclear motions which determine the evolution of the photoexcited {open_quotes}complex{close_quotes} into the observed asymptotic channels.

  3. Comparison of binary collision approximation and molecular dynamics for displacement cascades in GaAs.

    SciTech Connect (OSTI)

    Foiles, Stephen Martin

    2011-10-01

    The predictions of binary collision approximation (BCA) and molecular dynamics (MD) simulations of displacement cascades in GaAs are compared. There are three issues addressed in this work. The first is the optimal choice of the effective displacement threshold to use in the BCA calculations to obtain the best agreement with MD results. Second, the spatial correlations of point defects are compared. This is related to the level of clustering that occurs for different types of radiation. Finally, the size and structure of amorphous zones seen in the MD simulations is summarized. BCA simulations are not able to predict the formation of amorphous material.

  4. State-to-state dynamics of molecular energy transfer

    SciTech Connect (OSTI)

    Gentry, W.R.; Giese, C.F.

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  5. Input File Creation for the Molecular Dynamics Program LAMMPS.

    Energy Science and Technology Software Center (OSTI)

    2001-05-30

    The program creates an input data file for the molecular dynamics program LAMMPS. The input file created is a liquid mixture between two walls explicitly composed of particles. The liquid molecules are modeled as a bead-spring molecule. The input data file specifies the position and topology of the starting state. The data structure of input allows for dynamic bond creation (cross-linking) within the LAMMPS code.

  6. Molecular dynamics investigation of the substrate binding mechanism in carboxylesterase

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-he

    2015-01-01

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of the substratemore » with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, we further predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase rPPEs, which will help guide future development of more efficient rPPE variants.« less

  7. Molecular dynamics investigation of the substrate binding mechanism in carboxylesterase

    SciTech Connect (OSTI)

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-he

    2015-01-01

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of the substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, we further predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase rPPEs, which will help guide future development of more efficient rPPE variants.

  8. Self-consistent field theory based molecular dynamics with linear system-size scaling

    SciTech Connect (OSTI)

    Richters, Dorothee; Khne, Thomas D.

    2014-04-07

    We present an improved field-theoretic approach to the grand-canonical potential suitable for linear scaling molecular dynamics simulations using forces from self-consistent electronic structure calculations. It is based on an exact decomposition of the grand canonical potential for independent fermions and does neither rely on the ability to localize the orbitals nor that the Hamilton operator is well-conditioned. Hence, this scheme enables highly accurate all-electron linear scaling calculations even for metallic systems. The inherent energy drift of Born-Oppenheimer molecular dynamics simulations, arising from an incomplete convergence of the self-consistent field cycle, is circumvented by means of a properly modified Langevin equation. The predictive power of the present approach is illustrated using the example of liquid methane under extreme conditions.

  9. Kinetic simulations of plasmoid chain dynamics

    SciTech Connect (OSTI)

    Markidis, S. [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden)] [High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden); Henri, P. [Universit de Nice Sophia Antipolis, CNRS, Observatoire de la Cte d'Azur, Nice (France)] [Universit de Nice Sophia Antipolis, CNRS, Observatoire de la Cte d'Azur, Nice (France); Lapenta, G. [Centrum voor Plasma-Astrofysica, Department Wiskunde, Katholieke Universiteit Leuven, Leuven (Belgium)] [Centrum voor Plasma-Astrofysica, Department Wiskunde, Katholieke Universiteit Leuven, Leuven (Belgium); Divin, A. [Swedish Institute of Space Physics, Uppsala (Sweden)] [Swedish Institute of Space Physics, Uppsala (Sweden); Goldman, M.; Newman, D. [Department of Physics and CIPS, University of Colorado, Boulder 80309-0390 (United States)] [Department of Physics and CIPS, University of Colorado, Boulder 80309-0390 (United States); Laure, E. [PDC and High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden)] [PDC and High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden)

    2013-08-15

    The dynamics of a plasmoid chain is studied with three dimensional Particle-in-Cell simulations. The evolution of the system with and without a uniform guide field, whose strength is 1/3 the asymptotic magnetic field, is investigated. The plasmoid chain forms by spontaneous magnetic reconnection: the tearing instability rapidly disrupts the initial current sheet generating several small-scale plasmoids that rapidly grow in size coalescing and kinking. The plasmoid kink is mainly driven by the coalescence process. It is found that the presence of guide field strongly influences the evolution of the plasmoid chain. Without a guide field, a main reconnection site dominates and smaller reconnection regions are included in larger ones, leading to an hierarchical structure of the plasmoid-dominated current sheet. On the contrary in presence of a guide field, plasmoids have approximately the same size and the hierarchical structure does not emerge, a strong core magnetic field develops in the center of the plasmoid in the direction of the existing guide field, and bump-on-tail instability, leading to the formation of electron holes, is detected in proximity of the plasmoids.

  10. Expansion techniques for collisionless stellar dynamical simulations

    SciTech Connect (OSTI)

    Meiron, Yohai; Li, Baile; Holley-Bockelmann, Kelly; Spurzem, Rainer

    2014-09-10

    We present graphics processing unit (GPU) implementations of two fast force calculation methods based on series expansions of the Poisson equation. One method is the self-consistent field (SCF) method, which is a Fourier-like expansion of the density field in some basis set; the other method is the multipole expansion (MEX) method, which is a Taylor-like expansion of the Green's function. MEX, which has been advocated in the past, has not gained as much popularity as SCF. Both are particle-field methods and optimized for collisionless galactic dynamics, but while SCF is a 'pure' expansion, MEX is an expansion in just the angular part; thus, MEX is capable of capturing radial structure easily, while SCF needs a large number of radial terms. We show that despite the expansion bias, these methods are more accurate than direct techniques for the same number of particles. The performance of our GPU code, which we call ETICS, is profiled and compared to a CPU implementation. On the tested GPU hardware, a full force calculation for one million particles took ?0.1 s (depending on expansion cutoff), making simulations with as many as 10{sup 8} particles fast for a comparatively small number of nodes.

  11. Dynamic Simulation over Long Time Periods with 100% Solar Generation.

    SciTech Connect (OSTI)

    Concepcion, Ricky James; Elliott, Ryan Thomas

    2015-12-01

    This project aimed to identify the path forward for dynamic simulation tools to accommodate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for potential problems.

  12. Molecular Simulation of Carbon Dioxide Nanodroplets on Clay Surfaces in

    Office of Scientific and Technical Information (OSTI)

    Deep Saline Aquifers. (Conference) | SciTech Connect Surfaces in Deep Saline Aquifers. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide Nanodroplets on Clay Surfaces in Deep Saline Aquifers. Authors: Tenney, Craig M. Publication Date: 2013-01-01 OSTI Identifier: 1063603 Report Number(s): SAND2013-0408C DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the CFSES Seminar, University of

  13. Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: A molecular dynamics study

    SciTech Connect (OSTI)

    Lu, Gui; Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania 19104 ; Hu, Han; Sun, Ying E-mail: ysun@coe.drexel.edu; Duan, Yuanyuan E-mail: ysun@coe.drexel.edu

    2013-12-16

    In this Letter, dynamic wetting of water nano-droplets containing non-surfactant gold nanoparticles on a gold substrate is examined via molecular dynamics simulations. The results show that the addition of non-surfactant nanoparticles hinders the nano-second droplet wetting process, attributed to the increases in both surface tension of the nanofluid and friction between nanofluid and substrate. The droplet wetting kinetics decreases with increasing nanoparticle loading and water-particle interaction energy. The observed wetting suppression and the absence of nanoparticle ordering near the contact line of nano-sized droplets differ from the wetting behaviors reported from nanofluid droplets of micron size or larger.

  14. Phonon-magnon interactions in body centered cubic iron: A combined molecular and spin dynamics study

    SciTech Connect (OSTI)

    Perera, Dilina Landau, David P.; Nicholson, Don M.; Malcolm Stocks, G.; Eisenbach, Markus; Yin, Junqi; Brown, Gregory

    2014-05-07

    Combining an atomistic many-body potential with a classical spin Hamiltonian parameterized by first principles calculations, molecular-spin dynamics computer simulations were performed to investigate phonon-magnon interactions in body centered cubic iron. Results obtained for spin-spin and density-density dynamic structure factors show that noticeable softening and damping of magnon modes occur due to the presence of lattice vibrations. Furthermore, as a result of the phonon-magnon coupling, additional longitudinal spin wave excitations are observed, with the same frequencies as the longitudinal phonon modes.

  15. Simulation studies of self-organization of microtubules and molecular motors.

    SciTech Connect (OSTI)

    Jian, Z.; Karpeev, D.; Aranson, I. S.; Bates, P. W.; Michigan State Univ.

    2008-05-01

    We perform Monte Carlo type simulation studies of self-organization of microtubules interacting with molecular motors. We model microtubules as stiff polar rods of equal length exhibiting anisotropic diffusion in the plane. The molecular motors are implicitly introduced by specifying certain probabilistic collision rules resulting in realignment of the rods. This approximation of the complicated microtubule-motor interaction by a simple instant collision allows us to bypass the 'computational bottlenecks' associated with the details of the diffusion and the dynamics of motors and the reorientation of microtubules. Consequently, we are able to perform simulations of large ensembles of microtubules and motors on a very large time scale. This simple model reproduces all important phenomenology observed in in vitro experiments: Formation of vortices for low motor density and raylike asters and bundles for higher motor density.

  16. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect (OSTI)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  17. Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics

    SciTech Connect (OSTI)

    Ganesh, P.; Jiang, D.; Kent, P.R.C.

    2011-03-31

    Lithium-ion batteries have the potential to revolutionize the transportation industry, as they did for wireless communication. A judicious choice of the liquid electrolytes used in these systems is required to achieve a good balance among high-energy storage, long cycle life and stability, and fast charging. Ethylene-carbonate (EC) and propylene-carbonate (PC) are popular electrolytes. However, to date, almost all molecular-dynamics simulations of these fluids rely on classical force fields, while a complete description of the functionality of Li-ion batteries will eventually require quantum mechanics. We perform accurate ab initio molecular-dynamics simulations of ethylene- and propylene-carbonate with LiPF6 at experimental concentrations to build solvation models which explain available neutron scattering and nuclear magnetic resonance (NMR) results and to compute Li-ion solvation energies and diffusion constants. Our results suggest some similarities between the two liquids as well as some important differences. Simulations also provide useful insights into formation of solid-electrolyte interphases in the presence of electrodes in conventional Li-ion batteries.

  18. Accurate static and dynamic properties of liquid-electrolytes for Li-ion batteries from ab initio molecular dynamics

    SciTech Connect (OSTI)

    Ganesh, Panchapakesan; Jiang, Deen; Kent, Paul R

    2011-01-01

    Lithium-ion batteries have the potential to revolutionize the transportation industry, as they did for wireless communication. A judicious choice of the liquid electrolytes used in these systems is required to achieve a good balance among high-energy storage, long cycle life and stability, and fast charging. Ethylene-carbonate (EC) and propylene-carbonate (PC) are popular electrolytes. However, to date, almost all molecular-dynamics simulations of these fluids rely on classical force fields, while a complete description of the functionality of Li-ion batteries will eventually require quantum mechanics. We perform accurate ab initio molecular-dynamics simulations of ethylene- and propylene-carbonate with LiPF6 at experimental concentrations to build solvation models which explain available neutron scattering and nuclear magnetic resonance (NMR) results and to compute Li-ion solvation energies and diffusion constants. Our results suggest some similarities between the two liquids as well as some important differences. Simulations also provide useful insights into formation of solid-electrolyte interphases in the presence of electrodes in conventional Li-ion batteries.

  19. Atomistic Molecular Dynamics of Ion-Containing Polymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomistic Molecular Dynamics of Ion-Containing Polymers - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense

  20. Analysis of nanoscale two-phase flow of argon using molecular dynamics

    SciTech Connect (OSTI)

    Verma, Abhishek Kumar; Kumar, Rakesh

    2014-12-09

    Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.

  1. Simulations of vibrational relaxation in dense molecular fluids

    SciTech Connect (OSTI)

    Holian, B.L.

    1985-07-01

    In the understanding of high-temperatre and -pressure chemistry in explosives, first step is the study of the transfer of energy from translational degrees of freedom into internal vibrations of the molecules. We present new methods using nonequilibrium molecular dynamics (NEMD) for measuring vibrational relaxation in a diatomic fluid, where we expect a classical treatment of many-body collisions to be relevant because of the high densities (2 to 3 times compressed compared to the normal fluid) and high temperatures (2000 to 4000 K) involved behind detonation waves. NEMD techniques are discussed, including their limitations, and qualitative results presented.

  2. Computational Molecular Simulation of the Oxidative Adsorption of Ferrous Iron at the Hematite (001)-Water Interface

    SciTech Connect (OSTI)

    Kerisit, Sebastien N.; Zarzycki, Piotr P.; Rosso, Kevin M.

    2015-04-30

    The interaction of Fe(II) with ferric oxide/oxyhydroxide phases is central to the biogeochemical redox chemistry of iron. Molecular simulation techniques were employed to determine the mechanisms and quantify the rates of Fe(II) oxidative adsorption at the hematite (001)-water interface. Molecular dynamics potential of mean force calculations of Fe(II) adsorbing on the hematite surface revealed the presence of three free energy minima corresponding to Fe(II) adsorbed in an outersphere complex, a monodentate innersphere complex, and a tridentate innersphere complex. The free energy barrier for adsorption from the outersphere position to the monodentate innersphere site was calculated to be similar to the activation enthalpy for water exchange around aqueous Fe(II). Adsorption at both innersphere sites was predicted to be unfavorable unless accompanied by release of protons. Molecular dynamics umbrella sampling simulations and ab initio cluster calculations were performed to determine the rates of electron transfer from Fe(II) adsorbed as an innersphere and outersphere complex. The electron transfer rates were calculated to range from 10^-4 to 10^2 s-1, depending on the adsorption site and the potential parameter set, and were generally slower than those obtained in the bulk hematite lattice. The most reliable estimate of the rate of electron transfer from Fe(II) adsorbed as an outersphere complex to lattice Fe(III) was commensurate with the rate of adsorption as an innersphere complex suggesting that adsorption does not necessarily need to precede oxidation.

  3. Dynamic System Simulation of the KRUSTY Experiment (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect SciTech Connect Search Results Technical Report: Dynamic System Simulation of the KRUSTY Experiment Citation Details In-Document Search Title: Dynamic System Simulation of the KRUSTY Experiment The proposed KRUSTY experiment is a demonstration of a reactor operating at power. The planned experimental configuration includes a highly enriched uranium (HEU) reflected core, cooled by multiple heat pipes leading to Stirling engines for primary heat rejection. Operating power is

  4. Dynamic System Simulation of the KRUSTY Experiment (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technical Report: Dynamic System Simulation of the KRUSTY Experiment Citation Details In-Document Search Title: Dynamic System Simulation of the KRUSTY Experiment × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of

  5. Dynamic simulation of kinematic Stirling engines: Coupled and decoupled

    Office of Scientific and Technical Information (OSTI)

    analysis (Conference) | SciTech Connect Dynamic simulation of kinematic Stirling engines: Coupled and decoupled analysis Citation Details In-Document Search Title: Dynamic simulation of kinematic Stirling engines: Coupled and decoupled analysis A coupled analysis modelling method of Stirling engines is presented. The main feature of this modelling method is the use of a software package combining the capabilities of a pre-/post-processor with a differential algebraic equations solver. As a

  6. Sandia Energy - Computational Fluid Dynamics Simulations Provide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from a VWiS large-eddy simulation. One of the primary roles of Sandia's Scaled Wind Farm Technology (SWiFT) facility will be to conduct detailed experiments on turbine wakes and...

  7. Molecular nonlinear dynamics and protein thermal uncertainty quantification

    SciTech Connect (OSTI)

    Xia, Kelin [Department of Mathematics, Michigan State University, Michigan 48824 (United States)] [Department of Mathematics, Michigan State University, Michigan 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, Michigan 48824 (United States) [Department of Mathematics, Michigan State University, Michigan 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824 (United States)

    2014-03-15

    This work introduces molecular nonlinear dynamics (MND) as a new approach for describing protein folding and aggregation. By using a mode system, we show that the MND of disordered proteins is chaotic while that of folded proteins exhibits intrinsically low dimensional manifolds (ILDMs). The stability of ILDMs is found to strongly correlate with protein energies. We propose a novel method for protein thermal uncertainty quantification based on persistently invariant ILDMs. Extensive comparison with experimental data and the state-of-the-art methods in the field validate the proposed new method for protein B-factor prediction.

  8. Generalized extended Lagrangian Born-Oppenheimer molecular dynamics

    SciTech Connect (OSTI)

    Niklasson, Anders M. N. Cawkwell, Marc J.

    2014-10-28

    Extended Lagrangian Born-Oppenheimer molecular dynamics based on Kohn-Sham density functional theory is generalized in the limit of vanishing self-consistent field optimization prior to the force evaluations. The equations of motion are derived directly from the extended Lagrangian under the condition of an adiabatic separation between the nuclear and the electronic degrees of freedom. We show how this separation is automatically fulfilled and system independent. The generalized equations of motion require only one diagonalization per time step and are applicable to a broader range of materials with improved accuracy and stability compared to previous formulations.

  9. Connecting the Molecular and the Continuum Scales

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    range of phenomena, from climate change to contaminant remediation. Accomplishments: Used molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients of...

  10. Magnetic Materials at finite Temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    SciTech Connect (OSTI)

    Eisenbach, Markus; Perera, Meewanage Dilina N; Landau, David P; Nicholson, Don M; Yin, Junqi; Brown, Greg

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles derived simulations.

  11. Numerical simulation of undersea cable dynamics

    SciTech Connect (OSTI)

    Ablow, C.M.; Schechter, S.

    1983-01-01

    A fully three-dimensional code has been written to compute the motion of a towed cable. The code is based on a robust and stable finite difference approximation to the differential equations derived from basic dynamics. A 3500-ft cable pulled at 18.5 knots (hr/sup -1/) through a circular turn of 700 yd radius has been computed in about half of the real time of the maneuver. The computed displacements are close to the measured ones; the changes in depth are within 2%.

  12. Can the ring polymer molecular dynamics method be interpreted as real time quantum dynamics?

    SciTech Connect (OSTI)

    Jang, Seogjoo; Sinitskiy, Anton V.; Voth, Gregory A.

    2014-04-21

    The ring polymer molecular dynamics (RPMD) method has gained popularity in recent years as a simple approximation for calculating real time quantum correlation functions in condensed media. However, the extent to which RPMD captures real dynamical quantum effects and why it fails under certain situations have not been clearly understood. Addressing this issue has been difficult in the absence of a genuine justification for the RPMD algorithm starting from the quantum Liouville equation. To this end, a new and exact path integral formalism for the calculation of real time quantum correlation functions is presented in this work, which can serve as a rigorous foundation for the analysis of the RPMD method as well as providing an alternative derivation of the well established centroid molecular dynamics method. The new formalism utilizes the cyclic symmetry of the imaginary time path integral in the most general sense and enables the expression of Kubo-transformed quantum time correlation functions as that of physical observables pre-averaged over the imaginary time path. Upon filtering with a centroid constraint function, the formulation results in the centroid dynamics formalism. Upon filtering with the position representation of the imaginary time path integral, we obtain an exact quantum dynamics formalism involving the same variables as the RPMD method. The analysis of the RPMD approximation based on this approach clarifies that an explicit quantum dynamical justification does not exist for the use of the ring polymer harmonic potential term (imaginary time kinetic energy) as implemented in the RPMD method. It is analyzed why this can cause substantial errors in nonlinear correlation functions of harmonic oscillators. Such errors can be significant for general correlation functions of anharmonic systems. We also demonstrate that the short time accuracy of the exact path integral limit of RPMD is of lower order than those for finite discretization of path. The present quantum dynamics formulation also serves as the basis for developing new quantum dynamical methods that utilize the cyclic nature of the imaginary time path integral.

  13. Modeling and simulation of consumer response to dynamic pricing.

    SciTech Connect (OSTI)

    Valenzuela, J.; Thimmapuram, P.; Kim, J (Decision and Information Sciences); (Auburn Univ.)

    2012-08-01

    Assessing the impacts of dynamic-pricing under the smart grid concept is becoming extremely important for deciding its full deployment. In this paper, we develop a model that represents the response of consumers to dynamic pricing. In the model, consumers use forecasted day-ahead prices to shift daily energy consumption from hours when the price is expected to be high to hours when the price is expected to be low while maintaining the total energy consumption as unchanged. We integrate the consumer response model into the Electricity Market Complex Adaptive System (EMCAS). EMCAS is an agent-based model that simulates restructured electricity markets. We explore the impacts of dynamic-pricing on price spikes, peak demand, consumer energy bills, power supplier profits, and congestion costs. A simulation of an 11-node test network that includes eight generation companies and five aggregated consumers is performed for a period of 1 month. In addition, we simulate the Korean power system.

  14. Molecular dynamics of wetting layer formation and forced water invasion in angular nanopores with mixed wettability

    SciTech Connect (OSTI)

    Sedghi, Mohammad Piri, Mohammad; Goual, Lamia

    2014-11-21

    The depletion of conventional hydrocarbon reservoirs has prompted the oil and gas industry to search for unconventional resources such as shale gas/oil reservoirs. In shale rocks, considerable amounts of hydrocarbon reside in nanoscale pore spaces. As a result, understanding the multiphase flow of wetting and non-wetting phases in nanopores is important to improve oil and gas recovery from these formations. This study was designed to investigate the threshold capillary pressure of oil and water displacements in a capillary dominated regime inside nanoscale pores using nonequilibrium molecular dynamics (NEMD) simulations. The pores have the same cross-sectional area and volume but different cross-sectional shapes. Oil and water particles were represented with a coarse grained model and the NEMD simulations were conducted by assigning external pressure on an impermeable piston. Threshold capillary pressures were determined for the drainage process (water replaced by oil) in different pores. The molecular dynamics results are in close agreements with calculations using the Mayer-Stowe-Princen (MS-P) method which has been developed on the premise of energy balance in thermodynamic equilibrium. After the drainage simulations, a change in wall particles’ wettability from water-wet to oil-wet was implemented based on the final configuration of oil and water inside the pore. Waterflooding simulations were then carried out at the threshold capillary pressure. The results show that the oil layer formed between water in the corner and in the center of the pore is not stable and collapses as the simulation continues. This is in line with the predictions from the MS-P method.

  15. Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions

    SciTech Connect (OSTI)

    Fattebert, J.-L.; Richards, D.F.; Glosli, J.N.

    2012-12-01

    We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440106 particles on 65,536 MPI tasks.

  16. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    SciTech Connect (OSTI)

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.

    2015-01-15

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.

  17. Two worlds collide: Image analysis methods for quantifying structural variation in cluster molecular dynamics

    SciTech Connect (OSTI)

    Steenbergen, K. G.; Gaston, N.

    2014-02-14

    Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.

  18. Molecular dynamics study of two-dimensional sum frequency generation spectra at vapor/water interface

    SciTech Connect (OSTI)

    Ishiyama, Tatsuya; Morita, Akihiro; Tahara, Tahei

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum frequency generation (2D HD-VSFG) spectra at vapor/water interface were studied by molecular dynamics (MD) simulation with a classical flexible and nonpolarizable model. The present model well describes the spectral diffusion of 2D infrared spectrum of bulk water as well as 2D HD-VSFG at the interface. The effect of isotopic dilution on the 2D HD-VSFG was elucidated by comparing the normal (H{sub 2}O) water and HOD water. We further performed decomposition analysis of 2D HD-VSFG into the hydrogen-bonding and the dangling (or free) OH vibrations, and thereby disentangled the different spectral responses and spectral diffusion in the 2D HD-VSFG. The present MD simulation demonstrated the role of anharmonic coupling between these modes on the cross peak in the 2D HD-VSFG spectrum.

  19. Molecular dynamics of a dilute solution of hydrogen in palladium

    SciTech Connect (OSTI)

    Pratt, L. R.; Eckert, J.

    1989-06-15

    Molecular-dynamics results on a dilute solution of H in Pd are presentedand compared with available incoherent inelastic neutron-scattering results.The embedded-atom model adopted here does a good job of describing the H-Pdatomic forces probed by incoherent inelastic neutron scattering. The timecorrelation functions associated with the computed spectra are strongly dampedand indicative of the anharmonicity that has been suggested as the principalcontribution to the anomalous isotope dependence of the superconductingtransition temperature in PdH. These results highlight the fact that the H-atomvibrations in Pd-H solutions are low-frequency, large-amplitude vibrationsrelative to vibrations of H atoms in usual covalent interactions. The rmsdisplacement of the H atom from its mean position in the center of the Pdoctahedron compares favorably with the available neutron-diffraction results.

  20. A Molecular Dynamics Study of Chemical Reactions of Solid Pentaerythritol Tetranitrate at Extreme Conditions

    SciTech Connect (OSTI)

    Wu, C J; Manaa, M R; Fried, L E

    2006-05-30

    We have carried out density functional based tight binding (DFTB) molecular dynamics (MD) simulation to study energetic reactions of solid Pentaerythritol Tetranitrate (PETN) at conditions approximating the Chapman-Jouguet (CJ) detonation state. We found that the initial decomposition of PETN molecular solid is characterized by uni-molecular dissociation of the NO{sub 2}groups. Interestingly, energy release from this powerful high explosive was found to proceed in several stages. The large portion of early stage energy release was found to be associated with the formation of H{sub 2}O molecules within a few picoseconds of reaction. It took nearly four times as long for majority of CO{sub 2} products to form, accompanied by a slow oscillatory conversion between CO and CO{sub 2}. The production of N{sub 2} starts after NO{sub 2} loses its oxygen atoms to hydrogen or carbon atoms to form H{sub 2}O or CO. We identified many intermediate species that emerge and contribute to reaction kinetics, and compared our simulation with a thermo-chemical equilibrium calculation. In addition, a detailed chemical kinetics of formation of H{sub 2}O, CO, and CO{sub 2} were developed. Rate constants of formations of H{sub 2}O, CO{sub 2} and N{sub 2} were reported.

  1. Critical interpretation of CH and OH stretching regions for infrared spectra of methanol clusters (CH{sub 3}OH){sub n} (n = 25) using self-consistent-charge density functional tight-binding molecular dynamics simulations

    SciTech Connect (OSTI)

    Nishimura, Yoshifumi; Lee, Yuan-Pern; Irle, Stephan; Witek, Henryk A.

    2014-09-07

    Vibrational infrared (IR) spectra of gas-phase OH???O methanol clusters up to pentamer are simulated using self-consistent-charge density functional tight-binding method using two distinct methodologies: standard normal mode analysis and Fourier transform of the dipole time-correlation function. The twofold simulations aim at the direct critical assignment of the CH stretching region of the recently recorded experimental spectra [H.-L. Han, C. Camacho, H. A. Witek, and Y.-P. Lee, J. Chem. Phys. 134, 144309 (2011)]. Both approaches confirm the previous assignment (ibid.) of the CH stretching bands based on the B3LYP/ANO1 harmonic frequencies, showing that ?{sub 3}, ?{sub 9}, and ?{sub 2} CH stretching modes of the proton-accepting (PA) and proton-donating (PD) methanol monomers experience only small splittings upon the cluster formation. This finding is in sharp discord with the assignment based on anharmonic B3LYP/VPT2/ANO1 vibrational frequencies (ibid.), suggesting that some procedural faults, likely related to the breakdown of the perturbational vibrational treatment, led the anharmonic calculations astray. The IR spectra based on the Fourier transform of the dipole time-correlation function include new, previously unaccounted for physical factors such as non-zero temperature of the system and large amplitude motions of the clusters. The elevation of temperature results in a considerable non-homogeneous broadening of the observed IR signals, while the presence of large-amplitude motions (methyl group rotations and PA-PD flipping), somewhat surprisingly, does not introduce any new features in the spectrum.

  2. Qbox First-principles Molecular Dynamics (Qball branch, svn release 081

    Energy Science and Technology Software Center (OSTI)

    2013-03-05

    Qball is a modified version of the open source Qbox first-principles molecular dynamics code which was originally developed at LLNL by Francois Gygi.

  3. Generic solar photovoltaic system dynamic simulation model specification.

    SciTech Connect (OSTI)

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    2013-10-01

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

  4. Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations

    SciTech Connect (OSTI)

    Giorgi, G.L.; Roncaglia, M.; Raffa, F.A.; Genovese, M.

    2015-10-15

    During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise.

  5. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity

    SciTech Connect (OSTI)

    Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.; Michaelides, Angelos

    2015-05-14

    Ice formation is one of the most common and important processes on earth and almost always occurs at the surface of a material. A basic understanding of how the physicochemical properties of a material’s surface affect its ability to form ice has remained elusive. Here, we use molecular dynamics simulations to directly probe heterogeneous ice nucleation at a hexagonal surface of a nanoparticle of varying hydrophilicity. Surprisingly, we find that structurally identical surfaces can both inhibit and promote ice formation and analogous to a chemical catalyst, it is found that an optimal interaction between the surface and the water exists for promoting ice nucleation.We use our microscopic understanding of the mechanism to design a modified surface in silico with enhanced ice nucleating ability. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

  6. Beam Dynamics Design and Simulation in Ion Linear Accelerators (

    Energy Science and Technology Software Center (OSTI)

    2006-08-01

    Orginally, the ray tracing code TRACK has been developed to fulfill the many special requirements for the Rare Isotope Accelerator Facility known as RIA. Since no available beam-dynamics code met all the necessary requirements, modifications to the code TRACK were introduced to allow end-to-end (from the ion souce to the production target) simulations of the RIA machine, TRACK is a general beam-dynamics code and can be applied for the design, commissioning and operation of modernmore » ion linear accelerators and beam transport systems.« less

  7. Electric Double-Layer Structure in Primitive Model Electrolytes. Comparing Molecular Dynamics with Local-Density Approximations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Giera, Brian; Lawrence Livermore National Lab.; Henson, Neil; Kober, Edward M.; Shell, M. Scott; Squires, Todd M.

    2015-02-27

    We evaluate the accuracy of local-density approximations (LDAs) using explicit molecular dynamics simulations of binary electrolytes comprised of equisized ions in an implicit solvent. The Bikerman LDA, which considers ions to occupy a lattice, poorly captures excluded volume interactions between primitive model ions. Instead, LDAs based on the Carnahan–Starling (CS) hard-sphere equation of state capture simulated values of ideal and excess chemical potential profiles extremely well, as is the relationship between surface charge density and electrostatic potential. Excellent agreement between the EDL capacitances predicted by CS-LDAs and computed in molecular simulations is found even in systems where ion correlations drivemore » strong density and free charge oscillations within the EDL, despite the inability of LDAs to capture the oscillations in the detailed EDL profiles.« less

  8. Simulating the Dynamic Coupling of Market and Physical System Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Roop, Joseph M.; Guttromson, Ross T.; Huang, Zhenyu

    2004-06-01

    Abstract-As energy trading products cover shorter time periods and demand response programs move toward real-time pricing, financial market-based activity impacts ever more directly the physical operation of the system. To begin to understand the complex interactions between the market-driven operation signals, the engineered controlled schemes, and the laws of physics, new system modeling and simulation techniques must be explored. This discussion describes requirements for new simulation tools to address such market transaction control interactions and an approach to capture the dynamic coupling between energy markets and the physical operation of the power system appropriate for dispatcher reaction time frames.

