National Library of Energy BETA

Sample records for molecular biology csmb

  1. Structural Molecular Biology, SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Training Workshops & Summer Schools Summer Students Structural Molecular Biology Illuminating Biological Structures at the Atomic and Molecular Levels Your browser...

  2. Structural Molecular Biology, SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Mission Our Mission The SSRL Structural Molecular Biology program operates as a integrated resource and has three primary areas (or cores) of technological research and development and scientific focus: Macromolecular Crystallography (MC) Small Angle X-ray Scattering/Diffraction (SAXS) X-ray Absorption Spectroscopy (XAS) Central to the core technological developments in all three of these areas is the development and utilization of improved detectors and instrumentation, especially to be

  3. Molecular biology of signal transduction in plants

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This volume contains abstracts of oral presentations and poster sessions of the 1991 Cold Springs Harbor Meeting entitled Molecular Biology of Signal Transduction in Plants.

  4. Genetics and molecular biology of breast cancer

    SciTech Connect (OSTI)

    King, M.C.; Lippman, M.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  5. Frontiers of NMR in Molecular Biology

    SciTech Connect (OSTI)

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  6. Molecular Mechanism of Biological Proton Transport

    SciTech Connect (OSTI)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  7. 2011 Archaea: Ecology, Metabolism, & Molecular Biology

    SciTech Connect (OSTI)

    Keneth Stedman

    2011-08-05

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  8. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    SciTech Connect (OSTI)

    Dr. Julie Maupin- Furlow

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  9. 2010 Plant Molecular Biology Gordon Research Conference

    SciTech Connect (OSTI)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  10. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    SciTech Connect (OSTI)

    Hallick, R.B.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  11. Molecular biology of signal transduction in plants. Abstracts

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    This volume contains abstracts of oral presentations and poster sessions of the 1991 Cold Springs Harbor Meeting entitled Molecular Biology of Signal Transduction in Plants.

  12. Overview of selected molecular biological databases

    SciTech Connect (OSTI)

    Rayl, K.D.; Gaasterland, T.

    1994-11-01

    This paper presents an overview of the purpose, content, and design of a subset of the currently available biological databases, with an emphasis on protein databases. Databases included in this summary are 3D-ALI, Berlin RNA databank, Blocks, DSSP, EMBL Nucleotide Database, EMP, ENZYME, FSSP, GDB, GenBank, HSSP, LiMB, PDB, PIR, PKCDD, ProSite, and SWISS-PROT. The goal is to provide a starting point for researchers who wish to take advantage of the myriad available databases. Rather than providing a complete explanation of each database, we present its content and form by explaining the details of typical entries. Pointers to more complete ``user guides`` are included, along with general information on where to search for a new database.

  13. Computational approaches to discovering semantics in molecular biology

    SciTech Connect (OSTI)

    Lipton, R.J. ); Marr, T.G. . Theoretical Div.); Welsh, J.D. . Dept. of Biology)

    1989-07-01

    One of the central questions of molecular biology is the discovery of the semantics of DNA. This discovery relies in a critical way on a variety of expensive computations. In order to solve these computations, both parallel computers and special-purpose hardware play a major role.

  14. 2012 PLANT MOLECULAR BIOLOGY GORDON RESEARCH CONFERENCE, JULY 15-20, 2012

    SciTech Connect (OSTI)

    Sussman, Michael

    2013-07-20

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologies for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?

  15. 2012 CELLULAR & MOLECULAR FUNGAL BIOLOGY GORDON RESEARCH CONFERENCE, JUNE 17 - 22, 2012

    SciTech Connect (OSTI)

    Judith Berman

    2012-06-22

    The Gordon Research Conference on CELLULAR & MOLECULAR FUNGAL BIOLOGY was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

  16. Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bacteria (Technical Report) | SciTech Connect Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria Citation Details In-Document Search Title: Genetics and Molecular Biology of Hydrogen Metabolism in Sulfate-Reducing Bacteria The degradation of our environment and the depletion of fossil fuels make the exploration of alternative fuels evermore imperative. Among the alternatives is biohydrogen which has high energy content by weight and produces only water when

  17. Workshop in computational molecular biology, April 15, 1991--April 14, 1994

    SciTech Connect (OSTI)

    Tavare, S.

    1995-04-12

    Funds from this award were used to the Workshop in Computational Molecular Biology, `91 Symposium entitled Interface: Computing Science and Statistics, Seattle, Washington, April 21, 1991; the Workshop in Statistical Issues in Molecular Biology held at Stanford, California, August 8, 1993; and the Session on Population Genetics a part of the 56th Annual Meeting, Institute of Mathematical Statistics, San Francisco, California, August 9, 1993.

  18. Recent advances in yeast molecular biology: recombinant DNA. [Lead abstract

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    Separate abstracts were prepared for the 25 papers presented at a workshop focusing on chromosomal structure, gene regulation, recombination, DNA repair, and cell type control, that have been obtained by experimental approaches incorporating the new technologies of yeast DNA transformation, molecular cloning, and DNA sequence analysis. (KRM)

  19. Inhibition Of Molecular And Biological Processes Using Modified Oligonucleotides

    DOE Patents [OSTI]

    Kozyavkin, Sergei A. (Germantown, MD); Malykh, Andrei G. (Germantown, MD); Polouchine, Nikolai N. (Montgomery Village, MD); Slesarev, Alexei I. (Germantown, MD)

    2003-04-15

    A method of inhibiting at least one molecular process in a sample, comprising administering to the sample an oligonucleotide or polynucleotide containing at least one monomeric unit having formula (I): wherein A is an organic moiety, n is at least 1, and each X is independently selected from the group consisting of --NRCOCONu, --NHCOCR.sub.2 CR.sub.2 CONu, --NHCOCR.dbd.CRCONu, and --NHCOSSCONu, wherein each R independently represents H or a substituted or unsubstituted alkyl group, and Nu represents a nucleophile, or a salt of the compound.

  20. Facilities for exploring molecular biology databases on the Web: A comparative study

    SciTech Connect (OSTI)

    Markowitz, V.M.; Chen, I.M.A.; Kosky, A.S.; Szeto, E.

    1996-12-31

    We discuss criteria for evaluating and comparing the main facilities provided by molecular biology databases (MBDs) for exploring (that is, retrieving and interpreting data) on the Web. We use these criteria for examining the facilities supported by typical MBDs such as Genbank, AtDB, GSDB, GDB, and MGD (as of September 5, 1996). 19 refs.

  1. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    SciTech Connect (OSTI)

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  2. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    SciTech Connect (OSTI)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor; Gerben J. Zylstra

    2004-02-15

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  3. Plant Molecular Biology 2008 Gordon Research Conference - July 13-18, 2008

    SciTech Connect (OSTI)

    Richard M. Amasino

    2009-08-28

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2008 conference will continue in that tradition. There will be sessions on metabolism; new methods to study genomes, proteomes and metabolomes; plant-microbe interactions; plant hormones; epigenetics. A new topic for the conference this year will be bioenergy. Thus this conference will bring together a range of disciplines to foster the exchange ideas and to permit the participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner.

  4. WHOLE CELL TOMOGRAPHY/MOLECULAR BIOLOGY/STRUCTURAL BIOLOGY: Affordable x-ray microscopy with nanoscale resolution

    SciTech Connect (OSTI)

    Evans, James E.; Blackborow, Paul; Horne, Stephen J.; Gelb, Jeff

    2013-03-01

    Biological research spans 10 orders of magnitude from angstroms to meters. While electron microscopy can reveal structural details at most of these spatial length scales, transmission electron tomography only reliably reconstructs three-dimensional (3-D) volumes of cellular material with a spatial resolution between 1-5 nm from samples less than 500 nm thick1. Most biological cells are 2-30 times thicker than this threshold, which means that a cell must be cut into consecutive slices with each slice reconstructed individually in order to approximate the contextual information of the entire cell. Fortunately, due to a larger penetration depth2, X-ray computed tomography bypasses the need to physically section a cell and enables imaging of intact cells and tissues on the micrometer or larger scale with tens to hundreds of nanometer spatial resolution. While the technique of soft x-ray microscopy has been extensively developed in synchrotron facilities, advancements in laboratory x-ray source designs now increase its accessibility by supporting commercial systems suitable for a standard laboratory. In this paper, we highlight a new commercial compact cryogenic soft x-ray microscope designed for a standard laboratory setting and explore its capabilities for mesoscopic investigations of intact prokaryotic and eukaryotic cells.

  5. Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biology @WIPP Life Begins at 250,000,000 Years WIPP's underground isn't just suited for physics experiments aiming to unlock the mysteries of the Universe, it is also a perfect "dig site" for biologists wanting to chronicle the history of life. 250 million years ago, the area around WIPP was all part of the Permian Sea. Today, the salt beds that make up the WIPP underground provide a time capsule, of sorts, to this ancient era. Researchers have uncovered ancient bacteria, cellulose and

  6. Molecular Dynameomics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynameomics Molecular Dynameomics DaggettHiResWhitebg.png Key Challenges: Perform molecular dynamics simulations to characterize both native (i.e. biologically active) and...

  7. FINAL REPORT: DOE CONTRACT NUMBER FG0205ER64026 Biological Neutron Scattering: A Collaboration with the Oak Ridge Center for Structural Molecular Biology

    SciTech Connect (OSTI)

    Jill Trewhella

    2011-01-12

    The overarching goal of this project was to promote applications of small-angle scattering in structural molecular biology by providing model examples of cutting edge applications that demonstrate the unique capabilities and potential of the DOE national user facilities at Oak Ridge, especially the newly commissioned BioSANS. The approach taken was three-fold: (1) to engage in high impact collaborative research projects that would benefit from small-angle neutron scattering to both demonstrate the power of the technique while expanding the potential user community; (2) to provide access to scattering facilities established at the University of Utah to as broad a set of researchers as possible to increase the expertise in small-angle scattering generally; and (3) to develop new methods and tools for small-angle scattering. To these ends, three major research collaborations were pursued that resulted in a significant body of published work where neutron scattering and contrast variation played a major role. These major collaborations involved studies of protein complexes involved in (1) bacterial transcription regulation and adaptive response (a DOE/BER priority area); (2) regulation of cardiac muscle; and (3) neuronal disorders. In addition, to broaden the impact of the project, smaller collaborative efforts were supported that used either small-angle X-ray or neutron scattering. Finally, the DOE supported facilities at the University of Utah were made available to researchers on a service basis and a number of independent groups took advantage of this opportunity. In all of this work, there was an emphasis on the training of students and post docs in scattering techniques, and a set of publications (a book chapter, a review, and an encyclopedia article) were produced to guide the non-specialist potential user of scattering techniques in successful applications of the techniques. We also developed a suite of user friendly web-based computational tools currently being accessed world-wide by researchers as an aid in neutron scattering data interpretation. In all, these collaborative projects and resulted in 29 original refereed journal articles published between 2005 and 2010 and engaged groups from at least 14 Universities (10 US, 4 international) and 3 National Laboratories (2 US, 1 international). An important final initiative from this project was to begin a process for international community agreement on a set of standards for the publication of biomolecular small-angle scattering data. This initiative is being championed with the International Union of Crystallography and has engaged a number of Journal Editors and is a very important step in the maturing of this now burgeoning field.

  8. Structural Molecular Biology, SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cellular sacs full of digestive enzymes that break down bacteria, viruses and worn-out cell parts for recycling. When this recycling process goes awry, it can cause rare metabolic...

  9. Structural Molecular Biology, SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Crystallography 2014 (IYCr2014) commemorates not only the centennial of X-ray diffraction, which allowed the detailed study of crystalline material, but also the 400th...

  10. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility RLGarcia@lbl.gov 510.486.4125 Biography Education B.A. Molecular Biology, Scripps College, Claremont, CA, 2005 Previous Professional Positions Principal...

  11. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Behzad Rad Rad Senior Scientific Engineering Associate, Biological Nanostructures BRad@lbl.gov 510.486.5795 Biography Education Postdoctoral Fellow Molecular Foundry Lawrence Berkeley National Labs Ph.D. in Biophysics University of California at Davis Dissertation Title: "The Unwinding Mechanism of the E. coli RecQ helicase" Dissertation Advisor: Dr. Stephen C. Kowalczykowski Bachelor's in Molecular and Cellular Biology University of California at Berkeley Expertise Behzad's interests

  12. Report on the research conducted under the funding of the Sloan foundation postdoctoral fellowship in Computational Molecular Biology [Systematic study of protein-protein complexes] Final report

    SciTech Connect (OSTI)

    Sheinerman, Felix

    2001-06-01

    A central question in molecular biology is what structural features are common at protein-protein interfaces and what energetic factors define the affinity and specificity of protein-protein association. Analysis of structural and mutational data on protein-protein interfaces revealed that protein-protein interfaces of different functional classes contain many more energetically important charged and polar residues than was previously thought. Since, in the context of protein folding studies, polar interactions are believed to destabilize the folded proteins, this observation raised the question as to the forces that determine the stability of protein complexes. To investigate this issue in detail, the authors developed a number of partitioning schemes that allowed them to investigate the role of selected residues, ion pairs, and networks of polar interactions in protein-protein association. The methods developed were applied to the analysis of four different protein-protein interfaces: the ribonuclease barnase and its inhibitor barstar, the human growth hormone and its receptor, subtype N9 influenze virus neuraminidase and NC41 antibody, and the Ras Binding Domain of kinase cRaf and a Ras homologue Rap1A. The calculations revealed a surprising variability in how polar interactions affect the stability of different complexes. The finding that positions of charged and polar residues on protein-protein interfaces are optimized with respect to electrostatic interactions suggests that this property can be employed for the discrimination between native conformations and trial complexes generated by a docking algorithm. Analysis indicated the presence of SH2 domains in Janus family of non-receptor protein tyrosine kinases.

  13. Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq (registered)

    SciTech Connect (OSTI)

    Matthijnssens, Jelle; Joelsson, Daniel B.; Warakomski, Donald J.; Zhou, Tingyi; Mathis, Pamela K.; Maanen, Marc-Henri van; Ranheim, Todd S.; Ciarlet, Max

    2010-08-01

    RotaTeq (registered) is a pentavalent rotavirus vaccine that contains five human-bovine reassortant strains (designated G1, G2, G3, G4, and P1) on the backbone of the naturally attenuated tissue culture-adapted parental bovine rotavirus (BRV) strain WC3. The viral genomes of each of the reassortant strains were completely sequenced and compared pairwise and phylogenetically among each other and to human rotavirus (HRV) and BRV reference strains. Reassortants G1, G2, G3, and G4 contained the VP7 gene from their corresponding HRV parent strains, while reassortants G1 and G2 also contained the VP3 gene (genotype M1) from the HRV parent strain. The P1 reassortant contained the VP4 gene from the HRV parent strain and all the other gene segments from the BRV WC3 strain. The human VP7s had a high level of overall amino acid identity (G1: 95-99%, G2: 94-99% G3: 96-100%, G4: 93-99%) when compared to those of representative rotavirus strains of their corresponding G serotypes. The VP4 of the P1 reassortant had a high identity (92-97%) with those of serotype P1A[8] HRV reference strains, while the BRV VP7 showed identities ranging from 91% to 94% to those of serotype G6 HRV strains. Sequence analyses of the BRV or HRV genes confirmed that the fundamental structure of the proteins in the vaccine was similar to those of the HRV and BRV references strains. Sequences analyses showed that RotaTeq (registered) exhibited a high degree of genetic stability as no mutations were identified in the material of each reassortant, which undergoes two rounds of replication cycles in cell culture during the manufacturing process, when compared to the final material used to fill the dosing tubes. The infectivity of each of the reassortant strains of RotaTeq (registered) , like HRV strains, did not require the presence of sialic acid residues on the cell surface. The molecular and biologic characterization of RotaTeq (registered) adds to the significant body of clinical data supporting the consistent efficacy, immunogenicity, and safety of RotaTeq (registered) .

  14. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Caroline M. Ajo-Franklin Ajo-Franklin Staff Scientist, Biological Nanostructures cajo-franklin@lbl.gov 510.486.4299 personal website Biography Dr. Ajo-Franklin has been a Staff Scientist at the Molecular Foundry since 2007. Before that, she received her Ph.D. in Chemistry from Stanford University with Prof. Steve Boxer and was a post-doctoral fellow with Prof. Pam Silver in the Department of Systems Biology at Harvard Medical School. Dr. Ajo-Franklin is fascinated by the incredible, diverse

  15. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  16. National Laboratory] Basic Biological Sciences(59) Biological...

    Office of Scientific and Technical Information (OSTI)

    Achievements of structural genomics Terwilliger, Thomas C. Los Alamos National Laboratory Basic Biological Sciences(59) Biological Science Biological Science Abstract Not...

  17. Biological preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  18. Ninth International Workshop on Plant Membrane Biology

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    This report is a compilation of abstracts from papers which were discussed at a workshop on plant membrane biology. Topics include: plasma membrane ATP-ases; plant-environment interactions, membrane receptors; signal transduction; ion channel physiology; biophysics and molecular biology; vaculor H+ pumps; sugar carriers; membrane transport; and cellular structure and function.

  19. Systems biology approach to bioremediation

    SciTech Connect (OSTI)

    Chakraborty, R.; Wu, C. H.; Hazen, T. C.

    2012-01-01

    Bioremediation has historically been approached as a ?black box? in terms of our fundamental understanding. Thus it succeeds and fails, seldom without a complete understanding of why. Systems biology is an integrated research approach to study complex biological systems, by investigating interactions and networks at the molecular, cellular, community, and ecosystem level. The knowledge of these interactions within individual components is fundamental to understanding the dynamics of the ecosystem under investigation. Understanding and modeling functional microbial community structure and stress responses in environments at all levels have tremendous implications for our fundamental understanding of hydrobiogeochemical processes and the potential for making bioremediation breakthroughs and illuminating the ?black box?.

  20. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Molecular Foundry is a Department of Energy-funded nanoscience research facility that provides users from around the world with access to cutting-edge expertise and instrumentation in a collaborative, multidisciplinary environment. Read about the Molecular Foundry's research themes in its recently updated Strategic Plan Learn about the Advanced Materials Special Issue on the Molecular Foundry Call for Proposals: The next deadline for standard proposals is March 31, 2016 Molecular Foundry

  1. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEMINARS The Molecular Foundry regularly offers seminars and events that feature compelling research and information for those who investigate at the nanoscale. Seminars occur on Tuesdays at 11:00 am, in Building 67, Room 3111 unless otherwise noted. To be added to the Molecular Foundry's seminar mailing list, please email Jason Sweet. Recent Seminar Series Winter 2016 Fall 2015 Spring/Summer 2015 Winter 2015 < Full Seminar Archive EVENTS < events archive Upcoming Events Molecular Foundry

  2. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flatter and Faster: Transition Metal Dichalcogendies at the Molecular Foundry (Part II) Brain Imaging and Optical Manipulation Active Nanointerfaces for Electrochemistry SAXS-WAXS...

  3. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transport properties of oligothiophene-based molecular films studied by current sensing atomic force microscopy. Nano Lett. 11, 4107-4112 (2011). Schwartzberg, A. M., Aloni, S.,...

  4. Modern concepts in molecular modeling

    SciTech Connect (OSTI)

    Bajorath, J.; Klein, T.E.

    1996-12-31

    This session focused on the application of computer models and the development and application of various energy functions to study the structure, energetics and dynamics of proteins and their interactions with ligands. These studies provide an exciting view of current developments in computer-aided molecular modeling and theoretical analysis of biological molecules.

  5. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells, viruses), plant or soil samples (USDA quarantines), recombinant DNA, or blood-borne pathogen. Biological Use Authorization The great majority of biological work at...

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ralph J. Greenspan, Director, Center for Brain Activity Mapping; Professor of BiologyNeurobiology Section and of Cognitive Science, UC San Diego; Co-Director, Cal-BRAIN. Roger ...

  7. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Nanostructures This facility studies the synthesis, analysis and mimicry of biological nanostructures. Expertise and capabilities are available to develop new materials based on the folding and assembly of sequence-defined, bioinspired polymers (including peptides,,nucleic acids, and peptoids). New biocompatible imaging probes based on organic dyes and functionalized inorganic nanocrystals are being developed and are available to facilitate state-of-the-art bioimaging studies.

  8. Micro/nanofabricated environments for synthetic biology

    SciTech Connect (OSTI)

    Collier, Pat [ORNL; Simpson, Michael L [ORNL

    2011-01-01

    A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial micro- and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of micro- and nanofabricated topological constraints.

  9. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities AB SCIEX TF4800 MALDI TOF-TOF Mass Spectrometer This instrument is the tandem time-of-flight mass spectrometer systems, providing the excellent level of molecular...

  10. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alison Hatt allison User Program Director ajhatt@lbl.gov 510.486.7154 Biography Alison Hatt is the Director of the User Program at the Molecular Foundry and a former Foundry postdoc. Dr. Hatt received a B.S. in Physics from the University of Utah and a Ph.D. in Materials from the University of California, Santa Barbara. As User Program Director, Dr. Hatt is responsible for overseeing the Molecular Foundry's scientific proposal process, including administration associated with User proposal

  11. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neaton Jeff Neaton Director, Molecular Foundry Senior Faculty Scientist, Theory of Nanostructured Materials jbneaton@lbl.gov 510.486.4527 personal website Biography Jeffrey B. Neaton is Director of the Molecular Foundry, a Department of Energy Nanoscale Science Research Center. He is also a Senior Faculty Scientist at Lawrence Berkeley National Laboratory, Professor of Physics at UC Berkeley, and member of the Kavli Energy NanoSciences Institute at Berkeley. He received his Ph.D. in physics from

  12. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers Information about current openings at the Molecular Foundry and complete application information is available from LBNL Human Resources. Please follow the application instructions at the bottom of the job posting. Inquiries about opportunities to work in specific areas of the Molecular Foundry can be sent to the following: Imaging and Manipulation of Nanostructures Facility P. Jim Schuck 510.486.4822 Nanofabrication Facility Stefano Cabrini 510.486.7339 Theory of Nanostructured Materials

  13. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media and Resources MEDIA Molecular Foundry Youtube Channel Berkeley Lab Youtube Channel Berkeley Lab Photo Archive Webcam The Molecular Foundry and its users benefit from its location at Berkeley Lab within the Bay Area's vibrant scientific ecosystem. The expansive views serve to fuel the imagination and build connections among the Foundry's diverse research community. Baycam Click here for a full screen view from our webcam. RESOURCES Style Guide PDF 308 KB Logos Signature Preferred 41 KB ZIP

  14. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Advanced Materials Special Issue » The Molecular Foundry publication database lists peer-reviewed work that has resulted from internal and user research. New publications can be added to the database here. All published work resulting from the use of this facility must acknowledge the Molecular Foundry, regardless of whether Foundry staff are included as authors. Proper acknowledgement text can be found here. Citation Year Facility User Loading data from server

  15. [Studies of biologic activation associated with molecular receptor increase and tumor response in ChL6/L6 protocol patients; Studies in phantoms; Quantitative SPECT; Preclinical studies; and Clinical studies]. DOE annual report, 1994--95

    SciTech Connect (OSTI)

    DeNardo, S.J.

    1995-12-31

    The authors describe results which have not yet been published from their associated studies listed in the title. For the first, they discuss Lym-1 single chain genetically engineered molecules, analysis of molecular genetic coded messages to enhance tumor response, and human dosimetry and therapeutic human use radiopharmaceuticals. Studies in phantoms includes a discussion of planar image quantitation, counts coincidence correction, organ studies, tumor studies, and {sup 90}Y quantitation with Bremsstrahlung imaging. The study on SPECT discusses attenuation correction and scatter correction. Preclinical studies investigated uptake of {sup 90}Y-BrE-3 in mice using autoradiography. Clinical studies discuss image quantitation verses counts from biopsy samples, S factors for radiation dose calculation, {sup 67}Cu imaging studies for lymphoma cancer, and {sup 111}In MoAb imaging studies for breast cancer to predict {sup 90}Y MoAb therapy.

  16. Physics Meets Biology (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Chu, Steve [Director, LBNL

    2011-04-28

    Summer Lecture Series 2006: If scientists could take advantage of the awesomely complex and beautiful functioning of biologys natural molecular machines, their potential for application in many disciplines would be incalculable. Nobel Laureate and Director of the Lawrence Berkeley National Laboratory Steve Chu explores Possible solutions to global warming and its consequences.

  17. Molecular fountain.

    SciTech Connect (OSTI)

    Strecker, Kevin E.; Chandler, David W.

    2009-09-01

    A molecular fountain directs slowly moving molecules against gravity to further slow them to translational energies that they can be trapped and studied. If the molecules are initially slow enough they will return some time later to the position from which they were launched. Because this round trip time can be on the order of a second a single molecule can be observed for times sufficient to perform Hz level spectroscopy. The goal of this LDRD proposal was to construct a novel Molecular Fountain apparatus capable of producing dilute samples of molecules at near zero temperatures in well-defined user-selectable, quantum states. The slowly moving molecules used in this research are produced by the previously developed Kinematic Cooling technique, which uses a crossed atomic and molecular beam apparatus to generate single rotational level molecular samples moving slowly in the laboratory reference frame. The Kinematic Cooling technique produces cold molecules from a supersonic molecular beam via single collisions with a supersonic atomic beam. A single collision of an atom with a molecule occurring at the correct energy and relative velocity can cause a small fraction of the molecules to move very slowly vertically against gravity in the laboratory. These slowly moving molecules are captured by an electrostatic hexapole guiding field that both orients and focuses the molecules. The molecules are focused into the ionization region of a time-of-flight mass spectrometer and are ionized by laser radiation. The new molecular fountain apparatus was built utilizing a new design for molecular beam apparatus that has allowed us to miniaturize the apparatus. This new design minimizes the volumes and surface area of the machine allowing smaller pumps to maintain the necessary background pressures needed for these experiments.

  18. Environmental Molecular Sciences Laboratory (EMSL) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Environmental Molecular Sciences Laboratory (EMSL) Biological and Environmental Research (BER) BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement Climate Research Facility (ARM) Environmental Molecular Sciences Laboratory (EMSL) Joint Genome Institute (JGI) Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and

  19. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agenda March 24, 2016 Lawrence Berkeley National Laboratory Building 50 Auditorium Registration: Free Registration 8:30 am - 9:00 am The Molecular Foundry's History and Impact 9:00 am - 10:30 am Jeff Neaton, Molecular Foundry Paul Alivisatos, Berkeley Lab/UC Berkeley Michael Witherell, Berkeley Lab Brian Schowengerdt, Magic Leap Pat Dehmer, DOE Office of Science Representative Mike Honda (D-CA) Break 10:30 am - 11:00 am Session 1 11:00 am - 12:00 pm Moderated by David Prendergast, Andy Minor Jim

  20. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See the Foundry's full equipment list Research Themes Discovering the Future, Atom by Atom The six-story, 94,000 square-foot Molecular Foundry building at LBNL overlooks the UC Berkeley campus and, from a distance, the San Francisco Bay. Directly adjacent to the Foundry is the NCEM complex that was established in 1983 to maintain a forefront research center for electron microscopy with state-of-the-art instrumentation and expertise. Merged with the Molecular Foundry in 2014 to take advantage of

  1. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meg Holm Meg Senior Administrator mcholm@lbl.gov 510.486.5135 Biography Meg is the Molecular Foundry's Senior Administrator. In this role, she supervises the Foundry budget administrator, three facility support staff, and two matrixed IT support staff. As part of the management and operations team, she provides operational management, budget, strategy and policy support to the Foundry Director

  2. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See the Foundry's full equipment list Biological Nanostructures Capabilities & Tools Instrument Scheduler Major Capabilities: Instruments and Labs AAPPTec Apex 396 Peptide Synthesizer The Aapptec is a robotic multiple peptide synthesizer, capable of synthesizing up to 40 peptides and or peptoids in parallel via solid-phase synthesis. Jobin Yvon Fluoromax Fluorometer The fluorometer is a quality spectrophotometer used to characterize the fluorescent properties of

  3. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bruce Cohen Cohen Staff Scientist, Biological Nanostructures becohen@lbl.gov 510.486.6640 personal website Biography Dr. Cohen was a postdoctoral fellow with Lily Y. Jan at the Howard Hughes Medical Institute and Department of Physiology at the University of California San Francisco. He received his Ph.D. from the Department of Chemistry at the University of California Berkeley and his A.B. from Princeton University's Department of Chemistry, where he graduated cum laude. Research Interests

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marissa Libbee Scientific Engineering Associate, NCEM mlibbee@lbl.gov 510.495.2308 Biography Marissa Libbee transitioned from the liberal arts world in 2005 and spent the next two years at the Center for Mathematics and Applied Sciences at San Joaquin Delta College where she completed her studies on electron microscopy with an emphasis on crystalline materials and biological ultra-structure. Before joining NCEM, Marissa worked for IBM Almaden on multi-layer magnetic thin films, for SanDisk with

  5. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ron Zuckermann Ron Zuckermann Facility Director, Biological Nanostructures User Program Senior Advisor rnzuckermann@lbl.gov 510.486.7091 personal website Biography Education Ph.D. Chemistry, UC Berkeley, 1989. Advisor: Prof. Peter Schultz B.S. Chemistry, Harvey Mudd College, 1984 Past professional positions 2003 - 2005 Research Fellow, Chiron Corp. 1996 - 2003 Director of Bioorganic Chemistry, Chiron Corp. 1993 - 1996 Associate Director, Bioorganic Chemistry, Chiron Corp. 1991 - 1993 Sr.