  9. Dislocation dynamics simulations of plasticity at small scales

    SciTech Connect (OSTI)

    Zhou, Caizhi

    2010-12-15

    As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this research is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.

  10. An Efficient Molecular Dynamics Scheme for Predicting Dopant Implant Profiles in Semiconductors

    SciTech Connect (OSTI)

    Beardmore, K.M.; Gronbech-Jensen, N.

    1998-09-15

    The authors present a highly efficient molecular dynamics scheme for calculating the concentration profile of dopants implanted in group-IV alloy, and III-V zinc blende structure materials. The program incorporates methods for reducing computational overhead, plus a rare event algorithm to give statistical accuracy over several orders of magnitude change in the dopant concentration. The code uses a molecular dynamics (MD) model, instead of the binary collision approximation (BCA) used in implant simulators such as TRIM and Marlowe, to describe ion-target interactions. Atomic interactions are described by a combination of 'many-body' and screened Coulomb potentials. Inelastic energy loss is accounted for using a Firsov model, and electronic stopping is described by a Brandt-Kitagawa model which contains the single adjustable parameter for the entire scheme. Thus, the program is easily extensible to new ion-target combinations with the minimum of tuning, and is predictive over a wide range of implant energies and angles. The scheme is especially suited for calculating profiles due to low energy, large angle implants, and for situations where a predictive capability is required with the minimum of experimental validation. They give examples of using their code to calculate concentration profiles and 2D 'point response' profiles of dopants in crystalline silicon, silicon-germanium blends, and gallium-arsenide. They can predict the experimental profiles over five orders of magnitude for <100> and <110> channeling and for non-channeling implants at energies up to hundreds of keV.

  11. Large-Scale First-Principles Molecular Dynamics Simulations on...

    Office of Scientific and Technical Information (OSTI)

    Measurements of performance by means of hardware counters show that 37% of the peak FPU performance can be attained. Authors: Gygi, F ; Draeger, E W ; de Supinski, B R ; Yates, R K ...

  12. First-principles molecular dynamics simulations of condensed...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: DE-AC52-07NA27344 Resource Type: Journal Article Resource Relation: Journal Name: Physical Chemistry Chemical Pysics, vol. 14, no. 10, January 5, 2012, pp. ...

  13. ParaDiS-FEM dislocation dynamics simulation code primer (Technical...

    Office of Scientific and Technical Information (OSTI)

    ParaDiS-FEM dislocation dynamics simulation code primer Citation Details In-Document Search Title: ParaDiS-FEM dislocation dynamics simulation code primer You are accessing a ...

  14. Molecular dynamics study of interfacial confinement effects of aqueous NaCl brines in nanoporous carbon

    SciTech Connect (OSTI)

    Wander, M. C. F.; Shuford, K. L.

    2010-12-09

    In this paper, studies of aqueous electrolyte solutions in contact with a family of porous carbon geometries using classical molecular dynamics simulations are presented. These simulations provide an atomic scale depiction of ion transport dynamics in different environments to elucidate power of aqueous electrolyte supercapacitors. The electrolyte contains alkali metal and halide ions, which allow for the examination of size trends within specific geometries as well as trends in concentration. The electrode pores are modeled as planar graphite sheets and carbon nanotubes with interstices ranging from one to four nanometers. Ordered layers form parallel to the carbon surface, which facilitates focused ion motion under slightly confining conditions. As a result, the ions diffusivities are enhanced in the direction of the slit or pore. Further confining the system leads to decreased ion diffusivities. The ions are fully hydrated in all but the smallest slits and pores with those sizes showing increased ion pairing. There is strong evidence of charge separation perpendicular to the surface at all size scales, concentrations, and ion types, providing a useful baseline for examining differential capacitance behavior and future studies on energy storage. These systems show promise as high-power electrical energy storage devices.

  15. Fast and accurate quantum molecular dynamics of dense plasmas across temperature regimes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sjostrom, Travis; Daligault, Jerome

    2014-10-10

    Here, we develop and implement a new quantum molecular dynamics approximation that allows fast and accurate simulations of dense plasmas from cold to hot conditions. The method is based on a carefully designed orbital-free implementation of density functional theory. The results for hydrogen and aluminum are in very good agreement with Kohn-Sham (orbital-based) density functional theory and path integral Monte Carlo calculations for microscopic features such as the electron density as well as the equation of state. The present approach does not scale with temperature and hence extends to higher temperatures than is accessible in the Kohn-Sham method and lowermore » temperatures than is accessible by path integral Monte Carlo calculations, while being significantly less computationally expensive than either of those two methods.« less

  16. Nonadiabatic ab initio molecular dynamics of photoisomerization in bridged azobenzene

    SciTech Connect (OSTI)

    Gao Aihua; Li Bin; Zhang Peiyu; Han Keli [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2012-11-28

    The photoisomerization mechanisms of bridged azobenzene are investigated by means of surface hopping dynamics simulations based on the Zhu-Nakamura theory. In the geometry optimizations and potential energy surface calculations, four minimum-energy conical intersections between the ground state and the lowest excited state are found to play important roles in the trans-cis and cis-trans isomerization processes. The trans-cis photoisomerization proceeds through two minimum-energy conical intersections. Ultrafast pedal motion of the N atoms and twisting of phenyl rings around their N-C bonds allows the molecule to move to a minimum-energy conical intersection, after which surface hopping from S{sub 1} to S{sub 0} occurs. In the S{sub 0} state, further rotation occurs around the N=N bond and two N-C bonds until the azo moiety and phenyl rings complete their isomerization. Finally, the cis form is achieved by subsequent adjustment of the ethylene bridge. In the cis-trans photodynamics, there is one rotational pathway, in the middle of which two CIs are responsible for the surface hopping to the S{sub 0} state. After the nonadiabatic transition, the molecule reaches the trans form through a barrierless pathway and the two phenyl rings and the additional bridge complete their reorientation almost at the same time.

  17. Molecular dynamics study of saltsolution interface: Solubility and surface charge of salt in water

    SciTech Connect (OSTI)

    Kobayashi, Kazuya; Liang, Yunfeng E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Sakka, Tetsuo

    2014-04-14

    The NaCl saltsolution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl saltsolution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a saltsolution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  18. Dopant profile modeling by rare event enhanced domain-following molecular dynamics

    DOE Patents [OSTI]

    Beardmore, Keith M.; Jensen, Niels G.

    2002-01-01

    A computer-implemented molecular dynamics-based process simulates a distribution of ions implanted in a semiconductor substrate. The properties of the semiconductor substrate and ion dose to be simulated are first initialized, including an initial set of splitting depths that contain an equal number of virtual ions implanted in each substrate volume determined by the splitting depths. A first ion with selected velocity is input onto an impact position of the substrate that defines a first domain for the first ion during a first timestep, where the first domain includes only those atoms of the substrate that exert a force on the ion. A first position and velocity of the first ion is determined after the first timestep and a second domain of the first ion is formed at the first position. The first ion is split into first and second virtual ions if the first ion has passed through a splitting interval. The process then follows each virtual ion until all of the virtual ions have come to rest. A new ion is input to the surface and the process repeats until all of the ion dose has been input. The resulting ion rest positions form the simulated implant distribution.

  19. Protein Dynamics and Biocatalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biocatalysis.gif A model of the Michaelis complex for the TEM-1penicillin system from molecular dynamics simulations. Investigators: P. A. Bash, Northwestern University Medical...

  20. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray

    Office of Scientific and Technical Information (OSTI)

    structures (Journal Article) | SciTech Connect xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures Citation Details In-Document Search Title: xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve

  1. Analysis of Molecular Clusters in Simulations of Lithium-Ion Battery

    Office of Scientific and Technical Information (OSTI)

    Electrolytes. (Journal Article) | SciTech Connect Journal Article: Analysis of Molecular Clusters in Simulations of Lithium-Ion Battery Electrolytes. Citation Details In-Document Search Title: Analysis of Molecular Clusters in Simulations of Lithium-Ion Battery Electrolytes. Abstract not provided. Authors: Tenney, Craig M ; Cygan, Randall T. Publication Date: 2013-05-01 OSTI Identifier: 1079143 Report Number(s): SAND2013-3865J 452727 DOE Contract Number: AC04-94AL85000 Resource Type: Journal

  2. Dynamic simulation of the in-tank precipitation process

    SciTech Connect (OSTI)

    Hang, T.; Shanahan, K.L.; Gregory, M.V.; Walker, D.D.

    1993-12-31

    As part of the High-Level Waste Tank Farm at the Savannah River Site (SRS), the In-Tank Precipitation (ITP) facility was designed to decontaminate the radioactive waste supernate by removing cesium as precipitated cesium tetraphenylborate. A dynamic computer model of the ITP process was developed using SPEEDUP{sup TM} software to provide guidance in the areas of operation and production forecast, production scheduling, safety, air emission, and process improvements. The model performs material balance calculations in all phase (solid, liquid, and gas) for 50 key chemical constituents to account for inventory accumulation, depletion, and dilution. Calculations include precipitation, benzene radiolytic reactions, evaporation, dissolution, adsorption, filtration, and stripping. To control the ITP batch operation a customized FORTRAN program was generated and linked to SPEEDUP{sup TM} simulation This paper summarizes the model development and initial results of the simulation study.

  3. Description of waste pretreatment and interfacing systems dynamic simulation model

    SciTech Connect (OSTI)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggested average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.

  4. Theoretical study of molecular vibrations in electron momentum spectroscopy experiments on furan: An analytical versus a molecular dynamical approach

    SciTech Connect (OSTI)

    Morini, Filippo; Deleuze, Michael S.; Watanabe, Noboru; Takahashi, Masahiko

    2015-03-07

    The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A{sub 1} symmetry on the 9a{sub 1} momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing.

  5. Office Of Nuclear Energy Annual Review Meeting Dynamic Simulation Modeling Tool

    Energy Savers [EERE]

    Annual Review Meeting Dynamic Simulation Modeling Tool Lou Qualls ORNL September 16-18, 2014 2 Work Package SR-14OR130108 - Modeling Tools for Dynamic Behavior Simulations of SMRs 2 ü FY14 molten salt cooled model deliverable due. n FY15 web application deliverable due. n FY15 model repository establishment due. n FY15 working collaboration with University partners. n Simplified Dynamic Modeling for Advanced SMRs - Numerous dynamic models are needed to simulate plant behavior

  6. High-performance First-principles Molecular Dynamics for Predictive Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Modeling Eric Schwegler is Prinicipal Investigator for High-performance First-principles Molecular Dynamics for Predictive Theory and Modeling. High-performance First-principles Molecular Dynamics for Predictive Theory and Modeling Research The focus of this project is on the development of a high-performance software infrastructure that combines large-scale FPMD with advanced spectroscopy and sampling algorithms.

  7. Properties of gravitationally equilibrated Yukawa systemsA molecular dynamics study

    SciTech Connect (OSTI)

    Charan, Harish; Ganesh, Rajaraman Joy, Ashwin

    2014-04-15

    Using 2D Molecular Dynamics simulation, the equilibrium and dynamical properties of a gravitationally equilibrated Yukawa liquid are investigated. We observe that due to asymmetry introduced in one direction by gravity, several interesting features arise. For example, for a given value of coupling parameter ?, screening parameter ?, and according to a chosen value of gravitational force g (say in y-direction), the system is seen to exhibit super-, sub- or normal diffusion. Interestingly, x-averaged density profiles, unlike a barotropic fluid, acquires sharp, free surface with scale free linear y-dependence. As can be expected for a system with macroscopic gradients, self-diffusion calculated from Green-Kubos formalism does not agree with that obtained from Einstein-Smoluchowski diffusion. A 2D angular-radial pair correlation function g(r, ?) clearly indicates asymmetric features induced by gravity. We observe that due to compression in y-direction, though in liquid state for all values of gravity considered, the transverse mode is found to predominant as compared to the longitudinal mode, leading to a novel Anisotropic Solid-like Yukawa liquid.

  8. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

    SciTech Connect (OSTI)

    Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.

    2014-11-03

    Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed Cu64.5Zr35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) and Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. As a result, by mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.

  9. Impact of deformation on the atomic structures and dynamics of a Cu-Zr metallic glass: A molecular dynamics study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Y.; Mendelev, M. I.; Wang, C. Z.; Ott, R.; Zhang, F.; Besser, M. F.; Ho, K. M.; Kramer, M. J.

    2014-11-03

    Despite numerous studies on the atomic structures of Cu-Zr metallic glasses (MGs), their inherent structural ordering, e.g., medium-range order (MRO), remains difficult to describe. Specifically lacking is an understanding of how the MRO responds to deformation and the associated changes in atomic mobility. In this paper, we focus on the impact of deformation on MRO and associated effect on diffusion in a well-relaxed Cu64.5Zr35.5 MG by molecular dynamics simulations. The Cu-Zr MG exhibits a larger elastic limit of 0.035 and a yield stress of 3.5 GPa. The cluster alignment method was employed to characterize the icosahedral short-range order (ISRO) andmore » Bergman-type medium-range order (BMRO) in the models upon loading and unloading. From this analysis, we find the disruption of both ISRO and BMRO occurs as the strain reaches about 0.02, well below the elastic limit. Within the elastic limit, the total fractions of ISRO or BMRO can be fully recovered upon unloading. The diffusivity increases six to eight times in regions undergoing plastic deformation, which is due to the dramatic disruption of the ISRO and BMRO. As a result, by mapping the spatial distributions of the mobile atoms, we demonstrate the increase in atomic mobility is due to the extended regions of disrupted ISRO and more importantly BMRO.« less

  10. Dynamic simulation models and performance of an OTEC power plant

    SciTech Connect (OSTI)

    Wormley, D.N.; Carmichael, D.A.; Umans, S.

    1983-08-01

    In this study, the aspects of plant performance which influence the potential for integration of an OTEC plant into a utility grid are considered. A set of simulation models have been developed for the evaluation of OTEC dynamic plant performance. A detailed nonlinear dynamic model has been forumlated which is useful for the assessment of component performance including heat exchangers, turbines, pumps and control systems. A reduced order linear model has been developed which is useful for studies of plant stability, control system development and transient performance of the plant connected to a utility grid. This model is particularly suitable for transient dynamic studies of an OTEC plant as a unit in a utility grid. A quasi-steady power availability model has also been developed which is useful to determine plant ouput power as a function of ocean thermal gradients so that the influence of daily and seasonal temperature variations may be easily computed. The study has found no fundamental technical barriers which would prohibit the interconnection of an OTEC plant into a utility grid. It has also shown that detailed consideration of turbine nozzle angle control is merited and such a control has the potential to provide superior performance in comparison to turbine bypass valve control.

  11. Extensions to Dynamic System Simulation of Fissile Solution Systems

    SciTech Connect (OSTI)

    Klein, Steven Karl; Bernardin, John David; Kimpland, Robert Herbert; Spernjak, Dusan

    2015-08-24

    Previous reports have documented the results of applying dynamic system simulation (DSS) techniques to model a variety of fissile solution systems. The SUPO (Super Power) aqueous homogeneous reactor (AHR) was chosen as the benchmark for comparison of model results to experimental data for steadystate operation.1 Subsequently, DSS was applied to additional AHR to verify results obtained for SUPO and extend modeling to prompt critical excursions, ramp reactivity insertions of various magnitudes and rate, and boiling operations in SILENE and KEWB (Kinetic Experiment Water Boiler).2 Additional models for pressurized cores (HRE: Homogeneous Reactor Experiment), annular core geometries, and accelerator-driven subcritical systems (ADAHR) were developed and results reported.3 The focus of each of these models is core dynamics; neutron kinetics, thermal hydraulics, radiolytic gas generation and transport are coupled to examine the time-based evolution of these systems from start-up through transition to steady-state. A common characteristic of these models is the assumption that (a) core cooling system inlet temperature and flow and (b) plenum gas inlet pressure and flow are held constant; no external (to core) component operations that may result in dynamic change to these parameters are considered. This report discusses extension of models to include explicit reference to cooling structures and radiolytic gas handling. The accelerator-driven subcritical generic system model described in References 3 and 4 is used as a basis for this extension.

  12. Isobaric molecular dynamics version of the generalized replica exchange method (gREM): Liquid–vapor equilibrium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Malolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-09-23

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.

  13. Beam dynamics simulations of the NML photoinjector at Fermilab

    SciTech Connect (OSTI)

    Piot, P.; Sun, Y.-E.; Church, M.; /Fermilab

    2010-08-01

    Fermilab is currently constructing a superconducting RF (SRF) test linear accelerator at the New Muon Lab (NML). Besides testing SRF accelerating modules for ILC and Project-X, NML will also eventually support a variety of advanced accelerator R&D experiments. The NML incorporates a 40 MeV photoinjector capable of providing electron bunches with variable parameters. The photoinjector is based on the 1+1/2 cell DESY-type gun followed by two superconducting cavities. It also includes a magnetic bunch compressor, a round-to-flat beam transformer and a low-energy experimental area for beam physics experiments and beam diagnostics R&D. In this paper, we explore, via beam dynamics simulations, the performance of the photoinjector for different operating scenarios.

  14. Dynamical dipole gamma radiation in heavy-ion collisions on the basis of a quantum molecular dynamics model

    SciTech Connect (OSTI)

    Wu, H. L.; Tian, W. D.; Ma, Y. G.; Cai, X. Z.; Chen, J. G.; Fang, D. Q.; Guo, W.; Wang, H. W.

    2010-04-15

    Dynamical dipole gamma-ray emission in heavy-ion collisions is explored in the framework of the quantum molecular dynamics model. The studies are focused on systems of {sup 40}Ca bombarding {sup 48}Ca and its isotopes at different incident energies and impact parameters. Yields of gamma rays are calculated and the centroid energy and dynamical dipole emission width of the gamma spectra are extracted to investigate the properties of gamma emission. In addition, sensitivities of dynamical dipole gamma-ray emission to the isospin and the symmetry energy coefficient of the equation of state are studied. The results show that detailed study of dynamical dipole gamma radiation can provide information on the equation of state and the symmetry energy around the normal nuclear density.

  15. Interaction and Coalescence of Nanovoids and Dynamic Fracture...

    Office of Scientific and Technical Information (OSTI)

    of Nanovoids and Dynamic Fracture in Silica Glass: Multimiilion-to-Billion Atom Molecular Dynamics Simulations Citation Details In-Document Search Title: Interaction and...

  16. Molecular simulation of a model of dissolved organic matter

    SciTech Connect (OSTI)

    Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S.; Schulten,Hans-Rolf

    2004-11-08

    A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na{sup +} or Ca{sup 2+} were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal- humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na{sup +}, Ca{sup 2+} was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca{sup 2+}. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.

  17. Theoretical aspects of gas-phase molecular dynamics

    SciTech Connect (OSTI)

    Muckerman, J.T.

    1993-12-01

    Research in this program is focused on the development and application of time-dependent quantum mechanical and semiclassical methods for treating inelastic and reactive molecular collisions, and the photochemistry and photophysics of atoms and molecules in laser fields. Particular emphasis is placed on the development and application of grid methods based on discrete variable representations, on time-propagation methods, and, in systems with more that a few degrees of freedom, on the combined use of quantal wavepackets and classical trajectories.

  18. Soft-spring wall based non-periodic boundary conditions for non-equilibrium molecular dynamics of dense fluids

    SciTech Connect (OSTI)

    Ghatage, Dhairyashil; Tomar, Gaurav Shukla, Ratnesh K.

    2015-03-28

    Non-equilibrium molecular dynamics (MD) simulations require imposition of non-periodic boundary conditions (NPBCs) that seamlessly account for the effect of the truncated bulk region on the simulated MD region. Standard implementation of specular boundary conditions in such simulations results in spurious density and force fluctuations near the domain boundary and is therefore inappropriate for coupled atomistic-continuum calculations. In this work, we present a novel NPBC model that relies on boundary atoms attached to a simple cubic lattice with soft springs to account for interactions from particles which would have been present in an untruncated full domain treatment. We show that the proposed model suppresses the unphysical fluctuations in the density to less than 1% of the mean while simultaneously eliminating spurious oscillations in both mean and boundary forces. The model allows for an effective coupling of atomistic and continuum solvers as demonstrated through multiscale simulation of boundary driven singular flow in a cavity. The geometric flexibility of the model enables straightforward extension to nonplanar complex domains without any adverse effects on dynamic properties such as the diffusion coefficient.

  19. Electron Transfer Dynamics in Efficient Molecular Solar Cells

    SciTech Connect (OSTI)

    Meyer, Gerald John

    2014-10-01

    This research provided new mechanistic insights into surface mediated photochemical processes relevant to solar energy conversion. In this past three years our research has focused on oxidation photo-redox chemistry and on the role surface electric fields play on basic spectroscopic properties of molecular-semiconductor interfaces. Although this research as purely fundamental science, the results and their interpretation have relevance to applications in dye sensitized and photogalvanic solar cells as well as in the storage of solar energy in the form of chemical bonds.

  20. A molecular dynamics study of nuclear quantum effect on the diffusion of hydrogen in condensed phase

    SciTech Connect (OSTI)

    Nagashima, Hiroki; Tokumasu, Takashi; Tsuda, Shin-ichi; Tsuboi, Nobuyuki; Koshi, Mitsuo; Hayashie, A. Koichi

    2014-10-06

    In this paper, the quantum effect of hydrogen molecule on its diffusivity is analyzed using Molecular Dynamics (MD) method. The path integral centroid MD (CMD) method is applied for the reproduction method of time evolution of the molecules. The diffusion coefficient of liquid hydrogen is calculated using the Green-Kubo method. The simulation is performed at wide temperature region and the temperature dependence of the quantum effect of hydrogen molecule is addressed. The calculation results are compared with those of classical MD results. As a result, it is confirmed that the diffusivity of hydrogen molecule is changed depending on temperature by the quantum effect. It is clarified that this result can be explained that the dominant factor by quantum effect on the diffusivity of hydrogen changes from the swollening the potential to the shallowing the potential well around 30 K. Moreover, it is found that this tendency is related to the temperature dependency of the ratio of the quantum kinetic energy and classical kinetic energy.

  1. Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface

    SciTech Connect (OSTI)

    Geng, Hua Y.

    2015-02-15

    A multilevel approach to sample the potential energy surface in a path integral formalism is proposed. The purpose is to reduce the required number of ab initio evaluations of energy and forces in ab initio path integral molecular dynamics (AI-PIMD) simulation, without compromising the overall accuracy. To validate the method, the internal energy and free energy of an Einstein crystal are calculated and compared with the analytical solutions. As a preliminary application, we assess the performance of the method in a realistic model—the FCC phase of dense atomic hydrogen, in which the calculated result shows that the acceleration rate is about 3 to 4-fold for a two-level implementation, and can be increased up to 10 times if extrapolation is used. With only 16 beads used for the ab initio potential sampling, this method gives a well converged internal energy. The residual error in pressure is just about 3 GPa, whereas it is about 20 GPa for a plain AI-PIMD calculation with the same number of beads. The vibrational free energy of the FCC phase of dense hydrogen at 300 K is also calculated with an AI-PIMD thermodynamic integration method, which gives a result of about 0.51 eV/proton at a density of r{sub s}=0.912.

  2. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    SciTech Connect (OSTI)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t{sub i} (trajectory positions and velocities x{sub i} = (r{sub i}, v{sub i})) to time t{sub i+1} (x{sub i+1}) by x{sub i+1} = f{sub i}(x{sub i}), the dynamics problem spanning an interval from t{sub 0}t{sub M} can be transformed into a root finding problem, F(X) = [x{sub i} ? f(x{sub (i?1})]{sub i} {sub =1,M} = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H{sub 2}O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow transmission control protocol/Internet protocol networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl + 4H{sub 2}O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. Using these algorithms, we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 s/time step to 6.9 s/time step.

  3. Extending molecular simulation time scales: Parallel in time integrations for high-level quantum chemistry and complex force representations

    SciTech Connect (OSTI)

    Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.

    2013-08-21

    Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f , (e.g. Verlet algorithm) is available to propagate the system from time ti (trajectory positions and velocities xi = (ri; vi)) to time ti+1 (xi+1) by xi+1 = fi(xi), the dynamics problem spanning an interval from t0 : : : tM can be transformed into a root finding problem, F(X) = [xi - f (x(i-1)]i=1;M = 0, for the trajectory variables. The root finding problem is solved using a variety of optimization techniques, including quasi-Newton and preconditioned quasi-Newton optimization schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed and the effectiveness of various approaches to solving the root finding problem are tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl+4H2O AIMD simulation at the MP2 level. The maximum speedup obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow TCP/IP networks. Scripts written in Python that make calls to a precompiled quantum chemistry package (NWChem) are demonstrated to provide an actual speedup of 8.2 for a 2.5 ps AIMD simulation of HCl+4H2O at the MP2/6-31G* level. Implemented in this way these algorithms can be used for long time high-level AIMD simulations at a modest cost using machines connected by very slow networks such as WiFi, or in different time zones connected by the Internet. The algorithms can also be used with programs that are already parallel. By using these algorithms we are able to reduce the cost of a MP2/6-311++G(2d,2p) simulation that had reached its maximum possible speedup in the parallelization of the electronic structure calculation from 32 seconds per time step to 6.9 seconds per time step.

  4. Graphics processing units accelerated semiclassical initial value representation molecular dynamics

    SciTech Connect (OSTI)

    Tamascelli, Dario; Dambrosio, Francesco Saverio [Dipartimento di Fisica, Universit degli Studi di Milano, via Celoria 16, 20133 Milano (Italy)] [Dipartimento di Fisica, Universit degli Studi di Milano, via Celoria 16, 20133 Milano (Italy); Conte, Riccardo [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States)] [Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322 (United States); Ceotto, Michele, E-mail: michele.ceotto@unimi.it [Dipartimento di Chimica, Universit degli Studi di Milano, via Golgi 19, 20133 Milano (Italy)] [Dipartimento di Chimica, Universit degli Studi di Milano, via Golgi 19, 20133 Milano (Italy)

    2014-05-07

    This paper presents a Graphics Processing Units (GPUs) implementation of the Semiclassical Initial Value Representation (SC-IVR) propagator for vibrational molecular spectroscopy calculations. The time-averaging formulation of the SC-IVR for power spectrum calculations is employed. Details about the GPU implementation of the semiclassical code are provided. Four molecules with an increasing number of atoms are considered and the GPU-calculated vibrational frequencies perfectly match the benchmark values. The computational time scaling of two GPUs (NVIDIA Tesla C2075 and Kepler K20), respectively, versus two CPUs (Intel Core i5 and Intel Xeon E5-2687W) and the critical issues related to the GPU implementation are discussed. The resulting reduction in computational time and power consumption is significant and semiclassical GPU calculations are shown to be environment friendly.

  5. On theoretical issues of computer simulations sequential dynamical systems

    SciTech Connect (OSTI)

    Barrett, C.L.; Mortveit, H.S.; Reidys, C.M.

    1998-12-01

    The authors study a class of discrete dynamical systems that is motivated by the generic structure of simulations. The systems consist of the following data: (a) a finite graph Y with vertex set {l_brace}1,...,n{r_brace} where each vertex has a binary state, (b) functions F{sub i}:F{sub 2}{sup n} {r_arrow} F{sub 2}{sup n} and (c) an update ordering {pi}. The functions F{sub i} update the binary state of vertex i as a function of the state of vertex i and its Y-neighbors and leave the states of all other vertices fixed. The update ordering is a permutation of the Y-vertices. They derive a decomposition result, characterize invertible SDS and study fixed points. In particular they analyze how many different SDS that can be obtained by reordering a given multiset of update functions and give a criterion for when one can derive concentration results on this number. Finally, some specific SDS are investigated.

  6. Bulk and Surface Molecular Orientation Distribution in Injection-molded Liquid Crystalline Polymers: Experiment and Simulation

    SciTech Connect (OSTI)

    Fang, J.; Burghardt, W; Bubeck, R; Burgard, S; Fischer, D

    2010-01-01

    Bulk and surface distributions of molecular orientation in injection-molded plaques of thermotropic liquid crystalline polymers (TLCPs) have been studied using a combination of techniques, coordinated with process simulations using the Larson-Doi 'polydomain' model. Wide-angle X-ray scattering was used to map out the bulk orientation distribution. Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) were utilized to probe the molecular orientation states to within about {approx}5 {micro}m and {approx}2 nm, respectively, of the sample surface. These noninvasive, surface-sensitive techniques yield reasonable self-consistency, providing complementary validation of the robustness of these methods. An analogy between Larson-Doi and fiber orientation models has allowed the first simulations of TLCP injection molding. The simulations capture many fine details in the bulk orientation distribution across the sample plaque. Direct simulation of surface orientation at the level probed by FTIR-ATR and NEXAFS was not possible due to the limited spatial resolution of the simulations. However, simulation results extracted from the shear-dominant skin region are found to provide a qualitatively accurate indicator of surface orientation. Finally, simulations capture the relation between bulk and surface orientation states across the different regions of the sample plaque.

  7. Parallel Atomistic Simulations

    SciTech Connect (OSTI)

    HEFFELFINGER,GRANT S.

    2000-01-18

    Algorithms developed to enable the use of atomistic molecular simulation methods with parallel computers are reviewed. Methods appropriate for bonded as well as non-bonded (and charged) interactions are included. While strategies for obtaining parallel molecular simulations have been developed for the full variety of atomistic simulation methods, molecular dynamics and Monte Carlo have received the most attention. Three main types of parallel molecular dynamics simulations have been developed, the replicated data decomposition, the spatial decomposition, and the force decomposition. For Monte Carlo simulations, parallel algorithms have been developed which can be divided into two categories, those which require a modified Markov chain and those which do not. Parallel algorithms developed for other simulation methods such as Gibbs ensemble Monte Carlo, grand canonical molecular dynamics, and Monte Carlo methods for protein structure determination are also reviewed and issues such as how to measure parallel efficiency, especially in the case of parallel Monte Carlo algorithms with modified Markov chains are discussed.

  8. ParaDiS-FEM dislocation dynamics simulation code primer (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect ParaDiS-FEM dislocation dynamics simulation code primer Citation Details In-Document Search Title: ParaDiS-FEM dislocation dynamics simulation code primer The ParaDiS code is developed to study bulk systems with periodic boundary conditions. When we try to perform discrete dislocation dynamics simulations for finite systems such as thin films or cylinders, the ParaDiS code must be extended. First, dislocations need to be contained inside the finite simulation box; Second,

  9. SciDAC advances in beam dynamics simulation: from light sources to colliders

    SciTech Connect (OSTI)

    Qiang, Ji; Qiang, J.; Borland, M.; Kabel, A.; Li, R.; Ryne, R.; Stern, E.; Wang, Y.; Wasserman, H.; Zhang, Y.