  6. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEMINARS ARCHIVE The Molecular Foundry regularly offers seminars and events that feature compelling research and information for those who investigate at the nanoscale. Seminars occur on Tuesdays at 11:00 am, in Building 67, Room 3111 unless otherwise noted. < seminars and events Tuesday, March 8, 2016 at 11am Utilizing Inelastically Scattered Electrons in the Transmission Electron Microscope Christian Dwyer, Arizona State University [MORE] Tuesday, March 1, 2016 at 11am Noncovalent Binding

  7. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See the Foundry's full equipment list Nanofabrication Capabilities & Tools Instrument Scheduler Major Capabilities: Instruments and Labs Zeiss Crossbeam 1540 EsB The Molecular Foundry Zeiss Cross-beam is one of the most versatile lithographic and inspection tools allowing fabrication of complex prototypes for nanoelectronics, nano-optical antenna, modifying scanning probe tips, rapid electrical contacting and many other applications. The 1500XB Cross Beam combines the Gemini field emission

  8. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Branden Brough Branden Director of Strategy and External Relations bbrough@lbl.gov 510.486.4206 Biography Branden Brough is the Molecular Foundry's Director of Strategy and External Relations. In this role, Dr. Brough is responsible for the organization's strategic planning and management. He also facilitates internal and external communications to promote the Foundry's mission and showcase its accomplishments to the DOE, the nanoscience research community and the public. Before joining the

  9. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    David Prendergast David Prendergast Director, Theory of Nanostructured Materials dgprendergast@lbl.gov 510.486.4948 personal website Biography Education 2002 Ph.D., Physics, University College Cork, Ireland 1999 B.Sc., Physics and Mathematics, University College Cork, Ireland Research Interests My research focuses on employing and developing first-principles electronic structure theory and molecular dynamics simulations on high-performance computing infrastructure to reveal energy relevant

  10. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dmitry Soustin dmitry User Program Administrator dsoustin@lbl.gov 510.486.7687 Biography Dmitry Soustin is the Molecular Foundry's User Program Administrator. In this role, Dmitry manages proposals throughout the processes of submission, review, and execution, and is a resource for proposal administration, user on-boarding, user agreements, coordinating user access and reporting publications. He also assists with event planning and coordination, including meetings of the Proposal Review Board

  11. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emory Chan Brand Staff Scientist, Inorganic Nanostructures EMChan@lbl.gov 510.486.7874 personal website Biography Education Postdoctoral fellow, Molecular Foundry with Dr. Delia Milliron Ph. D., Chemistry, UC Berkeley with Prof. Paul Alivisatos and Prof. Richard Mathies, B. S., Chemistry, Stanford University with Prof. Hongjie Dai Expertise Dr. Chan's expertise lies in the combinatorial and high-throughput synthesis of colloidal inorganic nanoparticles. As part of the Foundry's Combinatorial

  12. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tracy Mattox TMMattox Senior Scientific Engineering Associate, Inorganic Nanostructures TMMattox@lbl.gov 510.495.2649 Biography Education M.S. in Chemistry, Miami University, 2006 B.S. in Chemistry, University of Portland, 2003 Tracy Mattox has been a member of the Inorganic Facility at the Molecular Foundry as a Scientific Engineering Associate since 2007. Expertise Tracy's main focus is assisting users with their research projects (helping design reactions and analyze results). She is well

  13. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Guide Download the complete Users' Guide (PDF) Submit a Proposal Learn about the Molecular Foundry and its user program Explore Foundry capabilities and plan your proposal Prepare responses to proposal questions Create and submit your proposal through the online proposal portal After your proposal is approved* Complete secondary safety screening Become a badged LBNL "affiliate" Contact your assigned Foundry scientist When you arrive* Go to your appointment with the Affiliate

  14. molecular foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    molecular foundry - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  15. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Dinner On March 24, 2016, the Molecular Foundry will be celebrating the 10th anniversary of the dedication of it's iconic building with a full day scientific symposium and dinner event. This celebration will recognize the Foundry's major scientific and operational milestones and look forward to the promising future of nanoscience. Leaders from Congress, DOE, academia, industry, and Berkeley Lab will join prominent Foundry users and staff, both past and present, to participate in this

  16. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    One of the World's Premier Nanoscience Research Institutions Supported by the Department of Energy Office of Basic Energy Sciences (BES) through their Nanoscale Science Research Center (NSRC) program, the Molecular Foundry is a national User Facility for nanoscale science serving hundreds of academic, industrial and government scientists around the world each year. Users come to the Foundry to perform multidisciplinary research beyond the scope of an individual's own laboratory. By taking

  17. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Molecular Foundry Lawrence Berkeley National Laboratory One Cyclotron Road Building 67 Berkeley, CA 94720 Berkeley Lab Visitor Information Berkeley Lab Interactive Map View Larger Map Foundry Staff FOUNDRY ADMINISTRATION Director Jeff Neaton email 510.486.4527 Director of Strategy and External Relations Branden Brough email 510.486.4206 Senior Administrator Meg Holm email 510.486.5135 User Program Director Alison Hatt email 510.486.7154 User Program Administrator Dmitry Soustin email

  18. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory of Nanostructured Materials The Theory of Nanostructured Materials Facility at the Molecular Foundry is focused on expanding our understanding of materials at the nanoscale. Our research connects the structural and dynamical properties of materials to their functions, such as electrical conductivity and storage, light-harvesting for electricity and fuel, or gas separation and sequestration. We develop and employ a broad range of tools, including advanced electronic-structure theory,

  19. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWS New Form of Electron-beam Imaging Can See Elements that are 'Invisible' to Common Methods Molecular Foundry-pioneered 'MIDI-STEM' produces high-resolution views of lightweight atoms [MORE] Foundry Users Developing Paint-on Coating for Energy Efficient Windows Low-cost coating is based on brush block copolymers that rapidly self-assemble to photonics crystals and could disrupt the building retrofit market and potentially save billions in electricity. [MORE] Modernizing a Technology From the

  20. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    POLICIES AND DEFINITIONS PROPOSAL GUIDE USER GUIDE USER PROGRAM SUBMIT A PROPOSAL » Reviewer Login » Proposal Deadline March 31, 2016 Instrument Scheduler Nanofabrication Instrument Scheduler User Program The Molecular Foundry user program gives researchers access to expertise and equipment for cutting-edge nanoscience in a collaborative, multidisciplinary environment. The program is open to scientists from academia, industry, and research institutes worldwide. These users join a vibrant

  1. Biology and Medicine Division: Annual report 1986

    SciTech Connect (OSTI)

    Not Available

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

  2. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Nanostructures Staff Ron Zuckerman Ron Zuckermann Facility Director rnzuckermann@lbl.gov 510.486.7091 Caroline Ajo-Franklin Caroline Ajo-Franklin Staff Scientist cajo-franklin@lbl.gov 510.486.4299 Bruce Cohen Bruce Cohen Staff Scientist becohen@lbl.gov 510.486.6640 Connolly Michael Connolly Principal Scientific Engineering Associate mdconnolly@lbl.gov 510.486.6388 Rad Behzad Rad Senior Scientific Engineering Associate brad@lbl.gov 510.486.5795 Rita Rita Garcia Principal Research

  3. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brett A. Helms Helms Staff Scientist, Organic and Macromolecular Synthesis bahelms@lbl.gov 510.486.7729 personal website Biography Brett A. Helms received his B.S. (2000) from Harvey Mudd College and his Ph.D. (2006) with Jean M. J. Fréchet at the University of California, Berkeley. He joined the staff of the Molecular Foundry in 2007, after postdoctoral research at the Technische Universiteit Eindhoven with E. W. (Bert) Meijer. His research interests include structure of and reactivity at

  4. Molecular Foundry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gil Torres Gil Torres gjtorres@lbl.gov 510.486.4395 Biography Gil is the Building Manager for MSD in buildings 62, 66, 2, 30, JCAP and the Molecular Foundry. Gil supports Foundry operations through a broad range of responsibilities including space management/maintenance and modification of the building and lab equipment, both institutional and programatic. Gil also serves as the Building Emergency Team lead. Gil came to the Lab in 2006 after a twenty-eight year career in the specialty gases and

  5. Biological tracer method

    DOE Patents [OSTI]

    Strong-Gunderson, Janet M. (Ten Mile, TN); Palumbo, Anthony V. (Oak Ridge, TN)

    1998-01-01

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer.

  6. Biological tracer method

    DOE Patents [OSTI]

    Strong-Gunderson, J.M.; Palumbo, A.V.

    1998-09-15

    The present invention is a biological tracer method for characterizing the movement of a material through a medium, comprising the steps of: introducing a biological tracer comprising a microorganism having ice nucleating activity into a medium; collecting at least one sample of the medium from a point removed from the introduction point; and analyzing the sample for the presence of the biological tracer. The present invention is also a method for using a biological tracer as a label for material identification by introducing a biological tracer having ice nucleating activity into a material, collecting a sample of a portion of the labelled material and analyzing the sample for the presence of the biological tracer. 2 figs.

  7. Biological detector and method

    DOE Patents [OSTI]

    Sillerud, Laurel; Alam, Todd M.; McDowell, Andrew F.

    2015-11-24

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  8. Biological detector and method

    DOE Patents [OSTI]

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2014-04-15

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  9. Genomics and Systems Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genomics and Systems Biology LANL leads the world in computational finishing of microbial genomes Read caption + In 2013, Los Alamos scientist Richard Sayre and his team genetically modified the organisms to harvest light more efficiently for maximum production. Overview of Research and Highlights Researchers at Los Alamos National Laboratory are using their renowned expertise in genomics, computation, and experimental biology as the foundation of a dynamic systems biology capability. Systems

  10. Biological detector and method

    DOE Patents [OSTI]

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  11. Genomics and Systems Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genomics and Systems Biology Genomics and Systems Biology Los Alamos scientists perform research in functional genomics and structural genomics, and applications for such work cover diverse fields such as energy, agriculture, and environmental cleanup. Contact Us Babetta Marrone Biofuels Program Manager Email Cheryl Kuske DOE BER Biological System Science Division Program Manager Email Kirsten McCabe Emerging Threats Program Manager Email Rebecca McDonald Bioscience Communications Email "We

  12. The Intersection of Physics and Biology

    ScienceCinema (OSTI)

    Liphardt, Jan [University of California, Berkeley, California, United States

    2010-09-01

    In April 1953, Watson and Crick largely defined the program of 20th century biology: obtaining the blueprint of life encoded in the DNA. Fifty years later, in 2003, the sequencing of the human genome was completed. Like any major scientific breakthrough, the sequencing of the human genome raised many more questions than it answered. I'll brief you on some of the big open problems in cell and developmental biology, and I'll explain why approaches, tools, and ideas from the physical sciences are currently reshaping biological research. Super-resolution light microscopies are revealing the intricate spatial organization of cells, single-molecule methods show how molecular machines function, and new probes are clarifying the role of mechanical forces in cell and tissue function. At the same time, Physics stands to gain beautiful new problems in soft condensed matter, quantum mechanics, and non-equilibrium thermodynamics.

  13. Integrated Biological Control

    SciTech Connect (OSTI)

    JOHNSON, A.R.

    2002-09-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  14. Integrated Biological Control

    SciTech Connect (OSTI)

    JOHNSON, A.R.

    2003-10-09

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects, and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (a priori) or in response to existing contamination spread (a posteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and a priori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, a posteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response.

  15. Biological sample collector

    DOE Patents [OSTI]

    Murphy, Gloria A.

    2010-09-07

    A biological sample collector is adapted to a collect several biological samples in a plurality of filter wells. A biological sample collector may comprise a manifold plate for mounting a filter plate thereon, the filter plate having a plurality of filter wells therein; a hollow slider for engaging and positioning a tube that slides therethrough; and a slide case within which the hollow slider travels to allow the tube to be aligned with a selected filter well of the plurality of filter wells, wherein when the tube is aligned with the selected filter well, the tube is pushed through the hollow slider and into the selected filter well to sealingly engage the selected filter well and to allow the tube to deposit a biological sample onto a filter in the bottom of the selected filter well. The biological sample collector may be portable.

  16. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  17. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal process or may be completed as an independent document. In the ESS, identify each material (including all biological materials) with which you will be working. The regulatory oversight for biological work is very complicated and we need to understand the risk levels involved with the material you plan to use at the ALS,

  18. Institute for Molecular Medicine Research Program

    SciTech Connect (OSTI)

    Phelps, Michael E

    2012-12-14

    The objectives of the project are the development of new Positron Emission Tomography (PET) imaging instrumentation, chemistry technology platforms and new molecular imaging probes to examine the transformations from normal cellular and biological processes to those of disease in pre-clinical animal models. These technology platforms and imaging probes provide the means to: 1. Study the biology of disease using pre-clinical mouse models and cells. 2. Develop molecular imaging probes for imaging assays of proteins in pre-clinical models. 3. Develop imaging assays in pre-clinical models to provide to other scientists the means to guide and improve the processes for discovering new drugs. 4. Develop imaging assays in pre-clinical models for others to use in judging the impact of drugs on the biology of disease.

  19. Computational Biology: A Recipe for Ligand-Binding Proteins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Biology: A Recipe for Ligand-Binding Proteins Authors: Ghirlanda, G. Title: Computational Biology: A Recipe for Ligand-Binding Proteins Source: Nature Year: 2013 Volume: 501 Pages: 177-178 ABSTRACT: Cellular cross-talk, enzymatic catalysis and regulation of gene expression all depend on molecular recognition. A method that allows the design of proteins with desired recognition sites could thus be revolutionary Date of online publication: Thu, 2013-09-12 Link online:

  20. Biological Hydrogen Production Workshop

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biological Hydrogen Production Workshop on September 24–25, 2013, in Golden, Colorado. The workshop...

  1. Work with Biological Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Work with Biological Materials Print Planning A complete Experiment Safety Sheet (ESS) is required before work can be done at the ALS. This ESS is either a part of the proposal...

  2. Biological and Environmental Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological and Environmental Research Biological and Environmental Research Understanding how genomic information is translated to functional capabilities, and the roles of Earth's biogeochemical systems so we can predict climate decades or centuries into the future. Get Expertise Cheryl Kuske (505) 665-4800 Email James Bossert (505) 667-3644 Email Manvendra Dubey (505) 665-3128 Email Kim Nitschke (505) 667-1186 Email Phil Jones (505) 667-6387 Email Cathy Wilson (505) 667-0202 Email Conducting

  3. Biological Effects of Ionizing Radiation

    DOE R&D Accomplishments [OSTI]

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  4. Green Biologics | Open Energy Information

    Open Energy Info (EERE)

    Biologics Jump to: navigation, search Name: Green Biologics Place: Oxfordshire, United Kingdom Sector: Biomass, Renewable Energy Product: Oxfordshire-based industrial biotech...

  5. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    SciTech Connect (OSTI)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  6. Biological Safety | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Safety Biological Safety The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions

  7. Biological particle identification apparatus

    DOE Patents [OSTI]

    Salzman, Gary C. (Los Alamos, NM); Gregg, Charles T. (Los Alamos, NM); Grace, W. Kevin (Los Alamos, NM); Hiebert, Richard D. (Los Alamos, NM)

    1989-01-01

    An apparatus and method for making multiparameter light scattering measurements from suspensions of biological particles is described. Fourteen of the sixteen Mueller matrix elements describing the particles under investigation can be substantially individually determined as a function of scattering angle and probing radiations wavelength, eight elements simultaneously for each of two apparatus configurations using an apparatus which incluees, in its simplest form, two polarization modulators each operating at a chosen frequency, one polarizer, a source of monochromatic electromagnetic radiation, a detector sensitive to the wavelength of radiation employed, eight phase-sensitive detectors, and appropriate electronics. A database of known biological particle suspensions can be assembled, and unknown samples can be quickly identified once measurements are performed on it according to the teachings of the subject invention, and a comparison is made with the database.

  8. Report of The Structural Biology Subcommittee of The Biological and

    Office of Science (SC) Website

    Environmental Research Advisory Committee | U.S. DOE Office of Science (SC) Report of The Structural Biology Subcommittee of The Biological and Environmental Research Advisory Committee Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings Members Charges/Reports Current BERAC Charges Archive of BERAC Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Charges/Reports Report of The Structural Biology Subcommittee of

  9. Report of the Structural Biology Subcommittee of the Biological and

    Office of Science (SC) Website

    Environmental Research Advisory Committee | U.S. DOE Office of Science (SC) Report of the Structural Biology Subcommittee of the Biological and Environmental Research Advisory Committee Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings Members Charges/Reports Current BERAC Charges Archive of BERAC Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Charges/Reports Report of the Structural Biology Subcommittee of

  10. Biological Applications of Synchrotron Radiation:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Applications of Synchrotron Radiation: An Evaluation of the State of the Field in 2002 A BioSync Report. Issued by the Structural Biology Synchrotron users Organization, October, 2002. 2 Table of Contents: Introduction .................................................................................................... 3 Abbreviations .................................................................................................. 5 Executive Summary

  11. Abengoa Mojave Final Biological Opinion

    Broader source: Energy.gov [DOE]

    Biological Opinion on Mojave Solar, LLC's Mojave Solar Project, San Bernardino County, California (8-8-11-F-3)

  12. Method and apparatus for the gas phase decontamination of chemical and biological agents

    DOE Patents [OSTI]

    O'Neill, Hugh J.; Brubaker, Kenneth L.

    2003-10-07

    An apparatus and method for decontaminating chemical and biological agents using the reactive properties of both the single atomic oxygen and the hydroxyl radical for the decontamination of chemical and biological agents. The apparatus is self contained and portable and allows for the application of gas reactants directly at the required decontamination point. The system provides for the use of ultraviolet light of a specific spectral range to photolytically break down ozone into molecular oxygen and hydroxyl radicals where some of the molecular oxygen is in the first excited state. The excited molecular oxygen will combine with water vapor to produce two hydroxyl radicals.

  13. Elements in biological AMS

    SciTech Connect (OSTI)

    Vogel, J.S.; McAninch, J.; Freeman, S.

    1996-08-01

    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. {sup 14}C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth`s biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed.

  14. Energy Landscapes: From Protein Folding to Molecular Assembly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    36th Annual Conference Energy Landscapes: From Protein Folding to Molecular Assembly WHEN: May 09, 2016 8:00 AM - May 12, 2016 5:00 PM WHERE: Hilton Santa Fe Historic Plaza Santa Fe, NM CONTACT: Angel Garcia (505) 665-3883 CATEGORY: Community Science TYPE: Conference INTERNAL: Calendar Login Event Description Nanoscale molecular assembly is very common in biology and in nanotechnology. Simple examples of self-assembly are the folding of proteins from a disorder polymer, the assembly of lipid

  15. Biological Conversion of Sugars To Hydrocarbons | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To Hydrocarbons Biological Conversion of Sugars To Hydrocarbons PDF explaining the biological process of bioenergy PDF icon Biological Conversion of Sugars To Hydrocarbons More...

  16. Plant Vascular Biology 2010

    SciTech Connect (OSTI)

    Ding, Biao

    2014-11-17

    This grant supported the Second International Conference on Plant Vascular Biology (PVB 2010) held July 24-28, 2010 on the campus of Ohio State University, Columbus, Ohio. Biao Ding (Ohio State University; OSU) and David Hannapel (Iowa State University; ISU) served as co-chairs of this conference. Biao Ding served as the local organizer. PVB is defined broadly here to include studies on the biogenesis, structure and function of transport systems in plants, under conditions of normal plant growth and development as well as of plant interactions with pathogens. The transport systems cover broadly the xylem, phloem, plasmodesmata and vascular cell membranes. The PVB concept has emerged in recent years to emphasize the integrative nature of the transport systems and approaches to investigate them.

  17. Environmental Molecular Sciences Laboratory 2004 Annual Report

    SciTech Connect (OSTI)

    White, Julia C.

    2005-04-17

    This 2004 Annual Report describes the research and accomplishments of staff and users of the W.R. Wiley Environmental Molecular Sciences Laboratory (EMSL), located in Richland, Washington. EMSL is a multidisciplinary, national scientific user facility and research organization, operated by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy's Office of Biological and Environmental Research. The resources and opportunities within the facility are an outgrowth of the U.S. Department of Energy's (DOE) commitment to fundamental research for understanding and resolving environmental and other critical scientific issues.

  18. ionic liquids biological-ly derived from lignin and hemicellulose

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biological-ly derived from lignin and hemicellulose - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  19. THE DARK MOLECULAR GAS

    SciTech Connect (OSTI)

    Wolfire, Mark G.; Hollenbach, David; McKee, Christopher F. E-mail: dhollenbach@seti.or

    2010-06-20

    The mass of molecular gas in an interstellar cloud is often measured using line emission from low rotational levels of CO, which are sensitive to the CO mass, and then scaling to the assumed molecular hydrogen H{sub 2} mass. However, a significant H{sub 2} mass may lie outside the CO region, in the outer regions of the molecular cloud where the gas-phase carbon resides in C or C{sup +}. Here, H{sub 2} self-shields or is shielded by dust from UV photodissociation, whereas CO is photodissociated. This H{sub 2} gas is 'dark' in molecular transitions because of the absence of CO and other trace molecules, and because H{sub 2} emits so weakly at temperatures 10 K molecular component. This component has been indirectly observed through other tracers of mass such as gamma rays produced in cosmic-ray collisions with the gas and far-infrared/submillimeter wavelength dust continuum radiation. In this paper, we theoretically model this dark mass and find that the fraction of the molecular mass in this dark component is remarkably constant ({approx}0.3 for average visual extinction through the cloud A-bar{sub V{approx_equal}}8) and insensitive to the incident ultraviolet radiation field strength, the internal density distribution, and the mass of the molecular cloud as long as A-bar{sub V}, or equivalently, the product of the average hydrogen nucleus column and the metallicity through the cloud, is constant. We also find that the dark mass fraction increases with decreasing A-bar{sub V}, since relatively more molecular H{sub 2} material lies outside the CO region in this case.

  20. Optical Modulation of Molecular Conductance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transient absorption spectra of these molecular layers are consistent with formation of a long-lived charge separated state, a finding with implications for the design of molecular ...

  1. Michael Levitt and Computational Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Levitt and Computational Biology Resources with Additional Information * Publications Michael Levitt Courtesy of Linda A. Cicero / Stanford News Service Michael Levitt, PhD, professor of structural biology at the Stanford University School of Medicine, has won the 2013 Nobel Prize in Chemistry. ... Levitt ... shares the ... prize with Martin Karplus ... and Arieh Warshel ... "for the development of multiscale models for complex chemical systems." Levitt's work focuses on

  2. Biological Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Science Biological Science The protozoan Plasmodium falciparum gliding through a cell in the gut of a mosquito, its primary host. Although five different species of Plasmodium can cause malaria, Plasmodium falciparum causes the most severe disease. | Photo courtesy of Wikipedia Commons. <a href="http://energy.gov/articles/malaria-researchers-find-weakness-global-killer">Read more</a> The protozoan Plasmodium falciparum gliding through a cell in the gut of a

  3. Autofermentative Biological Hydrogen Production by Cyanobacteria...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Hydrogen Production by Cyanobacteria Presentation by Charles Dismukes, Rutgers University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at...

  4. Renewable Hydrogen Production from Biological Systems

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Production from Biological Systems Matthew Posewitz Colorado School of Mines DOE Biological Hydrogen Production Workshop September 24 th , 2013 H 2 production PSIIPSI...

  5. Experimental Data from the Proteomics Research Center for Integrative Biology

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Smith, Richard D.

    The possible roles and importance of proteomics are rapidly growing across essentially all areas of biological research. The precise and comprehensive measurement of levels of expressed proteins and their modified forms can provide new insights into the molecular nature of cell-signaling pathways and networks, the cell cycle, cellular differentiation, and other processes relevant to understanding human health and the progression of various disease states. The ability to characterize protein complexes complements this capability, allowing hypotheses to be tested and the biological system operation to be defined. The Proteomics Research Center for Integrative Biology is a national user facility established and funded by the National Institute of General Medical Sciences component of the National Institutes of Health. This Center has been established to serve the biomedical research community by developing and integrating new proteomic technologies for collaborative and service studies, disseminating the new technologies, and training scientists in their use. The Center is housed in DOEs William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory.

  6. Experimental Data from the Proteomics Research Center for Integrative Biology

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Smith, Richard D.

    The possible roles and importance of proteomics are rapidly growing across essentially all areas of biological research. The precise and comprehensive measurement of levels of expressed proteins and their modified forms can provide new insights into the molecular nature of cell-signaling pathways and networks, the cell cycle, cellular differentiation, and other processes relevant to understanding human health and the progression of various disease states. The ability to characterize protein complexes complements this capability, allowing hypotheses to be tested and the biological system operation to be defined. The Proteomics Research Center for Integrative Biology is a national user facility established and funded by the National Institute of General Medical Sciences component of the National Institutes of Health. This Center has been established to serve the biomedical research community by developing and integrating new proteomic technologies for collaborative and service studies, disseminating the new technologies, and training scientists in their use. The Center is housed in DOE’s William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at the Pacific Northwest National Laboratory.

  7. Substructured multibody molecular dynamics.

    SciTech Connect (OSTI)

    Grest, Gary Stephen; Stevens, Mark Jackson; Plimpton, Steven James; Woolf, Thomas B. (Johns Hopkins University, Baltimore, MD); Lehoucq, Richard B.; Crozier, Paul Stewart; Ismail, Ahmed E.; Mukherjee, Rudranarayan M. (Rensselaer Polytechnic Institute, Troy, NY); Draganescu, Andrei I.

    2006-11-01

    We have enhanced our parallel molecular dynamics (MD) simulation software LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator, lammps.sandia.gov) to include many new features for accelerated simulation including articulated rigid body dynamics via coupling to the Rensselaer Polytechnic Institute code POEMS (Parallelizable Open-source Efficient Multibody Software). We use new features of the LAMMPS software package to investigate rhodopsin photoisomerization, and water model surface tension and capillary waves at the vapor-liquid interface. Finally, we motivate the recipes of MD for practitioners and researchers in numerical analysis and computational mechanics.

  8. Molecular Foundry Bay Cam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baycam The Molecular Foundry is a Department of Energy-funded nanoscience research facility at Berkeley Lab that provides users from around the world with access to cutting-edge expertise and instrumentation in a collaborative, multidisciplinary environment. twitter instagram facebook

  9. Statistical Inference for Big Data Problems in Molecular Biophysics

    SciTech Connect (OSTI)

    Ramanathan, Arvind; Savol, Andrej; Burger, Virginia; Quinn, Shannon; Agarwal, Pratul K; Chennubhotla, Chakra

    2012-01-01

    We highlight the role of statistical inference techniques in providing biological insights from analyzing long time-scale molecular simulation data. Technologi- cal and algorithmic improvements in computation have brought molecular simu- lations to the forefront of techniques applied to investigating the basis of living systems. While these longer simulations, increasingly complex reaching petabyte scales presently, promise a detailed view into microscopic behavior, teasing out the important information has now become a true challenge on its own. Mining this data for important patterns is critical to automating therapeutic intervention discovery, improving protein design, and fundamentally understanding the mech- anistic basis of cellular homeostasis.

  10. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    SciTech Connect (OSTI)

    John R. Gallagher

    2001-07-31

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

  11. SC e-journals, Biology/Genetics

    Office of Scientific and Technical Information (OSTI)

    Biology/Genetics ACM Transactions on Applied Perception (TAP) ACS Chemical Biology ACS Synthetic Biology Acta Biotheoretica Acta Neuropathologica Advances in Bioinformatics - OAJ Advances in Health Sciences Education Agriculture and Human Values Agroforestry Systems American Journal of Agricultural and Biological Science - OAJ American Journal of Medical Genetics Amino Acids Analyst Analytical and Bioanalytical Chemistry Analytical Biochemistry Anatomical Record, The Anatomy and Embryology

  12. Towards a Semantic Lexicon for Biological Language Processing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Verspoor, Karin

    2005-01-01

    This paper explores the use of the resources in the National Library of Medicine's Unified Medical Language System (UMLS) for the construction of a lexicon useful for processing texts in the field of molecular biology. A lexicon is constructed from overlapping terms in the UMLS SPECIALIST lexicon and the UMLS Metathesaurus to obtain both morphosyntactic and semantic information for terms, and the coverage of a domain corpus is assessed. Over 77% of tokens in the domain corpus are found in the constructed lexicon, validating the lexicon's coverage of the most frequent terms in the domain and indicating that the constructedmore » lexicon is potentially an important resource for biological text processing.« less

  13. Biological responses to engineered nanomaterials: Needs for the next decade

    SciTech Connect (OSTI)

    Murphy, Catherine J.; Vartanian, Ariane M.; Geiger, Franz M.; Hamers, Robert J.; Pedersen, Joel A.; Cui, Qiang; Haynes, Christy L.; Carlson, Erin E.; Hernandez, Rigoberto; Klaper, Rebecca D.; Orr, Galya; Rosenzweig, Ze'ev

    2015-06-09

    In this study, the interaction of nanomaterials with biomolecules, cells, and organisms is an enormously vital area of current research, with applications in nanoenabled diagnostics, imaging agents, therapeutics, and contaminant removal technologies. Yet the potential for adverse biological and environmental impacts of nanomaterial exposure is considerable and needs to be addressed to ensure sustainable development of nanomaterials. In this Outlook four research needs for the next decade are outlined: (i) measurement of the chemical nature of nanomaterials in dynamic, complex aqueous environments; (ii) real-time measurements of nanomaterial-biological interactions with chemical specificity; (iii) delineation of molecular modes of action for nanomaterial effects on living systems as functions of nanomaterial properties; and (iv) an integrated systems approach that includes computation and simulation across orders of magnitude in time and space.

  14. Biological responses to engineered nanomaterials: Needs for the next decade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Murphy, Catherine J.; Vartanian, Ariane M.; Geiger, Franz M.; Hamers, Robert J.; Pedersen, Joel A.; Cui, Qiang; Haynes, Christy L.; Carlson, Erin E.; Hernandez, Rigoberto; Klaper, Rebecca D.; et al

    2015-06-09

    In this study, the interaction of nanomaterials with biomolecules, cells, and organisms is an enormously vital area of current research, with applications in nanoenabled diagnostics, imaging agents, therapeutics, and contaminant removal technologies. Yet the potential for adverse biological and environmental impacts of nanomaterial exposure is considerable and needs to be addressed to ensure sustainable development of nanomaterials. In this Outlook four research needs for the next decade are outlined: (i) measurement of the chemical nature of nanomaterials in dynamic, complex aqueous environments; (ii) real-time measurements of nanomaterial-biological interactions with chemical specificity; (iii) delineation of molecular modes of action for nanomaterialmore » effects on living systems as functions of nanomaterial properties; and (iv) an integrated systems approach that includes computation and simulation across orders of magnitude in time and space.« less

  15. Method and apparatus to image biological interactions in plants

    DOE Patents [OSTI]

    Weisenberger, Andrew; Bonito, Gregory M.; Reid, Chantal D.; Smith, Mark Frederick

    2015-12-22

    A method to dynamically image the actual translocation of molecular compounds of interest in a plant root, root system, and rhizosphere without disturbing the root or the soil. The technique makes use of radioactive isotopes as tracers to label molecules of interest and to image their distribution in the plant and/or soil. The method allows for the study and imaging of various biological and biochemical interactions in the rhizosphere of a plant, including, but not limited to, mycorrhizal associations in such regions.

  16. Molecular-beam scattering

    SciTech Connect (OSTI)

    Vernon, M.F.

    1983-07-01

    The molecular-beam technique has been used in three different experimental arrangements to study a wide range of inter-atomic and molecular forces. Chapter 1 reports results of a low-energy (0.2 kcal/mole) elastic-scattering study of the He-Ar pair potential. The purpose of the study was to accurately characterize the shape of the potential in the well region, by scattering slow He atoms produced by expanding a mixture of He in N/sub 2/ from a cooled nozzle. Chapter 2 contains measurements of the vibrational predissociation spectra and product translational energy for clusters of water, benzene, and ammonia. The experiments show that most of the product energy remains in the internal molecular motions. Chapter 3 presents measurements of the reaction Na + HCl ..-->.. NaCl + H at collision energies of 5.38 and 19.4 kcal/mole. This is the first study to resolve both scattering angle and velocity for the reaction of a short lived (16 nsec) electronic excited state. Descriptions are given of computer programs written to analyze molecular-beam expansions to extract information characterizing their velocity distributions, and to calculate accurate laboratory elastic-scattering differential cross sections accounting for the finite apparatus resolution. Experimental results which attempted to determine the efficiency of optically pumping the Li(2/sup 2/P/sub 3/2/) and Na(3/sup 2/P/sub 3/2/) excited states are given. A simple three-level model for predicting the steady-state fraction of atoms in the excited state is included.

  17. A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm

    SciTech Connect (OSTI)

    Aderem, Alan; Adkins, Joshua N.; Ansong, Charles; Galagan, James; Kaiser, Shari; Korth, Marcus J.; Law, G. L.; McDermott, Jason E.; Proll, Sean; Rosenberger, Carrie; Schoolnik, Gary; Katze, Michael G.

    2011-02-01

    The 20th century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and water borne illnesses are frequent, multi-drug resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the pastincluding the intense focus on individual genes and proteins typical of molecular biologyhave not been sufficient to address these challenges. The first decade of the 21st century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondingly deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program we think that the time is at hand to redefine the pathogen-host research paradigm.