    2008-06-16

    In this paper, we report on progress that has been made in beam dynamics simulation, from light sources to colliders, during the first year of SciDAC-II accelerator project,"Community Petascale Project for Accelerator Science and Simulation (ComPASS)." Several parallel computational tools for beam dynamics simulation will be described. A number of applications in current and future accelerator facilities, e.g., LCLS, RHIC, Tevatron, LHC, ELIC, are presented.

  10. Office Of Nuclear Energy Annual Review Meeting Dynamic Simulation...

    Energy Savers [EERE]

    cooled model deliverable due. n FY15 web application deliverable due. n FY15 ... with user friendly interfaces (Excel Web) allow common simulation environment and ...

  11. Gas Diffusion in a Porous Organic Cage: Analysis of Dynamic Pore...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diffusion in a Porous Organic Cage: Analysis of Dynamic Pore Connectivity Using Molecular Dynamics Simulations Previous Next List Daniel Holden, Kim E. Jelfs, Abbie Trewin, David...

  12. Hybrid DFT Functional-Based Static and Molecular Dynamics Studies of Excess Electron in Liquid Ethylene Carbonate

    SciTech Connect (OSTI)

    Yu, J. M.; Balbuena, P. B.; Budzien, J. L.; Leung, Kevin

    2011-02-22

    We applied static and dynamic hybrid functional density functional theory (DFT) calculations to study the interactions of one and two excess electrons with ethylene carbonate (EC) liquid and clusters. Optimal structures of (EC)n and (EC)n- clusters devoid of Li+ ions, n = 16, were obtained. The excess electron was found to be localized on a single EC in all cases, and the EC dimeric radical anion exhibits a reduced barrier associated with the breaking of the ethylene carbonoxygen covalent bond compared to EC-. In ab initio molecular dynamics (AIMD) simulations of EC- solvated in liquid EC, large fluctuations in the carbonyl carbonoxygen bond lengths were observed. AIMD simulations of a two-electron attack on EC in EC liquid and on Li metal surfaces yielded products similar to those predicted using nonhybrid DFT functionals, except that CO release did not occur for all attempted initial configurations in the liquid state.

  13. Extended-Term Dynamic Simulations with High Penetrations of Photovoltaic Generation.

    SciTech Connect (OSTI)

    Concepcion, Ricky James; Elliott, Ryan Thomas; Donnelly, Matt; Sanchez-Gasca, Juan

    2016-01-01

    The uncontrolled intermittent availability of renewable energy sources makes integration of such devices into today's grid a challenge. Thus, it is imperative that dynamic simulation tools used to analyze power system performance are able to support systems with high amounts of photovoltaic (PV) generation. Additionally, simulation durations expanding beyond minutes into hours must be supported. This report aims to identify the path forward for dynamic simulation tools to accom- modate these needs by characterizing the properties of power systems (with high PV penetration), analyzing how these properties affect dynamic simulation software, and offering solutions for po- tential problems. We present a study of fixed time step, explicit numerical integration schemes that may be more suitable for these goals, based on identified requirements for simulating high PV penetration systems. We also present the alternative of variable time step integration. To help determine the characteristics of systems with high PV generation, we performed small signal sta- bility studies and time domain simulations of two representative systems. Along with feedback from stakeholders and vendors, we identify the current gaps in power system modeling including fast and slow dynamics and propose a new simulation framework to improve our ability to model and simulate longer-term dynamics.

  14. Effects of boron-nitride substrates on Stone-Wales defect formation in graphene: An ab initio molecular dynamics study

    SciTech Connect (OSTI)

    Jin, K.; Xiao, H. Y. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Zhang, Y. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Weber, W. J., E-mail: wjweber@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-05-19

    Ab initio molecular dynamics simulations are performed to investigate the effects of a boron nitride (BN) substrate on Stone-Wales (SW) defect formation and recovery in graphene. It is found that SW defects can be created by an off-plane recoil atom that interacts with the BN substrate. A mechanism with complete bond breakage for formation of SW defects in suspended graphene is also revealed for recoils at large displacement angles. In addition, further irradiation can result in recovery of the SW defects through a bond rotation mechanism in both graphene and graphene/BN, and the substrate has little effect on the recovery process. This study indicates that the BN substrate enhances the irradiation resistance of graphene.

  15. Dynamics of a globular protein and its hydration water studied by neutron scattering and MD simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Sow-Hsin; Lagi, Marco; Chu, Xiang-qiang; Zhang, Yang; Kim, Chansoo; Faraone, Antonio; Fratini, Emiliano; Baglioni, Piero

    2010-01-01

    This review article describes our neutron scattering experiments made in the past four years for the understanding of the single-particle (hydrogen atom) dynamics of a protein and its hydration water and the strong coupling between them. We found that the key to this strong coupling is the existence of a fragile-to-strong dynamic crossover (FSC) phenomenon occurring at around T L = 225±5 K in the hydration water. On lowering of the temperature toward FSC, the structure of hydration water makes a transition from predominantly the high density form (HDL), a more fluid state, to predominantly the low density formmore » (LDL), a less fluid state, derived from the existence of a liquid–liquid critical point at an elevated pressure. We show experimentally that this sudden switch in the mobility of hydration water on Lysozyme, B-DNA and RNA triggers the dynamic transition, at a temperature T D = 220 K, for these biopolymers. In the glassy state, below T D , the biopolymers lose their vital conformational flexibility resulting in a substantial diminishing of their biological functions. We also performed molecular dynamics (MD) simulations on a realistic model of hydrated lysozyme powder, which confirms the existence of the FSC and the hydration level dependence of the FSC temperature. Furthermore, we show a striking feature in the short time relaxation ( β -relaxation) of protein dynamics, which is the logarithmic decay spanning 3 decades (from ps to ns). The long time α -relaxation shows instead a diffusive behavior, which supports the liquid-like motions of protein constituents. We then discuss our recent high-resolution X-ray inelastic scattering studies of globular proteins, Lysozyme and Bovine Serum Albumin. We were able to measure the dispersion relations of collective, intra-protein phonon-like excitations in these proteins for the first time. We found that the phonon energies show a marked softening and at the same time their population increases substantially in a certain wave vector range when temperature crosses over the T D . Thus the increase of biological activities above T D has positive correlation with activation of slower and large amplitude collective motions of a protein.« less

  16. STOCK: Structure mapper and online coarse-graining kit for molecular simulations

    SciTech Connect (OSTI)

    Bevc, Staš; Junghans, Christoph; Praprotnik, Matej

    2015-03-15

    We present a web toolkit STructure mapper and Online Coarse-graining Kit for setting up coarse-grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, e.g. all-atom, to low, i.e. coarse-grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse-graining packages, e.g. VOTCA and DL_CGMAP. Our second tool generates effective potentials for coarse-grained simulations preserving the structural properties, e.g. radial distribution functions, of the underlying higher resolution model. The required distribution functions can be provided by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse-grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse-graining web toolkit is available at http://stock.cmm.ki.si.

  17. STOCK: Structure mapper and online coarse-graining kit for molecular simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bevc, Staš; Junghans, Christoph; Praprotnik, Matej

    2015-03-15

    We present a web toolkit STructure mapper and Online Coarse-graining Kit for setting up coarse-grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, e.g. all-atom, to low, i.e. coarse-grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse-graining packages, e.g. VOTCA and DL_CGMAP. Our second tool generates effective potentials for coarse-grained simulations preserving the structural properties, e.g. radial distribution functions, of the underlying higher resolution model. The required distribution functions can be providedmore » by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse-grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse-graining web toolkit is available at http://stock.cmm.ki.si.« less

  18. On the correlation between the photoexcitation pathways and the critical energies required for ablation of poly(methyl methacrylate): A molecular dynamics study

    SciTech Connect (OSTI)

    Conforti, Patrick F.; Prasad, Manish; Garrison, Barbara J.

    2008-05-15

    The energetics initiating ablation in poly(methyl methacrylate) (PMMA) are studied using molecular dynamics (MD) simulation. The critical energy to initiate ablation in PMMA following the absorption of photons is investigated for two penetration depths along a range of fluences using a coarse-grained, hybrid Monte Carlo-MD scheme. Both heating and direct bond scission are simulated separately after photon absorption with additional transformation of material occurring via chemical reactions following the photochemical bond cleavage. For a given type of absorption and reaction channel, a critical energy can well describe the amount of energy required to initiate ablation. The simulations show a decrease in the critical energy when a greater amount of photochemistry is introduced in the system. The simulations complement experimental studies and elucidate how enhanced photochemistry lowers ablation thresholds in polymer substrates.

  19. Dynamic simulation of the Hanford tank waste remediation system

    SciTech Connect (OSTI)

    Harmsen, R.W., Westinghouse Hanford

    1996-05-03

    Cleaning up and disposing of approximately 50 years of nuclear waste is the main mission at the U.S. Department of Energy`s Hanford Nuclear Reservation, located in the southeastern part of the state of Washington. A major element of the total cleanup effort involves retrieving, processing, and disposing of radioactive and hazardous waste stored in 177 underground storage tanks. This effort, referred to as the Tank Waste Remediation System (TWRS), is expected to cost billions of dollars and take approximately 25 years to complete. Several computer simulations of this project are being created, focusing on both programmatic and detailed engineering issues. This paper describes one such simulation activity, using the ithink(TM)computer simulation software. The ithink(TM) simulation includes a representation of the complete TWRS cleanup system, from retrieval of waste through intermediate processing and final vitrification of waste for disposal. Major issues addressed to date by the simulation effort include the need for new underground storage tanks to support TWRS activities, and the estimated design capacities for various processing facilities that are required to support legally mandated program commitment dates. This paper discusses how the simulation was used to investigate these questions.

  20. Molecular simulation of structure and diffusion at smectite-water interfaces: Using expanded clay interlayers as model nanopores

    SciTech Connect (OSTI)

    Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; Kirkpatrick, R. James; Cygan, Randall Timothy

    2015-07-20

    In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water and ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.

  1. Molecular Simulation of Structure and Diffusion at Smectite-Water Interfaces: Using Expanded Clay Interlayers as Model Nanopores

    SciTech Connect (OSTI)

    Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; Kirkpatrick, R. James; Cygan, Randall Timothy

    2015-07-20

    In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at claywater interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water and ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.

  2. The interplay between inter- and intra-molecular dynamics in a series of alkylcitrates

    SciTech Connect (OSTI)

    Kipnusu, Wycliffe Kiprop; Kossack, Wilhelm; Iacob, Ciprian; Zeigermann, Philipp; Jasiurkowska, Malgorzata; Sangoro, Joshua R; Valiullin, Rustem; Kremer, Friedrich

    2013-01-01

    The inter- and intra-molecular dynamics in a series of glass-forming alkylcitrates is studied by a combination of Broadband Dielectric Spectroscopy (BDS), Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR), Fourier-Transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC). Analyzing the temperature dependencies of specific IR absorption bands in terms of their spectral position and the corresponding oscillator strengths enables one to unravel the intramolecular dynamics of specific molecular moieties and to compare them with the (primarily dielectrically) determined intermolecular dynamics. With decreasing temperature, the IR band positions of carbonyls (part of the core units) and H-bonded moieties of citrates show a red shift with a kink at the calorimetric glass transition temperature (Tg) while other moieties, whose dynamics are decoupled from those of the core units, exhibit a blue shift with nominal changes at Tg. The oscillator strength of all units in citrates depicts stronger temperature dependencies above Tg and in some, the ester linkage and H-bonded units show a change of slope at a temperature where structural and faster secondary relaxations merge. By that, a wealth of novel information is obtained proving the fundamental importance of intramolecular mobility in the process of glass formation, beyond coarse-grained descriptions.

  3. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    SciTech Connect (OSTI)

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; Cygan, Randall Timothy

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for a montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.

  4. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; Cygan, Randall Timothy

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less

  5. Molecular simulation study of role of polymerparticle interactions in the strain-dependent viscoelasticity of elastomers (Payne effect)

    SciTech Connect (OSTI)

    Chen, Yulong; Li, Ziwei; Wen, Shipeng; Zhang, Liqun; Yang, Qingyuan E-mail: LiuL@mail.buct.edu.cn; Zhong, Chongli; Liu, Li E-mail: LiuL@mail.buct.edu.cn

    2014-09-14

    The strain-amplitude dependence of viscoelastic behavior of model crosslinked elastomers containing various concentrations of spherical nanoparticles (NPs) was studied by non-equilibrium molecular dynamics simulation. All the filler NPs were in monodispersed state and the interactions between these particles were purely repulsive. The polymerparticle interactions were attractive and their interaction energies were tuned in a broad range. Through the computational study, many important features of the behavior of particle-reinforced elastomers observed in experiments, including the Payne effect, were successfully reproduced. It was shown that the magnitude of the Payne effect was found to depend on the polymerparticle interaction and the filler loading. By examining the microstructures of the simulation systems and their evolution during oscillatory shear, four different mechanisms for the role of the polymerparticle interactions in the Payne effect were revealed that consist of the debonding of polymer chains from NP surfaces, the breakage of polymer-shell-bridged NP network, the rearrangement of the NPs in the network into different layers and the shear-induced yielding of the rigid polymer shell in-between neighboring NPs.

  6. Tungsten polyoxometalate molecules as active nodes for dynamic carrier exchange in hybrid molecular/semiconductor capacitors

    SciTech Connect (OSTI)

    Balliou, A.; Douvas, A. M.; Normand, P.; Argitis, P.; Glezos, N.; Tsikritzis, D.; Kennou, S.

    2014-10-14

    In this work we study the utilization of molecular transition metal oxides known as polyoxometalates (POMs), in particular the Keggin structure anions of the formula PW₁₂O₄₀³⁻, as active nodes for potential switching and/or fast writing memory applications. The active molecules are being integrated in hybrid Metal-Insulator/POM molecules-Semiconductor capacitors, which serve as prototypes allowing investigation of critical performance characteristics towards the design of more sophisticated devices. The charging ability as well as the electronic structure of the molecular layer is probed by means of electrical characterization, namely, capacitance-voltage and current-voltage measurements, as well as transient capacitance measurements, C (t), under step voltage polarization. It is argued that the transient current peaks observed are manifestations of dynamic carrier exchange between the gate electrode and specific molecular levels, while the transient C (t) curves under conditions of molecular charging can supply information for the rate of change of the charge that is being trapped and de-trapped within the molecular layer. Structural characterization via surface and cross sectional scanning electron microscopy as well as atomic force microscopy, spectroscopic ellipsometry, UV and Fourier-transform IR spectroscopies, UPS, and XPS contribute to the extraction of accurate electronic structure characteristics and open the path for the design of new devices with on-demand tuning of their interfacial properties via the controlled preparation of the POM layer.

  7. Molecular Simulation of Carbon Dioxide Nanodroplets on Clay in Deep Saline

    Office of Scientific and Technical Information (OSTI)

    Aquifers. (Conference) | SciTech Connect in Deep Saline Aquifers. Citation Details In-Document Search Title: Molecular Simulation of Carbon Dioxide Nanodroplets on Clay in Deep Saline Aquifers. Authors: Tenney, Craig M. Publication Date: 2012-06-01 OSTI Identifier: 1073284 Report Number(s): SAND2012-5175C DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the 49th Annual Meeting of The Clay Minerals Society held July

  8. Simulations of fluorescence solvatochromism in substituted PPV oligomers

    Office of Scientific and Technical Information (OSTI)

    from excited state molecular dynamics with implicit solvent (Journal Article) | SciTech Connect Simulations of fluorescence solvatochromism in substituted PPV oligomers from excited state molecular dynamics with implicit solvent Citation Details In-Document Search Title: Simulations of fluorescence solvatochromism in substituted PPV oligomers from excited state molecular dynamics with implicit solvent In this study, an efficient method of treating solvent effects in excited state molecular

  9. Fast Dynamic Simulation-Based Small Signal Stability Assessment and Control

    SciTech Connect (OSTI)

    Acharya, Naresh; Baone, Chaitanya; Veda, Santosh; Dai, Jing; Chaudhuri, Nilanjan; Leonardi, Bruno; Sanches-Gasca, Juan; Diao, Ruisheng; Wu, Di; Huang, Zhenyu; Zhang, Yu; Jin, Shuangshuang; Zheng, Bin; Chen, Yousu

    2014-12-31

    Power grid planning and operation decisions are made based on simulation of the dynamic behavior of the system. Enabling substantial energy savings while increasing the reliability of the aging North American power grid through improved utilization of existing transmission assets hinges on the adoption of wide-area measurement systems (WAMS) for power system stabilization. However, adoption of WAMS alone will not suffice if the power system is to reach its full entitlement in stability and reliability. It is necessary to enhance predictability with "faster than real-time" dynamic simulations that will enable the dynamic stability margins, proactive real-time control, and improve grid resiliency to fast time-scale phenomena such as cascading network failures. Present-day dynamic simulations are performed only during offline planning studies, considering only worst case conditions such as summer peak, winter peak days, etc. With widespread deployment of renewable generation, controllable loads, energy storage devices and plug-in hybrid electric vehicles expected in the near future and greater integration of cyber infrastructure (communications, computation and control), monitoring and controlling the dynamic performance of the grid in real-time would become increasingly important. The state-of-the-art dynamic simulation tools have limited computational speed and are not suitable for real-time applications, given the large set of contingency conditions to be evaluated. These tools are optimized for best performance of single-processor computers, but the simulation is still several times slower than real-time due to its computational complexity. With recent significant advances in numerical methods and computational hardware, the expectations have been rising towards more efficient and faster techniques to be implemented in power system simulators. This is a natural expectation, given that the core solution algorithms of most commercial simulators were developed decades ago, when High Performance Computing (HPC) resources were not commonly available.

  10. Coupled molecular dynamics-Monte Carlo model to study the role of chemical processes during laser ablation of polymeric materials

    SciTech Connect (OSTI)

    Prasad, Manish; Conforti, Patrick F.; Garrison, Barbara J.

    2007-08-28

    The coarse grained chemical reaction model is enhanced to build a molecular dynamics (MD) simulation framework with an embedded Monte Carlo (MC) based reaction scheme. The MC scheme utilizes predetermined reaction chemistry, energetics, and rate kinetics of materials to incorporate chemical reactions occurring in a substrate into the MD simulation. The kinetics information is utilized to set the probabilities for the types of reactions to perform based on radical survival times and reaction rates. Implementing a reaction involves changing the reactants species types which alters their interaction potentials and thus produces the required energy change. We discuss the application of this method to study the initiation of ultraviolet laser ablation in poly(methyl methacrylate). The use of this scheme enables the modeling of all possible photoexcitation pathways in the polymer. It also permits a direct study of the role of thermal, mechanical, and chemical processes that can set off ablation. We demonstrate that the role of laser induced heating, thermomechanical stresses, pressure wave formation and relaxation, and thermochemical decomposition of the polymer substrate can be investigated directly by suitably choosing the potential energy and chemical reaction energy landscape. The results highlight the usefulness of such a modeling approach by showing that various processes in polymer ablation are intricately linked leading to the transformation of the substrate and its ejection. The method, in principle, can be utilized to study systems where chemical reactions are expected to play a dominant role or interact strongly with other physical processes.

  11. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less

  12. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    SciTech Connect (OSTI)

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascade production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.

  13. Directed nanoscale self-assembly of molecular wires interconnecting nodal points using Monte Carlo simulations

    SciTech Connect (OSTI)

    Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; Pereyra, V. D.; Boscoboinik, J. A.

    2015-09-10

    The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)n organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochastic methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.

  14. Directed nanoscale self-assembly of molecular wires interconnecting nodal points using Monte Carlo simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boscoboinik, A. M.; Manzi, S. J.; Tysoe, W. T.; Pereyra, V. D.; Boscoboinik, J. A.

    2015-09-10

    The influence of directing agents in the self-assembly of molecular wires to produce two-dimensional electronic nanoarchitectures is studied here using a Monte Carlo approach to simulate the effect of arbitrarily locating nodal points on a surface, from which the growth of self-assembled molecular wires can be nucleated. This is compared to experimental results reported for the self-assembly of molecular wires when 1,4-phenylenediisocyanide (PDI) is adsorbed on Au(111). The latter results in the formation of (Au-PDI)n organometallic chains, which were shown to be conductive when linked between gold nanoparticles on an insulating substrate. The present study analyzes, by means of stochasticmore » methods, the influence of variables that affect the growth and design of self-assembled conductive nanoarchitectures, such as the distance between nodes, coverage of the monomeric units that leads to the formation of the desired architectures, and the interaction between the monomeric units. As a result, this study proposes an approach and sets the stage for the production of complex 2D nanoarchitectures using a bottom-up strategy but including the use of current state-of-the-art top-down technology as an integral part of the self-assembly strategy.« less

  15. Dynamic simulation of kinematic Stirling engines: Coupled and decoupled analysis

    SciTech Connect (OSTI)

    Fischer, K.; Lemrani, H.; Stouffs, P.

    1995-12-31

    A coupled analysis modelling method of Stirling engines is presented. The main feature of this modelling method is the use of a software package combining the capabilities of a pre-/post-processor with a differential algebraic equations solver. As a result, modelling is merely a matter of linking appropriate objects from a model library and the outcoming tool is very flexible and powerful. Some simulation results are presented and compared with those obtained from a decoupled analysis. It clearly appears that the main imperfection of the model does not come from the modelling process itself but from their incomplete knowledge of the physics behind the Stirling engine operation.

  16. A dynamic process model of a natural gas combined cycle -- Model development with startup and shutdown simulations

    SciTech Connect (OSTI)

    Liese, Eric; Zitney, Stephen E.

    2013-01-01

    Research in dynamic process simulation for integrated gasification combined cycles (IGCC) with carbon capture has been ongoing at the National Energy Technology Laboratory (NETL), culminating in a full operator training simulator (OTS) and immersive training simulator (ITS) for use in both operator training and research. A derivative work of the IGCC dynamic simulator has been a modification of the combined cycle section to more closely represent a typical natural gas fired combined cycle (NGCC). This paper describes the NGCC dynamic process model and highlights some of the simulators current capabilities through a particular startup and shutdown scenario.

  17. Dissociative chemisorption of methane on metal surfaces: Tests of dynamical assumptions using quantum models and ab initio molecular dynamics

    SciTech Connect (OSTI)

    Jackson, Bret; Nattino, Francesco; Kroes, Geert-Jan

    2014-08-07

    The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental importance. Not only is it the rate-limiting step in the steam reforming of natural gas, the reaction exhibits interesting mode-selective behavior and a strong dependence on the temperature of the metal. We present a quantum model for this reaction on Ni(100) and Ni(111) surfaces based on the reaction path Hamiltonian. The dissociative sticking probabilities computed using this model agree well with available experimental data with regard to variation with incident energy, substrate temperature, and the vibrational state of the incident molecule. We significantly expand the vibrational basis set relative to earlier studies, which allows reaction probabilities to be calculated for doubly excited initial vibrational states, though it does not lead to appreciable changes in the reaction probabilities for singly excited initial states. Sudden models used to treat the center of mass motion parallel to the surface are compared with results from ab initio molecular dynamics and found to be reasonable. Similar comparisons for molecular rotation suggest that our rotationally adiabatic model is incorrect, and that sudden behavior is closer to reality. Such a model is proposed and tested. A model for predicting mode-selective behavior is tested, with mixed results, though we find it is consistent with experimental studies of normal vs. total (kinetic) energy scaling. Models for energy transfer into lattice vibrations are also examined.

  18. Nonlinear Raman Techniques in Femtosecond Time Resolved Spectroscopy for the Analysis and Control of Molecular Dynamics

    SciTech Connect (OSTI)

    Materny, Arnulf; Konradi, Jakow; Namboodiri, Vinu; Namboodiri, Mahesh; Scaria, Abraham

    2008-11-14

    The use of four-wave mixing techniques in femtosecond time-resolved spectroscopy has considerable advantages. Due to the many degrees of freedom offered e.g. by coherent anti-Stokes Raman scattering (CARS), the dynamics even of complex systems can be analyzed in detail. Using pulse shaping techniques in combination with a self-learning loop approach, molecular mode excitation can be controlled very efficiently in a multi-photon excitation process. Results obtained from the optimal control of CARS on {beta}-carotene are discussed.

  19. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Prendergast David Prendergast Director, Theory of Nanostructured Materials dgprendergast@lbl.gov 510.486.4948 personal website Biography Education 2002 Ph.D., Physics, University College Cork, Ireland 1999 B.Sc., Physics and Mathematics, University College Cork, Ireland Research Interests My research focuses on employing and developing first-principles electronic structure theory and molecular dynamics simulations on high-performance computing infrastructure to reveal energy relevant

  20. Molecular dynamics for 400 million particles with short-range interactions

    SciTech Connect (OSTI)

    Deng, Y.; McCoy, R.A.; Marr, R.B.

    1995-07-01

    We report the design and performance of a computational molecular dynamics (MD) code for 400 million particles interacting through the standard pairwise 6-12 Lennard-Jones potential on a 1024-node Intel Paragon, a distributed-memory MIMD parallel computer. The initially recorded {open_quotes}particle-step time{close_quotes} was .4 microseconds. A new inter-node communication strategy ensures high parallel efficiency for a large number of nodes. Besides the ability to tackle large problems, our implementation incorporates a novel method for dynamic load balancing. Our communication and load balancing enhancements provide increased efficiency and flexibility for our MD code. vet are general enough for use in other parallel algorithms.

  1. On the dynamic and static manifestation of molecular absorption in thin films probed by a microcantilever

    SciTech Connect (OSTI)

    Finot, Eric; Fabre, Arnaud; Passian, Ali; Thundat, Thomas

    2014-03-01

    Mechanical resonators shaped like microcantilevers have been demonstrated as a platform for very sensitive detection of chemical and biological analytes. However, its use as an analytical tool will require fundamental understanding of the molecular absorption-induced effects in the static and dynamic sensor response. The effect of absorption-induced surface stress on the microcantilever response is here investigated using palladium hydride formation. It is shown that the resonance and deformation states of the cantilever monitored simultaneously exhibit excellent correlation with the phase of the hydride formation. However, the associated frequency shifts and quasistatic bending are observed to be independent during solid solution phase. Importantly, absorption-induced changes in the elastic parameters of the palladium film are found to play a dominant role in the static and dynamic response. The presented results help in discerning the parameters that control the cantilever response as well as the relationships between these parameters.

  2. SciDAC Advances in Beam Dynamics Simulation: From Light Sources to Colliders

    SciTech Connect (OSTI)

    Qiang, J.; Borland, M.; Kabel, A.; Li, R.; Ryne, R.; Stern, E.; Wang, Y.; Wasserman, H.; Zhang, Y.; /SLAC

    2011-11-14

    In this paper, we report on progress that has been made in beam dynamics simulation, from light sources to colliders, during the first year of the SciDAC-2 accelerator project 'Community Petascale Project for Accelerator Science and Simulation (ComPASS).' Several parallel computational tools for beam dynamics simulation are described. Also presented are number of applications in current and future accelerator facilities (e.g., LCLS, RHIC, Tevatron, LHC, and ELIC). Particle accelerators are some of most important tools of scientific discovery. They are widely used in high-energy physics, nuclear physics, and other basic and applied sciences to study the interaction of elementary particles, to probe the internal structure of matter, and to generate high-brightness radiation for research in materials science, chemistry, biology, and other fields. Modern accelerators are complex and expensive devices that may be several kilometers long and may consist of thousands of beamline elements. An accelerator may transport trillions of charged particles that interact electromagnetically among themselves, that interact with fields produced by the accelerator components, and that interact with beam-induced fields. Large-scale beam dynamics simulations on massively parallel computers can help provide understanding of these complex physical phenomena, help minimize design cost, and help optimize machine operation. In this paper, we report on beam dynamics simulations in a variety of accelerators ranging from next generation light sources to high-energy ring colliders that have been studied during the first year of the SciDAC-2 accelerator project.

  3. Predicting Low Energy Dopant Implant Profiles in Semiconductors using Molecular Dynamics

    SciTech Connect (OSTI)

    Beardmore, K.M.; Gronbech-Jensen, N.

    1999-05-02

    The authors present a highly efficient molecular dynamics scheme for calculating dopant density profiles in group-IV alloy, and III-V zinc blende structure materials. Their scheme incorporates several necessary methods for reducing computational overhead, plus a rare event algorithm to give statistical accuracy over several orders of magnitude change in the dopant concentration. The code uses a molecular dynamics (MD) model to describe ion-target interactions. Atomic interactions are described by a combination of 'many-body' and pair specific screened Coulomb potentials. Accumulative damage is accounted for using a Kinchin-Pease type model, inelastic energy loss is represented by a Firsov expression, and electronic stopping is described by a modified Brandt-Kitagawa model which contains a single adjustable ion-target dependent parameter. Thus, the program is easily extensible beyond a given validation range, and is therefore truly predictive over a wide range of implant energies and angles. The scheme is especially suited for calculating profiles due to low energy and to situations where a predictive capability is required with the minimum of experimental validation. They give examples of using the code to calculate concentration profiles and 2D 'point response' profiles of dopants in crystalline silicon and gallium-arsenide. Here they can predict the experimental profile over five orders of magnitude for <100> and <110> channeling and for non-channeling implants at energies up to hundreds of keV.

  4. Low Wind Speed Technology Phase II: Offshore Floating Wind Turbine Concepts: Fully Coupled Dynamic Response Simulations; Massachusetts Institute of Technology

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with Massachusetts Institute of Technology to study dynamic response simulations to evaluate floating platform concepts for offshore wind turbines.

  5. Molecular simulation of structure and diffusion at smectite-water interfaces: Using expanded clay interlayers as model nanopores

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; Kirkpatrick, R. James; Cygan, Randall Timothy

    2015-07-20

    In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water andmore » ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.« less

  6. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown that the ultrafast (0- to 10-fs) dissociation...

  7. Ultrafast Core-Hole Induced Dynamics in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with pump-probe measurements. Using a combination of isotope substitution experiments and molecular dynamics simulations, researchers from Sweden, Germany, and the U.S. have shown...

  8. Structure and dynamics of the M3 muscarinic acetylcholine receptor...

    Office of Scientific and Technical Information (OSTI)

    Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to ... SCIENCES; ACETYLCHOLINE; BIOCHEMISTRY; BIOLOGY; DESIGN; DRUGS; GTP-ASES; KINETICS Word ...