  18. Autofermentative Biological Hydrogen Production by Cyanobacteria |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Autofermentative Biological Hydrogen Production by Cyanobacteria Autofermentative Biological Hydrogen Production by Cyanobacteria Presentation by Charles Dismukes, Rutgers University, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. PDF icon bio_h2_workshop_dismukes.pdf More Documents & Publications 2013 Biological Hydrogen Production Workshop Summary Report Renewable Hydrogen

  19. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect (OSTI)

    Pan, Jianjun [University of South Florida, Tampa (USF)] [University of South Florida, Tampa (USF); Cheng, Xiaolin [ORNL] [ORNL; Monticelli, Luca [Institut National de la Sant et de la Recherche Mdicale (INSERM) and INTS, France] [Institut National de la Sant et de la Recherche Mdicale (INSERM) and INTS, France; Heberle, Frederick A [ORNL] [ORNL; Kucerka, Norbert [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,] [Atomic Energy of Canada Limited (AECL), Canadian Neutron Beam Centre (CNBC) and Comenius University,; Tieleman, D. Peter [University of Calgary, ALberta, Canada] [University of Calgary, ALberta, Canada; Katsaras, John [ORNL] [ORNL

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  20. Semiconductor Nanocrystals for Biological Imaging

    SciTech Connect (OSTI)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  1. Assessment of Molecular Modeling & Simulation

    SciTech Connect (OSTI)

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  2. The 2011 Dynamics of Molecular Collisions Conference

    SciTech Connect (OSTI)

    Nesbitt, David J.

    2011-07-11

    The Dynamics of Molecular Collisions Conference focuses on all aspects of molecular collisions--experimental & theoretical studies of elastic, inelastic, & reactive encounters involving atoms, molecules, ions, clusters, & surfaces--as well as half collisions--photodissociation, photo-induced reaction, & photodesorption. The scientific program for the meeting in 2011 included exciting advances in both the core & multidisciplinary forefronts of the study of molecular collision processes. Following the format of the 2009 meeting, we also invited sessions in special topics that involve interfacial dynamics, novel emerging spectroscopies, chemical dynamics in atmospheric, combustion & interstellar environments, as well as a session devoted to theoretical & experimental advances in ultracold molecular samples. Researchers working inside & outside the traditional core topics of the meeting are encouraged to join the conference. We invite contributions of work that seeks understanding of how inter & intra-molecular forces determine the dynamics of the phenomena under study. In addition to invited oral sessions & contributed poster sessions, the scientific program included a formal session consisting of five contributed talks selected from the submitted poster abstracts. The DMC has distinguished itself by having the Herschbach Medal Symposium as part of the meeting format. This tradition of the Herschbach Medal was first started in the 2007 meeting chaired by David Chandler, based on a generous donation of funds & artwork design by Professor Dudley Herschbach himself. There are two such awards made, one for experimental & one for theoretical contributions to the field of Molecular Collision Dynamics, broadly defined. The symposium is always held on the last night of the meeting & has the awardees are asked to deliver an invited lecture on their work. The 2011 Herschbach Medal was dedicated to the contributions of two long standing leaders in Chemical Physics, Professor Yuan T. Lee & Professor George Schatz. Professor Lees research has been based on the development & use of advanced chemical kinetics & molecular beams to investigate & manipulate the behavior of fundamental chemical reactions. Lees work has been recognized by many awards, including the Nobel Prize for Chemistry in 1986, as well as Sloan Fellow, Dreyfus Scholar, Fellowship in the American Academy of Arts & Sciences, Fellowship in the American Physical Society, Guggenheim Fellow, Member National Academy of Sciences, Member Academia Sinica, E.O. Lawrence Award, Miller Professor, Berkeley, Fairchild Distinguished Scholar, Harrison Howe Award, Peter Debye Award, & the National Medal of Science. Lee also has served as the President of the Academia Sinica in Taiwan (ROC). Professor Schatzs research group is interested in using theory & computation to describe physical phenomena in a broad range of applications relevant to chemistry, physics, biology & engineering. Among the types of applications that we interested are: optical properties of nanoparticles & nanoparticle assemblies; using theory to model polymer properties; DNA structure, thermodynamics & dynamics; modeling self assembly & nanopatterning; & gas phase reaction dynamics. Among his many awards & distinctions have been appointment as an Alfred P. Sloan Research Fellow, Camille & Henry Dreyfus Teacher-Scholar, the Fresenius Award, Fellow of the American Physical Society, the Max Planck Research Award, Fellowship in the American Association for the Advancement of Science, & election to the International Academy of Quantum Molecular Sciences & the American Academy of Arts & Sciences. Dr Schatz is also lauded for his highly successful work as Editor for the Journal of Physical Chemistry. We requested $10,000 from DOE in support of this meeting. The money was distributed widely among the student & post doctoral fellows & some used to attract the very best scientists in the field. The organizers were committed to encouraging women & minorities as well as encourage the field of Chemical Physics in scientific

  3. Lubricant characterization by molecular simulation

    SciTech Connect (OSTI)

    Moore, J.D.; Cui, S.T.; Cummings, P.T.; Cochran, H.D.

    1997-12-01

    The authors have reported the calculation of the kinematic viscosity index of squalane from nonequilibrium molecular dynamics simulations. This represents the first accurate quantitative prediction of this measure of lubricant performance by molecular simulation. Using the same general alkane potential model, this computational approach offers the possibility of predicting the performance of potential lubricants prior to synthesis. Consequently, molecular simulation is poised to become an important tool for future lubricant development.

  4. Electron Trapping by Molecular Vibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Trapping by Molecular Vibration Electron Trapping by Molecular Vibration Print Wednesday, 27 April 2005 00:00 In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can

  5. Rapid classification of biological components

    DOE Patents [OSTI]

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.

    2006-01-24

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine, methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to the surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to the subject's identity.

  6. Rapid classification of biological components

    DOE Patents [OSTI]

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.

    2010-03-23

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, Cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens of the surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.

  7. Rapid classification of biological components

    DOE Patents [OSTI]

    Thompson, Vicki S.; Barrett, Karen B.; Key, Diane E.

    2010-03-23

    A method is disclosed for analyzing a biological sample by antibody profiling for identifying forensic samples or for detecting the presence of an analyte. In an illustrative embodiment of the invention, the analyte is a drug, such as marijuana, cocaine (crystalline tropane alkaloid), methamphetamine, methyltestosterone, or mesterolone. The method involves attaching antigens to a surface of a solid support in a preselected pattern to form an array wherein the locations of the antigens are known; contacting the array with the biological sample such that a portion of antibodies in the sample reacts with and binds to antigens in the array, thereby forming immune complexes; washing away antibodies that do not form immune complexes; and detecting the immune complexes, thereby forming an antibody profile. Forensic samples are identified by comparing a sample from an unknown source with a sample from a known source. Further, an assay, such as a test for illegal drug use, can be coupled to a test for identity such that the results of the assay can be positively correlated to a subject's identity.

  8. Electron Trapping by Molecular Vibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally...

  9. Interface-assisted molecular spintronics

    SciTech Connect (OSTI)

    Raman, Karthik V.

    2014-09-15

    Molecular spintronics, a field that utilizes the spin state of organic molecules to develop magneto-electronic devices, has shown an enormous scientific activity for more than a decade. But, in the last couple of years, new insights in understanding the fundamental phenomena of molecular interaction on magnetic surfaces, forming a hybrid interface, are presenting a new pathway for developing the subfield of interface-assisted molecular spintronics. The recent exploration of such hybrid interfaces involving carbon based aromatic molecules shows a significant excitement and promise over the previously studied single molecular magnets. In the above new scenario, hybridization of the molecular orbitals with the spin-polarized bands of the surface creates new interface states with unique electronic and magnetic character. This study opens up a molecular-genome initiative in designing new handles to functionalize the spin dependent electronic properties of the hybrid interface to construct spin-functional tailor-made devices. Through this article, we review this subject by presenting a fundamental understanding of the interface spin-chemistry and spin-physics by taking support of advanced computational and spectroscopy tools to investigate molecular spin responses with demonstration of new interface phenomena. Spin-polarized scanning tunneling spectroscopy is favorably considered to be an important tool to investigate these hybrid interfaces with intra-molecular spatial resolution. Finally, by addressing some of the recent findings, we propose novel device schemes towards building interface tailored molecular spintronic devices for applications in sensor, memory, and quantum computing.

  10. Impact of Radiation Biology on Fundamental Insights in Biology

    DOE R&D Accomplishments [OSTI]

    Setlow, Richard B.

    1982-07-27

    Research supported by OHER [Office of Health and Environmental Research] and its predecessors has as one of its major goals an understanding of the effects of radiation at low doses and dose rates on biological systems, so as to predict their effects on humans. It is not possible to measure such effects directly. They must be predicted from basic knowledge on how radiation affects cellular components such as DNA and membranes and how cells react to such changes. What is the probability of radiation producing human mutations and what are the probabilities of radiation producing cancer? The end results of such studies are radiation exposure standards for workers and for the general population. An extension of these goals is setting standards for exposure to chemicals involved in various energy technologies. This latter problem is much more difficult because chemical dosimetry is a primitive state compared to radiation dosimetry.

  11. Method of measurement in biological systems

    DOE Patents [OSTI]

    Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.: Davis, J.C.; Stanker, L.H.

    1993-05-11

    A method is disclosed of quantifying molecules in biological substances, comprising: selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere; preparing a long-lived radioisotope labeled reactive chemical specie; administering the chemical specie to the biological host in doses sufficiently low to avoid significant overt damage to the biological system; allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host; isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources; converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation; and measuring the radioisotope concentration in the material by means of direct isotopic counting.

  12. Cerenkov emission induced by external beam radiation stimulates molecular fluorescence

    SciTech Connect (OSTI)

    Axelsson, Johan; Davis, Scott C.; Gladstone, David J.; Pogue, Brian W.

    2011-07-15

    Purpose: Cerenkov emission is induced when a charged particle moves faster than the speed of light in a given medium. Both x-ray photons and electrons produce optical Cerenkov photons in everyday radiation therapy of tissue; yet, this phenomenon has never been fully documented. This study quantifies the emissions and also demonstrates that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Methods: In this study, Cerenkov emission induced by radiation from a clinical linear accelerator is investigated. Biological mimicking phantoms were irradiated with x-ray photons, with energies of 6 or 18 MV, or electrons at energies 6, 9, 12, 15, or 18 MeV. The Cerenkov emission and the induced molecular fluorescence were detected by a camera or a spectrometer equipped with a fiber optic cable. Results: It is shown that both x-ray photons and electrons, at MeV energies, produce optical Cerenkov photons in tissue mimicking media. Furthermore, we demonstrate that the Cerenkov emission can excite a fluorophore, protoporphyrin IX (PpIX), embedded in biological phantoms. Conclusions: The results here indicate that molecular fluorescence monitoring during external beam radiotherapy is possible.

  13. OTEC environmental biological oceanographic program

    SciTech Connect (OSTI)

    Hartwig, E.O.

    1981-07-01

    One of the major goals of the OTEC biological field measurement program is to assess the effect of OTEC operations on the environment. Prior understanding of the natural variability of the tropical oceanic plankton community is the most important method for determining changes due to operation of an OTEC plant. The spatial and temporal patterns of the plankton community in terms of absolute number, biomass and species composition have been investigated at potential OTEC sites. Considerable data exist which document the changes with depth of all three measurements. Diel fluctuations in number and species composition have been studied at one site. While horizontal and seasonal patterns of variability likely exist at all sites, they are subtle and remain somewhat unclear. Attempts are now being made to determine the overall trophic structure of the plankton community at these sites using these data, gut content analysis, and information already in the literature.

  14. The Molecular Foundry Turns 10

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Molecular Foundry Turns 10 The Molecular Foundry, a nanoscience user facility that has served thousands of scientists from all over the world, will celebrate the 10th anniversary of the dedication of its iconic building on March 24 with a symposium and dinner. A timeline of scientific milestones of the last decade was also created. ← Previous

  15. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  16. Probing Interactions in Complex Molecular Systems through Ordered Assembly

    SciTech Connect (OSTI)

    De Yoreo, J J; Bartelt, M C; Orme, C A; Villacampa, A; Weeks, B L; Miller, A E

    2002-01-31

    Emerging from the machinery of epitaxial science and chemical synthesis, is a growing emphasis on development of self-organized systems of complex molecular species. The nature of self-organization in these systems spans the continuum from simple crystallization of large molecules such as dendrimers and proteins, to assembly into large organized networks of nanometer-scale structures such as quantum dots or nanoparticles. In truth, self-organization in complex molecular systems has always been a central feature of many scientific disciplines including fields as diverse as structural biology, polymer science and geochemistry. But over the past decade, changes in those fields have often been marked by the degree to which researchers are using molecular-scale approaches to understand the hierarchy of structures and processes driven by this ordered assembly. At the same time, physical scientists have begun to use their knowledge of simple atomic and molecular systems to fabricate synthetic self-organized systems. This increasing activity in the field of self-organization is testament to the success of the physical and chemical sciences in building a detailed understanding of crystallization and epitaxy in simple atomic and molecular systems, one that is soundly rooted in thermodynamics and chemical kinetics. One of the fundamental challenges of chemistry and materials science in the coming decades is to develop a similarly well-founded physical understanding of assembly processes in complex molecular systems. Over the past five years, we have successfully used in situ atomic force microscopy (AFM) to investigate the physical controls on single crystal epitaxy from solutions for a wide range of molecular species. More recently, we have combined this method with grazing incidence X-ray diffraction and kinetic Monte Carlo modeling in order to relate morphology to surface atomic structure and processes. The purpose of this proposal was to extend this approach to assemblies of three classes of ''super molecular'' nanostructured materials. These included (1) dendrimers, (2) DNA bonded nano-particles, and (3) colloids, all of which form solution-based self-organizing systems. To this end, our goals were, first, to learn how to modify models of epitaxy in small molecule systems so that they are useful, efficient, and applicable to assembly of super-molecular species; and, second, to learn how systematic variations in the structure and bonding of the building blocks affect the surface kinetics and energetics that control the assembly process and the subsequent dynamic behavior of the assembled structures. AFM imaging provided experimental data on morphology and kinetics, while kinetic Monte Carlo (KMC) simulations related these data to molecular-scale processes and features.

  17. Biological & Environmental Research Abstracts Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Welcome to the Biological and Environmental Research Abstracts Database The U.S. Department of Energy's Office of Biological and Environmental Research (BER) conducts research in the areas of Climate and Environmental Sciences and Biological Systems Science. This database contains abstracts of research projects supported by the program. Work was performed at DOE Laboratories as well as at nearly 300 universities and other research institutions. This is a historical database that includes the

  18. Method for photo-altering a biological system to improve biological effect

    DOE Patents [OSTI]

    Hill, Richard A. (Irvine, CA); Doiron, Daniel R. (Santa Ynez, CA); Crean, David H. (Santa Barbara, CA)

    2000-08-01

    Photodynamic therapy is a new adjunctive therapy for filtration surgery that does not use chemotherapy agents or radiation, but uses pharmacologically-active sensitizing compounds to produce a titratable, localized, transient, post operative avascular conjunctiva. A photosensitizing agent in a biological system is selectively activated by delivering the photosensitive agent to the biological system and laser activating only a spatially selected portion of the delivered photosensitive agent. The activated portion of the photosensitive agent reacts with the biological system to obtain a predetermined biological effect. As a result, an improved spatial disposition and effectuation of the biological effect by the photosensitive agent in the biological system is achieved.

  19. International symposium on cellular and molecular biology of phosphate and phosphorylated compounds in microorganisms: Proceedings

    SciTech Connect (OSTI)

    1993-12-31

    This report contains the abstracts of papers presented at the conference. Attention is focused on the following topics: regulation of phosphate metabolism in bacteria; structure-function of alkaline phosphatase; regulation of phosphate metabolism in yeast; transport of phosphate and phosphorylated compounds; and phosphate regulation in pathogenesis and secondary metabolism.

  20. 2013 Biological Hydrogen Production Workshop Summary Report ...

    Broader source: Energy.gov (indexed) [DOE]

    summary report for the 2013 Biological Hydrogen Production Workshop. bioh2workshopfinalreport.pdf More Documents & Publications The Hydrogen Program at NREL: A Brief Overview...

  1. Developing Biological Specifications for Fish Friendly Turbines

    Broader source: Energy.gov [DOE]

    This factsheet explains studies conducted in a highly reproducible manner to examine the biological effects to fish exposed to a shear environment in the laboratory.

  2. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    SciTech Connect (OSTI)

    Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2010-03-14

    Scientists at the Chemical Dynamics Beamline of the Advanced Light Source in Berkeley are continuously reinventing synchrotron investigations of physical chemistry and chemical physics with vacuum ultraviolet light. One of the unique aspects of a synchrotron for chemical physics research is the widely tunable vacuum ultraviolet light that permits threshold ionization of large molecules with minimal fragmentation. This provides novel opportunities to assess molecular energetics and reaction mechanisms, even beyond simple gas phase molecules. In this perspective, significant new directions utilizing the capabilities at the Chemical Dynamics Beamline are presented, along with an outlook for future synchrotron and free electron laser science in chemical dynamics. Among the established and emerging fields of investigations are cluster and biological molecule spectroscopy and structure, combustion flame chemistry mechanisms, radical kinetics and product isomer dynamics, aerosol heterogeneous chemistry, planetary and interstellar chemistry, and secondary neutral ion-beam desorption imaging of biological matter and materials chemistry.

  3. Division of Biological and Medical Research research summary 1984-1985

    SciTech Connect (OSTI)

    Barr, S.H.

    1985-08-01

    The Division of Biological and Medical Research at Argonne National Laboratory conducts multidisciplinary research aimed at defining the biological and medical hazards to man from energy technologies and new energy options. These technically oriented studies have a strong base in fundamental research in a variety of scientific disciplines, including molecular and cellular biology, biophysics, genetics, radiobiology, pharmacology, biochemistry, chemistry, environmental toxicology, and epidemiology. This research summary is organized into six parts. The first five parts reflect the Divisional structure and contain the scientific program chapters, which summarize the activities of the individual groups during the calendar year 1984 and the first half of 1985. To provide better continuity and perspective, previous work is sometimes briefly described. Although the summaries are short, efforts have been made to indicate the range of research activities for each group.

  4. Final report for Conference Support Grant "From Computational Biophysics to Systems Biology - CBSB12"

    SciTech Connect (OSTI)

    Hansmann, Ulrich H.E.

    2012-07-02

    This report summarizes the outcome of the international workshop â??From Computational Biophysics to Systems Biology (CBSB12)â? which was held June 3-5, 2012, at the University of Tennessee Conference Center in Knoxville, TN, and supported by DOE through the Conference Support Grant 120174. The purpose of CBSB12 was to provide a forum for the interaction between a data-mining interested systems biology community and a simulation and first-principle oriented computational biophysics/biochemistry community. CBSB12 was the sixth in a series of workshops of the same name organized in recent years, and the second that has been held in the USA. As in previous years, it gave researchers from physics, biology, and computer science an opportunity to acquaint each other with current trends in computational biophysics and systems biology, to explore venues of cooperation, and to establish together a detailed understanding of cells at a molecular level. The conference grant of $10,000 was used to cover registration fees and provide travel fellowships to selected students and postdoctoral scientists. By educating graduate students and providing a forum for young scientists to perform research into the working of cells at a molecular level, the workshop adds to DOE's mission of paving the way to exploit the abilities of living systems to capture, store and utilize energy.

  5. Apparatus for molecular weight separation

    DOE Patents [OSTI]

    Smith, Richard D. (Richland, WA); Liu, Chuanliang (Haverhill, MA)

    2001-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

  6. Institute for Molecular Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn more about the Institute for Molecular Engineering. When completed in early 2015, the William Eckhardt Research Center at the University of Chicago will be the home of the Institute of Molecular Engineering. Institute for Molecular Engineering The new Institute for Molecular Engineering explores innovative technologies that address fundamental societal problems through advances in nanoscale manipulation and design at a molecular scale. Addressing Societal Problems with Molecular Science

  7. A national facility for biological cryo-electron microscopy

    SciTech Connect (OSTI)

    Saibil, Helen R.; Grnewald, Kay; Stuart, David I.

    2015-01-01

    This review provides a brief update on the use of cryo-electron microscopy for integrated structural biology, along with an overview of the plans for the UK national facility for electron microscopy being built at the Diamond synchrotron. Three-dimensional electron microscopy is an enormously powerful tool for structural biologists. It is now able to provide an understanding of the molecular machinery of cells, disease processes and the actions of pathogenic organisms from atomic detail through to the cellular context. However, cutting-edge research in this field requires very substantial resources for equipment, infrastructure and expertise. Here, a brief overview is provided of the plans for a UK national three-dimensional electron-microscopy facility for integrated structural biology to enable internationally leading research on the machinery of life. State-of-the-art equipment operated with expert support will be provided, optimized for both atomic-level single-particle analysis of purified macromolecules and complexes and for tomography of cell sections. The access to and organization of the facility will be modelled on the highly successful macromolecular crystallography (MX) synchrotron beamlines, and will be embedded at the Diamond Light Source, facilitating the development of user-friendly workflows providing near-real-time experimental feedback.

  8. Synchrotrons Explore Water's Molecular Mysteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotrons Explore Water's Molecular Mysteries Synchrotrons Explore Water's Molecular Mysteries Print Friday, 01 February 2013 00:00 In experiments at SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory's Advanced Light Source, scientists observed a surprisingly dense form of water that remained liquid well beyond its typical freezing point. Researchers applied a superthin coating of water-no deeper than a few molecules-to the surface of a barium fluoride crystal.

  9. Electron Trapping by Molecular Vibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping,

  10. Electron Trapping by Molecular Vibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping,

  11. Electron Trapping by Molecular Vibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping,

  12. Electron Trapping by Molecular Vibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally thought to be forbidden can in fact be excited in conjunction with certain types of molecular vibrations. Specifically, they found that when the symmetry of a linear triatomic molecule is broken by asymmetric vibrational modes, photoelectrons can become temporarily trapped by the molecule before ultimately escaping,

  13. Connecting the Molecular and the Continuum Scales

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    range of phenomena, from climate change to contaminant remediation. Accomplishments: Used molecular dynamics (MD) simulations to determine molecular-scale diffusion coefficients of...

  14. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Conference: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations,...

  15. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure Suggests Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the...

  16. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the...

  17. PIA - Environmental Molecular Sciences Laboratory (EMSL) User...

    Broader source: Energy.gov (indexed) [DOE]

    Molecular Sciences Laboratory (EMSL) User System (ESU) PDF icon PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) More Documents & Publications PIA - WEB ...

  18. Matrix Effects in Biological Mass Spectrometry Imaging: Identification and Compensation

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Stevens, Susan; Stenzel-Poore, Mary; Laskin, Julia

    2014-07-21

    Matrix effects in mass spectrometry imaging (MSI) may affect the observed molecular distribution in chemical and biological systems. In this study, we introduce an experimental approach that efficiently compensates for matrix effects in nanospray desorption electrospray ionization (nano-DESI) MSI without introducing any complexity into the experimental protocol. We demonstrate compensation for matrix effects in nano-DESI MSI of phosphatidylcholine (PC) in normal and ischemic mouse brain tissue by doping the nano-DESI solvent with PC standards. Specifically, we use mouse brain tissue of a middle cerebral artery occlusion (MCAO) stroke model with an ischemic region localized to one hemisphere of the brain. Due to similar suppression in ionization of endogenous PC molecules extracted from the tissue and PC standards added to the solvent, matrix effects are eliminated by normalizing the intensity of the sodium and potassium adducts of endogenous PC to the intensity of the corresponding adduct of the PC standard. This approach efficiently compensates for signal variations resulting from differences in the local concentrations of sodium and potassium in tissue sections and from the complexity of the extracted analyte mixture derived from local variations in molecular composition.

  19. Method of measurement in biological systems

    DOE Patents [OSTI]

    Turteltaub, K.W.; Vogel, J.S.; Felton, J.S.; Gledhill, B.L.; Davis, J.C.

    1994-12-27

    Disclosed is a method of quantifying molecules in biological substances comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering the chemical specie to the biological host in doses sufficiently low to avoid significant overt damage to the biological system, d. allowing a period of time to elapse sufficient for dissemination and interaction of the chemical specie with the host throughout the biological system of the host, e. isolating a reacted fraction of the biological substance from the host in a manner sufficient to avoid contamination of the substance from extraneous sources, f. converting the fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in the material by means of direct isotopic counting. 5 figures.

  20. Method of measurement in biological systems

    DOE Patents [OSTI]

    Turteltaub, Kenneth W.; Vogel, John S.; Felton, James S.; Gledhill, Barton L.; Davis, Jay C.

    1994-01-01

    Disclosed is a method of quantifying molecules in biological substances comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biological host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.

  1. Method of measurement in biological systems

    DOE Patents [OSTI]

    Turteltaub, Kenneth W.; Vogel, John S.; Felton, James S.; Gledhill, Barton L.; Davis, Jay C.; Stanker, Larry H.

    1993-05-11

    Disclosed is a method of quantifying molecules in biological substances, comprising: a. selecting a biological host in which radioisotopes are present in concentrations equal to or less than those in the ambient biosphere, b. preparing a long-lived radioisotope labeled reactive chemical specie, c. administering said chemical specie to said biological host in doses sufficiently low to avoid significant overt damage to the biological system thereof, d. allowing a period of time to elapse sufficient for dissemination and interaction of said chemical specie with said host throughout said biological system of said host, e. isolating a reacted fraction of the biological substance from said host in a manner sufficient to avoid contamination of said substance from extraneous sources, f. converting said fraction of biological substance by suitable means to a material which efficiently produces charged ions in at least one of several possible ion sources without introduction of significant isotopic fractionation, and, g. measuring the radioisotope concentration in said material by means of direct isotopic counting.

  2. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aradi, Bálint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born–Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materialsmore » science, chemistry, and biology.« less

  3. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    SciTech Connect (OSTI)

    Aradi, Blint; Niklasson, Anders M. N.; Frauenheim, Thomas

    2015-06-26

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian BornOppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materials science, chemistry, and biology.

  4. Frontiers of Plant Cell Biology: Signals and Pathways, System-Based Approaches 22nd Symposium in Plant Biology (University of California-Riverside)

    SciTech Connect (OSTI)

    Minorsky, Peter V.

    2003-06-01

    The symposium ''Frontiers of Plant Cell Biology: Signals and Pathways, Systems-Based Approaches'' was held January 15-18, 2003 at the Riverside Convention Center in Riverside, California. The host organization for the symposium was the Center for Plant Cell Biology (CEPCEB) at the University of California, Riverside (UCR). The meeting, focusing on systems-based approaches to plant cell biology research, was the first of this kind in the field of plant biology. The speakers and nearly 100 posters placed emphasis on recent developments in plant cellular biology and molecular genetics, particularly those employing emerging genomic tools, thereby sharing the most current knowledge in the field and stimulating future advances. In attendance were many well-established scientists and young investigators who approach plant cell biology from different but complementary conceptual and technical perspectives. Indeed, many disciplines are converging in the field of cell biology, producing synergies that will enable plant scientists to determine the function of gene products in the context of living cells in whole organisms. New, cross-disciplinary collaborations, as well as the involvement of computer scientists and chemists in plant biology research, are likely additional outcomes of the symposium. The program included 39 invited session speakers and workshop/panel speakers. Sessions were convened on the following themes: Cell-Cell Communication; Protein Trafficking; Cell Surface, Extracellular Matrix and Cell Wall; Signal Transduction; Signal Transduction and Proteosome; and Systems-Based Approaches to Plant Cell Biology. Workshops on Chemical Genetics and Visual Microscopy were also presented. Abstracts from each of the speaker presentations, as well as the posters presented at the meeting were published in a program booklet given to the 239 faculty members, researchers, postdoctoral scientists and graduate students in attendance. The booklet thus serves as a reference for symposium attendees to locate additional information about a topic of their particular interest and to contact other investigators. In addition, an article reviewing the symposium by science writer Peter V. Minorsky appeared in the June 2003 issue of Plant Physiology, a special issue devoted to systems-based approaches in the study of the model plant Arabidopsis (article submitted as part of this Final Technical Report).

  5. Molecular separation method and apparatus

    DOE Patents [OSTI]

    Villa-Aleman, Eliel (3108 Roses Run, Aiken, SC 29803)

    1996-01-01

    A method and apparatus for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve.

  6. Molecular separation method and apparatus

    DOE Patents [OSTI]

    Villa-Aleman, E.

    1996-04-09

    A method and apparatus are disclosed for separating a gaseous mixture of chemically identical but physically different molecules based on their polarities. The gaseous mixture of molecules is introduced in discrete quantities into the proximal end of a porous glass molecular sieve. The molecular sieve is exposed to microwaves to excite the molecules to a higher energy state from a lower energy state, those having a higher dipole moment being excited more than those with a lower energy state. The temperature of the sieve kept cold by a flow of liquid nitrogen through a cooling jacket so that the heat generated by the molecules colliding with the material is transferred away from the material. The molecules thus alternate between a higher energy state and a lower one, with the portion of molecules having the higher dipole moment favored over the others. The former portion can then be extracted separately from the distal end of the molecular sieve. 2 figs.

  7. SU-E-I-39: Molecular Image Guided Cancer Stem Cells Therapy

    SciTech Connect (OSTI)

    Abdollahi, H

    2014-06-01

    Purpose: Cancer stem cells resistance to radiation is a problematic issue that has caused a big fail in cancer treatment. Methods: As a primary work, molecular imaging can indicate the main mechanisms of radiation resistance of cancer stem cells. By developing and commissioning new probes and nanomolecules and biomarkers, radiation scientist will able to identify the essential pathways of radiation resistance of cancer stem cells. As the second solution, molecular imaging is a best way to find biological target volume and delineate cancer stem cell tissues. In the other hand, by molecular imaging techniques one can image the treatment response in tumor and also in normal tissue. In this issue, the response of cancer stem cells to radiation during therapy course can be imaged, also the main mechanisms of radiation resistance and finding the best radiation modifiers (sensitizers) can be achieved by molecular imaging modalities. In adaptive radiotherapy the molecular imaging plays a vital role to have higher tumor control probability by delivering high radiation doses to cancer stem cells in any time of treatment. The outcome of a feasible treatment is dependent to high cancer stem cells response to radiation and removing all of which, so a good imaging modality can show this issue and preventing of tumor recurrence and metastasis. Results: Our results are dependent to use of molecular imaging as a new modality in the clinic. We propose molecular imaging as a new radiobiological technique to solve radiation therapy problems due to cancer stem cells. Conclusion: Molecular imaging guided cancer stem cell diagnosis and therapy is a new approach in the field of cancer treatment. This new radiobiological imaging technique should be developed in all clinics as a feasible tool that is more biological than physical imaging.

  8. Algal Biology Program at Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Algal Biology Program at Los Alamos gets a star October 11, 2011 LOS ALAMOS, New Mexico, October 11, 2011-Richard Sayre, one of the nation's top specialists in algae and...

  9. 2013 Biological Hydrogen Production Workshop Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the implications for both in vivo and in vitro activity were discussed. "Self-repair" is often cited as an advantage of biological systems, and some of the mechanisms...

  10. Biological Air Emissions Control | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Air Emissions Control Biological Air Emissions Control Innovative Technology Enables Low-Cost, Energy-Efficient Treatment of Industrial Exhaust Streams Air quality standards are becoming more stringent for the U.S. wood products industry. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) (including methanol, formaldehyde, acetylaldehyde, and acrolein) during production of wood products must be tightly controlled. Conventional VOCs and HAPs emission

  11. All-Optical Molecular Orientation

    SciTech Connect (OSTI)

    Oda, Keita; Hita, Masafumi; Minemoto, Shinichirou; Sakai, Hirofumi [Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2010-05-28

    We report clear evidence of all-optical orientation of carbonyl sulfide molecules with an intense nonresonant two-color laser field in the adiabatic regime. The technique relies on the combined effects of anisotropic hyperpolarizability interaction and anisotropic polarizability interaction and does not rely on the permanent dipole interaction with an electrostatic field. It is demonstrated that the molecular orientation can be controlled simply by changing the relative phase between the two wavelength fields. The present technique brings researchers a new steering tool of gaseous molecules and will be quite useful in various fields such as electronic stereodynamics in molecules and ultrafast molecular imaging.

  12. Charge exchange molecular ion source

    DOE Patents [OSTI]

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  13. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    SciTech Connect (OSTI)

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in Tuscany, provides an avenue for scientists from different disciplines to interact and brainstorm and promotes cross-disciplinary collaborations directed toward compelling biological problems.

  14. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Wednesday, 24 November 2010 00:00 Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary

  15. Detter, John C. [Los Alamos National Laboratory] Basic Biological

    Office of Scientific and Technical Information (OSTI)

    State of the Art for Autonomous Detection Systems using Genomic Sequencing Detter, John C. Los Alamos National Laboratory Basic Biological Sciences(59) Biological Science...

  16. Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009) Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009) ...

  17. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production More Documents & Publications Techno-Economic Boundary Analysis of Biological Pathways to ...

  18. Biological and Biomimetic Low-Temperature Routes to Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications 2012 DOE...

  19. Biological Conversion of Sugars to Hydrocarbons Technology Pathway...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Conversion of Sugars to Hydrocarbons Technology Pathway This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon ...

  20. UK Biotechnology and Biological Sciences Research Council | Open...

    Open Energy Info (EERE)

    Biotechnology and Biological Sciences Research Council Jump to: navigation, search Name: UK Biotechnology and Biological Sciences Research Council Place: London, United Kingdom...

  1. Detection and treatment of chemical weapons and/or biological...

    Office of Scientific and Technical Information (OSTI)

    Detection and treatment of chemical weapons andor biological pathogens Citation Details In-Document Search Title: Detection and treatment of chemical weapons andor biological...

  2. Phytochrome from Green Plants: Properties and biological Function

    SciTech Connect (OSTI)

    Quail, Peter H.

    2014-07-25

    Plants constantly monitor the light environment for informational light signals used to direct adaptational responses to the prevailing conditions. One major such response, the Shade-Avaoidance Response (SAR), triggered when plants sense the presence of competing neighbors, results in enhanced channeling of photosynthetically-fixed carbon into stem elongation at the expense of deposition in reproductive tissues. This response has been selected against in many modern food crops to ensure maximum edible yield (e.g. seeds). Converse enhancement of the SAR, with consequent increased carbon channeling into vegetative cellulose, could contribute to the generation of crops with improved yield of tissues suitable for cellulosic biofuel production. The signal for this response is light enriched in far-red wavelengths. This signal is produced by sunlight filtered through, or reflected from, neighboring vegetation, as a result of preferential depletion of red photons through chlorophyll absorption. The plant phytochrome (phy) photoreceptor system (predominantly phyB) senses this signal through its capacity to switch reversibly, in milliseconds, between two molecular states: the biologically inactive Pr (red-light-absorbing) and biologically active Pfr (far-red-light-absorbing) conformers. The photoequilibrium established between these two conformers in light-grown plants is determined by the ratio of red-to-far-red wavelengths in the incoming signal. The levels of Pfr then dictate the recipient plants growth response: high levels suppress elongation growth; low levels promote elongation growth. Studies on seedling deetiolation have advanced our understanding considerably in recent years, of the mechanism by which the photoactivated phy molecule transduces its signal into cellular growth responses. The data show that a subfamily of phy-interacting bHLH transcription factors (PIFs) promote skotomorphogenic seedling development in post-germinative darkness, but that the phy Pfr conformer reverses this activity upon initial light exposure, inducing the switch to photomorphogenic development. This reversal involves light-triggered translocation of the photoactivated phy molecule into the nucleus where it interacts with PIF-family members, inducing rapid phosphorylation and degradation of the PIFs via the ubiquitin-proteasome system. This degradation in turn elicits rapid alterations in gene expression that drive the deetiolation transition. This project has made considerable progress in defining phy-PIF signaling activity in controlling the SAR. The biological functions of the multiple PIF-family members in controlling the SAR, including dissection of the relative contributions of the individual PIFs to this process, as well as to diurnal growth-control oscillations, have been investigated using higher-order pif-mutant combinations. Using microarray analysis of a quadruple pif mutant we have defined the shade-induced, PIF-regulated transcriptional network genome-wide. This has revealed that a dynamic antagonism between the phys and PIFs generates selective reciprocal responses during deetiolation and the SAR in a rapidly light-responsive transcriptional network. Using integrated RNA-seq and ChIP-seq analysis of higher order pif-mutant combinations, we have defined the direct gene-targets of PIF transcriptional regulation, and have obtained evidence that this regulation involves differential direct targeting of rapidly light-responsive genes by the individual PIF-family members. This project has provided significant advances in our understanding of the molecular mechanisms by which the phy-PIF photosensory signaling pathway regulates an important bioenergy-related plant response to the light environment. The identification of molecular targets in the primary transcriptional-regulatory circuitry of this pathway has the potential to enable genetic or reverse-genetic manipulation of the partitioning of carbon between reproductive and vegetative (cellulose-accumulating) tissue, toward enhanced bioenergy yield.

  3. Radioprotectors and Tumors: Molecular Studies in Mice

    SciTech Connect (OSTI)

    Gayle Woloschak, David Grdina

    2010-03-10

    This proposal investigated effects of radiation using a set of archival tissues. Main interests of this proposal were to investigate effects of irradiation alone or in the presence or radioprotectors; to investigate these effects on different tissues; and to use/develop molecular biology techniques that would be suitable for work with archived tissues. This work resulted in several manuscripts published or in preparation. Approach for evaluation of gene copy numbers by quantitative real time PCR has been developed and we are striving to establish methods to utilize Q-RT-PCR data to evaluate genomic instability caused by irradiation(s) and accompanying treatments. References: 1. Paunesku D, Paunesku T, Wahl A, Kataoka Y, Murley J, Grdina DJ, Woloschak GE. Incidence of tissue toxicities in gamma ray and fission neutron-exposed mice treated with Amifostine. Int J Radiat Biol. 2008, 84(8):623-34. PMID: 18661379, http://informahealthcare.com/doi/full/10.1080/09553000802241762?cookieSet=1 2. Wang Q, Paunesku T and Woloschak GE. Tissue and data archives from irradiation experiments conducted at Argonne National Laboratory over a period of four decades, in press in Radiation and Environmental Biophysics. 3. Alcantara M, Paunesku D, Rademaker A, Paunesku T and Woloschak GE. A RETROSPECTIVE ANALYSIS OF TISSUE TOXICITIES IN B6CF1 MICE IRRADIATED WITH FISSION NEUTRONS OR COBALT 60 GAMMA RAYS: Gender modulates accumulation of tissue toxicities caused by low dose rate fractionated irradiation; in preparation; this document has been uploaded as STI product 4. Wang Q, Paunesku T Wanzer B and Woloschak GE. Mitochondrial gene copy number differences in different tissues of irradiated and control mice with lymphoid cancers; in preparation 5. Wang Q, Raha, S, Paunesku T and Woloschak GE. Evaluation of gene copy number differences in different tissues of irradiated and control mice; in preparation

  4. The acquisition of dangerous biological materials :

    SciTech Connect (OSTI)

    Aceto, Donato Gonzalo; Astuto-Gribble, Lisa M.; Gaudioso, Jennifer M.

    2007-11-01

    Numerous terrorist organizations have openly expressed interest in producing and deploying biological weapons. However, a limiting factor for many terrorists has been the acquisition of dangerous biological agents, as evidenced by the very few successful instances of biological weapons use compared to the number of documented hoaxes. Biological agents vary greatly in their ability to cause loss of life and economic damage. Some agents, if released properly, can kill many people and cause an extensive number of secondary infections; other agents will sicken only a small number of people for a short period of time. Consequently, several biological agents can potentially be used to perpetrate a bioterrorism attack but few are likely capable of causing a high consequence event. It is crucial, from a US national security perspective, to more deeply understand the likelihood that terrorist organizations can acquire the range of these agents. Few studies have attempted to comprehensively compile the technical information directly relevant to the acquisition of dangerous bacteria, viruses and toxins. In this report, technical fact sheets were assembled for 46 potentially dangerous biological agents. Much of the information was taken from various research sources which could ultimately and significantly expedite and improve bioterrorism threat assessments. By systematically examining a number of specific agent characteristics included in these fact sheets, it may be possible to detect, target, and implement measures to thwart future terrorist acquisition attempts. In addition, the information in these fact sheets may be used as a tool to help laboratories gain a rudimentary understanding of how attractive a method laboratory theft is relative to other potential acquisition modes.

  5. Molecular engineering with bridged polysilsesquioxanes

    SciTech Connect (OSTI)

    LOY,DOUGLAS A.; SHEA,KENNETH J.

    2000-05-09

    Bridged polysilsesquioxanes are a class of hybrid organic-inorganic materials that permit molecular engineering of bulk properties including porosity. Prepared by sol-gel polymerization of monomers with two or more trialkoxysilyl groups, the materials are highly cross-linked amorphous polymers that are readily obtained as gels. The bridging configuration of the hydrocarbon group insures that network polymers are readily formed and that the organic functionality is homogeneously distributed throughout the polymeric scaffolding at the molecular level. This permits the bulk properties, including surface area, pore size, and dielectric constant to be engineered through the selection of the bridging organic group. Numerous bridging groups have been incorporated. This presentation will focus on the effects that the length, flexibility, and substitution geometry of the hydrocarbon bridging groups have on the properties of the resulting bridged polysilsesquioxanes. Details of the preparation, characterization, and some structure property relationships of these bridged polysilsesquioxanes will be given.

  6. Hierarchical analysis of molecular spectra

    SciTech Connect (OSTI)

    Davis, M.J.

    1996-03-01

    A novel representation of molecular spectra in terms of hierarchical trees has proven to be an important aid for the study of many significant problems in gas-phase chemical dynamics. Trees are generated from molecular spectra by monitoring the changes that occur in a spectrum as resolution is changed in a continuous manner. A tree defines a genealogy among all lines of a spectrum. This allows for a detailed understanding of the assignment of features of a spectrum that may be difficult to obtain any other way as well as an understanding of intramolecular energy transfer time scales, mechanisms, and pathways. The methodology has been applied to several problems: transition state spectroscopy, intramolecular energy transfer in highly excited molecules, high-resolution overtone spectroscopy, and the nature of the classical-quantum correspondence when there is classical chaos (``quantum chaos``).

  7. Spectroscopic diagnostics for bacteria in biologic sample

    DOE Patents [OSTI]

    El-Sayed, Mostafa A. (Atlanta, GA); El-Sayed, Ivan H. (Somerville, MA)

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  8. Biological and Environmental Research Advisory Committee

    Office of Science (SC) Website

    March 03-04, 2014 | U.S. DOE Office of Science (SC) March 03-04, 2014 Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings Biological and Environmental Research Advisory Committee March 03-04, 2014 Print Text Size: A A A FeedbackShare Page Agenda .pdf file (21KB) Presentations: Sharlene Weatherwax .pdf

  9. Molecular Science Computing: 2010 Greenbook

    SciTech Connect (OSTI)

    De Jong, Wibe A.; Cowley, David E.; Dunning, Thom H.; Vorpagel, Erich R.

    2010-04-02

    This 2010 Greenbook outlines the science drivers for performing integrated computational environmental molecular research at EMSL and defines the next-generation HPC capabilities that must be developed at the MSC to address this critical research. The EMSL MSC Science Panel used EMSL’s vision and science focus and white papers from current and potential future EMSL scientific user communities to define the scientific direction and resulting HPC resource requirements presented in this 2010 Greenbook.

  10. 14th international symposium on molecular beams

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation & dynamics; and surfaces.

  11. 14th international symposium on molecular beams

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This report discusses research being conducted with molecular beams. The general topic areas are as follows: Clusters I; reaction dynamics; atomic and molecular spectroscopy; clusters II; new techniques; photodissociation dynamics; and surfaces.

  12. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Suggests Role as Molecular Adapter Print Wednesday, 24 June 2009 00:00 To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known...

  13. Structural Biology | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Structural Biology Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Genomic Science DOE Bioenergy Research Centers Bioimaging Technology DOE Joint Genome Institute Structural Biology Radiochemistry & Imaging Instrumentation Radiobiology: Low Dose Radiation Research DOE Human Subjects Protection Program Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER Highlights External link

  14. Mass Spectrometry Data from the Biological MS Data and Software Distribution Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Anderson, Gordon

    The mass spectrometry capabilities at Pacific Northwest National Laboratory (PNNL) are primarily applied to biological research, with an emphasis on proteomics and metabolomics. Many of these cutting-edge mass spectrometry capabilities and bioinformatics methods are housed in the Department of Energy's Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility operated by PNNL. These capabilities have been developed and acquired through cooperation between the EMSL national scientific user program and PNNL programmatic research. At the website of the Biological MS Data and Software Distribution Center, the following resources are made available: PNNL-developed software tools and source code, PNNL-generated raw data and processed results, links to publications that used the data and results available on this site, and tutorials and user manuals. [taken from http://omics.pnl.gov/

  15. Modular microfluidic system for biological sample preparation

    DOE Patents [OSTI]

    Rose, Klint A.; Mariella, Jr., Raymond P.; Bailey, Christopher G.; Ness, Kevin Dean

    2015-09-29

    A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis virus filter module, d) an isotachophoresis nucleic acid filter module, e) a lyses module, and f) an isotachophoresis-based nucleic acid filter.

  16. Radiological/biological/aerosol removal system

    DOE Patents [OSTI]

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  17. Apparatus for automated testing of biological specimens

    DOE Patents [OSTI]

    Layne, Scott P. (Los Angeles, CA); Beugelsdijk, Tony J. (Los Alamos, NM)

    1999-01-01

    An apparatus for performing automated testing of infections biological specimens is disclosed. The apparatus comprise a process controller for translating user commands into test instrument suite commands, and a test instrument suite comprising a means to treat the specimen to manifest an observable result, and a detector for measuring the observable result to generate specimen test results.

  18. Composites comprising biologically-synthesized nanomaterials

    DOE Patents [OSTI]

    Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun

    2013-04-30

    The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.

  19. Centauri High School Teacher Honored as Colorado Outstanding Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Centauri High School Teacher Honored as Colorado Outstanding Biology Teacher For more information contact: e:mail: Public Affairs Golden, Colo., May 2, 1997 -- Tracy Swedlund, biology teacher at Centauri High School in LaJara, was selected as Colorado's 1997 Outstanding Biology Teacher and will be recognized by the National Association of Biology Teachers (NABT). NABT honors exemplary biology and life science middle and high school educators nationwide. Criteria include teaching

  20. Combinatorial synthesis and screening of non-biological polymers

    DOE Patents [OSTI]

    Schultz, Peter G.; Xiang, Xiao-Dong; Goldwasser, Isy; Briceno, Gabriel; Sun, Xiao-Dong; Wang, Kai-An

    2006-04-25

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  1. Transport and Self-Assembly in Molecular Nanosystems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport and Self-Assembly in Molecular Nanosystems Key Challenges: Use classical molecular dynamics and coarse grain molecular dynamics to enable "bottom-up" material...

  2. Sandia Energy - Atomistic Molecular Dynamics of Ion-Containing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomistic Molecular Dynamics of Ion-Containing Polymers Home Highlights - HPC Atomistic Molecular Dynamics of Ion-Containing Polymers Previous Next Atomistic Molecular Dynamics of...

  3. 2012 SINGLE MOLECULE APPROACHES TO BIOLOGY GORDON RESEARCH CONFERENCE (JULY 15-20, 2012 - MOUNT SNOW RESORT, WEST DOVER VT)

    SciTech Connect (OSTI)

    Fernandez, Julio [Columbia University

    2012-04-20

    Single molecule techniques are rapidly occupying a central role in biological research at all levels. This transition was made possible by the availability and dissemination of robust techniques that use fluorescence and force probes to track the conformation of molecules one at a time, in vitro as well as in live cells. Single-molecule approaches have changed the way many biological problems are studied. These novel techniques provide previously unobtainable data on fundamental biochemical processes that are essential for all forms of life. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of the molecular systems that underpin the functioning of living cells. Hence, our conference seeks to disseminate the implementation and use of single molecule techniques in the pursuit of new biological knowledge. Topics covered include: Molecular Motors on the Move; Origin And Fate Of Proteins; Physical Principles Of Life; Molecules and Super-resolution Microscopy; Nanoswitches In Action; Active Motion Or Random Diffusion?; Building Blocks Of Living Cells; From Molecular Mechanics To Physiology; Tug-of-war: Force Spectroscopy Of Single Proteins.

  4. Biological warfare in the littorals. Final report

    SciTech Connect (OSTI)

    Larsen, R.W.

    1997-05-01

    Biological warfare (BW) has emerged as a significant threat to military operations and is particularly challenging at the operational level of warfare in a littoral environment. There are compelling reasons why an operational commander should be concerned about BW: global proliferation of biotechnology and biological weapons capabilities; suitability of BW for disrupting force projection across the littorals; and the vulnerability of American, allied and coalition forces to BW. The threat of facing an adversary capable and willing to use biological weapons will influence the commander`s application of the operational art across the six operational functions. Degradation of operational tempo, effects of psychological responses among the force, and stress on the organizational structure may challenge the command and control process. Operational intelligence will demand robust integration of technical analysis, intentions and warnings, meteorological information, and medical intelligence. The maneuver and movement processes will be taxed to function effectively when ports and airfields offer such lucrative BW targets. Biological weapons may dictate the location of operational fires assets as well as the make-up of the target lists. Operational logistics assumes great importance in the medical functions, decontamination processes, and troop replacement and unit reconstitution. Operational protection encompasses nearly every aspect of BW defense and will demand a balance between what is necessary and what is possible to protect. As daunting as the challenges appear, the operational-level commander has at his disposal many tools necessary to prepare for biological warfare in the littorals. Ultimately, the commander must convince his force, his allies, and his enemies that the command can fight effectively in a BW environment, on land and sea.

  5. Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite

    SciTech Connect (OSTI)

    Black, Jennifer M; Walters, Deron; Labuda, Aleksander; Feng, Guang; Hillesheim, Patrick C; Dai, Sheng; Cummings, Peter T; Kalinin, Sergei V; Proksch, Roger; Balke, Nina

    2013-01-01

    Bias-dependent structure of electrochemical double layers at liquid-solid interfaces underpin a multitude of phenomena in virtually all areas of scientific enquiry ranging from energy storage and conversion systems, biology, to geophysics and geochemistry. Here we report the bias-evolution of the electric double layer structure of an ionic liquid on highly ordered pyrolytic graphite as a model system for carbon-based electrodes for electrochemical supercapacitors measured by atomic force microscopy. Matching the observed structures to molecular dynamics simulations allows us to resolve steric effects due to cation and anion layers. We observe reconfiguration under applied bias and the orientational transitions in the Stern layer. The synergy between molecular dynamics simulation and experiment provides a comprehensive picture of structural phenomena and long- and short range interactions. This insight will improve understanding of the mechanism of charge storage in electrochemical capacitors on a molecular level which can be used to enhance their electrochemical performance.

  6. A superradiance-based biological switch

    SciTech Connect (OSTI)

    Borgonovi, Fausto; Celardo, Giuseppe L.

    2014-10-15

    Using the concept of Superradiance Transition, we formulate the operational principles of a quantum device which can be used as a witness of wave-like behavior in molecular chains. We also test its reliability under the action of static diagonal noise, dephasing and phonon thermal bath at room temperature.

  7. Toward Molecular Catalysts by Computer

    SciTech Connect (OSTI)

    Raugei, Simone; DuBois, Daniel L.; Rousseau, Roger J.; Chen, Shentan; Ho, Ming-Hsun; Bullock, R. Morris; Dupuis, Michel

    2015-02-17

    Rational design of molecular catalysts requires a systematic approach to designing ligands with specific functionality and precisely tailored electronic and steric properties. It then becomes possible to devise computer protocols to predict accurately the required properties and ultimately to design catalysts by computer. In this account we first review how thermodynamic properties such as oxidation-reduction potentials (E0), acidities (pKa), and hydride donor abilities (ΔGH-) form the basis for a systematic design of molecular catalysts for reactions that are critical for a secure energy future (hydrogen evolution and oxidation, oxygen and nitrogen reduction, and carbon dioxide reduction). We highlight how density functional theory allows us to determine and predict these properties within “chemical” accuracy (~ 0.06 eV for redox potentials, ~ 1 pKa unit for pKa values, and ~ 1.5 kcal/mol for hydricities). These quantities determine free energy maps and profiles associated with catalytic cycles, i.e. the relative energies of intermediates, and help us distinguish between desirable and high-energy pathways and mechanisms. Good catalysts have flat profiles that avoid high activation barriers due to low and high energy intermediates. We illustrate how the criterion of a flat energy profile lends itself to the prediction of design points by computer for optimum catalysts. This research was carried out in the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle.

  8. Molecular pathways of angiogenesis inhibition

    SciTech Connect (OSTI)

    Tabruyn, Sebastien P.; Griffioen, Arjan W. . E-mail: aw.griffioen@path.unimaas.nl

    2007-03-30

    A large body of evidence now demonstrates that angiostatic therapy represents a promising way to fight cancer. This research recently resulted in the approval of First angiostatic agent for clinical treatment of cancer. Progress has been achieved in decrypting the cellular signaling in endothelial cells induced by angiostatic agents. These agents predominantly interfere with the molecular pathways involved in migration, proliferation and endothelial cell survival. In the current review, these pathways are discussed. A thorough understanding of the mechanism of action of angiostatic agents is required to develop efficient anti-tumor therapies.

  9. Uranium molecular laser isotope separation

    SciTech Connect (OSTI)

    Jensen, R.J.; Sullivan, A.

    1982-01-01

    The Molecular Laser Isotope Separation program is moving into the engineering phase, and it is possible to determine in some detail the plant cost terms involved in the process economics. A brief description of the MLIS process physics is given as a motivation to the engineering and economics discussion. Much of the plant cost arises from lasers and the overall optical system. In the paper, the authors discuss lasers as operating units and systems, along with temporal multiplexing and Raman shifting. Estimates of plant laser costs are given.

  10. Monitoring Biological Activity at Geothermal Power Plants

    SciTech Connect (OSTI)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  11. Developing Biological Specifications for Fish Friendly Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing Biological Specifications for Fish Friendly Turbines The U.S. Department of Energy's Advanced Hydropower Turbine Sys- tem (AHTS) Program supports the research and development of "envi- ronmentally friendly" turbines, i.e., turbine systems in which environmen- tal attributes, such as entrainment survival for fish, are emphasized. Advanced turbines would be suitable for installation at new hydropower facilities and potentially suitable for replacing aging turbines at existing

  12. Scanning Probe Microscopy with Spectroscopic Molecular Recognition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capable of 5 nm Chemical differentiation of surface features Applications and Industries Atomic force microscopy to study biological and chemical samples Chemical differentiation...

  13. Computational Tools to Assess Turbine Biological Performance

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Serkowski, John A.; Rakowski, Cynthia L.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2014-07-24

    Public Utility District No. 2 of Grant County (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now more than 50 years old. Plans are underway to refit these aging turbines with new runners. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when upgrading the turbines. In this paper, a method for turbine biological performance assessment (BioPA) is demonstrated. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We present an application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  14. KPFM and PFM of Biological Systems

    SciTech Connect (OSTI)

    Rodriguez, Brian [University College, Dublin; Kalinin, Sergei V [ORNL

    2011-01-01

    Surface potentials and electrostatic interactions in biological systems are a key element of cellular regulation and interaction. Examples include cardiac and muscular activity, voltage-gated ion channels, protein folding and assembly, and electroactive cells and electrotransduction. The coupling between electrical, mechanical, and chemical signals and responses in cellular systems necessitates the development of tools capable of measuring the distribution of charged species, surface potentials, and mechanical responses to applied electrical stimuli and vice versa, ultimately under physiological conditions. In this chapter, applications of voltage-modulated atomic force microscopy (AFM) methods including Kelvin probe force microscopy (KPFM) and piezoresponse force microscopy (PFM) to biological systems are discussed. KPFM is a force-sensitive non-contact or intermittent-contact mode AFM technique that allows electrostatic interactions and surface potentials to be addressed. Beyond long-range electrostatic interactions, the application of bias can lead to a mechanical response, e.g., due to linear piezoelectric coupling in polar biopolymers or via more complex electrotransduction and redox pathways in other biosystems. The use and development of PFM, based on direct electromechanical detection, to biological systems will also be addressed. The similarities and limitations of measuring surface potentials and electromechanical coupling in solution will be outlined.

  15. Biologically produced acid precipitable polymeric lignin

    DOE Patents [OSTI]

    Crawford, Don L. (Moscow, ID); Pometto, III, Anthony L. (Moscow, ID)

    1984-01-01

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  16. Elasticity of crystalline molecular explosives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; Cawkwell, Marc J.

    2015-04-14

    Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less

  17. Parallel Molecular Dynamics Program for Molecules

    Energy Science and Technology Software Center (OSTI)

    1995-03-07

    ParBond is a parallel classical molecular dynamics code that models bonded molecular systems, typically of an organic nature. It uses classical force fields for both non-bonded Coulombic and Van der Waals interactions and for 2-, 3-, and 4-body bonded (bond, angle, dihedral, and improper) interactions. It integrates Newton''s equation of motion for the molecular system and evaluates various thermodynamical properties of the system as it progresses.

  18. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Protein Structure Suggests Role as Molecular Adapter Print Wednesday, 24 June 2009 00:00 To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the replisome. An essential step in replisome assembly is the loading of ring-shaped helicases (motor proteins) onto the separated strands of DNA. Dedicated ATP-fueled proteins regulate the loading; however, the mechanism by which these proteins

  19. Towards Using Molecular States as Qubits

    SciTech Connect (OSTI)

    Goswami, Debabrata; Goswami, Tapas; Kumar, S. K. Karthick; Das, Dipak K.

    2011-09-23

    Molecular systems are presented as possible qubit systems by exploring non-resonant molecular fragmentation of n-propyl benzene with femtosecond laser pulses as a model case. We show that such laser fragmentation process is dependent on the phase and polarization characteristics of the laser. The effect of the chirp and polarization of the femtosecond pulse when applied simultaneously is mutually independent of each other, which makes chirp and polarization as useful 'logic' implementing parameters for such molecular qubits.

  20. Accelerated Molecular Dynamics Methods | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molecular Dynamics Methods Accelerated Molecular Dynamics Methods This presentation on Accelerated Molecular Dynamics Methods was given at the DOE Theory Focus Session on Hydrogen Storage Materials on May 18, 2006. PDF icon storage_theory_session_voter.pdf More Documents & Publications Simulations of Kinetic Events at the Atomic Scale Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Waste Characterization, Reduction, and Repackaging Facility (WCRRF)

  1. Production of high molecular weight polylactic acid

    DOE Patents [OSTI]

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  2. Production of high molecular weight polylactic acid

    DOE Patents [OSTI]

    Bonsignore, Patrick V. (Joilet, IL)

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  3. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

  4. DOE Issues Request for Information on Biological Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biological Hydrogen Production DOE Issues Request for Information on Biological Hydrogen Production January 23, 2014 - 12:00am Addthis The U.S. Department of Energy's (DOE's) Fuel...

  5. The Biological Implications of the PP2A Crystal Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Biological Implications of the PP2A Crystal Structure The Biological Implications of the PP2A Crystal Structure Print Wednesday, 30 January 2008 00:00 Phosphatases, enzymes...

  6. BioLogical Capital BLC | Open Energy Information

    Open Energy Info (EERE)

    BioLogical Capital BLC Jump to: navigation, search Name: BioLogical Capital (BLC) Place: Denver, Colorado Zip: 80202 Product: Denver Colorado-based group focusing on generating...

  7. Nanocrystal and Molecular Precursors for Photovoltaic Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanocrystal and Molecular Precursors for Photovoltaic Applications The objective in this proposal is to identify factors that limit the efficiency of nanocrystal based solar cells...

  8. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report You are accessing a document from the Department of Energy's (DOE)...

  9. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report In this Quarter, the research was focused continually on the...

  10. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 The research was...

  11. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 You are accessing a...

  12. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    July--September 1995 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report, July--September 1995 You are accessing...

  13. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    October--December 1994 Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report, October--December 1994 In this Quarter, the...

  14. Molecular catalytic coal liquid conversion. Quarterly report...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly report In this Quarter, the research was focused continually on the two...

  15. Molecular catalytic coal liquid conversion. Quarterly status...

    Office of Scientific and Technical Information (OSTI)

    report Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion. Quarterly status report You are accessing a document from the Department of...

  16. Molecular catalytic hydrogenation of aromatic hydrocarbons and...

    Office of Scientific and Technical Information (OSTI)

    hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids. Citation Details In-Document Search Title: Molecular catalytic hydrogenation of aromatic hydrocarbons and...

  17. Communication: Quantum molecular dynamics simulation of liquid...

    Office of Scientific and Technical Information (OSTI)

    Communication: Quantum molecular dynamics simulation of liquid para-hydrogen by nuclear and electron wave packet approach Citation Details In-Document Search Title: Communication:...

  18. PNNL: Center for Molecular Electrocatalysis - Using Hydrogenase...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Hydrogenase Enzymes to Guide Creating Fast and Efficient Molecular Electrocatalysts January 2011 To create solar assemblies that use sunlight to split water and create...

  19. Molecular Manipulations of Symmetry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Manipulations of Symmetry Researchers have studied the effect of concentration on the activity and selectivity in a zirconium-catalyzed hydroamination reaction. In this...

  20. Nanoscopic Electrode Molecular Probes - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other molecular sensing Applications and Industries Cancer genome sequencing Comparative genome sequencing Human genotyping Medical sequencing Model systems Parasite and vector...

  1. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Authors: Kane, J ...

  2. Molecular interactions with ice: Molecular embedding, adsorption, detection, and release

    SciTech Connect (OSTI)

    Gibson, K. D.; Langlois, Grant G.; Li, Wenxin; Sibener, S. J.; Killelea, Daniel R.

    2014-11-14

    The interaction of atomic and molecular species with water and ice is of fundamental importance for chemistry. In a previous series of publications, we demonstrated that translational energy activates the embedding of Xe and Kr atoms in the near surface region of ice surfaces. In this paper, we show that inert molecular species may be absorbed in a similar fashion. We also revisit Xe embedding, and further probe the nature of the absorption into the selvedge. CF{sub 4} molecules with high translational energies (?3 eV) were observed to embed in amorphous solid water. Just as with Xe, the initial adsorption rate is strongly activated by translational energy, but the CF{sub 4} embedding probability is much less than for Xe. In addition, a larger molecule, SF{sub 6}, did not embed at the same translational energies that both CF{sub 4} and Xe embedded. The embedding rate for a given energy thus goes in the order Xe > CF{sub 4} > SF{sub 6}. We do not have as much data for Kr, but it appears to have a rate that is between that of Xe and CF{sub 4}. Tentatively, this order suggests that for Xe and CF{sub 4}, which have similar van der Waals radii, the momentum is the key factor in determining whether the incident atom or molecule can penetrate deeply enough below the surface to embed. The more massive SF{sub 6} molecule also has a larger van der Waals radius, which appears to prevent it from stably embedding in the selvedge. We also determined that the maximum depth of embedding is less than the equivalent of four layers of hexagonal ice, while some of the atoms just below the ice surface can escape before ice desorption begins. These results show that energetic ballistic embedding in ice is a general phenomenon, and represents a significant new channel by which incident species can be trapped under conditions where they would otherwise not be bound stably as surface adsorbates. These findings have implications for many fields including environmental science, trace gas collection and release, and the chemical composition of astrophysical icy bodies in space.