  9. Protein Dynamics and Biocatalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Dynamics and Biocatalysis Protein Dynamics and Biocatalysis 1998 Annual Report Grand Challenge Projects biocatalysis.gif A model of the Michaelis complex for the TEM-1/penicillin system from molecular dynamics simulations. Investigators: P. A. Bash, Northwestern University Medical School and M. Karplus, Harvard University Research Objectives A guiding principle of molecular biology is that the structure of a biomolecule defines its function. This principle is especially true in the case

  10. Impact of Resolution on Simulation of Closed Mesoscale Cellular Convection Identified by Dynamically Guided Watershed Segmentation

    SciTech Connect (OSTI)

    Martini, Matus; Gustafson, William I.; Yang, Qing; Xiao, Heng

    2014-11-27

    Organized mesoscale cellular convection (MCC) is a common feature of marine stratocumulus that forms in response to a balance between mesoscale dynamics and smaller scale processes such as cloud radiative cooling and microphysics. We use the Weather Research and Forecasting model with chemistry (WRF-Chem) and fully coupled cloud-aerosol interactions to simulate marine low clouds during the VOCALS-REx campaign over the southeast Pacific. A suite of experiments with 3- and 9-km grid spacing indicates resolution-dependent behavior. The simulations with finer grid spacing have smaller liquid water paths and cloud fractions, while cloud tops are higher. The observed diurnal cycle is reasonably well simulated. To isolate organized MCC characteristics we develop a new automated method, which uses a variation of the watershed segmentation technique that combines the detection of cloud boundaries with a test for coincident vertical velocity characteristics. This ensures that the detected cloud fields are dynamically consistent for closed MCC, the most common MCC type over the VOCALS-REx region. We demonstrate that the 3-km simulation is able to reproduce the scaling between horizontal cell size and boundary layer height seen in satellite observations. However, the 9-km simulation is unable to resolve smaller circulations corresponding to shallower boundary layers, instead producing invariant MCC horizontal scale for all simulated boundary layers depths. The results imply that climate models with grid spacing of roughly 3 km or smaller may be needed to properly simulate the MCC structure in the marine stratocumulus regions.

  11. Microcutting characteristics on the single crystal diamond tool with edge radius using molecular dynamics

    SciTech Connect (OSTI)

    Kim, Jeong-Du; Moon, Chan-Hong

    1995-12-31

    Ultraprecision metal cutting (UPMC) technology which makes possible submicrometer form accuracy and manometer roughness is developed to reach the 1nm nominal (undeformed) thickness of cut. At this thickness level, a few of atom`s layers should be considered. In this paper using the Molecuar Dynamics simulation, the phenomena of microcutting with a subnanometer chip thickness, the cutting mechanism for tool edge configuration to consider the sharp edge and round edge tool, the cut material and cutting speed are evaluated. Cutting mechanism of subnanometer depth of cut is evaluated.

  12. Final Report. The 2015 Conference on the Dynamics of Molecular Collisions

    SciTech Connect (OSTI)

    Suits, Arthur G.

    2015-08-31

    The 25th The Conference on the Dynamics of Molecular Collisions (DMC) was held from July 12-17, 2015. The Conference provides a unique platform and focal point for the gathering of experimentalists and theoreticians in the field of chemical dynamics. Since its inauguration in 1965, it has played an irreplaceable role in the development of this field and of many distinguished careers. This 25th meeting was highly successful. We held ten oral sessions and four poster sessions. Nobel Laureate Yuan T. Lee presented the keynote lecture. At this meeting, celebrating 50 years of chemical reaction dynamics, one hundred thirty-seven attendees participated, forty-two talks were presented as well as fifty-nine posters.Many attendees remarked that it was the “best meeting of the year.” Results from the meeting and other contributions were collected in a special issue of the Journal of Physical Chemistry A, published December 17, 2015. With this proposal we sought support for students, post-doctoral researchers and junior scientists who needed financial support. The Department of Energy has a large program in gas phase chemistry and many of the speakers and session chairs at the meeting are presently supported by DOE, including Professor Millard Alexander and Carl Lineberger, the recipents of the 2015 Herschbach Prizes that were awarded at the meeting. Funds were used to supplement registration fees for students and post-docs and to cover registration fees for the six selected “hot topic” presentations.

  13. Stochastic dynamics of small ensembles of non-processive molecular motors: The parallel cluster model

    SciTech Connect (OSTI)

    Erdmann, Thorsten; Albert, Philipp J.; Schwarz, Ulrich S.

    2013-11-07

    Non-processive molecular motors have to work together in ensembles in order to generate appreciable levels of force or movement. In skeletal muscle, for example, hundreds of myosin II molecules cooperate in thick filaments. In non-muscle cells, by contrast, small groups with few tens of non-muscle myosin II motors contribute to essential cellular processes such as transport, shape changes, or mechanosensing. Here we introduce a detailed and analytically tractable model for this important situation. Using a three-state crossbridge model for the myosin II motor cycle and exploiting the assumptions of fast power stroke kinetics and equal load sharing between motors in equivalent states, we reduce the stochastic reaction network to a one-step master equation for the binding and unbinding dynamics (parallel cluster model) and derive the rules for ensemble movement. We find that for constant external load, ensemble dynamics is strongly shaped by the catch bond character of myosin II, which leads to an increase of the fraction of bound motors under load and thus to firm attachment even for small ensembles. This adaptation to load results in a concave force-velocity relation described by a Hill relation. For external load provided by a linear spring, myosin II ensembles dynamically adjust themselves towards an isometric state with constant average position and load. The dynamics of the ensembles is now determined mainly by the distribution of motors over the different kinds of bound states. For increasing stiffness of the external spring, there is a sharp transition beyond which myosin II can no longer perform the power stroke. Slow unbinding from the pre-power-stroke state protects the ensembles against detachment.

  14. Computational Particle Dynamic Simulations on Multicore Processors (CPDMu) Final Report ?? Phase I

    SciTech Connect (OSTI)

    Mark S. Schmalz

    2011-07-24

    Statement of Problem - Department of Energy has many legacy codes for simulation of computational particle dynamics and computational fluid dynamics applications that are designed to run on sequential processors and are not easily parallelized. Emerging high-performance computing architectures employ massively parallel multicore architectures (e.g., graphics processing units) to increase throughput. Parallelization of legacy simulation codes is a high priority, to achieve compatibility, efficiency, accuracy, and extensibility. General Statement of Solution - A legacy simulation application designed for implementation on mainly-sequential processors has been represented as a graph G. Mathematical transformations, applied to G, produce a graph representation {und G} for a high-performance architecture. Key computational and data movement kernels of the application were analyzed/optimized for parallel execution using the mapping G {yields} {und G}, which can be performed semi-automatically. This approach is widely applicable to many types of high-performance computing systems, such as graphics processing units or clusters comprised of nodes that contain one or more such units. Phase I Accomplishments - Phase I research decomposed/profiled computational particle dynamics simulation code for rocket fuel combustion into low and high computational cost regions (respectively, mainly sequential and mainly parallel kernels), with analysis of space and time complexity. Using the research team's expertise in algorithm-to-architecture mappings, the high-cost kernels were transformed, parallelized, and implemented on Nvidia Fermi GPUs. Measured speedups (GPU with respect to single-core CPU) were approximately 20-32X for realistic model parameters, without final optimization. Error analysis showed no loss of computational accuracy. Commercial Applications and Other Benefits - The proposed research will constitute a breakthrough in solution of problems related to efficient parallel computation of particle and fluid dynamics simulations. These problems occur throughout DOE, military and commercial sectors: the potential payoff is high. We plan to license or sell the solution to contractors for military and domestic applications such as disaster simulation (aerodynamic and hydrodynamic), Government agencies (hydrological and environmental simulations), and medical applications (e.g., in tomographic image reconstruction). Keywords - High-performance Computing, Graphic Processing Unit, Fluid/Particle Simulation. Summary for Members of Congress - Department of Energy has many simulation codes that must compute faster, to be effective. The Phase I research parallelized particle/fluid simulations for rocket combustion, for high-performance computing systems.

  15. Charged nanoparticle attraction in multivalent salt solution: A classical-fluids density functional theory and molecular dynamics study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Salerno, K. Michael; Frischknecht, Amalie L.; Stevens, Mark J.

    2016-04-08

    Here, negatively charged nanoparticles (NPs) in 1:1, 1:2, and 1:3 electrolyte solutions are studied in a primitive ion model using molecular dynamics (MD) simulations and classical density functional theory (DFT). We determine the conditions for attractive interactions between the like-charged NPs. Ion density profiles and NP–NP interaction free energies are compared between the two methods and are found to be in qualitative agreement. The NP interaction free energy is purely repulsive for monovalent counterions, but can be attractive for divalent and trivalent counterions. Using DFT, the NP interaction free energy for different NP diameters and charges is calculated. The depthmore » and location of the minimum in the interaction depend strongly on the NPs’ charge. For certain parameters, the depth of the attractive well can reach 8–10 kBT, indicating that kinetic arrest and aggregation of the NPs due to electrostatic interactions is possible. Rich behavior arises from the geometric constraints of counterion packing at the NP surface. Layering of counterions around the NPs is observed and, as secondary counterion layers form the minimum of the NP–NP interaction free energy shifts to larger separation, and the depth of the free energy minimum varies dramatically. We find that attractive interactions occur with and without NP overcharging.« less

  16. xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures

    SciTech Connect (OSTI)

    McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus

    2014-09-01

    A new real-space refinement method for low-resolution X-ray crystallography is presented. The method is based on the molecular dynamics flexible fitting protocol targeted at addressing large-scale deformations of the search model to achieve refinement with minimal manual intervention. An explanation of the method is provided, augmented by results from the refinement of both synthetic and experimental low-resolution data, including an independent electrophysiological verification of the xMDFF-refined crystal structure of a voltage-sensor protein. X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of d-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.

  17. Development of a dynamic simulator for a natural gas combined cycle (NGCC) power plant with post-combustion carbon capture

    SciTech Connect (OSTI)

    Liese, E.; Zitney, S.

    2012-01-01

    The AVESTAR Center located at the U.S. Department of Energys National Energy Technology Laboratory and West Virginia University is a world-class research and training environment dedicated to using dynamic process simulation as a tool for advancing the safe, efficient and reliable operation of clean energy plants with CO{sub 2} capture. The AVESTAR Center was launched with a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with pre-combustion carbon capture. The IGCC dynamic simulator offers full-scope Operator Training Simulator (OTS) Human Machine Interface (HMI) graphics for realistic, real-time control room operation and is integrated with a 3D virtual Immersive Training Simulator (ITS), thus allowing joint control room and field operator training. The IGCC OTS/ITS solution combines a gasification with CO{sub 2} capture process simulator with a combined cycle power simulator into a single high-performance dynamic simulation framework. This presentation will describe progress on the development of a natural gas combined cycle (NGCC) dynamic simulator based on the syngas-fired combined cycle portion of AVESTARs IGCC dynamic simulator. The 574 MW gross NGCC power plant design consisting of two advanced F-class gas turbines, two heat recovery steam generators (HRSGs), and a steam turbine in a multi-shaft 2x2x1 configuration will be reviewed. Plans for integrating a post-combustion carbon capture system will also be discussed.

  18. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    SciTech Connect (OSTI)

    Adelnia, Fatemeh; Lascialfari, Alessandro; Mariani, Manuel; Ammannato, Luca; Caneschi, Andrea; Rovai, Donella; Winpenny, Richard; Timco, Grigore; Corti, Maurizio Borsa, Ferdinando

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ring and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.

  19. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation

    SciTech Connect (OSTI)

    Zheng, Wenjun Glenn, Paul

    2015-01-21

    The Bacteriophage T4 Lysozyme (T4L) is a prototype modular protein comprised of an N-terminal and a C-domain domain, which was extensively studied to understand the folding/unfolding mechanism of modular proteins. To offer detailed structural and dynamic insights to the folded-state stability and the mechanical unfolding behaviors of T4L, we have performed extensive equilibrium and steered molecular dynamics simulations of both the wild-type (WT) and a circular permutation (CP) variant of T4L using all-atom and coarse-grained force fields. Our all-atom and coarse-grained simulations of the folded state have consistently found greater stability of the C-domain than the N-domain in isolation, which is in agreement with past thermostatic studies of T4L. While the all-atom simulation cannot fully explain the mechanical unfolding behaviors of the WT and the CP variant observed in an optical tweezers study, the coarse-grained simulations based on the Go model or a modified elastic network model (mENM) are in qualitative agreement with the experimental finding of greater unfolding cooperativity in the WT than the CP variant. Interestingly, the two coarse-grained models predict different structural mechanisms for the observed change in cooperativity between the WT and the CP variantwhile the Go model predicts minor modification of the unfolding pathways by circular permutation (i.e., preserving the general order that the N-domain unfolds before the C-domain), the mENM predicts a dramatic change in unfolding pathways (e.g., different order of N/C-domain unfolding in the WT and the CP variant). Based on our simulations, we have analyzed the limitations of and the key differences between these models and offered testable predictions for future experiments to resolve the structural mechanism for cooperative folding/unfolding of T4L.

  20. MHD SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS IN A DYNAMIC GALAXY CLUSTER MEDIUM

    SciTech Connect (OSTI)

    Mendygral, P. J.; Jones, T. W.; Dolag, K.

    2012-05-10

    We present a pair of three-dimensional magnetohydrodynamical simulations of intermittent jets from a central active galactic nucleus (AGN) in a galaxy cluster extracted from a high-resolution cosmological simulation. The selected cluster was chosen as an apparently relatively relaxed system, not having undergone a major merger in almost 7 Gyr. Despite this characterization and history, the intracluster medium (ICM) contains quite active 'weather'. We explore the effects of this ICM weather on the morphological evolution of the AGN jets and lobes. The orientation of the jets is different in the two simulations so that they probe different aspects of the ICM structure and dynamics. We find that even for this cluster, which can be characterized as relaxed by an observational standard, the large-scale, bulk ICM motions can significantly distort the jets and lobes. Synthetic X-ray observations of the simulations show that the jets produce complex cavity systems, while synthetic radio observations reveal bending of the jets and lobes similar to wide-angle tail radio sources. The jets are cycled on and off with a 26 Myr period using a 50% duty cycle. This leads to morphological features similar to those in 'double-double' radio galaxies. While the jet and ICM magnetic fields are generally too weak in the simulations to play a major role in the dynamics, Maxwell stresses can still become locally significant.

  1. Using Molecular Dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM

    SciTech Connect (OSTI)

    Welch, David A.; Mehdi, Beata L.; Hatchell, Hanna J.; Faller, Roland; Evans, James E.; Browning, Nigel D.

    2015-03-25

    Understanding the fundamental processes taking place at the electrode-electrolyte interface in batteries will play a key role in the development of next generation energy storage technologies. One of the most fundamental aspects of the electrode-electrolyte interface is the electrical double layer (EDL). Given the recent development of high spatial resolution in-situ electrochemical cells for scanning transmission electron microscopy (STEM), there now exists the possibility that we can directly observe the formation and dynamics of the EDL. In this paper we predict electrolyte structure within the EDL using classical models and atomistic Molecular Dynamics (MD) simulations. The MD simulations show that the classical models fail to accurately reproduce concentration profiles that exist within the electrolyte. It is thus suggested that MD must be used in order to accurately predict STEM images of the electrode-electrolyte interface. Using MD and image simulations together for a high contrast electrolyte (the high atomic number CsCl electrolyte), it is determined that, for a smooth interface, concentration profiles within the EDL should be visible experimentally. When normal experimental parameters such as rough interfaces and low-Z electrolytes (like those used in Li-ion batteries) are considered, observation of the EDL appears to be more difficult.

  2. Using Molecular Dynamics to quantify the electrical double layer and examine the potential for its direct observation in the in-situ TEM

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Welch, David A.; Mehdi, Beata L.; Hatchell, Hanna J.; Faller, Roland; Evans, James E.; Browning, Nigel D.

    2015-03-25

    Understanding the fundamental processes taking place at the electrode-electrolyte interface in batteries will play a key role in the development of next generation energy storage technologies. One of the most fundamental aspects of the electrode-electrolyte interface is the electrical double layer (EDL). Given the recent development of high spatial resolution in-situ electrochemical cells for scanning transmission electron microscopy (STEM), there now exists the possibility that we can directly observe the formation and dynamics of the EDL. In this paper we predict electrolyte structure within the EDL using classical models and atomistic Molecular Dynamics (MD) simulations. The MD simulations show thatmore » the classical models fail to accurately reproduce concentration profiles that exist within the electrolyte. It is thus suggested that MD must be used in order to accurately predict STEM images of the electrode-electrolyte interface. Using MD and image simulations together for a high contrast electrolyte (the high atomic number CsCl electrolyte), it is determined that, for a smooth interface, concentration profiles within the EDL should be visible experimentally. When normal experimental parameters such as rough interfaces and low-Z electrolytes (like those used in Li-ion batteries) are considered, observation of the EDL appears to be more difficult.« less

  3. Molecular hydrogen regulated star formation in cosmological smoothed particle hydrodynamics simulations

    SciTech Connect (OSTI)

    Thompson, Robert; Nagamine, Kentaro; Jaacks, Jason; Choi, Jun-Hwan

    2014-01-10

    Some observations have shown that star formation (SF) correlates tightly with the presence of molecular hydrogen (H{sub 2}); therefore, it is important to investigate its implication on galaxy formation in a cosmological context. In the present work, we implement a sub-grid model (hereafter H{sub 2}-SF model) that tracks the H{sub 2} mass fraction within our cosmological smoothed particle hydrodynamics code GADGET-3 by using an equilibrium analytic model of Krumholz et al. This model allows us to regulate the SF in our simulation by the local abundance of H{sub 2} rather than the total cold gas density, which naturally introduces the dependence of SF on metallicity. We investigate the implications of the H{sub 2}-SF model on galaxy population properties, such as the stellar-to-halo mass ratio (SHMR), baryon fraction, cosmic star formation rate density (SFRD), galaxy specific SFR, galaxy stellar mass functions (GSMF), and Kennicutt-Schmidt (KS) relationship. The advantage of our work over the previous ones is having a large sample of simulated galaxies in a cosmological volume from high redshift to z = 0. We find that low-mass halos with M {sub DM} < 10{sup 10.5} M {sub ?} are less efficient in producing stars in the H{sub 2}-SF model at z ? 6, which brings the simulations into better agreement with the observational estimates of the SHMR and GSMF at the low-mass end. This is particularly evident by a reduction in the number of low-mass galaxies at M {sub *} ? 10{sup 8} M {sub ?} in the GSMF. The overall SFRD is also reduced at high z in the H{sub 2} run, which results in slightly higher SFRD at low redshift due to more abundant gas available for SF at later times. This new H{sub 2} model is able to reproduce the empirical KS relationship at z = 0 naturally, without the need for setting its normalization by hand, and overall it seems to have more advantages than the previous pressure-based SF model.

  4. Dissipative particle dynamics simulation of dilute polymer solutions—Inertial effects and hydrodynamic interactions

    SciTech Connect (OSTI)

    Zhao, Tongyang; Wang, Xiaogong; Jiang, Lei; Larson, Ronald G.

    2014-07-01

    We examine the accuracy of dissipative particle dynamics (DPD) simulations of polymers in dilute solutions with hydrodynamic interaction (HI), at the theta point, modeled by setting the DPD conservative interaction between beads to zero. We compare the first normal-mode relaxation time extracted from the DPD simulations with theoretical predictions from a normal-mode analysis for theta chains. We characterize the influence of bead inertia within the coil by a ratio L{sub m}/R{sub g}, where L{sub m} is the ballistic distance over which bead inertia is lost, and R{sub g} is the radius of gyration of the polymer coil, while the HI strength per bead h* is determined by the ratio of bead hydrodynamic radius (r{sub H}) to the equilibrium spring length. We show how to adjust h* through the spring length and monomer mass, and how to optimize the accuracy of DPD for fixed h* by increasing the friction coefficient (γ ≥ 9) and by incorporating a nonlinear distance dependence into the frictional interaction. Even with this optimization, DPD simulations exhibit deviations of over 20% from the theoretical normal-mode predictions for high HI strength with h* ≥ 0.20, for chains with as many as 100 beads, which is a larger deviation than is found for Stochastic rotation dynamics simulations for similar chains lengths and values of h*.

  5. State-of-the Art Simulations of Liquid Phenomena | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    32 water molecules The image shows a nitrate anion solvated by 32 water molecules after a molecular dynamics simulation. Spencer Pruitt, Argonne National Laboratory State-of-the...

  6. Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments

    SciTech Connect (OSTI)

    Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec; Peng, Ivy Bo; Laure, Erwin; Markidis, Stefano

    2015-06-01

    A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instability test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.

  7. Spectral solver for multi-scale plasma physics simulations with dynamically adaptive number of moments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vencels, Juris; Delzanno, Gian Luca; Johnson, Alec; Peng, Ivy Bo; Laure, Erwin; Markidis, Stefano

    2015-06-01

    A spectral method for kinetic plasma simulations based on the expansion of the velocity distribution function in a variable number of Hermite polynomials is presented. The method is based on a set of non-linear equations that is solved to determine the coefficients of the Hermite expansion satisfying the Vlasov and Poisson equations. In this paper, we first show that this technique combines the fluid and kinetic approaches into one framework. Second, we present an adaptive strategy to increase and decrease the number of Hermite functions dynamically during the simulation. The technique is applied to the Landau damping and two-stream instabilitymore » test problems. Performance results show 21% and 47% saving of total simulation time in the Landau and two-stream instability test cases, respectively.« less

  8. Prediction of Thermal Conductivity for Irradiated SiC/SiC Composites by Informing Continuum Models with Molecular Dynamics Data

    SciTech Connect (OSTI)

    Nguyen, Ba Nghiep; Gao, Fei; Henager, Charles H.; Kurtz, Richard J.

    2014-05-01

    This article proposes a new method to estimate the thermal conductivity of SiC/SiC composites subjected to neutron irradiation. The modeling method bridges different scales from the atomic scale to the scale of a 2D SiC/SiC composite. First, it studies the irradiation-induced point defects in perfect crystalline SiC using molecular dynamics (MD) simulations to compute the defect thermal resistance as a function of vacancy concentration and irradiation dose. The concept of defect thermal resistance is explored explicitly in the MD data using vacancy concentrations and thermal conductivity decrements due to phonon scattering. Point defect-induced swelling for chemical vapor deposited (CVD) SiC as a function of irradiation dose is approximated by scaling the corresponding MD results for perfect crystal ?-SiC to experimental data for CVD-SiC at various temperatures. The computed thermal defect resistance, thermal conductivity as a function of grain size, and definition of defect thermal resistance are used to compute the thermal conductivities of CVD-SiC, isothermal chemical vapor infiltrated (ICVI) SiC and nearly-stoichiometric SiC fibers. The computed fiber and ICVI-SiC matrix thermal conductivities are then used as input for an Eshelby-Mori-Tanaka approach to compute the thermal conductivities of 2D SiC/SiC composites subjected to neutron irradiation within the same irradiation doses. Predicted thermal conductivities for an irradiated Tyranno-SA/ICVI-SiC composite are found to be comparable to available experimental data for a similar composite ICVI-processed with these fibers.

  9. Molecular Science Research Center 1992 annual report

    SciTech Connect (OSTI)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  10. Structural, dynamic, electronic, and vibrational properties of flexible, intermediate, and stressed rigid As-Se glasses and liquids from first principles molecular dynamics

    SciTech Connect (OSTI)

    Bauchy, M.; Kachmar, A.; Micoulaut, M.

    2014-11-21

    The structural, vibrational, electronic, and dynamic properties of amorphous and liquid As{sub x}Se{sub 1-x} (0.10 Molecular Dynamics. Within the above range of compositions, thresholds, and anomalies are found in the behavior of reciprocal and real space properties that can be correlated to the experimental location of the Boolchand intermediate phase in these glassy networks, observed at 0.27 dynamical atomic-scale fingerprints for the onset of rigidity within the network, while also providing a much more complex picture than the one derived from mean-field approaches of stiffness transitions.

  11. User Guide for PV Dynamic Model Simulation Written on PSCAD Platform

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Guide for PV Dynamic Model Simulation Written on PSCAD Platform E. Muljadi, M. Singh, and V. Gevorgian National Renewable Energy Laboratory Technical Report NREL/TP-5D00-62053 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  12. Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature

    SciTech Connect (OSTI)

    Taioli, Simone; Garberoglio, Giovanni; Simonucci, Stefano; Beccara, Silvio a; Aversa, Lucrezia; Nardi, Marco; Verucchi, Roberto; Iannotta, Salvatore; Dapor, Maurizio; and others

    2013-01-28

    In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.

  13. Atomistic Time-Domain Simulations of Light-Harvesting and Charge-Transfer Dynamics in Novel Nanoscale Materials for Solar Hydrogen Production.

    SciTech Connect (OSTI)

    Prezhdo, Oleg V.

    2012-03-22

    Funded by the DOE grant (i) we continued to study and analyze the atomistic detail of the electron transfer (ET) across the chromophore-TiO2 interface in Gratzel cell systems for solar hydrogen production. (ii) We extensively investigated the nature of photoexcited states and excited state dynamics in semiconductor quantum dots (QD) designed for photovoltaic applications. (iii) We continued a newly initiated research direction focusing on excited state properties and electron-phonon interactions in nanoscale carbon materials. Over the past year, the results of the DOE funded research were summarized in 3 review articles. 12 original manuscripts were written. The research results were reported in 28 invited talks at conferences and university seminars. 20 invitations were accepted for talks in the near future. 2 symposia at national and international meetings have being organized this year on topics closely related to the DOE funded project, and 2 more symposia have been planned for the near future. We summarized the insights into photoinduced dynamics of semiconductor QDs, obtained from our time-domain ab initio studies. QDs exhibit both molecular and bulk properties. Unlike either bulk or molecular materials, QD properties can be modified continuously by changing QD shape and size. However, the chemical and physical properties of molecular and bulk materials often contradict each other, which can lead to differing viewpoints about the behavior of QDs. For example, the molecular view suggests strong electron-hole and charge-phonon interactions, as well as slow energy relaxation due to mismatch between electronic energy gaps and phonon frequencies. In contrast, the bulk view advocates that the kinetic energy of quantum confinement is greater than electron-hole interactions, that charge-phonon coupling is weak, and that the relaxation through quasi-continuous bands is rapid. By synthesizing the bulk and molecular viewpoints, we clarified the controversies and provided a unified atomistic picture of the nature and dynamics of photoexcited states in semiconductor QDs. We also summarized our recent findings about the photoinduced electron dynamics at the chromophore-semiconductor interfaces from a time-domain ab initio perspective. The interface provides the foundation for a new, promising type of solar cell and presents a fundamentally important case study for several fields, including photo-, electro- and analytical chemistries, molecular electronics, and photography. Further, the interface offers a classic example of an interaction between an organic molecular species and an inorganic bulk material. Scientists employ different concepts and terminologies to describe molecular and solid states of matter, and these differences make it difficult to describe the interface with a single model. At the basic atomistic level of description, however, this challenge can be largely overcome. Recent advances in non-adiabatic molecular dynamics and time-domain density functional theory have created a unique opportunity for simulating the ultrafast, photoinduced processes on a computer very similar to the way that they occur in nature. These state-of-the-art theoretical tools offered a comprehensive picture of a variety of electron transfer processes that occur at the interface, including electron injection from the chromophore to the semiconductor, electron relaxation and delocalization inside the semiconductor, back-transfer of the electron to the chromophore and to the electrolyte, and regeneration of the neutral chromophore by the electrolyte. The ab initio time-domain modeling is particularly valuable for understanding these dynamic features of the ultrafast electron transfer processes, which cannot be represented by a simple rate description. We demonstrated using symmetry adapted cluster theory with configuration interaction (SAC-CI) that charging of small PbSe nanocrystals (NCs) greatly modifies their electronic states and optical excitations. Conduction and valence band transitions that are not available in neutral NCs dominate

  14. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water

    SciTech Connect (OSTI)

    Yamada, Atsushi; Kojima, Hidekazu; Okazaki, Susumu

    2014-08-28

    In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfer process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps{sup ?1}, which is about 2.5 times faster than that in vacuum, 0.27 ps{sup ?1}. This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.

  15. High Resolution Simulation of Beam Dynamics in Electron Linacs for Free Electron Lasers

    SciTech Connect (OSTI)

    Ryne, R.D.; Venturini, M.; Zholents, A.A.; Qiang, J.

    2009-01-05

    In this paper we report on large scale multi-physics simulation of beam dynamics in electron linacs for next generation free electron lasers (FELs). We describe key features of a parallel macroparticle simulation code including three-dimensional (3D) space-charge effects, short-range structure wake fields, longitudinal coherent synchrotron radiation (CSR) wake fields, and treatment of radiofrequency (RF) accelerating cavities using maps obtained from axial field profiles. A macroparticle up-sampling scheme is described that reduces the shot noise from an initial distribution with a smaller number of macroparticles while maintaining the global properties of the original distribution. We present a study of the microbunching instability which is a critical issue for future FELs due to its impact on beam quality at the end of the linac. Using parameters of a planned FEL linac at Lawrence Berkeley National Laboratory (LBNL), we show that a large number of macroparticles (beyond 100 million) is needed to control numerical shot noise that drives the microbunching instability. We also explore the effect of the longitudinal grid on simulation results. We show that acceptable results are obtained with around 2048 longitudinal grid points, and we discuss this in view of the spectral growth rate predicted from linear theory. As an application, we present results from simulations using one billion macroparticles of the FEL linac under design at LBNL. We show that the final uncorrelated energy spread of the beam depends not only on the initial uncorrelated energy spread but also depends strongly on the shape of the initial current profile. By using a parabolic initial current profile, 5 keV initial uncorrelated energy spread at 40 MeV injection energy, and improved linac design, those simulations demonstrate that a reasonable beam quality can be achieved at the end of the linac, with the final distribution having about 100 keV energy spread, 2.4 GeV energy, and 1.2 kA peak current.

  16. Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos

    SciTech Connect (OSTI)

    Angus, G.W.; Gentile, G.; Diaferio, A.; Famaey, B.; Heyden, K.J. van der E-mail: diaferio@ph.unito.it E-mail: gianfranco.gentile@ugent.be

    2014-10-01

    In this article we continue to test cosmological models centred on Modified Newtonian Dynamics (MOND) with light sterile neutrinos, which could in principle be a way to solve the fine-tuning problems of the standard model on galaxy scales while preserving successful predictions on larger scales. Due to previous failures of the simple MOND cosmological model, here we test a speculative model where the modified gravitational field is produced only by the baryons and the sterile neutrinos produce a purely Newtonian field (hence Modified Baryonic Dynamics). We use two-component cosmological simulations to separate the baryonic N-body particles from the sterile neutrino ones. The premise is to attenuate the over-production of massive galaxy cluster halos which were prevalent in the original MOND plus light sterile neutrinos scenario. Theoretical issues with such a formulation notwithstanding, the Modified Baryonic Dynamics model fails to produce the correct amplitude for the galaxy cluster mass function for any reasonable value of the primordial power spectrum normalisation.