  3. A review on nanomechanical resonators and their applications in sensors and molecular transportation

    SciTech Connect (OSTI)

    Arash, Behrouz; Rabczuk, Timon; Jiang, Jin-Wu

    2015-06-15

    Nanotechnology has opened a new area in science and engineering, leading to the development of novel nano-electromechanical systems such as nanoresonators with ultra-high resonant frequencies. The ultra-high-frequency resonators facilitate wide-ranging applications such as ultra-high sensitive sensing, molecular transportation, molecular separation, high-frequency signal processing, and biological imaging. This paper reviews recent studies on dynamic characteristics of nanoresonators. A variety of theoretical approaches, i.e., continuum modeling, molecular simulations, and multiscale methods, in modeling of nanoresonators are reviewed. The potential application of nanoresonators in design of sensor devices and molecular transportation systems is introduced. The essence of nanoresonator sensors for detection of atoms and molecules with vibration and wave propagation analyses is outlined. The sensitivity of the resonator sensors and their feasibility in detecting different atoms and molecules are particularly discussed. Furthermore, the applicability of molecular transportation using the propagation of mechanical waves in nanoresonators is presented. An extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed. The article aims to provide an up-to-date review on the mechanical properties and applications of nanoresonators, and inspire additional potential of the resonators.

  4. Hydro Review: Computational Tools to Assess Turbine Biological Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Hydro Review: Computational Tools to Assess Turbine Biological Performance Hydro Review: Computational Tools to Assess Turbine Biological Performance This review covers the BioPA method used to analyze the biological performance of proposed designs to help ensure the safety of fish passing through the turbines at the Priest Rapids Dam in Grant County, Washington. PDF icon Computational Tools to Assess Turbine Biological Performance More Documents & Publications

  5. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy Boundary Analysis of Biological Pathways to Hydrogen Production Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation. PDF icon Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production More Documents & Publications Techno-Economic Boundary Analysis

  6. 2013 Biological Hydrogen Production Workshop Summary Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Biological Hydrogen Production Workshop Summary Report 2013 Biological Hydrogen Production Workshop Summary Report November 2013 summary report for the 2013 Biological Hydrogen Production Workshop. PDF icon bio_h2_workshop_final_report.pdf More Documents & Publications The Hydrogen Program at NREL: A Brief Overview Hydrogenases and Barriers for Biotechnological Hydrogen Production Technolog

  7. Computational Cell Environment: A Problem Solving Environment for integrating diverse biological data

    SciTech Connect (OSTI)

    Klicker, Kyle R.; Singhal, Mudita; Stephan, Eric G.; Trease, Lynn L.; Gracio, Deborah K.

    2004-06-22

    Biologists and bioinformaticists face the ever-increasing challenge of managing large datasets queried from diverse data sources. Genomics and proteomics databases such as the National Center for Biotechnology (NCBI), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the European Molecular Biology Laboratory (EMBL) are becoming the standard biological data department stores that biologists visit on a regular basis to obtain the supplies necessary for conducting their research. However, much of the data that biologists retrieve from these databases needs to be further managed and organized in a meaningful way so that the researcher can focus on the problem that they are trying to investigate and share their data and findings with other researchers. We are working towards developing a problem-solving environment called the Computational Cell Environment (CCE) that provides connectivity to these diverse data stores and provides data retrieval, management, and analysis through all aspects of biological study. In this paper we discuss the system and database design of CCE. We also outline a few problems encountered at various stages of its development and the design decisions taken to resolve them.

  8. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    SciTech Connect (OSTI)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  9. Synchronous Behavior of Two Coupled Biological Neurons

    SciTech Connect (OSTI)

    Elson, R.C.; Selverston, A.I.; Elson, R.C.; Selverston, A.I.; Huerta, R.; Rulkov, N.F.; Rabinovich, M.I.; Abarbanel, H.D.; Selverston, A.I.; Huerta, R.; Abarbanel, H.D.

    1998-12-01

    We report experimental studies of synchronization phenomena in a pair of biological neurons that interact through naturally occurring, electrical coupling. When these neurons generate irregular bursts of spikes, the natural coupling synchronizes slow oscillations of membrane potential, but not the fast spikes. By adding artificial electrical coupling we studied transitions between synchrony and asynchrony in both slow oscillations and fast spikes. We discuss the dynamics of bursting and synchronization in living neurons with distributed functional morphology. {copyright} {ital 1998} {ital The American Physical Society}

  10. A brief history of the Biology Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex Most of the "Biology" buildings were constructed in early 1945 and were built as expansion capability for the uranium preparation operations being conducted across the street in Buildings 9202 and 9203. These two buildings were built in 1943 and were being used to convert the refined uranium to the material required as feed or source material for the Y-12 calutrons used to separate the uranium 235 isotope from the more common uranium 238. Within a year of operation, the process

  11. LABORATORY OF NUCLEAR MEDICINE AND RADIATION BIOLOGY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEDICINE AND RADIATION BIOLOGY 900 VETERAN AVENUE UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024 AND DEPARTMENT OF RADIOLOGICAL SCIENCES UCLA SCHOOL OF MEDICINE, LOS ANGELES, CALIFORNIA 90024 This manuscript is a contribution to the monograph edited by Daniel S. Berman and Dean Mason, entitled "Clinical Nuclear Cardiology". These studies were supported by Contract #DE-AM03-76-SF00012 between the U.S. Department of Energy and the University of California Prepared for the U.S.

  12. LANSCE | Lujan Center | Biology Preparation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biology Preparation Laboratory The Lujan Center Biolab offers a variety of capabilities. 1) Biodeuteration Lab (BDL) We run a protein expression lab for perdeuteration of user proteins. We offer full perdeuteration (~99%) using our algal-based media for bacterial growth. We also have M9 minimal media made in D2O for expression of up to ~85% perdeuteration. Users can use our lab in person or mail-in a plasmid for us to express for them. We also have standard protein expression equipment:

  13. Historical Information H.2 Biological Studies

    Office of Legacy Management (LM)

    _-_ . - H.2 Biological Studies (0 \ j ; : : j Book . l Ad Hoc Rulison Review Panel Comments Regarding Re-Entry , and Testing Operations, December 22, 1969 This page intentionally left blank December 22, 1969 M r . Robert E. Miller, Manager Nevada Operations Office U. S. Atomic Energy Commission Post Office Box 14100 Las Vegas, Nevada 89114 Dear M r . Miller: F4cmbers of t h e A d Hoc Rulison Review Panel reconvened on December 22, 1969, t o hear and discuss comments r e s u l t i n g from our

  14. 08-ERD-071 Final Report: New Molecular Probes and Catalysts for Bioenergy Research

    SciTech Connect (OSTI)

    Thelen, M P; Rowe, A A; Siebers, A K; Jiao, Y

    2011-03-07

    A major thrust in bioenergy research is to develop innovative methods for deconstructing plant cell wall polymers, such as cellulose and lignin, into simple monomers that can be biologically converted to ethanol and other fuels. Current techniques for monitoring a broad array of cell wall materials and specific degradation products are expensive and time consuming. To monitor various polymers and assay their breakdown products, molecular probes for detecting specific carbohydrates and lignins are urgently needed. These new probes would extend the limited biochemical techniques available, and enable realtime imaging of ultrastructural changes in plant cells. Furthermore, degradation of plant biomass could be greatly accelerated by the development of catalysts that can hydrolyze key cell wall polysaccharides and lignin. The objective of this project was to develop cheap and efficient DNA reagents (aptamers) used to detect and quantify polysaccharides, lignin, and relevant products of their breakdown. A practical goal of the research was to develop electrochemical aptamer biosensors, which could be integrated into microfluidic devices and used for high-throughput screening of enzymes or biological systems that degrade biomass. Several important model plant cell wall polymers and compounds were targeted for specific binding and purification of aptamers, which were then tested by microscopic imaging, circular dichroism, surface plasmon resonance, fluorescence anisotropy, and electrochemical biosensors. Using this approach, it was anticiated that we could provide a basis for more efficient and economically viable biofuels, and the technologies established could be used to design molecular tools that recognize targets sought in medicine or chemical and biological defense projects.

  15. Signature molecular descriptor : advanced applications.

    SciTech Connect (OSTI)

    Visco, Donald Patrick, Jr.

    2010-04-01

    In this work we report on the development of the Signature Molecular Descriptor (or Signature) for use in the solution of inverse design problems as well as in highthroughput screening applications. The ultimate goal of using Signature is to identify novel and non-intuitive chemical structures with optimal predicted properties for a given application. We demonstrate this in three studies: green solvent design, glucocorticoid receptor ligand design and the design of inhibitors for Factor XIa. In many areas of engineering, compounds are designed and/or modified in incremental ways which rely upon heuristics or institutional knowledge. Often multiple experiments are performed and the optimal compound is identified in this brute-force fashion. Perhaps a traditional chemical scaffold is identified and movement of a substituent group around a ring constitutes the whole of the design process. Also notably, a chemical being evaluated in one area might demonstrate properties very attractive in another area and serendipity was the mechanism for solution. In contrast to such approaches, computer-aided molecular design (CAMD) looks to encompass both experimental and heuristic-based knowledge into a strategy that will design a molecule on a computer to meet a given target. Depending on the algorithm employed, the molecule which is designed might be quite novel (re: no CAS registration number) and/or non-intuitive relative to what is known about the problem at hand. While CAMD is a fairly recent strategy (dating to the early 1980s), it contains a variety of bottlenecks and limitations which have prevented the technique from garnering more attention in the academic, governmental and industrial institutions. A main reason for this is how the molecules are described in the computer. This step can control how models are developed for the properties of interest on a given problem as well as how to go from an output of the algorithm to an actual chemical structure. This report provides details on a technique to describe molecules on a computer, called Signature, as well as the computer-aided molecule design algorithm built around Signature. Two applications are provided of the CAMD algorithm with Signature. The first describes the design of green solvents based on data in the GlaxoSmithKline (GSK) Solvent Selection Guide. The second provides novel non-steroidal glucocorticoid receptor ligands with some optimally predicted properties. In addition to using the CAMD algorithm with Signature, it is demonstrated how to employ Signature in a high-throughput screening study. Here, after classifying both active and inactive inhibitors for the protein Factor XIa using Signature, the model developed is used to screen a large, publicly-available database called PubChem for the most active compounds.

  16. Acceptance Criteria Framework for Autonomous Biological Detectors

    SciTech Connect (OSTI)

    Dzenitis, J M

    2006-12-12

    The purpose of this study was to examine a set of user acceptance criteria for autonomous biological detection systems for application in high-traffic, public facilities. The test case for the acceptance criteria was the Autonomous Pathogen Detection System (APDS) operating in high-traffic facilities in New York City (NYC). However, the acceptance criteria were designed to be generally applicable to other biological detection systems in other locations. For such detection systems, ''users'' will include local authorities (e.g., facility operators, public health officials, and law enforcement personnel) and national authorities [including personnel from the Department of Homeland Security (DHS), the BioWatch Program, the Centers for Disease Control and Prevention (CDC), and the Federal Bureau of Investigation (FBI)]. The panel members brought expertise from a broad range of backgrounds to complete this picture. The goals of this document are: (1) To serve as informal guidance for users in considering the benefits and costs of these systems. (2) To serve as informal guidance for developers in understanding the needs of users. In follow-up work, this framework will be used to systematically document the APDS for appropriateness and readiness for use in NYC.

  17. Biological and Environmental Research Network Requirements

    SciTech Connect (OSTI)

    Balaji, V.; Boden, Tom; Cowley, Dave; Dart, Eli; Dattoria, Vince; Desai, Narayan; Egan, Rob; Foster, Ian; Goldstone, Robin; Gregurick, Susan; Houghton, John; Izaurralde, Cesar; Johnston, Bill; Joseph, Renu; Kleese-van Dam, Kerstin; Lipton, Mary; Monga, Inder; Pritchard, Matt; Rotman, Lauren; Strand, Gary; Stuart, Cory; Tatusova, Tatiana; Tierney, Brian; Thomas, Brian; Williams, Dean N.; Zurawski, Jason

    2013-09-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet be a highly successful enabler of scientific discovery for over 25 years. In November 2012, ESnet and the Office of Biological and Environmental Research (BER) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the BER program office. Several key findings resulted from the review. Among them: 1) The scale of data sets available to science collaborations continues to increase exponentially. This has broad impact, both on the network and on the computational and storage systems connected to the network. 2) Many science collaborations require assistance to cope with the systems and network engineering challenges inherent in managing the rapid growth in data scale. 3) Several science domains operate distributed facilities that rely on high-performance networking for success. Key examples illustrated in this report include the Earth System Grid Federation (ESGF) and the Systems Biology Knowledgebase (KBase). This report expands on these points, and addresses others as well. The report contains a findings section as well as the text of the case studies discussed at the review.

  18. Quantifying evolvability in small biological networks

    SciTech Connect (OSTI)

    Nemenman, Ilya; Mugler, Andrew; Ziv, Etay; Wiggins, Chris H

    2008-01-01

    The authors introduce a quantitative measure of the capacity of a small biological network to evolve. The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296, pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a reporter gene as the functional output. The authors take an information-theoretic approach, allowing the system to set parameters that optimise signal processing ability, thus enumerating each network's highest-fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function has little dependence on change in parameters. Moreover, each network's functions are connected by paths in the parameter space along which information is not significantly lowered, meaning a network may continuously change its functionality without completely losing it along the way. This property further underscores the evolvability of the networks.

  19. Recovery from chemical, biological, and radiological incidents :

    SciTech Connect (OSTI)

    Franco, David Oliver; Yang, Lynn I.; Hammer, Ann E.

    2012-06-01

    To restore regional lifeline services and economic activity as quickly as possible after a chemical, biological or radiological incident, emergency planners and managers will need to prioritize critical infrastructure across many sectors for restoration. In parallel, state and local governments will need to identify and implement measures to promote reoccupation and economy recovery in the region. This document provides guidance on predisaster planning for two of the National Disaster Recovery Framework Recovery Support Functions: Infrastructure Systems and Economic Recovery. It identifies key considerations for infrastructure restoration, outlines a process for prioritizing critical infrastructure for restoration, and identifies critical considerations for promoting regional economic recovery following a widearea disaster. Its goal is to equip members of the emergency preparedness community to systematically prioritize critical infrastructure for restoration, and to develop effective economic recovery plans in preparation for a widearea CBR disaster.

  20. Biology and Medicine Division annual report, 1985

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    This book briefly describes the activities of the Biology and Medicine Division of the Lawrence Berkeley Laboratory. During the past year the Donner Pavilion program on the treatment of arteriovenous malformations in the brain has chalked up very significant successes. The disease control rate has been high and objective measures of success using cerebral angiography have been established. The new high resolution positron emitting tomographic imager has been demonstrated to operate successfully. In the Radiation Biophysics program, the availability of higher mass ions up to uranium has allowed us cell and tissue studies in a radiation domain that is entirely new. Using uranium beams, investigators have already made new and exciting findings that are described in the body of the report.

  1. 2010 Diffraction Methods in Structural Biology

    SciTech Connect (OSTI)

    Dr. Ana Gonzalez

    2011-03-10

    Advances in basic methodologies have played a major role in the dramatic progress in macromolecular crystallography over the past decade, both in terms of overall productivity and in the increasing complexity of the systems being successfully tackled. The 2010 Gordon Research Conference on Diffraction Methods in Structural Biology will, as in the past, focus on the most recent developments in methodology, covering all aspects of the process from crystallization to model building and refinement, complemented by examples of structural highlights and complementary methods. Extensive discussion will be encouraged and it is hoped that all attendees will participate by giving oral or poster presentations, the latter using the excellent poster display area available at Bates College. The relatively small size and informal atmosphere of the meeting provides an excellent opportunity for all participants, especially younger scientists, to meet and exchange ideas with leading methods developers.

  2. Plant biology research and training for the 21st century

    SciTech Connect (OSTI)

    Kelly, K.

    1992-01-01

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  3. Plant biology research and training for the 21st century

    SciTech Connect (OSTI)

    Kelly, K.

    1992-12-31

    The committee was assembled in response to a request from the National Science Foundation (NSF), the US Department of Agriculture (USDA), and the US Department of Energy (DoE). The leadership of these agencies asked the National Academy of Sciences through the National Research Council (NRC) to assess the status of plant-science research in the United States in light of the opportunities arising from advances inother areas of biology. NRC was asked to suggest ways of accelerating the application of these new biologic concepts and tools to research in plant science with the aim of enhancing the acquisition of new knowledge about plants. The charge to the committee was to examine the following: Organizations, departments, and institutions conducting plant biology research; human resources involved in plant biology research; graduate training programs in plant biology; federal, state, and private sources of support for plant-biology research; the role of industry in conducting and supporting plant-biology research; the international status of US plant-biology research; and the relationship of plant biology to leading-edge research in biology.

  4. Niobate-based octahedral molecular sieves

    DOE Patents [OSTI]

    Nenoff, Tina M.; Nyman, May D.

    2006-10-17

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  5. Niobate-based octahedral molecular sieves

    DOE Patents [OSTI]

    Nenoff, Tina M.; Nyman, May D.

    2003-07-22

    Niobate-based octahedral molecular sieves having significant activity for multivalent cations and a method for synthesizing such sieves are disclosed. The sieves have a net negatively charged octahedral framework, comprising niobium, oxygen, and octahedrally coordinated lower valence transition metals. The framework can be charge balanced by the occluded alkali cation from the synthesis method. The alkali cation can be exchanged for other contaminant metal ions. The ion-exchanged niobate-based octahedral molecular sieve can be backexchanged in acidic solutions to yield a solution concentrated in the contaminant metal. Alternatively, the ion-exchanged niobate-based octahedral molecular sieve can be thermally converted to a durable perovskite phase waste form.

  6. B13+: Photodriven Molecular Wankel Engine

    SciTech Connect (OSTI)

    Zhang, Jin; Sergeeva, Alina P.; Sparta, Manuel; Alexandrova, Anastassia N.

    2012-07-09

    Synthetic molecular motors that are capable of delivering controlled movement upon energy input are one of the key building blocks in nanomachinery. The major energy sources of molecular motors are from chemical reactions, photon beams, or electric current, which are converted into mechanical forces through the excitation of the electronic states of the molecule. The energy scale of the electronic excitation is normally two orders of magnitude larger than the molecular vibrational frequencies. To reduce the heat dissipation and increase the energy utilization efficiency, a motor running purely on the electronic ground-state (GS) potential energy surfaces is highly desirable.

  7. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    SciTech Connect (OSTI)

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese's group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  8. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    SciTech Connect (OSTI)

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese`s group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  9. Ultra-spatial synchrotron radiation for imaging molecular chemical structure: Applications in plant and animal studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Peiqiang

    2007-01-01

    Synchrotron-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical features and make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced synchrotron technique to the study of plant and animal tissues' inherent structure at a cellular or subcellular level. In this article, a novel approach was introduced to show the potential of themore » newly developed, advanced synchrotron-based analytical technology, which can be used to reveal molecular structural-chemical features of various plant and animal tissues.« less

  10. Molecular Characterization of Bacterial Respiration on Minerals

    SciTech Connect (OSTI)

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength anomalous dispersion (MAD) phasing; 4. An acid-stable red cytochrome with a novel absorbance peak at 579 nm was purified from cell-free extracts of L. ferriphilum. Functional studies demonstrated that this cytochrome was an important component of the aerobic iron respiratory chain in this organism; 5. The specific adhesion of At. ferrooxidans to pyrite is mediated by an extracellular protein that was identified as aporusticyanin. The adhesion of At. ferrooxidans to minerals was characterized by high affinity binding that exhibited a high specificity for pyrite over other sulfide minerals. The principal biopolymer involved in this high-affinity adhesion to pyrite was isolated by mineral affinity chromatography and identified as aporusticyanin. The adhesion of purified aporusticyanin to minerals was observed to adhere to different mineral with a pattern of reactivity identical to that observed with the intact bacterium. Further, preincubation of pyrite with excess exogenous aporusticyanin served to inhibit the adherence of intact cells to the surface of the mineral, indicating that the protein and the cells adhered to the pyrite in a mutually exclusive manner. Taken together, these observations support a model where aporusticyanin located on the surface of the bacterial cell acts as a mineral-specific receptor for the initial adherence of At. ferrooxidans to solid pyrite; 6. The specific adhesion of L. ferriphilum to pyrite was mediated by a different acid-stable extracellular protein than aporusticyanin; and 7. A prototype integrating cavity absorption meter (ICAM) was assembled to determine whether this novel spectrophotometer could be used to study cellular respiration in situ.

  11. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  12. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  13. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  14. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  15. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  16. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  17. Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Measurements of the Deep-Sea Oil Plume in the Gulf of Mexico Print Microbial Mitigation The Deepwater Horizon blowout in the Gulf of Mexico on April 20, 2010, resulted in the largest oil spill in the history of the United States. The biological effects and expected fate of the oil are unknown, partly due to the extreme depth and magnitude of this event and partly due to the primary initial mitigation strategy that injected unprecedented quantities of oil dispersant directly at the

  18. Nonequilibrium Molecular Dynamics Simulations of the Rheology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Classical Molecular Dynamics Codes and Coupling of Length Scales Peter T. Cummings 1,2 , Normand Modine 3 and Randy Cygan 4 1 Chemical and Biomolecular Engineering, Vanderbilt U. 2...

  19. Yuan T. Lee's Crossed Molecular Beam Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The above illustration was drawn by Professor Yuan T. Lee, who shared the 1986 Nobel Prize in Chemistry. It shows the design for his crossed molecular beam experiment described in ...

  20. Environmental Molecular Sciences Laboratory 2007 Annual Report

    SciTech Connect (OSTI)

    Showalter, Mary Ann; Foster, Nancy S.

    2008-03-19

    This annual report provides details on the research conducted at the Environmental Molecular Sciences Laboratory in Fiscal Year 2007 and path forward for capability upgrades in Fiscal Year 2008.

  1. Molecular dynamics simulation studies of electrolytes andelectrolyte...

    Broader source: Energy.gov (indexed) [DOE]

    Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es40smith.pdf More Documents & Publications Molecular Dynamics Simulation Studies of Electrolytes ...

  2. Microdialysis unit for molecular weight separation

    DOE Patents [OSTI]

    Smith, Richard D. (Richland, WA); Liu, Chuanliang (Richland, WA)

    1999-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  3. SECTION IV: ATOMIC, MOLECULAR AND MATERIALS SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATOMIC, MOLECULAR AND MATERIALS SCIENCE A semiempirical scaling law for target K x-ray production in heavy ion collisions... IV-1 R. L. Watson, Y. Peng, V. Horvat, and A....

  4. Modular microfluidic system for biological sample preparation (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Modular microfluidic system for biological sample preparation Citation Details In-Document Search Title: Modular microfluidic system for biological sample preparation A reconfigurable modular microfluidic system for preparation of a biological sample including a series of reconfigurable modules for automated sample preparation adapted to selectively include a) a microfluidic acoustic focusing filter module, b) a dielectrophoresis bacteria filter module, c) a dielectrophoresis

  5. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Biological Conversion of Sugars to Hydrocarbons Technology Pathway Citation Details In-Document Search Title: Biological Conversion of Sugars to Hydrocarbons Technology Pathway This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research

  6. DOE Releases Biological Monitoring and Sampling Results Report for the

    Energy Savers [EERE]

    Amchitka, Alaska, Site | Department of Energy Biological Monitoring and Sampling Results Report for the Amchitka, Alaska, Site DOE Releases Biological Monitoring and Sampling Results Report for the Amchitka, Alaska, Site October 28, 2013 - 3:39pm Addthis Contractor, Judy Miller, S.M. Stoller Corporation Public Affairs, (970) 248-6363 jmiller@lm.doe.gov GRAND JUNCTION, Colo. - The U.S. Department of Energy today announced the availability of the Amchitka Island, Alaska, Biological Monitoring

  7. Renewable Hydrogen Production from Biological Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy from Biological Systems Renewable Hydrogen Production from Biological Systems Presentation by Matthew Posewitz, Colorado School of Mines, at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. PDF icon bio_h2_workshop_posewitz.pdf More Documents & Publications The Hydrogen Program at NREL: A Brief Overview Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report

  8. EERE Success Story-California: Breakthrough in Algae Biology | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy Breakthrough in Algae Biology EERE Success Story-California: Breakthrough in Algae Biology January 31, 2014 - 12:00am Addthis Researchers at the Scripps Institution of Oceanography at University of California, San Diego, have made a significant breakthrough in algal biology with implications for biofuels. Algae typically overproduce lipid oils-energy-storing fat molecules used in biofuel production-when they are starved for nutrients, but this starvation also limits their growth

  9. DOE Issues Request for Information on Biological Hydrogen Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Biological Hydrogen Production DOE Issues Request for Information on Biological Hydrogen Production January 23, 2014 - 12:00am Addthis The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office has issued a request for information (RFI) seeking feedback from interested stakeholders regarding biological hydrogen production research and development (R&D) pathways, barriers, issues, and opportunities for development of technologies that can ultimately produce

  10. Deadline Extended for RFI on Biological Hydrogen Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy on Biological Hydrogen Production Deadline Extended for RFI on Biological Hydrogen Production February 26, 2014 - 12:00am Addthis DOE has extended the submission deadline for this Request for Information. Responses must be submitted by 5:00 p.m. Eastern Time on March 14, 2014. The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office has issued a request for information (RFI) seeking feedback from interested stakeholders regarding biological hydrogen production research

  11. California Valley Solar Ranch Biological Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Valley Solar Ranch Biological Assessment California Valley Solar Ranch Biological Assessment Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California High Plains Ranch II, LLC (HPR II), a wholly owned subsidiary of SunPower Corporation, Systems ("SunPower") proposes to construct a 250-megawatt (MW) solar photovoltaic (PV) energy plant, the California Valley Solar Ranch Project (CVSR Project or Project), on a 4,747acre site in

  12. Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production (2009) | Department of Energy Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009) Techno-Economic Boundary Analysis of Biological Pathways to Hydrogen Production (2009) Presentation by Brian James, Strategic Analysis Inc., at the Biological Hydrogen Production Workshop held September 24-25, 2013, at the National Renewable Energy Laboratory in Golden, Colorado. PDF icon bio_h2_workshop_james.pdf More Documents & Publications Technoeconomic

  13. Synthetic biology and crop engineering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synthetic biology and crop engineering Synthetic biology and crop engineering Breakout Session 2: Frontiers and Horizons Session 2-A: Synthetic Biology and the Promise of Biofuels Jonathan Burbaum, Program Director, Department of Energy, Office of Science, ARPA-E PDF icon b13_burbaum_2-a.pdf More Documents & Publications EIS-0481: Final Programmatic Environmental Impact Statement EIS-0481: Draft Programmatic Environmental Impact Statement EIS-0481: Notice of Intent to Prepare a Programmatic

  14. California: Breakthrough in Algae Biology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Breakthrough in Algae Biology California: Breakthrough in Algae Biology January 31, 2014 - 12:00am Addthis Researchers at the Scripps Institution of Oceanography at University of California, San Diego, have made a significant breakthrough in algal biology with implications for biofuels. Algae typically overproduce lipid oils-energy-storing fat molecules used in biofuel production-when they are starved for nutrients, but this starvation also limits their growth and multiplication. The Scripps

  15. Kahuku Wind Power Biological Opinion | Department of Energy

    Office of Environmental Management (EM)

    Kahuku Wind Power Biological Opinion Kahuku Wind Power Biological Opinion Kahuku Wind Power, LLC, Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu, Hawaii PDF icon Kahuku Wind Power Biological Opinion More Documents & Publications EA-1726: Final Environmental Assessment EA-1374: Final Environmental Assessment Wind Turbine Interactions with Birds, Bats, and their Habitats: A Summary of Research Results and Priority Questions

  16. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the replisome. An essential step in replisome assembly is the loading of ring-shaped helicases (motor proteins) onto the separated strands of DNA. Dedicated ATP-fueled proteins regulate the loading; however, the mechanism by which these proteins recruit and deposit helicases has remained unclear. To better understand this

  17. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the replisome. An essential step in replisome assembly is the loading of ring-shaped helicases (motor proteins) onto the separated strands of DNA. Dedicated ATP-fueled proteins regulate the loading; however, the mechanism by which these proteins recruit and deposit helicases has remained unclear. To better understand this

  18. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the replisome. An essential step in replisome assembly is the loading of ring-shaped helicases (motor proteins) onto the separated strands of DNA. Dedicated ATP-fueled proteins regulate the loading; however, the mechanism by which these proteins recruit and deposit helicases has remained unclear. To better understand this

  19. Protein Structure Suggests Role as Molecular Adapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protein Structure Suggests Role as Molecular Adapter Print To split and copy DNA during replication, all cellular organisms use a multicomponent molecular machine known as the replisome. An essential step in replisome assembly is the loading of ring-shaped helicases (motor proteins) onto the separated strands of DNA. Dedicated ATP-fueled proteins regulate the loading; however, the mechanism by which these proteins recruit and deposit helicases has remained unclear. To better understand this

  20. Decoding the Molecular Mysteries of Photosynthesis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Decoding Photosynthesis' Molecular Mysteries Decoding the Molecular Mysteries of Photosynthesis Understanding the inner workings of photosynthesis is key to building new man-made energy resources February 14, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov grana_2.jpg Two protein assemblies in a plant cell's chloroplasts -- Photosystem II (blue and red) and light-harvesting complex II (green and purple) -- are key to initiating photosynthesis. This visualization illustrates how

  1. Dudley Herschbach: Chemical Reactions and Molecular Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dudley Herschbach: Chemical Reactions and Molecular Beams Resources with Additional Information Dudley Herschbach Courtesy of Texas A&M University As a co-recipient of the 1986 Nobel Prize in Chemistry, 'Dudley Herschbach was cited for "providing a much more detailed understanding of how chemical reactions take place". Using molecular beams, he studied elementary reactions such as K + CH3I and K + Br2, where it became possible to correlate reaction dynamics with the electronic

  2. Molecular Dynamics Simulation Studies of Electrolytes and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolyte/Electrode Interfaces | Department of Energy Dynamics Simulation Studies of Electrolytes and Electrolyte/Electrode Interfaces Molecular Dynamics Simulation Studies of Electrolytes and Electrolyte/Electrode Interfaces 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon es058_smith_2010_p.pdf More Documents & Publications Molecular dynamics simulation and ab intio studies of electrolytes

  3. Molecular dynamics simulation studies of electrolytes and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electrolyte/electrode interfaces | Department of Energy studies of electrolytes and electrolyte/electrode interfaces Molecular dynamics simulation studies of electrolytes and electrolyte/electrode interfaces 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon es_40_smith.pdf More Documents & Publications Molecular Dynamics Simulation Studies of Electrolytes and Electrolyte/Electrode

  4. PNNL: Center for Molecular Electrocatalysis About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Morris Bullock, CME Director About Us About the Center for Molecular Electrocatalysis To improve reactions important for solar energy storage and fuel cells, the Center for Molecular Electrocatalysis seeks to transform our ability to design electrocatalysts that convert electrical energy into the chemical bonds of fuels, or the reverse, convert chemical energy into electrical energy. Our researchers seek to understand, predict, and control the intra- and intermolecular flow of protons in

  5. MEIS: Molecular Environmental & Interface Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People BL 11-2 Reports &Publications Model Compound Library SixPACK Glitch Curves MES User Resources & Instrumentation Environmental Remediation Science at SSRL MEIS Home SSRL Stanford EMSI SLAC Beam line resources and instrumentation Fundamental and applied research Why synchrotrons for environmental science? Molecular Environmental Science (MES) research at SSRL focuses on the fundamental interfacial, molecular- and nano-scale processes that control contaminant and nutrient cycling in

  6. January 2013 Most Viewed Documents for Biology And Medicine ...

    Office of Scientific and Technical Information (OSTI)

    January 2013 Most Viewed Documents for Biology And Medicine Nevada Test Site Radiological Control Manual Radiological Control Managers' Council Nevada Test Site Effects of ionizing ...