  17. Modifications to WRFs dynamical core to improve the treatment of moisture for large-eddy simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Heng; Endo, Satoshi; Wong, May; Skamarock, William C.; Klemp, Joseph B.; Fast, Jerome D.; Gustafson, Jr., William I.; Vogelmann, Andrew; Wang, Hailong; Liu, Yangang; et al

    2015-10-29

    Yamaguchi and Feingold (2012) note that the cloud fields in their large-eddy simulations (LESs) of marine stratocumulus using the Weather Research and Forecasting (WRF) model exhibit a strong sensitivity to time stepping choices. In this study, we reproduce and analyze this sensitivity issue using two stratocumulus cases, one marine and one continental. Results show that (1) the sensitivity is associated with spurious motions near the moisture jump between the boundary layer and the free atmosphere, and (2) these spurious motions appear to arise from neglecting small variations in water vapor mixing ratio (qv) in the pressure gradient calculation in themore » acoustic sub-stepping portion of the integration procedure. We show that this issue is remedied in the WRF dynamical core by replacing the prognostic equation for the potential temperature θ with one for the moist potential temperature θm=θ(1+1.61qv), which allows consistent treatment of moisture in the calculation of pressure during the acoustic sub-steps. With this modification, the spurious motions and the sensitivity to the time stepping settings (i.e., the dynamic time step length and number of acoustic sub-steps) are eliminated in both of the example stratocumulus cases. In conclusion, this modification improves the applicability of WRF for LES applications, and possibly other models using similar dynamical core formulations, and also permits the use of longer time steps than in the original code.« less

  18. A new hydrocarbon empirical potential in angle bending calculation for the molecular dynamics simulation

    SciTech Connect (OSTI)

    Ping, Tan Ai; Hoe, Yeak Su

    2014-07-10

    Typically, short range potential only depends on neighbouring atoms and its parameters function can be categorized into bond stretching, angle bending and bond rotation potential. In this paper, we present our work called Angle Bending (AB) potential, whereas AB potential is the extension of our previous work namely Bond Stretching (BS) potential. Basically, potential will tend to zero after truncated region, potential in specific region can be represented by different piecewise polynomial. We proposed the AB piecewise potential which is possible to solve a system involving three atoms. AB potential able to handle the potential of covalent bonds for three atoms as well as two atoms cases due to its degeneracy properties. Continuity for the piecewise polynomial has been enforced by coupling with penalty methods. There are still plenty of improvement spaces for this AB potential. The improvement for three atoms AB potential will be studied and further modified into torsional potential which are the ongoing current research.

  19. Molecular Dynamics Simulation Studies of Electrolytes and Electrolyte/Electrode Interfaces

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  20. Molecular dynamics simulation studies of electrolytes and electrolyte/electrode interfaces

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  1. Molecular dynamics simulation and ab intio studies of electrolytes and electrolyte/electrode interfaces

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  2. Molecular dynamics simulation and ab intio studies of electrolytes and electrolyte/electrode interfaces

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Simulation of spray drying in superheated steam using computational fluid dynamics

    SciTech Connect (OSTI)

    Frydman, A.; Vasseur, J.; Ducept, F.; Sionneau, M.; Moureh, J.

    1999-09-01

    This paper presents a numerical simulation and experimental validation of a spray dryer using superheated steam instead of air as drying medium, modeled with a computational fluid dynamics (CFD) code. The model describes momentum, heat and mass transfer between two phases--a discrete phase of droplets, and a continuous gas phase--through a finite volume method. For the simulation, droplet size distribution is represented by 6 discrete classes of diameter, fitting to the experimental distribution injected from the nozzle orifice, taking into account their peculiar shrinkage during drying. This model is able to predict the most important features of the dryer: fields of gas temperature and gas velocity inside the chamber, droplets trajectories and eventual deposits on to the wall. The results of simulation are compared to a pilot scale dryer, using water. In the absence of risk of power ignition in steam, the authors have tested rather high steam inlet temperature (973K), thus obtaining a high volumic efficiency. The model is validated by comparison between experimental and predicted values of temperature inside the chamber, verifying the coupling between the 3 different types of transfer without adjustment. This type of model can be used for chamber design, or scale up. Using superheated steam instead of air in a spray dryer can allow a high volumic evaporation rate (20 k.h.m{sup 3}), high energy recovery and better environment control.

  4. Development of an object-oriented dynamics simulator for a LFR DEMO

    SciTech Connect (OSTI)

    Ponciroli, R.; Bortot, S.; Lorenzi, S.; Cammi, A.

    2012-07-01

    A control-oriented dynamics simulator for a Generation IV Lead-cooled Fast Reactor (LFR) demonstrator (DEMO) has been developed aimed at providing a flexible, simple and fast-running tool allowing to perform design-basis transient and stability analyses, and to lay the foundations for the study of the system control strategy. For such purposes, a model representing a compromise between accuracy and straightforwardness has been necessarily sought, and in this view an object-oriented approach based on the Modelica language has been adopted. The reactor primary and secondary systems have been implemented by assembling both component models already available in a specific thermal-hydraulic library, and ad hoc developed nuclear component models suitably modified according to the specific DEMO configuration. The resulting overall plant simulator, incorporating also the balance of plant, consists in the following essential parts: core, integrated steam generator/primary pump block, cold and hot legs, primary coolant cold pool, turbine, heat sink, secondary coolant pump. Afterwards, the reactor response to typical transient initiators has been investigated: feedwater mass flow rate and temperature enhancement, turbine admission valve coefficient variation, increase of primary coolant mass flow rate, and transient of overpower have been simulated; results have been compared with the outcomes of analogous analyses performed by employing a lumped-parameter DEMO plant model. (authors)

  5. Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis

    SciTech Connect (OSTI)

    Morris, J P; Johnson, S M

    2008-03-26

    An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.

  6. Molecular Simulation Study of the Competitive Adsorption of H2O...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation Study of the Competitive Adsorption of H2O and CO2 in Zeolite 13X Previous Next List Lennart Joos, Joseph A. Swisher, and Berend Smit, Langmuir 29, 15936-15942 (2013)...

  7. Dynamically consistent method for mixed quantum-classical simulations: A semiclassical approach

    SciTech Connect (OSTI)

    Antipov, Sergey V.; Ye, Ziyu; Ananth, Nandini

    2015-05-14

    We introduce a new semiclassical (SC) framework, the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), that can be tuned to reproduce existing quantum-limit and classical-limit SC approximations to quantum real-time correlation functions. Applying a modified Filinov transformation to a quantum-limit SC formulation leads to the association of a Filinov parameter with each degree of freedom in the system; varying this parameter from zero to infinity controls the extent of quantization of the corresponding mode. The resulting MQC-IVR expression provides a consistent dynamic framework for mixed quantum-classical simulations and we demonstrate its numerical accuracy in the calculation of real-time correlation functions for a model 1D system and a model 2D system over the full range of quantum- to classical-limit behaviors.

  8. Plant-wide dynamic simulation of an IGCC plant with CO2 capture

    SciTech Connect (OSTI)

    Bhattacharyya, D.; Turton, R.; Zitney, S.

    2009-01-01

    To eliminate the harmful effects of greenhouse gases, especially that of CO2, future coalfired power plants need to consider the option for CO2 capture. The loss in efficiency for CO2 capture is less in an Integrated Gasification Combined Cycle (IGCC) plant compared to other conventional coal combustion processes. However, no IGCC plant with CO2 capture currently exists in the world. Therefore, it is important to consider the operability and controllability issues of such a plant before it is commercially built. With this objective in mind, a detailed plant-wide dynamic simulation of an IGCC plant with CO2 capture has been developed. The plant considers a General Electric Energy (GEE)-type downflow radiant-only gasifier followed by a quench section. A two-stage water gas shift (WGS) reaction is considered for conversion of about 96 mol% of CO to CO2. A two-stage acid gas removal (AGR) process based on a physical solvent is simulated for selective capture of H2S and CO2. The clean syngas is sent to a gas turbine (GT) followed by a heat recovery steam generator (HRSG). The steady state results are validated with data from a commercial gasifier. A 5 % ramp increase in the flowrate of coal is introduced to study the system dynamics. To control the conversion of CO at a desired level in the WGS reactors, the steam/CO ratio is manipulated. This strategy is found to be efficient for this operating condition. In the absence of an efficient control strategy in the AGR process, the environmental emissions exceeded the limits by a great extent.

  9. Numerical simulation of the compressor coil of the plasma dynamic accelerator

    SciTech Connect (OSTI)

    Thomas, P.

    1997-01-01

    The plasma dynamic accelerator accelerates a plasma to very high velocities in a coaxial accelerator and then compresses it in a compressor coil, achieving high densities. The axial component of the current distribution, extending from the tip of the coaxial accelerator`s center electrode to the coil turns, causes compressing forces, the radial component yields accelerating forces. The rapid change of the coil current induces azimuthal eddy currents in the plasma that interact with the coil`s magnetic field, again yielding Lorentz forces. Aerodynamic compression may also be an important effect. A new two-dimensional magnetohydrodynamics code is used to investigate which of these effects are really important for the compression. The code allows one to simulate all effects mentioned separately and in combination. In a first step only aerodynamic compression is considered. Then each electromagnetic effect is imposed on the system. Finally, a complete simulation of the compressor coil is performed. The analysis of the results provides new insights in the way the coil operates. This paper presents important aspects of the mathematical model and of the numerical implementation and reports results.

  10. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    SciTech Connect (OSTI)

    Makwana, K. D. Cattaneo, F.; Zhdankin, V.; Li, H.; Daughton, W.

    2015-04-15

    Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k{sub ⊥}{sup −1.3}. The kinetic code shows a spectral slope of k{sub ⊥}{sup −1.5} for smaller simulation domain, and k{sub ⊥}{sup −1.3} for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.

  11. Molecular dynamics of gases and vapors in nanoporous solids. Final LDRD project report

    SciTech Connect (OSTI)

    Pohl, P.I.

    1996-08-01

    This report provides a study of gases in microporous solids using molecular modeling. The theory of gas transport in porous materials as well as the molecular modeling literature is briefly reviewed. Work complete is described and analyzed with retard to the prevailing theory. The work covers two simple subjects, construction of porous solid models and diffusion of He, H{sub 2}, Ar and CH{sub 4} down a pressure gradient across the material models as in typical membrane permeation experiments. The broader objective is to enhance our capability to efficiently and accurately develop, produce and apply microporous materials.

  12. Consequences of Urban Stability Conditions for Computational Fluid Dynamics Simulations of Urban Dispersion

    SciTech Connect (OSTI)

    Lundquist, J K; Chan, S T

    2005-11-30

    The validity of omitting stability considerations when simulating transport and dispersion in the urban environment is explored using observations from the Joint URBAN 2003 field experiment and computational fluid dynamics simulations of that experiment. Four releases of sulfur hexafluoride, during two daytime and two nighttime intensive observing periods, are simulated using the building-resolving computational fluid dynamics model, FEM3MP to solve the Reynolds Averaged Navier-Stokes equations with two options of turbulence parameterizations. One option omits stability effects but has a superior turbulence parameterization using a non-linear eddy viscosity (NEV) approach, while the other considers buoyancy effects with a simple linear eddy viscosity (LEV) approach for turbulence parameterization. Model performance metrics are calculated by comparison with observed winds and tracer data in the downtown area, and with observed winds and turbulence kinetic energy (TKE) profiles at a location immediately downwind of the central business district (CBD) in the area we label as the urban shadow. Model predictions of winds, concentrations, profiles of wind speed, wind direction, and friction velocity are generally consistent with and compare reasonably well with the field observations. Simulations using the NEV turbulence parameterization generally exhibit better agreement with observations. To further explore this assumption of a neutrally-stable atmosphere within the urban area, TKE budget profiles slightly downwind of the urban wake region in the 'urban shadow' are examined. Dissipation and shear production are the largest terms which may be calculated directly. The advection of TKE is calculated as a residual; as would be expected downwind of an urban area, the advection of TKE produced within the urban area is a very large term. Buoyancy effects may be neglected in favor of advection, shear production, and dissipation. For three of the IOPs, buoyancy production may be neglected entirely, and for one IOP, buoyancy production contributes approximately 25% of the total TKE at this location. For both nighttime releases, the contribution of buoyancy to the total TKE budget is always negligible though positive. Results from the simulations provide estimates of the average TKE values in the upwind, downtown, downtown shadow, and urban wake zones of the computational domain. These values suggest that building-induced turbulence can cause the average turbulence intensity in the urban area to increase by as much as much as seven times average 'upwind' values, explaining the minimal role of buoyant forcing in the downtown region. The downtown shadow exhibits an exponential decay in average TKE, while the distant downwind wake region approaches the average upwind values. For long-duration releases in downtown and downtown shadow areas, the assumption of neutral stability is valid because building-induced turbulence dominates the budget. However, further downwind in the urban wake region, which we find to be approximately 1500 m beyond the perimeter of downtown Oklahoma City, the levels of building-induced turbulence greatly subside, and therefore the assumption of neutral stability is less valid.

  13. Modeling & Simulation publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J.D. Kress, and L.A. Collins, "Transport properties of lithium hydride from quantum molecular dynamics and orbital-free molecular dynamics," Physical Review B - Condensed...

  14. Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration

    SciTech Connect (OSTI)

    Goddard, William

    2012-11-30

    To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

  15. Molecular dynamics study of the effect of alkyl chain length on melting points of [CnMIM][PF6] ionic liquids

    SciTech Connect (OSTI)

    Zhang, Y; Maginn, EJ

    2014-01-01

    Based on molecular dynamics simulations, the melting points T-m of a series of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids [CnMIM][PF6] with n = 2, 4, 10, 12, and 14 were studied using the free energy-based pseudosupercritical path (PSCP) method. The experimental trend that the Tm decreases with increasing alkyl chain length for ILs with short alkyl chains and increases for the ones with long alkyl chains was correctly captured. Further analysis revealed that the different trends are the results of the balance between fusion enthalpy and fusion entropy. For the ILs with short alkyl chains (ethyl and butyl groups), fusion entropy plays the dominant role so that [C4MIM][PF6], which has a larger fusion entropy due to its higher liquid phase entropy has the lower melting temperature. As for the ILs with long alkyl chains, due to the enhanced van der Waals interactions brought about by the long non-polar alkyl chains, enthalpy becomes the deciding factor and the melting points increase when the alkyl chain goes from C10 to C14. While the melting points for [C2MIM][PF6] and [C4MIM][PF6] were quantitatively predicted and the trends for the long chain ILs were captured correctly, the absolute melting points for [C10MIM][PF6], [C12MIM][PF6] and [C14MIM][PF6] were systematically overestimated in the simulations. Three possible reasons for the overestimation were studied but all ruled out. Further simulation or experimental studies are needed to explain the difference.

  16. Toward the understanding of hydration phenomena in aqueous electrolytes from the interplay of theory, molecular simulation, and experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chialvo, Ariel A.; Vlcek, Lukas

    2015-05-22

    We confront the microstructural analysis of aqueous electrolytes and present a detailed account of the fundamentals underlying the neutron scattering with isotopic substitution (NDIS) approach for the experimental determination of ion coordination numbers in systems involving both halides anions and oxyanions. We place particular emphasis on the frequently overlooked ion-pairing phenomenon, identify its microstructural signature in the neutron-weighted distribution functions, and suggest novel techniques to deal with either the estimation of the ion-pairing magnitude or the correction of its effects on the experimentally measured coordination numbers. We illustrate the underlying ideas by applying these new developments to the interpretation ofmore » four NDIS test-cases via molecular simulation, as convenient dry runs for the actual scattering experiments, for representative aqueous electrolyte solutions at ambient conditions involving metal halides and nitrates.« less

  17. Toward the understanding of hydration phenomena in aqueous electrolytes from the interplay of theory, molecular simulation, and experiment

    SciTech Connect (OSTI)

    Chialvo, Ariel A.; Vlcek, Lukas

    2015-05-22

    We confront the microstructural analysis of aqueous electrolytes and present a detailed account of the fundamentals underlying the neutron scattering with isotopic substitution (NDIS) approach for the experimental determination of ion coordination numbers in systems involving both halides anions and oxyanions. We place particular emphasis on the frequently overlooked ion-pairing phenomenon, identify its microstructural signature in the neutron-weighted distribution functions, and suggest novel techniques to deal with either the estimation of the ion-pairing magnitude or the correction of its effects on the experimentally measured coordination numbers. We illustrate the underlying ideas by applying these new developments to the interpretation of four NDIS test-cases via molecular simulation, as convenient dry runs for the actual scattering experiments, for representative aqueous electrolyte solutions at ambient conditions involving metal halides and nitrates.

  18. Kinetic Monte Carlo Simulations and Molecular Conductance Measurements of the Bacterial Decaheme Cytochrome MtrF

    SciTech Connect (OSTI)

    Byun, H. S.; Pirbadian, S.; Nakano, Aiichiro; Shi, Liang; El-Naggar, Mohamed Y.

    2014-09-05

    Microorganisms overcome the considerable hurdle of respiring extracellular solid substrates by deploying large multiheme cytochrome complexes that form 20 nanometer conduits to traffic electrons through the periplasm and across the cellular outer membrane. Here we report the first kinetic Monte Carlo simulations and single-molecule scanning tunneling microscopy (STM) measurements of the Shewanella oneidensis MR-1 outer membrane decaheme cytochrome MtrF, which can perform the final electron transfer step from cells to minerals and microbial fuel cell anodes. We find that the calculated electron transport rate through MtrF is consistent with previously reported in vitro measurements of the Shewanella Mtr complex, as well as in vivo respiration rates on electrode surfaces assuming a reasonable (experimentally verified) coverage of cytochromes on the cell surface. The simulations also reveal a rich phase diagram in the overall electron occupation density of the hemes as a function of electron injection and ejection rates. Single molecule tunneling spectroscopy confirms MtrF's ability to mediate electron transport between an STM tip and an underlying Au(111) surface, but at rates higher than expected from previously calculated heme-heme electron transfer rates for solvated molecules.

  19. Theoretical study of quantum molecular reaction dynamics and of the effects of intense laser radiation on a diatomic molecule

    SciTech Connect (OSTI)

    Dardi, P.S.

    1984-11-01

    Within the very broad field of molecular dynamics, we have concentrated on two simple yet important systems. The systems are simple enough so that they are adequately described with a single Born-Oppenheimer potential energy surface and that the dynamics can be calculated accurately. They are important because they give insight into solving more complicated systems. First we discuss H + H/sub 2/ reactive scattering. We present an exact formalism for atom-diatom reactive scattering which avoids the problem of finding a coordinate system appropriate for both reactants and products. We present computational results for collinear H + H/sub 2/ reactive scattering which agree very well with previous calculations. We also present a coupled channel distorted wave Born approximation for atom-diatom reactive scattering which we show is a first order approximation to our exact formalism. We present coupled channel DWBA results for three dimensional H + H/sub 2/ reactive scattering. The second system is an isolated HF molecule in an intense laser field. Using classical trajectories and quantum dynamics, we look at energy absorbed and transition probabilities as a function of the laser pulse time and also averaged over the pulse time. Calculations are performed for both rotating and nonrotating HF. We examine one and two photon absorption about the fundamental frequency, multiphoton absorption, and overtone absorption. 127 references, 31 figures, 12 tables.

  20. Accelerating Monte Carlo molecular simulations by reweighting and reconstructing Markov chains: Extrapolation of canonical ensemble averages and second derivatives to different temperature and density conditions

    SciTech Connect (OSTI)

    Kadoura, Ahmad; Sun, Shuyu Salama, Amgad

    2014-08-01

    Accurate determination of thermodynamic properties of petroleum reservoir fluids is of great interest to many applications, especially in petroleum engineering and chemical engineering. Molecular simulation has many appealing features, especially its requirement of fewer tuned parameters but yet better predicting capability; however it is well known that molecular simulation is very CPU expensive, as compared to equation of state approaches. We have recently introduced an efficient thermodynamically consistent technique to regenerate rapidly Monte Carlo Markov Chains (MCMCs) at different thermodynamic conditions from the existing data points that have been pre-computed with expensive classical simulation. This technique can speed up the simulation more than a million times, making the regenerated molecular simulation almost as fast as equation of state approaches. In this paper, this technique is first briefly reviewed and then numerically investigated in its capability of predicting ensemble averages of primary quantities at different neighboring thermodynamic conditions to the original simulated MCMCs. Moreover, this extrapolation technique is extended to predict second derivative properties (e.g. heat capacity and fluid compressibility). The method works by reweighting and reconstructing generated MCMCs in canonical ensemble for Lennard-Jones particles. In this paper, system's potential energy, pressure, isochoric heat capacity and isothermal compressibility along isochors, isotherms and paths of changing temperature and density from the original simulated points were extrapolated. Finally, an optimized set of Lennard-Jones parameters (?, ?) for single site models were proposed for methane, nitrogen and carbon monoxide.

  1. Magnetohydrodynamic simulations of a jet drilling an H I cloud: Shock induced formation of molecular clouds and jet breakup

    SciTech Connect (OSTI)

    Asahina, Yuta; Ogawa, Takayuki; Matsumoto, Ryoji; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo

    2014-07-01

    The formation mechanism of the jet-aligned CO clouds found by NANTEN CO observations is studied by magnetohydrodynamical (MHD) simulations taking into account the cooling of the interstellar medium. Motivated by the association of the CO clouds with the enhancement of H I gas density, we carried out MHD simulations of the propagation of a supersonic jet injected into the dense H I gas. We found that the H I gas compressed by the bow shock ahead of the jet is cooled down by growth of the cooling instability triggered by the density enhancement. As a result, a cold dense sheath is formed around the interface between the jet and the H I gas. The radial speed of the cold, dense gas in the sheath is a few km s{sup 1} almost independent of the jet speed. Molecular clouds can be formed in this region. Since the dense sheath wrapping the jet reflects waves generated in the cocoon, the jet is strongly perturbed by the vortices of the warm gas in the cocoon, which breaks up the jet and forms a secondary shock in the H I-cavity drilled by the jet. The particle acceleration at the shock can be the origin of radio and X-ray filaments observed near the eastern edge of the W50 nebula surrounding the galactic jet source SS433.

  2. Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study

    SciTech Connect (OSTI)

    Yang, Li; Gao, Fei; Kurtz, Richard J.; Zu, Xiaotao; Peng, S. M.; Long, X. G.; Zhou, X. S.

    2015-07-15

    The nucleation and growth of helium (He) bubbles in the bulk and at Σ3 <110> {112} and Σ73b <110> {661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2 <111> {111} dislocation loop is formed with the sequential collection of <111> interstitial crowdions at the periphery of the He cluster and is eventually emitted from the He cluster. Insertion of 45 He atoms into a He cluster leads to the formation of a 1/2 <111> dislocation loop in Σ3 GB. It is of interest to notice that the transition of a dislocation segment through the GB leads to the formation of a step at the GB plane following the loop formation, accounting for the formation of a residual GB defect. A 1/2 <111> loop, with a {110} habit plane, is emitted with further increase of the He bubble size in the Σ3 GB. In contrast, the sequential insertion of He atoms in Σ73b GB continuously emits self-interstitial atoms (SIAs), but these SIAs rearrange at the core of the inherent GB dislocation, instead of forming a dislocation loop, which leads the GB dislocation to propagate along the [1¯1¯ 1 2] direction. In the bulk and Σ3 GB, the He bubble exhibits three-dimensionally spherical shape, but it forms longitudinal shape along the dislocation line in the Σ73 GB, a shape commonly observed at GBs in experiments.

  3. Solute–solute correlations responsible for the prepeak in structure factors of undercooled Al-rich liquids: A molecular dynamics study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Feng; Sun, Yang; Ye, Zhuo; Zhang, Yue; Wang, Cai -Zhuang; Mendelev, Mikhail I.; Ott, Ryan T.; Kramer, Matthew J.; Ding, Ze -Jun; Ho, Kai -Ming

    2015-05-06

    In this study, we have performed molecular dynamics simulations on a typical Al-based alloy Al90Sm10. The short-range and medium-range correlations of the system are reliably produced by ab initio calculations, whereas the long-range correlations are obtained with the assistance of a semi-empirical potential well-fitted to ab initio data. Our calculations show that a prepeak in the structure factor of this system emerges well above the melting temperature, and the intensity of the prepeak increases with increasing undercooling of the liquid. These results are in agreement with x-ray diffraction experiments. The interplay between the short-range order of the system originating frommore » the large affinity between Al and Sm atoms, and the intrinsic repulsion between Sm atoms gives rise to a stronger correlation in the second peak than the first peak in the Sm–Sm partial pair correlation function (PPCF), which in turn produces the prepeak in the structure factor.« less

  4. Experiments ✚ Simulations = Better Nuclear Power Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiments + Simulations = Better Nuclear Power Research Experiments ✚ Simulations = Better Nuclear Power Research Atomic Level Simulations Enhance Characterization of Radiation Damage July 31, 2015 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Radiation Damage PNNL In a study featured on the cover of a Journal of Materials Research focus issue, an international research collaboration used molecular dynamics simulations run at NERSC to identify atomic-level details of early-stage

  5. Low temperature spin dynamics in Cr{sub 7}Ni-Cu-Cr{sub 7}Ni coupled molecular rings

    SciTech Connect (OSTI)

    Bordonali, L.; Furukawa, Y.; Mariani, M.; Sabareesh, K. P. V.; Garlatti, E.; Borsa, F.

    2014-05-07

    Proton Nuclear Magnetic Resonance (NMR) relaxation measurements have been performed down to very low temperature (50 mK) to determine the effect of coupling two Cr{sub 7}Ni molecular rings via a Cu{sup 2+} ion. No difference in the spin dynamics was found from nuclear spin lattice relaxation down to 1.5 K. At lower temperature, the {sup 1}H-NMR line broadens dramatically indicating spin freezing. From the plot of the line width vs. magnetization, it is found that the freezing temperature is higher (260 mK) in the coupled ring with respect to the single Cr{sub 7}Ni ring (140 mK)

  6. Ab initio molecular dynamics of Al irradiation-induced processes during Al{sub 2}O{sub 3} growth

    SciTech Connect (OSTI)

    Music, Denis; Nahif, Farwah; Friederichsen, Niklas; Schneider, Jochen M.; Sarakinos, Kostas

    2011-03-14

    Al bombardment induced structural changes in {alpha}-Al{sub 2}O{sub 3} (R-3c) and {gamma}-Al{sub 2}O{sub 3} (Fd-3m) were studied using ab initio molecular dynamics. Diffusion and irradiation damage occur for both polymorphs in the kinetic energy range from 3.5 to 40 eV. However, for {gamma}-Al{sub 2}O{sub 3}(001) subplantation of impinging Al causes significantly larger irradiation damage and hence larger mobility as compared to {alpha}-Al{sub 2}O{sub 3}. Consequently, fast diffusion along {gamma}-Al{sub 2}O{sub 3}(001) gives rise to preferential {alpha}-Al{sub 2}O{sub 3}(0001) growth, which is consistent with published structure evolution experiments.

  7. Characterization of amorphous In{sub 2}O{sub 3}: An ab initio molecular dynamics study

    SciTech Connect (OSTI)

    Aliano, Antonio; Catellani, Alessandra; Cicero, Giancarlo

    2011-11-21

    In this work, we report on the structural and electronic properties of amorphous In{sub 2}O{sub 3} obtained with ab initio molecular dynamics. Our results show crystal-like short range InO{sub 6} polyhedra having average In-O distance consistent with x-ray spectroscopy data. Structural disorder yields band tailing and localized states, which are responsible of a strong reduction of the electronic gap. Most importantly, the appearance of a peculiar O-O bond imparts n-type character to the amorphous compound and provides contribution for interpreting spectroscopic measurements on indium based oxidized systems. Our findings portray characteristic features to attribute transparent semiconductive properties to amorphous In{sub 2}O{sub 3}.

  8. User Guide for PV Dynamic Model Simulation Written on PSCAD Platform

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2014-11-01

    This document describes the dynamic photovoltaic model developed by the National Renewable Energy Laboratory and is intended as a guide for users of these models.

  9. Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool: Preprint

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2012-11-01

    In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states.

  10. Dynamics of laser-induced molecular alignment in the impulsive and adiabatic regimes: A direct comparison

    SciTech Connect (OSTI)

    Torres, R.; Marangos, J.P.; Nalda, R. de

    2005-08-15

    Quantum-mechanical calculations are performed of the dynamic alignment of linear molecules induced by a strong nonresonant laser field. Within this framework we have treated in a unified fashion the alignment with laser pulses of varying duration from the short pulse impulsive limit ({tau}{sub pulse}<T{sub rot}). The temporal behavior of the alignment in both these limits, and in the intermediate pulse duration regime, have been analyzed. For the impulsive limit the dependence of the degree of maximum alignment upon the laser pulse duration was examined and the intensity-dependent optimum pulse duration explained. A comparison between the degree of alignment under the same conditions of pulse intensity and rotational temperature was performed between the impulsive and adiabatic cases. The adiabatic case was found to always provide a better degree of alignment for a given intensity which we show is due to the zero relative phasing between the component states of the superposition that form the pendular states. We have explicitly calculated the angular distribution of an ensemble of linear molecules as it evolves through a rotational revival; a rich structure is found that may be useful in guiding future experiments that utilize the field free alignment in a revival.

  11. Role of nuclear dynamics in the Asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO{sub 2}

    SciTech Connect (OSTI)

    Miyabe, Shungo; Haxton, Dan; Rescigno, Tom; McCurdy, Bill

    2010-11-30

    We report the results of semiclassical calculations of the asymmetric molecular-frame photoelectron angular distributions for C 1s ionization of CO{sub 2} measured with respect to the CO{sup +} and O{sup +} ions produced by subsequent Auger decay, and show how the decay event can be used to probe ultrafast molecular dynamics of the transient cation. The fixed-nuclei photoionization amplitudes were constructed using variationally obtained electron-molecular ion scattering wave functions. The amplitudes are then used in a semiclassical manner to investigate their dependence on the nuclear dynamics of the cation. The method introduced here can be used to study other core-level ionization events.

  12. A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-09-17

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from the molecular scale (pore-scale O2 consumption) to tens of kilometers (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a reduced-order modeling (ROM) technique known as "proper orthogonal decomposition mapping method" that reconstructs temporally resolvedmore » fine-resolution solutions based on coarse-resolution solutions. We developed four different methods and applied them to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface–subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (< 0.1%) for 2 validation years not used in training the ROM. We also demonstrate that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training data set with relatively good accuracy (< 1.7% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. By coupling the ROMs constructed at different scales together hierarchically, this method has the potential to efficiently increase the resolution of land models for coupled climate simulations to spatial scales consistent with mechanistic physical process representation.« less

  13. A reduced order modeling approach to represent subgrid-scale hydrological dynamics for regional- and climate-scale land-surface simulations: application in a polygonal tundra landscape

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pau, G. S. H.; Bisht, G.; Riley, W. J.

    2014-04-04

    Existing land surface models (LSMs) describe physical and biological processes that occur over a wide range of spatial and temporal scales. For example, biogeochemical and hydrological processes responsible for carbon (CO2, CH4) exchanges with the atmosphere range from molecular scale (pore-scale O2 consumption) to tens of kilometer scale (vegetation distribution, river networks). Additionally, many processes within LSMs are nonlinearly coupled (e.g., methane production and soil moisture dynamics), and therefore simple linear upscaling techniques can result in large prediction error. In this paper we applied a particular reduced-order modeling (ROM) technique known as "Proper Orthogonal Decomposition mapping method" that reconstructs temporally-resolvedmore » fine-resolution solutions based on coarse-resolution solutions. We applied this technique to four study sites in a polygonal tundra landscape near Barrow, Alaska. Coupled surface-subsurface isothermal simulations were performed for summer months (June–September) at fine (0.25 m) and coarse (8 m) horizontal resolutions. We used simulation results from three summer seasons (1998–2000) to build ROMs of the 4-D soil moisture field for the four study sites individually (single-site) and aggregated (multi-site). The results indicate that the ROM produced a significant computational speedup (> 103) with very small relative approximation error (< 0.1%) for two validation years not used in training the ROM. We also demonstrated that our approach: (1) efficiently corrects for coarse-resolution model bias and (2) can be used for polygonal tundra sites not included in the training dataset with relatively good accuracy (< 1.5% relative error), thereby allowing for the possibility of applying these ROMs across a much larger landscape. This method has the potential to efficiently increase the resolution of land models for coupled climate simulations, allowing LSMs to be used at spatial scales consistent with mechanistic physical process representation.« less

  14. Application of a New Ensemble Conserving Quantum Dynamics Simulation Algorithm to Liquid para-Hydrogen and ortho-Deuterium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Kyle K.G.; Poulsen, Jens Aage; Nyman, Gunnar; Cunsolo, Alessandro; Rossky, Peter J.

    2015-06-30

    Here, we apply the Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method developed in our previous work [Smith et al., J. Chem. Phys. 142, 244112 (2015)] for the determination of the dynamic structure factor of liquid para-hydrogen and ortho-deuterium at state points of (T = 20.0 K, n = 21.24 nm-3) and (T = 23.0 K, n = 24.61 nm-3), respectively. When applied to this challenging system, it is shown that this new FK-QCW method consistently reproduces the experimental dynamic structure factor reported by Smith et al. [J. Chem. Phys. 140, 034501 (2014)] for all momentum transfers considered. Moreover, this shows that FK-QCWmore » provides a substantial improvement over the Feynman-Kleinert linearized path-integral method, in which purely classical dynamics are used. Furthermore, for small momentum transfers, it is shown that FK-QCW provides nearly the same results as ring-polymer molecular dynamics (RPMD), thus suggesting that FK-QCW provides a potentially more appealing algorithm than RPMD since it is not formally limited to correlation functions involving linear operators.« less

  15. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    SciTech Connect (OSTI)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.

  16. Calibration and validation of a spar-type floating offshore wind turbine model using the FAST dynamic simulation tool

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Browning, J. R.; Jonkman, J.; Robertson, A.; Goupee, A. J.

    2014-01-01

    In this study, high-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale inmore » a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.« less

  17. Dynamic simulation of a solar-driven carbon dioxide transcritical power system for small scale combined heat and power production

    SciTech Connect (OSTI)

    Chen, Y.; Lundqvist, Per; Pridasawas, Wimolsiri

    2010-07-15

    Carbon dioxide is an environmental benign natural working fluid and has been proposed as a working media for a solar-driven power system. In the current work, the dynamic performance of a small scale solar-driven carbon dioxide power system is analyzed by dynamic simulation tool TRNSYS 16 and Engineering Equation Solver (EES) using co-solving technique. Both daily performance and yearly performance of the proposed system have been simulated. Different system operating parameters, which will influence the system performance, have been discussed. Under the Swedish climatic condition, the maximum daily power production is about 12 kW h and the maximum monthly power production is about 215 kW h with the proposed system working conditions. Besides the power being produced, the system can also produce about 10 times much thermal energy, which can be used for space heating, domestic hot water supply or driving absorption chillers. The simulation results show that the proposed system is a promising and environmental benign alternative for conventional low-grade heat source utilization system. (author)

  18. Dissipative Particle Dynamics and Other Particle Methods for Multiphase Fluid Flow in Fractured and Porous Media

    SciTech Connect (OSTI)

    Paul Meakin; Zhijie Xu

    2009-08-01

    Particle methods are less computationally efficient than grid based numerical solution of the Navier Stokes equation. However, they have important advantages including rigorous mass conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing and code development effort is relatively low. We describe applications of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role.

  19. Molecular Dynamics Study of Fe(II) Adsorption, Electron Exchange, and Mobility at Goethite (alpha-FeOOH) Surfaces

    SciTech Connect (OSTI)

    Zarzycki, Piotr P.; Kerisit, Sebastien N.; Rosso, Kevin M.

    2015-02-12

    We present classical molecular simulations of the adsorption free energy profiles for the aqueous Fe(II) ion approaching key low index crystal faces of goethite at neutral surface charge conditions. Calculated profiles show minima corresponding to stable outer- and inner-sphere adsorbed structures. We analyzed the energetics and kinetics of most possible interfacial electron transfer reactions, as well as analyzing the same for subsurface migration pathways of injected electrons through calculating the Marcus free energy surfaces. We conclude that inner-sphere Fe(II)-complex formation is required for the interfacial electron transfer to occur, but the energetic cost of moving from the outer-sphere to inner-sphere geometry may prevent electron injection at some faces. We also show that some surfaces, especially (101), (100) and (001), are more energetically prone toward reduction than others. We demonstrate that subsurface charge migration in directions parallel to the surface, which run along the iron chains, is more energetically plausible than conduction through the resistive crystal bulk phase. Collectively this leads to the conclusion that Fe(II)-catalyzed recrystallization of goethite most likely proceeds by short path length electron migration through specific goethite surfaces along specific directions, until capture at Fe sites structurally susceptible to reduction and release.

  20. Transport and Self-Assembly in Molecular Nanosystems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport and Self-Assembly in Molecular Nanosystems Key Challenges: Use classical molecular dynamics and coarse grain molecular dynamics to enable "bottom-up" material...

  1. Ab initio molecular orbital-configuration interaction based quantum master equation (MOQME) approach to the dynamic first hyperpolarizabilities of asymmetric π-conjugated systems

    SciTech Connect (OSTI)

    Kishi, Ryohei; Fujii, Hiroaki; Minami, Takuya; Shigeta, Yasuteru; Nakano, Masayoshi

    2015-01-22

    In this study, we apply the ab initio molecular orbital - configuration interaction based quantum master equation (MOQME) approach to the calculation and analysis of the dynamic first hyperpolarizabilities (β) of asymmetric π-conjugated molecules. In this approach, we construct the excited state models by the ab initio configuration interaction singles method. Then, time evolutions of system reduced density matrix ρ(t) and system polarization p(t) are calculated by the QME approach. Dynamic β in the second harmonic generation is calculated based on the nonperturbative definition of nonlinear optical susceptibility, using the frequency domain system polarization p(ω). Spatial contributions of electrons to β are analyzed based on the dynamic hyperpolarizability density map, which visualizes the second-order response of charge density oscillating with a frequency of 2ω. We apply the present method to the calculation of the dynamic β of a series of donor/acceptor substituted polyene oligomers, and then discuss the applicability of the MOQME method to the calculation and analysis of dynamic NLO properties of molecular systems.

  2. Fully 3D Multiple Beam Dynamics Processes Simulation for the Fermilab Tevatron

    SciTech Connect (OSTI)

    Stern, E.; Amundson, J.; Spentzouris, P; Valishev, A.; /Fermilab

    2010-06-01

    The Fermilab Tevatron has been, until 2010, the premier high-energy physics collider in the world. The data collected over the last decade by high-energy physics experiments running at the Tevatron have been analyzed to make important measurements in fundamental areas such as B meson masses and flavor oscillation, searches for the Higgs boson, and supersymmetry. Collecting these data at the limits of detectability has required the Tevatron to operate reliably at high beam intensities to maximize the number of collisions to analyze. This impressive achievement has been assisted by the use of HPC resources and software provided through the SciDAC program. This paper describes the enhancements to the BeamBeam3d code to realistically simulate the Tevatron, the validation of these simulations, and the improvement in equipment reliability and personal safety achieved with the aid of simulations.

  3. Simulation of injector dynamics during steady inductive helicity injection current drive in the HIT-SI experiment

    SciTech Connect (OSTI)

    Hansen, C.; Marklin, G.; Victor, B.; Akcay, C.; Jarboe, T.

    2015-04-15

    We present simulations of inductive helicity injection in the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI) device that treats the entire plasma volume in a single dynamic MHD model. A new fully 3D numerical tool, the PSI-center TETrahedral mesh code, was developed that provides the geometric flexibility required for this investigation. Implementation of a zero-? Hall MHD model using PSI-TET will be presented including formulation of a new self-consistent magnetic boundary condition for the wall of the HIT-SI device. Results from simulations of HIT-SI are presented focusing on injector dynamics that are investigated numerically for the first time. Asymmetries in the plasma loading between the two helicity injectors and progression of field reversal in each injector are observed. Analysis indicates cross-coupling between injectors through confinement volume structures. Injector impedance is found to scale with toroidal current at fixed density, consistent with experimental observation. Comparison to experimental data with an injector drive frequency of 14.5 kHz shows good agreement with magnetic diagnostics. Global mode structures from Bi-Orthogonal decomposition agree well with experimental data for the first four modes.

  4. Particle simulation of collision dynamics for ion beam injection into a rarefied gas

    SciTech Connect (OSTI)

    Giuliano, Paul N.; Boyd, Iain D.

    2013-03-15

    This study details a comparison of ion beam simulations with experimental data from a simplified plasma test cell in order to study and validate numerical models and environments representative of electric propulsion devices and their plumes. The simulations employ a combination of the direct simulation Monte Carlo and particle-in-cell methods representing xenon ions and atoms as macroparticles. An anisotropic collision model is implemented for momentum exchange and charge exchange interactions between atoms and ions in order to validate the post-collision scattering behaviors of dominant collision mechanisms. Cases are simulated in which the environment is either collisionless or non-electrostatic in order to prove that the collision models are the dominant source of low- and high-angle particle scattering and current collection within this environment. Additionally, isotropic cases are run in order to show the importance of anisotropy in these collision models. An analysis of beam divergence leads to better characterization of the ion beam, a parameter that requires careful analysis. Finally, suggestions based on numerical results are made to help guide the experimental design in order to better characterize the ion environment.

  5. Predictive Simulation and Design of Materials by Quasicontinuum and Accelerated Dynamics Methods

    SciTech Connect (OSTI)

    Luskin, Mitchell; James, Richard; Tadmor, Ellad

    2014-03-30

    This project developed the hyper-QC multiscale method to make possible the computation of previously inaccessible space and time scales for materials with thermally activated defects. The hyper-QC method combines the spatial coarse-graining feature of a finite temperature extension of the quasicontinuum (QC) method (aka “hot-QC”) with the accelerated dynamics feature of hyperdynamics. The hyper-QC method was developed, optimized, and tested from a rigorous mathematical foundation.

  6. Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle

    SciTech Connect (OSTI)

    Lopez, A.R.; Gritzo, L.A.; Hassan, B.

    1997-06-01

    For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

  7. 1D GAS-DYNAMIC SIMULATION OF SHOCK-WAVE PROCESSES VIA INTERNET

    SciTech Connect (OSTI)

    Khishchenko, K. V.; Levashov, P. R.; Povarnitsyn, M. E.; Zakharenkov, A. S.

    2009-12-28

    We present a Web-interface for 1D simulation of different shock-wave experiments. The choosing of initial parameters, the modeling itself and output data treatment can be made directly via the Internet. The interface is based upon the expert system on shock-wave data and equations of state and contains both the Eulerian and Lagrangian Godunov hydrocodes. The availability of equations of state for a broad set of substances makes this system a useful tool for planning and interpretation of shock-wave experiments. As an example of simulation with the system, results of modeling of multistep shock loading of potassium between polytetrafluoroethylene and stainless steel plates are presented in comparison with experimental data from Shakhray et al.(2005).

  8. Policy Strategies and Paths to promote Sustainable Energy Systems- The dynamic Invert Simulation Tool

    SciTech Connect (OSTI)

    Stadler, Michael; Kranzl, Lukas; Huber, Claus; Haas, Reinhard; Tsioliaridou, Elena

    2006-05-01

    The European Union has established a number of targetsregarding energy efficiency, Renewable Energy Sources (RES) and CO2reductions as the 'GREEN PAPER on Energy Efficiency', the Directive for'promotion of the use of bio-fuels or other renewable fuels fortransport' or 'Directive of the European Parliament of the Council on thepromotion of cogeneration based on a useful heat demand in the internalenergy market'. A lot of the according RES and RUE measures are notattractive for investors from an economic point of view. Thereforegovernmentsall over the world have to spend public money to promotethese technologies/measures to bring them into market. These expenditureshave to be adjusted to budget concerns and should be spent mostefficiently. Therefore, the spent money has to be dedicated totechnologies and efficiency measures with the best yield in CO2 reductionwithout wasting money. The core question: "How can public money - forpromoting sustainable energy systems - be spent most efficiently toreduce GHG-emissions?" has been well investigated by the European projectInvert. In course of this project a simulation tool has been designed toanswer this core question. This paper describes the modelling with theInvert simulation tool and shows the key features necessary forsimulating the energy system. A definition of 'Promotion SchemeEfficiency' is given which allows estimating the most cost effectivetechnologies and/or efficiency measures to reduce CO2 emissions.Investigations performed with the Invert simulation tool deliver anoptimum portfolio mix of technologies and efficiency measures for eachselected region. Within Invert seven European regions were simulated andfor the Austrian case study the detailed portfolio mix is shown andpolitical conclusions are derived.

  9. Numerical simulation of gas dynamics and heat exchange tasks in fuel assemblies of the nuclear reactors

    SciTech Connect (OSTI)

    Zhuchenko, S. V.

    2014-11-12

    This report presents a PC-based program for solution gas dynamics and heat exchange mathematical tasks in fuel assemblies of the fast-neutron nuclear reactors. A fuel assembly consisting of bulk heat-generating elements, which are integrated together by the system of supply and pressure manifolds, is examined. Spherical heat-generating microelements, which contain nuclear fuel, are pulled into the heat-generating elements. Gaseous coolant proceed from supply manifolds to heat-generating elements, where it withdraws the nuclear reaction heat and assembles in pressure manifolds.

  10. Dynamic

    Office of Legacy Management (LM)

    Dynamic , and Static , Res.ponse of the Government Oil Shale Mine at ' , . , Rifle, Colorado, to the Rulison Event. , . ; . . DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. p ( y c - - a 2-1 0 -4- REPORT AT (29-2) 914 USBM 1 0 0 1 UNITED STATES DEPARTMENT O F THE I NTERIOR BUREAU OF MINES e s.09 P. L. R U S S E L L RESEARCH D l RECTOR Februory 2, lB7O DYNAMIC AND STATIC RESPONSE 'OF THE GOVERNMENT

  11. Using a dynamic point-source percolation model to simulate bubble growth.

    SciTech Connect (OSTI)

    Zimmerman, Jonathan A.; Zeigler, David A.; Cowgill, Donald F.

    2004-05-01

    Accurate modeling of nucleation, growth and clustering of helium bubbles within metal tritide alloys is of high scientific and technological importance. Of interest is the ability to predict both the distribution of these bubbles and the manner in which these bubbles interact at a critical concentration of helium-to-metal atoms to produce an accelerated release of helium gas. One technique that has been used in the past to model these materials, and again revisited in this research, is percolation theory. Previous efforts have used classical percolation theory to qualitatively and quantitatively model the behavior of interstitial helium atoms in a metal tritide lattice; however, higher fidelity models are needed to predict the distribution of helium bubbles and include features that capture the underlying physical mechanisms present in these materials. In this work, we enhance classical percolation theory by developing the dynamic point-source percolation model. This model alters the traditionally binary character of site occupation probabilities by enabling them to vary depending on proximity to existing occupied sites, i.e. nucleated bubbles. This revised model produces characteristics for one and two dimensional systems that are extremely comparable with measurements from three dimensional physical samples. Future directions for continued development of the dynamic model are also outlined.

  12. Simulation study of dynamic aperture with head-on beam-beam compensation in the RHIC

    SciTech Connect (OSTI)

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated 10{sup 6} turn dynamic apertures with the proposed head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are planning to introduce a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device to provide the electron beam is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we compare the calculated dynamic apertures without and with head-on beam-beam compensation. The effects of adjusted phase advances between IP8 and the center of e-lens and second order chromaticity correction are checked. In the end we will scan the proton and electron beam parameters with head-on beam-beam compensation.

  13. Numerical simulation of cathode plasma dynamics in magnetically insulated vacuum transmission lines

    SciTech Connect (OSTI)

    Thoma, C.; Genoni, T. C.; Welch, D. R.; Rose, D. V.; Clark, R. E.; Miller, C. L.; Stygar, W. A.; Kiefer, M. L.

    2015-03-15

    A novel algorithm for the simulation of cathode plasmas in particle-in-cell codes is described and applied to investigate cathode plasma evolution in magnetically insulated transmission lines (MITLs). The MITL electron sheath is modeled by a fully kinetic electron species. Electron and ion macroparticles, both modeled as fluid species, form a dense plasma which is initially localized at the cathode surface. Energetic plasma electron particles can be converted to kinetic electrons to resupply the electron flux at the plasma edge (the effective cathode). Using this model, we compare results for the time evolution of the cathode plasma and MITL electron flow with a simplified (isothermal) diffusion model. Simulations in 1D show a slow diffusive expansion of the plasma from the cathode surface. But in multiple dimensions, the plasma can expand much more rapidly due to anomalous diffusion caused by an instability due to the strong coupling of a transverse magnetic mode in the electron sheath with the expanding resistive plasma layer.

  14. Dislocation Dynamics Simulations of Junctions in Hexagonal Close-Packed Crystals

    SciTech Connect (OSTI)

    Wu, C; Aubry, S; Chung, P; Arsenlis, A

    2011-12-05

    The formation and strength of dislocations in the hexagonal closed packed material beryllium are studied through dislocation junctions and the critical stress required to break them. Dislocation dynamics calculations (using the code ParaDiS) of junction maps are compared to an analytical line tension approximation in order to validate our model. Results show that the two models agree very well. Also the critical shear stress necessary to break 30{sup o} - 30{sup o} and 30{sup o} - 90{sup o} dislocation junctions is computed numerically. Yield surfaces are mapped out for these junctions to describe their stability regions as function of resolved shear stresses on the glide planes. The example of two non-coplanar binary dislocation junctions with slip planes [2-1-10] (01-10) and [-12-10] (0001) corresponding to a prismatic and basal slip respectively is chosen to verify and validate our implementation.

  15. Test Cases for Wind Power Plant Dynamic Models on Real-Time Digital Simulator: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Muljadi, E.; Gevorgian, V.

    2012-06-01

    The objective of this paper is to present test cases for wind turbine generator and wind power plant models commonly used during commissioning of wind power plants to ensure grid integration compatibility. In this paper, different types of wind power plant models based on the Western Electricity Coordinating Council Wind Generator Modeling Group's standardization efforts are implemented on a real-time digital simulator, and different test cases are used to gauge their grid integration capability. The low-voltage ride through and reactive power support capability and limitations of wind turbine generators under different grid conditions are explored. Several types of transient events (e.g., symmetrical and unsymmetrical faults, frequency dips) are included in the test cases. The differences in responses from different types of wind turbine are discussed in detail.

  16. A Dynamic Simulation of the Indirect Land Use Implications of Recent Biofuel Production and Use in the United States.

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A; Kline, Keith L

    2013-01-01

    The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model. The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17 ha per 1000 gallons produced (2002) to a net contraction of 0.13 ha per 1000 gallons (2018) in Case 1 of our simulation. In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world. However, oil-export dependent economies experienced agricultural land contraction because of reductions in their revenues. Reducing crude oil imports is a major goal of biofuel policy, but the land use change implications have received little attention in the literature. Simulations evaluating the effects of doubling supply elasticities for land and fossil resources show that these parameters can significantly influence the land use change estimates. Therefore, research that provides empirically-based and spatially-detailed agricultural land-supply curves and capability to project future fossil energy prices is critical for improving estimates of the effects of biofuel policy on land use.

  17. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics.

    SciTech Connect (OSTI)

    Seker, V.; Thomas, J. W.; Downar, T. J.; Purdue Univ.

    2007-01-01

    A computational code system based on coupling the Monte Carlo code MCNP5 and the Computational Fluid Dynamics (CFD) code STAR-CD was developed as an audit tool for lower order nuclear reactor calculations. This paper presents the methodology of the developed computer program 'McSTAR'. McSTAR is written in FORTRAN90 programming language and couples MCNP5 and the commercial CFD code STAR-CD. MCNP uses a continuous energy cross section library produced by the NJOY code system from the raw ENDF/B data. A major part of the work was to develop and implement methods to update the cross section library with the temperature distribution calculated by STARCD for every region. Three different methods were investigated and implemented in McSTAR. The user subroutines in STAR-CD are modified to read the power density data and assign them to the appropriate variables in the program and to write an output data file containing the temperature, density and indexing information to perform the mapping between MCNP and STAR-CD cells. Preliminary testing of the code was performed using a 3x3 PWR pin-cell problem. The preliminary results are compared with those obtained from a STAR-CD coupled calculation with the deterministic transport code DeCART. Good agreement in the k{sub eff} and the power profile was observed. Increased computational capabilities and improvements in computational methods have accelerated interest in high fidelity modeling of nuclear reactor cores during the last several years. High-fidelity has been achieved by utilizing full core neutron transport solutions for the neutronics calculation and computational fluid dynamics solutions for the thermal-hydraulics calculation. Previous researchers have reported the coupling of 3D deterministic neutron transport method to CFD and their application to practical reactor analysis problems. One of the principal motivations of the work here was to utilize Monte Carlo methods to validate the coupled deterministic neutron transport and CFD solutions. Previous researchers have successfully performed Monte Carlo calculations with limited thermal feedback. In fact, much of the validation of the deterministic neutronics transport code DeCART in was performed using the Monte Carlo code McCARD which employs a limited thermal feedback model. However, for a broader range of temperature/fluid applications it was desirable to couple Monte Carlo to a more sophisticated temperature fluid solution such as CFD. This paper focuses on the methods used to couple Monte Carlo to CFD and their application to a series of simple test problems.

  18. Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.

    SciTech Connect (OSTI)

    Meixner, Tom; Tidwell, Vincent Carroll; Oelsner, Gretchen; Brooks, Paul; Roach, Jesse D.

    2008-08-01

    Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual models of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.

  19. Fluid dynamic studies for a simulated Melton Valley Storage Tank slurry

    SciTech Connect (OSTI)

    Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

    1994-07-01

    The Melton Valley Storage Tanks (MVSTs), are used for the collection and storage of remote-handled radioactive liquid wastes. These wastes, which were typically acidic when generated, were neutralized with the addition of sodium hydroxide to protect the storage tanks from corrosion, but this caused the transuranic and heavy metals to precipitate. These wastes will eventually need to be removed from the tanks for ultimate disposal. The objective of the research activities discussed in this report is to support the design of a pipeline transport system between the MVSTs and a treatment facility. Since the wastes in the MVSTs are highly radioactive, a surrogate slurry was developed for this study. Rheological properties of the simulated slurry were determined in a test loop in which the slurry was circulated through three pipeline viscometers of different diameters. Pressure drop data at varying flow rates were used to obtain shear stress and shear rate data. The data were analyzed, and the slurry rheological properties were analyzed by the Power Law model and the Bingham plastic model. The plastic viscosity and yield stress data obtained from the rheological tests were used as inputs for a piping design software package, and the pressure drops predicted by the software compared well with the pressure drop data obtained from the test loop. The minimum transport velocity was determine for the slurry by adding known nominal sizes of glass spheres to the slurry. However, it was shown that the surrogate slurry exhibited hindered settling, which may substantially decrease the minimum transport velocity. Therefore, it may be desired to perform additional tests with a surrogate with a lower concentration of suspended solids to determine the minimum transport velocity.

  20. Atomic-scale dynamics of a model glass-forming metallic liquid: Dynamical crossover, dynamical decoupling, and dynamical clustering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaiswal, Abhishek; Egami, Takeshi; Zhang, Yang

    2015-04-01

    The phase behavior of multi-component metallic liquids is exceedingly complex because of the convoluted many-body and many-elemental interactions. Herein, we present systematic studies of the dynamic aspects of such a model ternary metallic liquid Cu40Zr51Al9 using molecular dynamics simulation with embedded atom method. We observed a dynamical crossover from Arrhenius to super-Arrhenius behavior in the transport properties (diffusion coefficient, relaxation times, and shear viscosity) bordered at Tx ~1300K. Unlike in many molecular and macromolecular liquids, this crossover phenomenon occurs in the equilibrium liquid state well above the melting temperature of the system (Tm ~ 900K), and the crossover temperature ismore » roughly twice of the glass-transition temperature (Tg). Below Tx, we found the elemental dynamics decoupled and the Stokes-Einstein relation broke down, indicating the onset of heterogeneous spatially correlated dynamics in the system mediated by dynamic communications among local configurational excitations. To directly characterize and visualize the correlated dynamics, we employed a non-parametric, unsupervised machine learning technique and identified dynamical clusters of atoms with similar atomic mobility. The revealed average dynamical cluster size shows an accelerated increase below Tx and mimics the trend observed in other ensemble averaged quantities that are commonly used to quantify the spatially heterogeneous dynamics such as the non-Gaussian parameter and the four-point correlation function.« less

  1. Conceptual design of the HTTR-IS hydrogen production system - dynamic simulation code development for advanced process heat exchanger in the HTTR-IS system

    SciTech Connect (OSTI)

    Sato, Hiroyuki; Kubo, Shinji; Sakaba, Nariaki; Ohashi, Hirofumi; Sano, Naoki; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2007-07-01

    The objective of this study is to confirm the availability of proposed mitigation methodology against thermal load increase events initiated by the thermochemical water splitting IS process hydrogen production system (IS process) coupling with the High temperature Engineering Test Reactor (HTTR). Japan Atomic Energy Agency (JAEA) has been performing the development of dynamic simulation code which can evaluate complex phenomena in the HTTR-IS system all at one once to achieve the requirement. The notable feature of the developed code is the Advanced Process Heat Exchanger (APHX) module which enables to estimate the IS process thermal load variation considering phase change and chemical reaction behavior assumed in the APHX. In this paper, two cases of dynamic calculation for the thermal load increase events were performed using the newly developed APHX module. The results of the analytical studies clearly show the availability of the developed model for dynamic simulation of the HTTR-IS system and the thermal load increase mitigation methodology. (authors)

  2. Energy Efficient Biomolecular Simulations with FPGA-based Reconfigurable

    Office of Scientific and Technical Information (OSTI)

    Computing (Conference) | SciTech Connect Energy Efficient Biomolecular Simulations with FPGA-based Reconfigurable Computing Citation Details In-Document Search Title: Energy Efficient Biomolecular Simulations with FPGA-based Reconfigurable Computing Reconfigurable computing (RC) is being investigated as a hardware solution for improving time-to-solution for biomolecular simulations. A number of popular molecular dynamics (MD) codes are used to study various aspects of biomolecules. These

  3. A Comparative Study of the Adsorption of Water and Methanol in Zeolite BEA: A Molecular Simulation Study

    SciTech Connect (OSTI)

    Nguyen, Van T.; Nguyen, Phuong T.; Dang, Liem X.; Mei, Donghai; Wick, Collin D.; Do, Duong D.

    2014-09-15

    Grand Canonical Monte Carlo (GCMC) simulations were carried out to study the equilibrium adsorption concentration of methanol and water in all-silica zeolite BEA over the wide temperature and pressure ranges. For both water and methanol, their adsorptive capacity increases with increasing pressure and decreasing temperature. The onset of methanol adsorption occurs at much lower pressures than water adsorption at all temperatures. Our GCMC simulation results also indicate that the adsorption isotherms of methanol exhibit a gradual change with pressure while water adsorption shows a sharp first-order phase transition at low temperatures. To explore the effects of Si/Al ratio on adsorption, a series of GCMC simulations of water and methanol adsorption in zeolites HBEA with Si/Al=7, 15, 31, 63 were performed. As the Si/Al ratio decreases, the onsets of both water and methanol adsorption dramatically shift to lower pressures. The type V isotherm obtained for water adsorption in hydrophobic BEA progressively changes to type I isotherm with decreasing Si/Al ratio in hydrophilic HBEA. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  4. Extrapolating dynamic leidenfrost principles to metallic nanodroplets on

    Office of Scientific and Technical Information (OSTI)

    asymmetrically textured surfaces (Journal Article) | SciTech Connect Extrapolating dynamic leidenfrost principles to metallic nanodroplets on asymmetrically textured surfaces Citation Details In-Document Search Title: Extrapolating dynamic leidenfrost principles to metallic nanodroplets on asymmetrically textured surfaces In an effort to enhance our knowledge on how to control the movement of metallic nanodroplets, here we have used classical molecular dynamics simulations to investigate

  5. Molecular Mechanism of Biological Proton Transport

    SciTech Connect (OSTI)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  6. Simulation of toluene decomposition in a pulse-periodic discharge operating in a mixture of molecular nitrogen and oxygen

    SciTech Connect (OSTI)

    Trushkin, A. N.; Kochetov, I. V.

    2012-05-15

    The kinetic model of toluene decomposition in nonequilibrium low-temperature plasma generated by a pulse-periodic discharge operating in a mixture of nitrogen and oxygen is developed. The results of numerical simulation of plasma-chemical conversion of toluene are presented; the main processes responsible for C{sub 6}H{sub 5}CH{sub 3} decomposition are identified; the contribution of each process to total removal of toluene is determined; and the intermediate and final products of C{sub 6}H{sub 5}CH{sub 3} decomposition are identified. It was shown that toluene in pure nitrogen is mostly decomposed in its reactions with metastable N{sub 2}(A{sub 3}{Sigma}{sub u}{sup +}) and N{sub 2}(a Prime {sup 1}{Sigma}{sub u}{sup -}) molecules. In the presence of oxygen, in the N{sub 2} : O{sub 2} gas mixture, the largest contribution to C{sub 6}H{sub 5}CH{sub 3} removal is made by the hydroxyl radical OH which is generated in this mixture exclusively due to plasma-chemical reactions between toluene and oxygen decomposition products. Numerical simulation showed the existence of an optimum oxygen concentration in the mixture, at which toluene removal is maximum at a fixed energy deposition.

  7. Dynamical simulation of energy dissipation in asymmetric heavy-ion induced fission of {sup 200}Pb, {sup 213}Fr, and {sup 251}Es

    SciTech Connect (OSTI)

    Mirfathi, S. M.; Pahlavani, M. R.

    2008-12-15

    The dynamical model based on the asymmetric mass division has been applied to calculate pre-scission neutron multiplicity from heavy-ion induced fusion-fission reactions. Links between the pre-scission neutron multiplicity, excitation energy, and asymmetric mass distribution are clarified based on the Monte Carlo simulation and Langevin dynamics. The pre-scission neutron multiplicity is calculated and compared with the respective experimental data over a wide range of excitation energy and nonconstant viscosity. The analysis indicates a different effect for the application of asymmetric mass division in different energy regions of such processes.

  8. Impact of Dynamic Specimen Shape Evolution on the Atom Probe Tomography Results of Doped Epitaxial Oxide Multilayers: Comparison of Experiment and Simulation

    SciTech Connect (OSTI)

    Madaan, Nitesh; Bao, Jie; Nandasiri, Manjula I.; Xu, Zhijie; Thevuthasan, Suntharampillai; Devaraj, Arun

    2015-08-31

    The experimental atom probe tomography results from two different specimen orientations (top-down and side-ways) of a high oxygen ion conducting Samaria-doped-ceria/Scandia-stabilized-zirconia multilayer thin film solid oxide fuel cell electrolyte was correlated with level-set method based field evaporation simulations for the same specimen orientations. This experiment-theory correlation explains the dynamic specimen shape evolution and ion trajectory aberrations that can induce density artifacts in final reconstruction leading to inaccurate estimation of interfacial intermixing. This study highlights the need and importance of correlating experimental results with field evaporation simulations when using atom probe tomography for studying oxide heterostructure interfaces.