  7. Methods for isolation and viability assessment of biological organisms

    DOE Patents [OSTI]

    Letant, Sonia Edith; Baker, Sarah Elyse; Bond, Tiziana; Chang, Allan Shih-Ping

    2015-02-03

    Isolation of biological or chemical organisms can be accomplished using a surface enhanced Raman scattering (SERS) system. The SERS system can be a single or a stacked plurality of photonic crystal membranes with noble-metal lined through pores for flowing analyte potentially containing the biological or chemical organisms. The through pores can be adapted to trap individual biological or chemical organisms and emit SERS spectra, which can then be detected by a detector and further analyzed for viability of the biological or chemical organism.

  8. Functionalized apertures for the detection of chemical and biological materials

    DOE Patents [OSTI]

    Letant, Sonia E. (Livermore, CA); van Buuren, Anthony W. (Livermore, CA); Terminello, Louis J. (Danville, CA); Thelen, Michael P. (Danville, CA); Hope-Weeks, Louisa J. (Brentwood, CA); Hart, Bradley R. (Brentwood, CA)

    2010-12-14

    Disclosed are nanometer to micron scale functionalized apertures constructed on a substrate made of glass, carbon, semiconductors or polymeric materials that allow for the real time detection of biological materials or chemical moieties. Many apertures can exist on one substrate allowing for the simultaneous detection of numerous chemical and biological molecules. One embodiment features a macrocyclic ring attached to cross-linkers, wherein the macrocyclic ring has a biological or chemical probe extending through the aperture. Another embodiment achieves functionalization by attaching chemical or biological anchors directly to the walls of the apertures via cross-linkers.

  9. Biological Conversion of Sugars to Hydrocarbons Technology Pathway...

    Office of Scientific and Technical Information (OSTI)

    case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with...

  10. Particle removal and head loss development in biological filters...

    Office of Scientific and Technical Information (OSTI)

    Overall, biological filtration produced a high-quality water. Although effluent turbidites ... Drinking Water Research Div.) Publication Date: 1993-12-01 OSTI Identifier: 5266966 ...

  11. Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production

    SciTech Connect (OSTI)

    James, B. D.; Baum, G. N.; Perez, J.; Baum, K. N.

    2009-09-01

    Report documenting the biological and engineering characteristics of five algal and bacterial hydrogen production systems selected by DOE and NREL for evaluation.

  12. Genomics and Systems Biology of Tuberculosis (2009 JGI User Meeting)

    ScienceCinema (OSTI)

    Galagan, James

    2011-04-25

    James Galagan from the Broad Institute spoke about the "Genomics and Systems Biology of TB" on March 26, 2009 during the 4th Annual User Meeting

  13. Integration of Hyperspectral Imagery and Biosensors for Biological...

    Office of Scientific and Technical Information (OSTI)

    Biological and Chemical Facility Classification Authors: Munsky, Brian 1 ; Yeager, John D. 1 ; Sellars, Scott 2 ; Mukundan, Harshini 1 ; Nadler, Brett Ross 1 + Show...

  14. DOE Publishes Roadmap for New Biological Research for Energy...

    Office of Science (SC) Website

    DOE Publishes Roadmap for New Biological Research for Energy and Environmental Needs News ... Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW ...

  15. Nanojunction Sensors for the Detection of chemical and Biological...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection of chemical and Biological Species DOE Grant Recipients Arizona Technology Enterprises Contact Arizona Technology Enterprises About This Technology Technology Marketing...

  16. Linqu Qinchi Biological Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    City, Shandong Province, China Zip: 262600 Product: Shandong-based developer of a biogas plant that registered as a CDM project. References: Linqu Qinchi Biological Co.,...

  17. Rigorous theory of molecular orientational nonlinear optics

    SciTech Connect (OSTI)

    Kwak, Chong Hoon Kim, Gun Yeup

    2015-01-15

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.

  18. Sandia Energy - Molecular Dynamics Simulations Predict Fate of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Dynamics Simulations Predict Fate of Uranium in Sediments Home Highlights - Energy Research Molecular Dynamics Simulations Predict Fate of Uranium in Sediments Previous...

  19. PNNL: Center for Molecular Electrocatalysis - Research: An Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2010 molecular-level understanding of the energetic and mechanistic factors The rational design of improved catalysts requires a detailed molecular-level understanding of ...

  20. The Influence of Molecular Structure of Distillate Fuels on HFRR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity The Influence of Molecular Structure of Distillate Fuels on HFRR Lubricity Presentation given at 2007...

  1. Deflagration Rates and Molecular Bonding Trends of Statically...

    Office of Scientific and Technical Information (OSTI)

    Molecular Bonding Trends of Statically Compressed Secondary Explosives Citation Details In-Document Search Title: Deflagration Rates and Molecular Bonding Trends of Statically ...

  2. Final Report: Ionization chemistry of high temperature molecular...

    Office of Scientific and Technical Information (OSTI)

    chemistry of high temperature molecular fluids Citation Details In-Document Search Title: Final Report: Ionization chemistry of high temperature molecular fluids With the ...

  3. Validation of Hydrogen Exchange Methodology on Molecular Sieves...

    Office of Environmental Management (EM)

    Validation of Hydrogen Exchange Methodology on Molecular Sieves for Tritium Removal from Contaminated Water Validation of Hydrogen Exchange Methodology on Molecular Sieves for...

  4. Molecular replacement and model-building using distant homology...

    Office of Scientific and Technical Information (OSTI)

    Molecular replacement and model-building using distant homology models as templates Citation Details In-Document Search Title: Molecular replacement and model-building using...

  5. Accuracy of density functionals for molecular electronics: The...

    Office of Scientific and Technical Information (OSTI)

    Accuracy of density functionals for molecular electronics: The Anderson junction Prev Next Title: Accuracy of density functionals for molecular electronics: The Anderson ...

  6. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion This research, which is relevant to the...

  7. Molecular catalytic coal liquid conversion (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: Molecular catalytic coal liquid conversion Citation Details In-Document Search Title: Molecular catalytic coal liquid conversion You are accessing a document from...

  8. Remarkable Effect of Molecular Architecture on Chain Exchange...

    Office of Scientific and Technical Information (OSTI)

    Remarkable Effect of Molecular Architecture on Chain Exchange in Triblock Copolymer Micelles Citation Details In-Document Search Title: Remarkable Effect of Molecular Architecture...

  9. Molecular Structure of the Brucella abortus Metalloprotein RicA...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Molecular Structure of the Brucella abortus Metalloprotein RicA, a Rab2-Binding Virulence Effector Citation Details In-Document Search Title: Molecular Structure ...

  10. Molecular Weight Effects on Particle and Polymer Microstructure...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Molecular Weight Effects on Particle and Polymer Microstructure in Concentrated Polymer Solutions Citation Details In-Document Search Title: Molecular Weight ...

  11. Rotating fiber array molecular driver and molecular momentum transfer device constructed therewith

    DOE Patents [OSTI]

    Milleron, Norman (1854 San Juan, Berkeley, CA 94707)

    1983-01-01

    A rotating fiber array molecular driver is disclosed which includes a magnetically suspended and rotated central hub to which is attached a plurality of elongated fibers extending radially therefrom. The hub is rotated so as to straighten and axially extend the fibers and to provide the fibers with a tip speed which exceeds the average molecular velocity of fluid molecules entering between the fibers. Molecules colliding with the sides of the rotating fibers are accelerated to the tip speed of the fiber and given a momentum having a directional orientation within a relatively narrow distribution angle at a point radially outward of the hub, which is centered and peaks at the normal to the fiber sides in the direction of fiber rotation. The rotating fiber array may be used with other like fiber arrays or with other stationary structures to form molecular momentum transfer devices such as vacuum pumps, molecular separators, molecular coaters, or molecular reactors.

  12. Scalable Computational Methods for the Analysis of High-Throughput Biological Data

    SciTech Connect (OSTI)

    Langston, Michael A

    2012-09-06

    This primary focus of this research project is elucidating genetic regulatory mechanisms that control an organism?¢????s responses to low-dose ionizing radiation. Although low doses (at most ten centigrays) are not lethal to humans, they elicit a highly complex physiological response, with the ultimate outcome in terms of risk to human health unknown. The tools of molecular biology and computational science will be harnessed to study coordinated changes in gene expression that orchestrate the mechanisms a cell uses to manage the radiation stimulus. High performance implementations of novel algorithms that exploit the principles of fixed-parameter tractability will be used to extract gene sets suggestive of co-regulation. Genomic mining will be performed to scrutinize, winnow and highlight the most promising gene sets for more detailed investigation. The overall goal is to increase our understanding of the health risks associated with exposures to low levels of radiation.

  13. Final Report - Phylogenomic tools and web resources for the Systems Biology Knowledgebase

    SciTech Connect (OSTI)

    Sjolander, Kimmen

    2014-11-07

    The major advance during this last reporting period (8/15/12 to present) is our release of data on the PhyloFacts website: phylogenetic trees, multiple sequence alignments and other data for protein families are now available for download from http://phylogenomics.berkeley.edu/data/. This project as a whole aimed to develop high-throughput functional annotation systems that exploit information from protein 3D structure and evolution to provide highly precise inferences of various aspects of gene function, including molecular function, biological process, pathway association, Pfam domains, cellular localization and so on. We accomplished these aims by developing and testing different systems on a database of protein family trees: the PhyloFacts Phylogenomic Encyclopedia (at http://phylogenomics.berkeley.edu/phylofacts/ ).

  14. Biological interactions of extremely-low-frequency electric and magnetic fields

    SciTech Connect (OSTI)

    Tenforde, T.S.

    1990-03-01

    A description is given of the fundamental physical properties of extremely-low frequency (ELF) electromagnetic fields, and the mechanisms through which these fields interact with the human body at a macroscopic level. the mechanisms through which ELF electric and magnetic fields induce currents in humans and other living objects are described. Evidence is presented that cell membranes play an important role in transducing ELF signals. Both experimental evidence and theoretical models are described that relate pericellular currents and electrochemical events at the outer membrane surface to transmembrane signaling pathways and cytoplasmic responses. Biological responses to ELF fields at the tissue, cellular and molecular levels are summarized, including new evidence that ELF field exposure produces alterations in messenger RNA synthesis, gene expression and the cytoplasmic concentrations of specific proteins. 50 refs., 9 figs., 2 tabs.

  15. Method and apparatus for biological sequence comparison

    DOE Patents [OSTI]

    Marr, Thomas G. (Huntington, NY); Chang, William I-Wei (Huntington, NY)

    1997-01-01

    A method and apparatus for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence.

  16. Method and apparatus for biological sequence comparison

    DOE Patents [OSTI]

    Marr, T.G.; Chang, W.I.

    1997-12-23

    A method and apparatus are disclosed for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence. 5 figs.

  17. Reversibly immobilized biological materials in monolayer films on electrodes

    DOE Patents [OSTI]

    Weaver, Paul F. (Golden, CO); Frank, Arthur J. (Lakewood, CO)

    1993-01-01

    Methods and techniques are described for reversibly binding charged biological particles in a fluid medium to an electrode surface. The methods are useful in a variety of applications. The biological materials may include microbes, proteins, and viruses. The electrode surface may consist of reversibly electroactive materials such as polyvinylferrocene, silicon-linked ferrocene or quinone.

  18. Reversibly immobilized biological materials in monolayer films on electrodes

    DOE Patents [OSTI]

    Weaver, P.F.; Frank, A.J.

    1993-05-04

    Methods and techniques are described for reversibly binding charged biological particles in a fluid medium to an electrode surface. The methods are useful in a variety of applications. The biological materials may include microbes, proteins, and viruses. The electrode surface may consist of reversibly electroactive materials such as polyvinylferrocene, silicon-linked ferrocene or quinone.

  19. Management of Biological Materials in Wastewater from Research & Development Facilities

    SciTech Connect (OSTI)

    Raney, Elizabeth A.; Moon, Thomas W.; Ballinger, Marcel Y.

    2011-04-01

    PNNL has developed and instituted a systematic approach to managing work with biological material that begins in the project planning phase and carries through implementation to waste disposal. This paper describes two major processes used at PNNL to analyze and mitigate the hazards associated with working with biological materials and evaluate them for disposal to the sewer, ground, or surface water in a manner that protects human health and the environment. The first of these processes is the Biological Work Permit which is used to identify requirements for handling, storing, and working with biological materials and the second is the Sewer Approval process which is used to evaluate discharges of wastewaters containing biological materials to assure they meet industrial wastewater permits and other environmental regulations and requirements.

  20. Determining the Overpotential for a Molecular Electrocatalyst

    SciTech Connect (OSTI)

    Appel, Aaron M.; Helm, Monte L.

    2014-02-07

    “The additional potential (beyond the thermodynamic requirement) needed to drive a reaction at a certain rate is called the overpotential.”1 Over the last decade there has been considerable interest in the design and testing of molecular electrocatalysis for the interconversion of renewable energy and chemical fuels.2-5 One of the primary motivations for such research is the replacement of expensive and rare precious metal catalysts, such as platinum, with cheaper, more abundant metals.2,6-8 To become competitive with current electrocatalytic energy conversion technologies, new catalysts must be robust, fast, and energy-efficient. This last feature, the energy-efficiency, is dependent upon the overpotential. For molecular catalysts, the determination and reporting of overpotentials can be complicated by the frequent dependence on assumptions, especially when working in nonaqueous solvents. As overpotentials become lower, the meaningful comparison of molecular catalysts will require improved accuracy and precision. The intended purpose of this viewpoint is to provide a clear and concise description of overpotential and recommendation for its determination in molecular electrocatalysis. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  1. Developing Enzyme and Biomimetic Catalysts for Upgrading Heavy Crudes via Biological Hydrogenation and Hydrodesulfurization

    SciTech Connect (OSTI)

    Borole, A P

    2006-08-22

    The recovery and conversion of heavy oils is limited due to the high viscosity of these crudes and their high heteroatom content. Conventional technology relies on thermochemical hydrogenation and hydrodesulfurization to address these problems and is energy intensive due to the high operating temperature and pressure. This project was initiated to explore biological catalysts for adding hydrogen to the heavy oil molecules. Biological enzymes are efficient at hydrogen splitting at very mild conditions such as room temperature and pressure, however, they are very specific in terms of the substrates they hydrogenate. The goal of the project was to investigate how the specificity of these enzymes can be altered to develop catalysts for oil upgrading. Three approaches were used. First was to perform chemical modification of the enzyme surface to improve binding of other non-natural substrates. Second approach was to expose the deeply buried catalytic active site of the enzyme by removal of protein scaffolding to enable better interaction with other substrates. The third approach was based on molecular biology to develop genetically engineered systems for enabling targeted structural changes in the enzyme. The first approach was found to be limited in success due to the non-specificity of the chemical modification and inability to target the region near the active site or the site of substrate binding. The second approach produced a smaller catalyst capable of catalyzing hydrogen splitting, however, further experimentation is needed to address reproducibility and stability issues. The third approach which targeted cloning of hydrogenase in alternate hosts demonstrated progress, although further work is necessary to complete the cloning process. The complex nature of the hydrogenase enzyme structure-function relationship and role of various ligands in the protein require significant more research to better understand the enzyme and to enable success in strategies in developing catalysts with broader specificity as that required for crude upgrading.

  2. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    SciTech Connect (OSTI)

    Kennedy, S. J.

    2008-03-17

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research, radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.

  3. Method of making molecularly doped composite polymer material

    DOE Patents [OSTI]

    Affinito, John D. (Tucson, AZ) [Tucson, AZ; Martin, Peter M. (Kennewick, WA) [Kennewick, WA; Graff, Gordon L. (West Richland, WA) [West Richland, WA; Burrows, Paul E. (Kennewick, WA) [Kennewick, WA; Gross, Mark E. (Pasco, WA), Sapochak, Linda S. (Henderson, NV)

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  4. Photos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    policy Environment -Biology --Computational biology ---Bioinformatics ---Molecular dynamics --Environmental biology ---Metagenomics ---Terrestrial ecology --Molecular...

  5. Press Releases | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    policy Environment -Biology --Computational biology ---Bioinformatics ---Molecular dynamics --Environmental biology ---Metagenomics ---Terrestrial ecology --Molecular...

  6. Success Stories | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    policy Environment -Biology --Computational biology ---Bioinformatics ---Molecular dynamics --Environmental biology ---Metagenomics ---Terrestrial ecology --Molecular...

  7. In The News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    policy Environment -Biology --Computational biology ---Bioinformatics ---Molecular dynamics --Environmental biology ---Metagenomics ---Terrestrial ecology --Molecular...

  8. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    policy Environment -Biology --Computational biology ---Bioinformatics ---Molecular dynamics --Environmental biology ---Metagenomics ---Terrestrial ecology --Molecular...

  9. Videos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    policy Environment -Biology --Computational biology ---Bioinformatics ---Molecular dynamics --Environmental biology ---Metagenomics ---Terrestrial ecology --Molecular...

  10. Systems Biology Knowledgebase for a New Era in Biology A Genomics:GTL Report from the May 2008 Workshop

    SciTech Connect (OSTI)

    Gregurick, S.; Fredrickson, J. K.; Stevens, R.

    2009-03-01

    Biology has entered a systems-science era with the goal to establish a predictive understanding of the mechanisms of cellular function and the interactions of biological systems with their environment and with each other. Vast amounts of data on the composition, physiology, and function of complex biological systems and their natural environments are emerging from new analytical technologies. Effectively exploiting these data requires developing a new generation of capabilities for analyzing and managing the information. By revealing the core principles and processes conserved in collective genomes across all biology and by enabling insights into the interplay between an organism's genotype and its environment, systems biology will allow scientific breakthroughs in our ability to project behaviors of natural systems and to manipulate and engineer managed systems. These breakthroughs will benefit Department of Energy (DOE) missions in energy security, climate protection, and environmental remediation.

  11. Towards reproducible, scalable lateral molecular electronic devices

    SciTech Connect (OSTI)

    Durkan, Colm Zhang, Qian

    2014-08-25

    An approach to reproducibly fabricate molecular electronic devices is presented. Lateral nanometer-scale gaps with high yield are formed in Au/Pd nanowires by a combination of electromigration and Joule-heating-induced thermomechanical stress. The resulting nanogap devices are used to measure the electrical properties of small numbers of two different molecular species with different end-groups, namely 1,4-butane dithiol and 1,5-diamino-2-methylpentane. Fluctuations in the current reveal that in the case of the dithiol molecule devices, individual molecules conduct intermittently, with the fluctuations becoming more pronounced at larger biases.

  12. Physics with fast molecular-ion beams

    SciTech Connect (OSTI)

    Kanter, E.P.

    1980-01-01

    Fast (MeV) molecular-ion beams provide a unique source of energetic projectile nuclei which are correlated in space and time. The recognition of this property has prompted several recent investigations of various aspects of the interactions of these ions with matter. High-resolution measurements on the fragments resulting from these interactions have already yielded a wealth of new information on such diverse topics as plasma oscillations in solids and stereochemical structures of molecular ions as well as a variety of atomic collision phenomena. The general features of several such experiments will be discussed and recent results will be presented.

  13. PNNL: Center for Molecular Electrocatalysis - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Check out our publications on molecular electrocatalysts 2016 Publications Raugei S, ML Helm, S Hammes-Schiffer, AM Appel, M O'Hagan, ES Wiedner, and RM Bullock. 2016. "Experimental and Computational Mechanistic Studies Guiding the Rational Design of Molecular Electrocatalysts for the Production and Oxidation of Hydrogen." Inorganic Chemistry 55(2):445-460. DOI: 10.1021/acs.inorgchem.5b02262 Wiedner ES, HJS Brown, and ML Helm. 2016. "Kinetic Analysis of Competitive

  14. Molecular-Frame Angular Distributions of Resonant Auger Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular-Frame Angular Distributions of Resonant Auger Electrons Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Wednesday, 27 May 2009 00:00 Molecular-frame electron angular distribution (MFAD) measurements provide access to an unprecedented level of detailed information about phenomena involving quantum coherence, such as phases of photoelectron waves, symmetry breaking in molecular dissociation, core-hole localization in molecules, and molecular double-slit

  15. Biologically based multistage modeling of radiation effects

    SciTech Connect (OSTI)

    William Hazelton; Suresh Moolgavkar; E. Georg Luebeck

    2005-08-30

    This past year we have made substantial progress in modeling the contribution of homeostatic regulation to low-dose radiation effects and carcinogenesis. We have worked to refine and apply our multistage carcinogenesis models to explicitly incorporate cell cycle states, simple and complex damage, checkpoint delay, slow and fast repair, differentiation, and apoptosis to study the effects of low-dose ionizing radiation in mouse intestinal crypts, as well as in other tissues. We have one paper accepted for publication in ''Advances in Space Research'', and another manuscript in preparation describing this work. I also wrote a chapter describing our combined cell-cycle and multistage carcinogenesis model that will be published in a book on stochastic carcinogenesis models edited by Wei-Yuan Tan. In addition, we organized and held a workshop on ''Biologically Based Modeling of Human Health Effects of Low dose Ionizing Radiation'', July 28-29, 2005 at Fred Hutchinson Cancer Research Center in Seattle, Washington. We had over 20 participants, including Mary Helen Barcellos-Hoff as keynote speaker, talks by most of the low-dose modelers in the DOE low-dose program, experimentalists including Les Redpath (and Mary Helen), Noelle Metting from DOE, and Tony Brooks. It appears that homeostatic regulation may be central to understanding low-dose radiation phenomena. The primary effects of ionizing radiation (IR) are cell killing, delayed cell cycling, and induction of mutations. However, homeostatic regulation causes cells that are killed or damaged by IR to eventually be replaced. Cells with an initiating mutation may have a replacement advantage, leading to clonal expansion of these initiated cells. Thus we have focused particularly on modeling effects that disturb homeostatic regulation as early steps in the carcinogenic process. There are two primary considerations that support our focus on homeostatic regulation. First, a number of epidemiologic studies using multistage carcinogenesis models that incorporate the ''initiation, promotion, and malignant conversion'' paradigm of carcinogenesis are indicating that promotion of initiated cells is the most important cellular mechanism driving the shape of the age specific hazard for many types of cancer. Second, we have realized that many of the genes that are modified in early stages of the carcinogenic process contribute to one or more of four general cellular pathways that confer a promotional advantage to cells when these pathways are disrupted.

  16. Kinetic model for anaerobic digestion of biogas biological sludge

    SciTech Connect (OSTI)

    Pavlostathis, S.G.; Gossett, J.M.

    1986-10-01

    The principal objective of this study was the development and evaluation of a comprehensive kinetic model capable of predicting digester performance when fed biological sludge. Preliminary conversion mechanisms such as cell deaths, lysis, and hydrolysis responsible for rendering viable biological sludge organisms to available substrate were studied in depth. The results of this study indicate that hydrolysis of the dead, particulate biomass - primarily consisting of protein - is the slowest step, and therefore kinetically controls the overall process of an anaerobic digestion of biological sludge. A kinetic model was developed which could accurately describe digester performance and predict effluent quality.

  17. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    SciTech Connect (OSTI)

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-06-14

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets [I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas [2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study [3] has been expanded with additional bacteria and fungi. These spectra were acquired on a Finnigan Magnum ion trap using helium buffer gas. A new database of Cl spectra of microorganisms is planned using the CBMS Block II instrument and air as the buffer gas. Using the current database, the fatty acid composition of the organisms was compared using the percentage of the ion current attributable to fatty acids. The data presented suggest promising rules for discrimination of these organisms. Strain, growth media and vegetative state do contribute to some of the distributions observed in the data. However, the data distributions observed in the current study only reflect our experience to date and do not fully represent the variability that might be expected in practice: Acquisition of MS/ MS spectra has begun (using He and air buffer gas) of the protonated molecular ion of a variety of fatty acids and for a number of ions nominally assigned as fatty acids from microorganisms. These spectra will be used to help verify fatty acid .

  18. Molecular sieving silica membrane fabrication process

    DOE Patents [OSTI]

    Raman, Narayan K. (400 Maple St. SE., Apartment 112, Albuquerque, NM 87106); Brinker, Charles Jeffrey (14 Eagle Nest Dr., NE., Albuquerque, NM 87122)

    1998-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  19. Berkeley Lab Scientists Create Molecular Paper

    SciTech Connect (OSTI)

    2010-01-01

    These fluorescence microscope images show free-floating peptoid nanosheets in liquid. Each peptoid sheet is just two molecules thick yet up to hundreds of square micrometers in areaa molecular paper large enough to be visible to the naked eye.

  20. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  1. Molecular sieving silica membrane fabrication process

    DOE Patents [OSTI]

    Raman, N.K.; Brinker, C.J.

    1999-08-10

    A process is described for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film. 11 figs.

  2. Molecular sieving silica membrane fabrication process

    DOE Patents [OSTI]

    Raman, Narayan K. (Monroeville, PA); Brinker, Charles Jeffrey (Albuquerque, NM)

    1999-01-01

    A process for producing a molecular sieve silica membrane comprising depositing a hybrid organic-inorganic polymer comprising at least one organic constituent and at least one inorganic constituent on a porous substrate material and removing at least a portion of the at least one organic constituent of the hybrid organic-inorganic polymer, forming a porous film.

  3. EA-2011: Proposed Release of Three Parasitoids for the Biological...

    Broader source: Energy.gov (indexed) [DOE]

    the continental U.S. for the biological control of the emerald ash borer, a nonnative invasive beetle. The DOE Oak Ridge Office reviewed the EA, adopted it, and issued a FONSI for...

  4. Methods of increasing secretion of polypeptides having biological activity

    DOE Patents [OSTI]

    Merino, Sandra

    2014-05-27

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  5. Methods of increasing secretion of polypeptides having biological activity

    DOE Patents [OSTI]

    Merino, Sandra

    2013-10-01

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  6. Biological assessments for the low energy demonstration accelerator, 1996

    SciTech Connect (OSTI)

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  7. Methods of increasing secretion of polypeptides having biological activity

    DOE Patents [OSTI]

    Merino, Sandra

    2014-10-28

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  8. Methods of increasing secretion of polypeptides having biological activity

    DOE Patents [OSTI]

    Merino, Sandra

    2015-04-14

    The present invention relates to methods for producing a secreted polypeptide having biological activity, comprising: (a) transforming a fungal host cell with a fusion protein construct encoding a fusion protein, which comprises: (i) a first polynucleotide encoding a signal peptide; (ii) a second polynucleotide encoding at least a catalytic domain of an endoglucanase or a portion thereof; and (iii) a third polynucleotide encoding at least a catalytic domain of a polypeptide having biological activity; wherein the signal peptide and at least the catalytic domain of the endoglucanase increases secretion of the polypeptide having biological activity compared to the absence of at least the catalytic domain of the endoglucanase; (b) cultivating the transformed fungal host cell under conditions suitable for production of the fusion protein; and (c) recovering the fusion protein, a component thereof, or a combination thereof, having biological activity, from the cultivation medium.

  9. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

  10. The Biological Implications of the PP2A Crystal Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Biological Implications of the PP2A Crystal Structure Print Phosphatases, enzymes that remove a phosphate group from amino-acid substrates, can be subdivided according to their...

  11. Arms Control: US and International efforts to ban biological weapons

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The Bacteriological (Biological) and Toxin Weapons Convention, the treaty that bans the development, production, and stockpiling and acquisition of biological weapons was opened for signature in 1972 and came into force in 1975 after being ratified by 22 governments, including the depository nations of the USA, the United Kingdom, and the former Soviet Union. In support of the Convention, the USA later established export controls on items used to make biological weapons. Further, in accordance with the 1990 President`s Enhanced Proliferation Control Initiative, actions were taken to redefine and expand US export controls, as well as to encourage multilateral controls through the Australia Group. Thus far, the Convention has not been effective in stopping the development of biological weapons. The principal findings as to the reasons of the failures of the Convention are found to be: the Convention lacks universality, compliance measures are effective, advantage of verification may outweigh disadvantages. Recommendations for mitigating these failures are outlined in this report.

  12. Browse by Discipline -- E-print Network Subject Pathways: Biology...

    Office of Scientific and Technical Information (OSTI)

    L M N O P Q R S T U V W X Y Z Keller, Christopher (Christopher Keller) - Department of Biology, Minot State University Go back to Individual Researchers Collections: A B C D E F G ...

  13. Investigations of biological processes in Austrian MBT plants

    SciTech Connect (OSTI)

    Tintner, J.; Smidt, E.; Boehm, K.; Binner, E.

    2010-10-15

    Mechanical biological treatment (MBT) of municipal solid waste (MSW) has become an important technology in waste management during the last decade. The paper compiles investigations of mechanical biological processes in Austrian MBT plants. Samples from all plants representing different stages of degradation were included in this study. The range of the relevant parameters characterizing the materials and their behavior, e.g. total organic carbon, total nitrogen, respiration activity and gas generation sum, was determined. The evolution of total carbon and nitrogen containing compounds was compared and related to process operation. The respiration activity decreases in most of the plants by about 90% of the initial values whereas the ammonium release is still ongoing at the end of the biological treatment. If the biogenic waste fraction is not separated, it favors humification in MBT materials that is not observed to such extent in MSW. The amount of organic carbon is about 15% dry matter at the end of the biological treatment.

  14. Biological and Environmental Research Advisory CommitteeOctober...

    Office of Science (SC) Website

    Geernaert .pdf file (2.1MB) - Climate and Environmental Sciences Division Update Todd Anderson .pdf file (5.1MB) - Biological Systems Science Division Update Kent Peters .pdf file...