  9. THREE-DIMENSIONAL GAS DYNAMIC SIMULATION OF THE INTERACTION BETWEEN THE EXOPLANET WASP-12b AND ITS HOST STAR

    SciTech Connect (OSTI)

    Bisikalo, D.; Kaygorodov, P.; Ionov, D.; Shematovich, V.; Lammer, H.; Fossati, L.

    2013-02-10

    Hubble Space Telescope transit observations in the near-UV performed in 2009 made WASP-12b one of the most 'mysterious' exoplanets; the system presents an early ingress, which can be explained by the presence of optically thick matter located ahead of the planet at a distance of {approx}4-5 planet radii. This work follows previous attempts to explain this asymmetry with an exospheric outflow or a bow shock, induced by a planetary magnetic field, and provides a numerical solution of the early ingress, though we did not perform any radiative transfer calculation. We performed pure 3D gas dynamic simulations of the plasma interaction between WASP-12b and its host star and describe the flow pattern in the system. In particular, we show that the overfilling of the planet's Roche lobe leads to a noticeable outflow from the upper atmosphere in the direction of the L{sub 1} and L{sub 2} points. Due to the conservation of the angular momentum, the flow to the L{sub 1} point is deflected in the direction of the planet's orbital motion, while the flow toward L{sub 2} is deflected in the opposite direction, resulting in a non-axisymmetric envelope, surrounding the planet. The supersonic motion of the planet inside the stellar wind leads to the formation of a bow shock with a complex shape. The existence of the bow shock slows down the outflow through the L{sub 1} and L{sub 2} points, allowing us to consider a long-living flow structure that is in the steady state.

  10. Ion-ion dynamic structure factor of warm dense mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gill, N. M.; Heinonen, R. A.; Starrett, C. E.; Saumon, D.

    2015-06-25

    In this study, the ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ionmore » dynamical structure factor and sound speed of a warm dense mixture—equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.« less

  11. Water dynamics clue to key residues in protein folding

    SciTech Connect (OSTI)

    Gao, Meng [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Zhu, Huaiqiu, E-mail: hqzhu@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Yao, Xin-Qiu [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China) [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China); Department of Biophysics, Kyoto University, Sakyo Kyoto 606-8502 (Japan); She, Zhen-Su, E-mail: she@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)] [State Key Laboratory for Turbulence and Complex Systems, and Department of Biomedical Engineering, and Center for Theoretical Biology, and Center for Protein Science, Peking University, Beijing 100871 (China)

    2010-01-29

    A computational method independent of experimental protein structure information is proposed to recognize key residues in protein folding, from the study of hydration water dynamics. Based on all-atom molecular dynamics simulation, two key residues are recognized with distinct water dynamical behavior in a folding process of the Trp-cage protein. The identified key residues are shown to play an essential role in both 3D structure and hydrophobic-induced collapse. With observations on hydration water dynamics around key residues, a dynamical pathway of folding can be interpreted.

  12. Comparison of the Dynamic Wake Meandering Model, Large-Eddy Simulation, and Field Data at the Egmond aan Zee Offshore Wind Plant: Preprint

    SciTech Connect (OSTI)

    Churchfield, M. J.; Moriarty, P. J.; Hao, Y.; Lackner, M. A.; Barthelmie, R.; Lundquist, J.; Oxley, G. S.

    2014-12-01

    The focus of this work is the comparison of the dynamic wake meandering model and large-eddy simulation with field data from the Egmond aan Zee offshore wind plant composed of 36 3-MW turbines. The field data includes meteorological mast measurements, SCADA information from all turbines, and strain-gauge data from two turbines. The dynamic wake meandering model and large-eddy simulation are means of computing unsteady wind plant aerodynamics, including the important unsteady meandering of wakes as they convect downstream and interact with other turbines and wakes. Both of these models are coupled to a turbine model such that power and mechanical loads of each turbine in the wind plant are computed. We are interested in how accurately different types of waking (e.g., direct versus partial waking), can be modeled, and how background turbulence level affects these loads. We show that both the dynamic wake meandering model and large-eddy simulation appear to underpredict power and overpredict fatigue loads because of wake effects, but it is unclear that they are really in error. This discrepancy may be caused by wind-direction uncertainty in the field data, which tends to make wake effects appear less pronounced.

  13. simulations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    simulations

  14. 14th international symposium on molecular beams

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation & dynamics; and surfaces.

  15. 14th international symposium on molecular beams

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation dynamics; and surfaces.

  16. The Development of Dynamic Human Reliability Analysis Simulations for Inclusion in Risk Informed Safety Margin Characterization Frameworks

    SciTech Connect (OSTI)

    Jeffrey C. Joe; Diego Mandelli; Ronald L. Boring; Curtis L. Smith; Rachel B. Shirley

    2015-07-01

    The United States Department of Energy is sponsoring the Light Water Reactor Sustainability program, which has the overall objective of supporting the near-term and the extended operation of commercial nuclear power plants. One key research and development (R&D) area in this program is the Risk-Informed Safety Margin Characterization pathway, which combines probabilistic risk simulation with thermohydraulic simulation codes to define and manage safety margins. The R&D efforts to date, however, have not included robust simulations of human operators, and how the reliability of human performance or lack thereof (i.e., human errors) can affect risk-margins and plant performance. This paper describes current and planned research efforts to address the absence of robust human reliability simulations and thereby increase the fidelity of simulated accident scenarios.

  17. Photo-induced isomerization of ethylene-bridged azobenzene explored by ab initio based non-adiabatic dynamics simulation: A comparative investigation of the isomerization in the gas and solution phases

    SciTech Connect (OSTI)

    Cao Jun; Liu Lihong; Fang Weihai; Xie Zhizhong; Zhang Yong

    2013-04-07

    Azobenzene is one of the most widely used photoactive units and recently an ethylene-bridged azobenzene (BAB) was reported to have greatly enhanced conversion efficiency, quantum yield, and other favorable properties. As the first step towards exploring its photo-switchable character in real systems, we report here a systematic study on the photoisomerization dynamics between trans (E) and cis (Z) isomers in the gas phase and the CH{sub 3}OH solution, using ab initio based surface hopping and molecular dynamics, which is the first report of dynamics simulation to reveal the environmental effects on BAB photoreactions. Results show that while the relatively faster S{sub 1} relaxation of the photo-induced E{yields}Z process is only mildly affected by the solvent effect, the relatively slower S{sub 1} relaxation of the reverse reaction becomes even slower in the solution compared to the gas phase. The subsequent S{sub 0} dynamics from the conical intersection between S{sub 1} and S{sub 0} (CI{sub E}) to Z is accelerated in solution compared to the gas phase because of avoided re-crossing to the S{sub 1} state, while the S{sub 0} dynamics from the conical intersection between S{sub 1} and S{sub 0} (CI{sub Z}) to E are basically the same in both phases. Overall, the solvent effect was found to enhance the back-and-forth photo-switch efficiency between the Z and E isomers compared to the gas phase, while the quantum yields are reduced. But the solution yields of both the forward and backward photoreactions are still around 0.4. Therefore, BAB may have good photo-responsive properties if used as a photoactive unit in real systems. These results will facilitate future experimental and theoretical studies in this area to help design new azobenzene derivatives as photoactive units in biological processes, nanoscale devices, and photo-responsive materials.

  18. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stephen Whitelam Whitelam Staff Scientist, Theory of Nanostructured Materials swhitelam@lbl.gov 510.495.2769 personal website Biography Steve Whitelam got his Ph.D. in theoretical physics in 2004 from Oxford University, where he used statistical mechanics to study the dynamics of model glass-forming liquids. He was supervised by Juan P. Garrahan and David Sherrington. From 2004 - 2007 he did a postdoc with Phillip Geissler at UC Berkeley, using theory and simulation to study protein complex

  19. DYNAMICAL STRUCTURE OF THE MOLECULAR INTERSTELLAR MEDIUM IN AN EXTREMELY BRIGHT, MULTIPLY LENSED z {approx_equal} 3 SUBMILLIMETER GALAXY DISCOVERED WITH HERSCHEL

    SciTech Connect (OSTI)

    Riechers, Dominik A.; Cooray, A.; Carpenter, J. M.; Bock, J.; Omont, A.; Neri, R.; Cox, P.; Harris, A. I.; Baker, A. J.; Frayer, D. T.; Auld, R.; Aussel, H.; Chanial, P.; Blundell, R.; Brisbin, D.; Burgarella, D.; Chapman, S. C.; Clements, D. L.

    2011-05-20

    We report the detection of CO(J = 5 {yields} 4), CO(J = 3 {yields} 2), and CO(J = 1 {yields} 0) emission in the strongly lensed, Herschel/SPIRE-selected submillimeter galaxy (SMG) HERMES J105751.1+573027 at z = 2.9574 {+-} 0.0001, using the Plateau de Bure Interferometer, the Combined Array for Research in Millimeter-wave Astronomy, and the Green Bank Telescope. The observations spatially resolve the molecular gas into four lensed images with a maximum separation of {approx}9'' and reveal the internal gas dynamics in this system. We derive lensing-corrected CO line luminosities of L'{sub CO(1-0)} = (4.17 {+-} 0.41), L'{sub CO(3-2)} = (3.96 {+-} 0.20), and L'{sub CO(5-4)} = (3.45 {+-} 0.20) x 10{sup 10} ({mu}{sub L}/10.9){sup -1} K km s{sup -1} pc{sup 2}, corresponding to luminosity ratios of r{sub 31} = 0.95 {+-} 0.10, r{sub 53} = 0.87 {+-} 0.06, and r{sub 51} = 0.83 {+-} 0.09. This suggests a total molecular gas mass of M{sub gas} = 3.3x10{sup 10} ({alpha}{sub CO}/0.8) ({mu}{sub L}/10.9){sup -1} M{sub sun}. The gas mass, gas mass fraction, gas depletion timescale, star formation efficiency, and specific star formation rate are typical for an SMG. The velocity structure of the gas reservoir suggests that the brightest two lensed images are dynamically resolved projections of the same dust-obscured region in the galaxy that are kinematically offset from the unresolved fainter images. The resolved kinematics appear consistent with the complex velocity structure observed in major, 'wet' (i.e., gas-rich) mergers. Major mergers are commonly observed in SMGs and are likely to be responsible for fueling their intense starbursts at high gas consumption rates. This study demonstrates the level of detail to which galaxies in the early universe can be studied by utilizing the increase in effective spatial resolution and sensitivity provided by gravitational lensing.

  20. Dynamic response of CSM composite plates - simulation using material No. 58 in LS-DYNA3D

    SciTech Connect (OSTI)

    Bilkhu, S.S.; Founas, M.; Fong, W.; Agaram, V.

    1997-12-31

    The paper deals with finite element simulations of transverse impact response of plates made from continuous strand mat(CSM) glass/acrylic composite which is a potential candidate for making light weight automotive body panels. Two impact tests on the plates which result in two very different kinds of response, a drop tower test and a dart test, have been simulated using anisotropic material damage model No. 58 in LS-DYNA3D. In view of the results obtained in this study, the authors discuss the suitability of material model No. 58 for simulations of impact response in a bending environment.

  1. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    SciTech Connect (OSTI)

    Yang, Shizhong

    2013-02-28

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  2. Single ion dynamics in molten sodium bromide

    SciTech Connect (OSTI)

    Alcaraz, O.; Trullas, J.; Demmel, F.

    2014-12-28

    We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable good agreement between experiment and simulation utilising the polarisable potential.

  3. Dynamic force matching: A method for constructing dynamical coarse-grained models with realistic time dependence

    SciTech Connect (OSTI)

    Davtyan, Aram; Dama, James F.; Voth, Gregory A.; Andersen, Hans C.

    2015-04-21

    Coarse-grained (CG) models of molecular systems, with fewer mechanical degrees of freedom than an all-atom model, are used extensively in chemical physics. It is generally accepted that a coarse-grained model that accurately describes equilibrium structural properties (as a result of having a well constructed CG potential energy function) does not necessarily exhibit appropriate dynamical behavior when simulated using conservative Hamiltonian dynamics for the CG degrees of freedom on the CG potential energy surface. Attempts to develop accurate CG dynamic models usually focus on replacing Hamiltonian motion by stochastic but Markovian dynamics on that surface, such as Langevin or Brownian dynamics. However, depending on the nature of the system and the extent of the coarse-graining, a Markovian dynamics for the CG degrees of freedom may not be appropriate. In this paper, we consider the problem of constructing dynamic CG models within the context of the Multi-Scale Coarse-graining (MS-CG) method of Voth and coworkers. We propose a method of converting a MS-CG model into a dynamic CG model by adding degrees of freedom to it in the form of a small number of fictitious particles that interact with the CG degrees of freedom in simple ways and that are subject to Langevin forces. The dynamic models are members of a class of nonlinear systems interacting with special heat baths that were studied by Zwanzig [J. Stat. Phys. 9, 215 (1973)]. The properties of the fictitious particles can be inferred from analysis of the dynamics of all-atom simulations of the system of interest. This is analogous to the fact that the MS-CG method generates the CG potential from analysis of equilibrium structures observed in all-atom simulation data. The dynamic models generate a non-Markovian dynamics for the CG degrees of freedom, but they can be easily simulated using standard molecular dynamics programs. We present tests of this method on a series of simple examples that demonstrate that the method provides realistic dynamical CG models that have non-Markovian or close to Markovian behavior that is consistent with the actual dynamical behavior of the all-atom system used to construct the CG model. Both the construction and the simulation of such a dynamic CG model have computational requirements that are similar to those of the corresponding MS-CG model and are good candidates for CG modeling of very large systems.

  4. Refinement of the experimental dynamic structure factor for liquid para-hydrogen and ortho-deuterium using semi-classical quantum simulation

    SciTech Connect (OSTI)

    Smith, Kyle K. G. Rossky, Peter J.; Poulsen, Jens Aage; Cunsolo, A.

    2014-01-21

    The dynamic structure factor of liquid para-hydrogen and ortho-deuterium in corresponding thermodynamic states (T = 20.0?K, n = 21.24?nm{sup ?3}) and (T = 23.0?K, n = 24.61?nm{sup ?3}), respectively, has been computed by both the Feynman-Kleinert linearized path-integral (FK-LPI) and Ring-Polymer Molecular Dynamics (RPMD) methods and compared with Inelastic X Ray Scattering spectra. The combined use of computational and experimental methods enabled us to reduce experimental uncertainties in the determination of the true sample spectrum. Furthermore, the refined experimental spectrum of para-hydrogen and ortho-deuterium is consistently reproduced by both FK-LPI and RPMD results at momentum transfers lower than 12.8?nm{sup ?1}. At larger momentum transfers the FK-LPI results agree with experiment much better for ortho-deuterium than for para-hydrogen. More specifically we found that for k ? 20.0 nm{sup ?1} para-hydrogen provides a test case for improved approximations to quantum dynamics.

  5. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    SciTech Connect (OSTI)

    Xu, Zuwei; Zhao, Haibo Zheng, Chuguang

    2015-01-15

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule provides a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are demonstrated in a physically realistic Brownian coagulation case. The computational accuracy is validated with benchmark solution of discrete-sectional method. The simulation results show that the comprehensive approach can attain very favorable improvement in cost without sacrificing computational accuracy.

  6. General Reactive Atomistic Simulation Program

    Energy Science and Technology Software Center (OSTI)

    2004-09-22

    GRASP (General Reactive Atomistic Simulation Program) is primarily intended as a molecular dynamics package for complex force fields, The code is designed to provide good performance for large systems, either in parallel or serial execution mode, The primary purpose of the code is to realistically represent the structural and dynamic properties of large number of atoms on timescales ranging from picoseconds up to a microsecond. Typically the atoms form a representative sample of some material,more » such as an interface between polycrystalline silicon and amorphous silica. GRASP differs from other parallel molecular dynamics codes primarily due to it’s ability to handle relatively complicated interaction potentials and it’s ability to use more than one interaction potential in a single simulation. Most of the computational effort goes into the calculation of interatomic forces, which depend in a complicated way on the positions of all the atoms. The forces are used to integrate the equations of motion forward in time using the so-called velocity Verlet integration scheme. Alternatively, the forces can be used to find a minimum energy configuration, in which case a modified steepest descent algorithm is used.« less

  7. Drama in Dynamics: Boom, Splash, and Speed

    SciTech Connect (OSTI)

    Heather Marie Netzloff

    2004-12-19

    The full nature of chemistry and physics cannot be captured by static calculations alone. Dynamics calculations allow the simulation of time-dependent phenomena. This facilitates both comparisons with experimental data and the prediction and interpretation of details not easily obtainable from experiments. Simulations thus provide a direct link between theory and experiment, between microscopic details of a system and macroscopic observed properties. Many types of dynamics calculations exist. The most important distinction between the methods and the decision of which method to use can be described in terms of the size and type of molecule/reaction under consideration and the type and level of accuracy required in the final properties of interest. These considerations must be balanced with available computational codes and resources as simulations to mimic ''real-life'' may require many time steps. As indicated in the title, the theme of this thesis is dynamics. The goal is to utilize the best type of dynamics for the system under study while trying to perform dynamics in the most accurate way possible. As a quantum chemist, this involves some level of first principles calculations by default. Very accurate calculations of small molecules and molecular systems are now possible with relatively high-level ab initio quantum chemistry. For example, a quantum chemical potential energy surface (PES) can be developed ''on-the-fly'' with dynamic reaction path (DRP) methods. In this way a classical trajectory is developed without prior knowledge of the PES. In order to treat solvation processes and the condensed phase, large numbers of molecules are required, especially in predicting bulk behavior. The Effective Fragment Potential (EFP) method for solvation decreases the cost of a fully quantum mechanical calculation by dividing a chemical system into an ab initio region that contains the solute and an ''effective fragment'' region that contains the remaining solvent molecules. But, despite the reduced cost relative to fully QM calculations, the EFP method, due to its complex, QM-based potential, does require more computation time than simple interaction potentials, especially when the method is used for large scale molecular dynamics simulations. Thus, the EFP method was parallelized to facilitate these calculations within the quantum chemistry program GAMESS. The EFP method provides relative energies and structures that are in excellent agreement with the analogous fully quantum results for small water clusters. The ability of the method to predict bulk water properties with a comparable accuracy is assessed by performing EFP molecular dynamics simulations. Molecular dynamics simulations can provide properties that are directly comparable with experimental results, for example radial distribution functions. The molecular PES is a fundamental starting point for chemical reaction dynamics. Many methods can be used to obtain a PES; for example, assuming a global functional form for the PES or, as mentioned above, performing ''on-the-fly'' dynamics with Al or semi-empirical calculations at every molecular configuration. But as the size of the system grows, using electronic structure theory to build a PES and, therefore, study reaction dynamics becomes virtually impossible. The program Grow builds a PES as an interpolation of Al data; the goal is to attempt to produce an accurate PES with the smallest number of Al calculations. The Grow-GAMESS interface was developed to obtain the Al data from GAMESS. Classical or quantum dynamics can be performed on the resulting surface. The interface includes the novel capability to build multi-reference PESs; these types of calculations are applicable to problems ranging from atmospheric chemistry to photochemical reaction mechanisms in organic and inorganic chemistry to fundamental biological phenomena such as photosynthesis.

  8. Dynamics of positive probes in underdense, strongly magnetized, E×B drifting plasma: Particle-in-cell simulations

    SciTech Connect (OSTI)

    Heinrich, Jonathon R.; Cooke, David L.

    2013-09-15

    Electron trapping, electron heating, space-charge wings, wake eddies, and current collection by a positive probe in E×B drifting plasma were studied in three-dimensional electromagnetic particle-in-cell simulations. In these simulations, electrons and ions were magnetized with respect to the probe and the plasma was underdense (ω{sub pe}<ω{sub ce}). A large drift velocity (Mach 4.5 with respect to the ion acoustic speed) between the plasma and probe was created with background electric and magnetic fields. Four distinct regions developed in the presences of the positive probe: a quasi-trapped electron region, an electron-depletion wing, an ion-rich wing, and a wake region. We report on the observations of strong electron heating mechanisms, space-charge wings, ion cyclotron charge-density eddies in the wake, electron acceleration due to a magnetic presheath, and the current-voltage relationship.

  9. Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint

    SciTech Connect (OSTI)

    Booten, C.; Tabares-Velasco, P. C.

    2012-08-01

    This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

  10. Including the Effects of Electronic Excitations and Electron-Phonon Coupling in Cascade Simulations

    SciTech Connect (OSTI)

    Duffy, Dorothy |

    2008-07-01

    Radiation damage has traditionally been modeled using cascade simulations however such simulations generally neglect the effects of electron-ion interactions, which may be significant in high energy cascades. A model has been developed which includes the effects of electronic stopping and electron-phonon coupling in Molecular Dynamics simulations by means of an inhomogeneous Langevin thermostat. The energy lost by the atoms to electronic excitations is gained by the electronic system and the energy evolution of the electronic system is modeled by the heat diffusion equation. Energy is exchanged between the electronic system and the atoms in the Molecular Dynamics simulation by means of a Langevin thermostat, the temperature of which is the local electronic temperature. The model is applied to a 10 keV cascade simulation for Fe. (authors)

  11. Diffusion on (110) Surface of Molecular Crystal Pentaerythritol Tetranitrate

    SciTech Connect (OSTI)

    Wang, J; Golfinopoulos, T; Gee, R H; Huang, H

    2007-01-25

    Using classical molecular dynamics simulations, we investigate the diffusion mechanisms of admolecules on the (110) surface of molecular crystal pentaerythritol tetranitrate. Our results show that (1) admolecules are stable at off lattice sites, (2) admolecules diffuse along close-packed [1{bar 1}1] and [{bar 1}11] directions, and (3) admolecules detach from the surface at 350K and above. Based on the number of diffusion jumps as a function of temperature, we estimate the jump frequency to be v=1.14 x 10{sup 12} e{sup -0.08eV/kT} per second.

  12. Simulating coarse-scale vegetation dynamics using the Columbia River Basin succession model-crbsum. Forest Service general technical report

    SciTech Connect (OSTI)

    Keane, R.E.; Long, D.G.; Menakis, J.P.; Hann, W.J.; Bevins, C.D.

    1996-10-01

    The paper details the landscape succession model developed for the coarse-scale assessment called CRBSUM (Columbia River Basin SUccession Model) and presents some general results of the application of this model to the entire basin. CRBSUM was used to predict future landscape characteristics to evaluate management alternatives for both mid-and coarse-scale efforts. A test and sensitivity analysis of CRBSUM is also presented. This paper was written as a users guide for those who wish to run the model and interprete results, and its was also written as documentation for some results of the Interior Columbia River Basin simulation effort.

  13. Dissipative Particle Dynamics and Other Particle Methods for Multiphase Fluid Flow in Fractured and Porous Media

    SciTech Connect (OSTI)

    Paul Meakin; Zhijie Xu

    2008-06-01

    Particle methods are much less computationally efficient than grid based numerical solution of the Navier Stokes equation, and they have been used much less extensively, particularly for engineering applications. However, they have important advantages for some applications. These advantages include rigorous mast conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing. Code development effort is relatively low, and it is relatively simple to simulate flows with moving boundaries. In addition, it is often quite easy to include coupling of fluid flow with other physical phenomena such a phase separation. Here we describe the application of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. While these methods were developed to simulate fluids and other materials on three quite different scales the molecular, meso and continuum scales, they are very closely related from a computational point of view. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. Important examples include polymer solutions, gels, small particle suspensions and membranes. In these applications inter particle and intra molecular hydrodynamic interactions are automatically included

  14. Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite

    SciTech Connect (OSTI)

    Black, Jennifer M; Walters, Deron; Labuda, Aleksander; Feng, Guang; Hillesheim, Patrick C; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Proksch, Roger; Balke, Nina

    2013-01-01

    Bias-dependent structure of electrochemical double layers at liquid-solid interfaces underpin a multitude of phenomena in virtually all areas of scientific enquiry ranging from energy storage and conversion systems, biology, to geophysics and geochemistry. Here we report the bias-evolution of the electric double layer structure of an ionic liquid on highly ordered pyrolytic graphite as a model system for carbon-based electrodes for electrochemical supercapacitors measured by atomic force microscopy. Matching the observed structures to molecular dynamics simulations allows us to resolve steric effects due to cation and anion layers. We observe reconfiguration under applied bias and the orientational transitions in the Stern layer. The synergy between molecular dynamics simulation and experiment provides a comprehensive picture of structural phenomena and long- and short range interactions. This insight will improve understanding of the mechanism of charge storage in electrochemical capacitors on a molecular level which can be used to enhance their electrochemical performance.

  15. Dynamics of micelle-nanoparticle systems undergoing shear: a...

    Office of Scientific and Technical Information (OSTI)

    Dynamics of micelle-nanoparticle systems undergoing shear: a coarse-grained molecular dynamics approach Citation Details In-Document Search Title: Dynamics of micelle-nanoparticle ...

  16. A direct numerical simulation-based investigation and modeling of pressure Hessian effects on compressible velocity gradient dynamics

    SciTech Connect (OSTI)

    Danish, Mohammad Suman, Sawan Srinivasan, Balaji

    2014-12-15

    The pressure Hessian tensor plays a key role in shaping the behavior of the velocity gradient tensor, and in turn, that of many incumbent non-linear processes in a turbulent flow field. In compressible flows, the role of pressure Hessian is even more important because it represents the level of fluid-thermodynamic coupling existing in the flow field. In this work, we first perform a direct numerical simulation-based study to clearly identify, isolate, and understand various important inviscid mechanisms that govern the evolution of the pressure Hessian tensor in compressible turbulence. The ensuing understanding is then employed to introduce major improvements to the existing Lagrangian model of the pressure Hessian tensor (the enhanced Homogenized Euler equation or EHEE) in terms of (i) non-symmetric, non-isentropic effects and (ii) improved representation of the anisotropic portion of the pressure Hessian tensor. Finally, we evaluate the new model extensively by comparing the new model results against known turbulence behavior over a range of Reynolds and Mach numbers. Indeed, the new model shows much improved performance as compared to the EHEE model.

  17. Simulating Biomolecules on the Petascale Supercomputers

    SciTech Connect (OSTI)

    Alam, Sadaf R [ORNL; Agarwal, Pratul K [ORNL; Geist, Al [ORNL

    2007-11-01

    Computing continues to make a signicant impact on biology. A variety of computational techniques have allowed rapid developments in design of experiments as well as collection, storage and analysis of experimental data. These developments have and are leading to novel insights into a variety of biological processes. The strength of computing in biology, however, comes from the ability to investigate those aspects of biological processes that are either dicult or are beyond the reach of experimental techniques. Particularly in the last 3 decades, availability of increasing computing power has had a signicant impact on the fundamental understanding of the biomolecules at the molecular level. Molecular biochemists and biophysicists, through theoretical multi-scale modeling and computational simulations, have been able to obtain atomistic level understanding of biomolecular structure, dynamics, folding and function. The protein folding problem, in particular, has attracted considerable interest from a variety of researchers and simulation scientists.

  18. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Revealing the Fluctuations of Flexible DNA in 3D First-of-their-kind images by Molecular ... Electronic Landscapes of Molecular Nanostructures: Mapping States for Charge Transfer with ...

  19. Magnetic resonance imaging and computational fluid dynamics (CFD) simulations of rabbit nasal airflows for the development of hybrid CFD/PBPK models

    SciTech Connect (OSTI)

    Corley, Richard A.; Minard, Kevin R.; Kabilan, Senthil; Einstein, Daniel R.; Kuprat, Andrew P.; harkema, J. R.; Kimbell, Julia; Gargas, M. L.; Kinzell, John H.

    2009-06-01

    The percentages of total air?ows over the nasal respiratory and olfactory epithelium of female rabbits were cal-culated from computational ?uid dynamics (CFD) simulations of steady-state inhalation. These air?ow calcula-tions, along with nasal airway geometry determinations, are critical parameters for hybrid CFD/physiologically based pharmacokinetic models that describe the nasal dosimetry of water-soluble or reactive gases and vapors in rabbits. CFD simulations were based upon three-dimensional computational meshes derived from magnetic resonance images of three adult female New Zealand White (NZW) rabbits. In the anterior portion of the nose, the maxillary turbinates of rabbits are considerably more complex than comparable regions in rats, mice, mon-keys, or humans. This leads to a greater surface area to volume ratio in this region and thus the potential for increased extraction of water soluble or reactive gases and vapors in the anterior portion of the nose compared to many other species. Although there was considerable interanimal variability in the ?ne structures of the nasal turbinates and air?ows in the anterior portions of the nose, there was remarkable consistency between rabbits in the percentage of total inspired air?ows that reached the ethmoid turbinate region (~50%) that is presumably lined with olfactory epithelium. These latter results (air?ows reaching the ethmoid turbinate region) were higher than previous published estimates for the male F344 rat (19%) and human (7%). These di?erences in regional air?ows can have signi?cant implications in interspecies extrapolations of nasal dosimetry.

  20. Intramolecular and nonlinear dynamics

    SciTech Connect (OSTI)

    Davis, M.J.

    1993-12-01

    Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.

  1. Quantum simulations of strongly coupled quark-gluon plasma

    SciTech Connect (OSTI)

    Filinov, V. S.; Ivanov, Yu. B.; Bonitz, M.; Levashov, P. R.; Fortov, V. E.

    2012-06-15

    A strongly coupled quark-gluon plasma (QGP) of heavy constituent quasi-particles is studied by a path-integral Monte-Carlo method. This approach is a quantum generalization of the classical molecular dynamics by Gelman, Shuryak, and Zahed. It is shown that this method is able to reproduce the QCD lattice equation of state. The results indicate that the QGP reveals liquid-like rather than gaslike properties. Quantum effects turned out to be of prime importance in these simulations.

  2. Simulations of liquid ribidium expanded to the critical density

    SciTech Connect (OSTI)

    Ross, M; Yang, L H; Pilgrim, W

    2006-05-16

    Quantum molecular dynamic simulations were used to examine the change in atomic and electronic structure in liquid rubidium along its liquid-vapor coexistence curve. Starting from the liquid at the triple point, with increasing expansion we observe a continuous increase in the electron localization leading to ion clustering near the metal-nonmetal transition at about twice the critical density, in agreement with electrical measurements, and to the presence of dimers near and below the critical density.

  3. Extrapolating Dynamic Leidenfrost Principles to Metallic Nanodroplets on Asymmetrically Textured Surfaces

    Office of Scientific and Technical Information (OSTI)

    OPEN: Extrapolating Dynamic Leidenfrost Principles to Metallic Nanodroplets on Asymmetrically Textured Received: 29 December 2014 Accepted: 22 May 2015 SuilScSs Published: 30 June 2015 Joseph E. Horne1, Nickolay V. Lavrik2, Humberto Terrones1 & Miguel Fuentes-Cabrera2'3 In an effort to enhance our knowledge on how to control the movement of metallic nanodroplets, here we have used classical molecular dynamics simulations to investigate whether Cu nanostructures deposited on nanopillared

  4. Molecular Science Research Center annual report

    SciTech Connect (OSTI)

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  5. Simple Dynamic Gasifier Model That Runs in Aspen Dynamics

    SciTech Connect (OSTI)

    Robinson, P.J.; Luyben, W.L.