  15. Workshop Tackles Biological Hydrogen Production - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshop Tackles Biological Hydrogen Production Available report outlines goals, challenges, and research areas October 21, 2003 Golden, Colo. - The results of a two-day workshop on hydrogen production through biological and artificial systems now is available. The workshop, sponsored by the Air Force Office of Scientific Research and hosted jointly by the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and the Air Force Research Laboratory (AFRL), included key

  16. Solar Energy Education. Renewable energy activities for biology (Technical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report) | SciTech Connect biology Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for biology × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale

  17. The Biological Implications of the PP2A Crystal Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Biological Implications of the PP2A Crystal Structure The Biological Implications of the PP2A Crystal Structure Print Wednesday, 30 January 2008 00:00 Phosphatases, enzymes that remove a phosphate group from amino-acid substrates, can be subdivided according to their substrate specificity. Myriad evidence has demonstrated that protein phosphatase 2A (PP2A), a family of serine/threonine-specific (Ser/Thr) phosphatases, regulates many, if not most, aspects of cellular activities and is a

  18. Importance of systems biology in engineering microbes for biofuel

    Office of Scientific and Technical Information (OSTI)

    production (Journal Article) | SciTech Connect Importance of systems biology in engineering microbes for biofuel production Citation Details In-Document Search Title: Importance of systems biology in engineering microbes for biofuel production Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable

  19. Integration of Hyperspectral Imagery and Biosensors for Biological and

    Office of Scientific and Technical Information (OSTI)

    Chemical Facility Classification (Technical Report) | SciTech Connect Hyperspectral Imagery and Biosensors for Biological and Chemical Facility Classification Citation Details In-Document Search Title: Integration of Hyperspectral Imagery and Biosensors for Biological and Chemical Facility Classification Authors: Munsky, Brian [1] ; Yeager, John D. [1] ; Sellars, Scott [2] ; Mukundan, Harshini [1] ; Nadler, Brett Ross [1] + Show Author Affiliations Los Alamos National Laboratory UC Irvine

  20. Integration of hyperspectral imagery and biosensors for biological and

    Office of Scientific and Technical Information (OSTI)

    chemical facility classification (Technical Report) | SciTech Connect hyperspectral imagery and biosensors for biological and chemical facility classification Citation Details In-Document Search Title: Integration of hyperspectral imagery and biosensors for biological and chemical facility classification Authors: Munsky, Brian [1] ; Sellars, Scott [2] ; Yeager, John D. [1] ; Mukundan, Harshini [1] ; Nadler, Brett Ross [1] + Show Author Affiliations Los Alamos National Laboratory UC Irvine

  1. A Systems Biology Platform for Characterizing Regulatory and Metabolic

    Office of Scientific and Technical Information (OSTI)

    Pathways that Influence and Control Microbial Hydrogen Production (Technical Report) | SciTech Connect Technical Report: A Systems Biology Platform for Characterizing Regulatory and Metabolic Pathways that Influence and Control Microbial Hydrogen Production Citation Details In-Document Search Title: A Systems Biology Platform for Characterizing Regulatory and Metabolic Pathways that Influence and Control Microbial Hydrogen Production × You are accessing a document from the Department of

  2. Comparative systems biology across an evolutionary gradient within the

    Office of Scientific and Technical Information (OSTI)

    Shewanella genus (Journal Article) | SciTech Connect Comparative systems biology across an evolutionary gradient within the Shewanella genus Citation Details In-Document Search Title: Comparative systems biology across an evolutionary gradient within the Shewanella genus To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology such as the species definition. Here, we take

  3. Copy of Synthetic Biology of Novel Thermophilic Bacteria for Enhanced

    Office of Scientific and Technical Information (OSTI)

    Production of Ethanol from 5-Carbon Sugars (LDRD %23 105944). (Conference) | SciTech Connect Copy of Synthetic Biology of Novel Thermophilic Bacteria for Enhanced Production of Ethanol from 5-Carbon Sugars (LDRD %23 105944). Citation Details In-Document Search Title: Copy of Synthetic Biology of Novel Thermophilic Bacteria for Enhanced Production of Ethanol from 5-Carbon Sugars (LDRD %23 105944). Abstract not provided. Authors: Reichmuth, David ; Kozina, Carol L. ; Sale, Kenneth L. ;

  4. A Systems Biology Platform for Characterizing Regulatory and Metabolic

    Office of Scientific and Technical Information (OSTI)

    Pathways that Influence and Control Microbial Hydrogen Production (Technical Report) | SciTech Connect Technical Report: A Systems Biology Platform for Characterizing Regulatory and Metabolic Pathways that Influence and Control Microbial Hydrogen Production Citation Details In-Document Search Title: A Systems Biology Platform for Characterizing Regulatory and Metabolic Pathways that Influence and Control Microbial Hydrogen Production Authors: Collins, James J [1] + Show Author Affiliations

  5. A comprehensive approach to decipher biological computation to achieve next

    Office of Scientific and Technical Information (OSTI)

    generation high-performance exascale computing. (Technical Report) | SciTech Connect Technical Report: A comprehensive approach to decipher biological computation to achieve next generation high-performance exascale computing. Citation Details In-Document Search Title: A comprehensive approach to decipher biological computation to achieve next generation high-performance exascale computing. The human brain (volume=1200cm3) consumes 20W and is capable of performing>10%5E16 operations/s.

  6. A Systems Biology Platform for Characterizing Regulatory and Metabolic

    Office of Scientific and Technical Information (OSTI)

    Pathways that Influence and Control Microbial Hydrogen Production (Technical Report) | SciTech Connect A Systems Biology Platform for Characterizing Regulatory and Metabolic Pathways that Influence and Control Microbial Hydrogen Production Citation Details In-Document Search Title: A Systems Biology Platform for Characterizing Regulatory and Metabolic Pathways that Influence and Control Microbial Hydrogen Production Authors: Collins, James J [1] + Show Author Affiliations Boston University

  7. A comprehensive approach to decipher biological computation to achieve next

    Office of Scientific and Technical Information (OSTI)

    generation high-performance exascale computing. (Technical Report) | SciTech Connect A comprehensive approach to decipher biological computation to achieve next generation high-performance exascale computing. Citation Details In-Document Search Title: A comprehensive approach to decipher biological computation to achieve next generation high-performance exascale computing. The human brain (volume=1200cm3) consumes 20W and is capable of performing>10%5E16 operations/s. Current

  8. Biological and Environmental Research Advisory Committee (BERAC) Homepage |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) BERAC Home Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Print Text Size: A A A FeedbackShare Page The Biological and Environmental Research Advisory Committee (BERAC) provides advice on a continuing basis to the Director of the Office of Science, Department of Energy, on the many complex scientific and

  9. Flow cytometry aids basic cell biology research and drug discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flow cytometry aids basic cell biology research and drug discovery Flow cytometry aids basic cell biology research and drug discovery Life Technologies Corporation and LANL have released the Attune® Acoustic Focusing Cytometer, featuring a reduced footprint, reduced consumables, and an affordable price. April 3, 2012 Attune® Acoustic Focusing Cytometer The Attune® Acoustic Focusing Cytometer achieves sample throughput at rates over 10 times faster than other cytometers-up to 1,000 μL per

  10. Artificial photosynthesis combines biology with technology for sustainable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy transformation Artificial photosynthesis combines biology with technology for sustainable energy transformation Authors: Moore, T.A., Moore, A.L., and Gust, D. Title: Artificial photosynthesis combines biology with technology for sustainable energy transformation Source: AIP Conf. Proc. Year: 2013 Volume: 1519 Pages: 68-72 ABSTRACT: Photosynthesis supports the biosphere. Currently, human activity appropriates about one fourth of terrestrial photosynthetic net primary production (NPP)

  11. Large Scale Production Computing and Storage Requirements for Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Environmental Research: Target 2017 Large Scale Production Computing and Storage Requirements for Biological and Environmental Research: Target 2017 BERmontage.gif September 11-12, 2012 Hilton Rockville Hotel and Executive Meeting Center 1750 Rockville Pike Rockville, MD, 20852-1699 TEL: 1-301-468-1100 Sponsored by: U.S. Department of Energy Office of Science Office of Advanced Scientific Computing Research (ASCR) Office of Biological and Environmental Research (BER) National Energy

  12. Guidelines to improve airport preparedness against chemical and biological terrorism.

    SciTech Connect (OSTI)

    Edwards, Donna M.; Price, Phillip N. (Lawrence Berkeley National Laboratory, Berkeley, CA); Gordon, Susanna P.; Gadgil, Ashok (Lawrence Berkeley National Laboratory, Berkeley, CA)

    2005-05-01

    Guidelines to Improve Airport Preparedness Against Chemical and Biological Terrorism is a 100-page document that makes concrete recommendations on improving security and assessing vulnerable areas and helps its readers understand the nature of chemical and biological attacks. The report has been turned over to Airports Council International (ACI) and the American Association of Airport Executives (AAAE), two organizations that together represent the interests of thousands of airport personnel and facilities in the U.S. and around the world.

  13. Synthetic Biology of Novel Thermophilic Bacteria for Enhanced Production of

    Office of Scientific and Technical Information (OSTI)

    Ethanol from 5-Carbon Sugars (LDRD %23 105944). (Conference) | SciTech Connect Synthetic Biology of Novel Thermophilic Bacteria for Enhanced Production of Ethanol from 5-Carbon Sugars (LDRD %23 105944). Citation Details In-Document Search Title: Synthetic Biology of Novel Thermophilic Bacteria for Enhanced Production of Ethanol from 5-Carbon Sugars (LDRD %23 105944). Abstract not provided. Authors: Sapra, Rajat ; Reichmuth, David ; Kozina, Carol L. ; Sale, Kenneth L. ; Keasling, Jay ; Tang,

  14. Biological Lignin Depolymerization Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE BioEnergy Technologies Office (BETO) Project Peer Review Date: March 25 th , 2015 Technology Review Area: Biochemical Conversion Biological Lignin Depolymerization (WBS 2.3.2.100) Principal Investigators: Gregg Beckham (NREL) John Gladden (SNL) Organizations: National Renewable Energy Laboratory and Sandia National Laboratory 2 | Bioenergy Technologies Office Project Goal Residual Biorefinery Lignin Goal and Outcome: develop a biological approach to depolymerize solid lignin for upgrading

  15. Environmental Impacts of Wind Power Development on the Population Biology

    Office of Environmental Management (EM)

    of Greater Prairie-Chickens | Department of Energy Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens This report summarizes the results of a seven-year, DOE-funded research project, conducted by researchers from Kansas State University and the National Wind Coordinating Collaborative, to assess the effects of wind energy development in

  16. Designing π-stacked molecular structures to control heat transport through molecular junctions

    SciTech Connect (OSTI)

    Kiršanskas, Gediminas; Li, Qian; Solomon, Gemma C.; Flensberg, Karsten; Leijnse, Martin

    2014-12-08

    We propose and analyze a way of using π stacking to design molecular junctions that either enhance or suppress a phononic heat current, but at the same time remain conductors for an electric current. Such functionality is highly desirable in thermoelectric energy converters, as well as in other electronic components where heat dissipation should be minimized or maximized. We suggest a molecular design consisting of two masses coupled to each other with one mass coupled to each lead. By having a small coupling (spring constant) between the masses, it is possible to either reduce or perhaps more surprisingly enhance the phonon conductance. We investigate a simple model system to identify optimal parameter regimes and then use first principle calculations to extract model parameters for a number of specific molecular realizations, confirming that our proposal can indeed be realized using standard molecular building blocks.

  17. Behavior of nanoceria in biologically-relevant environments

    SciTech Connect (OSTI)

    Kumar, Amit; Das, Soumen; Munusamy, Prabhakaran; Self, William; Baer, Donald R.; Sayle, Dean C.; Seal, Sudipta

    2014-09-08

    Cerium oxide nanoparticles (CNPs) have gained a considerable attention in biological research due to their anti-oxidant like behaviour and regenerative nature. The current literature on CNPs reports many successful attempts on harnessing the beneficial therapeutic properties in biology. However studies have also shown toxicity effect with some types of CNPs. This review discusses issues associated with the behaviours of CNPs in biological systems and identifies key knowledge gaps. We explore how salient physicochemical properties (size, surface chemistry, surface stabilizers) contribute to the potential positive and negative aspects of nanoceria in biological systems. Based on variations of results reported in the literature, important issues need to be addressed. Are we really studying the same particles with slight variations in size and physicochemical properties or do the particles being examined have fundamentally different behaviours? Are the variations observed in the result of differences in the initial properties of the particles or the results of downstream effects that emerge as the particles are prepared for specific studies and they interact with biological or other environmental moieties? How should particles be appropriately prepared for relevant environmental/toxicology/safety studies? It is useful to recognize that nanoparticles encompass some of the same complexities and variability associated with biological components

  18. Counting molecular-beam grown graphene layers

    SciTech Connect (OSTI)

    Plaut, Annette S.; Wurstbauer, Ulrich; Pinczuk, Aron; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 ; Garcia, Jorge M.; Pfeiffer, Loren N.

    2013-06-17

    We have used the ratio of the integrated intensity of graphene's Raman G peak to that of the silicon substrate's first-order optical phonon peak, accurately to determine the number of graphene layers across our molecular-beam (MB) grown graphene films. We find that these results agree well both, with those from our own exfoliated single and few-layer graphene flakes, and with the results of Koh et al.[ACS Nano 5, 269 (2011)]. We hence distinguish regions of single-, bi-, tri-, four-layer, etc., graphene, consecutively, as we scan coarsely across our MB-grown graphene. This is the first, but crucial, step to being able to grow, by such molecular-beam-techniques, a specified number of large-area graphene layers, to order.

  19. Self-doped molecular composite battery electrolytes

    DOE Patents [OSTI]

    Harrup, Mason K.; Wertsching, Alan K.; Stewart, Frederick F.

    2003-04-08

    This invention is in solid polymer-based electrolytes for battery applications. It uses molecular composite technology, coupled with unique preparation techniques to render a self-doped, stabilized electrolyte material suitable for inclusion in both primary and secondary batteries. In particular, a salt is incorporated in a nano-composite material formed by the in situ catalyzed condensation of a ceramic precursor in the presence of a solvated polymer material, utilizing a condensation agent comprised of at least one cation amenable to SPE applications. As such, the counterion in the condensation agent used in the formation of the molecular composite is already present as the electrolyte matrix develops. This procedure effectively decouples the cation loading levels required for maximum ionic conductivity from electrolyte physical properties associated with condensation agent loading levels by utilizing the inverse relationship discovered between condensation agent loading and the time domain of the aging step.

  20. Sandia Pursues Biotechnology Molecular Integrated Microsystems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pursues Biotechnology Molecular Integrated Microsystems Powering Devices from Living Systems A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 4, NO. 4 S A N D I A T E C H N O L O G Y Sandia Technology is a quarterly journal published by Sandia National Laboratories. Sandia is a multiprogram engineering and science laboratory operated by Sandia Corporation, a Lockheed Martin company, for the Department of Energy. With main facilities in Albuquerque, New Mexico, and Livermore, California,

  1. PNNL: Center for Molecular Electrocatalysis - Research Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Team Morris Bullock Morris Bullock Director Aaron Appel Aaron Appel Deputy Director Dan DuBois Dan DuBois Scientific Advisor Monte L. Helm Monte L. Helm Mike Mock Mike Mock Molly O'Hagan Molly O'Hagan Simone Raugei Simone Raugei Eric Wiedner Eric Wiedner Collaborators Sharon Hammes-Schiffer Sharon Hammes-Schiffer University of Illinois Jim Mayer Jim Mayer Yale University Shannon Stahl Shannon Stahl University of Wisconsin - Madison Center for Molecular Electrocatalysis Home Scientific

  2. Nanoscale molecularly imprinted polymers and method thereof

    DOE Patents [OSTI]

    Hart, Bradley R. (Brentwood, CA); Talley, Chad E. (Brentwood, CA)

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  3. Molecular Science Research Center 1992 annual report

    SciTech Connect (OSTI)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  4. Molecular Structure of Water at Gold Electrodes Revealed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular Structure of Water at Gold Electrodes Revealed Molecular Structure of Water at Gold Electrodes Revealed Print Wednesday, 25 March 2015 00:00 The structure of liquid water...

  5. The Molecular Ingenuity of a Unique Fish Scale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Molecular Ingenuity of a Unique Fish Scale The Molecular Ingenuity of a Unique Fish Scale Print Monday, 25 November 2013 12:06 Arapaima gigas, a freshwater fish found in the...

  6. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole...

  7. Tobacco mosaic virus: A biological building block for micro/nano...

    Office of Scientific and Technical Information (OSTI)

    Tobacco mosaic virus: A biological building block for micronanobio systems Citation Details In-Document Search Title: Tobacco mosaic virus: A biological building block for micro...

  8. Sage-Grouse and Wind Energy: Biology, Habits, and Potential Effects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sage-Grouse and Wind Energy: Biology, Habits, and Potential Effects from Development Sage-Grouse and Wind Energy: Biology, Habits, and Potential Effects from Development ...

  9. T Cell Allorecognition via Molecular Mimicry

    SciTech Connect (OSTI)

    Macdonald, Whitney A.; Chen, Zhenjun; Gras, Stephanie; Archbold, Julia K.; Tynan, Fleur E.; Clements, Craig S.; Bharadwaj, Mandvi; Kjer-Nielsen, Lars; Saunders, Philippa M.; Wilce, Matthew C.J.; Crawford, Fran; Stadinsky, Brian; Jackson, David; Brooks, Andrew G.; Purcell, Anthony W.; Kappler, John W.; Burrows, Scott R.; Rossjohn, Jamie; McCluskey, James

    2010-08-16

    T cells often alloreact with foreign human leukocyte antigens (HLA). Here we showed the LC13 T cell receptor (TCR), selected for recognition on self-HLA-B*0801 bound to a viral peptide, alloreacts with B44 allotypes (HLA-B*4402 and HLA-B*4405) bound to two different allopeptides. Despite extensive polymorphism between HLA-B*0801, HLA-B*4402, and HLA-B*4405 and the disparate sequences of the viral and allopeptides, the LC13 TCR engaged these peptide-HLA (pHLA) complexes identically, accommodating mimicry of the viral peptide by the allopeptide. The viral and allopeptides adopted similar conformations only after TCR ligation, revealing an induced-fit mechanism of molecular mimicry. The LC13 T cells did not alloreact against HLA-B*4403, and the single residue polymorphism between HLA-B*4402 and HLA-B*4403 affected the plasticity of the allopeptide, revealing that molecular mimicry was associated with TCR specificity. Accordingly, molecular mimicry that is HLA and peptide dependent is a mechanism for human T cell alloreactivity between disparate cognate and allogeneic pHLA complexes.

  10. Molecular-Frame Angular Distributions of Resonant Auger Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Molecular-frame electron angular distribution (MFAD) measurements provide access to an unprecedented level of detailed information about phenomena involving quantum coherence, such as phases of photoelectron waves, symmetry breaking in molecular dissociation, core-hole localization in molecules, and molecular double-slit interference, all of which are hidden in conventional gas-phase electron spectroscopy, owing to the

  11. Molecular-Frame Angular Distributions of Resonant Auger Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Molecular-frame electron angular distribution (MFAD) measurements provide access to an unprecedented level of detailed information about phenomena involving quantum coherence, such as phases of photoelectron waves, symmetry breaking in molecular dissociation, core-hole localization in molecules, and molecular double-slit interference, all of which are hidden in conventional gas-phase electron spectroscopy, owing to the

  12. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Probing Core-Hole Localization in Molecular Nitrogen Print Wednesday, 25 February 2009 00:00 The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic

  13. 2010-2011 SECTION IV: ATOMIC, MOLECULAR AND MATERIALS SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kinetic energy release in the dissociations of doubly and triply charged molecular ions V. Horvat and R. L. Watson

  14. PARTICLE ACCELERATORS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS...

    Office of Scientific and Technical Information (OSTI)

    74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; ELECTRONS; HELIUM; LIGHT SOURCES; RADIATIONS; STORAGE RINGS; SYNCHROTRONS SYNCHROTRON RADIATION SYNCHROTRONLIGHT SOURCES QUANTUM CHAOS...

  15. Understanding Porosity in Amorphous Porous Molecular Solids | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Understanding Porosity in Amorphous Porous Molecular Solids

  16. Molecular-Frame Angular Distributions of Resonant Auger Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Molecular-frame electron angular distribution (MFAD) measurements provide access to an unprecedented level of detailed information about phenomena involving quantum coherence, such as phases of photoelectron waves, symmetry breaking in molecular dissociation, core-hole localization in molecules, and molecular double-slit interference, all of which are hidden in conventional gas-phase electron spectroscopy, owing to the

  17. Molecular-Frame Angular Distributions of Resonant Auger Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Molecular-frame electron angular distribution (MFAD) measurements provide access to an unprecedented level of detailed information about phenomena involving quantum coherence, such as phases of photoelectron waves, symmetry breaking in molecular dissociation, core-hole localization in molecules, and molecular double-slit interference, all of which are hidden in conventional gas-phase electron spectroscopy, owing to the

  18. Molecular-Frame Angular Distributions of Resonant Auger Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Molecular-frame electron angular distribution (MFAD) measurements provide access to an unprecedented level of detailed information about phenomena involving quantum coherence, such as phases of photoelectron waves, symmetry breaking in molecular dissociation, core-hole localization in molecules, and molecular double-slit interference, all of which are hidden in conventional gas-phase electron spectroscopy, owing to the

  19. Molecular-Frame Angular Distributions of Resonant Auger Electrons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecular-Frame Angular Distributions of Resonant Auger Electrons Print Molecular-frame electron angular distribution (MFAD) measurements provide access to an unprecedented level of detailed information about phenomena involving quantum coherence, such as phases of photoelectron waves, symmetry breaking in molecular dissociation, core-hole localization in molecules, and molecular double-slit interference, all of which are hidden in conventional gas-phase electron spectroscopy, owing to the

  20. PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) PDF icon PIA - Environmental Molecular Sciences Laboratory (EMSL) User System (ESU) More Documents & Publications PIA - WEB iPASS System DOE PIA Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory PIA - Advanced Test Reactor National

  1. The Determination of Molecular Structure from Rotational Spectra

    DOE R&D Accomplishments [OSTI]

    Laurie, V. W.; Herschbach, D. R.

    1962-07-01

    An analysis is presented concerning the average molecular configuration variations and their effects on molecular structure determinations. It is noted that the isotopic dependence of the zero-point is often primarily governed by the isotopic variation of the average molecular configuration. (J.R.D.)

  2. Molecular-Scale Features that Govern the Effects of O-Glycosylation on a Carbohydrate-Binding Module

    SciTech Connect (OSTI)

    Guan, Xiaoyang; Chaffey, Patrick K.; Zeng, Chen; Greene, Eric R.; Chen, Liqun; Drake, Matthew R.; Chen, Claire; Groobman, Ari; Resch, Michael G.; Himmel, Michael E.; Beckham, Gregg T.; Tan, Zhongping

    2015-09-21

    The protein glycosylation is a ubiquitous post-translational modification in all kingdoms of life. Despite its importance in molecular and cellular biology, the molecular-level ramifications of O-glycosylation on biomolecular structure and function remain elusive. Here, we took a small model glycoprotein and changed the glycan structure and size, amino acid residues near the glycosylation site, and glycosidic linkage while monitoring any corresponding changes to physical stability and cellulose binding affinity. The results of this study reveal the collective importance of all the studied features in controlling the most pronounced effects of O-glycosylation in this system. This study suggests the possibility of designing proteins with multiple improved properties by simultaneously varying the structures of O-glycans and amino acids local to the glycosylation site.

  3. Molecular-Scale Features that Govern the Effects of O-Glycosylation on a Carbohydrate-Binding Module

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Guan, Xiaoyang; Chaffey, Patrick K.; Zeng, Chen; Greene, Eric R.; Chen, Liqun; Drake, Matthew R.; Chen, Claire; Groobman, Ari; Resch, Michael G.; Himmel, Michael E.; et al

    2015-09-21

    The protein glycosylation is a ubiquitous post-translational modification in all kingdoms of life. Despite its importance in molecular and cellular biology, the molecular-level ramifications of O-glycosylation on biomolecular structure and function remain elusive. Here, we took a small model glycoprotein and changed the glycan structure and size, amino acid residues near the glycosylation site, and glycosidic linkage while monitoring any corresponding changes to physical stability and cellulose binding affinity. The results of this study reveal the collective importance of all the studied features in controlling the most pronounced effects of O-glycosylation in this system. This study suggests the possibility ofmore » designing proteins with multiple improved properties by simultaneously varying the structures of O-glycans and amino acids local to the glycosylation site.« less

  4. Microbial Protein-Protein Interactions (MiPPI) Data from the Genomics: GTL Center for Molecular and Cellular Systems (CMCS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Genomic Science Center for Molecular and Cellular Systems (CMCS), established in 2002, seeks to identify and characterize the complete set of protein complexes within a cell to provide a mechanistic basis for the understanding of biochemical functions. The CMCS is anchored at ORNL and PNNL. CMCS initially focused on the identification and characterization of protein complexes in two microbial systems,Rhodopseudomonas palustris (R. palustris) and Shewanella oneidensis (S. oneidensis). These two organisms have also been the focus of major DOE Genomic Science/Microbial Cell Program (MCP) projects. To develop an approach for identifying the diverse types of complexes present in microbial organisms, CMCS incorporates a number of molecular biology, microbiology, analytical and computational tools in an integrated pipeline.

  5. Request for Travel Funds for Systems Radiation Biology Workshop

    SciTech Connect (OSTI)

    Barcellos-Hoff, Mary Helen

    2014-03-22

    The 3rd International Systems Radiation Biology Workshop brought together the major European, US and Japanese research programs on radiation risk as well as selected experts representing systems biological approaches to discuss how the new methodologies could be best exploited for low dose research. A significant part of the workshop was devoted to discussions organised as breakout group sessions. To facilitate discussions number of participants was limited to 60 persons. To achieve the goals of this symposium in this international conference, support from DOE is vital. Hence, this proposal requested support in the amount of $15,000 to cover the travel expenses of international experts and radiation biology scientists from the United States. This supporting mechanism was clearly identified to the selected US participants as a conference support award from the DOE (See attached PDF). The workshop was an outstanding opportunity to strengthen interactions between leading experts in the emerging areas of radiation sciences, and will also provide opportunities for younger scientists to meet with experts and discuss their results. This workshop was designed to endorse active engagement in international collaboration. A major objective of this conference was to effectively communicate research results, in order to ensure that current thinking reflects sound science of radiation biology. Further, this international event addressed the use and success of scientific initiatives in radiation biology for policymakers, standard-setters, and the general public.

  6. Solid-water detoxifying reagents for chemical and biological agents

    DOE Patents [OSTI]

    Hoffman, Dennis M.; Chiu, Ing Lap

    2006-04-18

    Formation of solid-water detoxifying reagents for chemical and biological agents. Solutions of detoxifying reagent for chemical and biological agents are coated using small quantities of hydrophobic nanoparticles by vigorous agitation or by aerosolization of the solution in the presence of the hydrophobic nanoparticles to form a solid powder. For example, when hydrophobic fumed silica particles are shaken in the presence of IN oxone solution in approximately a 95:5-weight ratio, a dry powder results. The hydrophobic silica forms a porous coating of insoluble fine particles around the solution. Since the chemical or biological agent tends to be hydrophobic on contact with the weakly encapsulated detoxifying solution, the porous coating breaks down and the detoxifying reagent is delivered directly to the chemical or biological agent for maximum concentration at the point of need. The solid-water (coated) detoxifying solutions can be blown into contaminated ventilation ducting or other difficult to reach sites for detoxification of pools of chemical or biological agent. Once the agent has been detoxified, it can be removed by flushing the area with air or other techniques.

  7. Scaling nitrogen and carbon interactions: What are the consequences of biological buffering?

    SciTech Connect (OSTI)

    Weston, David J.; Rogers, Alistair; Tschaplinski, Timothy J.; Gunter, Lee E.; Jawdy, Sara A.; Engle, Nancy L.; Heady, Lindsey E.; Tuskan, Gerald A.; Wullschleger, Stan D.

    2015-06-25

    Understanding the consequences of elevated CO2 (eCO2; 800 ppm) on terrestrial ecosystems is a central theme in global change biology, but relatively little is known about how altered plant C and N metabolism influences higher levels of biological organization. Here, we investigate the consequences of C and N interactions by genetically modifying the N-assimilation pathway in Arabidopsis and initiating growth chamber and mesocosm competition studies at current CO2 (cCO2; 400 ppm) and eCO2 over multiple generations. Using a suite of ecological, physiological, and molecular genomic tools, we show that a single-gene mutant of a key enzyme (nia2) elicited a highly orchestrated buffering response starting with a fivefold increase in the expression of a gene paralog (nia1) and a 63% increase in the expression of gene network module enriched for N-assimilation genes. The genetic perturbation reduced amino acids, protein, and TCA-cycle intermediate concentrations in the nia2 mutant compared to the wild-type, while eCO2 mainly increased carbohydrate concentrations. The mutant had reduced net photosynthetic rates due to a 27% decrease in carboxylation capacity and an 18% decrease in electron transport rates. The expression of these buffering mechanisms resulted in a penalty that negatively correlated with fitness and population dynamics yet showed only minor alterations in our estimates of population function, including total per unit area biomass, ground cover, and leaf area index. As a result, this study provides insight into the consequences of buffering mechanisms that occur post-genetic perturbations in the N pathway and the associated outcomes these buffering systems have on plant populations relative to eCO2.

  8. Scaling carbon and nitrogen interactions. What are the consequences of biological buffering?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weston, David; Rogers, Alistair; Tschaplinski, Timothy J.; Gunter, Lee E; Jawdy, Sara; Engle, Nancy L.; Heady, Lindsey E.; Tuskan, Gerald A.; Wullschleger, Stan D.

    2015-06-25

    Understanding the consequences of elevated CO2 (eCO2; 800 ppm) on terrestrial ecosystems is a central theme in global change biology, but relatively little is known about how altered plant C and N metabolism influences higher levels of biological organization. Here, we investigate the consequences of C and N interactions by genetically modifying the N-assimilation pathway in Arabidopsis and initiating growth chamber and mesocosm competition studies at current CO2 (cCO2; 400 ppm) and eCO2 over multiple generations. Using a suite of ecological, physiological, and molecular genomic tools, we show that a single-gene mutant of a key enzyme (nia2) elicited a highlymore » orchestrated buffering response starting with a fivefold increase in the expression of a gene paralog (nia1) and a 63% increase in the expression of gene network module enriched for N-assimilation genes. The genetic perturbation reduced amino acids, protein, and TCA-cycle intermediate concentrations in the nia2 mutant compared to the wild-type, while eCO2 mainly increased carbohydrate concentrations. The mutant had reduced net photosynthetic rates due to a 27% decrease in carboxylation capacity and an 18% decrease in electron transport rates. The expression of these buffering mechanisms resulted in a penalty that negatively correlated with fitness and population dynamics yet showed only minor alterations in our estimates of population function, including total per unit area biomass, ground cover, and leaf area index. This study provides insight into the consequences of buffering mechanisms that occur post-genetic perturbations in the N pathway and the associated outcomes these buffering systems have on plant populations relative to eCO2.« less

  9. Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses

    SciTech Connect (OSTI)

    Yang, Shihui; Pan, Chongle; Tschaplinski, Timothy J; Hurst, Gregory {Greg} B; Engle, Nancy L; Zhou, Wen; Dam, Phuongan; Xu, Ying; Dice, Lezlee T; Davison, Brian H; Brown, Steven D

    2013-01-01

    Zymomonas mobilis ZM4 is a capable ethanogenic bacterium with high ethanol productivity and high level of ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of ethanol stress response have not been elucidated fully. In this study, ethanol stress responses were investigated using systems biology tools. Medium supplementation with an initial 47.3 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. Metabolomic profiling showed that ethanol-treated ZM4 cells accumulated greater amounts of glycerol during the entire fermentation process, which may indicate an important role for this metabolite. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 56% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. There were fewer genes significantly differentially expressed in the exponential phase compared to that of stationary phase and early stationary phase. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Correlations among the transcriptomics, proteomics and metabolism were examined and among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. This systems biology study elucidates key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress.

  10. Scaling nitrogen and carbon interactions: What are the consequences of biological buffering?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weston, David J.; Rogers, Alistair; Tschaplinski, Timothy J.; Gunter, Lee E.; Jawdy, Sara A.; Engle, Nancy L.; Heady, Lindsey E.; Tuskan, Gerald A.; Wullschleger, Stan D.

    2015-06-25

    Understanding the consequences of elevated CO2 (eCO2; 800 ppm) on terrestrial ecosystems is a central theme in global change biology, but relatively little is known about how altered plant C and N metabolism influences higher levels of biological organization. Here, we investigate the consequences of C and N interactions by genetically modifying the N-assimilation pathway in Arabidopsis and initiating growth chamber and mesocosm competition studies at current CO2 (cCO2; 400 ppm) and eCO2 over multiple generations. Using a suite of ecological, physiological, and molecular genomic tools, we show that a single-gene mutant of a key enzyme (nia2) elicited a highlymore » orchestrated buffering response starting with a fivefold increase in the expression of a gene paralog (nia1) and a 63% increase in the expression of gene network module enriched for N-assimilation genes. The genetic perturbation reduced amino acids, protein, and TCA-cycle intermediate concentrations in the nia2 mutant compared to the wild-type, while eCO2 mainly increased carbohydrate concentrations. The mutant had reduced net photosynthetic rates due to a 27% decrease in carboxylation capacity and an 18% decrease in electron transport rates. The expression of these buffering mechanisms resulted in a penalty that negatively correlated with fitness and population dynamics yet showed only minor alterations in our estimates of population function, including total per unit area biomass, ground cover, and leaf area index. As a result, this study provides insight into the consequences of buffering mechanisms that occur post-genetic perturbations in the N pathway and the associated outcomes these buffering systems have on plant populations relative to eCO2.« less

  11. Method and apparatus for determining nutrient stimulation of biological processes

    DOE Patents [OSTI]

    Colwell, F.S.; Geesey, G.G.; Gillis, R.J.; Lehman, R.M.