    2008-10-15

    Gasification (or partial oxidation) is a vital component of 'clean coal' technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased, and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel for driving combustion turbines. Gasification units in a chemical plant generate gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The widely used process simulator Aspen Plus provides a library of models that can be used to develop an overall gasifier model that handles solids. So steady-state design and optimization studies of processes with gasifiers can be undertaken. This paper presents a simple approximate method for achieving the objective of having a gasifier model that can be exported into Aspen Dynamics. The basic idea is to use a high molecular weight hydrocarbon that is present in the Aspen library as a pseudofuel. This component should have the same 1:1 hydrogen-to-carbon ratio that is found in coal and biomass. For many plantwide dynamic studies, a rigorous high-fidelity dynamic model of the gasifier is not needed because its dynamics are very fast and the gasifier gas volume is a relatively small fraction of the total volume of the entire plant. The proposed approximate model captures the essential macroscale thermal, flow, composition, and pressure dynamics. This paper does not attempt to optimize the design or control of gasifiers but merely presents an idea of how to dynamically simulate coal gasification in an approximate way.

  6. Dynamics of polydots: Soft luminescent polymeric nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maskey, Sabina; Osti, Naresh C.; Grest, Gary S.; Perahia, Dvora

    2016-03-04

    The conformation and dynamics of luminescent polymers collapsed into nanoparticles or polydots were studied using fully atomistic molecular dynamics (MD) simulations, providing a first insight into their internal dynamics. Controlling the conformation and dynamics of confined polymers is essential for realization of the full potential of polydots in nanomedicine and biotechnology. Specifically, the shape and internal dynamics of polydots that consist of highly rigid dialkyl p-phenylene ethynylene (PPE) are probed as a function of temperature. At room temperature, the polydots are spherical without any correlations between the aromatic rings on the PPE backbone. With increasing temperature, they expand and becomemore » slightly aspherical; however, the polymers remain confined. The coherent dynamic structure factor reveals that the internal motion of the polymer backbone is arrested, and the side chains dominate the internal dynamics of the polydots. Lastly, these new soft nanoparticles retain their overall shape and dynamics over an extended temperature range, and their conformation is tunable via their degree of expansion.« less

  7. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantumclassical approximation. II. Proton transfer reaction in non-polar solvent

    SciTech Connect (OSTI)

    Kojima, H.; Yamada, A.; Okazaki, S.

    2015-05-07

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantumclassical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solutesolvent interactions.

  8. Influence of system temperature on the micro-structures and dynamics of dust clusters in dusty plasmas

    SciTech Connect (OSTI)

    Song, Y. L.; Huang, F.; He, Y. F.; Wu, L.; Liu, Y. H.; Chen, Z. Y.; Yu, M. Y.

    2015-06-15

    Influence of the system temperature on the micro-structures and dynamics of dust clusters in dusty plasmas is investigated through laboratory experiment and molecular dynamics simulation. The micro-structures, defect numbers, and pair correlation function of the dust clusters are studied for different system temperatures. The dust grains' trajectories, the mean square displacement, and the corresponding self-diffusion coefficient of the clusters are calculated for different temperatures for illustrating the phase properties of the dust clusters. The simulation results confirm that with the increase in system temperature, the micro-structures and dynamics of dust clusters are gradually changed, which qualitatively agree with experimental results.

  9. William R. Wiley Environmental Molecular Sciences Laboratory...

    Office of Science (SC) Website

    to unravel the interactions of physical, chemical and biological processes that underpin ... and simulate atomic- and molecular-level biological, chemical and physical processes. ...

  10. Molecular eigenstate spectroscopy: Application to the intramolecular dynamics of some polyatomic molecules in the 3000 to 7000 cm{sup {minus}1} region

    SciTech Connect (OSTI)

    Perry, D.S.

    1993-12-01

    Intramolecular vibrational redistribution (IVR) appears to be a universal property of polyatomic molecules in energy regions where the vibrational density of states is greater than about 5 to 30 states per cm{sup {minus}1}. Interest in IVR stems from its central importance to the spectroscopy, photochemistry, and reaction kinetics of these molecules. A bright state, {var_phi}{sub s}, which may be a C-H stretching vibration, carries the oscillator strength from the ground state. This bright state may mix with bath rotational-vibrational levels to form a clump of molecular eigenstates, each of which carries a portion of the oscillator strength from the ground state. In this work the authors explicitly resolve transitions to each of these molecular eigenstates. Detailed information about the nature of IVR is contained in the frequencies and intensities of the observed discrete transitions. The primary goal of this research is to probe the coupling mechanisms by which IVR takes place. The most fundamental distinction to be made is between anharmonic coupling which is independent of molecular rotation and rotationally-mediated coupling. The authors are also interested in the rate at which IVR takes place. Measurements are strictly in the frequency domain but information is obtained about the decay of the zero order state, {var_phi}{sub s}, which could be prepared in a hypothetical experiment as a coherent excitation of the clump of molecular eigenstates. As the coherent superposition dephases, the energy would flow from the initially prepared mode into nearby overtones and combinations of lower frequency vibrational modes. The decay of the initially prepared mode is related to a pure sequence infrared absorption spectrum by a Fourier transform.

  11. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mike Brady ed_barnard Joint Molecular Foundry/ALS Project Scientist mabrady@lbl.gov 510.486.6548

  12. Molecular Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Science NETL's Molecular Science competency provides technology-enabling computational and experimental insight into the atomic-level processes occurring in condensed matter and gas phase systems or at the heterogeneous surface-gas interfaces used for energy applications. Research includes molecular optimization as well as both classical and high-throughput material design, specifically: Molecular Optimization Development and application of new computational approaches in the general

  13. Exciton Dynamics and Structural Investigations of Singlet Fission...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    artificial photosynthesis, molecular systems for solar fuels and electricity, molecular electronics, spin dynamics, spintronics, and time-resolved optical and EPR spectroscopy. ...

  14. Communication: Rate coefficients of the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction from ring polymer molecular dynamics on a highly accurate potential energy surface

    SciTech Connect (OSTI)

    Meng, Qingyong Chen, Jun Zhang, Dong H.

    2015-09-14

    The ring polymer molecular dynamics (RPMD) calculations are performed to calculate rate constants for the title reaction on the recently constructed potential energy surface based on permutation invariant polynomial (PIP) neural-network (NN) fitting [J. Li et al., J. Chem. Phys. 142, 204302 (2015)]. By inspecting convergence, 16 beads are used in computing free-energy barriers at 300 K ≤ T ≤ 1000 K, while different numbers of beads are used for transmission coefficients. The present RPMD rates are in excellent agreement with quantum rates computed on the same potential energy surface, as well as with the experimental measurements, demonstrating further that the RPMD is capable of producing accurate rates for polyatomic chemical reactions even at rather low temperatures.

  15. Linking atomistic and mesoscale simulations of nanocrystalline materials : quantitative validation for the case of grain growth.

    SciTech Connect (OSTI)

    Moldovan, D.; Wolf, D.; Phillpot, S. R.; Materials Science Division; Louisiana State Univ.

    2003-11-01

    Using grain growth in nanocrystalline palladium as a simple case study, we demonstrate how a novel mesoscale approach for simulating microstructural evolution in polycrystalline materials can be validated directly against atomic-level simulations of the same system. We first describe molecular dynamics simulations of grain growth in a columnar model microstructure. The atomic-level insights into the grain-growth mechanism gained from these simulations, particularly in the role of grain rotations, are captured theoretically for incorporation into the mesoscale approach, in which the objects evolving in space and time are the grain boundaries and grain junctions rather than the atoms. With all the input parameters to the mesoscale being physically well defined and obtained directly from the atomic-level simulations, the mesoscale simulations are fully prescribed. We find that the morphology of the mesoscale system evolves in an almost identical manner with that of the molecular dynamics simulation, demonstrating that the length- and time-scale linking has been performed correctly. When applied to systems containing large numbers of grains, the now validated mesoscale simulation approach allows the growth topology and long-time growth kinetics to be determined. As an outlook, we describe how the effects of applied stress can be incorporated.

  16. Developing a Dynamic Pharmacophore Model for HIV-1 Integrase

    SciTech Connect (OSTI)

    Carlson, Heather A.; Masukawa, Keven M.; Rubins, Kathleen; Bushman, Frederic; Jorgensen, William L.; Lins, Roberto; Briggs, James; Mccammon, Andy

    2000-05-11

    We present the first receptor-based pharmacophore model for HIV-1 integrase. The development of ''dynamic'' pharmacophore models is a new method that accounts for the inherent flexibility of the active site and aims to reduce the entropic penalties associated with binding a ligand. Furthermore, this new drug discovery method overcomes the limitation of an incomplete crystal structure of the target protein. A molecular dynamics (MD) simulation describes the flexibility of the uncomplexed protein. Many conformational models of the protein are saved from the MD simulations and used in a series of multi-unit search for interacting conformers (MUSIC) simulations. MUSIC is a multiple-copy minimization method, available in the BOSS program; it is used to determine binding regions for probe molecules containing functional groups that complement the active site. All protein conformations from the MD are overlaid, and conserved binding regions for the probe molecules are identified. Those conserved binding regions define the dynamic pharmacophore model. Here, the dynamic model is compared to known inhibitors of the integrase as well as a three-point, ligand-based pharmacophore model from the literature. Also, a ''static'' pharmacophore model was determined in the standard fashion, using a single crystal structure. Inhibitors thought to bind in the active site of HIV-1 integrase fit the dynamic model but not the static model. Finally, we have identified a set of compounds from the Available Chemicals Directory that fit the dynamic pharmacophore model, and experimental testing of the compounds has confirmed several new inhibitors.

  17. Approximate photochemical dynamics of azobenzene with reactive force fields

    SciTech Connect (OSTI)

    Li, Yan; Hartke, Bernd

    2013-12-14

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis?trans- and trans?cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work)

  18. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EVENTS ARCHIVE The Molecular Foundry regularly offers seminars and events that feature compelling research and information for those who investigate at the nanoscale. Seminars occur on Tuesdays at 11:00 am, in Building 67, Room 3111 unless otherwise noted. < seminars and events Molecular Foundry 10th Anniversary Symposium and Dinner On March 24, 2016, the Molecular Foundry will be celebrating the 10th anniversary of the dedication of its iconic building with a full day scientific symposium

  19. Atomistic simulations of dislocation pileup: Grain boundaries interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Jian

    2015-05-27

    Here, using molecular dynamics (MD) simulations, we studied the dislocation pileup–grain boundary (GB) interactions. Two Σ11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations–GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation ofmore » these kinetic processes with the available slip systems across the GB and atomic structures of the GB.« less

  20. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flatter and Faster: Transition Metal Dichalcogendies at the Molecular Foundry (Part II) Brain Imaging and Optical Manipulation Active Nanointerfaces for Electrochemistry SAXS-WAXS...

  1. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The abundance of interfaces allows the directing of transport for efficient energy storage and conversion. Electron donors and acceptors at interfaces Molecular level design and ...

  2. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... "'Thinking,' 'Exchanging,' and 'Making' necessary links in creating ground-breaking science inspired SmithGroup's design for the Molecular Foundry in Berkeley, California. The ...

  3. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The insight gained guides the design and optimization of new nanostructured materials for molecular-scale electronics, solar harvesting, water-splitting, carbon capture and ...

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31, 2016 Instrument Scheduler Nanofabrication Instrument Scheduler User Program The Molecular Foundry user program gives researchers access to expertise and equipment for...

  5. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Advanced Materials Special Issue The Molecular Foundry publication database lists peer-reviewed work that has resulted from internal and user research. New...

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dmitry Soustin dmitry User Program Administrator dsoustin@lbl.gov 510.486.7687 Biography Dmitry Soustin is the Molecular Foundry's User Program Administrator. In this role, Dmitry...

  7. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory of Nanostructured Materials jbneaton@lbl.gov 510.486.4527 personal website Biography Jeffrey B. Neaton is Director of the Molecular Foundry, a Department of Energy...

  8. Theory, modeling, and simulation annual report, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.

  9. Hydration water dynamics and instigation of protein structuralrelaxation

    SciTech Connect (OSTI)

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-09-01

    Until a critical hydration level is reached, proteins do not function. This critical level of hydration is analogous to a similar lack of protein function observed for temperatures below a dynamical temperature range of 180-220K that also is connected to the dynamics of protein surface water. Restoration of some enzymatic activity is observed in partially hydrated protein powders, sometimes corresponding to less than a single hydration layer on the protein surface, which indicates that the dynamical and structural properties of the surface water is intimately connected to protein stability and function. Many elegant studies using both experiment and simulation have contributed important information about protein hydration structure and timescales. The molecular mechanism of the solvent motion that is required to instigate the protein structural relaxation above a critical hydration level or transition temperature has yet to be determined. In this work we use experimental quasi-elastic neutron scattering (QENS) and molecular dynamics simulation to investigate hydration water dynamics near a greatly simplified protein system. We consider the hydration water dynamics near the completely deuterated N-acetyl-leucine-methylamide (NALMA) solute, a hydrophobic amino acid side chain attached to a polar blocked polypeptide backbone, as a function of concentration between 0.5M-2.0M under ambient conditions. We note that roughly 50-60% of a folded protein's surface is equally distributed between hydrophobic and hydrophilic domains, domains whose lengths are on the order of a few water diameters, that justify our study of hydration dynamics of this simple model protein system. The QENS experiment was performed at the NIST Center for Neutron Research, using the disk chopper time of flight spectrometer (DCS). In order to separate the translational and rotational components in the spectra, two sets of experiments were carried out using different incident neutron wavelengths of 7.5{angstrom} and 5.5{angstrom} to give two different time resolutions. All the spectra have been measure at room temperature. The spectra were corrected for the sample holder contribution and normalized using the vanadium standard. The resulting data were analyzed with DAVE programs (http://www.ncnr.nist.gov/dave/). The AMBER force field and SPCE water model were used for modeling the NALMA solute and water, respectively. For the analysis of the water dynamics in the NALMA aqueous solutions, we performed simulations of a dispersed solute configuration consistent with our previous structural analysis, where we had primarily focused on the structural organization of these peptide solutions and their connection to protein folding. Further details of the QENS experiment and molecular dynamics simulations are reported elsewhere.

  10. Multiscale Simulation of Thermo-mechancial Processes in Irradiated Fission-reactor Materials.

    SciTech Connect (OSTI)

    Simon R. Phillpot

    2012-06-08

    The work funded from this project has been published in six papers, with two more in draft form, with submission planned for the near future. The papers are: (1) Kinetically-Evolving Irradiation-Induced Point-Defect Clusters in UO{sub 2} by Molecular-Dynamics Simulation; (2) Kinetically driven point-defect clustering in irradiated MgO by molecular-dynamics simulation; (3) Grain-Boundary Source/Sink Behavior for Point Defect: An Atomistic Simulation Study; (4) Energetics of intrinsic point defects in uranium dioxide from electronic structure calculations; (5) Thermodynamics of fission products in UO{sub 2{+-}x}; and (6) Atomistic study of grain boundary sink strength under prolonged electron irradiation. The other two pieces of work that are currently being written-up for publication are: (1) Effect of Pores and He Bubbles on the Thermal Transport Properties of UO2 by Molecular Dynamics Simulation; and (2) Segregation of Ruthenium to Edge Dislocations in Uranium Dioxide.

  11. NREL Simulations Provide New Insight on Polymer-Based Energy Storage Materials (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    Atomistic simulations correlate molecular packing and electron transport in polymer-based energy storage materials.

  12. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dyanmics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lane, J. Matthew D.

    2015-07-22

    We have conducted extremely long molecular dynamics simulations of glasses to microsecond times, which close the gap between experimental and atomistic simulation time scales by two to three orders of magnitude. The static, thermal, and structural properties of silica glass are reported for glass cooling rates down to 5×109 K/s and viscoelastic response in silica melts and glasses are studied over nine decades of time. We finally present results from relaxation of hydrostatic compressive stress in silica and show that time-temperature superposition holds in these systems for temperatures from 3500 to 1000 K.

  13. Cooling rate and stress relaxation in silica melts and glasses via microsecond molecular dyanmics

    SciTech Connect (OSTI)

    Lane, J. Matthew D.

    2015-07-22

    We have conducted extremely long molecular dynamics simulations of glasses to microsecond times, which close the gap between experimental and atomistic simulation time scales by two to three orders of magnitude. The static, thermal, and structural properties of silica glass are reported for glass cooling rates down to 5×109 K/s and viscoelastic response in silica melts and glasses are studied over nine decades of time. We finally present results from relaxation of hydrostatic compressive stress in silica and show that time-temperature superposition holds in these systems for temperatures from 3500 to 1000 K.

  14. NMR study of the molecular dynamics of ethanol and 2,2,2-trifluoroethanol liquids confined to nanopores of porous silica glasses

    SciTech Connect (OSTI)

    Ballard, L.; Jonas, J.

    1996-05-29

    A dynamic nuclear magnetic resonance (NMR) study of the polar fluids ethanol (EtOH) and 2,2,2-trifluoroethanol (TFE) confined to porous silica sol-gel glasses is reported. The {sup 13}C NMR spin-lattice relaxation times, T{sub 1}, were measured in glasses with pore radii ranging from 18.9 to 54.8 A, over a temperature range from -13.6 to 30.5{degree}C. The data were analyzed in terms of the two-state, fast exchange model, and surface layer relaxation times, T{sub 1s}, were calculated. On the basis of surface enhancement factors, T{sub 1b}/T{sub 1s}, where T{sub 1b} is the relaxation time of the bulk liquid, it was concluded that the more acidic TFE has a weaker hydrogen bond interaction with silica, due to the fact that the alcohols serve as hydrogen bond acceptors. The experiment shows that EtOH and TFE have nearly identical surface layer viscosities, originating from the differences in hydrogen bonding with the silica surface. Confinement was found to have little effect on the internal rotation of terminal CF{sub 3} or CH{sub 3} groups. 32 refs., 2 figs., 3 tabs.

  15. The structures and dynamics of atomic and molecular adsorbates on metal surfaces by scanning tunneling microscopy and low energy electron diffraction

    SciTech Connect (OSTI)

    Yoon, Hyungsuk Alexander

    1996-12-01

    Studies of surface structure and dynamics of atoms and molecules on metal surfaces are presented. My research has focused on understanding the nature of adsorbate-adsorbate and adsorbate-substrate interactions through surface studies of coverage dependency and coadsorption using both scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). The effect of adsorbate coverage on the surface structures of sulfur on Pt(111) and Rh(111) was examined. On Pt(111), sulfur forms p(2x2) at 0.25 ML of sulfur, which transforms into a more compressed ({radical}3x{radical}3)R30{degrees} at 0.33 ML. On both structures, it was found that sulfur adsorbs only in fcc sites. When the coverage of sulfur exceeds 0.33 ML, it formed more complex c({radical}3x7)rect structure with 3 sulfur atoms per unit cell. In this structure, two different adsorption sites for sulfur atoms were observed - two on fcc sites and one on hcp site within the unit cell.

  16. Biochemical Process Modeling and Simulation Presentation for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test and select best hypotheses from experiment Streamline path to improved biofuel ... (2014). 10. A. P. Hynninen, M. F. Crowley, New faster CHARMM molecular dynamics engine. ...

  17. Protein-style dynamical transition in a non-biological polymer and a non-aqueous solvent

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mamontov, E.; Sharma, V. K.; Borreguero, J. M.; Tyagi, M.

    2016-03-15

    Using neutron scattering and molecular dynamics simulation, techniques most often associated with protein dynamical transition studies, we have investigated the microscopic dynamics of one of the most common polymers, polystyrene, which was exposed to toluene vapor, mimicking the process of protein hydration from water vapor. Polystyrene with adsorbed toluene is an example of a solvent-solute system, which, unlike biopolymers, is anhydrous and lacks hydrogen bonding. Nevertheless, it exhibits the essential traits of the dynamical transition in biomolecules, such as a specific dependence of the microscopic dynamics of both solvent and host on the temperature and the amount of solvent adsorbed.more » Ultimately, we conclude that the protein dynamical transition is a manifestation of a universal solvent-solute dynamical relationship, which is not specific to either biomolecules as solute, or aqueous media as solvent, or even a particular type of interactions between solvent and solute.« less

  18. Converting DYNAMO simulations to Powersim Studio simulations

    SciTech Connect (OSTI)

    Walker, La Tonya Nicole; Malczynski, Leonard A.

    2014-02-01

    DYNAMO is a computer program for building and running 'continuous' simulation models. It was developed by the Industrial Dynamics Group at the Massachusetts Institute of Technology for simulating dynamic feedback models of business, economic, and social systems. The history of the system dynamics method since 1957 includes many classic models built in DYANMO. It was not until the late 1980s that software was built to take advantage of the rise of personal computers and graphical user interfaces that DYNAMO was supplanted. There is much learning and insight to be gained from examining the DYANMO models and their accompanying research papers. We believe that it is a worthwhile exercise to convert DYNAMO models to more recent software packages. We have made an attempt to make it easier to turn these models into a more current system dynamics software language, Powersim Studio produced by Powersim AS2 of Bergen, Norway. This guide shows how to convert DYNAMO syntax into Studio syntax.

  19. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda March 24, 2016 Lawrence Berkeley National Laboratory AGENDA Registration 8:30 am - 9:00 am The Molecular Foundry's History and Impact 9:00 am - 10:30 am Jeff Neaton, Molecular Foundry Welcome Paul Alivisatos, Berkeley Lab/UC Berkeley The Creation of the Molecular Foundry Michael Witherell, Berkeley Lab Berkeley Lab Impact Brian Schowengerdt, Magic Leap Industry Impact Representative Mike Honda (D-CA) National Impact Break 10:30 am - 11:00 am Session 1: Functional Nanointerfaces 11:00 am -

  20. Simulation and Field Evaluation Support for ESTCP Dynamic Windows: Cooperative Research and Development Final Report, CRADA Number CRD-12-492

    SciTech Connect (OSTI)

    Guglielmetti, R.

    2015-02-01

    We will leverage new building performance and daylighting simulation tools to characterize the performance of a new electrochromic (EC) glazing as well as perform a field evaluation of the same product installed in a DoD facility. The in situ data will be used to validate and calibrate the simulation model, which will then be used to extrapolate the performance of the product across all US climate zones. The property as part of this agreement will be installed at MCAS Miramar, California.

  1. Development of interatomic potentials appropriate for simulation of devitrification of Al90Sm10 alloy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mendelev, M. I.; Zhang, F.; Ye, Z.; Sun, Y.; Nguyen, M. C.; Wilson, S. R.; Wang, C. Z.; Ho, K. M.

    2015-04-23

    In this study, a semi-empirical potential for the Al90Sm10 alloy is presented. The potential provides satisfactory reproduction of pure Al properties, the formation energies of a set of Al–Sm crystal phases with Sm content about 10%, and the structure of the liquid Al90Sm10 alloy. During molecular dynamics simulation in which the liquid alloy is cooled at a rate of 1010 K/s, the developed potential produces a glass structure with lower ab initio energy than that produced by ab initio molecular dynamics (AIMD) itself using a typical AIMD cooling rate of 8 ∙1013 K/s. Based on these facts the developed potentialmore » should be suitable for simulations of phase transformations in the Al90Sm10 alloy.« less

  2. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 1983 to maintain a forefront research center for electron microscopy with state-of-the-art instrumentation and expertise. Merged with the Molecular Foundry in 2014 to take...

  3. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meg Holm Meg Senior Administrator mcholm@lbl.gov 510.486.5135 Biography Meg is the Molecular Foundry's Senior Administrator. In this role, she supervises the Foundry budget...

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alison Hatt allison User Program Director ajhatt@lbl.gov 510.486.7154 Biography Alison Hatt is the Director of the User Program at the Molecular Foundry and a former Foundry...

  5. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gil Torres Gil Torres gjtorres@lbl.gov 510.486.4395 Biography Gil is the Building Manager for MSD in buildings 62, 66, 2, 30, JCAP and the Molecular Foundry. Gil supports Foundry...

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See the Foundry's full equipment list Organic and Macromolecular Synthesis Capabilities & Tools Instrument Scheduler Major Instruments and Capabilities AB SCIEX TF4800 MALDI TOF-TOF Mass Spectrometer This instrument is the tandem time-of-flight mass spectrometer systems, providing the excellent level of molecular mass coverage in the range of molecular masses 500 and 150,000 Da, high throughput, and confidence in both qualitative and quantitative analyses. The analyzer combines all of the

  7. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Foundry Advanced Materials Special Issue Advanced Materials Cover Art The multidisciplinary science that is central to the Molecular Foundry's mission is well represented throughout the October 14, 2015 special issue of Advanced Materials. In three Review articles, we highlight recent areas of particular innovation and promise at the Foundry: the development of advanced electron tomography for both hard and soft materials with near-atomic resolution, the creation of designer biomimetic

  8. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Behzad Rad Rad Senior Scientific Engineering Associate, Biological Nanostructures BRad@lbl.gov 510.486.5795 Biography Education Postdoctoral Fellow Molecular Foundry Lawrence Berkeley National Labs Ph.D. in Biophysics University of California at Davis Dissertation Title: "The Unwinding Mechanism of the E. coli RecQ helicase" Dissertation Advisor: Dr. Stephen C. Kowalczykowski Bachelor's in Molecular and Cellular Biology University of California at Berkeley Expertise Behzad's interests

  9. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media and Resources MEDIA Molecular Foundry Youtube Channel Berkeley Lab Youtube Channel Berkeley Lab Photo Archive Webcam The Molecular Foundry and its users benefit from its location at Berkeley Lab within the Bay Area's vibrant scientific ecosystem. The expansive views serve to fuel the imagination and build connections among the Foundry's diverse research community. Baycam Click here for a full screen view from our webcam. RESOURCES Style Guide PDF 308 KB Logos Signature Preferred 41 KB ZIP

  10. Local spin dynamics at low temperature in the slowly relaxing molecular chain [Dy(hfac)3(NIT(C6H4OPh))]: A μ{sup +} spin relaxation study

    SciTech Connect (OSTI)

    Arosio, Paolo Orsini, Francesco; Corti, Maurizio; Mariani, Manuel; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro

    2015-05-07

    The spin dynamics of the molecular magnetic chain [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] were investigated by means of the Muon Spin Relaxation (μ{sup +}SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ{sup +}SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ{sub interm}(T), associated with the intermediate relaxing component. The experimental λ{sub interm}(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ{sub 0} exp(Δ/k{sub B}T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.

  11. Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics

    SciTech Connect (OSTI)

    Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)

    2014-11-07

    Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ? in coupling to the other equations of FHD. The resulting ?-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ?-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ?-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 , the ?-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.

  12. Simulation of magnetic island dynamics under resonant magnetic perturbation with the TEAR code and validation of the results on T-10 tokamak data

    SciTech Connect (OSTI)

    Ivanov, N. V.; Kakurin, A. M.

    2014-10-15

    Simulation of the magnetic island evolution under Resonant Magnetic Perturbation (RMP) in rotating T-10 tokamak plasma is presented with intent of TEAR code experimental validation. In the T-10 experiment chosen for simulation, the RMP consists of a stationary error field, a magnetic field of the eddy current in the resistive vacuum vessel and magnetic field of the externally applied controlled halo current in the plasma scrape-off layer (SOL). The halo-current loop consists of a rail limiter, plasma SOL, vacuum vessel, and external part of the circuit. Effects of plasma resistivity, viscosity, and RMP are taken into account in the TEAR code based on the two-fluid MHD approximation. Radial distribution of the magnetic flux perturbation is calculated with account of the externally applied RMP. A good agreement is obtained between the simulation results and experimental data for the cases of preprogrammed and feedback-controlled halo current in the plasma SOL.

  13. Molecular fountain.

    SciTech Connect (OSTI)

    Strecker, Kevin E.; Chandler, David W.

    2009-09-01

    A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

  14. Multiscale Molecular Simulations at the Petascale (Parallelization...

    Office of Scientific and Technical Information (OSTI)

    Authors: Lange, A.W. ; Nelson, G. ; Knight, C. ; Voth, G.A. 1 ; LCF) 2 ; University of Chicago) 2 + Show Author Affiliations (CLS-CI) ( Publication Date: 2013-05-13 OSTI ...

  15. Hydrogen bond dynamics in bulk alcohols

    SciTech Connect (OSTI)

    Shinokita, Keisuke; Cunha, Ana V.; Jansen, Thomas L. C.; Pshenichnikov, Maxim S.

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamicsquantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquidalcoholshas attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  16. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum...

  17. Modern concepts in molecular modeling

    SciTech Connect (OSTI)

    Bajorath, J.; Klein, T.E.

    1996-12-31

    This session focused on the application of computer models and the development and application of various energy functions to study the structure, energetics and dynamics of proteins and their interactions with ligands. These studies provide an exciting view of current developments in computer-aided molecular modeling and theoretical analysis of biological molecules.

  18. Molecular modeling in support of CO2 sequestration and enhanced oil recovery.

    SciTech Connect (OSTI)

    Criscenti, Louise Jacqueline; Bracco, Jacquelyn

    2011-01-01

    Classical molecular dynamics simulations were used to investigate the formation of water droplets on two kaolinite surfaces: the gibbsite-like surface which is hydrophilic and the silica surface which is hydrophobic. Two methods for calculating contact angles were investigated in detail. The method of Giovambattista et al. was successful in calculating contact angles on both surfaces that compare well to the experimental data available. This is the first time that contact angles have been calculated for kaolinite surfaces from molecular simulations. This preliminary study provides the groundwork for investigating contact angles for more complex systems involving multiple fluids (water, CO{sub 2}, oil) in contact with different minerals in the subsurface environment.

  19. Discontinuous Methods for Accurate, Massively Parallel Quantum Molecular

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamics John Pask is Lead Prinicipal Investigator for Discontinuous Methods for Accurate, Massively Parallel Quantum Molecular Dynamics. Discontinuous Methods for Accurate, Massively Parallel Quantum Molecular Dynamics Research We develop and apply a recent breakthrough, the Discontinuous Galerkin electronic structure method, to reach for the first time the required length and time scales to attain a detailed quantum mechanical understanding of the chemistry and dynamics at the SEI layer in

  20. Visco-elastic fluid simulations of coherent structures in strongly coupled dusty plasma medium

    SciTech Connect (OSTI)

    Singh Dharodi, Vikram; Kumar Tiwari, Sanat; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2014-07-15

    A generalized hydrodynamic model depicting the behaviour of visco-elastic fluids has often been invoked to explore the behaviour of a strongly coupled dusty plasma medium below their crystallization limit. The model has been successful in describing the collective normal modes of the strongly coupled dusty plasma medium observed experimentally. The paper focuses on the study of nonlinear dynamical characteristic features of this model. Specifically, the evolution of coherent vorticity patches is being investigated here within the framework of this model. A comparison with Newtonian fluids and molecular dynamics simulations treating the dust species interacting through the Yukawa potential has also been presented.