    1997-11-11

    A method and apparatus is described for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for said microorganisms in said sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure differences in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses. 5 figs.

  12. Chemical and biological nonproliferation program. FY99 annual report

    SciTech Connect (OSTI)

    2000-03-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.

  13. Method and apparatus for determining nutrient stimulation of biological processes

    DOE Patents [OSTI]

    Colwell, Frederick S. (Idaho Falls, ID); Geesey, Gill G. (Bozeman, MT); Gillis, Richard J. (Bozeman, MT); Lehman, R. Michael (Idaho Falls, ID)

    1999-01-01

    A method and apparatus for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for said microorganisms in said sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure difference in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses.

  14. Method and apparatus for determining nutrient stimulation of biological processes

    DOE Patents [OSTI]

    Colwell, Frederick S. (Idaho Falls, ID); Geesey, Gill G. (Bozeman, MT); Gillis, Richard J. (Bozeman, MT); Lehman, R. Michael (Idaho Falls, ID)

    1997-01-01

    A method and apparatus for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for said microorganisms in said sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure differences in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses.

  15. Renewable Energy from Synthetic Biology (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Keasling, Jay

    2011-04-28

    Jay Keasling, co-leader of Berkeley Lab's Helios Project, is a groundbreaking researcher in the new scientific field of synthetic biology. In Helios, he directs the biology program, incorporating a range of approaches to increasing the efficacy and economy of plants and cellulose-degrading microbes to make solar-based fuels. He is a UC Berkeley professor of Chemical and Bioengineering, and founder of Amyris Biotechnologies, a company that was honored as a Technology Pioneer for 2006 by the World Economic Forum. Keasling has succeeded in using synthetic biology to develop a yeast-based production scheme for precursors of the antimalarial drug artemisinin in work funded by the Bill & Melinda Gates Foundation.

  16. Method and apparatus for determining nutrient stimulation of biological processes

    DOE Patents [OSTI]

    Colwell, F.S.; Geesey, G.G.; Gillis, R.J.; Lehman, R.M.

    1999-07-13

    A method and apparatus are disclosed for determining the nutrients to stimulate microorganisms in a particular environment. A representative sample of microorganisms from a particular environment are contacted with multiple support means wherein each support means has intimately associated with the surface of the support means a different nutrient composition for microorganisms in the sample. The multiple support means is allowed to remain in contact with the microorganisms in the sample for a time period sufficient to measure difference in microorganism effects for the multiple support means. Microorganism effects for the multiple support means are then measured and compared. The invention is particularly adaptable to being conducted in situ. The additional steps of regulating nutrients added to the particular environment of microorganisms can enhance the desired results. Biological systems particularly suitable for this invention are bioremediation, biologically enhanced oil recovery, biological leaching of metals, and agricultural bioprocesses. 5 figs.

  17. Formulations for neutralization of chemical and biological toxants

    DOE Patents [OSTI]

    Tadros, Maher E.; Tucker, Mark D.

    2003-05-20

    A formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents. The formulation of the present invention non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The at least one reactive compound can be an oxidizing compound, a nucleophilic compound or a mixture of both. The formulation can kill up to 99.99999% of bacterial spores within one hour of exposure.

  18. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuqueque, NM) [Albuqueque, NM

    2008-06-24

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  19. Semiconductor Quantum Rods as Single Molecule FluorescentBiological Labels

    SciTech Connect (OSTI)

    Fu, Aihua; Gu, Weiwei; Boussert, Benjamine; Koski, Kristie; Gerion, Daniele; Manna, Liberato; Le Gros, Mark; Larabell, Carolyn; Alivisatos, A. Paul

    2006-05-29

    In recent years, semiconductor quantum dots have beenapplied with great advantage in a wide range of biological imagingapplications. The continuing developments in the synthesis of nanoscalematerials and specifically in the area of colloidal semiconductornanocrystals have created an opportunity to generate a next generation ofbiological labels with complementary or in some cases enhanced propertiescompared to colloidal quantum dots. In this paper, we report thedevelopment of rod shaped semiconductor nanocrystals (quantum rods) asnew fluorescent biological labels. We have engineered biocompatiblequantum rods by surface silanization and have applied them fornon-specific cell tracking as well as specific cellular targeting. Theproperties of quantum rods as demonstrated here are enhanced sensitivityand greater resistance for degradation as compared to quantum dots.Quantum rods have many potential applications as biological labels insituations where their properties offer advantages over quantumdots.

  20. Invited Review Article: Advanced light microscopy for biological space research

    SciTech Connect (OSTI)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  1. Detection and differentiation of coxiella burnetii in biological fluids

    DOE Patents [OSTI]

    Frazier, Marvin E. (Richland, WA); Mallavia, Louis P. (Moscow, ID); Samuel, James E. (Pullman, WA); Baca, Oswald G. (Albuquerque, NM)

    1990-01-01

    Methods for detecting the presence of Coxiella burenetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA (specifically rickettsial DNA) with a C. burnetii-specific labeled DNA probe. Radioisotope and biotin labels are preferred, allowing detection through autoradiography and colorimetric assays, respectively.

  2. Detection and differentiation of coxiella burnetii in biological fluids

    DOE Patents [OSTI]

    Frazier, Marvin E. (Richland, WA); Mallavia, Louis P. (Moscow, ID); Samuel, James E. (Derwood, MD); Baca, Oswald G. (Albuquerque, NM)

    1993-01-01

    Methods for detecting the presence of Coxiella burnetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA with a DNA probe containing DNA sequences that specifically hybridize with C. burnetii DNA of strains associated with the capacity to cause acute or chronic disease.

  3. Detection and differentiation of coxiella burnetii in biological fluids

    DOE Patents [OSTI]

    Frazier, Marvin E. (Richland, WA); Mallavia, Louis P. (Moscow, ID); Baca, Oswald G. (Albuquerque, NM); Samuel, James E. (Pullman, WA)

    1989-01-01

    Methods for detecting the presence of Coxiella burnetii in biological samples, as well as a method for differentiating strains of C. burnetii that are capable of causing acute disease from those strains capable of causing chronic disease are disclosed. The methods generally comprise treating cells contained within the biological sample to expose cellular DNA, and hybridizing the cellular DNA (specifically rickettsial DNA) with a C. burnetii-specific labeled DNA probe. Radioisotope and biotin labels are preferred, allowing detection through autoradiography and colorimetric assays, respectively.

  4. Biological Imaging by Soft X-Ray Diffraction Microscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes

  5. Concentrated formulations and methods for neutralizing chemical and biological toxants

    DOE Patents [OSTI]

    Tucker, Mark D.; Betty, Rita G.; Tadros, Maher E.

    2004-04-20

    A formulation and method of making and using that neutralizes the adverse health effects of both chemical and biological toxants, especially chemical warfare (CW) and biological warfare (BW) agents. The aqueous formulation is non-toxic and non-corrosive and can be delivered as a long-lasting foam, spray, or fog. The formulation includes solubilizing compounds that serve to effectively render the CW or BW toxant susceptible to attack, so that a nucleophillic agent can attack the compound via a hydrolysis or oxidation reaction. The formulation can kill up to 99.99999% of bacterial spores within one hour of exposure.

  6. Biological and Environmental Research Advisory Committee (BERAC) meeting |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) October 28-29, 2015 Gaithersburg, Md. Biological and Environmental Research Advisory Committee (BERAC) BERAC Home Meetings BERAC Minutes BERAC Minutes Archive Members Charges/Reports Charter .pdf file (135KB) BER Committees of Visitors Federal Advisory Committees BER Home Meetings October 28-29, 2015 Gaithersburg, Md. Print Text Size: A A A FeedbackShare Page Agenda .pdf file (61KB) Presentations: Sharlene Weatherwax .pdf file (768KB) Office of Biological and

  7. COLLOQUIUM: Plasma Mediated Effects on Biological Cells | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab October 8, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Plasma Mediated Effects on Biological Cells Professor Mounir Laroussi Old Dominion University Low temperature plasma (LTP) in air-containing gas mixtures produce reactive oxygen species (ROS) such as O, O2-, and OH and reactive nitrogen species (RNS) such as NO and NO2 which exhibit strong oxidative properties and/or trigger signaling pathways in biological cells. For example oxidation of the lipids and

  8. Biological Monitoring at Amchitka Appears to Show Impacts from Fukushima

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dai-ichi Incident | Department of Energy Biological Monitoring at Amchitka Appears to Show Impacts from Fukushima Dai-ichi Incident Biological Monitoring at Amchitka Appears to Show Impacts from Fukushima Dai-ichi Incident April 12, 2013 - 3:09pm Addthis An LM scientist points to star reindeer lichen on Adak Island, Alaska. An LM scientist points to star reindeer lichen on Adak Island, Alaska. What does this project do? Goal 1. Protect human health and the environment The U.S. Department of

  9. Computational Proteomics: High-throughput Analysis for Systems Biology

    SciTech Connect (OSTI)

    Cannon, William R.; Webb-Robertson, Bobbie-Jo M.

    2007-01-03

    High-throughput (HTP) proteomics is a rapidly developing field that offers the global profiling of proteins from a biological system. The HTP technological advances are fueling a revolution in biology, enabling analyses at the scales of entire systems (e.g., whole cells, tumors, or environmental communities). However, simply identifying the proteins in a cell is insufficient for understanding the underlying complexity and operating mechanisms of the overall system. Systems level investigations are relying more and more on computational analyses, especially in the field of proteomics generating large-scale global data.

  10. On the dynamic and static manifestation of molecular absorption in thin films probed by a microcantilever

    SciTech Connect (OSTI)

    Finot, Eric; Fabre, Arnaud; Passian, Ali; Thundat, Thomas

    2014-03-01

    Mechanical resonators shaped like microcantilevers have been demonstrated as a platform for very sensitive detection of chemical and biological analytes. However, its use as an analytical tool will require fundamental understanding of the molecular absorption-induced effects in the static and dynamic sensor response. The effect of absorption-induced surface stress on the microcantilever response is here investigated using palladium hydride formation. It is shown that the resonance and deformation states of the cantilever monitored simultaneously exhibit excellent correlation with the phase of the hydride formation. However, the associated frequency shifts and quasistatic bending are observed to be independent during solid solution phase. Importantly, absorption-induced changes in the elastic parameters of the palladium film are found to play a dominant role in the static and dynamic response. The presented results help in discerning the parameters that control the cantilever response as well as the relationships between these parameters.

  11. Development of Molecular Electrocatalysts for Energy Storage

    SciTech Connect (OSTI)

    DuBois, Daniel L.

    2014-02-20

    Molecular electrocatalysts can play an important role in energy storage and utilization reactions needed for intermittent renewable energy sources. This manuscript describes three general themes that our laboratories have found useful in the development of molecular electrocatalysts for reduction of CO2 to CO and for H2 oxidation and production. The first theme involves a conceptual partitioning of catalysts into first, second, and outer coordination spheres. This is illustrated with the design of electrocatalysts for CO2 reduction to CO using first and second coordination spheres and for H2 production catalysts using all three coordination spheres. The second theme focuses on the development of thermodynamic models that can be used to design catalysts to avoid high energy and low energy intermediates. In this research, new approaches to the measurement of thermodynamic hydride donor and acceptor abilities of transition metal complexes were developed. Combining this information with other thermodynamic information such as pKa values and redox potentials led to more complete thermodynamic descriptions of transition metal hydride, dihydride, and related species. Relationships extracted from this information were then used to develop models that are powerful tools for predicting and understanding the relative free energies of intermediates in catalytic reactions. The third theme is the control of proton movement during electrochemical fuel generation and utilization reactions. This research involves the incorporation of pendant amines in the second coordination sphere that can facilitate H-H bond heterolysis and heteroformation, intramolecular and intermolecular proton transfer steps, and the coupling of proton and electron transfer steps. Studies also indicate an important role for outer coordination sphere in the delivery of protons to the second coordination sphere. Understanding these proton transfer reactions and their associated energy barriers are key to the design of faster and more efficient molecular electrocatalysts for energy storage. Funding for the research described in this manuscript was provided as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center supported by the U.S. Department of Energy, Office of Science and through individual grants from the Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  12. SECTION IV. ATOMIC AND MOLECULAR SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IV. ATOMIC AND MOLECULAR SCIENCE Cross Sections for Cu K-Vacancy Production in Fast Heavy Ion Collisions R.L. Watson, J.M. Blackadar and V. Horvat Enhancement of the Cu Kα x-ray Diagram Lines in Fast Heavy Ion Collisions R.L. Watson, V. Horvat and J.M. Blackadar K-shell Ionization by Secondary Electrons V. Horvat, R.L. Watson and J.M. Blackadar Target-atom Inner-shell Vacancy Distributions Created in Collisions with Heavy Ion Projectiles V. Horvat, R.L. Watson and J.M. Blackadar Systematics of

  13. Phonon interference effects in molecular junctions

    SciTech Connect (OSTI)

    Markussen, Troels

    2013-12-28

    We study coherent phonon transport through organic, ?-conjugated molecules. Using first principles calculations and Green's function methods, we find that the phonon transmission function in cross-conjugated molecules, like meta-connected benzene, exhibits destructive quantum interference features very analogous to those observed theoretically and experimentally for electron transport in similar molecules. The destructive interference features observed in four different cross-conjugated molecules significantly reduce the thermal conductance with respect to linear conjugated analogues. Such control of the thermal conductance by chemical modifications could be important for thermoelectric applications of molecular junctions.

  14. Spinorbit interaction mediated molecular dissociation

    SciTech Connect (OSTI)

    Kokkonen, E. Jnkl, K.; Kettunen, J. A.; Heinsmki, S.; Karpenko, A.; Huttula, M.; Lytynoja, T.; Division of Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm

    2014-05-14

    The effect of the spinorbit interaction to photofragmentation is investigated in the mercury(II) bromide (HgBr{sub 2}) molecule. Changes in the fragmentation between the two spinorbit components of Hg 5d photoionization, as well as within the molecular-field-splitted levels of these components are observed. Dissociation subsequent to photoionization is studied with synchrotron radiation and photoelectron-photoion coincidence spectroscopy. The experimental results are accompanied by relativistic ab initio analysis of the photoelectron spectrum.

  15. Biological Systems Science Division (BSSD) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Biological Systems Science Division (BSSD) Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Genomic Science DOE Bioenergy Research Centers Bioimaging Technology DOE Joint Genome Institute Structural Biology Radiochemistry & Imaging Instrumentation Radiobiology: Low Dose Radiation Research DOE Human Subjects Protection Program Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER

  16. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    DOE Patents [OSTI]

    Hunt, Ryan W; Chinnasamy, Senthil; Das, Keshav C; Rolim de Mattos, Erico

    2014-02-25

    The present disclosure relates to biological optimization systems for enhancing photosynthetic efficiency and methods of use.

  17. Thin film composition with biological substance and method of making

    SciTech Connect (OSTI)

    Campbell, A.A.; Song, L.

    1999-09-28

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphous structures, organic crystalline structures, and organic amorphous structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobial, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflammatory, steroid, nonsteroid anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor consisting of the compositions listed above.

  18. PG&E Reconductoring Project Biological Assessment (Revised)

    Broader source: Energy.gov [DOE]

    This biological assessment (BA) is to provide the information necessary for formal consultation between the Department of Energy (DOE) and U.S. Fish and Wildlife Service (USFWS) regarding the effects of the Proposed Action as required pursuant to Section 7(a)(2) of the Endangered Species Act (ESA).

  19. Biological Conversion of Sugars to Hydrocarbons Technology Pathway

    Broader source: Energy.gov [DOE]

    This technology pathway case investigates the biological conversion of biomass-derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot-scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  20. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    SciTech Connect (OSTI)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.

  1. Physics in medicine and biology encyclopedia 2-volume set

    SciTech Connect (OSTI)

    McAinsh, T.F.

    1986-01-01

    The Physics in Medicine and Biology Encyclopedia provides in two volumes a review of a wide range of topics of current interest in medical physics, bioengineering and biophysics. The Encyclopedia is extensively cross-referenced, indexed and illustrated, and all articles are complete with fully verified bibliographies. A glossary gives full details of specialized terms appearing in the Encyclopedia.

  2. Behavior of REE in geological and biological systems

    SciTech Connect (OSTI)

    Laul, J.C.; Weimer, W.C.

    1981-05-01

    The REE abundances when normalized to primordial (chondritic) abundances behave as a smooth function of the REE ionic radii in both the geological and biological systems. The REE are hardly fractionated chemically through various stages of their transformation from soil-soil extract-plant-geological systems.

  3. Thin film composition with biological substance and method of making

    DOE Patents [OSTI]

    Campbell, Allison A. (Kennewick, WA); Song, Lin (Richland, WA)

    1999-01-01

    The invention provides a thin-film composition comprising an underlying substrate of a first material including a plurality of attachment sites; a plurality of functional groups chemically attached to the attachment sites of the underlying substrate; and a thin film of a second material deposited onto the attachment sites of the underlying substrate, and a biologically active substance deposited with the thin-film. Preferably the functional groups are attached to a self assembling monolayer attached to the underlying substrate. Preferred functional groups attached to the underlying substrate are chosen from the group consisting of carboxylates, sulfonates, phosphates, optionally substituted, linear or cyclo, alkyl, alkene, alkyne, aryl, alkylaryl, amine, hydroxyl, thiol, silyl, phosphoryl, cyano, metallocenyl, carbonyl, and polyphosphate. Preferred materials for the underlying substrate are selected from the group consisting of a metal, a metal alloy, a plastic, a polymer, a proteic film, a membrane, a glass or a ceramic. The second material is selected from the group consisting of inorganic crystalline structures, inorganic amorphus structures, organic crystalline structures, and organic amorphus structures. Preferred second materials are phosphates, especially calcium phosphates and most particularly calcium apatite. The biologically active molecule is a protein, peptide, DNA segment, RNA segment, nucleotide, polynucleotide, nucleoside, antibiotic, antimicrobal, radioisotope, chelated radioisotope, chelated metal, metal salt, anti-inflamatory, steriod, nonsteriod anti-inflammatory, analgesic, antihistamine, receptor binding agent, or chemotherapeutic agent, or other biologically active material. Preferably the biologically active molecule is an osteogenic factor the compositions listed above.

  4. Molecular modeling of responsive polymer films

    SciTech Connect (OSTI)

    Tagliazucchi, Mario; Calvo, Ernesto J; Szleifer, Igal

    2010-06-29

    In this perspective, we have shown three different cases of responsive polymers at surfaces where the properties of the surface can be varied in response to cues from the bulk solution or in the presence of an external field. The most important conclusion in all three cases is that the chemical reaction equilibrium, physical interactions and molecular organization are strongly coupled, and it is imperative to consider the global and local changes that occur to the surface structure and properties due to this coupling. In particular acid-base and redox equilibrium are very different in polymer-modified surfaces than in the corresponding bulk solutions. Moreover, the definition of apparent redox potentials and apparent pKaresults from the averaging over highly inhomogeneous values,and, therefore, they do not necessarily represent the state of the layer and the local values and their variation are very important for the design of functional surfaces. The very large variation on chemical equilibrium results from the optimization of all the interactions. The picture that emerges is that trying to deduce what the final state of the system is by looking at the individual optimization of each contribution leads to qualitative incorrect assumptions and only the minimization of the complete free energy leads to the proper behavior in these complex systems.In the cases where domain formation is possible in grafted weak polyacid layers charge regulation may lead to regimes of coexistence between aggregates with relatively low fraction of charged polymer segments surrounded by highly stretched chains that have a relatively high fraction of charged groups.Therefore, one can control the state of charge, local electrostatic potential and local pH in all three dimensions with im-portant gradients on length scales of nanometers. For hydrophobic redox polymers we show how the application of an electrode potential can lead to changes in the structure and type of morphological aggregates that can form on the surface.Again, these structures result from the optimization of chemical redox equilibrium, conformational entropy, electrostatic and hydrophobic interactions. Furthermore, changes in domains structure can manifest themselves in the capacitance-potential curves and then provide a link between macroscopic measurements and the formation of nanoscopic domains. It is clear that chemical engineers are in a unique position to use these switchable surfaces in the molecular design of sensors, biosensors, separation devices, microfluidic devices with on-off environmental switches and drug delivery systems among many others. Finally, we want to stress that the application of molecular theories, where the coupling between chemical equilibrium, physical interactions and molecular organization are explicitly included provide with quantitative predictions of the layers properties, as compared with experimental observations, and enable the fundamental understanding of the observed behavior. Moreover, the theory provides with a detailed microscopic picture and should be used as an integral part in the design of functional and responsive surfaces. It is important to emphasize that the molecular approaches are not exact, and, therefore, there is a need to continue their development and the incorporation of improved approximations to further broaden their applicability.

  5. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

    SciTech Connect (OSTI)

    Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

    2010-02-01

    Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

  6. Synthesis and stability of liquid molecular DT

    SciTech Connect (OSTI)

    Souers, P.C.; Fearon, E.M.; Garza, R.G.; Griffith, C.M.; Mayhugh, S.R.; Mapoles, E.R.; Tsurgawa, R.T.; Sater, J.D.; Collins, G.W.; Gaines, J.R.

    1988-01-01

    Regular equimolar deuterium-tritium is a mixture of 25 mol% T/sub 2/-50% DT-25% D/sub 2/. We have synthesized molecular DT of greater purity by the reaction LiT + CH/sub 3/OD ..-->.. DT + LiOCH/sub 3/, run at 243/degree/K. With both the alcohol and reactor-to-cryostat transfer lines at room temperature, we obtain 88 mol% DT purity. By cooling the alcohol and holding the transfer lines at 80/degree/K, the yield rose to 95% DT. The DT disproportionated to D/sub 2/ and T/sub 2/ with a le-time constant of about 100 hours in the liquid at 20.5/degree/K. Nuclear magnetic resonance data showed that the eventual T/sub 2/-DT-D/sub 2/ equilibrium is probably a /open quotes/hot-atom/close quotes/ one.

  7. Synthesis and stability of liquid molecular DT

    SciTech Connect (OSTI)

    Souers, P.C.; Fearon, E.M.; Garza, R.G.; Friffith, C.M.; Mayhugh, S.R.; Mapoles, E.R.; Tsugawa, R.T.; Sater, J.D.; Collins, G.W.; Gaines, J.R.

    1988-05-01

    Regular equimolar deuterium-tritium is a mixture of 25 mol% T/sub 2/-50% DT-25% D/sub 2/. We have synthesized molecular DT of greater purity by the reaction LiT + CH/sub 3/OD ..-->.. DT + LiOCH/sub 3/, run at 243/degree/K. With both the alcohol and reactor-to-cryostat transfer lines at room temperature, we obtain 88 mol% DT purity. By cooling the alcohol and holding the transfer lines at 80/degree/K, the yield rose to 95% DT. The DT disproportionated to D/sub 2/ and T/sub 2/ with a 1e time constant of about 100 h in the liquid at 20.5/degree/K. Nuclear magnetic resonance data showed that the eventual T/sub 2/-DT-D/sub 2/ equilibrium is probably a /open quotes/hot-atom/close quotes/ one. 15 refs., 4 figs., 1 tab.

  8. Synthesis and stability of liquid molecular DT

    SciTech Connect (OSTI)

    Pearon, E.M.; Garza, R.G.; Griffith, C.M.; Mayhugh, S.R.; Mapoles, E.R.; Sater, J.D.; Souers, P.C.; Tsugawa, R.T.; Gaines, J.R.; Collins, G.W.

    1988-09-01

    Regular equimolar deuterium-tritium is a mixture of 25 mol% T/sub 2/-50% DT-25% D/sub 2/. The authors have synthesized molecular DT of greater purity by the reaction LiT + CH/sub 3/OD /yields/ DT + LiOCH/sub 3/, run at 243 K. With both the alcohol and reactor-to-cryostat transfer lines at room temperature, they obtain the 88 mol% DT purity. By cooling the alcohol and holding the transfer lines at 80 K, the yield rose to 95% DT. The DT disproportionated to D/sub 2/ and T/sub 2/ with a 1/e time constant of about 100 hr in the liquid at 20.5 K. Nuclear magnetic resonance data showed that the eventual T/sub 2/-DT-D/sub 2/ equilibrium is probably a hot-atom one.

  9. Octahedral molecular sieve sorbents and catalysts

    DOE Patents [OSTI]

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2010-04-20

    Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

  10. Silicotitanate molecular sieve and condensed phases

    DOE Patents [OSTI]

    Nenoff, Tina M. (Albuquerque, NM); Nyman, May D. (Albuquerque, NM)

    2002-01-01

    A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.

  11. Investigation of biologically-designed metal-specific chelators for potential metal recovery and waste remediation applications.

    SciTech Connect (OSTI)

    Criscenti, Louise Jacqueline; Ockwig, Nathan W.

    2009-01-01

    Bacteria, algae and plants produce metal-specific chelators to capture required nutrient or toxic trace metals. Biological systems are thought to be very efficient, honed by evolutionary forces over time. Understanding the approaches used by living organisms to select for specific metals in the environment may lead to design of cheaper and more effective approaches for metal recovery and contaminant-metal remediation. In this study, the binding of a common siderophore, desferrioxamine B (DFO-B), to three aqueous metal cations, Fe(II), Fe(III), and UO{sub 2}(VI) was investigated using classical molecular dynamics. DFO-B has three acetohydroxamate groups and a terminal amine group that all deprotonate with increasing pH. For all three metals, complexes with DFO-B (-2) are the most stable and favored under alkaline conditions. Under more acidic conditions, the metal-DFO complexes involve chelation with both acetohydroxamate and acetylamine groups. The approach taken here allows for detailed investigation of metal binding to biologically-designed organic ligands.

  12. Biological Mass Spectrometry and Shotgun Proteomics of Microbial Systems: Methods for studying microbial physiology from isolates to environmental communities

    SciTech Connect (OSTI)

    Dill, Brian; Young, Jacque C; Carey, Patricia A; Verberkmoes, Nathan C

    2010-01-01

    Microbial ecology is currently experiencing a renaissance spurred by the rapid development of molecular techniques and omics technologies in particular. As never before, these tools have allowed researchers in the field to produce a massive amount of information through in situ measurements and analysis of natural microbial communities, both vital approaches to the goal of unraveling the interactions of microbes with their environment and with one another. While genomics can provide information regarding the genetic potential of microbes, proteomics characterizes the primary end-stage product, proteins, thus conveying functional information concerning microbial activity. Advances in mass spectrometry instrumentation and methodologies, along with bioinformatic approaches, have brought this analytic chemistry technique to relevance in the biological realm due to its powerful applications in proteomics. Mass spectrometry-enabled proteomics, including bottom-up and top-down approaches, is capable of supplying a wealth of biologically-relevant information, from simple protein cataloging of the proteome of a microbial community to identifying post-translational modifications of individual proteins.

  13. Application of optimal prediction to molecular dynamics

    SciTech Connect (OSTI)

    Barber IV, John Letherman

    2004-12-01

    Optimal prediction is a general system reduction technique for large sets of differential equations. In this method, which was devised by Chorin, Hald, Kast, Kupferman, and Levy, a projection operator formalism is used to construct a smaller system of equations governing the dynamics of a subset of the original degrees of freedom. This reduced system consists of an effective Hamiltonian dynamics, augmented by an integral memory term and a random noise term. Molecular dynamics is a method for simulating large systems of interacting fluid particles. In this thesis, I construct a formalism for applying optimal prediction to molecular dynamics, producing reduced systems from which the properties of the original system can be recovered. These reduced systems require significantly less computational time than the original system. I initially consider first-order optimal prediction, in which the memory and noise terms are neglected. I construct a pair approximation to the renormalized potential, and ignore three-particle and higher interactions. This produces a reduced system that correctly reproduces static properties of the original system, such as energy and pressure, at low-to-moderate densities. However, it fails to capture dynamical quantities, such as autocorrelation functions. I next derive a short-memory approximation, in which the memory term is represented as a linear frictional force with configuration-dependent coefficients. This allows the use of a Fokker-Planck equation to show that, in this regime, the noise is {delta}-correlated in time. This linear friction model reproduces not only the static properties of the original system, but also the autocorrelation functions of dynamical variables.

  14. Integrated Multiscale Modeling of Molecular Computing Devices

    SciTech Connect (OSTI)

    Weinan E

    2012-03-29

    The main bottleneck in modeling transport in molecular devices is to develop the correct formulation of the problem and efficient algorithms for analyzing the electronic structure and dynamics using, for example, the time-dependent density functional theory. We have divided this task into several steps. The first step is to developing the right mathematical formulation and numerical algorithms for analyzing the electronic structure using density functional theory. The second step is to study time-dependent density functional theory, particularly the far-field boundary conditions. The third step is to study electronic transport in molecular devices. We are now at the end of the first step. Under DOE support, we have made subtantial progress in developing linear scaling and sub-linear scaling algorithms for electronic structure analysis. Although there has been a huge amount of effort in the past on developing linear scaling algorithms, most of the algorithms developed suffer from the lack of robustness and controllable accuracy. We have made the following progress: (1) We have analyzed thoroughly the localization properties of the wave-functions. We have developed a clear understanding of the physical as well as mathematical origin of the decay properties. One important conclusion is that even for metals, one can choose wavefunctions that decay faster than any algebraic power. (2) We have developed algorithms that make use of these localization properties. Our algorithms are based on non-orthogonal formulations of the density functional theory. Our key contribution is to add a localization step into the algorithm. The addition of this localization step makes the algorithm quite robust and much more accurate. Moreover, we can control the accuracy of these algorithms by changing the numerical parameters. (3) We have considerably improved the Fermi operator expansion (FOE) approach. Through pole expansion, we have developed the optimal scaling FOE algorithm.

  15. Final Report for Integrated Multiscale Modeling of Molecular Computing Devices

    SciTech Connect (OSTI)

    Glotzer, Sharon C.

    2013-08-28

    In collaboration with researchers at Vanderbilt University, North Carolina State University, Princeton and Oakridge National Laboratory we developed multiscale modeling and simulation methods capable of modeling the synthesis, assembly, and operation of molecular electronics devices. Our role in this project included the development of coarse-grained molecular and mesoscale models and simulation methods capable of simulating the assembly of millions of organic conducting molecules and other molecular components into nanowires, crossbars, and other organized patterns.

  16. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists

  17. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists

  18. Probing Core-Hole Localization in Molecular Nitrogen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Probing Core-Hole Localization in Molecular Nitrogen Print The behavior of the core hole created in molecular x-ray photoemission experiments has provided molecular scientists with a valuable window through which to probe the electronic structure and dynamics of molecules. But the answer to one fundamental quantum question-whether the core hole is localized or delocalized-has remained elusive for diatomic molecules in which both atoms are the same element. An international team of scientists

  19. Nonequilibrium molecular dynamics simulations of confined fluids in contact

    Office of Scientific and Technical Information (OSTI)

    with the bulk (Journal Article) | SciTech Connect Nonequilibrium molecular dynamics simulations of confined fluids in contact with the bulk Citation Details In-Document Search Title: Nonequilibrium molecular dynamics simulations of confined fluids in contact with the bulk A nonequilibrium molecular dynamics (MD) simulation study is reported of the structural and rheological properties of confined n-decane between two Au(111) surfaces in contact with its bulk under constant normal loads or

  20. Applications of molecular replacement to G protein-coupled receptors

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Applications of molecular replacement to G protein-coupled receptors Citation Details In-Document Search Title: Applications of molecular replacement to G protein-coupled receptors The use of molecular replacement in solving the structures of G protein-coupled receptors is discussed, with specific examples being described in detail. G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every